]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * fs/mpage.c | |
3 | * | |
4 | * Copyright (C) 2002, Linus Torvalds. | |
5 | * | |
6 | * Contains functions related to preparing and submitting BIOs which contain | |
7 | * multiple pagecache pages. | |
8 | * | |
e1f8e874 | 9 | * 15May2002 Andrew Morton |
1da177e4 LT |
10 | * Initial version |
11 | * 27Jun2002 [email protected] | |
12 | * use bio_add_page() to build bio's just the right size | |
13 | */ | |
14 | ||
15 | #include <linux/kernel.h> | |
630d9c47 | 16 | #include <linux/export.h> |
1da177e4 LT |
17 | #include <linux/mm.h> |
18 | #include <linux/kdev_t.h> | |
5a0e3ad6 | 19 | #include <linux/gfp.h> |
1da177e4 LT |
20 | #include <linux/bio.h> |
21 | #include <linux/fs.h> | |
22 | #include <linux/buffer_head.h> | |
23 | #include <linux/blkdev.h> | |
24 | #include <linux/highmem.h> | |
25 | #include <linux/prefetch.h> | |
26 | #include <linux/mpage.h> | |
02c43638 | 27 | #include <linux/mm_inline.h> |
1da177e4 LT |
28 | #include <linux/writeback.h> |
29 | #include <linux/backing-dev.h> | |
30 | #include <linux/pagevec.h> | |
c515e1fd | 31 | #include <linux/cleancache.h> |
4db96b71 | 32 | #include "internal.h" |
1da177e4 LT |
33 | |
34 | /* | |
35 | * I/O completion handler for multipage BIOs. | |
36 | * | |
37 | * The mpage code never puts partial pages into a BIO (except for end-of-file). | |
38 | * If a page does not map to a contiguous run of blocks then it simply falls | |
39 | * back to block_read_full_page(). | |
40 | * | |
41 | * Why is this? If a page's completion depends on a number of different BIOs | |
42 | * which can complete in any order (or at the same time) then determining the | |
43 | * status of that page is hard. See end_buffer_async_read() for the details. | |
44 | * There is no point in duplicating all that complexity. | |
45 | */ | |
4246a0b6 | 46 | static void mpage_end_io(struct bio *bio) |
1da177e4 | 47 | { |
2c30c71b KO |
48 | struct bio_vec *bv; |
49 | int i; | |
1da177e4 | 50 | |
2c30c71b KO |
51 | bio_for_each_segment_all(bv, bio, i) { |
52 | struct page *page = bv->bv_page; | |
4246a0b6 | 53 | page_endio(page, bio_data_dir(bio), bio->bi_error); |
2c30c71b KO |
54 | } |
55 | ||
1da177e4 | 56 | bio_put(bio); |
1da177e4 LT |
57 | } |
58 | ||
ced117c7 | 59 | static struct bio *mpage_bio_submit(int rw, struct bio *bio) |
1da177e4 | 60 | { |
c32b0d4b | 61 | bio->bi_end_io = mpage_end_io; |
4e49ea4a | 62 | bio->bi_rw = rw; |
4db96b71 | 63 | guard_bio_eod(rw, bio); |
4e49ea4a | 64 | submit_bio(bio); |
1da177e4 LT |
65 | return NULL; |
66 | } | |
67 | ||
68 | static struct bio * | |
69 | mpage_alloc(struct block_device *bdev, | |
70 | sector_t first_sector, int nr_vecs, | |
dd0fc66f | 71 | gfp_t gfp_flags) |
1da177e4 LT |
72 | { |
73 | struct bio *bio; | |
74 | ||
75 | bio = bio_alloc(gfp_flags, nr_vecs); | |
76 | ||
77 | if (bio == NULL && (current->flags & PF_MEMALLOC)) { | |
78 | while (!bio && (nr_vecs /= 2)) | |
79 | bio = bio_alloc(gfp_flags, nr_vecs); | |
80 | } | |
81 | ||
82 | if (bio) { | |
83 | bio->bi_bdev = bdev; | |
4f024f37 | 84 | bio->bi_iter.bi_sector = first_sector; |
1da177e4 LT |
85 | } |
86 | return bio; | |
87 | } | |
88 | ||
89 | /* | |
90 | * support function for mpage_readpages. The fs supplied get_block might | |
91 | * return an up to date buffer. This is used to map that buffer into | |
92 | * the page, which allows readpage to avoid triggering a duplicate call | |
93 | * to get_block. | |
94 | * | |
95 | * The idea is to avoid adding buffers to pages that don't already have | |
96 | * them. So when the buffer is up to date and the page size == block size, | |
97 | * this marks the page up to date instead of adding new buffers. | |
98 | */ | |
99 | static void | |
100 | map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) | |
101 | { | |
102 | struct inode *inode = page->mapping->host; | |
103 | struct buffer_head *page_bh, *head; | |
104 | int block = 0; | |
105 | ||
106 | if (!page_has_buffers(page)) { | |
107 | /* | |
108 | * don't make any buffers if there is only one buffer on | |
109 | * the page and the page just needs to be set up to date | |
110 | */ | |
09cbfeaf | 111 | if (inode->i_blkbits == PAGE_SHIFT && |
1da177e4 LT |
112 | buffer_uptodate(bh)) { |
113 | SetPageUptodate(page); | |
114 | return; | |
115 | } | |
116 | create_empty_buffers(page, 1 << inode->i_blkbits, 0); | |
117 | } | |
118 | head = page_buffers(page); | |
119 | page_bh = head; | |
120 | do { | |
121 | if (block == page_block) { | |
122 | page_bh->b_state = bh->b_state; | |
123 | page_bh->b_bdev = bh->b_bdev; | |
124 | page_bh->b_blocknr = bh->b_blocknr; | |
125 | break; | |
126 | } | |
127 | page_bh = page_bh->b_this_page; | |
128 | block++; | |
129 | } while (page_bh != head); | |
130 | } | |
131 | ||
fa30bd05 BP |
132 | /* |
133 | * This is the worker routine which does all the work of mapping the disk | |
134 | * blocks and constructs largest possible bios, submits them for IO if the | |
135 | * blocks are not contiguous on the disk. | |
136 | * | |
137 | * We pass a buffer_head back and forth and use its buffer_mapped() flag to | |
138 | * represent the validity of its disk mapping and to decide when to do the next | |
139 | * get_block() call. | |
140 | */ | |
1da177e4 LT |
141 | static struct bio * |
142 | do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, | |
fa30bd05 | 143 | sector_t *last_block_in_bio, struct buffer_head *map_bh, |
063d99b4 MH |
144 | unsigned long *first_logical_block, get_block_t get_block, |
145 | gfp_t gfp) | |
1da177e4 LT |
146 | { |
147 | struct inode *inode = page->mapping->host; | |
148 | const unsigned blkbits = inode->i_blkbits; | |
09cbfeaf | 149 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; |
1da177e4 LT |
150 | const unsigned blocksize = 1 << blkbits; |
151 | sector_t block_in_file; | |
152 | sector_t last_block; | |
fa30bd05 | 153 | sector_t last_block_in_file; |
1da177e4 LT |
154 | sector_t blocks[MAX_BUF_PER_PAGE]; |
155 | unsigned page_block; | |
156 | unsigned first_hole = blocks_per_page; | |
157 | struct block_device *bdev = NULL; | |
1da177e4 LT |
158 | int length; |
159 | int fully_mapped = 1; | |
fa30bd05 BP |
160 | unsigned nblocks; |
161 | unsigned relative_block; | |
1da177e4 LT |
162 | |
163 | if (page_has_buffers(page)) | |
164 | goto confused; | |
165 | ||
09cbfeaf | 166 | block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); |
fa30bd05 BP |
167 | last_block = block_in_file + nr_pages * blocks_per_page; |
168 | last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; | |
169 | if (last_block > last_block_in_file) | |
170 | last_block = last_block_in_file; | |
171 | page_block = 0; | |
172 | ||
173 | /* | |
174 | * Map blocks using the result from the previous get_blocks call first. | |
175 | */ | |
176 | nblocks = map_bh->b_size >> blkbits; | |
177 | if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && | |
178 | block_in_file < (*first_logical_block + nblocks)) { | |
179 | unsigned map_offset = block_in_file - *first_logical_block; | |
180 | unsigned last = nblocks - map_offset; | |
181 | ||
182 | for (relative_block = 0; ; relative_block++) { | |
183 | if (relative_block == last) { | |
184 | clear_buffer_mapped(map_bh); | |
185 | break; | |
186 | } | |
187 | if (page_block == blocks_per_page) | |
188 | break; | |
189 | blocks[page_block] = map_bh->b_blocknr + map_offset + | |
190 | relative_block; | |
191 | page_block++; | |
192 | block_in_file++; | |
193 | } | |
194 | bdev = map_bh->b_bdev; | |
195 | } | |
196 | ||
197 | /* | |
198 | * Then do more get_blocks calls until we are done with this page. | |
199 | */ | |
200 | map_bh->b_page = page; | |
201 | while (page_block < blocks_per_page) { | |
202 | map_bh->b_state = 0; | |
203 | map_bh->b_size = 0; | |
1da177e4 | 204 | |
1da177e4 | 205 | if (block_in_file < last_block) { |
fa30bd05 BP |
206 | map_bh->b_size = (last_block-block_in_file) << blkbits; |
207 | if (get_block(inode, block_in_file, map_bh, 0)) | |
1da177e4 | 208 | goto confused; |
fa30bd05 | 209 | *first_logical_block = block_in_file; |
1da177e4 LT |
210 | } |
211 | ||
fa30bd05 | 212 | if (!buffer_mapped(map_bh)) { |
1da177e4 LT |
213 | fully_mapped = 0; |
214 | if (first_hole == blocks_per_page) | |
215 | first_hole = page_block; | |
fa30bd05 BP |
216 | page_block++; |
217 | block_in_file++; | |
1da177e4 LT |
218 | continue; |
219 | } | |
220 | ||
221 | /* some filesystems will copy data into the page during | |
222 | * the get_block call, in which case we don't want to | |
223 | * read it again. map_buffer_to_page copies the data | |
224 | * we just collected from get_block into the page's buffers | |
225 | * so readpage doesn't have to repeat the get_block call | |
226 | */ | |
fa30bd05 BP |
227 | if (buffer_uptodate(map_bh)) { |
228 | map_buffer_to_page(page, map_bh, page_block); | |
1da177e4 LT |
229 | goto confused; |
230 | } | |
231 | ||
232 | if (first_hole != blocks_per_page) | |
233 | goto confused; /* hole -> non-hole */ | |
234 | ||
235 | /* Contiguous blocks? */ | |
fa30bd05 | 236 | if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) |
1da177e4 | 237 | goto confused; |
fa30bd05 BP |
238 | nblocks = map_bh->b_size >> blkbits; |
239 | for (relative_block = 0; ; relative_block++) { | |
240 | if (relative_block == nblocks) { | |
241 | clear_buffer_mapped(map_bh); | |
242 | break; | |
243 | } else if (page_block == blocks_per_page) | |
244 | break; | |
245 | blocks[page_block] = map_bh->b_blocknr+relative_block; | |
246 | page_block++; | |
247 | block_in_file++; | |
248 | } | |
249 | bdev = map_bh->b_bdev; | |
1da177e4 LT |
250 | } |
251 | ||
252 | if (first_hole != blocks_per_page) { | |
09cbfeaf | 253 | zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); |
1da177e4 LT |
254 | if (first_hole == 0) { |
255 | SetPageUptodate(page); | |
256 | unlock_page(page); | |
257 | goto out; | |
258 | } | |
259 | } else if (fully_mapped) { | |
260 | SetPageMappedToDisk(page); | |
261 | } | |
262 | ||
c515e1fd DM |
263 | if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && |
264 | cleancache_get_page(page) == 0) { | |
265 | SetPageUptodate(page); | |
266 | goto confused; | |
267 | } | |
268 | ||
1da177e4 LT |
269 | /* |
270 | * This page will go to BIO. Do we need to send this BIO off first? | |
271 | */ | |
272 | if (bio && (*last_block_in_bio != blocks[0] - 1)) | |
273 | bio = mpage_bio_submit(READ, bio); | |
274 | ||
275 | alloc_new: | |
276 | if (bio == NULL) { | |
47a191fd MW |
277 | if (first_hole == blocks_per_page) { |
278 | if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), | |
279 | page)) | |
280 | goto out; | |
281 | } | |
1da177e4 | 282 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), |
063d99b4 | 283 | min_t(int, nr_pages, BIO_MAX_PAGES), gfp); |
1da177e4 LT |
284 | if (bio == NULL) |
285 | goto confused; | |
286 | } | |
287 | ||
288 | length = first_hole << blkbits; | |
289 | if (bio_add_page(bio, page, length, 0) < length) { | |
290 | bio = mpage_bio_submit(READ, bio); | |
291 | goto alloc_new; | |
292 | } | |
293 | ||
38c8e618 MS |
294 | relative_block = block_in_file - *first_logical_block; |
295 | nblocks = map_bh->b_size >> blkbits; | |
296 | if ((buffer_boundary(map_bh) && relative_block == nblocks) || | |
297 | (first_hole != blocks_per_page)) | |
1da177e4 LT |
298 | bio = mpage_bio_submit(READ, bio); |
299 | else | |
300 | *last_block_in_bio = blocks[blocks_per_page - 1]; | |
301 | out: | |
302 | return bio; | |
303 | ||
304 | confused: | |
305 | if (bio) | |
306 | bio = mpage_bio_submit(READ, bio); | |
307 | if (!PageUptodate(page)) | |
308 | block_read_full_page(page, get_block); | |
309 | else | |
310 | unlock_page(page); | |
311 | goto out; | |
312 | } | |
313 | ||
67be2dd1 | 314 | /** |
78a4a50a | 315 | * mpage_readpages - populate an address space with some pages & start reads against them |
67be2dd1 MW |
316 | * @mapping: the address_space |
317 | * @pages: The address of a list_head which contains the target pages. These | |
318 | * pages have their ->index populated and are otherwise uninitialised. | |
67be2dd1 MW |
319 | * The page at @pages->prev has the lowest file offset, and reads should be |
320 | * issued in @pages->prev to @pages->next order. | |
67be2dd1 MW |
321 | * @nr_pages: The number of pages at *@pages |
322 | * @get_block: The filesystem's block mapper function. | |
323 | * | |
324 | * This function walks the pages and the blocks within each page, building and | |
325 | * emitting large BIOs. | |
326 | * | |
327 | * If anything unusual happens, such as: | |
328 | * | |
329 | * - encountering a page which has buffers | |
330 | * - encountering a page which has a non-hole after a hole | |
331 | * - encountering a page with non-contiguous blocks | |
332 | * | |
333 | * then this code just gives up and calls the buffer_head-based read function. | |
334 | * It does handle a page which has holes at the end - that is a common case: | |
ea1754a0 | 335 | * the end-of-file on blocksize < PAGE_SIZE setups. |
67be2dd1 MW |
336 | * |
337 | * BH_Boundary explanation: | |
338 | * | |
339 | * There is a problem. The mpage read code assembles several pages, gets all | |
340 | * their disk mappings, and then submits them all. That's fine, but obtaining | |
341 | * the disk mappings may require I/O. Reads of indirect blocks, for example. | |
342 | * | |
343 | * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be | |
344 | * submitted in the following order: | |
345 | * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 | |
78a4a50a | 346 | * |
67be2dd1 MW |
347 | * because the indirect block has to be read to get the mappings of blocks |
348 | * 13,14,15,16. Obviously, this impacts performance. | |
349 | * | |
350 | * So what we do it to allow the filesystem's get_block() function to set | |
351 | * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block | |
352 | * after this one will require I/O against a block which is probably close to | |
353 | * this one. So you should push what I/O you have currently accumulated. | |
354 | * | |
355 | * This all causes the disk requests to be issued in the correct order. | |
356 | */ | |
1da177e4 LT |
357 | int |
358 | mpage_readpages(struct address_space *mapping, struct list_head *pages, | |
359 | unsigned nr_pages, get_block_t get_block) | |
360 | { | |
361 | struct bio *bio = NULL; | |
362 | unsigned page_idx; | |
363 | sector_t last_block_in_bio = 0; | |
fa30bd05 BP |
364 | struct buffer_head map_bh; |
365 | unsigned long first_logical_block = 0; | |
c62d2555 | 366 | gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL); |
1da177e4 | 367 | |
79ffab34 AK |
368 | map_bh.b_state = 0; |
369 | map_bh.b_size = 0; | |
1da177e4 | 370 | for (page_idx = 0; page_idx < nr_pages; page_idx++) { |
02c43638 | 371 | struct page *page = lru_to_page(pages); |
1da177e4 LT |
372 | |
373 | prefetchw(&page->flags); | |
374 | list_del(&page->lru); | |
eb2be189 | 375 | if (!add_to_page_cache_lru(page, mapping, |
063d99b4 MH |
376 | page->index, |
377 | gfp)) { | |
1da177e4 LT |
378 | bio = do_mpage_readpage(bio, page, |
379 | nr_pages - page_idx, | |
fa30bd05 BP |
380 | &last_block_in_bio, &map_bh, |
381 | &first_logical_block, | |
063d99b4 | 382 | get_block, gfp); |
1da177e4 | 383 | } |
09cbfeaf | 384 | put_page(page); |
1da177e4 | 385 | } |
1da177e4 LT |
386 | BUG_ON(!list_empty(pages)); |
387 | if (bio) | |
388 | mpage_bio_submit(READ, bio); | |
389 | return 0; | |
390 | } | |
391 | EXPORT_SYMBOL(mpage_readpages); | |
392 | ||
393 | /* | |
394 | * This isn't called much at all | |
395 | */ | |
396 | int mpage_readpage(struct page *page, get_block_t get_block) | |
397 | { | |
398 | struct bio *bio = NULL; | |
399 | sector_t last_block_in_bio = 0; | |
fa30bd05 BP |
400 | struct buffer_head map_bh; |
401 | unsigned long first_logical_block = 0; | |
c62d2555 | 402 | gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); |
1da177e4 | 403 | |
79ffab34 AK |
404 | map_bh.b_state = 0; |
405 | map_bh.b_size = 0; | |
fa30bd05 | 406 | bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, |
063d99b4 | 407 | &map_bh, &first_logical_block, get_block, gfp); |
1da177e4 LT |
408 | if (bio) |
409 | mpage_bio_submit(READ, bio); | |
410 | return 0; | |
411 | } | |
412 | EXPORT_SYMBOL(mpage_readpage); | |
413 | ||
414 | /* | |
415 | * Writing is not so simple. | |
416 | * | |
417 | * If the page has buffers then they will be used for obtaining the disk | |
418 | * mapping. We only support pages which are fully mapped-and-dirty, with a | |
419 | * special case for pages which are unmapped at the end: end-of-file. | |
420 | * | |
421 | * If the page has no buffers (preferred) then the page is mapped here. | |
422 | * | |
423 | * If all blocks are found to be contiguous then the page can go into the | |
424 | * BIO. Otherwise fall back to the mapping's writepage(). | |
425 | * | |
426 | * FIXME: This code wants an estimate of how many pages are still to be | |
427 | * written, so it can intelligently allocate a suitably-sized BIO. For now, | |
428 | * just allocate full-size (16-page) BIOs. | |
429 | */ | |
0ea97180 | 430 | |
ced117c7 DV |
431 | struct mpage_data { |
432 | struct bio *bio; | |
433 | sector_t last_block_in_bio; | |
434 | get_block_t *get_block; | |
435 | unsigned use_writepage; | |
436 | }; | |
437 | ||
90768eee MW |
438 | /* |
439 | * We have our BIO, so we can now mark the buffers clean. Make | |
440 | * sure to only clean buffers which we know we'll be writing. | |
441 | */ | |
442 | static void clean_buffers(struct page *page, unsigned first_unmapped) | |
443 | { | |
444 | unsigned buffer_counter = 0; | |
445 | struct buffer_head *bh, *head; | |
446 | if (!page_has_buffers(page)) | |
447 | return; | |
448 | head = page_buffers(page); | |
449 | bh = head; | |
450 | ||
451 | do { | |
452 | if (buffer_counter++ == first_unmapped) | |
453 | break; | |
454 | clear_buffer_dirty(bh); | |
455 | bh = bh->b_this_page; | |
456 | } while (bh != head); | |
457 | ||
458 | /* | |
459 | * we cannot drop the bh if the page is not uptodate or a concurrent | |
460 | * readpage would fail to serialize with the bh and it would read from | |
461 | * disk before we reach the platter. | |
462 | */ | |
463 | if (buffer_heads_over_limit && PageUptodate(page)) | |
464 | try_to_free_buffers(page); | |
465 | } | |
466 | ||
ced117c7 | 467 | static int __mpage_writepage(struct page *page, struct writeback_control *wbc, |
29a814d2 | 468 | void *data) |
1da177e4 | 469 | { |
0ea97180 MS |
470 | struct mpage_data *mpd = data; |
471 | struct bio *bio = mpd->bio; | |
1da177e4 LT |
472 | struct address_space *mapping = page->mapping; |
473 | struct inode *inode = page->mapping->host; | |
474 | const unsigned blkbits = inode->i_blkbits; | |
475 | unsigned long end_index; | |
09cbfeaf | 476 | const unsigned blocks_per_page = PAGE_SIZE >> blkbits; |
1da177e4 LT |
477 | sector_t last_block; |
478 | sector_t block_in_file; | |
479 | sector_t blocks[MAX_BUF_PER_PAGE]; | |
480 | unsigned page_block; | |
481 | unsigned first_unmapped = blocks_per_page; | |
482 | struct block_device *bdev = NULL; | |
483 | int boundary = 0; | |
484 | sector_t boundary_block = 0; | |
485 | struct block_device *boundary_bdev = NULL; | |
486 | int length; | |
487 | struct buffer_head map_bh; | |
488 | loff_t i_size = i_size_read(inode); | |
0ea97180 | 489 | int ret = 0; |
5948edbc | 490 | int wr = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); |
1da177e4 LT |
491 | |
492 | if (page_has_buffers(page)) { | |
493 | struct buffer_head *head = page_buffers(page); | |
494 | struct buffer_head *bh = head; | |
495 | ||
496 | /* If they're all mapped and dirty, do it */ | |
497 | page_block = 0; | |
498 | do { | |
499 | BUG_ON(buffer_locked(bh)); | |
500 | if (!buffer_mapped(bh)) { | |
501 | /* | |
502 | * unmapped dirty buffers are created by | |
503 | * __set_page_dirty_buffers -> mmapped data | |
504 | */ | |
505 | if (buffer_dirty(bh)) | |
506 | goto confused; | |
507 | if (first_unmapped == blocks_per_page) | |
508 | first_unmapped = page_block; | |
509 | continue; | |
510 | } | |
511 | ||
512 | if (first_unmapped != blocks_per_page) | |
513 | goto confused; /* hole -> non-hole */ | |
514 | ||
515 | if (!buffer_dirty(bh) || !buffer_uptodate(bh)) | |
516 | goto confused; | |
517 | if (page_block) { | |
518 | if (bh->b_blocknr != blocks[page_block-1] + 1) | |
519 | goto confused; | |
520 | } | |
521 | blocks[page_block++] = bh->b_blocknr; | |
522 | boundary = buffer_boundary(bh); | |
523 | if (boundary) { | |
524 | boundary_block = bh->b_blocknr; | |
525 | boundary_bdev = bh->b_bdev; | |
526 | } | |
527 | bdev = bh->b_bdev; | |
528 | } while ((bh = bh->b_this_page) != head); | |
529 | ||
530 | if (first_unmapped) | |
531 | goto page_is_mapped; | |
532 | ||
533 | /* | |
534 | * Page has buffers, but they are all unmapped. The page was | |
535 | * created by pagein or read over a hole which was handled by | |
536 | * block_read_full_page(). If this address_space is also | |
537 | * using mpage_readpages then this can rarely happen. | |
538 | */ | |
539 | goto confused; | |
540 | } | |
541 | ||
542 | /* | |
543 | * The page has no buffers: map it to disk | |
544 | */ | |
545 | BUG_ON(!PageUptodate(page)); | |
09cbfeaf | 546 | block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); |
1da177e4 LT |
547 | last_block = (i_size - 1) >> blkbits; |
548 | map_bh.b_page = page; | |
549 | for (page_block = 0; page_block < blocks_per_page; ) { | |
550 | ||
551 | map_bh.b_state = 0; | |
b0cf2321 | 552 | map_bh.b_size = 1 << blkbits; |
0ea97180 | 553 | if (mpd->get_block(inode, block_in_file, &map_bh, 1)) |
1da177e4 LT |
554 | goto confused; |
555 | if (buffer_new(&map_bh)) | |
556 | unmap_underlying_metadata(map_bh.b_bdev, | |
557 | map_bh.b_blocknr); | |
558 | if (buffer_boundary(&map_bh)) { | |
559 | boundary_block = map_bh.b_blocknr; | |
560 | boundary_bdev = map_bh.b_bdev; | |
561 | } | |
562 | if (page_block) { | |
563 | if (map_bh.b_blocknr != blocks[page_block-1] + 1) | |
564 | goto confused; | |
565 | } | |
566 | blocks[page_block++] = map_bh.b_blocknr; | |
567 | boundary = buffer_boundary(&map_bh); | |
568 | bdev = map_bh.b_bdev; | |
569 | if (block_in_file == last_block) | |
570 | break; | |
571 | block_in_file++; | |
572 | } | |
573 | BUG_ON(page_block == 0); | |
574 | ||
575 | first_unmapped = page_block; | |
576 | ||
577 | page_is_mapped: | |
09cbfeaf | 578 | end_index = i_size >> PAGE_SHIFT; |
1da177e4 LT |
579 | if (page->index >= end_index) { |
580 | /* | |
581 | * The page straddles i_size. It must be zeroed out on each | |
2a61aa40 | 582 | * and every writepage invocation because it may be mmapped. |
1da177e4 LT |
583 | * "A file is mapped in multiples of the page size. For a file |
584 | * that is not a multiple of the page size, the remaining memory | |
585 | * is zeroed when mapped, and writes to that region are not | |
586 | * written out to the file." | |
587 | */ | |
09cbfeaf | 588 | unsigned offset = i_size & (PAGE_SIZE - 1); |
1da177e4 LT |
589 | |
590 | if (page->index > end_index || !offset) | |
591 | goto confused; | |
09cbfeaf | 592 | zero_user_segment(page, offset, PAGE_SIZE); |
1da177e4 LT |
593 | } |
594 | ||
595 | /* | |
596 | * This page will go to BIO. Do we need to send this BIO off first? | |
597 | */ | |
0ea97180 | 598 | if (bio && mpd->last_block_in_bio != blocks[0] - 1) |
5948edbc | 599 | bio = mpage_bio_submit(wr, bio); |
1da177e4 LT |
600 | |
601 | alloc_new: | |
602 | if (bio == NULL) { | |
47a191fd MW |
603 | if (first_unmapped == blocks_per_page) { |
604 | if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), | |
605 | page, wbc)) { | |
606 | clean_buffers(page, first_unmapped); | |
607 | goto out; | |
608 | } | |
609 | } | |
1da177e4 | 610 | bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), |
b54ffb73 | 611 | BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH); |
1da177e4 LT |
612 | if (bio == NULL) |
613 | goto confused; | |
429b3fb0 | 614 | |
b16b1deb | 615 | wbc_init_bio(wbc, bio); |
1da177e4 LT |
616 | } |
617 | ||
618 | /* | |
619 | * Must try to add the page before marking the buffer clean or | |
620 | * the confused fail path above (OOM) will be very confused when | |
621 | * it finds all bh marked clean (i.e. it will not write anything) | |
622 | */ | |
2a814908 | 623 | wbc_account_io(wbc, page, PAGE_SIZE); |
1da177e4 LT |
624 | length = first_unmapped << blkbits; |
625 | if (bio_add_page(bio, page, length, 0) < length) { | |
5948edbc | 626 | bio = mpage_bio_submit(wr, bio); |
1da177e4 LT |
627 | goto alloc_new; |
628 | } | |
629 | ||
90768eee | 630 | clean_buffers(page, first_unmapped); |
1da177e4 LT |
631 | |
632 | BUG_ON(PageWriteback(page)); | |
633 | set_page_writeback(page); | |
634 | unlock_page(page); | |
635 | if (boundary || (first_unmapped != blocks_per_page)) { | |
5948edbc | 636 | bio = mpage_bio_submit(wr, bio); |
1da177e4 LT |
637 | if (boundary_block) { |
638 | write_boundary_block(boundary_bdev, | |
639 | boundary_block, 1 << blkbits); | |
640 | } | |
641 | } else { | |
0ea97180 | 642 | mpd->last_block_in_bio = blocks[blocks_per_page - 1]; |
1da177e4 LT |
643 | } |
644 | goto out; | |
645 | ||
646 | confused: | |
647 | if (bio) | |
5948edbc | 648 | bio = mpage_bio_submit(wr, bio); |
1da177e4 | 649 | |
0ea97180 MS |
650 | if (mpd->use_writepage) { |
651 | ret = mapping->a_ops->writepage(page, wbc); | |
1da177e4 | 652 | } else { |
0ea97180 | 653 | ret = -EAGAIN; |
1da177e4 LT |
654 | goto out; |
655 | } | |
656 | /* | |
657 | * The caller has a ref on the inode, so *mapping is stable | |
658 | */ | |
0ea97180 | 659 | mapping_set_error(mapping, ret); |
1da177e4 | 660 | out: |
0ea97180 MS |
661 | mpd->bio = bio; |
662 | return ret; | |
1da177e4 LT |
663 | } |
664 | ||
665 | /** | |
78a4a50a | 666 | * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them |
1da177e4 LT |
667 | * @mapping: address space structure to write |
668 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write | |
669 | * @get_block: the filesystem's block mapper function. | |
670 | * If this is NULL then use a_ops->writepage. Otherwise, go | |
671 | * direct-to-BIO. | |
672 | * | |
673 | * This is a library function, which implements the writepages() | |
674 | * address_space_operation. | |
675 | * | |
676 | * If a page is already under I/O, generic_writepages() skips it, even | |
677 | * if it's dirty. This is desirable behaviour for memory-cleaning writeback, | |
678 | * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() | |
679 | * and msync() need to guarantee that all the data which was dirty at the time | |
680 | * the call was made get new I/O started against them. If wbc->sync_mode is | |
681 | * WB_SYNC_ALL then we were called for data integrity and we must wait for | |
682 | * existing IO to complete. | |
683 | */ | |
684 | int | |
685 | mpage_writepages(struct address_space *mapping, | |
686 | struct writeback_control *wbc, get_block_t get_block) | |
1da177e4 | 687 | { |
2ed1a6bc | 688 | struct blk_plug plug; |
0ea97180 MS |
689 | int ret; |
690 | ||
2ed1a6bc JA |
691 | blk_start_plug(&plug); |
692 | ||
0ea97180 MS |
693 | if (!get_block) |
694 | ret = generic_writepages(mapping, wbc); | |
695 | else { | |
696 | struct mpage_data mpd = { | |
697 | .bio = NULL, | |
698 | .last_block_in_bio = 0, | |
699 | .get_block = get_block, | |
700 | .use_writepage = 1, | |
701 | }; | |
702 | ||
703 | ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); | |
5948edbc RP |
704 | if (mpd.bio) { |
705 | int wr = (wbc->sync_mode == WB_SYNC_ALL ? | |
706 | WRITE_SYNC : WRITE); | |
707 | mpage_bio_submit(wr, mpd.bio); | |
708 | } | |
1da177e4 | 709 | } |
2ed1a6bc | 710 | blk_finish_plug(&plug); |
1da177e4 LT |
711 | return ret; |
712 | } | |
713 | EXPORT_SYMBOL(mpage_writepages); | |
1da177e4 LT |
714 | |
715 | int mpage_writepage(struct page *page, get_block_t get_block, | |
716 | struct writeback_control *wbc) | |
717 | { | |
0ea97180 MS |
718 | struct mpage_data mpd = { |
719 | .bio = NULL, | |
720 | .last_block_in_bio = 0, | |
721 | .get_block = get_block, | |
722 | .use_writepage = 0, | |
723 | }; | |
724 | int ret = __mpage_writepage(page, wbc, &mpd); | |
5948edbc RP |
725 | if (mpd.bio) { |
726 | int wr = (wbc->sync_mode == WB_SYNC_ALL ? | |
727 | WRITE_SYNC : WRITE); | |
728 | mpage_bio_submit(wr, mpd.bio); | |
729 | } | |
1da177e4 LT |
730 | return ret; |
731 | } | |
732 | EXPORT_SYMBOL(mpage_writepage); |