]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
16d69265 | 2 | #include <linux/mm.h> |
30992c97 MM |
3 | #include <linux/slab.h> |
4 | #include <linux/string.h> | |
3b32123d | 5 | #include <linux/compiler.h> |
b95f1b31 | 6 | #include <linux/export.h> |
96840aa0 | 7 | #include <linux/err.h> |
3b8f14b4 | 8 | #include <linux/sched.h> |
6e84f315 | 9 | #include <linux/sched/mm.h> |
79eb597c | 10 | #include <linux/sched/signal.h> |
68db0cf1 | 11 | #include <linux/sched/task_stack.h> |
eb36c587 | 12 | #include <linux/security.h> |
9800339b | 13 | #include <linux/swap.h> |
33806f06 | 14 | #include <linux/swapops.h> |
00619bcc JM |
15 | #include <linux/mman.h> |
16 | #include <linux/hugetlb.h> | |
39f1f78d | 17 | #include <linux/vmalloc.h> |
897ab3e0 | 18 | #include <linux/userfaultfd_k.h> |
649775be | 19 | #include <linux/elf.h> |
67f3977f AG |
20 | #include <linux/elf-randomize.h> |
21 | #include <linux/personality.h> | |
649775be | 22 | #include <linux/random.h> |
67f3977f AG |
23 | #include <linux/processor.h> |
24 | #include <linux/sizes.h> | |
25 | #include <linux/compat.h> | |
00619bcc | 26 | |
7c0f6ba6 | 27 | #include <linux/uaccess.h> |
30992c97 | 28 | |
6038def0 | 29 | #include "internal.h" |
014bb1de | 30 | #include "swap.h" |
6038def0 | 31 | |
a4bb1e43 AH |
32 | /** |
33 | * kfree_const - conditionally free memory | |
34 | * @x: pointer to the memory | |
35 | * | |
36 | * Function calls kfree only if @x is not in .rodata section. | |
37 | */ | |
38 | void kfree_const(const void *x) | |
39 | { | |
40 | if (!is_kernel_rodata((unsigned long)x)) | |
41 | kfree(x); | |
42 | } | |
43 | EXPORT_SYMBOL(kfree_const); | |
44 | ||
30992c97 | 45 | /** |
30992c97 | 46 | * kstrdup - allocate space for and copy an existing string |
30992c97 MM |
47 | * @s: the string to duplicate |
48 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
49 | * |
50 | * Return: newly allocated copy of @s or %NULL in case of error | |
30992c97 | 51 | */ |
2a6772eb | 52 | noinline |
30992c97 MM |
53 | char *kstrdup(const char *s, gfp_t gfp) |
54 | { | |
55 | size_t len; | |
56 | char *buf; | |
57 | ||
58 | if (!s) | |
59 | return NULL; | |
60 | ||
61 | len = strlen(s) + 1; | |
1d2c8eea | 62 | buf = kmalloc_track_caller(len, gfp); |
30992c97 MM |
63 | if (buf) |
64 | memcpy(buf, s, len); | |
65 | return buf; | |
66 | } | |
67 | EXPORT_SYMBOL(kstrdup); | |
96840aa0 | 68 | |
a4bb1e43 AH |
69 | /** |
70 | * kstrdup_const - conditionally duplicate an existing const string | |
71 | * @s: the string to duplicate | |
72 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
73 | * | |
295a1730 BG |
74 | * Note: Strings allocated by kstrdup_const should be freed by kfree_const and |
75 | * must not be passed to krealloc(). | |
a862f68a MR |
76 | * |
77 | * Return: source string if it is in .rodata section otherwise | |
78 | * fallback to kstrdup. | |
a4bb1e43 AH |
79 | */ |
80 | const char *kstrdup_const(const char *s, gfp_t gfp) | |
81 | { | |
82 | if (is_kernel_rodata((unsigned long)s)) | |
83 | return s; | |
84 | ||
85 | return kstrdup(s, gfp); | |
86 | } | |
87 | EXPORT_SYMBOL(kstrdup_const); | |
88 | ||
1e66df3e JF |
89 | /** |
90 | * kstrndup - allocate space for and copy an existing string | |
91 | * @s: the string to duplicate | |
92 | * @max: read at most @max chars from @s | |
93 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
f3515741 DH |
94 | * |
95 | * Note: Use kmemdup_nul() instead if the size is known exactly. | |
a862f68a MR |
96 | * |
97 | * Return: newly allocated copy of @s or %NULL in case of error | |
1e66df3e JF |
98 | */ |
99 | char *kstrndup(const char *s, size_t max, gfp_t gfp) | |
100 | { | |
101 | size_t len; | |
102 | char *buf; | |
103 | ||
104 | if (!s) | |
105 | return NULL; | |
106 | ||
107 | len = strnlen(s, max); | |
108 | buf = kmalloc_track_caller(len+1, gfp); | |
109 | if (buf) { | |
110 | memcpy(buf, s, len); | |
111 | buf[len] = '\0'; | |
112 | } | |
113 | return buf; | |
114 | } | |
115 | EXPORT_SYMBOL(kstrndup); | |
116 | ||
1a2f67b4 AD |
117 | /** |
118 | * kmemdup - duplicate region of memory | |
119 | * | |
120 | * @src: memory region to duplicate | |
121 | * @len: memory region length | |
122 | * @gfp: GFP mask to use | |
a862f68a | 123 | * |
0b7b8704 HS |
124 | * Return: newly allocated copy of @src or %NULL in case of error, |
125 | * result is physically contiguous. Use kfree() to free. | |
1a2f67b4 AD |
126 | */ |
127 | void *kmemdup(const void *src, size_t len, gfp_t gfp) | |
128 | { | |
129 | void *p; | |
130 | ||
1d2c8eea | 131 | p = kmalloc_track_caller(len, gfp); |
1a2f67b4 AD |
132 | if (p) |
133 | memcpy(p, src, len); | |
134 | return p; | |
135 | } | |
136 | EXPORT_SYMBOL(kmemdup); | |
137 | ||
0b7b8704 HS |
138 | /** |
139 | * kvmemdup - duplicate region of memory | |
140 | * | |
141 | * @src: memory region to duplicate | |
142 | * @len: memory region length | |
143 | * @gfp: GFP mask to use | |
144 | * | |
145 | * Return: newly allocated copy of @src or %NULL in case of error, | |
146 | * result may be not physically contiguous. Use kvfree() to free. | |
147 | */ | |
148 | void *kvmemdup(const void *src, size_t len, gfp_t gfp) | |
149 | { | |
150 | void *p; | |
151 | ||
152 | p = kvmalloc(len, gfp); | |
153 | if (p) | |
154 | memcpy(p, src, len); | |
155 | return p; | |
156 | } | |
157 | EXPORT_SYMBOL(kvmemdup); | |
158 | ||
f3515741 DH |
159 | /** |
160 | * kmemdup_nul - Create a NUL-terminated string from unterminated data | |
161 | * @s: The data to stringify | |
162 | * @len: The size of the data | |
163 | * @gfp: the GFP mask used in the kmalloc() call when allocating memory | |
a862f68a MR |
164 | * |
165 | * Return: newly allocated copy of @s with NUL-termination or %NULL in | |
166 | * case of error | |
f3515741 DH |
167 | */ |
168 | char *kmemdup_nul(const char *s, size_t len, gfp_t gfp) | |
169 | { | |
170 | char *buf; | |
171 | ||
172 | if (!s) | |
173 | return NULL; | |
174 | ||
175 | buf = kmalloc_track_caller(len + 1, gfp); | |
176 | if (buf) { | |
177 | memcpy(buf, s, len); | |
178 | buf[len] = '\0'; | |
179 | } | |
180 | return buf; | |
181 | } | |
182 | EXPORT_SYMBOL(kmemdup_nul); | |
183 | ||
610a77e0 LZ |
184 | /** |
185 | * memdup_user - duplicate memory region from user space | |
186 | * | |
187 | * @src: source address in user space | |
188 | * @len: number of bytes to copy | |
189 | * | |
a862f68a | 190 | * Return: an ERR_PTR() on failure. Result is physically |
50fd2f29 | 191 | * contiguous, to be freed by kfree(). |
610a77e0 LZ |
192 | */ |
193 | void *memdup_user(const void __user *src, size_t len) | |
194 | { | |
195 | void *p; | |
196 | ||
6c8fcc09 | 197 | p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN); |
610a77e0 LZ |
198 | if (!p) |
199 | return ERR_PTR(-ENOMEM); | |
200 | ||
201 | if (copy_from_user(p, src, len)) { | |
202 | kfree(p); | |
203 | return ERR_PTR(-EFAULT); | |
204 | } | |
205 | ||
206 | return p; | |
207 | } | |
208 | EXPORT_SYMBOL(memdup_user); | |
209 | ||
50fd2f29 AV |
210 | /** |
211 | * vmemdup_user - duplicate memory region from user space | |
212 | * | |
213 | * @src: source address in user space | |
214 | * @len: number of bytes to copy | |
215 | * | |
a862f68a | 216 | * Return: an ERR_PTR() on failure. Result may be not |
50fd2f29 AV |
217 | * physically contiguous. Use kvfree() to free. |
218 | */ | |
219 | void *vmemdup_user(const void __user *src, size_t len) | |
220 | { | |
221 | void *p; | |
222 | ||
223 | p = kvmalloc(len, GFP_USER); | |
224 | if (!p) | |
225 | return ERR_PTR(-ENOMEM); | |
226 | ||
227 | if (copy_from_user(p, src, len)) { | |
228 | kvfree(p); | |
229 | return ERR_PTR(-EFAULT); | |
230 | } | |
231 | ||
232 | return p; | |
233 | } | |
234 | EXPORT_SYMBOL(vmemdup_user); | |
235 | ||
b86181f1 | 236 | /** |
96840aa0 | 237 | * strndup_user - duplicate an existing string from user space |
96840aa0 DA |
238 | * @s: The string to duplicate |
239 | * @n: Maximum number of bytes to copy, including the trailing NUL. | |
a862f68a | 240 | * |
e9145521 | 241 | * Return: newly allocated copy of @s or an ERR_PTR() in case of error |
96840aa0 DA |
242 | */ |
243 | char *strndup_user(const char __user *s, long n) | |
244 | { | |
245 | char *p; | |
246 | long length; | |
247 | ||
248 | length = strnlen_user(s, n); | |
249 | ||
250 | if (!length) | |
251 | return ERR_PTR(-EFAULT); | |
252 | ||
253 | if (length > n) | |
254 | return ERR_PTR(-EINVAL); | |
255 | ||
90d74045 | 256 | p = memdup_user(s, length); |
96840aa0 | 257 | |
90d74045 JL |
258 | if (IS_ERR(p)) |
259 | return p; | |
96840aa0 DA |
260 | |
261 | p[length - 1] = '\0'; | |
262 | ||
263 | return p; | |
264 | } | |
265 | EXPORT_SYMBOL(strndup_user); | |
16d69265 | 266 | |
e9d408e1 AV |
267 | /** |
268 | * memdup_user_nul - duplicate memory region from user space and NUL-terminate | |
269 | * | |
270 | * @src: source address in user space | |
271 | * @len: number of bytes to copy | |
272 | * | |
a862f68a | 273 | * Return: an ERR_PTR() on failure. |
e9d408e1 AV |
274 | */ |
275 | void *memdup_user_nul(const void __user *src, size_t len) | |
276 | { | |
277 | char *p; | |
278 | ||
279 | /* | |
280 | * Always use GFP_KERNEL, since copy_from_user() can sleep and | |
281 | * cause pagefault, which makes it pointless to use GFP_NOFS | |
282 | * or GFP_ATOMIC. | |
283 | */ | |
284 | p = kmalloc_track_caller(len + 1, GFP_KERNEL); | |
285 | if (!p) | |
286 | return ERR_PTR(-ENOMEM); | |
287 | ||
288 | if (copy_from_user(p, src, len)) { | |
289 | kfree(p); | |
290 | return ERR_PTR(-EFAULT); | |
291 | } | |
292 | p[len] = '\0'; | |
293 | ||
294 | return p; | |
295 | } | |
296 | EXPORT_SYMBOL(memdup_user_nul); | |
297 | ||
b7643757 | 298 | /* Check if the vma is being used as a stack by this task */ |
d17af505 | 299 | int vma_is_stack_for_current(struct vm_area_struct *vma) |
b7643757 | 300 | { |
d17af505 AL |
301 | struct task_struct * __maybe_unused t = current; |
302 | ||
b7643757 SP |
303 | return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); |
304 | } | |
305 | ||
295992fb CK |
306 | /* |
307 | * Change backing file, only valid to use during initial VMA setup. | |
308 | */ | |
309 | void vma_set_file(struct vm_area_struct *vma, struct file *file) | |
310 | { | |
311 | /* Changing an anonymous vma with this is illegal */ | |
312 | get_file(file); | |
313 | swap(vma->vm_file, file); | |
314 | fput(file); | |
315 | } | |
316 | EXPORT_SYMBOL(vma_set_file); | |
317 | ||
649775be AG |
318 | #ifndef STACK_RND_MASK |
319 | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */ | |
320 | #endif | |
321 | ||
322 | unsigned long randomize_stack_top(unsigned long stack_top) | |
323 | { | |
324 | unsigned long random_variable = 0; | |
325 | ||
326 | if (current->flags & PF_RANDOMIZE) { | |
327 | random_variable = get_random_long(); | |
328 | random_variable &= STACK_RND_MASK; | |
329 | random_variable <<= PAGE_SHIFT; | |
330 | } | |
331 | #ifdef CONFIG_STACK_GROWSUP | |
332 | return PAGE_ALIGN(stack_top) + random_variable; | |
333 | #else | |
334 | return PAGE_ALIGN(stack_top) - random_variable; | |
335 | #endif | |
336 | } | |
337 | ||
5ad7dd88 JD |
338 | /** |
339 | * randomize_page - Generate a random, page aligned address | |
340 | * @start: The smallest acceptable address the caller will take. | |
341 | * @range: The size of the area, starting at @start, within which the | |
342 | * random address must fall. | |
343 | * | |
344 | * If @start + @range would overflow, @range is capped. | |
345 | * | |
346 | * NOTE: Historical use of randomize_range, which this replaces, presumed that | |
347 | * @start was already page aligned. We now align it regardless. | |
348 | * | |
349 | * Return: A page aligned address within [start, start + range). On error, | |
350 | * @start is returned. | |
351 | */ | |
352 | unsigned long randomize_page(unsigned long start, unsigned long range) | |
353 | { | |
354 | if (!PAGE_ALIGNED(start)) { | |
355 | range -= PAGE_ALIGN(start) - start; | |
356 | start = PAGE_ALIGN(start); | |
357 | } | |
358 | ||
359 | if (start > ULONG_MAX - range) | |
360 | range = ULONG_MAX - start; | |
361 | ||
362 | range >>= PAGE_SHIFT; | |
363 | ||
364 | if (range == 0) | |
365 | return start; | |
366 | ||
367 | return start + (get_random_long() % range << PAGE_SHIFT); | |
368 | } | |
369 | ||
67f3977f | 370 | #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT |
723820f3 | 371 | unsigned long __weak arch_randomize_brk(struct mm_struct *mm) |
e7142bf5 AG |
372 | { |
373 | /* Is the current task 32bit ? */ | |
374 | if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task()) | |
375 | return randomize_page(mm->brk, SZ_32M); | |
376 | ||
377 | return randomize_page(mm->brk, SZ_1G); | |
378 | } | |
379 | ||
67f3977f AG |
380 | unsigned long arch_mmap_rnd(void) |
381 | { | |
382 | unsigned long rnd; | |
383 | ||
384 | #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS | |
385 | if (is_compat_task()) | |
386 | rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1); | |
387 | else | |
388 | #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */ | |
389 | rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1); | |
390 | ||
391 | return rnd << PAGE_SHIFT; | |
392 | } | |
67f3977f AG |
393 | |
394 | static int mmap_is_legacy(struct rlimit *rlim_stack) | |
395 | { | |
396 | if (current->personality & ADDR_COMPAT_LAYOUT) | |
397 | return 1; | |
398 | ||
3033cd43 HD |
399 | /* On parisc the stack always grows up - so a unlimited stack should |
400 | * not be an indicator to use the legacy memory layout. */ | |
401 | if (rlim_stack->rlim_cur == RLIM_INFINITY && | |
402 | !IS_ENABLED(CONFIG_STACK_GROWSUP)) | |
67f3977f AG |
403 | return 1; |
404 | ||
405 | return sysctl_legacy_va_layout; | |
406 | } | |
407 | ||
408 | /* | |
409 | * Leave enough space between the mmap area and the stack to honour ulimit in | |
410 | * the face of randomisation. | |
411 | */ | |
412 | #define MIN_GAP (SZ_128M) | |
413 | #define MAX_GAP (STACK_TOP / 6 * 5) | |
414 | ||
415 | static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack) | |
416 | { | |
5f74f820 HD |
417 | #ifdef CONFIG_STACK_GROWSUP |
418 | /* | |
419 | * For an upwards growing stack the calculation is much simpler. | |
420 | * Memory for the maximum stack size is reserved at the top of the | |
421 | * task. mmap_base starts directly below the stack and grows | |
422 | * downwards. | |
423 | */ | |
424 | return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd); | |
425 | #else | |
67f3977f AG |
426 | unsigned long gap = rlim_stack->rlim_cur; |
427 | unsigned long pad = stack_guard_gap; | |
428 | ||
429 | /* Account for stack randomization if necessary */ | |
430 | if (current->flags & PF_RANDOMIZE) | |
431 | pad += (STACK_RND_MASK << PAGE_SHIFT); | |
432 | ||
433 | /* Values close to RLIM_INFINITY can overflow. */ | |
434 | if (gap + pad > gap) | |
435 | gap += pad; | |
436 | ||
437 | if (gap < MIN_GAP) | |
438 | gap = MIN_GAP; | |
439 | else if (gap > MAX_GAP) | |
440 | gap = MAX_GAP; | |
441 | ||
442 | return PAGE_ALIGN(STACK_TOP - gap - rnd); | |
5f74f820 | 443 | #endif |
67f3977f AG |
444 | } |
445 | ||
446 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) | |
447 | { | |
448 | unsigned long random_factor = 0UL; | |
449 | ||
450 | if (current->flags & PF_RANDOMIZE) | |
451 | random_factor = arch_mmap_rnd(); | |
452 | ||
453 | if (mmap_is_legacy(rlim_stack)) { | |
454 | mm->mmap_base = TASK_UNMAPPED_BASE + random_factor; | |
455 | mm->get_unmapped_area = arch_get_unmapped_area; | |
456 | } else { | |
457 | mm->mmap_base = mmap_base(random_factor, rlim_stack); | |
458 | mm->get_unmapped_area = arch_get_unmapped_area_topdown; | |
459 | } | |
460 | } | |
461 | #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) | |
8f2af155 | 462 | void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack) |
16d69265 AM |
463 | { |
464 | mm->mmap_base = TASK_UNMAPPED_BASE; | |
465 | mm->get_unmapped_area = arch_get_unmapped_area; | |
16d69265 AM |
466 | } |
467 | #endif | |
912985dc | 468 | |
79eb597c DJ |
469 | /** |
470 | * __account_locked_vm - account locked pages to an mm's locked_vm | |
471 | * @mm: mm to account against | |
472 | * @pages: number of pages to account | |
473 | * @inc: %true if @pages should be considered positive, %false if not | |
474 | * @task: task used to check RLIMIT_MEMLOCK | |
475 | * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped | |
476 | * | |
477 | * Assumes @task and @mm are valid (i.e. at least one reference on each), and | |
c1e8d7c6 | 478 | * that mmap_lock is held as writer. |
79eb597c DJ |
479 | * |
480 | * Return: | |
481 | * * 0 on success | |
482 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
483 | */ | |
484 | int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, | |
485 | struct task_struct *task, bool bypass_rlim) | |
486 | { | |
487 | unsigned long locked_vm, limit; | |
488 | int ret = 0; | |
489 | ||
42fc5414 | 490 | mmap_assert_write_locked(mm); |
79eb597c DJ |
491 | |
492 | locked_vm = mm->locked_vm; | |
493 | if (inc) { | |
494 | if (!bypass_rlim) { | |
495 | limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT; | |
496 | if (locked_vm + pages > limit) | |
497 | ret = -ENOMEM; | |
498 | } | |
499 | if (!ret) | |
500 | mm->locked_vm = locked_vm + pages; | |
501 | } else { | |
502 | WARN_ON_ONCE(pages > locked_vm); | |
503 | mm->locked_vm = locked_vm - pages; | |
504 | } | |
505 | ||
506 | pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid, | |
507 | (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT, | |
508 | locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK), | |
509 | ret ? " - exceeded" : ""); | |
510 | ||
511 | return ret; | |
512 | } | |
513 | EXPORT_SYMBOL_GPL(__account_locked_vm); | |
514 | ||
515 | /** | |
516 | * account_locked_vm - account locked pages to an mm's locked_vm | |
517 | * @mm: mm to account against, may be NULL | |
518 | * @pages: number of pages to account | |
519 | * @inc: %true if @pages should be considered positive, %false if not | |
520 | * | |
521 | * Assumes a non-NULL @mm is valid (i.e. at least one reference on it). | |
522 | * | |
523 | * Return: | |
524 | * * 0 on success, or if mm is NULL | |
525 | * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded. | |
526 | */ | |
527 | int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc) | |
528 | { | |
529 | int ret; | |
530 | ||
531 | if (pages == 0 || !mm) | |
532 | return 0; | |
533 | ||
d8ed45c5 | 534 | mmap_write_lock(mm); |
79eb597c DJ |
535 | ret = __account_locked_vm(mm, pages, inc, current, |
536 | capable(CAP_IPC_LOCK)); | |
d8ed45c5 | 537 | mmap_write_unlock(mm); |
79eb597c DJ |
538 | |
539 | return ret; | |
540 | } | |
541 | EXPORT_SYMBOL_GPL(account_locked_vm); | |
542 | ||
eb36c587 AV |
543 | unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, |
544 | unsigned long len, unsigned long prot, | |
9fbeb5ab | 545 | unsigned long flag, unsigned long pgoff) |
eb36c587 AV |
546 | { |
547 | unsigned long ret; | |
548 | struct mm_struct *mm = current->mm; | |
41badc15 | 549 | unsigned long populate; |
897ab3e0 | 550 | LIST_HEAD(uf); |
eb36c587 AV |
551 | |
552 | ret = security_mmap_file(file, prot, flag); | |
553 | if (!ret) { | |
d8ed45c5 | 554 | if (mmap_write_lock_killable(mm)) |
9fbeb5ab | 555 | return -EINTR; |
592b5fad | 556 | ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate, |
45e55300 | 557 | &uf); |
d8ed45c5 | 558 | mmap_write_unlock(mm); |
897ab3e0 | 559 | userfaultfd_unmap_complete(mm, &uf); |
41badc15 ML |
560 | if (populate) |
561 | mm_populate(ret, populate); | |
eb36c587 AV |
562 | } |
563 | return ret; | |
564 | } | |
565 | ||
566 | unsigned long vm_mmap(struct file *file, unsigned long addr, | |
567 | unsigned long len, unsigned long prot, | |
568 | unsigned long flag, unsigned long offset) | |
569 | { | |
570 | if (unlikely(offset + PAGE_ALIGN(len) < offset)) | |
571 | return -EINVAL; | |
ea53cde0 | 572 | if (unlikely(offset_in_page(offset))) |
eb36c587 AV |
573 | return -EINVAL; |
574 | ||
9fbeb5ab | 575 | return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); |
eb36c587 AV |
576 | } |
577 | EXPORT_SYMBOL(vm_mmap); | |
578 | ||
a7c3e901 MH |
579 | /** |
580 | * kvmalloc_node - attempt to allocate physically contiguous memory, but upon | |
581 | * failure, fall back to non-contiguous (vmalloc) allocation. | |
582 | * @size: size of the request. | |
583 | * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL. | |
584 | * @node: numa node to allocate from | |
585 | * | |
586 | * Uses kmalloc to get the memory but if the allocation fails then falls back | |
587 | * to the vmalloc allocator. Use kvfree for freeing the memory. | |
588 | * | |
a421ef30 | 589 | * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier. |
cc965a29 MH |
590 | * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is |
591 | * preferable to the vmalloc fallback, due to visible performance drawbacks. | |
a7c3e901 | 592 | * |
a862f68a | 593 | * Return: pointer to the allocated memory of %NULL in case of failure |
a7c3e901 MH |
594 | */ |
595 | void *kvmalloc_node(size_t size, gfp_t flags, int node) | |
596 | { | |
597 | gfp_t kmalloc_flags = flags; | |
598 | void *ret; | |
599 | ||
a7c3e901 | 600 | /* |
4f4f2ba9 MH |
601 | * We want to attempt a large physically contiguous block first because |
602 | * it is less likely to fragment multiple larger blocks and therefore | |
603 | * contribute to a long term fragmentation less than vmalloc fallback. | |
604 | * However make sure that larger requests are not too disruptive - no | |
605 | * OOM killer and no allocation failure warnings as we have a fallback. | |
a7c3e901 | 606 | */ |
6c5ab651 MH |
607 | if (size > PAGE_SIZE) { |
608 | kmalloc_flags |= __GFP_NOWARN; | |
609 | ||
cc965a29 | 610 | if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL)) |
6c5ab651 | 611 | kmalloc_flags |= __GFP_NORETRY; |
a421ef30 MH |
612 | |
613 | /* nofail semantic is implemented by the vmalloc fallback */ | |
614 | kmalloc_flags &= ~__GFP_NOFAIL; | |
6c5ab651 | 615 | } |
a7c3e901 MH |
616 | |
617 | ret = kmalloc_node(size, kmalloc_flags, node); | |
618 | ||
619 | /* | |
620 | * It doesn't really make sense to fallback to vmalloc for sub page | |
621 | * requests | |
622 | */ | |
623 | if (ret || size <= PAGE_SIZE) | |
624 | return ret; | |
625 | ||
30c19366 FW |
626 | /* non-sleeping allocations are not supported by vmalloc */ |
627 | if (!gfpflags_allow_blocking(flags)) | |
628 | return NULL; | |
629 | ||
7661809d | 630 | /* Don't even allow crazy sizes */ |
0708a0af DB |
631 | if (unlikely(size > INT_MAX)) { |
632 | WARN_ON_ONCE(!(flags & __GFP_NOWARN)); | |
7661809d | 633 | return NULL; |
0708a0af | 634 | } |
7661809d | 635 | |
9becb688 LT |
636 | /* |
637 | * kvmalloc() can always use VM_ALLOW_HUGE_VMAP, | |
638 | * since the callers already cannot assume anything | |
639 | * about the resulting pointer, and cannot play | |
640 | * protection games. | |
641 | */ | |
642 | return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, | |
643 | flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP, | |
644 | node, __builtin_return_address(0)); | |
a7c3e901 MH |
645 | } |
646 | EXPORT_SYMBOL(kvmalloc_node); | |
647 | ||
ff4dc772 | 648 | /** |
04b8e946 AM |
649 | * kvfree() - Free memory. |
650 | * @addr: Pointer to allocated memory. | |
ff4dc772 | 651 | * |
04b8e946 AM |
652 | * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc(). |
653 | * It is slightly more efficient to use kfree() or vfree() if you are certain | |
654 | * that you know which one to use. | |
655 | * | |
52414d33 | 656 | * Context: Either preemptible task context or not-NMI interrupt. |
ff4dc772 | 657 | */ |
39f1f78d AV |
658 | void kvfree(const void *addr) |
659 | { | |
660 | if (is_vmalloc_addr(addr)) | |
661 | vfree(addr); | |
662 | else | |
663 | kfree(addr); | |
664 | } | |
665 | EXPORT_SYMBOL(kvfree); | |
666 | ||
d4eaa283 WL |
667 | /** |
668 | * kvfree_sensitive - Free a data object containing sensitive information. | |
669 | * @addr: address of the data object to be freed. | |
670 | * @len: length of the data object. | |
671 | * | |
672 | * Use the special memzero_explicit() function to clear the content of a | |
673 | * kvmalloc'ed object containing sensitive data to make sure that the | |
674 | * compiler won't optimize out the data clearing. | |
675 | */ | |
676 | void kvfree_sensitive(const void *addr, size_t len) | |
677 | { | |
678 | if (likely(!ZERO_OR_NULL_PTR(addr))) { | |
679 | memzero_explicit((void *)addr, len); | |
680 | kvfree(addr); | |
681 | } | |
682 | } | |
683 | EXPORT_SYMBOL(kvfree_sensitive); | |
684 | ||
de2860f4 DC |
685 | void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) |
686 | { | |
687 | void *newp; | |
688 | ||
689 | if (oldsize >= newsize) | |
690 | return (void *)p; | |
691 | newp = kvmalloc(newsize, flags); | |
692 | if (!newp) | |
693 | return NULL; | |
694 | memcpy(newp, p, oldsize); | |
695 | kvfree(p); | |
696 | return newp; | |
697 | } | |
698 | EXPORT_SYMBOL(kvrealloc); | |
699 | ||
a8749a35 PB |
700 | /** |
701 | * __vmalloc_array - allocate memory for a virtually contiguous array. | |
702 | * @n: number of elements. | |
703 | * @size: element size. | |
704 | * @flags: the type of memory to allocate (see kmalloc). | |
705 | */ | |
706 | void *__vmalloc_array(size_t n, size_t size, gfp_t flags) | |
707 | { | |
708 | size_t bytes; | |
709 | ||
710 | if (unlikely(check_mul_overflow(n, size, &bytes))) | |
711 | return NULL; | |
712 | return __vmalloc(bytes, flags); | |
713 | } | |
714 | EXPORT_SYMBOL(__vmalloc_array); | |
715 | ||
716 | /** | |
717 | * vmalloc_array - allocate memory for a virtually contiguous array. | |
718 | * @n: number of elements. | |
719 | * @size: element size. | |
720 | */ | |
721 | void *vmalloc_array(size_t n, size_t size) | |
722 | { | |
723 | return __vmalloc_array(n, size, GFP_KERNEL); | |
724 | } | |
725 | EXPORT_SYMBOL(vmalloc_array); | |
726 | ||
727 | /** | |
728 | * __vcalloc - allocate and zero memory for a virtually contiguous array. | |
729 | * @n: number of elements. | |
730 | * @size: element size. | |
731 | * @flags: the type of memory to allocate (see kmalloc). | |
732 | */ | |
733 | void *__vcalloc(size_t n, size_t size, gfp_t flags) | |
734 | { | |
735 | return __vmalloc_array(n, size, flags | __GFP_ZERO); | |
736 | } | |
737 | EXPORT_SYMBOL(__vcalloc); | |
738 | ||
739 | /** | |
740 | * vcalloc - allocate and zero memory for a virtually contiguous array. | |
741 | * @n: number of elements. | |
742 | * @size: element size. | |
743 | */ | |
744 | void *vcalloc(size_t n, size_t size) | |
745 | { | |
746 | return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO); | |
747 | } | |
748 | EXPORT_SYMBOL(vcalloc); | |
749 | ||
e05b3453 | 750 | struct anon_vma *folio_anon_vma(struct folio *folio) |
e39155ea | 751 | { |
64601000 | 752 | unsigned long mapping = (unsigned long)folio->mapping; |
e39155ea | 753 | |
e39155ea KS |
754 | if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
755 | return NULL; | |
64601000 | 756 | return (void *)(mapping - PAGE_MAPPING_ANON); |
e39155ea KS |
757 | } |
758 | ||
2f52578f MWO |
759 | /** |
760 | * folio_mapping - Find the mapping where this folio is stored. | |
761 | * @folio: The folio. | |
762 | * | |
763 | * For folios which are in the page cache, return the mapping that this | |
764 | * page belongs to. Folios in the swap cache return the swap mapping | |
765 | * this page is stored in (which is different from the mapping for the | |
766 | * swap file or swap device where the data is stored). | |
767 | * | |
768 | * You can call this for folios which aren't in the swap cache or page | |
769 | * cache and it will return NULL. | |
770 | */ | |
771 | struct address_space *folio_mapping(struct folio *folio) | |
9800339b | 772 | { |
1c290f64 KS |
773 | struct address_space *mapping; |
774 | ||
03e5ac2f | 775 | /* This happens if someone calls flush_dcache_page on slab page */ |
2f52578f | 776 | if (unlikely(folio_test_slab(folio))) |
03e5ac2f MP |
777 | return NULL; |
778 | ||
2f52578f | 779 | if (unlikely(folio_test_swapcache(folio))) |
3d2c9087 | 780 | return swap_address_space(folio->swap); |
e39155ea | 781 | |
2f52578f | 782 | mapping = folio->mapping; |
68f2736a | 783 | if ((unsigned long)mapping & PAGE_MAPPING_FLAGS) |
e39155ea | 784 | return NULL; |
bda807d4 | 785 | |
68f2736a | 786 | return mapping; |
9800339b | 787 | } |
2f52578f | 788 | EXPORT_SYMBOL(folio_mapping); |
9800339b | 789 | |
715cbfd6 MWO |
790 | /** |
791 | * folio_copy - Copy the contents of one folio to another. | |
792 | * @dst: Folio to copy to. | |
793 | * @src: Folio to copy from. | |
794 | * | |
795 | * The bytes in the folio represented by @src are copied to @dst. | |
796 | * Assumes the caller has validated that @dst is at least as large as @src. | |
797 | * Can be called in atomic context for order-0 folios, but if the folio is | |
798 | * larger, it may sleep. | |
799 | */ | |
800 | void folio_copy(struct folio *dst, struct folio *src) | |
79789db0 | 801 | { |
715cbfd6 MWO |
802 | long i = 0; |
803 | long nr = folio_nr_pages(src); | |
79789db0 | 804 | |
715cbfd6 MWO |
805 | for (;;) { |
806 | copy_highpage(folio_page(dst, i), folio_page(src, i)); | |
807 | if (++i == nr) | |
808 | break; | |
79789db0 | 809 | cond_resched(); |
79789db0 MWO |
810 | } |
811 | } | |
4093602d | 812 | EXPORT_SYMBOL(folio_copy); |
79789db0 | 813 | |
39a1aa8e AR |
814 | int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; |
815 | int sysctl_overcommit_ratio __read_mostly = 50; | |
816 | unsigned long sysctl_overcommit_kbytes __read_mostly; | |
817 | int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT; | |
818 | unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */ | |
819 | unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */ | |
820 | ||
32927393 CH |
821 | int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer, |
822 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
823 | { |
824 | int ret; | |
825 | ||
826 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
827 | if (ret == 0 && write) | |
828 | sysctl_overcommit_kbytes = 0; | |
829 | return ret; | |
830 | } | |
831 | ||
56f3547b FT |
832 | static void sync_overcommit_as(struct work_struct *dummy) |
833 | { | |
834 | percpu_counter_sync(&vm_committed_as); | |
835 | } | |
836 | ||
837 | int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer, | |
838 | size_t *lenp, loff_t *ppos) | |
839 | { | |
840 | struct ctl_table t; | |
bcbda810 | 841 | int new_policy = -1; |
56f3547b FT |
842 | int ret; |
843 | ||
844 | /* | |
845 | * The deviation of sync_overcommit_as could be big with loose policy | |
846 | * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to | |
847 | * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply | |
31454980 | 848 | * with the strict "NEVER", and to avoid possible race condition (even |
56f3547b FT |
849 | * though user usually won't too frequently do the switching to policy |
850 | * OVERCOMMIT_NEVER), the switch is done in the following order: | |
851 | * 1. changing the batch | |
852 | * 2. sync percpu count on each CPU | |
853 | * 3. switch the policy | |
854 | */ | |
855 | if (write) { | |
856 | t = *table; | |
857 | t.data = &new_policy; | |
858 | ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); | |
bcbda810 | 859 | if (ret || new_policy == -1) |
56f3547b FT |
860 | return ret; |
861 | ||
862 | mm_compute_batch(new_policy); | |
863 | if (new_policy == OVERCOMMIT_NEVER) | |
864 | schedule_on_each_cpu(sync_overcommit_as); | |
865 | sysctl_overcommit_memory = new_policy; | |
866 | } else { | |
867 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); | |
868 | } | |
869 | ||
870 | return ret; | |
871 | } | |
872 | ||
32927393 CH |
873 | int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer, |
874 | size_t *lenp, loff_t *ppos) | |
49f0ce5f JM |
875 | { |
876 | int ret; | |
877 | ||
878 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); | |
879 | if (ret == 0 && write) | |
880 | sysctl_overcommit_ratio = 0; | |
881 | return ret; | |
882 | } | |
883 | ||
00619bcc JM |
884 | /* |
885 | * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used | |
886 | */ | |
887 | unsigned long vm_commit_limit(void) | |
888 | { | |
49f0ce5f JM |
889 | unsigned long allowed; |
890 | ||
891 | if (sysctl_overcommit_kbytes) | |
892 | allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); | |
893 | else | |
ca79b0c2 | 894 | allowed = ((totalram_pages() - hugetlb_total_pages()) |
49f0ce5f JM |
895 | * sysctl_overcommit_ratio / 100); |
896 | allowed += total_swap_pages; | |
897 | ||
898 | return allowed; | |
00619bcc JM |
899 | } |
900 | ||
39a1aa8e AR |
901 | /* |
902 | * Make sure vm_committed_as in one cacheline and not cacheline shared with | |
903 | * other variables. It can be updated by several CPUs frequently. | |
904 | */ | |
905 | struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp; | |
906 | ||
907 | /* | |
908 | * The global memory commitment made in the system can be a metric | |
909 | * that can be used to drive ballooning decisions when Linux is hosted | |
910 | * as a guest. On Hyper-V, the host implements a policy engine for dynamically | |
911 | * balancing memory across competing virtual machines that are hosted. | |
912 | * Several metrics drive this policy engine including the guest reported | |
913 | * memory commitment. | |
4e2ee51e FT |
914 | * |
915 | * The time cost of this is very low for small platforms, and for big | |
916 | * platform like a 2S/36C/72T Skylake server, in worst case where | |
917 | * vm_committed_as's spinlock is under severe contention, the time cost | |
918 | * could be about 30~40 microseconds. | |
39a1aa8e AR |
919 | */ |
920 | unsigned long vm_memory_committed(void) | |
921 | { | |
4e2ee51e | 922 | return percpu_counter_sum_positive(&vm_committed_as); |
39a1aa8e AR |
923 | } |
924 | EXPORT_SYMBOL_GPL(vm_memory_committed); | |
925 | ||
926 | /* | |
927 | * Check that a process has enough memory to allocate a new virtual | |
928 | * mapping. 0 means there is enough memory for the allocation to | |
929 | * succeed and -ENOMEM implies there is not. | |
930 | * | |
931 | * We currently support three overcommit policies, which are set via the | |
ee65728e | 932 | * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst |
39a1aa8e AR |
933 | * |
934 | * Strict overcommit modes added 2002 Feb 26 by Alan Cox. | |
935 | * Additional code 2002 Jul 20 by Robert Love. | |
936 | * | |
937 | * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise. | |
938 | * | |
939 | * Note this is a helper function intended to be used by LSMs which | |
940 | * wish to use this logic. | |
941 | */ | |
942 | int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin) | |
943 | { | |
8c7829b0 | 944 | long allowed; |
39a1aa8e | 945 | |
39a1aa8e AR |
946 | vm_acct_memory(pages); |
947 | ||
948 | /* | |
949 | * Sometimes we want to use more memory than we have | |
950 | */ | |
951 | if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS) | |
952 | return 0; | |
953 | ||
954 | if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) { | |
8c7829b0 | 955 | if (pages > totalram_pages() + total_swap_pages) |
39a1aa8e | 956 | goto error; |
8c7829b0 | 957 | return 0; |
39a1aa8e AR |
958 | } |
959 | ||
960 | allowed = vm_commit_limit(); | |
961 | /* | |
962 | * Reserve some for root | |
963 | */ | |
964 | if (!cap_sys_admin) | |
965 | allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10); | |
966 | ||
967 | /* | |
968 | * Don't let a single process grow so big a user can't recover | |
969 | */ | |
970 | if (mm) { | |
8c7829b0 JW |
971 | long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10); |
972 | ||
39a1aa8e AR |
973 | allowed -= min_t(long, mm->total_vm / 32, reserve); |
974 | } | |
975 | ||
976 | if (percpu_counter_read_positive(&vm_committed_as) < allowed) | |
977 | return 0; | |
978 | error: | |
6bdfc60c | 979 | pr_warn_ratelimited("%s: pid: %d, comm: %s, not enough memory for the allocation\n", |
44b414c8 | 980 | __func__, current->pid, current->comm); |
39a1aa8e AR |
981 | vm_unacct_memory(pages); |
982 | ||
983 | return -ENOMEM; | |
984 | } | |
985 | ||
a9090253 WR |
986 | /** |
987 | * get_cmdline() - copy the cmdline value to a buffer. | |
988 | * @task: the task whose cmdline value to copy. | |
989 | * @buffer: the buffer to copy to. | |
990 | * @buflen: the length of the buffer. Larger cmdline values are truncated | |
991 | * to this length. | |
a862f68a MR |
992 | * |
993 | * Return: the size of the cmdline field copied. Note that the copy does | |
a9090253 WR |
994 | * not guarantee an ending NULL byte. |
995 | */ | |
996 | int get_cmdline(struct task_struct *task, char *buffer, int buflen) | |
997 | { | |
998 | int res = 0; | |
999 | unsigned int len; | |
1000 | struct mm_struct *mm = get_task_mm(task); | |
a3b609ef | 1001 | unsigned long arg_start, arg_end, env_start, env_end; |
a9090253 WR |
1002 | if (!mm) |
1003 | goto out; | |
1004 | if (!mm->arg_end) | |
1005 | goto out_mm; /* Shh! No looking before we're done */ | |
1006 | ||
bc81426f | 1007 | spin_lock(&mm->arg_lock); |
a3b609ef MG |
1008 | arg_start = mm->arg_start; |
1009 | arg_end = mm->arg_end; | |
1010 | env_start = mm->env_start; | |
1011 | env_end = mm->env_end; | |
bc81426f | 1012 | spin_unlock(&mm->arg_lock); |
a3b609ef MG |
1013 | |
1014 | len = arg_end - arg_start; | |
a9090253 WR |
1015 | |
1016 | if (len > buflen) | |
1017 | len = buflen; | |
1018 | ||
f307ab6d | 1019 | res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE); |
a9090253 WR |
1020 | |
1021 | /* | |
1022 | * If the nul at the end of args has been overwritten, then | |
1023 | * assume application is using setproctitle(3). | |
1024 | */ | |
1025 | if (res > 0 && buffer[res-1] != '\0' && len < buflen) { | |
1026 | len = strnlen(buffer, res); | |
1027 | if (len < res) { | |
1028 | res = len; | |
1029 | } else { | |
a3b609ef | 1030 | len = env_end - env_start; |
a9090253 WR |
1031 | if (len > buflen - res) |
1032 | len = buflen - res; | |
a3b609ef | 1033 | res += access_process_vm(task, env_start, |
f307ab6d LS |
1034 | buffer+res, len, |
1035 | FOLL_FORCE); | |
a9090253 WR |
1036 | res = strnlen(buffer, res); |
1037 | } | |
1038 | } | |
1039 | out_mm: | |
1040 | mmput(mm); | |
1041 | out: | |
1042 | return res; | |
1043 | } | |
010c164a | 1044 | |
4d1a8a2d | 1045 | int __weak memcmp_pages(struct page *page1, struct page *page2) |
010c164a SL |
1046 | { |
1047 | char *addr1, *addr2; | |
1048 | int ret; | |
1049 | ||
1050 | addr1 = kmap_atomic(page1); | |
1051 | addr2 = kmap_atomic(page2); | |
1052 | ret = memcmp(addr1, addr2, PAGE_SIZE); | |
1053 | kunmap_atomic(addr2); | |
1054 | kunmap_atomic(addr1); | |
1055 | return ret; | |
1056 | } | |
8e7f37f2 | 1057 | |
5bb1bb35 | 1058 | #ifdef CONFIG_PRINTK |
8e7f37f2 PM |
1059 | /** |
1060 | * mem_dump_obj - Print available provenance information | |
1061 | * @object: object for which to find provenance information. | |
1062 | * | |
1063 | * This function uses pr_cont(), so that the caller is expected to have | |
1064 | * printed out whatever preamble is appropriate. The provenance information | |
1065 | * depends on the type of object and on how much debugging is enabled. | |
1066 | * For example, for a slab-cache object, the slab name is printed, and, | |
1067 | * if available, the return address and stack trace from the allocation | |
e548eaa1 | 1068 | * and last free path of that object. |
8e7f37f2 PM |
1069 | */ |
1070 | void mem_dump_obj(void *object) | |
1071 | { | |
2521781c JP |
1072 | const char *type; |
1073 | ||
6e284c55 | 1074 | if (kmem_dump_obj(object)) |
98f18083 | 1075 | return; |
2521781c | 1076 | |
98f18083 PM |
1077 | if (vmalloc_dump_obj(object)) |
1078 | return; | |
2521781c | 1079 | |
c83ad36a Z |
1080 | if (is_vmalloc_addr(object)) |
1081 | type = "vmalloc memory"; | |
1082 | else if (virt_addr_valid(object)) | |
2521781c JP |
1083 | type = "non-slab/vmalloc memory"; |
1084 | else if (object == NULL) | |
1085 | type = "NULL pointer"; | |
1086 | else if (object == ZERO_SIZE_PTR) | |
1087 | type = "zero-size pointer"; | |
1088 | else | |
1089 | type = "non-paged memory"; | |
1090 | ||
1091 | pr_cont(" %s\n", type); | |
8e7f37f2 | 1092 | } |
0d3dd2c8 | 1093 | EXPORT_SYMBOL_GPL(mem_dump_obj); |
5bb1bb35 | 1094 | #endif |
82840451 DH |
1095 | |
1096 | /* | |
1097 | * A driver might set a page logically offline -- PageOffline() -- and | |
1098 | * turn the page inaccessible in the hypervisor; after that, access to page | |
1099 | * content can be fatal. | |
1100 | * | |
1101 | * Some special PFN walkers -- i.e., /proc/kcore -- read content of random | |
1102 | * pages after checking PageOffline(); however, these PFN walkers can race | |
1103 | * with drivers that set PageOffline(). | |
1104 | * | |
1105 | * page_offline_freeze()/page_offline_thaw() allows for a subsystem to | |
1106 | * synchronize with such drivers, achieving that a page cannot be set | |
1107 | * PageOffline() while frozen. | |
1108 | * | |
1109 | * page_offline_begin()/page_offline_end() is used by drivers that care about | |
1110 | * such races when setting a page PageOffline(). | |
1111 | */ | |
1112 | static DECLARE_RWSEM(page_offline_rwsem); | |
1113 | ||
1114 | void page_offline_freeze(void) | |
1115 | { | |
1116 | down_read(&page_offline_rwsem); | |
1117 | } | |
1118 | ||
1119 | void page_offline_thaw(void) | |
1120 | { | |
1121 | up_read(&page_offline_rwsem); | |
1122 | } | |
1123 | ||
1124 | void page_offline_begin(void) | |
1125 | { | |
1126 | down_write(&page_offline_rwsem); | |
1127 | } | |
1128 | EXPORT_SYMBOL(page_offline_begin); | |
1129 | ||
1130 | void page_offline_end(void) | |
1131 | { | |
1132 | up_write(&page_offline_rwsem); | |
1133 | } | |
1134 | EXPORT_SYMBOL(page_offline_end); | |
08b0b005 | 1135 | |
29d26f12 | 1136 | #ifndef flush_dcache_folio |
08b0b005 MWO |
1137 | void flush_dcache_folio(struct folio *folio) |
1138 | { | |
1139 | long i, nr = folio_nr_pages(folio); | |
1140 | ||
1141 | for (i = 0; i < nr; i++) | |
1142 | flush_dcache_page(folio_page(folio, i)); | |
1143 | } | |
1144 | EXPORT_SYMBOL(flush_dcache_folio); | |
1145 | #endif |