]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * fs/mpage.c | |
4 | * | |
5 | * Copyright (C) 2002, Linus Torvalds. | |
6 | * | |
7 | * Contains functions related to preparing and submitting BIOs which contain | |
8 | * multiple pagecache pages. | |
9 | * | |
e1f8e874 | 10 | * 15May2002 Andrew Morton |
1da177e4 LT |
11 | * Initial version |
12 | * 27Jun2002 [email protected] | |
13 | * use bio_add_page() to build bio's just the right size | |
14 | */ | |
15 | ||
16 | #include <linux/kernel.h> | |
630d9c47 | 17 | #include <linux/export.h> |
1da177e4 LT |
18 | #include <linux/mm.h> |
19 | #include <linux/kdev_t.h> | |
5a0e3ad6 | 20 | #include <linux/gfp.h> |
1da177e4 LT |
21 | #include <linux/bio.h> |
22 | #include <linux/fs.h> | |
23 | #include <linux/buffer_head.h> | |
24 | #include <linux/blkdev.h> | |
25 | #include <linux/highmem.h> | |
26 | #include <linux/prefetch.h> | |
27 | #include <linux/mpage.h> | |
02c43638 | 28 | #include <linux/mm_inline.h> |
1da177e4 LT |
29 | #include <linux/writeback.h> |
30 | #include <linux/backing-dev.h> | |
31 | #include <linux/pagevec.h> | |
4db96b71 | 32 | #include "internal.h" |
1da177e4 LT |
33 | |
34 | /* | |
35 | * I/O completion handler for multipage BIOs. | |
36 | * | |
37 | * The mpage code never puts partial pages into a BIO (except for end-of-file). | |
38 | * If a page does not map to a contiguous run of blocks then it simply falls | |
39 | * back to block_read_full_page(). | |
40 | * | |
41 | * Why is this? If a page's completion depends on a number of different BIOs | |
42 | * which can complete in any order (or at the same time) then determining the | |
43 | * status of that page is hard. See end_buffer_async_read() for the details. | |
44 | * There is no point in duplicating all that complexity. | |
45 | */ | |
4246a0b6 | 46 | static void mpage_end_io(struct bio *bio) |
1da177e4 | 47 | { |
2c30c71b | 48 | struct bio_vec *bv; |
6dc4f100 | 49 | struct bvec_iter_all iter_all; |
1da177e4 | 50 | |
2b070cfe | 51 | bio_for_each_segment_all(bv, bio, iter_all) { |
2c30c71b | 52 | struct page *page = bv->bv_page; |
3f289dcb TH |
53 | page_endio(page, bio_op(bio), |
54 | blk_status_to_errno(bio->bi_status)); | |
2c30c71b KO |
55 | } |
56 | ||
1da177e4 | 57 | bio_put(bio); |
1da177e4 LT |
58 | } |
59 | ||
eed25cd5 | 60 | static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) |
1da177e4 | 61 | { |
c32b0d4b | 62 | bio->bi_end_io = mpage_end_io; |
eed25cd5 | 63 | bio_set_op_attrs(bio, op, op_flags); |
83c9c547 | 64 | guard_bio_eod(bio); |
4e49ea4a | 65 | submit_bio(bio); |
1da177e4 LT |
66 | return NULL; |
67 | } | |
68 | ||
69 | static struct bio * | |
70 | mpage_alloc(struct block_device *bdev, | |
71 | sector_t first_sector, int nr_vecs, | |
dd0fc66f | 72 | gfp_t gfp_flags) |
1da177e4 LT |
73 | { |
74 | struct bio *bio; | |
75 | ||
8a5c743e MH |
76 | /* Restrict the given (page cache) mask for slab allocations */ |
77 | gfp_flags &= GFP_KERNEL; | |
1da177e4 LT |
78 | bio = bio_alloc(gfp_flags, nr_vecs); |
79 | ||
80 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | |
81 | while (!bio && (nr_vecs /= 2)) | |
82 | bio = bio_alloc(gfp_flags, nr_vecs); | |
83 | } | |
84 | ||
85 | if (bio) { | |
74d46992 | 86 | bio_set_dev(bio, bdev); |
4f024f37 | 87 | bio->bi_iter.bi_sector = first_sector; |
1da177e4 LT |
88 | } |
89 | return bio; | |
90 | } | |
91 | ||
92 | /* | |
d4388340 | 93 | * support function for mpage_readahead. The fs supplied get_block might |
1da177e4 LT |
94 | * return an up to date buffer. This is used to map that buffer into |
95 | * the page, which allows readpage to avoid triggering a duplicate call | |
96 | * to get_block. | |
97 | * | |
98 | * The idea is to avoid adding buffers to pages that don't already have | |
99 | * them. So when the buffer is up to date and the page size == block size, | |
100 | * this marks the page up to date instead of adding new buffers. | |
101 | */ | |
102 | static void | |
103 | map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) | |
104 | { | |
105 | struct inode *inode = page->mapping->host; | |
106 | struct buffer_head *page_bh, *head; | |
107 | int block = 0; | |
108 | ||
109 | if (!page_has_buffers(page)) { | |
110 | /* | |
111 | * don't make any buffers if there is only one buffer on | |
112 | * the page and the page just needs to be set up to date | |
113 | */ | |
09cbfeaf | 114 | if (inode->i_blkbits == PAGE_SHIFT && |
1da177e4 LT |
115 | buffer_uptodate(bh)) { |
116 | SetPageUptodate(page); | |
117 | return; | |
118 | } | |
93407472 | 119 | create_empty_buffers(page, i_blocksize(inode), 0); |
1da177e4 LT |
120 | } |
121 | head = page_buffers(page); | |
122 | page_bh = head; | |
123 | do { | |
124 | if (block == page_block) { | |
125 | page_bh->b_state = bh->b_state; | |
126 | page_bh->b_bdev = bh->b_bdev; | |
127 | page_bh->b_blocknr = bh->b_blocknr; | |
128 | break; | |
129 | } | |
130 | page_bh = page_bh->b_this_page; | |
131 | block++; | |
132 | } while (page_bh != head); | |
133 | } | |
134 | ||
357c1206 JA |
135 | struct mpage_readpage_args { |
136 | struct bio *bio; | |
137 | struct page *page; | |
138 | unsigned int nr_pages; | |
74c8164e | 139 | bool is_readahead; |
357c1206 JA |
140 | sector_t last_block_in_bio; |
141 | struct buffer_head map_bh; | |
142 | unsigned long first_logical_block; | |
143 | get_block_t *get_block; | |
357c1206 JA |
144 | }; |
145 | ||
fa30bd05 BP |
146 | /* |
147 | * This is the worker routine which does all the work of mapping the disk | |
148 | * blocks and constructs largest possible bios, submits them for IO if the | |
149 | * blocks are not contiguous on the disk. | |
150 | * | |
151 | * We pass a buffer_head back and forth and use its buffer_mapped() flag to | |
152 | * represent the validity of its disk mapping and to decide when to do the next | |
153 | * get_block() call. | |
154 | */ | |
357c1206 | 155 | static struct bio *do_mpage_readpage(struct mpage_readpage_args *args) |
1da177e4 | 156 | { |
357c1206 | 157 | struct page *page = args->page; |
1da177e4 LT |
158 | struct inode *inode = page->mapping->host; |
159 | const unsigned blkbits = inode->i_blkbits; | |
09cbfeaf | 160 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; |
1da177e4 | 161 | const unsigned blocksize = 1 << blkbits; |
357c1206 | 162 | struct buffer_head *map_bh = &args->map_bh; |
1da177e4 LT |
163 | sector_t block_in_file; |
164 | sector_t last_block; | |
fa30bd05 | 165 | sector_t last_block_in_file; |
1da177e4 LT |
166 | sector_t blocks[MAX_BUF_PER_PAGE]; |
167 | unsigned page_block; | |
168 | unsigned first_hole = blocks_per_page; | |
169 | struct block_device *bdev = NULL; | |
1da177e4 LT |
170 | int length; |
171 | int fully_mapped = 1; | |
74c8164e | 172 | int op_flags; |
fa30bd05 BP |
173 | unsigned nblocks; |
174 | unsigned relative_block; | |
74c8164e JA |
175 | gfp_t gfp; |
176 | ||
177 | if (args->is_readahead) { | |
178 | op_flags = REQ_RAHEAD; | |
179 | gfp = readahead_gfp_mask(page->mapping); | |
180 | } else { | |
181 | op_flags = 0; | |
182 | gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); | |
183 | } | |
1da177e4 LT |
184 | |
185 | if (page_has_buffers(page)) | |
186 | goto confused; | |
187 | ||
09cbfeaf | 188 | block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); |
357c1206 | 189 | last_block = block_in_file + args->nr_pages * blocks_per_page; |
fa30bd05 BP |
190 | last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; |
191 | if (last_block > last_block_in_file) | |
192 | last_block = last_block_in_file; | |
193 | page_block = 0; | |
194 | ||
195 | /* | |
196 | * Map blocks using the result from the previous get_blocks call first. | |
197 | */ | |
198 | nblocks = map_bh->b_size >> blkbits; | |
357c1206 JA |
199 | if (buffer_mapped(map_bh) && |
200 | block_in_file > args->first_logical_block && | |
201 | block_in_file < (args->first_logical_block + nblocks)) { | |
202 | unsigned map_offset = block_in_file - args->first_logical_block; | |
fa30bd05 BP |
203 | unsigned last = nblocks - map_offset; |
204 | ||
205 | for (relative_block = 0; ; relative_block++) { | |
206 | if (relative_block == last) { | |
207 | clear_buffer_mapped(map_bh); | |
208 | break; | |
209 | } | |
210 | if (page_block == blocks_per_page) | |
211 | break; | |
212 | blocks[page_block] = map_bh->b_blocknr + map_offset + | |
213 | relative_block; | |
214 | page_block++; | |
215 | block_in_file++; | |
216 | } | |
217 | bdev = map_bh->b_bdev; | |
218 | } | |
219 | ||
220 | /* | |
221 | * Then do more get_blocks calls until we are done with this page. | |
222 | */ | |
223 | map_bh->b_page = page; | |
224 | while (page_block < blocks_per_page) { | |
225 | map_bh->b_state = 0; | |
226 | map_bh->b_size = 0; | |
1da177e4 | 227 | |
1da177e4 | 228 | if (block_in_file < last_block) { |
fa30bd05 | 229 | map_bh->b_size = (last_block-block_in_file) << blkbits; |
357c1206 | 230 | if (args->get_block(inode, block_in_file, map_bh, 0)) |
1da177e4 | 231 | goto confused; |
357c1206 | 232 | args->first_logical_block = block_in_file; |
1da177e4 LT |
233 | } |
234 | ||
fa30bd05 | 235 | if (!buffer_mapped(map_bh)) { |
1da177e4 LT |
236 | fully_mapped = 0; |
237 | if (first_hole == blocks_per_page) | |
238 | first_hole = page_block; | |
fa30bd05 BP |
239 | page_block++; |
240 | block_in_file++; | |
1da177e4 LT |
241 | continue; |
242 | } | |
243 | ||
244 | /* some filesystems will copy data into the page during | |
245 | * the get_block call, in which case we don't want to | |
246 | * read it again. map_buffer_to_page copies the data | |
247 | * we just collected from get_block into the page's buffers | |
248 | * so readpage doesn't have to repeat the get_block call | |
249 | */ | |
fa30bd05 BP |
250 | if (buffer_uptodate(map_bh)) { |
251 | map_buffer_to_page(page, map_bh, page_block); | |
1da177e4 LT |
252 | goto confused; |
253 | } | |
254 | ||
255 | if (first_hole != blocks_per_page) | |
256 | goto confused; /* hole -> non-hole */ | |
257 | ||
258 | /* Contiguous blocks? */ | |
fa30bd05 | 259 | if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) |
1da177e4 | 260 | goto confused; |
fa30bd05 BP |
261 | nblocks = map_bh->b_size >> blkbits; |
262 | for (relative_block = 0; ; relative_block++) { | |
263 | if (relative_block == nblocks) { | |
264 | clear_buffer_mapped(map_bh); | |
265 | break; | |
266 | } else if (page_block == blocks_per_page) | |
267 | break; | |
268 | blocks[page_block] = map_bh->b_blocknr+relative_block; | |
269 | page_block++; | |
270 | block_in_file++; | |
271 | } | |
272 | bdev = map_bh->b_bdev; | |
1da177e4 LT |
273 | } |
274 | ||
275 | if (first_hole != blocks_per_page) { | |
09cbfeaf | 276 | zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); |
1da177e4 LT |
277 | if (first_hole == 0) { |
278 | SetPageUptodate(page); | |
279 | unlock_page(page); | |
280 | goto out; | |
281 | } | |
282 | } else if (fully_mapped) { | |
283 | SetPageMappedToDisk(page); | |
284 | } | |
285 | ||
286 | /* | |
287 | * This page will go to BIO. Do we need to send this BIO off first? | |
288 | */ | |
357c1206 | 289 | if (args->bio && (args->last_block_in_bio != blocks[0] - 1)) |
74c8164e | 290 | args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); |
1da177e4 LT |
291 | |
292 | alloc_new: | |
357c1206 | 293 | if (args->bio == NULL) { |
47a191fd MW |
294 | if (first_hole == blocks_per_page) { |
295 | if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), | |
296 | page)) | |
297 | goto out; | |
298 | } | |
357c1206 | 299 | args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), |
5f7136db | 300 | bio_max_segs(args->nr_pages), gfp); |
357c1206 | 301 | if (args->bio == NULL) |
1da177e4 LT |
302 | goto confused; |
303 | } | |
304 | ||
305 | length = first_hole << blkbits; | |
357c1206 | 306 | if (bio_add_page(args->bio, page, length, 0) < length) { |
74c8164e | 307 | args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); |
1da177e4 LT |
308 | goto alloc_new; |
309 | } | |
310 | ||
357c1206 | 311 | relative_block = block_in_file - args->first_logical_block; |
38c8e618 MS |
312 | nblocks = map_bh->b_size >> blkbits; |
313 | if ((buffer_boundary(map_bh) && relative_block == nblocks) || | |
314 | (first_hole != blocks_per_page)) | |
74c8164e | 315 | args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); |
1da177e4 | 316 | else |
357c1206 | 317 | args->last_block_in_bio = blocks[blocks_per_page - 1]; |
1da177e4 | 318 | out: |
357c1206 | 319 | return args->bio; |
1da177e4 LT |
320 | |
321 | confused: | |
357c1206 | 322 | if (args->bio) |
74c8164e | 323 | args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); |
1da177e4 | 324 | if (!PageUptodate(page)) |
357c1206 | 325 | block_read_full_page(page, args->get_block); |
1da177e4 LT |
326 | else |
327 | unlock_page(page); | |
328 | goto out; | |
329 | } | |
330 | ||
67be2dd1 | 331 | /** |
d4388340 MWO |
332 | * mpage_readahead - start reads against pages |
333 | * @rac: Describes which pages to read. | |
67be2dd1 MW |
334 | * @get_block: The filesystem's block mapper function. |
335 | * | |
336 | * This function walks the pages and the blocks within each page, building and | |
337 | * emitting large BIOs. | |
338 | * | |
339 | * If anything unusual happens, such as: | |
340 | * | |
341 | * - encountering a page which has buffers | |
342 | * - encountering a page which has a non-hole after a hole | |
343 | * - encountering a page with non-contiguous blocks | |
344 | * | |
345 | * then this code just gives up and calls the buffer_head-based read function. | |
346 | * It does handle a page which has holes at the end - that is a common case: | |
ea1754a0 | 347 | * the end-of-file on blocksize < PAGE_SIZE setups. |
67be2dd1 MW |
348 | * |
349 | * BH_Boundary explanation: | |
350 | * | |
351 | * There is a problem. The mpage read code assembles several pages, gets all | |
352 | * their disk mappings, and then submits them all. That's fine, but obtaining | |
353 | * the disk mappings may require I/O. Reads of indirect blocks, for example. | |
354 | * | |
355 | * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be | |
356 | * submitted in the following order: | |
0117d427 | 357 | * |
67be2dd1 | 358 | * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 |
78a4a50a | 359 | * |
67be2dd1 MW |
360 | * because the indirect block has to be read to get the mappings of blocks |
361 | * 13,14,15,16. Obviously, this impacts performance. | |
362 | * | |
363 | * So what we do it to allow the filesystem's get_block() function to set | |
364 | * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block | |
365 | * after this one will require I/O against a block which is probably close to | |
366 | * this one. So you should push what I/O you have currently accumulated. | |
367 | * | |
368 | * This all causes the disk requests to be issued in the correct order. | |
369 | */ | |
d4388340 | 370 | void mpage_readahead(struct readahead_control *rac, get_block_t get_block) |
1da177e4 | 371 | { |
d4388340 | 372 | struct page *page; |
357c1206 JA |
373 | struct mpage_readpage_args args = { |
374 | .get_block = get_block, | |
74c8164e | 375 | .is_readahead = true, |
357c1206 | 376 | }; |
1da177e4 | 377 | |
d4388340 | 378 | while ((page = readahead_page(rac))) { |
1da177e4 | 379 | prefetchw(&page->flags); |
d4388340 MWO |
380 | args.page = page; |
381 | args.nr_pages = readahead_count(rac); | |
382 | args.bio = do_mpage_readpage(&args); | |
09cbfeaf | 383 | put_page(page); |
1da177e4 | 384 | } |
357c1206 | 385 | if (args.bio) |
74c8164e | 386 | mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio); |
1da177e4 | 387 | } |
d4388340 | 388 | EXPORT_SYMBOL(mpage_readahead); |
1da177e4 LT |
389 | |
390 | /* | |
391 | * This isn't called much at all | |
392 | */ | |
393 | int mpage_readpage(struct page *page, get_block_t get_block) | |
394 | { | |
357c1206 JA |
395 | struct mpage_readpage_args args = { |
396 | .page = page, | |
397 | .nr_pages = 1, | |
398 | .get_block = get_block, | |
357c1206 JA |
399 | }; |
400 | ||
401 | args.bio = do_mpage_readpage(&args); | |
402 | if (args.bio) | |
403 | mpage_bio_submit(REQ_OP_READ, 0, args.bio); | |
1da177e4 LT |
404 | return 0; |
405 | } | |
406 | EXPORT_SYMBOL(mpage_readpage); | |
407 | ||
408 | /* | |
409 | * Writing is not so simple. | |
410 | * | |
411 | * If the page has buffers then they will be used for obtaining the disk | |
412 | * mapping. We only support pages which are fully mapped-and-dirty, with a | |
413 | * special case for pages which are unmapped at the end: end-of-file. | |
414 | * | |
415 | * If the page has no buffers (preferred) then the page is mapped here. | |
416 | * | |
417 | * If all blocks are found to be contiguous then the page can go into the | |
418 | * BIO. Otherwise fall back to the mapping's writepage(). | |
419 | * | |
420 | * FIXME: This code wants an estimate of how many pages are still to be | |
421 | * written, so it can intelligently allocate a suitably-sized BIO. For now, | |
422 | * just allocate full-size (16-page) BIOs. | |
423 | */ | |
0ea97180 | 424 | |
ced117c7 DV |
425 | struct mpage_data { |
426 | struct bio *bio; | |
427 | sector_t last_block_in_bio; | |
428 | get_block_t *get_block; | |
429 | unsigned use_writepage; | |
430 | }; | |
431 | ||
90768eee MW |
432 | /* |
433 | * We have our BIO, so we can now mark the buffers clean. Make | |
434 | * sure to only clean buffers which we know we'll be writing. | |
435 | */ | |
436 | static void clean_buffers(struct page *page, unsigned first_unmapped) | |
437 | { | |
438 | unsigned buffer_counter = 0; | |
439 | struct buffer_head *bh, *head; | |
440 | if (!page_has_buffers(page)) | |
441 | return; | |
442 | head = page_buffers(page); | |
443 | bh = head; | |
444 | ||
445 | do { | |
446 | if (buffer_counter++ == first_unmapped) | |
447 | break; | |
448 | clear_buffer_dirty(bh); | |
449 | bh = bh->b_this_page; | |
450 | } while (bh != head); | |
451 | ||
452 | /* | |
453 | * we cannot drop the bh if the page is not uptodate or a concurrent | |
454 | * readpage would fail to serialize with the bh and it would read from | |
455 | * disk before we reach the platter. | |
456 | */ | |
457 | if (buffer_heads_over_limit && PageUptodate(page)) | |
458 | try_to_free_buffers(page); | |
459 | } | |
460 | ||
f892760a MW |
461 | /* |
462 | * For situations where we want to clean all buffers attached to a page. | |
463 | * We don't need to calculate how many buffers are attached to the page, | |
464 | * we just need to specify a number larger than the maximum number of buffers. | |
465 | */ | |
466 | void clean_page_buffers(struct page *page) | |
467 | { | |
468 | clean_buffers(page, ~0U); | |
469 | } | |
470 | ||
ced117c7 | 471 | static int __mpage_writepage(struct page *page, struct writeback_control *wbc, |
29a814d2 | 472 | void *data) |
1da177e4 | 473 | { |
0ea97180 MS |
474 | struct mpage_data *mpd = data; |
475 | struct bio *bio = mpd->bio; | |
1da177e4 LT |
476 | struct address_space *mapping = page->mapping; |
477 | struct inode *inode = page->mapping->host; | |
478 | const unsigned blkbits = inode->i_blkbits; | |
479 | unsigned long end_index; | |
09cbfeaf | 480 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; |
1da177e4 LT |
481 | sector_t last_block; |
482 | sector_t block_in_file; | |
483 | sector_t blocks[MAX_BUF_PER_PAGE]; | |
484 | unsigned page_block; | |
485 | unsigned first_unmapped = blocks_per_page; | |
486 | struct block_device *bdev = NULL; | |
487 | int boundary = 0; | |
488 | sector_t boundary_block = 0; | |
489 | struct block_device *boundary_bdev = NULL; | |
490 | int length; | |
491 | struct buffer_head map_bh; | |
492 | loff_t i_size = i_size_read(inode); | |
0ea97180 | 493 | int ret = 0; |
7637241e | 494 | int op_flags = wbc_to_write_flags(wbc); |
1da177e4 LT |
495 | |
496 | if (page_has_buffers(page)) { | |
497 | struct buffer_head *head = page_buffers(page); | |
498 | struct buffer_head *bh = head; | |
499 | ||
500 | /* If they're all mapped and dirty, do it */ | |
501 | page_block = 0; | |
502 | do { | |
503 | BUG_ON(buffer_locked(bh)); | |
504 | if (!buffer_mapped(bh)) { | |
505 | /* | |
506 | * unmapped dirty buffers are created by | |
507 | * __set_page_dirty_buffers -> mmapped data | |
508 | */ | |
509 | if (buffer_dirty(bh)) | |
510 | goto confused; | |
511 | if (first_unmapped == blocks_per_page) | |
512 | first_unmapped = page_block; | |
513 | continue; | |
514 | } | |
515 | ||
516 | if (first_unmapped != blocks_per_page) | |
517 | goto confused; /* hole -> non-hole */ | |
518 | ||
519 | if (!buffer_dirty(bh) || !buffer_uptodate(bh)) | |
520 | goto confused; | |
521 | if (page_block) { | |
522 | if (bh->b_blocknr != blocks[page_block-1] + 1) | |
523 | goto confused; | |
524 | } | |
525 | blocks[page_block++] = bh->b_blocknr; | |
526 | boundary = buffer_boundary(bh); | |
527 | if (boundary) { | |
528 | boundary_block = bh->b_blocknr; | |
529 | boundary_bdev = bh->b_bdev; | |
530 | } | |
531 | bdev = bh->b_bdev; | |
532 | } while ((bh = bh->b_this_page) != head); | |
533 | ||
534 | if (first_unmapped) | |
535 | goto page_is_mapped; | |
536 | ||
537 | /* | |
538 | * Page has buffers, but they are all unmapped. The page was | |
539 | * created by pagein or read over a hole which was handled by | |
540 | * block_read_full_page(). If this address_space is also | |
d4388340 | 541 | * using mpage_readahead then this can rarely happen. |
1da177e4 LT |
542 | */ |
543 | goto confused; | |
544 | } | |
545 | ||
546 | /* | |
547 | * The page has no buffers: map it to disk | |
548 | */ | |
549 | BUG_ON(!PageUptodate(page)); | |
09cbfeaf | 550 | block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); |
1da177e4 LT |
551 | last_block = (i_size - 1) >> blkbits; |
552 | map_bh.b_page = page; | |
553 | for (page_block = 0; page_block < blocks_per_page; ) { | |
554 | ||
555 | map_bh.b_state = 0; | |
b0cf2321 | 556 | map_bh.b_size = 1 << blkbits; |
0ea97180 | 557 | if (mpd->get_block(inode, block_in_file, &map_bh, 1)) |
1da177e4 LT |
558 | goto confused; |
559 | if (buffer_new(&map_bh)) | |
e64855c6 | 560 | clean_bdev_bh_alias(&map_bh); |
1da177e4 LT |
561 | if (buffer_boundary(&map_bh)) { |
562 | boundary_block = map_bh.b_blocknr; | |
563 | boundary_bdev = map_bh.b_bdev; | |
564 | } | |
565 | if (page_block) { | |
566 | if (map_bh.b_blocknr != blocks[page_block-1] + 1) | |
567 | goto confused; | |
568 | } | |
569 | blocks[page_block++] = map_bh.b_blocknr; | |
570 | boundary = buffer_boundary(&map_bh); | |
571 | bdev = map_bh.b_bdev; | |
572 | if (block_in_file == last_block) | |
573 | break; | |
574 | block_in_file++; | |
575 | } | |
576 | BUG_ON(page_block == 0); | |
577 | ||
578 | first_unmapped = page_block; | |
579 | ||
580 | page_is_mapped: | |
09cbfeaf | 581 | end_index = i_size >> PAGE_SHIFT; |
1da177e4 LT |
582 | if (page->index >= end_index) { |
583 | /* | |
584 | * The page straddles i_size. It must be zeroed out on each | |
2a61aa40 | 585 | * and every writepage invocation because it may be mmapped. |
1da177e4 LT |
586 | * "A file is mapped in multiples of the page size. For a file |
587 | * that is not a multiple of the page size, the remaining memory | |
588 | * is zeroed when mapped, and writes to that region are not | |
589 | * written out to the file." | |
590 | */ | |
09cbfeaf | 591 | unsigned offset = i_size & (PAGE_SIZE - 1); |
1da177e4 LT |
592 | |
593 | if (page->index > end_index || !offset) | |
594 | goto confused; | |
09cbfeaf | 595 | zero_user_segment(page, offset, PAGE_SIZE); |
1da177e4 LT |
596 | } |
597 | ||
598 | /* | |
599 | * This page will go to BIO. Do we need to send this BIO off first? | |
600 | */ | |
0ea97180 | 601 | if (bio && mpd->last_block_in_bio != blocks[0] - 1) |
eed25cd5 | 602 | bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); |
1da177e4 LT |
603 | |
604 | alloc_new: | |
605 | if (bio == NULL) { | |
47a191fd MW |
606 | if (first_unmapped == blocks_per_page) { |
607 | if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), | |
f892760a | 608 | page, wbc)) |
47a191fd | 609 | goto out; |
47a191fd | 610 | } |
1da177e4 | 611 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), |
a8affc03 | 612 | BIO_MAX_VECS, GFP_NOFS|__GFP_HIGH); |
1da177e4 LT |
613 | if (bio == NULL) |
614 | goto confused; | |
429b3fb0 | 615 | |
b16b1deb | 616 | wbc_init_bio(wbc, bio); |
8e8f9298 | 617 | bio->bi_write_hint = inode->i_write_hint; |
1da177e4 LT |
618 | } |
619 | ||
620 | /* | |
621 | * Must try to add the page before marking the buffer clean or | |
622 | * the confused fail path above (OOM) will be very confused when | |
623 | * it finds all bh marked clean (i.e. it will not write anything) | |
624 | */ | |
34e51a5e | 625 | wbc_account_cgroup_owner(wbc, page, PAGE_SIZE); |
1da177e4 LT |
626 | length = first_unmapped << blkbits; |
627 | if (bio_add_page(bio, page, length, 0) < length) { | |
eed25cd5 | 628 | bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); |
1da177e4 LT |
629 | goto alloc_new; |
630 | } | |
631 | ||
90768eee | 632 | clean_buffers(page, first_unmapped); |
1da177e4 LT |
633 | |
634 | BUG_ON(PageWriteback(page)); | |
635 | set_page_writeback(page); | |
636 | unlock_page(page); | |
637 | if (boundary || (first_unmapped != blocks_per_page)) { | |
eed25cd5 | 638 | bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); |
1da177e4 LT |
639 | if (boundary_block) { |
640 | write_boundary_block(boundary_bdev, | |
641 | boundary_block, 1 << blkbits); | |
642 | } | |
643 | } else { | |
0ea97180 | 644 | mpd->last_block_in_bio = blocks[blocks_per_page - 1]; |
1da177e4 LT |
645 | } |
646 | goto out; | |
647 | ||
648 | confused: | |
649 | if (bio) | |
eed25cd5 | 650 | bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); |
1da177e4 | 651 | |
0ea97180 MS |
652 | if (mpd->use_writepage) { |
653 | ret = mapping->a_ops->writepage(page, wbc); | |
1da177e4 | 654 | } else { |
0ea97180 | 655 | ret = -EAGAIN; |
1da177e4 LT |
656 | goto out; |
657 | } | |
658 | /* | |
659 | * The caller has a ref on the inode, so *mapping is stable | |
660 | */ | |
0ea97180 | 661 | mapping_set_error(mapping, ret); |
1da177e4 | 662 | out: |
0ea97180 MS |
663 | mpd->bio = bio; |
664 | return ret; | |
1da177e4 LT |
665 | } |
666 | ||
667 | /** | |
78a4a50a | 668 | * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them |
1da177e4 LT |
669 | * @mapping: address space structure to write |
670 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
671 | * @get_block: the filesystem's block mapper function. | |
672 | * If this is NULL then use a_ops->writepage. Otherwise, go | |
673 | * direct-to-BIO. | |
674 | * | |
675 | * This is a library function, which implements the writepages() | |
676 | * address_space_operation. | |
677 | * | |
678 | * If a page is already under I/O, generic_writepages() skips it, even | |
679 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, | |
680 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | |
681 | * and msync() need to guarantee that all the data which was dirty at the time | |
682 | * the call was made get new I/O started against them. If wbc->sync_mode is | |
683 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | |
684 | * existing IO to complete. | |
685 | */ | |
686 | int | |
687 | mpage_writepages(struct address_space *mapping, | |
688 | struct writeback_control *wbc, get_block_t get_block) | |
1da177e4 | 689 | { |
2ed1a6bc | 690 | struct blk_plug plug; |
0ea97180 MS |
691 | int ret; |
692 | ||
2ed1a6bc JA |
693 | blk_start_plug(&plug); |
694 | ||
0ea97180 MS |
695 | if (!get_block) |
696 | ret = generic_writepages(mapping, wbc); | |
697 | else { | |
698 | struct mpage_data mpd = { | |
699 | .bio = NULL, | |
700 | .last_block_in_bio = 0, | |
701 | .get_block = get_block, | |
702 | .use_writepage = 1, | |
703 | }; | |
704 | ||
705 | ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); | |
5948edbc | 706 | if (mpd.bio) { |
eed25cd5 | 707 | int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? |
70fd7614 | 708 | REQ_SYNC : 0); |
eed25cd5 | 709 | mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); |
5948edbc | 710 | } |
1da177e4 | 711 | } |
2ed1a6bc | 712 | blk_finish_plug(&plug); |
1da177e4 LT |
713 | return ret; |
714 | } | |
715 | EXPORT_SYMBOL(mpage_writepages); | |
1da177e4 LT |
716 | |
717 | int mpage_writepage(struct page *page, get_block_t get_block, | |
718 | struct writeback_control *wbc) | |
719 | { | |
0ea97180 MS |
720 | struct mpage_data mpd = { |
721 | .bio = NULL, | |
722 | .last_block_in_bio = 0, | |
723 | .get_block = get_block, | |
724 | .use_writepage = 0, | |
725 | }; | |
726 | int ret = __mpage_writepage(page, wbc, &mpd); | |
5948edbc | 727 | if (mpd.bio) { |
eed25cd5 | 728 | int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? |
70fd7614 | 729 | REQ_SYNC : 0); |
eed25cd5 | 730 | mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); |
5948edbc | 731 | } |
1da177e4 LT |
732 | return ret; |
733 | } | |
734 | EXPORT_SYMBOL(mpage_writepage); |