]>
Commit | Line | Data |
---|---|---|
dc009d92 EB |
1 | /* |
2 | * kexec.c - kexec system call | |
3 | * Copyright (C) 2002-2004 Eric Biederman <[email protected]> | |
4 | * | |
5 | * This source code is licensed under the GNU General Public License, | |
6 | * Version 2. See the file COPYING for more details. | |
7 | */ | |
8 | ||
c59ede7b | 9 | #include <linux/capability.h> |
dc009d92 EB |
10 | #include <linux/mm.h> |
11 | #include <linux/file.h> | |
12 | #include <linux/slab.h> | |
13 | #include <linux/fs.h> | |
14 | #include <linux/kexec.h> | |
15 | #include <linux/spinlock.h> | |
16 | #include <linux/list.h> | |
17 | #include <linux/highmem.h> | |
18 | #include <linux/syscalls.h> | |
19 | #include <linux/reboot.h> | |
dc009d92 | 20 | #include <linux/ioport.h> |
6e274d14 | 21 | #include <linux/hardirq.h> |
85916f81 MD |
22 | #include <linux/elf.h> |
23 | #include <linux/elfcore.h> | |
fd59d231 KO |
24 | #include <linux/utsrelease.h> |
25 | #include <linux/utsname.h> | |
26 | #include <linux/numa.h> | |
6e274d14 | 27 | |
dc009d92 EB |
28 | #include <asm/page.h> |
29 | #include <asm/uaccess.h> | |
30 | #include <asm/io.h> | |
31 | #include <asm/system.h> | |
fd59d231 | 32 | #include <asm/sections.h> |
dc009d92 | 33 | |
cc571658 VG |
34 | /* Per cpu memory for storing cpu states in case of system crash. */ |
35 | note_buf_t* crash_notes; | |
36 | ||
fd59d231 KO |
37 | /* vmcoreinfo stuff */ |
38 | unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; | |
39 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; | |
d768281e KO |
40 | size_t vmcoreinfo_size; |
41 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | |
fd59d231 | 42 | |
dc009d92 EB |
43 | /* Location of the reserved area for the crash kernel */ |
44 | struct resource crashk_res = { | |
45 | .name = "Crash kernel", | |
46 | .start = 0, | |
47 | .end = 0, | |
48 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | |
49 | }; | |
50 | ||
6e274d14 AN |
51 | int kexec_should_crash(struct task_struct *p) |
52 | { | |
b460cbc5 | 53 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
6e274d14 AN |
54 | return 1; |
55 | return 0; | |
56 | } | |
57 | ||
dc009d92 EB |
58 | /* |
59 | * When kexec transitions to the new kernel there is a one-to-one | |
60 | * mapping between physical and virtual addresses. On processors | |
61 | * where you can disable the MMU this is trivial, and easy. For | |
62 | * others it is still a simple predictable page table to setup. | |
63 | * | |
64 | * In that environment kexec copies the new kernel to its final | |
65 | * resting place. This means I can only support memory whose | |
66 | * physical address can fit in an unsigned long. In particular | |
67 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
68 | * If the assembly stub has more restrictive requirements | |
69 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
70 | * defined more restrictively in <asm/kexec.h>. | |
71 | * | |
72 | * The code for the transition from the current kernel to the | |
73 | * the new kernel is placed in the control_code_buffer, whose size | |
74 | * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single | |
75 | * page of memory is necessary, but some architectures require more. | |
76 | * Because this memory must be identity mapped in the transition from | |
77 | * virtual to physical addresses it must live in the range | |
78 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
79 | * modifiable. | |
80 | * | |
81 | * The assembly stub in the control code buffer is passed a linked list | |
82 | * of descriptor pages detailing the source pages of the new kernel, | |
83 | * and the destination addresses of those source pages. As this data | |
84 | * structure is not used in the context of the current OS, it must | |
85 | * be self-contained. | |
86 | * | |
87 | * The code has been made to work with highmem pages and will use a | |
88 | * destination page in its final resting place (if it happens | |
89 | * to allocate it). The end product of this is that most of the | |
90 | * physical address space, and most of RAM can be used. | |
91 | * | |
92 | * Future directions include: | |
93 | * - allocating a page table with the control code buffer identity | |
94 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
95 | * reliable. | |
96 | */ | |
97 | ||
98 | /* | |
99 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
100 | * allocating pages whose destination address we do not care about. | |
101 | */ | |
102 | #define KIMAGE_NO_DEST (-1UL) | |
103 | ||
72414d3f MS |
104 | static int kimage_is_destination_range(struct kimage *image, |
105 | unsigned long start, unsigned long end); | |
106 | static struct page *kimage_alloc_page(struct kimage *image, | |
9796fdd8 | 107 | gfp_t gfp_mask, |
72414d3f | 108 | unsigned long dest); |
dc009d92 EB |
109 | |
110 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
111 | unsigned long nr_segments, |
112 | struct kexec_segment __user *segments) | |
dc009d92 EB |
113 | { |
114 | size_t segment_bytes; | |
115 | struct kimage *image; | |
116 | unsigned long i; | |
117 | int result; | |
118 | ||
119 | /* Allocate a controlling structure */ | |
120 | result = -ENOMEM; | |
4668edc3 | 121 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
72414d3f | 122 | if (!image) |
dc009d92 | 123 | goto out; |
72414d3f | 124 | |
dc009d92 EB |
125 | image->head = 0; |
126 | image->entry = &image->head; | |
127 | image->last_entry = &image->head; | |
128 | image->control_page = ~0; /* By default this does not apply */ | |
129 | image->start = entry; | |
130 | image->type = KEXEC_TYPE_DEFAULT; | |
131 | ||
132 | /* Initialize the list of control pages */ | |
133 | INIT_LIST_HEAD(&image->control_pages); | |
134 | ||
135 | /* Initialize the list of destination pages */ | |
136 | INIT_LIST_HEAD(&image->dest_pages); | |
137 | ||
138 | /* Initialize the list of unuseable pages */ | |
139 | INIT_LIST_HEAD(&image->unuseable_pages); | |
140 | ||
141 | /* Read in the segments */ | |
142 | image->nr_segments = nr_segments; | |
143 | segment_bytes = nr_segments * sizeof(*segments); | |
144 | result = copy_from_user(image->segment, segments, segment_bytes); | |
145 | if (result) | |
146 | goto out; | |
147 | ||
148 | /* | |
149 | * Verify we have good destination addresses. The caller is | |
150 | * responsible for making certain we don't attempt to load | |
151 | * the new image into invalid or reserved areas of RAM. This | |
152 | * just verifies it is an address we can use. | |
153 | * | |
154 | * Since the kernel does everything in page size chunks ensure | |
155 | * the destination addreses are page aligned. Too many | |
156 | * special cases crop of when we don't do this. The most | |
157 | * insidious is getting overlapping destination addresses | |
158 | * simply because addresses are changed to page size | |
159 | * granularity. | |
160 | */ | |
161 | result = -EADDRNOTAVAIL; | |
162 | for (i = 0; i < nr_segments; i++) { | |
163 | unsigned long mstart, mend; | |
72414d3f | 164 | |
dc009d92 EB |
165 | mstart = image->segment[i].mem; |
166 | mend = mstart + image->segment[i].memsz; | |
167 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | |
168 | goto out; | |
169 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | |
170 | goto out; | |
171 | } | |
172 | ||
173 | /* Verify our destination addresses do not overlap. | |
174 | * If we alloed overlapping destination addresses | |
175 | * through very weird things can happen with no | |
176 | * easy explanation as one segment stops on another. | |
177 | */ | |
178 | result = -EINVAL; | |
72414d3f | 179 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
180 | unsigned long mstart, mend; |
181 | unsigned long j; | |
72414d3f | 182 | |
dc009d92 EB |
183 | mstart = image->segment[i].mem; |
184 | mend = mstart + image->segment[i].memsz; | |
72414d3f | 185 | for (j = 0; j < i; j++) { |
dc009d92 EB |
186 | unsigned long pstart, pend; |
187 | pstart = image->segment[j].mem; | |
188 | pend = pstart + image->segment[j].memsz; | |
189 | /* Do the segments overlap ? */ | |
190 | if ((mend > pstart) && (mstart < pend)) | |
191 | goto out; | |
192 | } | |
193 | } | |
194 | ||
195 | /* Ensure our buffer sizes are strictly less than | |
196 | * our memory sizes. This should always be the case, | |
197 | * and it is easier to check up front than to be surprised | |
198 | * later on. | |
199 | */ | |
200 | result = -EINVAL; | |
72414d3f | 201 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
202 | if (image->segment[i].bufsz > image->segment[i].memsz) |
203 | goto out; | |
204 | } | |
205 | ||
dc009d92 | 206 | result = 0; |
72414d3f MS |
207 | out: |
208 | if (result == 0) | |
dc009d92 | 209 | *rimage = image; |
72414d3f | 210 | else |
dc009d92 | 211 | kfree(image); |
72414d3f | 212 | |
dc009d92 EB |
213 | return result; |
214 | ||
215 | } | |
216 | ||
217 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
218 | unsigned long nr_segments, |
219 | struct kexec_segment __user *segments) | |
dc009d92 EB |
220 | { |
221 | int result; | |
222 | struct kimage *image; | |
223 | ||
224 | /* Allocate and initialize a controlling structure */ | |
225 | image = NULL; | |
226 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 227 | if (result) |
dc009d92 | 228 | goto out; |
72414d3f | 229 | |
dc009d92 EB |
230 | *rimage = image; |
231 | ||
232 | /* | |
233 | * Find a location for the control code buffer, and add it | |
234 | * the vector of segments so that it's pages will also be | |
235 | * counted as destination pages. | |
236 | */ | |
237 | result = -ENOMEM; | |
238 | image->control_code_page = kimage_alloc_control_pages(image, | |
72414d3f | 239 | get_order(KEXEC_CONTROL_CODE_SIZE)); |
dc009d92 EB |
240 | if (!image->control_code_page) { |
241 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
242 | goto out; | |
243 | } | |
244 | ||
245 | result = 0; | |
246 | out: | |
72414d3f | 247 | if (result == 0) |
dc009d92 | 248 | *rimage = image; |
72414d3f | 249 | else |
dc009d92 | 250 | kfree(image); |
72414d3f | 251 | |
dc009d92 EB |
252 | return result; |
253 | } | |
254 | ||
255 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f | 256 | unsigned long nr_segments, |
314b6a4d | 257 | struct kexec_segment __user *segments) |
dc009d92 EB |
258 | { |
259 | int result; | |
260 | struct kimage *image; | |
261 | unsigned long i; | |
262 | ||
263 | image = NULL; | |
264 | /* Verify we have a valid entry point */ | |
265 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | |
266 | result = -EADDRNOTAVAIL; | |
267 | goto out; | |
268 | } | |
269 | ||
270 | /* Allocate and initialize a controlling structure */ | |
271 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 272 | if (result) |
dc009d92 | 273 | goto out; |
dc009d92 EB |
274 | |
275 | /* Enable the special crash kernel control page | |
276 | * allocation policy. | |
277 | */ | |
278 | image->control_page = crashk_res.start; | |
279 | image->type = KEXEC_TYPE_CRASH; | |
280 | ||
281 | /* | |
282 | * Verify we have good destination addresses. Normally | |
283 | * the caller is responsible for making certain we don't | |
284 | * attempt to load the new image into invalid or reserved | |
285 | * areas of RAM. But crash kernels are preloaded into a | |
286 | * reserved area of ram. We must ensure the addresses | |
287 | * are in the reserved area otherwise preloading the | |
288 | * kernel could corrupt things. | |
289 | */ | |
290 | result = -EADDRNOTAVAIL; | |
291 | for (i = 0; i < nr_segments; i++) { | |
292 | unsigned long mstart, mend; | |
72414d3f | 293 | |
dc009d92 | 294 | mstart = image->segment[i].mem; |
50cccc69 | 295 | mend = mstart + image->segment[i].memsz - 1; |
dc009d92 EB |
296 | /* Ensure we are within the crash kernel limits */ |
297 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | |
298 | goto out; | |
299 | } | |
300 | ||
dc009d92 EB |
301 | /* |
302 | * Find a location for the control code buffer, and add | |
303 | * the vector of segments so that it's pages will also be | |
304 | * counted as destination pages. | |
305 | */ | |
306 | result = -ENOMEM; | |
307 | image->control_code_page = kimage_alloc_control_pages(image, | |
72414d3f | 308 | get_order(KEXEC_CONTROL_CODE_SIZE)); |
dc009d92 EB |
309 | if (!image->control_code_page) { |
310 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
311 | goto out; | |
312 | } | |
313 | ||
314 | result = 0; | |
72414d3f MS |
315 | out: |
316 | if (result == 0) | |
dc009d92 | 317 | *rimage = image; |
72414d3f | 318 | else |
dc009d92 | 319 | kfree(image); |
72414d3f | 320 | |
dc009d92 EB |
321 | return result; |
322 | } | |
323 | ||
72414d3f MS |
324 | static int kimage_is_destination_range(struct kimage *image, |
325 | unsigned long start, | |
326 | unsigned long end) | |
dc009d92 EB |
327 | { |
328 | unsigned long i; | |
329 | ||
330 | for (i = 0; i < image->nr_segments; i++) { | |
331 | unsigned long mstart, mend; | |
72414d3f | 332 | |
dc009d92 | 333 | mstart = image->segment[i].mem; |
72414d3f MS |
334 | mend = mstart + image->segment[i].memsz; |
335 | if ((end > mstart) && (start < mend)) | |
dc009d92 | 336 | return 1; |
dc009d92 | 337 | } |
72414d3f | 338 | |
dc009d92 EB |
339 | return 0; |
340 | } | |
341 | ||
9796fdd8 | 342 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
dc009d92 EB |
343 | { |
344 | struct page *pages; | |
72414d3f | 345 | |
dc009d92 EB |
346 | pages = alloc_pages(gfp_mask, order); |
347 | if (pages) { | |
348 | unsigned int count, i; | |
349 | pages->mapping = NULL; | |
4c21e2f2 | 350 | set_page_private(pages, order); |
dc009d92 | 351 | count = 1 << order; |
72414d3f | 352 | for (i = 0; i < count; i++) |
dc009d92 | 353 | SetPageReserved(pages + i); |
dc009d92 | 354 | } |
72414d3f | 355 | |
dc009d92 EB |
356 | return pages; |
357 | } | |
358 | ||
359 | static void kimage_free_pages(struct page *page) | |
360 | { | |
361 | unsigned int order, count, i; | |
72414d3f | 362 | |
4c21e2f2 | 363 | order = page_private(page); |
dc009d92 | 364 | count = 1 << order; |
72414d3f | 365 | for (i = 0; i < count; i++) |
dc009d92 | 366 | ClearPageReserved(page + i); |
dc009d92 EB |
367 | __free_pages(page, order); |
368 | } | |
369 | ||
370 | static void kimage_free_page_list(struct list_head *list) | |
371 | { | |
372 | struct list_head *pos, *next; | |
72414d3f | 373 | |
dc009d92 EB |
374 | list_for_each_safe(pos, next, list) { |
375 | struct page *page; | |
376 | ||
377 | page = list_entry(pos, struct page, lru); | |
378 | list_del(&page->lru); | |
dc009d92 EB |
379 | kimage_free_pages(page); |
380 | } | |
381 | } | |
382 | ||
72414d3f MS |
383 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
384 | unsigned int order) | |
dc009d92 EB |
385 | { |
386 | /* Control pages are special, they are the intermediaries | |
387 | * that are needed while we copy the rest of the pages | |
388 | * to their final resting place. As such they must | |
389 | * not conflict with either the destination addresses | |
390 | * or memory the kernel is already using. | |
391 | * | |
392 | * The only case where we really need more than one of | |
393 | * these are for architectures where we cannot disable | |
394 | * the MMU and must instead generate an identity mapped | |
395 | * page table for all of the memory. | |
396 | * | |
397 | * At worst this runs in O(N) of the image size. | |
398 | */ | |
399 | struct list_head extra_pages; | |
400 | struct page *pages; | |
401 | unsigned int count; | |
402 | ||
403 | count = 1 << order; | |
404 | INIT_LIST_HEAD(&extra_pages); | |
405 | ||
406 | /* Loop while I can allocate a page and the page allocated | |
407 | * is a destination page. | |
408 | */ | |
409 | do { | |
410 | unsigned long pfn, epfn, addr, eaddr; | |
72414d3f | 411 | |
dc009d92 EB |
412 | pages = kimage_alloc_pages(GFP_KERNEL, order); |
413 | if (!pages) | |
414 | break; | |
415 | pfn = page_to_pfn(pages); | |
416 | epfn = pfn + count; | |
417 | addr = pfn << PAGE_SHIFT; | |
418 | eaddr = epfn << PAGE_SHIFT; | |
419 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
72414d3f | 420 | kimage_is_destination_range(image, addr, eaddr)) { |
dc009d92 EB |
421 | list_add(&pages->lru, &extra_pages); |
422 | pages = NULL; | |
423 | } | |
72414d3f MS |
424 | } while (!pages); |
425 | ||
dc009d92 EB |
426 | if (pages) { |
427 | /* Remember the allocated page... */ | |
428 | list_add(&pages->lru, &image->control_pages); | |
429 | ||
430 | /* Because the page is already in it's destination | |
431 | * location we will never allocate another page at | |
432 | * that address. Therefore kimage_alloc_pages | |
433 | * will not return it (again) and we don't need | |
434 | * to give it an entry in image->segment[]. | |
435 | */ | |
436 | } | |
437 | /* Deal with the destination pages I have inadvertently allocated. | |
438 | * | |
439 | * Ideally I would convert multi-page allocations into single | |
440 | * page allocations, and add everyting to image->dest_pages. | |
441 | * | |
442 | * For now it is simpler to just free the pages. | |
443 | */ | |
444 | kimage_free_page_list(&extra_pages); | |
dc009d92 | 445 | |
72414d3f | 446 | return pages; |
dc009d92 EB |
447 | } |
448 | ||
72414d3f MS |
449 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
450 | unsigned int order) | |
dc009d92 EB |
451 | { |
452 | /* Control pages are special, they are the intermediaries | |
453 | * that are needed while we copy the rest of the pages | |
454 | * to their final resting place. As such they must | |
455 | * not conflict with either the destination addresses | |
456 | * or memory the kernel is already using. | |
457 | * | |
458 | * Control pages are also the only pags we must allocate | |
459 | * when loading a crash kernel. All of the other pages | |
460 | * are specified by the segments and we just memcpy | |
461 | * into them directly. | |
462 | * | |
463 | * The only case where we really need more than one of | |
464 | * these are for architectures where we cannot disable | |
465 | * the MMU and must instead generate an identity mapped | |
466 | * page table for all of the memory. | |
467 | * | |
468 | * Given the low demand this implements a very simple | |
469 | * allocator that finds the first hole of the appropriate | |
470 | * size in the reserved memory region, and allocates all | |
471 | * of the memory up to and including the hole. | |
472 | */ | |
473 | unsigned long hole_start, hole_end, size; | |
474 | struct page *pages; | |
72414d3f | 475 | |
dc009d92 EB |
476 | pages = NULL; |
477 | size = (1 << order) << PAGE_SHIFT; | |
478 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
479 | hole_end = hole_start + size - 1; | |
72414d3f | 480 | while (hole_end <= crashk_res.end) { |
dc009d92 | 481 | unsigned long i; |
72414d3f MS |
482 | |
483 | if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) | |
dc009d92 | 484 | break; |
72414d3f | 485 | if (hole_end > crashk_res.end) |
dc009d92 | 486 | break; |
dc009d92 | 487 | /* See if I overlap any of the segments */ |
72414d3f | 488 | for (i = 0; i < image->nr_segments; i++) { |
dc009d92 | 489 | unsigned long mstart, mend; |
72414d3f | 490 | |
dc009d92 EB |
491 | mstart = image->segment[i].mem; |
492 | mend = mstart + image->segment[i].memsz - 1; | |
493 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
494 | /* Advance the hole to the end of the segment */ | |
495 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
496 | hole_end = hole_start + size - 1; | |
497 | break; | |
498 | } | |
499 | } | |
500 | /* If I don't overlap any segments I have found my hole! */ | |
501 | if (i == image->nr_segments) { | |
502 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
503 | break; | |
504 | } | |
505 | } | |
72414d3f | 506 | if (pages) |
dc009d92 | 507 | image->control_page = hole_end; |
72414d3f | 508 | |
dc009d92 EB |
509 | return pages; |
510 | } | |
511 | ||
512 | ||
72414d3f MS |
513 | struct page *kimage_alloc_control_pages(struct kimage *image, |
514 | unsigned int order) | |
dc009d92 EB |
515 | { |
516 | struct page *pages = NULL; | |
72414d3f MS |
517 | |
518 | switch (image->type) { | |
dc009d92 EB |
519 | case KEXEC_TYPE_DEFAULT: |
520 | pages = kimage_alloc_normal_control_pages(image, order); | |
521 | break; | |
522 | case KEXEC_TYPE_CRASH: | |
523 | pages = kimage_alloc_crash_control_pages(image, order); | |
524 | break; | |
525 | } | |
72414d3f | 526 | |
dc009d92 EB |
527 | return pages; |
528 | } | |
529 | ||
530 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | |
531 | { | |
72414d3f | 532 | if (*image->entry != 0) |
dc009d92 | 533 | image->entry++; |
72414d3f | 534 | |
dc009d92 EB |
535 | if (image->entry == image->last_entry) { |
536 | kimage_entry_t *ind_page; | |
537 | struct page *page; | |
72414d3f | 538 | |
dc009d92 | 539 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
72414d3f | 540 | if (!page) |
dc009d92 | 541 | return -ENOMEM; |
72414d3f | 542 | |
dc009d92 EB |
543 | ind_page = page_address(page); |
544 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | |
545 | image->entry = ind_page; | |
72414d3f MS |
546 | image->last_entry = ind_page + |
547 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
dc009d92 EB |
548 | } |
549 | *image->entry = entry; | |
550 | image->entry++; | |
551 | *image->entry = 0; | |
72414d3f | 552 | |
dc009d92 EB |
553 | return 0; |
554 | } | |
555 | ||
72414d3f MS |
556 | static int kimage_set_destination(struct kimage *image, |
557 | unsigned long destination) | |
dc009d92 EB |
558 | { |
559 | int result; | |
560 | ||
561 | destination &= PAGE_MASK; | |
562 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
72414d3f | 563 | if (result == 0) |
dc009d92 | 564 | image->destination = destination; |
72414d3f | 565 | |
dc009d92 EB |
566 | return result; |
567 | } | |
568 | ||
569 | ||
570 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
571 | { | |
572 | int result; | |
573 | ||
574 | page &= PAGE_MASK; | |
575 | result = kimage_add_entry(image, page | IND_SOURCE); | |
72414d3f | 576 | if (result == 0) |
dc009d92 | 577 | image->destination += PAGE_SIZE; |
72414d3f | 578 | |
dc009d92 EB |
579 | return result; |
580 | } | |
581 | ||
582 | ||
583 | static void kimage_free_extra_pages(struct kimage *image) | |
584 | { | |
585 | /* Walk through and free any extra destination pages I may have */ | |
586 | kimage_free_page_list(&image->dest_pages); | |
587 | ||
588 | /* Walk through and free any unuseable pages I have cached */ | |
589 | kimage_free_page_list(&image->unuseable_pages); | |
590 | ||
591 | } | |
592 | static int kimage_terminate(struct kimage *image) | |
593 | { | |
72414d3f | 594 | if (*image->entry != 0) |
dc009d92 | 595 | image->entry++; |
72414d3f | 596 | |
dc009d92 | 597 | *image->entry = IND_DONE; |
72414d3f | 598 | |
dc009d92 EB |
599 | return 0; |
600 | } | |
601 | ||
602 | #define for_each_kimage_entry(image, ptr, entry) \ | |
603 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
604 | ptr = (entry & IND_INDIRECTION)? \ | |
605 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | |
606 | ||
607 | static void kimage_free_entry(kimage_entry_t entry) | |
608 | { | |
609 | struct page *page; | |
610 | ||
611 | page = pfn_to_page(entry >> PAGE_SHIFT); | |
612 | kimage_free_pages(page); | |
613 | } | |
614 | ||
615 | static void kimage_free(struct kimage *image) | |
616 | { | |
617 | kimage_entry_t *ptr, entry; | |
618 | kimage_entry_t ind = 0; | |
619 | ||
620 | if (!image) | |
621 | return; | |
72414d3f | 622 | |
dc009d92 EB |
623 | kimage_free_extra_pages(image); |
624 | for_each_kimage_entry(image, ptr, entry) { | |
625 | if (entry & IND_INDIRECTION) { | |
626 | /* Free the previous indirection page */ | |
72414d3f | 627 | if (ind & IND_INDIRECTION) |
dc009d92 | 628 | kimage_free_entry(ind); |
dc009d92 EB |
629 | /* Save this indirection page until we are |
630 | * done with it. | |
631 | */ | |
632 | ind = entry; | |
633 | } | |
72414d3f | 634 | else if (entry & IND_SOURCE) |
dc009d92 | 635 | kimage_free_entry(entry); |
dc009d92 EB |
636 | } |
637 | /* Free the final indirection page */ | |
72414d3f | 638 | if (ind & IND_INDIRECTION) |
dc009d92 | 639 | kimage_free_entry(ind); |
dc009d92 EB |
640 | |
641 | /* Handle any machine specific cleanup */ | |
642 | machine_kexec_cleanup(image); | |
643 | ||
644 | /* Free the kexec control pages... */ | |
645 | kimage_free_page_list(&image->control_pages); | |
646 | kfree(image); | |
647 | } | |
648 | ||
72414d3f MS |
649 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
650 | unsigned long page) | |
dc009d92 EB |
651 | { |
652 | kimage_entry_t *ptr, entry; | |
653 | unsigned long destination = 0; | |
654 | ||
655 | for_each_kimage_entry(image, ptr, entry) { | |
72414d3f | 656 | if (entry & IND_DESTINATION) |
dc009d92 | 657 | destination = entry & PAGE_MASK; |
dc009d92 | 658 | else if (entry & IND_SOURCE) { |
72414d3f | 659 | if (page == destination) |
dc009d92 | 660 | return ptr; |
dc009d92 EB |
661 | destination += PAGE_SIZE; |
662 | } | |
663 | } | |
72414d3f | 664 | |
314b6a4d | 665 | return NULL; |
dc009d92 EB |
666 | } |
667 | ||
72414d3f | 668 | static struct page *kimage_alloc_page(struct kimage *image, |
9796fdd8 | 669 | gfp_t gfp_mask, |
72414d3f | 670 | unsigned long destination) |
dc009d92 EB |
671 | { |
672 | /* | |
673 | * Here we implement safeguards to ensure that a source page | |
674 | * is not copied to its destination page before the data on | |
675 | * the destination page is no longer useful. | |
676 | * | |
677 | * To do this we maintain the invariant that a source page is | |
678 | * either its own destination page, or it is not a | |
679 | * destination page at all. | |
680 | * | |
681 | * That is slightly stronger than required, but the proof | |
682 | * that no problems will not occur is trivial, and the | |
683 | * implementation is simply to verify. | |
684 | * | |
685 | * When allocating all pages normally this algorithm will run | |
686 | * in O(N) time, but in the worst case it will run in O(N^2) | |
687 | * time. If the runtime is a problem the data structures can | |
688 | * be fixed. | |
689 | */ | |
690 | struct page *page; | |
691 | unsigned long addr; | |
692 | ||
693 | /* | |
694 | * Walk through the list of destination pages, and see if I | |
695 | * have a match. | |
696 | */ | |
697 | list_for_each_entry(page, &image->dest_pages, lru) { | |
698 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
699 | if (addr == destination) { | |
700 | list_del(&page->lru); | |
701 | return page; | |
702 | } | |
703 | } | |
704 | page = NULL; | |
705 | while (1) { | |
706 | kimage_entry_t *old; | |
707 | ||
708 | /* Allocate a page, if we run out of memory give up */ | |
709 | page = kimage_alloc_pages(gfp_mask, 0); | |
72414d3f | 710 | if (!page) |
314b6a4d | 711 | return NULL; |
dc009d92 | 712 | /* If the page cannot be used file it away */ |
72414d3f MS |
713 | if (page_to_pfn(page) > |
714 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | |
dc009d92 EB |
715 | list_add(&page->lru, &image->unuseable_pages); |
716 | continue; | |
717 | } | |
718 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
719 | ||
720 | /* If it is the destination page we want use it */ | |
721 | if (addr == destination) | |
722 | break; | |
723 | ||
724 | /* If the page is not a destination page use it */ | |
72414d3f MS |
725 | if (!kimage_is_destination_range(image, addr, |
726 | addr + PAGE_SIZE)) | |
dc009d92 EB |
727 | break; |
728 | ||
729 | /* | |
730 | * I know that the page is someones destination page. | |
731 | * See if there is already a source page for this | |
732 | * destination page. And if so swap the source pages. | |
733 | */ | |
734 | old = kimage_dst_used(image, addr); | |
735 | if (old) { | |
736 | /* If so move it */ | |
737 | unsigned long old_addr; | |
738 | struct page *old_page; | |
739 | ||
740 | old_addr = *old & PAGE_MASK; | |
741 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | |
742 | copy_highpage(page, old_page); | |
743 | *old = addr | (*old & ~PAGE_MASK); | |
744 | ||
745 | /* The old page I have found cannot be a | |
746 | * destination page, so return it. | |
747 | */ | |
748 | addr = old_addr; | |
749 | page = old_page; | |
750 | break; | |
751 | } | |
752 | else { | |
753 | /* Place the page on the destination list I | |
754 | * will use it later. | |
755 | */ | |
756 | list_add(&page->lru, &image->dest_pages); | |
757 | } | |
758 | } | |
72414d3f | 759 | |
dc009d92 EB |
760 | return page; |
761 | } | |
762 | ||
763 | static int kimage_load_normal_segment(struct kimage *image, | |
72414d3f | 764 | struct kexec_segment *segment) |
dc009d92 EB |
765 | { |
766 | unsigned long maddr; | |
767 | unsigned long ubytes, mbytes; | |
768 | int result; | |
314b6a4d | 769 | unsigned char __user *buf; |
dc009d92 EB |
770 | |
771 | result = 0; | |
772 | buf = segment->buf; | |
773 | ubytes = segment->bufsz; | |
774 | mbytes = segment->memsz; | |
775 | maddr = segment->mem; | |
776 | ||
777 | result = kimage_set_destination(image, maddr); | |
72414d3f | 778 | if (result < 0) |
dc009d92 | 779 | goto out; |
72414d3f MS |
780 | |
781 | while (mbytes) { | |
dc009d92 EB |
782 | struct page *page; |
783 | char *ptr; | |
784 | size_t uchunk, mchunk; | |
72414d3f | 785 | |
dc009d92 | 786 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
c80544dc | 787 | if (!page) { |
dc009d92 EB |
788 | result = -ENOMEM; |
789 | goto out; | |
790 | } | |
72414d3f MS |
791 | result = kimage_add_page(image, page_to_pfn(page) |
792 | << PAGE_SHIFT); | |
793 | if (result < 0) | |
dc009d92 | 794 | goto out; |
72414d3f | 795 | |
dc009d92 EB |
796 | ptr = kmap(page); |
797 | /* Start with a clear page */ | |
798 | memset(ptr, 0, PAGE_SIZE); | |
799 | ptr += maddr & ~PAGE_MASK; | |
800 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 801 | if (mchunk > mbytes) |
dc009d92 | 802 | mchunk = mbytes; |
72414d3f | 803 | |
dc009d92 | 804 | uchunk = mchunk; |
72414d3f | 805 | if (uchunk > ubytes) |
dc009d92 | 806 | uchunk = ubytes; |
72414d3f | 807 | |
dc009d92 EB |
808 | result = copy_from_user(ptr, buf, uchunk); |
809 | kunmap(page); | |
810 | if (result) { | |
811 | result = (result < 0) ? result : -EIO; | |
812 | goto out; | |
813 | } | |
814 | ubytes -= uchunk; | |
815 | maddr += mchunk; | |
816 | buf += mchunk; | |
817 | mbytes -= mchunk; | |
818 | } | |
72414d3f | 819 | out: |
dc009d92 EB |
820 | return result; |
821 | } | |
822 | ||
823 | static int kimage_load_crash_segment(struct kimage *image, | |
72414d3f | 824 | struct kexec_segment *segment) |
dc009d92 EB |
825 | { |
826 | /* For crash dumps kernels we simply copy the data from | |
827 | * user space to it's destination. | |
828 | * We do things a page at a time for the sake of kmap. | |
829 | */ | |
830 | unsigned long maddr; | |
831 | unsigned long ubytes, mbytes; | |
832 | int result; | |
314b6a4d | 833 | unsigned char __user *buf; |
dc009d92 EB |
834 | |
835 | result = 0; | |
836 | buf = segment->buf; | |
837 | ubytes = segment->bufsz; | |
838 | mbytes = segment->memsz; | |
839 | maddr = segment->mem; | |
72414d3f | 840 | while (mbytes) { |
dc009d92 EB |
841 | struct page *page; |
842 | char *ptr; | |
843 | size_t uchunk, mchunk; | |
72414d3f | 844 | |
dc009d92 | 845 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
c80544dc | 846 | if (!page) { |
dc009d92 EB |
847 | result = -ENOMEM; |
848 | goto out; | |
849 | } | |
850 | ptr = kmap(page); | |
851 | ptr += maddr & ~PAGE_MASK; | |
852 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 853 | if (mchunk > mbytes) |
dc009d92 | 854 | mchunk = mbytes; |
72414d3f | 855 | |
dc009d92 EB |
856 | uchunk = mchunk; |
857 | if (uchunk > ubytes) { | |
858 | uchunk = ubytes; | |
859 | /* Zero the trailing part of the page */ | |
860 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
861 | } | |
862 | result = copy_from_user(ptr, buf, uchunk); | |
a7956113 | 863 | kexec_flush_icache_page(page); |
dc009d92 EB |
864 | kunmap(page); |
865 | if (result) { | |
866 | result = (result < 0) ? result : -EIO; | |
867 | goto out; | |
868 | } | |
869 | ubytes -= uchunk; | |
870 | maddr += mchunk; | |
871 | buf += mchunk; | |
872 | mbytes -= mchunk; | |
873 | } | |
72414d3f | 874 | out: |
dc009d92 EB |
875 | return result; |
876 | } | |
877 | ||
878 | static int kimage_load_segment(struct kimage *image, | |
72414d3f | 879 | struct kexec_segment *segment) |
dc009d92 EB |
880 | { |
881 | int result = -ENOMEM; | |
72414d3f MS |
882 | |
883 | switch (image->type) { | |
dc009d92 EB |
884 | case KEXEC_TYPE_DEFAULT: |
885 | result = kimage_load_normal_segment(image, segment); | |
886 | break; | |
887 | case KEXEC_TYPE_CRASH: | |
888 | result = kimage_load_crash_segment(image, segment); | |
889 | break; | |
890 | } | |
72414d3f | 891 | |
dc009d92 EB |
892 | return result; |
893 | } | |
894 | ||
895 | /* | |
896 | * Exec Kernel system call: for obvious reasons only root may call it. | |
897 | * | |
898 | * This call breaks up into three pieces. | |
899 | * - A generic part which loads the new kernel from the current | |
900 | * address space, and very carefully places the data in the | |
901 | * allocated pages. | |
902 | * | |
903 | * - A generic part that interacts with the kernel and tells all of | |
904 | * the devices to shut down. Preventing on-going dmas, and placing | |
905 | * the devices in a consistent state so a later kernel can | |
906 | * reinitialize them. | |
907 | * | |
908 | * - A machine specific part that includes the syscall number | |
909 | * and the copies the image to it's final destination. And | |
910 | * jumps into the image at entry. | |
911 | * | |
912 | * kexec does not sync, or unmount filesystems so if you need | |
913 | * that to happen you need to do that yourself. | |
914 | */ | |
c330dda9 JM |
915 | struct kimage *kexec_image; |
916 | struct kimage *kexec_crash_image; | |
dc009d92 EB |
917 | /* |
918 | * A home grown binary mutex. | |
919 | * Nothing can wait so this mutex is safe to use | |
920 | * in interrupt context :) | |
921 | */ | |
c330dda9 | 922 | static int kexec_lock; |
dc009d92 | 923 | |
72414d3f MS |
924 | asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, |
925 | struct kexec_segment __user *segments, | |
926 | unsigned long flags) | |
dc009d92 EB |
927 | { |
928 | struct kimage **dest_image, *image; | |
929 | int locked; | |
930 | int result; | |
931 | ||
932 | /* We only trust the superuser with rebooting the system. */ | |
933 | if (!capable(CAP_SYS_BOOT)) | |
934 | return -EPERM; | |
935 | ||
936 | /* | |
937 | * Verify we have a legal set of flags | |
938 | * This leaves us room for future extensions. | |
939 | */ | |
940 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | |
941 | return -EINVAL; | |
942 | ||
943 | /* Verify we are on the appropriate architecture */ | |
944 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | |
945 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | |
dc009d92 | 946 | return -EINVAL; |
dc009d92 EB |
947 | |
948 | /* Put an artificial cap on the number | |
949 | * of segments passed to kexec_load. | |
950 | */ | |
951 | if (nr_segments > KEXEC_SEGMENT_MAX) | |
952 | return -EINVAL; | |
953 | ||
954 | image = NULL; | |
955 | result = 0; | |
956 | ||
957 | /* Because we write directly to the reserved memory | |
958 | * region when loading crash kernels we need a mutex here to | |
959 | * prevent multiple crash kernels from attempting to load | |
960 | * simultaneously, and to prevent a crash kernel from loading | |
961 | * over the top of a in use crash kernel. | |
962 | * | |
963 | * KISS: always take the mutex. | |
964 | */ | |
965 | locked = xchg(&kexec_lock, 1); | |
72414d3f | 966 | if (locked) |
dc009d92 | 967 | return -EBUSY; |
72414d3f | 968 | |
dc009d92 | 969 | dest_image = &kexec_image; |
72414d3f | 970 | if (flags & KEXEC_ON_CRASH) |
dc009d92 | 971 | dest_image = &kexec_crash_image; |
dc009d92 EB |
972 | if (nr_segments > 0) { |
973 | unsigned long i; | |
72414d3f | 974 | |
dc009d92 | 975 | /* Loading another kernel to reboot into */ |
72414d3f MS |
976 | if ((flags & KEXEC_ON_CRASH) == 0) |
977 | result = kimage_normal_alloc(&image, entry, | |
978 | nr_segments, segments); | |
dc009d92 EB |
979 | /* Loading another kernel to switch to if this one crashes */ |
980 | else if (flags & KEXEC_ON_CRASH) { | |
981 | /* Free any current crash dump kernel before | |
982 | * we corrupt it. | |
983 | */ | |
984 | kimage_free(xchg(&kexec_crash_image, NULL)); | |
72414d3f MS |
985 | result = kimage_crash_alloc(&image, entry, |
986 | nr_segments, segments); | |
dc009d92 | 987 | } |
72414d3f | 988 | if (result) |
dc009d92 | 989 | goto out; |
72414d3f | 990 | |
dc009d92 | 991 | result = machine_kexec_prepare(image); |
72414d3f | 992 | if (result) |
dc009d92 | 993 | goto out; |
72414d3f MS |
994 | |
995 | for (i = 0; i < nr_segments; i++) { | |
dc009d92 | 996 | result = kimage_load_segment(image, &image->segment[i]); |
72414d3f | 997 | if (result) |
dc009d92 | 998 | goto out; |
dc009d92 EB |
999 | } |
1000 | result = kimage_terminate(image); | |
72414d3f | 1001 | if (result) |
dc009d92 | 1002 | goto out; |
dc009d92 EB |
1003 | } |
1004 | /* Install the new kernel, and Uninstall the old */ | |
1005 | image = xchg(dest_image, image); | |
1006 | ||
72414d3f | 1007 | out: |
0b4a8a78 RM |
1008 | locked = xchg(&kexec_lock, 0); /* Release the mutex */ |
1009 | BUG_ON(!locked); | |
dc009d92 | 1010 | kimage_free(image); |
72414d3f | 1011 | |
dc009d92 EB |
1012 | return result; |
1013 | } | |
1014 | ||
1015 | #ifdef CONFIG_COMPAT | |
1016 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | |
72414d3f MS |
1017 | unsigned long nr_segments, |
1018 | struct compat_kexec_segment __user *segments, | |
1019 | unsigned long flags) | |
dc009d92 EB |
1020 | { |
1021 | struct compat_kexec_segment in; | |
1022 | struct kexec_segment out, __user *ksegments; | |
1023 | unsigned long i, result; | |
1024 | ||
1025 | /* Don't allow clients that don't understand the native | |
1026 | * architecture to do anything. | |
1027 | */ | |
72414d3f | 1028 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
dc009d92 | 1029 | return -EINVAL; |
dc009d92 | 1030 | |
72414d3f | 1031 | if (nr_segments > KEXEC_SEGMENT_MAX) |
dc009d92 | 1032 | return -EINVAL; |
dc009d92 EB |
1033 | |
1034 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | |
1035 | for (i=0; i < nr_segments; i++) { | |
1036 | result = copy_from_user(&in, &segments[i], sizeof(in)); | |
72414d3f | 1037 | if (result) |
dc009d92 | 1038 | return -EFAULT; |
dc009d92 EB |
1039 | |
1040 | out.buf = compat_ptr(in.buf); | |
1041 | out.bufsz = in.bufsz; | |
1042 | out.mem = in.mem; | |
1043 | out.memsz = in.memsz; | |
1044 | ||
1045 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | |
72414d3f | 1046 | if (result) |
dc009d92 | 1047 | return -EFAULT; |
dc009d92 EB |
1048 | } |
1049 | ||
1050 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | |
1051 | } | |
1052 | #endif | |
1053 | ||
6e274d14 | 1054 | void crash_kexec(struct pt_regs *regs) |
dc009d92 | 1055 | { |
dc009d92 EB |
1056 | int locked; |
1057 | ||
1058 | ||
1059 | /* Take the kexec_lock here to prevent sys_kexec_load | |
1060 | * running on one cpu from replacing the crash kernel | |
1061 | * we are using after a panic on a different cpu. | |
1062 | * | |
1063 | * If the crash kernel was not located in a fixed area | |
1064 | * of memory the xchg(&kexec_crash_image) would be | |
1065 | * sufficient. But since I reuse the memory... | |
1066 | */ | |
1067 | locked = xchg(&kexec_lock, 1); | |
1068 | if (!locked) { | |
c0ce7d08 | 1069 | if (kexec_crash_image) { |
e996e581 VG |
1070 | struct pt_regs fixed_regs; |
1071 | crash_setup_regs(&fixed_regs, regs); | |
fd59d231 | 1072 | crash_save_vmcoreinfo(); |
e996e581 | 1073 | machine_crash_shutdown(&fixed_regs); |
c0ce7d08 | 1074 | machine_kexec(kexec_crash_image); |
dc009d92 | 1075 | } |
0b4a8a78 RM |
1076 | locked = xchg(&kexec_lock, 0); |
1077 | BUG_ON(!locked); | |
dc009d92 EB |
1078 | } |
1079 | } | |
cc571658 | 1080 | |
85916f81 MD |
1081 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
1082 | size_t data_len) | |
1083 | { | |
1084 | struct elf_note note; | |
1085 | ||
1086 | note.n_namesz = strlen(name) + 1; | |
1087 | note.n_descsz = data_len; | |
1088 | note.n_type = type; | |
1089 | memcpy(buf, ¬e, sizeof(note)); | |
1090 | buf += (sizeof(note) + 3)/4; | |
1091 | memcpy(buf, name, note.n_namesz); | |
1092 | buf += (note.n_namesz + 3)/4; | |
1093 | memcpy(buf, data, note.n_descsz); | |
1094 | buf += (note.n_descsz + 3)/4; | |
1095 | ||
1096 | return buf; | |
1097 | } | |
1098 | ||
1099 | static void final_note(u32 *buf) | |
1100 | { | |
1101 | struct elf_note note; | |
1102 | ||
1103 | note.n_namesz = 0; | |
1104 | note.n_descsz = 0; | |
1105 | note.n_type = 0; | |
1106 | memcpy(buf, ¬e, sizeof(note)); | |
1107 | } | |
1108 | ||
1109 | void crash_save_cpu(struct pt_regs *regs, int cpu) | |
1110 | { | |
1111 | struct elf_prstatus prstatus; | |
1112 | u32 *buf; | |
1113 | ||
1114 | if ((cpu < 0) || (cpu >= NR_CPUS)) | |
1115 | return; | |
1116 | ||
1117 | /* Using ELF notes here is opportunistic. | |
1118 | * I need a well defined structure format | |
1119 | * for the data I pass, and I need tags | |
1120 | * on the data to indicate what information I have | |
1121 | * squirrelled away. ELF notes happen to provide | |
1122 | * all of that, so there is no need to invent something new. | |
1123 | */ | |
1124 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); | |
1125 | if (!buf) | |
1126 | return; | |
1127 | memset(&prstatus, 0, sizeof(prstatus)); | |
1128 | prstatus.pr_pid = current->pid; | |
1129 | elf_core_copy_regs(&prstatus.pr_reg, regs); | |
6672f76a SH |
1130 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1131 | &prstatus, sizeof(prstatus)); | |
85916f81 MD |
1132 | final_note(buf); |
1133 | } | |
1134 | ||
cc571658 VG |
1135 | static int __init crash_notes_memory_init(void) |
1136 | { | |
1137 | /* Allocate memory for saving cpu registers. */ | |
1138 | crash_notes = alloc_percpu(note_buf_t); | |
1139 | if (!crash_notes) { | |
1140 | printk("Kexec: Memory allocation for saving cpu register" | |
1141 | " states failed\n"); | |
1142 | return -ENOMEM; | |
1143 | } | |
1144 | return 0; | |
1145 | } | |
1146 | module_init(crash_notes_memory_init) | |
fd59d231 | 1147 | |
cba63c30 BW |
1148 | |
1149 | /* | |
1150 | * parsing the "crashkernel" commandline | |
1151 | * | |
1152 | * this code is intended to be called from architecture specific code | |
1153 | */ | |
1154 | ||
1155 | ||
1156 | /* | |
1157 | * This function parses command lines in the format | |
1158 | * | |
1159 | * crashkernel=ramsize-range:size[,...][@offset] | |
1160 | * | |
1161 | * The function returns 0 on success and -EINVAL on failure. | |
1162 | */ | |
1163 | static int __init parse_crashkernel_mem(char *cmdline, | |
1164 | unsigned long long system_ram, | |
1165 | unsigned long long *crash_size, | |
1166 | unsigned long long *crash_base) | |
1167 | { | |
1168 | char *cur = cmdline, *tmp; | |
1169 | ||
1170 | /* for each entry of the comma-separated list */ | |
1171 | do { | |
1172 | unsigned long long start, end = ULLONG_MAX, size; | |
1173 | ||
1174 | /* get the start of the range */ | |
1175 | start = memparse(cur, &tmp); | |
1176 | if (cur == tmp) { | |
1177 | pr_warning("crashkernel: Memory value expected\n"); | |
1178 | return -EINVAL; | |
1179 | } | |
1180 | cur = tmp; | |
1181 | if (*cur != '-') { | |
1182 | pr_warning("crashkernel: '-' expected\n"); | |
1183 | return -EINVAL; | |
1184 | } | |
1185 | cur++; | |
1186 | ||
1187 | /* if no ':' is here, than we read the end */ | |
1188 | if (*cur != ':') { | |
1189 | end = memparse(cur, &tmp); | |
1190 | if (cur == tmp) { | |
1191 | pr_warning("crashkernel: Memory " | |
1192 | "value expected\n"); | |
1193 | return -EINVAL; | |
1194 | } | |
1195 | cur = tmp; | |
1196 | if (end <= start) { | |
1197 | pr_warning("crashkernel: end <= start\n"); | |
1198 | return -EINVAL; | |
1199 | } | |
1200 | } | |
1201 | ||
1202 | if (*cur != ':') { | |
1203 | pr_warning("crashkernel: ':' expected\n"); | |
1204 | return -EINVAL; | |
1205 | } | |
1206 | cur++; | |
1207 | ||
1208 | size = memparse(cur, &tmp); | |
1209 | if (cur == tmp) { | |
1210 | pr_warning("Memory value expected\n"); | |
1211 | return -EINVAL; | |
1212 | } | |
1213 | cur = tmp; | |
1214 | if (size >= system_ram) { | |
1215 | pr_warning("crashkernel: invalid size\n"); | |
1216 | return -EINVAL; | |
1217 | } | |
1218 | ||
1219 | /* match ? */ | |
be089d79 | 1220 | if (system_ram >= start && system_ram < end) { |
cba63c30 BW |
1221 | *crash_size = size; |
1222 | break; | |
1223 | } | |
1224 | } while (*cur++ == ','); | |
1225 | ||
1226 | if (*crash_size > 0) { | |
1227 | while (*cur != ' ' && *cur != '@') | |
1228 | cur++; | |
1229 | if (*cur == '@') { | |
1230 | cur++; | |
1231 | *crash_base = memparse(cur, &tmp); | |
1232 | if (cur == tmp) { | |
1233 | pr_warning("Memory value expected " | |
1234 | "after '@'\n"); | |
1235 | return -EINVAL; | |
1236 | } | |
1237 | } | |
1238 | } | |
1239 | ||
1240 | return 0; | |
1241 | } | |
1242 | ||
1243 | /* | |
1244 | * That function parses "simple" (old) crashkernel command lines like | |
1245 | * | |
1246 | * crashkernel=size[@offset] | |
1247 | * | |
1248 | * It returns 0 on success and -EINVAL on failure. | |
1249 | */ | |
1250 | static int __init parse_crashkernel_simple(char *cmdline, | |
1251 | unsigned long long *crash_size, | |
1252 | unsigned long long *crash_base) | |
1253 | { | |
1254 | char *cur = cmdline; | |
1255 | ||
1256 | *crash_size = memparse(cmdline, &cur); | |
1257 | if (cmdline == cur) { | |
1258 | pr_warning("crashkernel: memory value expected\n"); | |
1259 | return -EINVAL; | |
1260 | } | |
1261 | ||
1262 | if (*cur == '@') | |
1263 | *crash_base = memparse(cur+1, &cur); | |
1264 | ||
1265 | return 0; | |
1266 | } | |
1267 | ||
1268 | /* | |
1269 | * That function is the entry point for command line parsing and should be | |
1270 | * called from the arch-specific code. | |
1271 | */ | |
1272 | int __init parse_crashkernel(char *cmdline, | |
1273 | unsigned long long system_ram, | |
1274 | unsigned long long *crash_size, | |
1275 | unsigned long long *crash_base) | |
1276 | { | |
1277 | char *p = cmdline, *ck_cmdline = NULL; | |
1278 | char *first_colon, *first_space; | |
1279 | ||
1280 | BUG_ON(!crash_size || !crash_base); | |
1281 | *crash_size = 0; | |
1282 | *crash_base = 0; | |
1283 | ||
1284 | /* find crashkernel and use the last one if there are more */ | |
1285 | p = strstr(p, "crashkernel="); | |
1286 | while (p) { | |
1287 | ck_cmdline = p; | |
1288 | p = strstr(p+1, "crashkernel="); | |
1289 | } | |
1290 | ||
1291 | if (!ck_cmdline) | |
1292 | return -EINVAL; | |
1293 | ||
1294 | ck_cmdline += 12; /* strlen("crashkernel=") */ | |
1295 | ||
1296 | /* | |
1297 | * if the commandline contains a ':', then that's the extended | |
1298 | * syntax -- if not, it must be the classic syntax | |
1299 | */ | |
1300 | first_colon = strchr(ck_cmdline, ':'); | |
1301 | first_space = strchr(ck_cmdline, ' '); | |
1302 | if (first_colon && (!first_space || first_colon < first_space)) | |
1303 | return parse_crashkernel_mem(ck_cmdline, system_ram, | |
1304 | crash_size, crash_base); | |
1305 | else | |
1306 | return parse_crashkernel_simple(ck_cmdline, crash_size, | |
1307 | crash_base); | |
1308 | ||
1309 | return 0; | |
1310 | } | |
1311 | ||
1312 | ||
1313 | ||
fd59d231 KO |
1314 | void crash_save_vmcoreinfo(void) |
1315 | { | |
1316 | u32 *buf; | |
1317 | ||
1318 | if (!vmcoreinfo_size) | |
1319 | return; | |
1320 | ||
d768281e | 1321 | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); |
fd59d231 KO |
1322 | |
1323 | buf = (u32 *)vmcoreinfo_note; | |
1324 | ||
1325 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | |
1326 | vmcoreinfo_size); | |
1327 | ||
1328 | final_note(buf); | |
1329 | } | |
1330 | ||
1331 | void vmcoreinfo_append_str(const char *fmt, ...) | |
1332 | { | |
1333 | va_list args; | |
1334 | char buf[0x50]; | |
1335 | int r; | |
1336 | ||
1337 | va_start(args, fmt); | |
1338 | r = vsnprintf(buf, sizeof(buf), fmt, args); | |
1339 | va_end(args); | |
1340 | ||
1341 | if (r + vmcoreinfo_size > vmcoreinfo_max_size) | |
1342 | r = vmcoreinfo_max_size - vmcoreinfo_size; | |
1343 | ||
1344 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | |
1345 | ||
1346 | vmcoreinfo_size += r; | |
1347 | } | |
1348 | ||
1349 | /* | |
1350 | * provide an empty default implementation here -- architecture | |
1351 | * code may override this | |
1352 | */ | |
1353 | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) | |
1354 | {} | |
1355 | ||
1356 | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) | |
1357 | { | |
1358 | return __pa((unsigned long)(char *)&vmcoreinfo_note); | |
1359 | } | |
1360 | ||
1361 | static int __init crash_save_vmcoreinfo_init(void) | |
1362 | { | |
bba1f603 KO |
1363 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
1364 | VMCOREINFO_PAGESIZE(PAGE_SIZE); | |
fd59d231 | 1365 | |
bcbba6c1 KO |
1366 | VMCOREINFO_SYMBOL(init_uts_ns); |
1367 | VMCOREINFO_SYMBOL(node_online_map); | |
1368 | VMCOREINFO_SYMBOL(swapper_pg_dir); | |
1369 | VMCOREINFO_SYMBOL(_stext); | |
fd59d231 KO |
1370 | |
1371 | #ifndef CONFIG_NEED_MULTIPLE_NODES | |
bcbba6c1 KO |
1372 | VMCOREINFO_SYMBOL(mem_map); |
1373 | VMCOREINFO_SYMBOL(contig_page_data); | |
fd59d231 KO |
1374 | #endif |
1375 | #ifdef CONFIG_SPARSEMEM | |
bcbba6c1 KO |
1376 | VMCOREINFO_SYMBOL(mem_section); |
1377 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | |
c76f860c | 1378 | VMCOREINFO_STRUCT_SIZE(mem_section); |
bcbba6c1 | 1379 | VMCOREINFO_OFFSET(mem_section, section_mem_map); |
fd59d231 | 1380 | #endif |
c76f860c KO |
1381 | VMCOREINFO_STRUCT_SIZE(page); |
1382 | VMCOREINFO_STRUCT_SIZE(pglist_data); | |
1383 | VMCOREINFO_STRUCT_SIZE(zone); | |
1384 | VMCOREINFO_STRUCT_SIZE(free_area); | |
1385 | VMCOREINFO_STRUCT_SIZE(list_head); | |
1386 | VMCOREINFO_SIZE(nodemask_t); | |
bcbba6c1 KO |
1387 | VMCOREINFO_OFFSET(page, flags); |
1388 | VMCOREINFO_OFFSET(page, _count); | |
1389 | VMCOREINFO_OFFSET(page, mapping); | |
1390 | VMCOREINFO_OFFSET(page, lru); | |
1391 | VMCOREINFO_OFFSET(pglist_data, node_zones); | |
1392 | VMCOREINFO_OFFSET(pglist_data, nr_zones); | |
fd59d231 | 1393 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
bcbba6c1 | 1394 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
fd59d231 | 1395 | #endif |
bcbba6c1 KO |
1396 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
1397 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | |
1398 | VMCOREINFO_OFFSET(pglist_data, node_id); | |
1399 | VMCOREINFO_OFFSET(zone, free_area); | |
1400 | VMCOREINFO_OFFSET(zone, vm_stat); | |
1401 | VMCOREINFO_OFFSET(zone, spanned_pages); | |
1402 | VMCOREINFO_OFFSET(free_area, free_list); | |
1403 | VMCOREINFO_OFFSET(list_head, next); | |
1404 | VMCOREINFO_OFFSET(list_head, prev); | |
1405 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); | |
83a08e7c | 1406 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
bcbba6c1 | 1407 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
122c7a59 KO |
1408 | VMCOREINFO_NUMBER(PG_lru); |
1409 | VMCOREINFO_NUMBER(PG_private); | |
1410 | VMCOREINFO_NUMBER(PG_swapcache); | |
fd59d231 KO |
1411 | |
1412 | arch_crash_save_vmcoreinfo(); | |
1413 | ||
1414 | return 0; | |
1415 | } | |
1416 | ||
1417 | module_init(crash_save_vmcoreinfo_init) |