]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <[email protected]> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <[email protected]> | |
8 | * | |
2e72b634 KS |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
8cdea7c0 BS |
13 | * This program is free software; you can redistribute it and/or modify |
14 | * it under the terms of the GNU General Public License as published by | |
15 | * the Free Software Foundation; either version 2 of the License, or | |
16 | * (at your option) any later version. | |
17 | * | |
18 | * This program is distributed in the hope that it will be useful, | |
19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
21 | * GNU General Public License for more details. | |
22 | */ | |
23 | ||
24 | #include <linux/res_counter.h> | |
25 | #include <linux/memcontrol.h> | |
26 | #include <linux/cgroup.h> | |
78fb7466 | 27 | #include <linux/mm.h> |
4ffef5fe | 28 | #include <linux/hugetlb.h> |
d13d1443 | 29 | #include <linux/pagemap.h> |
d52aa412 | 30 | #include <linux/smp.h> |
8a9f3ccd | 31 | #include <linux/page-flags.h> |
66e1707b | 32 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
33 | #include <linux/bit_spinlock.h> |
34 | #include <linux/rcupdate.h> | |
e222432b | 35 | #include <linux/limits.h> |
8c7c6e34 | 36 | #include <linux/mutex.h> |
f64c3f54 | 37 | #include <linux/rbtree.h> |
b6ac57d5 | 38 | #include <linux/slab.h> |
66e1707b | 39 | #include <linux/swap.h> |
02491447 | 40 | #include <linux/swapops.h> |
66e1707b | 41 | #include <linux/spinlock.h> |
2e72b634 KS |
42 | #include <linux/eventfd.h> |
43 | #include <linux/sort.h> | |
66e1707b | 44 | #include <linux/fs.h> |
d2ceb9b7 | 45 | #include <linux/seq_file.h> |
33327948 | 46 | #include <linux/vmalloc.h> |
b69408e8 | 47 | #include <linux/mm_inline.h> |
52d4b9ac | 48 | #include <linux/page_cgroup.h> |
cdec2e42 | 49 | #include <linux/cpu.h> |
158e0a2d | 50 | #include <linux/oom.h> |
08e552c6 | 51 | #include "internal.h" |
8cdea7c0 | 52 | |
8697d331 BS |
53 | #include <asm/uaccess.h> |
54 | ||
cc8e970c KM |
55 | #include <trace/events/vmscan.h> |
56 | ||
a181b0e8 | 57 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
a181b0e8 | 58 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
4b3bde4c | 59 | struct mem_cgroup *root_mem_cgroup __read_mostly; |
8cdea7c0 | 60 | |
c077719b | 61 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
338c8431 | 62 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
c077719b | 63 | int do_swap_account __read_mostly; |
a42c390c MH |
64 | |
65 | /* for remember boot option*/ | |
66 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED | |
67 | static int really_do_swap_account __initdata = 1; | |
68 | #else | |
69 | static int really_do_swap_account __initdata = 0; | |
70 | #endif | |
71 | ||
c077719b KH |
72 | #else |
73 | #define do_swap_account (0) | |
74 | #endif | |
75 | ||
d2265e6f KH |
76 | /* |
77 | * Per memcg event counter is incremented at every pagein/pageout. This counter | |
78 | * is used for trigger some periodic events. This is straightforward and better | |
79 | * than using jiffies etc. to handle periodic memcg event. | |
80 | * | |
81 | * These values will be used as !((event) & ((1 <<(thresh)) - 1)) | |
82 | */ | |
83 | #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */ | |
84 | #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */ | |
c077719b | 85 | |
d52aa412 KH |
86 | /* |
87 | * Statistics for memory cgroup. | |
88 | */ | |
89 | enum mem_cgroup_stat_index { | |
90 | /* | |
91 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | |
92 | */ | |
93 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ | |
d69b042f | 94 | MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ |
d8046582 | 95 | MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ |
55e462b0 BR |
96 | MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ |
97 | MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ | |
0c3e73e8 | 98 | MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ |
711d3d2c KH |
99 | MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ |
100 | /* incremented at every pagein/pageout */ | |
101 | MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA, | |
32047e2a | 102 | MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ |
d52aa412 KH |
103 | |
104 | MEM_CGROUP_STAT_NSTATS, | |
105 | }; | |
106 | ||
107 | struct mem_cgroup_stat_cpu { | |
108 | s64 count[MEM_CGROUP_STAT_NSTATS]; | |
d52aa412 KH |
109 | }; |
110 | ||
6d12e2d8 KH |
111 | /* |
112 | * per-zone information in memory controller. | |
113 | */ | |
6d12e2d8 | 114 | struct mem_cgroup_per_zone { |
072c56c1 KH |
115 | /* |
116 | * spin_lock to protect the per cgroup LRU | |
117 | */ | |
b69408e8 CL |
118 | struct list_head lists[NR_LRU_LISTS]; |
119 | unsigned long count[NR_LRU_LISTS]; | |
3e2f41f1 KM |
120 | |
121 | struct zone_reclaim_stat reclaim_stat; | |
f64c3f54 BS |
122 | struct rb_node tree_node; /* RB tree node */ |
123 | unsigned long long usage_in_excess;/* Set to the value by which */ | |
124 | /* the soft limit is exceeded*/ | |
125 | bool on_tree; | |
4e416953 BS |
126 | struct mem_cgroup *mem; /* Back pointer, we cannot */ |
127 | /* use container_of */ | |
6d12e2d8 KH |
128 | }; |
129 | /* Macro for accessing counter */ | |
130 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | |
131 | ||
132 | struct mem_cgroup_per_node { | |
133 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
134 | }; | |
135 | ||
136 | struct mem_cgroup_lru_info { | |
137 | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | |
138 | }; | |
139 | ||
f64c3f54 BS |
140 | /* |
141 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
142 | * their hierarchy representation | |
143 | */ | |
144 | ||
145 | struct mem_cgroup_tree_per_zone { | |
146 | struct rb_root rb_root; | |
147 | spinlock_t lock; | |
148 | }; | |
149 | ||
150 | struct mem_cgroup_tree_per_node { | |
151 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
152 | }; | |
153 | ||
154 | struct mem_cgroup_tree { | |
155 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
156 | }; | |
157 | ||
158 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
159 | ||
2e72b634 KS |
160 | struct mem_cgroup_threshold { |
161 | struct eventfd_ctx *eventfd; | |
162 | u64 threshold; | |
163 | }; | |
164 | ||
9490ff27 | 165 | /* For threshold */ |
2e72b634 KS |
166 | struct mem_cgroup_threshold_ary { |
167 | /* An array index points to threshold just below usage. */ | |
5407a562 | 168 | int current_threshold; |
2e72b634 KS |
169 | /* Size of entries[] */ |
170 | unsigned int size; | |
171 | /* Array of thresholds */ | |
172 | struct mem_cgroup_threshold entries[0]; | |
173 | }; | |
2c488db2 KS |
174 | |
175 | struct mem_cgroup_thresholds { | |
176 | /* Primary thresholds array */ | |
177 | struct mem_cgroup_threshold_ary *primary; | |
178 | /* | |
179 | * Spare threshold array. | |
180 | * This is needed to make mem_cgroup_unregister_event() "never fail". | |
181 | * It must be able to store at least primary->size - 1 entries. | |
182 | */ | |
183 | struct mem_cgroup_threshold_ary *spare; | |
184 | }; | |
185 | ||
9490ff27 KH |
186 | /* for OOM */ |
187 | struct mem_cgroup_eventfd_list { | |
188 | struct list_head list; | |
189 | struct eventfd_ctx *eventfd; | |
190 | }; | |
2e72b634 | 191 | |
2e72b634 | 192 | static void mem_cgroup_threshold(struct mem_cgroup *mem); |
9490ff27 | 193 | static void mem_cgroup_oom_notify(struct mem_cgroup *mem); |
2e72b634 | 194 | |
8cdea7c0 BS |
195 | /* |
196 | * The memory controller data structure. The memory controller controls both | |
197 | * page cache and RSS per cgroup. We would eventually like to provide | |
198 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
199 | * to help the administrator determine what knobs to tune. | |
200 | * | |
201 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
202 | * we hit the water mark. May be even add a low water mark, such that |
203 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
204 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
205 | */ |
206 | struct mem_cgroup { | |
207 | struct cgroup_subsys_state css; | |
208 | /* | |
209 | * the counter to account for memory usage | |
210 | */ | |
211 | struct res_counter res; | |
8c7c6e34 KH |
212 | /* |
213 | * the counter to account for mem+swap usage. | |
214 | */ | |
215 | struct res_counter memsw; | |
78fb7466 PE |
216 | /* |
217 | * Per cgroup active and inactive list, similar to the | |
218 | * per zone LRU lists. | |
78fb7466 | 219 | */ |
6d12e2d8 | 220 | struct mem_cgroup_lru_info info; |
072c56c1 | 221 | |
2733c06a KM |
222 | /* |
223 | protect against reclaim related member. | |
224 | */ | |
225 | spinlock_t reclaim_param_lock; | |
226 | ||
6d61ef40 | 227 | /* |
af901ca1 | 228 | * While reclaiming in a hierarchy, we cache the last child we |
04046e1a | 229 | * reclaimed from. |
6d61ef40 | 230 | */ |
04046e1a | 231 | int last_scanned_child; |
18f59ea7 BS |
232 | /* |
233 | * Should the accounting and control be hierarchical, per subtree? | |
234 | */ | |
235 | bool use_hierarchy; | |
867578cb | 236 | atomic_t oom_lock; |
8c7c6e34 | 237 | atomic_t refcnt; |
14797e23 | 238 | |
a7885eb8 | 239 | unsigned int swappiness; |
3c11ecf4 KH |
240 | /* OOM-Killer disable */ |
241 | int oom_kill_disable; | |
a7885eb8 | 242 | |
22a668d7 KH |
243 | /* set when res.limit == memsw.limit */ |
244 | bool memsw_is_minimum; | |
245 | ||
2e72b634 KS |
246 | /* protect arrays of thresholds */ |
247 | struct mutex thresholds_lock; | |
248 | ||
249 | /* thresholds for memory usage. RCU-protected */ | |
2c488db2 | 250 | struct mem_cgroup_thresholds thresholds; |
907860ed | 251 | |
2e72b634 | 252 | /* thresholds for mem+swap usage. RCU-protected */ |
2c488db2 | 253 | struct mem_cgroup_thresholds memsw_thresholds; |
907860ed | 254 | |
9490ff27 KH |
255 | /* For oom notifier event fd */ |
256 | struct list_head oom_notify; | |
257 | ||
7dc74be0 DN |
258 | /* |
259 | * Should we move charges of a task when a task is moved into this | |
260 | * mem_cgroup ? And what type of charges should we move ? | |
261 | */ | |
262 | unsigned long move_charge_at_immigrate; | |
d52aa412 | 263 | /* |
c62b1a3b | 264 | * percpu counter. |
d52aa412 | 265 | */ |
c62b1a3b | 266 | struct mem_cgroup_stat_cpu *stat; |
711d3d2c KH |
267 | /* |
268 | * used when a cpu is offlined or other synchronizations | |
269 | * See mem_cgroup_read_stat(). | |
270 | */ | |
271 | struct mem_cgroup_stat_cpu nocpu_base; | |
272 | spinlock_t pcp_counter_lock; | |
8cdea7c0 BS |
273 | }; |
274 | ||
7dc74be0 DN |
275 | /* Stuffs for move charges at task migration. */ |
276 | /* | |
277 | * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a | |
278 | * left-shifted bitmap of these types. | |
279 | */ | |
280 | enum move_type { | |
4ffef5fe | 281 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
87946a72 | 282 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
7dc74be0 DN |
283 | NR_MOVE_TYPE, |
284 | }; | |
285 | ||
4ffef5fe DN |
286 | /* "mc" and its members are protected by cgroup_mutex */ |
287 | static struct move_charge_struct { | |
b1dd693e | 288 | spinlock_t lock; /* for from, to */ |
4ffef5fe DN |
289 | struct mem_cgroup *from; |
290 | struct mem_cgroup *to; | |
291 | unsigned long precharge; | |
854ffa8d | 292 | unsigned long moved_charge; |
483c30b5 | 293 | unsigned long moved_swap; |
8033b97c DN |
294 | struct task_struct *moving_task; /* a task moving charges */ |
295 | wait_queue_head_t waitq; /* a waitq for other context */ | |
296 | } mc = { | |
2bd9bb20 | 297 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
8033b97c DN |
298 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
299 | }; | |
4ffef5fe | 300 | |
90254a65 DN |
301 | static bool move_anon(void) |
302 | { | |
303 | return test_bit(MOVE_CHARGE_TYPE_ANON, | |
304 | &mc.to->move_charge_at_immigrate); | |
305 | } | |
306 | ||
87946a72 DN |
307 | static bool move_file(void) |
308 | { | |
309 | return test_bit(MOVE_CHARGE_TYPE_FILE, | |
310 | &mc.to->move_charge_at_immigrate); | |
311 | } | |
312 | ||
4e416953 BS |
313 | /* |
314 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
315 | * limit reclaim to prevent infinite loops, if they ever occur. | |
316 | */ | |
317 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) | |
318 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) | |
319 | ||
217bc319 KH |
320 | enum charge_type { |
321 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
322 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | |
4f98a2fe | 323 | MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ |
c05555b5 | 324 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
d13d1443 | 325 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
8a9478ca | 326 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
c05555b5 KH |
327 | NR_CHARGE_TYPE, |
328 | }; | |
329 | ||
52d4b9ac KH |
330 | /* only for here (for easy reading.) */ |
331 | #define PCGF_CACHE (1UL << PCG_CACHE) | |
332 | #define PCGF_USED (1UL << PCG_USED) | |
52d4b9ac | 333 | #define PCGF_LOCK (1UL << PCG_LOCK) |
4b3bde4c BS |
334 | /* Not used, but added here for completeness */ |
335 | #define PCGF_ACCT (1UL << PCG_ACCT) | |
217bc319 | 336 | |
8c7c6e34 KH |
337 | /* for encoding cft->private value on file */ |
338 | #define _MEM (0) | |
339 | #define _MEMSWAP (1) | |
9490ff27 | 340 | #define _OOM_TYPE (2) |
8c7c6e34 KH |
341 | #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) |
342 | #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) | |
343 | #define MEMFILE_ATTR(val) ((val) & 0xffff) | |
9490ff27 KH |
344 | /* Used for OOM nofiier */ |
345 | #define OOM_CONTROL (0) | |
8c7c6e34 | 346 | |
75822b44 BS |
347 | /* |
348 | * Reclaim flags for mem_cgroup_hierarchical_reclaim | |
349 | */ | |
350 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 | |
351 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | |
352 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 | |
353 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | |
4e416953 BS |
354 | #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2 |
355 | #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT) | |
75822b44 | 356 | |
8c7c6e34 KH |
357 | static void mem_cgroup_get(struct mem_cgroup *mem); |
358 | static void mem_cgroup_put(struct mem_cgroup *mem); | |
7bcc1bb1 | 359 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); |
cdec2e42 | 360 | static void drain_all_stock_async(void); |
8c7c6e34 | 361 | |
f64c3f54 BS |
362 | static struct mem_cgroup_per_zone * |
363 | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) | |
364 | { | |
365 | return &mem->info.nodeinfo[nid]->zoneinfo[zid]; | |
366 | } | |
367 | ||
d324236b WF |
368 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) |
369 | { | |
370 | return &mem->css; | |
371 | } | |
372 | ||
f64c3f54 BS |
373 | static struct mem_cgroup_per_zone * |
374 | page_cgroup_zoneinfo(struct page_cgroup *pc) | |
375 | { | |
376 | struct mem_cgroup *mem = pc->mem_cgroup; | |
377 | int nid = page_cgroup_nid(pc); | |
378 | int zid = page_cgroup_zid(pc); | |
379 | ||
380 | if (!mem) | |
381 | return NULL; | |
382 | ||
383 | return mem_cgroup_zoneinfo(mem, nid, zid); | |
384 | } | |
385 | ||
386 | static struct mem_cgroup_tree_per_zone * | |
387 | soft_limit_tree_node_zone(int nid, int zid) | |
388 | { | |
389 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
390 | } | |
391 | ||
392 | static struct mem_cgroup_tree_per_zone * | |
393 | soft_limit_tree_from_page(struct page *page) | |
394 | { | |
395 | int nid = page_to_nid(page); | |
396 | int zid = page_zonenum(page); | |
397 | ||
398 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
399 | } | |
400 | ||
401 | static void | |
4e416953 | 402 | __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, |
f64c3f54 | 403 | struct mem_cgroup_per_zone *mz, |
ef8745c1 KH |
404 | struct mem_cgroup_tree_per_zone *mctz, |
405 | unsigned long long new_usage_in_excess) | |
f64c3f54 BS |
406 | { |
407 | struct rb_node **p = &mctz->rb_root.rb_node; | |
408 | struct rb_node *parent = NULL; | |
409 | struct mem_cgroup_per_zone *mz_node; | |
410 | ||
411 | if (mz->on_tree) | |
412 | return; | |
413 | ||
ef8745c1 KH |
414 | mz->usage_in_excess = new_usage_in_excess; |
415 | if (!mz->usage_in_excess) | |
416 | return; | |
f64c3f54 BS |
417 | while (*p) { |
418 | parent = *p; | |
419 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
420 | tree_node); | |
421 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
422 | p = &(*p)->rb_left; | |
423 | /* | |
424 | * We can't avoid mem cgroups that are over their soft | |
425 | * limit by the same amount | |
426 | */ | |
427 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
428 | p = &(*p)->rb_right; | |
429 | } | |
430 | rb_link_node(&mz->tree_node, parent, p); | |
431 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
432 | mz->on_tree = true; | |
4e416953 BS |
433 | } |
434 | ||
435 | static void | |
436 | __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | |
437 | struct mem_cgroup_per_zone *mz, | |
438 | struct mem_cgroup_tree_per_zone *mctz) | |
439 | { | |
440 | if (!mz->on_tree) | |
441 | return; | |
442 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
443 | mz->on_tree = false; | |
444 | } | |
445 | ||
f64c3f54 BS |
446 | static void |
447 | mem_cgroup_remove_exceeded(struct mem_cgroup *mem, | |
448 | struct mem_cgroup_per_zone *mz, | |
449 | struct mem_cgroup_tree_per_zone *mctz) | |
450 | { | |
451 | spin_lock(&mctz->lock); | |
4e416953 | 452 | __mem_cgroup_remove_exceeded(mem, mz, mctz); |
f64c3f54 BS |
453 | spin_unlock(&mctz->lock); |
454 | } | |
455 | ||
f64c3f54 BS |
456 | |
457 | static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) | |
458 | { | |
ef8745c1 | 459 | unsigned long long excess; |
f64c3f54 BS |
460 | struct mem_cgroup_per_zone *mz; |
461 | struct mem_cgroup_tree_per_zone *mctz; | |
4e649152 KH |
462 | int nid = page_to_nid(page); |
463 | int zid = page_zonenum(page); | |
f64c3f54 BS |
464 | mctz = soft_limit_tree_from_page(page); |
465 | ||
466 | /* | |
4e649152 KH |
467 | * Necessary to update all ancestors when hierarchy is used. |
468 | * because their event counter is not touched. | |
f64c3f54 | 469 | */ |
4e649152 KH |
470 | for (; mem; mem = parent_mem_cgroup(mem)) { |
471 | mz = mem_cgroup_zoneinfo(mem, nid, zid); | |
ef8745c1 | 472 | excess = res_counter_soft_limit_excess(&mem->res); |
4e649152 KH |
473 | /* |
474 | * We have to update the tree if mz is on RB-tree or | |
475 | * mem is over its softlimit. | |
476 | */ | |
ef8745c1 | 477 | if (excess || mz->on_tree) { |
4e649152 KH |
478 | spin_lock(&mctz->lock); |
479 | /* if on-tree, remove it */ | |
480 | if (mz->on_tree) | |
481 | __mem_cgroup_remove_exceeded(mem, mz, mctz); | |
482 | /* | |
ef8745c1 KH |
483 | * Insert again. mz->usage_in_excess will be updated. |
484 | * If excess is 0, no tree ops. | |
4e649152 | 485 | */ |
ef8745c1 | 486 | __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); |
4e649152 KH |
487 | spin_unlock(&mctz->lock); |
488 | } | |
f64c3f54 BS |
489 | } |
490 | } | |
491 | ||
492 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) | |
493 | { | |
494 | int node, zone; | |
495 | struct mem_cgroup_per_zone *mz; | |
496 | struct mem_cgroup_tree_per_zone *mctz; | |
497 | ||
498 | for_each_node_state(node, N_POSSIBLE) { | |
499 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
500 | mz = mem_cgroup_zoneinfo(mem, node, zone); | |
501 | mctz = soft_limit_tree_node_zone(node, zone); | |
502 | mem_cgroup_remove_exceeded(mem, mz, mctz); | |
503 | } | |
504 | } | |
505 | } | |
506 | ||
4e416953 BS |
507 | static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) |
508 | { | |
509 | return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; | |
510 | } | |
511 | ||
512 | static struct mem_cgroup_per_zone * | |
513 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
514 | { | |
515 | struct rb_node *rightmost = NULL; | |
26251eaf | 516 | struct mem_cgroup_per_zone *mz; |
4e416953 BS |
517 | |
518 | retry: | |
26251eaf | 519 | mz = NULL; |
4e416953 BS |
520 | rightmost = rb_last(&mctz->rb_root); |
521 | if (!rightmost) | |
522 | goto done; /* Nothing to reclaim from */ | |
523 | ||
524 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
525 | /* | |
526 | * Remove the node now but someone else can add it back, | |
527 | * we will to add it back at the end of reclaim to its correct | |
528 | * position in the tree. | |
529 | */ | |
530 | __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); | |
531 | if (!res_counter_soft_limit_excess(&mz->mem->res) || | |
532 | !css_tryget(&mz->mem->css)) | |
533 | goto retry; | |
534 | done: | |
535 | return mz; | |
536 | } | |
537 | ||
538 | static struct mem_cgroup_per_zone * | |
539 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
540 | { | |
541 | struct mem_cgroup_per_zone *mz; | |
542 | ||
543 | spin_lock(&mctz->lock); | |
544 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
545 | spin_unlock(&mctz->lock); | |
546 | return mz; | |
547 | } | |
548 | ||
711d3d2c KH |
549 | /* |
550 | * Implementation Note: reading percpu statistics for memcg. | |
551 | * | |
552 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
553 | * synchronization to implement "quick" read. There are trade-off between | |
554 | * reading cost and precision of value. Then, we may have a chance to implement | |
555 | * a periodic synchronizion of counter in memcg's counter. | |
556 | * | |
557 | * But this _read() function is used for user interface now. The user accounts | |
558 | * memory usage by memory cgroup and he _always_ requires exact value because | |
559 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
560 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
561 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
562 | * | |
563 | * If there are kernel internal actions which can make use of some not-exact | |
564 | * value, and reading all cpu value can be performance bottleneck in some | |
565 | * common workload, threashold and synchonization as vmstat[] should be | |
566 | * implemented. | |
567 | */ | |
c62b1a3b KH |
568 | static s64 mem_cgroup_read_stat(struct mem_cgroup *mem, |
569 | enum mem_cgroup_stat_index idx) | |
570 | { | |
571 | int cpu; | |
572 | s64 val = 0; | |
573 | ||
711d3d2c KH |
574 | get_online_cpus(); |
575 | for_each_online_cpu(cpu) | |
c62b1a3b | 576 | val += per_cpu(mem->stat->count[idx], cpu); |
711d3d2c KH |
577 | #ifdef CONFIG_HOTPLUG_CPU |
578 | spin_lock(&mem->pcp_counter_lock); | |
579 | val += mem->nocpu_base.count[idx]; | |
580 | spin_unlock(&mem->pcp_counter_lock); | |
581 | #endif | |
582 | put_online_cpus(); | |
c62b1a3b KH |
583 | return val; |
584 | } | |
585 | ||
586 | static s64 mem_cgroup_local_usage(struct mem_cgroup *mem) | |
587 | { | |
588 | s64 ret; | |
589 | ||
590 | ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); | |
591 | ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); | |
592 | return ret; | |
593 | } | |
594 | ||
0c3e73e8 BS |
595 | static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, |
596 | bool charge) | |
597 | { | |
598 | int val = (charge) ? 1 : -1; | |
c62b1a3b | 599 | this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); |
0c3e73e8 BS |
600 | } |
601 | ||
c05555b5 KH |
602 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, |
603 | struct page_cgroup *pc, | |
604 | bool charge) | |
d52aa412 | 605 | { |
0c3e73e8 | 606 | int val = (charge) ? 1 : -1; |
d52aa412 | 607 | |
c62b1a3b KH |
608 | preempt_disable(); |
609 | ||
c05555b5 | 610 | if (PageCgroupCache(pc)) |
c62b1a3b | 611 | __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val); |
d52aa412 | 612 | else |
c62b1a3b | 613 | __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val); |
55e462b0 BR |
614 | |
615 | if (charge) | |
c62b1a3b | 616 | __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]); |
55e462b0 | 617 | else |
c62b1a3b | 618 | __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]); |
d2265e6f | 619 | __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]); |
2e72b634 | 620 | |
c62b1a3b | 621 | preempt_enable(); |
6d12e2d8 KH |
622 | } |
623 | ||
14067bb3 | 624 | static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, |
b69408e8 | 625 | enum lru_list idx) |
6d12e2d8 KH |
626 | { |
627 | int nid, zid; | |
628 | struct mem_cgroup_per_zone *mz; | |
629 | u64 total = 0; | |
630 | ||
631 | for_each_online_node(nid) | |
632 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
633 | mz = mem_cgroup_zoneinfo(mem, nid, zid); | |
634 | total += MEM_CGROUP_ZSTAT(mz, idx); | |
635 | } | |
636 | return total; | |
d52aa412 KH |
637 | } |
638 | ||
d2265e6f KH |
639 | static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift) |
640 | { | |
641 | s64 val; | |
642 | ||
643 | val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]); | |
644 | ||
645 | return !(val & ((1 << event_mask_shift) - 1)); | |
646 | } | |
647 | ||
648 | /* | |
649 | * Check events in order. | |
650 | * | |
651 | */ | |
652 | static void memcg_check_events(struct mem_cgroup *mem, struct page *page) | |
653 | { | |
654 | /* threshold event is triggered in finer grain than soft limit */ | |
655 | if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) { | |
656 | mem_cgroup_threshold(mem); | |
657 | if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH))) | |
658 | mem_cgroup_update_tree(mem, page); | |
659 | } | |
660 | } | |
661 | ||
d5b69e38 | 662 | static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
8cdea7c0 BS |
663 | { |
664 | return container_of(cgroup_subsys_state(cont, | |
665 | mem_cgroup_subsys_id), struct mem_cgroup, | |
666 | css); | |
667 | } | |
668 | ||
cf475ad2 | 669 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 670 | { |
31a78f23 BS |
671 | /* |
672 | * mm_update_next_owner() may clear mm->owner to NULL | |
673 | * if it races with swapoff, page migration, etc. | |
674 | * So this can be called with p == NULL. | |
675 | */ | |
676 | if (unlikely(!p)) | |
677 | return NULL; | |
678 | ||
78fb7466 PE |
679 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
680 | struct mem_cgroup, css); | |
681 | } | |
682 | ||
54595fe2 KH |
683 | static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
684 | { | |
685 | struct mem_cgroup *mem = NULL; | |
0b7f569e KH |
686 | |
687 | if (!mm) | |
688 | return NULL; | |
54595fe2 KH |
689 | /* |
690 | * Because we have no locks, mm->owner's may be being moved to other | |
691 | * cgroup. We use css_tryget() here even if this looks | |
692 | * pessimistic (rather than adding locks here). | |
693 | */ | |
694 | rcu_read_lock(); | |
695 | do { | |
696 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
697 | if (unlikely(!mem)) | |
698 | break; | |
699 | } while (!css_tryget(&mem->css)); | |
700 | rcu_read_unlock(); | |
701 | return mem; | |
702 | } | |
703 | ||
7d74b06f KH |
704 | /* The caller has to guarantee "mem" exists before calling this */ |
705 | static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) | |
14067bb3 | 706 | { |
711d3d2c KH |
707 | struct cgroup_subsys_state *css; |
708 | int found; | |
709 | ||
710 | if (!mem) /* ROOT cgroup has the smallest ID */ | |
711 | return root_mem_cgroup; /*css_put/get against root is ignored*/ | |
712 | if (!mem->use_hierarchy) { | |
713 | if (css_tryget(&mem->css)) | |
714 | return mem; | |
715 | return NULL; | |
716 | } | |
717 | rcu_read_lock(); | |
718 | /* | |
719 | * searching a memory cgroup which has the smallest ID under given | |
720 | * ROOT cgroup. (ID >= 1) | |
721 | */ | |
722 | css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); | |
723 | if (css && css_tryget(css)) | |
724 | mem = container_of(css, struct mem_cgroup, css); | |
725 | else | |
726 | mem = NULL; | |
727 | rcu_read_unlock(); | |
728 | return mem; | |
7d74b06f KH |
729 | } |
730 | ||
731 | static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, | |
732 | struct mem_cgroup *root, | |
733 | bool cond) | |
734 | { | |
735 | int nextid = css_id(&iter->css) + 1; | |
736 | int found; | |
737 | int hierarchy_used; | |
14067bb3 | 738 | struct cgroup_subsys_state *css; |
14067bb3 | 739 | |
7d74b06f | 740 | hierarchy_used = iter->use_hierarchy; |
14067bb3 | 741 | |
7d74b06f | 742 | css_put(&iter->css); |
711d3d2c KH |
743 | /* If no ROOT, walk all, ignore hierarchy */ |
744 | if (!cond || (root && !hierarchy_used)) | |
7d74b06f | 745 | return NULL; |
14067bb3 | 746 | |
711d3d2c KH |
747 | if (!root) |
748 | root = root_mem_cgroup; | |
749 | ||
7d74b06f KH |
750 | do { |
751 | iter = NULL; | |
14067bb3 | 752 | rcu_read_lock(); |
7d74b06f KH |
753 | |
754 | css = css_get_next(&mem_cgroup_subsys, nextid, | |
755 | &root->css, &found); | |
14067bb3 | 756 | if (css && css_tryget(css)) |
7d74b06f | 757 | iter = container_of(css, struct mem_cgroup, css); |
14067bb3 | 758 | rcu_read_unlock(); |
7d74b06f | 759 | /* If css is NULL, no more cgroups will be found */ |
14067bb3 | 760 | nextid = found + 1; |
7d74b06f | 761 | } while (css && !iter); |
14067bb3 | 762 | |
7d74b06f | 763 | return iter; |
14067bb3 | 764 | } |
7d74b06f KH |
765 | /* |
766 | * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please | |
767 | * be careful that "break" loop is not allowed. We have reference count. | |
768 | * Instead of that modify "cond" to be false and "continue" to exit the loop. | |
769 | */ | |
770 | #define for_each_mem_cgroup_tree_cond(iter, root, cond) \ | |
771 | for (iter = mem_cgroup_start_loop(root);\ | |
772 | iter != NULL;\ | |
773 | iter = mem_cgroup_get_next(iter, root, cond)) | |
774 | ||
775 | #define for_each_mem_cgroup_tree(iter, root) \ | |
776 | for_each_mem_cgroup_tree_cond(iter, root, true) | |
777 | ||
711d3d2c KH |
778 | #define for_each_mem_cgroup_all(iter) \ |
779 | for_each_mem_cgroup_tree_cond(iter, NULL, true) | |
780 | ||
14067bb3 | 781 | |
4b3bde4c BS |
782 | static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) |
783 | { | |
784 | return (mem == root_mem_cgroup); | |
785 | } | |
786 | ||
08e552c6 KH |
787 | /* |
788 | * Following LRU functions are allowed to be used without PCG_LOCK. | |
789 | * Operations are called by routine of global LRU independently from memcg. | |
790 | * What we have to take care of here is validness of pc->mem_cgroup. | |
791 | * | |
792 | * Changes to pc->mem_cgroup happens when | |
793 | * 1. charge | |
794 | * 2. moving account | |
795 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | |
796 | * It is added to LRU before charge. | |
797 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | |
798 | * When moving account, the page is not on LRU. It's isolated. | |
799 | */ | |
4f98a2fe | 800 | |
08e552c6 KH |
801 | void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) |
802 | { | |
803 | struct page_cgroup *pc; | |
08e552c6 | 804 | struct mem_cgroup_per_zone *mz; |
6d12e2d8 | 805 | |
f8d66542 | 806 | if (mem_cgroup_disabled()) |
08e552c6 KH |
807 | return; |
808 | pc = lookup_page_cgroup(page); | |
809 | /* can happen while we handle swapcache. */ | |
4b3bde4c | 810 | if (!TestClearPageCgroupAcctLRU(pc)) |
08e552c6 | 811 | return; |
4b3bde4c | 812 | VM_BUG_ON(!pc->mem_cgroup); |
544122e5 KH |
813 | /* |
814 | * We don't check PCG_USED bit. It's cleared when the "page" is finally | |
815 | * removed from global LRU. | |
816 | */ | |
08e552c6 | 817 | mz = page_cgroup_zoneinfo(pc); |
b69408e8 | 818 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; |
4b3bde4c BS |
819 | if (mem_cgroup_is_root(pc->mem_cgroup)) |
820 | return; | |
821 | VM_BUG_ON(list_empty(&pc->lru)); | |
08e552c6 | 822 | list_del_init(&pc->lru); |
6d12e2d8 KH |
823 | } |
824 | ||
08e552c6 | 825 | void mem_cgroup_del_lru(struct page *page) |
6d12e2d8 | 826 | { |
08e552c6 KH |
827 | mem_cgroup_del_lru_list(page, page_lru(page)); |
828 | } | |
b69408e8 | 829 | |
08e552c6 KH |
830 | void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) |
831 | { | |
832 | struct mem_cgroup_per_zone *mz; | |
833 | struct page_cgroup *pc; | |
b69408e8 | 834 | |
f8d66542 | 835 | if (mem_cgroup_disabled()) |
08e552c6 | 836 | return; |
6d12e2d8 | 837 | |
08e552c6 | 838 | pc = lookup_page_cgroup(page); |
bd112db8 DN |
839 | /* |
840 | * Used bit is set without atomic ops but after smp_wmb(). | |
841 | * For making pc->mem_cgroup visible, insert smp_rmb() here. | |
842 | */ | |
08e552c6 | 843 | smp_rmb(); |
4b3bde4c BS |
844 | /* unused or root page is not rotated. */ |
845 | if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup)) | |
08e552c6 KH |
846 | return; |
847 | mz = page_cgroup_zoneinfo(pc); | |
848 | list_move(&pc->lru, &mz->lists[lru]); | |
6d12e2d8 KH |
849 | } |
850 | ||
08e552c6 | 851 | void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) |
66e1707b | 852 | { |
08e552c6 KH |
853 | struct page_cgroup *pc; |
854 | struct mem_cgroup_per_zone *mz; | |
6d12e2d8 | 855 | |
f8d66542 | 856 | if (mem_cgroup_disabled()) |
08e552c6 KH |
857 | return; |
858 | pc = lookup_page_cgroup(page); | |
4b3bde4c | 859 | VM_BUG_ON(PageCgroupAcctLRU(pc)); |
bd112db8 DN |
860 | /* |
861 | * Used bit is set without atomic ops but after smp_wmb(). | |
862 | * For making pc->mem_cgroup visible, insert smp_rmb() here. | |
863 | */ | |
08e552c6 KH |
864 | smp_rmb(); |
865 | if (!PageCgroupUsed(pc)) | |
894bc310 | 866 | return; |
b69408e8 | 867 | |
08e552c6 | 868 | mz = page_cgroup_zoneinfo(pc); |
b69408e8 | 869 | MEM_CGROUP_ZSTAT(mz, lru) += 1; |
4b3bde4c BS |
870 | SetPageCgroupAcctLRU(pc); |
871 | if (mem_cgroup_is_root(pc->mem_cgroup)) | |
872 | return; | |
08e552c6 KH |
873 | list_add(&pc->lru, &mz->lists[lru]); |
874 | } | |
544122e5 | 875 | |
08e552c6 | 876 | /* |
544122e5 KH |
877 | * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to |
878 | * lru because the page may.be reused after it's fully uncharged (because of | |
879 | * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge | |
880 | * it again. This function is only used to charge SwapCache. It's done under | |
881 | * lock_page and expected that zone->lru_lock is never held. | |
08e552c6 | 882 | */ |
544122e5 | 883 | static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) |
08e552c6 | 884 | { |
544122e5 KH |
885 | unsigned long flags; |
886 | struct zone *zone = page_zone(page); | |
887 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
888 | ||
889 | spin_lock_irqsave(&zone->lru_lock, flags); | |
890 | /* | |
891 | * Forget old LRU when this page_cgroup is *not* used. This Used bit | |
892 | * is guarded by lock_page() because the page is SwapCache. | |
893 | */ | |
894 | if (!PageCgroupUsed(pc)) | |
895 | mem_cgroup_del_lru_list(page, page_lru(page)); | |
896 | spin_unlock_irqrestore(&zone->lru_lock, flags); | |
08e552c6 KH |
897 | } |
898 | ||
544122e5 KH |
899 | static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) |
900 | { | |
901 | unsigned long flags; | |
902 | struct zone *zone = page_zone(page); | |
903 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
904 | ||
905 | spin_lock_irqsave(&zone->lru_lock, flags); | |
906 | /* link when the page is linked to LRU but page_cgroup isn't */ | |
4b3bde4c | 907 | if (PageLRU(page) && !PageCgroupAcctLRU(pc)) |
544122e5 KH |
908 | mem_cgroup_add_lru_list(page, page_lru(page)); |
909 | spin_unlock_irqrestore(&zone->lru_lock, flags); | |
910 | } | |
911 | ||
912 | ||
08e552c6 KH |
913 | void mem_cgroup_move_lists(struct page *page, |
914 | enum lru_list from, enum lru_list to) | |
915 | { | |
f8d66542 | 916 | if (mem_cgroup_disabled()) |
08e552c6 KH |
917 | return; |
918 | mem_cgroup_del_lru_list(page, from); | |
919 | mem_cgroup_add_lru_list(page, to); | |
66e1707b BS |
920 | } |
921 | ||
4c4a2214 DR |
922 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
923 | { | |
924 | int ret; | |
0b7f569e | 925 | struct mem_cgroup *curr = NULL; |
158e0a2d | 926 | struct task_struct *p; |
4c4a2214 | 927 | |
158e0a2d KH |
928 | p = find_lock_task_mm(task); |
929 | if (!p) | |
930 | return 0; | |
931 | curr = try_get_mem_cgroup_from_mm(p->mm); | |
932 | task_unlock(p); | |
0b7f569e KH |
933 | if (!curr) |
934 | return 0; | |
d31f56db DN |
935 | /* |
936 | * We should check use_hierarchy of "mem" not "curr". Because checking | |
937 | * use_hierarchy of "curr" here make this function true if hierarchy is | |
938 | * enabled in "curr" and "curr" is a child of "mem" in *cgroup* | |
939 | * hierarchy(even if use_hierarchy is disabled in "mem"). | |
940 | */ | |
941 | if (mem->use_hierarchy) | |
0b7f569e KH |
942 | ret = css_is_ancestor(&curr->css, &mem->css); |
943 | else | |
944 | ret = (curr == mem); | |
945 | css_put(&curr->css); | |
4c4a2214 DR |
946 | return ret; |
947 | } | |
948 | ||
c772be93 | 949 | static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) |
14797e23 KM |
950 | { |
951 | unsigned long active; | |
952 | unsigned long inactive; | |
c772be93 KM |
953 | unsigned long gb; |
954 | unsigned long inactive_ratio; | |
14797e23 | 955 | |
14067bb3 KH |
956 | inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); |
957 | active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); | |
14797e23 | 958 | |
c772be93 KM |
959 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
960 | if (gb) | |
961 | inactive_ratio = int_sqrt(10 * gb); | |
962 | else | |
963 | inactive_ratio = 1; | |
964 | ||
965 | if (present_pages) { | |
966 | present_pages[0] = inactive; | |
967 | present_pages[1] = active; | |
968 | } | |
969 | ||
970 | return inactive_ratio; | |
971 | } | |
972 | ||
973 | int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) | |
974 | { | |
975 | unsigned long active; | |
976 | unsigned long inactive; | |
977 | unsigned long present_pages[2]; | |
978 | unsigned long inactive_ratio; | |
979 | ||
980 | inactive_ratio = calc_inactive_ratio(memcg, present_pages); | |
981 | ||
982 | inactive = present_pages[0]; | |
983 | active = present_pages[1]; | |
984 | ||
985 | if (inactive * inactive_ratio < active) | |
14797e23 KM |
986 | return 1; |
987 | ||
988 | return 0; | |
989 | } | |
990 | ||
56e49d21 RR |
991 | int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) |
992 | { | |
993 | unsigned long active; | |
994 | unsigned long inactive; | |
995 | ||
996 | inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); | |
997 | active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); | |
998 | ||
999 | return (active > inactive); | |
1000 | } | |
1001 | ||
a3d8e054 KM |
1002 | unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, |
1003 | struct zone *zone, | |
1004 | enum lru_list lru) | |
1005 | { | |
13d7e3a2 | 1006 | int nid = zone_to_nid(zone); |
a3d8e054 KM |
1007 | int zid = zone_idx(zone); |
1008 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
1009 | ||
1010 | return MEM_CGROUP_ZSTAT(mz, lru); | |
1011 | } | |
1012 | ||
3e2f41f1 KM |
1013 | struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, |
1014 | struct zone *zone) | |
1015 | { | |
13d7e3a2 | 1016 | int nid = zone_to_nid(zone); |
3e2f41f1 KM |
1017 | int zid = zone_idx(zone); |
1018 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
1019 | ||
1020 | return &mz->reclaim_stat; | |
1021 | } | |
1022 | ||
1023 | struct zone_reclaim_stat * | |
1024 | mem_cgroup_get_reclaim_stat_from_page(struct page *page) | |
1025 | { | |
1026 | struct page_cgroup *pc; | |
1027 | struct mem_cgroup_per_zone *mz; | |
1028 | ||
1029 | if (mem_cgroup_disabled()) | |
1030 | return NULL; | |
1031 | ||
1032 | pc = lookup_page_cgroup(page); | |
bd112db8 DN |
1033 | /* |
1034 | * Used bit is set without atomic ops but after smp_wmb(). | |
1035 | * For making pc->mem_cgroup visible, insert smp_rmb() here. | |
1036 | */ | |
1037 | smp_rmb(); | |
1038 | if (!PageCgroupUsed(pc)) | |
1039 | return NULL; | |
1040 | ||
3e2f41f1 KM |
1041 | mz = page_cgroup_zoneinfo(pc); |
1042 | if (!mz) | |
1043 | return NULL; | |
1044 | ||
1045 | return &mz->reclaim_stat; | |
1046 | } | |
1047 | ||
66e1707b BS |
1048 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
1049 | struct list_head *dst, | |
1050 | unsigned long *scanned, int order, | |
1051 | int mode, struct zone *z, | |
1052 | struct mem_cgroup *mem_cont, | |
4f98a2fe | 1053 | int active, int file) |
66e1707b BS |
1054 | { |
1055 | unsigned long nr_taken = 0; | |
1056 | struct page *page; | |
1057 | unsigned long scan; | |
1058 | LIST_HEAD(pc_list); | |
1059 | struct list_head *src; | |
ff7283fa | 1060 | struct page_cgroup *pc, *tmp; |
13d7e3a2 | 1061 | int nid = zone_to_nid(z); |
1ecaab2b KH |
1062 | int zid = zone_idx(z); |
1063 | struct mem_cgroup_per_zone *mz; | |
b7c46d15 | 1064 | int lru = LRU_FILE * file + active; |
2ffebca6 | 1065 | int ret; |
66e1707b | 1066 | |
cf475ad2 | 1067 | BUG_ON(!mem_cont); |
1ecaab2b | 1068 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
b69408e8 | 1069 | src = &mz->lists[lru]; |
66e1707b | 1070 | |
ff7283fa KH |
1071 | scan = 0; |
1072 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | |
436c6541 | 1073 | if (scan >= nr_to_scan) |
ff7283fa | 1074 | break; |
08e552c6 KH |
1075 | |
1076 | page = pc->page; | |
52d4b9ac KH |
1077 | if (unlikely(!PageCgroupUsed(pc))) |
1078 | continue; | |
436c6541 | 1079 | if (unlikely(!PageLRU(page))) |
ff7283fa | 1080 | continue; |
ff7283fa | 1081 | |
436c6541 | 1082 | scan++; |
2ffebca6 KH |
1083 | ret = __isolate_lru_page(page, mode, file); |
1084 | switch (ret) { | |
1085 | case 0: | |
66e1707b | 1086 | list_move(&page->lru, dst); |
2ffebca6 | 1087 | mem_cgroup_del_lru(page); |
2c888cfb | 1088 | nr_taken += hpage_nr_pages(page); |
2ffebca6 KH |
1089 | break; |
1090 | case -EBUSY: | |
1091 | /* we don't affect global LRU but rotate in our LRU */ | |
1092 | mem_cgroup_rotate_lru_list(page, page_lru(page)); | |
1093 | break; | |
1094 | default: | |
1095 | break; | |
66e1707b BS |
1096 | } |
1097 | } | |
1098 | ||
66e1707b | 1099 | *scanned = scan; |
cc8e970c KM |
1100 | |
1101 | trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, | |
1102 | 0, 0, 0, mode); | |
1103 | ||
66e1707b BS |
1104 | return nr_taken; |
1105 | } | |
1106 | ||
6d61ef40 BS |
1107 | #define mem_cgroup_from_res_counter(counter, member) \ |
1108 | container_of(counter, struct mem_cgroup, member) | |
1109 | ||
b85a96c0 DN |
1110 | static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) |
1111 | { | |
1112 | if (do_swap_account) { | |
1113 | if (res_counter_check_under_limit(&mem->res) && | |
1114 | res_counter_check_under_limit(&mem->memsw)) | |
1115 | return true; | |
1116 | } else | |
1117 | if (res_counter_check_under_limit(&mem->res)) | |
1118 | return true; | |
1119 | return false; | |
1120 | } | |
1121 | ||
a7885eb8 KM |
1122 | static unsigned int get_swappiness(struct mem_cgroup *memcg) |
1123 | { | |
1124 | struct cgroup *cgrp = memcg->css.cgroup; | |
1125 | unsigned int swappiness; | |
1126 | ||
1127 | /* root ? */ | |
1128 | if (cgrp->parent == NULL) | |
1129 | return vm_swappiness; | |
1130 | ||
1131 | spin_lock(&memcg->reclaim_param_lock); | |
1132 | swappiness = memcg->swappiness; | |
1133 | spin_unlock(&memcg->reclaim_param_lock); | |
1134 | ||
1135 | return swappiness; | |
1136 | } | |
1137 | ||
32047e2a KH |
1138 | static void mem_cgroup_start_move(struct mem_cgroup *mem) |
1139 | { | |
1140 | int cpu; | |
1489ebad KH |
1141 | |
1142 | get_online_cpus(); | |
1143 | spin_lock(&mem->pcp_counter_lock); | |
1144 | for_each_online_cpu(cpu) | |
32047e2a | 1145 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; |
1489ebad KH |
1146 | mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; |
1147 | spin_unlock(&mem->pcp_counter_lock); | |
1148 | put_online_cpus(); | |
32047e2a KH |
1149 | |
1150 | synchronize_rcu(); | |
1151 | } | |
1152 | ||
1153 | static void mem_cgroup_end_move(struct mem_cgroup *mem) | |
1154 | { | |
1155 | int cpu; | |
1156 | ||
1157 | if (!mem) | |
1158 | return; | |
1489ebad KH |
1159 | get_online_cpus(); |
1160 | spin_lock(&mem->pcp_counter_lock); | |
1161 | for_each_online_cpu(cpu) | |
32047e2a | 1162 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; |
1489ebad KH |
1163 | mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; |
1164 | spin_unlock(&mem->pcp_counter_lock); | |
1165 | put_online_cpus(); | |
32047e2a KH |
1166 | } |
1167 | /* | |
1168 | * 2 routines for checking "mem" is under move_account() or not. | |
1169 | * | |
1170 | * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used | |
1171 | * for avoiding race in accounting. If true, | |
1172 | * pc->mem_cgroup may be overwritten. | |
1173 | * | |
1174 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or | |
1175 | * under hierarchy of moving cgroups. This is for | |
1176 | * waiting at hith-memory prressure caused by "move". | |
1177 | */ | |
1178 | ||
1179 | static bool mem_cgroup_stealed(struct mem_cgroup *mem) | |
1180 | { | |
1181 | VM_BUG_ON(!rcu_read_lock_held()); | |
1182 | return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; | |
1183 | } | |
4b534334 KH |
1184 | |
1185 | static bool mem_cgroup_under_move(struct mem_cgroup *mem) | |
1186 | { | |
2bd9bb20 KH |
1187 | struct mem_cgroup *from; |
1188 | struct mem_cgroup *to; | |
4b534334 | 1189 | bool ret = false; |
2bd9bb20 KH |
1190 | /* |
1191 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1192 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1193 | */ | |
1194 | spin_lock(&mc.lock); | |
1195 | from = mc.from; | |
1196 | to = mc.to; | |
1197 | if (!from) | |
1198 | goto unlock; | |
1199 | if (from == mem || to == mem | |
1200 | || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) | |
1201 | || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) | |
1202 | ret = true; | |
1203 | unlock: | |
1204 | spin_unlock(&mc.lock); | |
4b534334 KH |
1205 | return ret; |
1206 | } | |
1207 | ||
1208 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) | |
1209 | { | |
1210 | if (mc.moving_task && current != mc.moving_task) { | |
1211 | if (mem_cgroup_under_move(mem)) { | |
1212 | DEFINE_WAIT(wait); | |
1213 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1214 | /* moving charge context might have finished. */ | |
1215 | if (mc.moving_task) | |
1216 | schedule(); | |
1217 | finish_wait(&mc.waitq, &wait); | |
1218 | return true; | |
1219 | } | |
1220 | } | |
1221 | return false; | |
1222 | } | |
1223 | ||
e222432b | 1224 | /** |
6a6135b6 | 1225 | * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. |
e222432b BS |
1226 | * @memcg: The memory cgroup that went over limit |
1227 | * @p: Task that is going to be killed | |
1228 | * | |
1229 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1230 | * enabled | |
1231 | */ | |
1232 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1233 | { | |
1234 | struct cgroup *task_cgrp; | |
1235 | struct cgroup *mem_cgrp; | |
1236 | /* | |
1237 | * Need a buffer in BSS, can't rely on allocations. The code relies | |
1238 | * on the assumption that OOM is serialized for memory controller. | |
1239 | * If this assumption is broken, revisit this code. | |
1240 | */ | |
1241 | static char memcg_name[PATH_MAX]; | |
1242 | int ret; | |
1243 | ||
d31f56db | 1244 | if (!memcg || !p) |
e222432b BS |
1245 | return; |
1246 | ||
1247 | ||
1248 | rcu_read_lock(); | |
1249 | ||
1250 | mem_cgrp = memcg->css.cgroup; | |
1251 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | |
1252 | ||
1253 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | |
1254 | if (ret < 0) { | |
1255 | /* | |
1256 | * Unfortunately, we are unable to convert to a useful name | |
1257 | * But we'll still print out the usage information | |
1258 | */ | |
1259 | rcu_read_unlock(); | |
1260 | goto done; | |
1261 | } | |
1262 | rcu_read_unlock(); | |
1263 | ||
1264 | printk(KERN_INFO "Task in %s killed", memcg_name); | |
1265 | ||
1266 | rcu_read_lock(); | |
1267 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | |
1268 | if (ret < 0) { | |
1269 | rcu_read_unlock(); | |
1270 | goto done; | |
1271 | } | |
1272 | rcu_read_unlock(); | |
1273 | ||
1274 | /* | |
1275 | * Continues from above, so we don't need an KERN_ level | |
1276 | */ | |
1277 | printk(KERN_CONT " as a result of limit of %s\n", memcg_name); | |
1278 | done: | |
1279 | ||
1280 | printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", | |
1281 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, | |
1282 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | |
1283 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); | |
1284 | printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " | |
1285 | "failcnt %llu\n", | |
1286 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, | |
1287 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | |
1288 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | |
1289 | } | |
1290 | ||
81d39c20 KH |
1291 | /* |
1292 | * This function returns the number of memcg under hierarchy tree. Returns | |
1293 | * 1(self count) if no children. | |
1294 | */ | |
1295 | static int mem_cgroup_count_children(struct mem_cgroup *mem) | |
1296 | { | |
1297 | int num = 0; | |
7d74b06f KH |
1298 | struct mem_cgroup *iter; |
1299 | ||
1300 | for_each_mem_cgroup_tree(iter, mem) | |
1301 | num++; | |
81d39c20 KH |
1302 | return num; |
1303 | } | |
1304 | ||
a63d83f4 DR |
1305 | /* |
1306 | * Return the memory (and swap, if configured) limit for a memcg. | |
1307 | */ | |
1308 | u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) | |
1309 | { | |
1310 | u64 limit; | |
1311 | u64 memsw; | |
1312 | ||
f3e8eb70 JW |
1313 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
1314 | limit += total_swap_pages << PAGE_SHIFT; | |
1315 | ||
a63d83f4 DR |
1316 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
1317 | /* | |
1318 | * If memsw is finite and limits the amount of swap space available | |
1319 | * to this memcg, return that limit. | |
1320 | */ | |
1321 | return min(limit, memsw); | |
1322 | } | |
1323 | ||
6d61ef40 | 1324 | /* |
04046e1a KH |
1325 | * Visit the first child (need not be the first child as per the ordering |
1326 | * of the cgroup list, since we track last_scanned_child) of @mem and use | |
1327 | * that to reclaim free pages from. | |
1328 | */ | |
1329 | static struct mem_cgroup * | |
1330 | mem_cgroup_select_victim(struct mem_cgroup *root_mem) | |
1331 | { | |
1332 | struct mem_cgroup *ret = NULL; | |
1333 | struct cgroup_subsys_state *css; | |
1334 | int nextid, found; | |
1335 | ||
1336 | if (!root_mem->use_hierarchy) { | |
1337 | css_get(&root_mem->css); | |
1338 | ret = root_mem; | |
1339 | } | |
1340 | ||
1341 | while (!ret) { | |
1342 | rcu_read_lock(); | |
1343 | nextid = root_mem->last_scanned_child + 1; | |
1344 | css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, | |
1345 | &found); | |
1346 | if (css && css_tryget(css)) | |
1347 | ret = container_of(css, struct mem_cgroup, css); | |
1348 | ||
1349 | rcu_read_unlock(); | |
1350 | /* Updates scanning parameter */ | |
1351 | spin_lock(&root_mem->reclaim_param_lock); | |
1352 | if (!css) { | |
1353 | /* this means start scan from ID:1 */ | |
1354 | root_mem->last_scanned_child = 0; | |
1355 | } else | |
1356 | root_mem->last_scanned_child = found; | |
1357 | spin_unlock(&root_mem->reclaim_param_lock); | |
1358 | } | |
1359 | ||
1360 | return ret; | |
1361 | } | |
1362 | ||
1363 | /* | |
1364 | * Scan the hierarchy if needed to reclaim memory. We remember the last child | |
1365 | * we reclaimed from, so that we don't end up penalizing one child extensively | |
1366 | * based on its position in the children list. | |
6d61ef40 BS |
1367 | * |
1368 | * root_mem is the original ancestor that we've been reclaim from. | |
04046e1a KH |
1369 | * |
1370 | * We give up and return to the caller when we visit root_mem twice. | |
1371 | * (other groups can be removed while we're walking....) | |
81d39c20 KH |
1372 | * |
1373 | * If shrink==true, for avoiding to free too much, this returns immedieately. | |
6d61ef40 BS |
1374 | */ |
1375 | static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, | |
4e416953 | 1376 | struct zone *zone, |
75822b44 BS |
1377 | gfp_t gfp_mask, |
1378 | unsigned long reclaim_options) | |
6d61ef40 | 1379 | { |
04046e1a KH |
1380 | struct mem_cgroup *victim; |
1381 | int ret, total = 0; | |
1382 | int loop = 0; | |
75822b44 BS |
1383 | bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; |
1384 | bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; | |
4e416953 BS |
1385 | bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; |
1386 | unsigned long excess = mem_cgroup_get_excess(root_mem); | |
04046e1a | 1387 | |
22a668d7 KH |
1388 | /* If memsw_is_minimum==1, swap-out is of-no-use. */ |
1389 | if (root_mem->memsw_is_minimum) | |
1390 | noswap = true; | |
1391 | ||
4e416953 | 1392 | while (1) { |
04046e1a | 1393 | victim = mem_cgroup_select_victim(root_mem); |
4e416953 | 1394 | if (victim == root_mem) { |
04046e1a | 1395 | loop++; |
cdec2e42 KH |
1396 | if (loop >= 1) |
1397 | drain_all_stock_async(); | |
4e416953 BS |
1398 | if (loop >= 2) { |
1399 | /* | |
1400 | * If we have not been able to reclaim | |
1401 | * anything, it might because there are | |
1402 | * no reclaimable pages under this hierarchy | |
1403 | */ | |
1404 | if (!check_soft || !total) { | |
1405 | css_put(&victim->css); | |
1406 | break; | |
1407 | } | |
1408 | /* | |
1409 | * We want to do more targetted reclaim. | |
1410 | * excess >> 2 is not to excessive so as to | |
1411 | * reclaim too much, nor too less that we keep | |
1412 | * coming back to reclaim from this cgroup | |
1413 | */ | |
1414 | if (total >= (excess >> 2) || | |
1415 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { | |
1416 | css_put(&victim->css); | |
1417 | break; | |
1418 | } | |
1419 | } | |
1420 | } | |
c62b1a3b | 1421 | if (!mem_cgroup_local_usage(victim)) { |
04046e1a KH |
1422 | /* this cgroup's local usage == 0 */ |
1423 | css_put(&victim->css); | |
6d61ef40 BS |
1424 | continue; |
1425 | } | |
04046e1a | 1426 | /* we use swappiness of local cgroup */ |
4e416953 BS |
1427 | if (check_soft) |
1428 | ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, | |
14fec796 | 1429 | noswap, get_swappiness(victim), zone); |
4e416953 BS |
1430 | else |
1431 | ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, | |
1432 | noswap, get_swappiness(victim)); | |
04046e1a | 1433 | css_put(&victim->css); |
81d39c20 KH |
1434 | /* |
1435 | * At shrinking usage, we can't check we should stop here or | |
1436 | * reclaim more. It's depends on callers. last_scanned_child | |
1437 | * will work enough for keeping fairness under tree. | |
1438 | */ | |
1439 | if (shrink) | |
1440 | return ret; | |
04046e1a | 1441 | total += ret; |
4e416953 BS |
1442 | if (check_soft) { |
1443 | if (res_counter_check_under_soft_limit(&root_mem->res)) | |
1444 | return total; | |
1445 | } else if (mem_cgroup_check_under_limit(root_mem)) | |
04046e1a | 1446 | return 1 + total; |
6d61ef40 | 1447 | } |
04046e1a | 1448 | return total; |
6d61ef40 BS |
1449 | } |
1450 | ||
867578cb KH |
1451 | /* |
1452 | * Check OOM-Killer is already running under our hierarchy. | |
1453 | * If someone is running, return false. | |
1454 | */ | |
1455 | static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) | |
1456 | { | |
7d74b06f KH |
1457 | int x, lock_count = 0; |
1458 | struct mem_cgroup *iter; | |
a636b327 | 1459 | |
7d74b06f KH |
1460 | for_each_mem_cgroup_tree(iter, mem) { |
1461 | x = atomic_inc_return(&iter->oom_lock); | |
1462 | lock_count = max(x, lock_count); | |
1463 | } | |
867578cb KH |
1464 | |
1465 | if (lock_count == 1) | |
1466 | return true; | |
1467 | return false; | |
a636b327 | 1468 | } |
0b7f569e | 1469 | |
7d74b06f | 1470 | static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) |
0b7f569e | 1471 | { |
7d74b06f KH |
1472 | struct mem_cgroup *iter; |
1473 | ||
867578cb KH |
1474 | /* |
1475 | * When a new child is created while the hierarchy is under oom, | |
1476 | * mem_cgroup_oom_lock() may not be called. We have to use | |
1477 | * atomic_add_unless() here. | |
1478 | */ | |
7d74b06f KH |
1479 | for_each_mem_cgroup_tree(iter, mem) |
1480 | atomic_add_unless(&iter->oom_lock, -1, 0); | |
0b7f569e KH |
1481 | return 0; |
1482 | } | |
1483 | ||
867578cb KH |
1484 | |
1485 | static DEFINE_MUTEX(memcg_oom_mutex); | |
1486 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); | |
1487 | ||
dc98df5a KH |
1488 | struct oom_wait_info { |
1489 | struct mem_cgroup *mem; | |
1490 | wait_queue_t wait; | |
1491 | }; | |
1492 | ||
1493 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
1494 | unsigned mode, int sync, void *arg) | |
1495 | { | |
1496 | struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg; | |
1497 | struct oom_wait_info *oom_wait_info; | |
1498 | ||
1499 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
1500 | ||
1501 | if (oom_wait_info->mem == wake_mem) | |
1502 | goto wakeup; | |
1503 | /* if no hierarchy, no match */ | |
1504 | if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy) | |
1505 | return 0; | |
1506 | /* | |
1507 | * Both of oom_wait_info->mem and wake_mem are stable under us. | |
1508 | * Then we can use css_is_ancestor without taking care of RCU. | |
1509 | */ | |
1510 | if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) && | |
1511 | !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css)) | |
1512 | return 0; | |
1513 | ||
1514 | wakeup: | |
1515 | return autoremove_wake_function(wait, mode, sync, arg); | |
1516 | } | |
1517 | ||
1518 | static void memcg_wakeup_oom(struct mem_cgroup *mem) | |
1519 | { | |
1520 | /* for filtering, pass "mem" as argument. */ | |
1521 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); | |
1522 | } | |
1523 | ||
3c11ecf4 KH |
1524 | static void memcg_oom_recover(struct mem_cgroup *mem) |
1525 | { | |
2bd9bb20 | 1526 | if (mem && atomic_read(&mem->oom_lock)) |
3c11ecf4 KH |
1527 | memcg_wakeup_oom(mem); |
1528 | } | |
1529 | ||
867578cb KH |
1530 | /* |
1531 | * try to call OOM killer. returns false if we should exit memory-reclaim loop. | |
1532 | */ | |
1533 | bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) | |
0b7f569e | 1534 | { |
dc98df5a | 1535 | struct oom_wait_info owait; |
3c11ecf4 | 1536 | bool locked, need_to_kill; |
867578cb | 1537 | |
dc98df5a KH |
1538 | owait.mem = mem; |
1539 | owait.wait.flags = 0; | |
1540 | owait.wait.func = memcg_oom_wake_function; | |
1541 | owait.wait.private = current; | |
1542 | INIT_LIST_HEAD(&owait.wait.task_list); | |
3c11ecf4 | 1543 | need_to_kill = true; |
867578cb KH |
1544 | /* At first, try to OOM lock hierarchy under mem.*/ |
1545 | mutex_lock(&memcg_oom_mutex); | |
1546 | locked = mem_cgroup_oom_lock(mem); | |
1547 | /* | |
1548 | * Even if signal_pending(), we can't quit charge() loop without | |
1549 | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL | |
1550 | * under OOM is always welcomed, use TASK_KILLABLE here. | |
1551 | */ | |
3c11ecf4 KH |
1552 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
1553 | if (!locked || mem->oom_kill_disable) | |
1554 | need_to_kill = false; | |
1555 | if (locked) | |
9490ff27 | 1556 | mem_cgroup_oom_notify(mem); |
867578cb KH |
1557 | mutex_unlock(&memcg_oom_mutex); |
1558 | ||
3c11ecf4 KH |
1559 | if (need_to_kill) { |
1560 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
867578cb | 1561 | mem_cgroup_out_of_memory(mem, mask); |
3c11ecf4 | 1562 | } else { |
867578cb | 1563 | schedule(); |
dc98df5a | 1564 | finish_wait(&memcg_oom_waitq, &owait.wait); |
867578cb KH |
1565 | } |
1566 | mutex_lock(&memcg_oom_mutex); | |
1567 | mem_cgroup_oom_unlock(mem); | |
dc98df5a | 1568 | memcg_wakeup_oom(mem); |
867578cb KH |
1569 | mutex_unlock(&memcg_oom_mutex); |
1570 | ||
1571 | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) | |
1572 | return false; | |
1573 | /* Give chance to dying process */ | |
1574 | schedule_timeout(1); | |
1575 | return true; | |
0b7f569e KH |
1576 | } |
1577 | ||
d69b042f BS |
1578 | /* |
1579 | * Currently used to update mapped file statistics, but the routine can be | |
1580 | * generalized to update other statistics as well. | |
32047e2a KH |
1581 | * |
1582 | * Notes: Race condition | |
1583 | * | |
1584 | * We usually use page_cgroup_lock() for accessing page_cgroup member but | |
1585 | * it tends to be costly. But considering some conditions, we doesn't need | |
1586 | * to do so _always_. | |
1587 | * | |
1588 | * Considering "charge", lock_page_cgroup() is not required because all | |
1589 | * file-stat operations happen after a page is attached to radix-tree. There | |
1590 | * are no race with "charge". | |
1591 | * | |
1592 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | |
1593 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | |
1594 | * if there are race with "uncharge". Statistics itself is properly handled | |
1595 | * by flags. | |
1596 | * | |
1597 | * Considering "move", this is an only case we see a race. To make the race | |
1598 | * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are | |
1599 | * possibility of race condition. If there is, we take a lock. | |
d69b042f | 1600 | */ |
26174efd | 1601 | |
2a7106f2 GT |
1602 | void mem_cgroup_update_page_stat(struct page *page, |
1603 | enum mem_cgroup_page_stat_item idx, int val) | |
d69b042f BS |
1604 | { |
1605 | struct mem_cgroup *mem; | |
32047e2a KH |
1606 | struct page_cgroup *pc = lookup_page_cgroup(page); |
1607 | bool need_unlock = false; | |
dbd4ea78 | 1608 | unsigned long uninitialized_var(flags); |
d69b042f | 1609 | |
d69b042f BS |
1610 | if (unlikely(!pc)) |
1611 | return; | |
1612 | ||
32047e2a | 1613 | rcu_read_lock(); |
d69b042f | 1614 | mem = pc->mem_cgroup; |
32047e2a KH |
1615 | if (unlikely(!mem || !PageCgroupUsed(pc))) |
1616 | goto out; | |
1617 | /* pc->mem_cgroup is unstable ? */ | |
1618 | if (unlikely(mem_cgroup_stealed(mem))) { | |
1619 | /* take a lock against to access pc->mem_cgroup */ | |
dbd4ea78 | 1620 | move_lock_page_cgroup(pc, &flags); |
32047e2a KH |
1621 | need_unlock = true; |
1622 | mem = pc->mem_cgroup; | |
1623 | if (!mem || !PageCgroupUsed(pc)) | |
1624 | goto out; | |
1625 | } | |
26174efd | 1626 | |
26174efd | 1627 | switch (idx) { |
2a7106f2 | 1628 | case MEMCG_NR_FILE_MAPPED: |
26174efd KH |
1629 | if (val > 0) |
1630 | SetPageCgroupFileMapped(pc); | |
1631 | else if (!page_mapped(page)) | |
0c270f8f | 1632 | ClearPageCgroupFileMapped(pc); |
2a7106f2 | 1633 | idx = MEM_CGROUP_STAT_FILE_MAPPED; |
26174efd KH |
1634 | break; |
1635 | default: | |
1636 | BUG(); | |
8725d541 | 1637 | } |
d69b042f | 1638 | |
2a7106f2 GT |
1639 | this_cpu_add(mem->stat->count[idx], val); |
1640 | ||
32047e2a KH |
1641 | out: |
1642 | if (unlikely(need_unlock)) | |
dbd4ea78 | 1643 | move_unlock_page_cgroup(pc, &flags); |
32047e2a KH |
1644 | rcu_read_unlock(); |
1645 | return; | |
d69b042f | 1646 | } |
2a7106f2 | 1647 | EXPORT_SYMBOL(mem_cgroup_update_page_stat); |
26174efd | 1648 | |
cdec2e42 KH |
1649 | /* |
1650 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
1651 | * TODO: maybe necessary to use big numbers in big irons. | |
1652 | */ | |
1653 | #define CHARGE_SIZE (32 * PAGE_SIZE) | |
1654 | struct memcg_stock_pcp { | |
1655 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
1656 | int charge; | |
1657 | struct work_struct work; | |
1658 | }; | |
1659 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
1660 | static atomic_t memcg_drain_count; | |
1661 | ||
1662 | /* | |
1663 | * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed | |
1664 | * from local stock and true is returned. If the stock is 0 or charges from a | |
1665 | * cgroup which is not current target, returns false. This stock will be | |
1666 | * refilled. | |
1667 | */ | |
1668 | static bool consume_stock(struct mem_cgroup *mem) | |
1669 | { | |
1670 | struct memcg_stock_pcp *stock; | |
1671 | bool ret = true; | |
1672 | ||
1673 | stock = &get_cpu_var(memcg_stock); | |
1674 | if (mem == stock->cached && stock->charge) | |
1675 | stock->charge -= PAGE_SIZE; | |
1676 | else /* need to call res_counter_charge */ | |
1677 | ret = false; | |
1678 | put_cpu_var(memcg_stock); | |
1679 | return ret; | |
1680 | } | |
1681 | ||
1682 | /* | |
1683 | * Returns stocks cached in percpu to res_counter and reset cached information. | |
1684 | */ | |
1685 | static void drain_stock(struct memcg_stock_pcp *stock) | |
1686 | { | |
1687 | struct mem_cgroup *old = stock->cached; | |
1688 | ||
1689 | if (stock->charge) { | |
1690 | res_counter_uncharge(&old->res, stock->charge); | |
1691 | if (do_swap_account) | |
1692 | res_counter_uncharge(&old->memsw, stock->charge); | |
1693 | } | |
1694 | stock->cached = NULL; | |
1695 | stock->charge = 0; | |
1696 | } | |
1697 | ||
1698 | /* | |
1699 | * This must be called under preempt disabled or must be called by | |
1700 | * a thread which is pinned to local cpu. | |
1701 | */ | |
1702 | static void drain_local_stock(struct work_struct *dummy) | |
1703 | { | |
1704 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | |
1705 | drain_stock(stock); | |
1706 | } | |
1707 | ||
1708 | /* | |
1709 | * Cache charges(val) which is from res_counter, to local per_cpu area. | |
320cc51d | 1710 | * This will be consumed by consume_stock() function, later. |
cdec2e42 KH |
1711 | */ |
1712 | static void refill_stock(struct mem_cgroup *mem, int val) | |
1713 | { | |
1714 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
1715 | ||
1716 | if (stock->cached != mem) { /* reset if necessary */ | |
1717 | drain_stock(stock); | |
1718 | stock->cached = mem; | |
1719 | } | |
1720 | stock->charge += val; | |
1721 | put_cpu_var(memcg_stock); | |
1722 | } | |
1723 | ||
1724 | /* | |
1725 | * Tries to drain stocked charges in other cpus. This function is asynchronous | |
1726 | * and just put a work per cpu for draining localy on each cpu. Caller can | |
1727 | * expects some charges will be back to res_counter later but cannot wait for | |
1728 | * it. | |
1729 | */ | |
1730 | static void drain_all_stock_async(void) | |
1731 | { | |
1732 | int cpu; | |
1733 | /* This function is for scheduling "drain" in asynchronous way. | |
1734 | * The result of "drain" is not directly handled by callers. Then, | |
1735 | * if someone is calling drain, we don't have to call drain more. | |
1736 | * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if | |
1737 | * there is a race. We just do loose check here. | |
1738 | */ | |
1739 | if (atomic_read(&memcg_drain_count)) | |
1740 | return; | |
1741 | /* Notify other cpus that system-wide "drain" is running */ | |
1742 | atomic_inc(&memcg_drain_count); | |
1743 | get_online_cpus(); | |
1744 | for_each_online_cpu(cpu) { | |
1745 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
1746 | schedule_work_on(cpu, &stock->work); | |
1747 | } | |
1748 | put_online_cpus(); | |
1749 | atomic_dec(&memcg_drain_count); | |
1750 | /* We don't wait for flush_work */ | |
1751 | } | |
1752 | ||
1753 | /* This is a synchronous drain interface. */ | |
1754 | static void drain_all_stock_sync(void) | |
1755 | { | |
1756 | /* called when force_empty is called */ | |
1757 | atomic_inc(&memcg_drain_count); | |
1758 | schedule_on_each_cpu(drain_local_stock); | |
1759 | atomic_dec(&memcg_drain_count); | |
1760 | } | |
1761 | ||
711d3d2c KH |
1762 | /* |
1763 | * This function drains percpu counter value from DEAD cpu and | |
1764 | * move it to local cpu. Note that this function can be preempted. | |
1765 | */ | |
1766 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) | |
1767 | { | |
1768 | int i; | |
1769 | ||
1770 | spin_lock(&mem->pcp_counter_lock); | |
1771 | for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { | |
1772 | s64 x = per_cpu(mem->stat->count[i], cpu); | |
1773 | ||
1774 | per_cpu(mem->stat->count[i], cpu) = 0; | |
1775 | mem->nocpu_base.count[i] += x; | |
1776 | } | |
1489ebad KH |
1777 | /* need to clear ON_MOVE value, works as a kind of lock. */ |
1778 | per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; | |
1779 | spin_unlock(&mem->pcp_counter_lock); | |
1780 | } | |
1781 | ||
1782 | static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) | |
1783 | { | |
1784 | int idx = MEM_CGROUP_ON_MOVE; | |
1785 | ||
1786 | spin_lock(&mem->pcp_counter_lock); | |
1787 | per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; | |
711d3d2c KH |
1788 | spin_unlock(&mem->pcp_counter_lock); |
1789 | } | |
1790 | ||
1791 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, | |
cdec2e42 KH |
1792 | unsigned long action, |
1793 | void *hcpu) | |
1794 | { | |
1795 | int cpu = (unsigned long)hcpu; | |
1796 | struct memcg_stock_pcp *stock; | |
711d3d2c | 1797 | struct mem_cgroup *iter; |
cdec2e42 | 1798 | |
1489ebad KH |
1799 | if ((action == CPU_ONLINE)) { |
1800 | for_each_mem_cgroup_all(iter) | |
1801 | synchronize_mem_cgroup_on_move(iter, cpu); | |
1802 | return NOTIFY_OK; | |
1803 | } | |
1804 | ||
711d3d2c | 1805 | if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) |
cdec2e42 | 1806 | return NOTIFY_OK; |
711d3d2c KH |
1807 | |
1808 | for_each_mem_cgroup_all(iter) | |
1809 | mem_cgroup_drain_pcp_counter(iter, cpu); | |
1810 | ||
cdec2e42 KH |
1811 | stock = &per_cpu(memcg_stock, cpu); |
1812 | drain_stock(stock); | |
1813 | return NOTIFY_OK; | |
1814 | } | |
1815 | ||
4b534334 KH |
1816 | |
1817 | /* See __mem_cgroup_try_charge() for details */ | |
1818 | enum { | |
1819 | CHARGE_OK, /* success */ | |
1820 | CHARGE_RETRY, /* need to retry but retry is not bad */ | |
1821 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | |
1822 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | |
1823 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | |
1824 | }; | |
1825 | ||
1826 | static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, | |
1827 | int csize, bool oom_check) | |
1828 | { | |
1829 | struct mem_cgroup *mem_over_limit; | |
1830 | struct res_counter *fail_res; | |
1831 | unsigned long flags = 0; | |
1832 | int ret; | |
1833 | ||
1834 | ret = res_counter_charge(&mem->res, csize, &fail_res); | |
1835 | ||
1836 | if (likely(!ret)) { | |
1837 | if (!do_swap_account) | |
1838 | return CHARGE_OK; | |
1839 | ret = res_counter_charge(&mem->memsw, csize, &fail_res); | |
1840 | if (likely(!ret)) | |
1841 | return CHARGE_OK; | |
1842 | ||
1843 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); | |
1844 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | |
1845 | } else | |
1846 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | |
1847 | ||
1848 | if (csize > PAGE_SIZE) /* change csize and retry */ | |
1849 | return CHARGE_RETRY; | |
1850 | ||
1851 | if (!(gfp_mask & __GFP_WAIT)) | |
1852 | return CHARGE_WOULDBLOCK; | |
1853 | ||
1854 | ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, | |
1855 | gfp_mask, flags); | |
1856 | /* | |
1857 | * try_to_free_mem_cgroup_pages() might not give us a full | |
1858 | * picture of reclaim. Some pages are reclaimed and might be | |
1859 | * moved to swap cache or just unmapped from the cgroup. | |
1860 | * Check the limit again to see if the reclaim reduced the | |
1861 | * current usage of the cgroup before giving up | |
1862 | */ | |
1863 | if (ret || mem_cgroup_check_under_limit(mem_over_limit)) | |
1864 | return CHARGE_RETRY; | |
1865 | ||
1866 | /* | |
1867 | * At task move, charge accounts can be doubly counted. So, it's | |
1868 | * better to wait until the end of task_move if something is going on. | |
1869 | */ | |
1870 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
1871 | return CHARGE_RETRY; | |
1872 | ||
1873 | /* If we don't need to call oom-killer at el, return immediately */ | |
1874 | if (!oom_check) | |
1875 | return CHARGE_NOMEM; | |
1876 | /* check OOM */ | |
1877 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) | |
1878 | return CHARGE_OOM_DIE; | |
1879 | ||
1880 | return CHARGE_RETRY; | |
1881 | } | |
1882 | ||
f817ed48 KH |
1883 | /* |
1884 | * Unlike exported interface, "oom" parameter is added. if oom==true, | |
1885 | * oom-killer can be invoked. | |
8a9f3ccd | 1886 | */ |
f817ed48 | 1887 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
ec168510 AA |
1888 | gfp_t gfp_mask, |
1889 | struct mem_cgroup **memcg, bool oom, | |
1890 | int page_size) | |
8a9f3ccd | 1891 | { |
4b534334 KH |
1892 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
1893 | struct mem_cgroup *mem = NULL; | |
1894 | int ret; | |
ec168510 | 1895 | int csize = max(CHARGE_SIZE, (unsigned long) page_size); |
a636b327 | 1896 | |
867578cb KH |
1897 | /* |
1898 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage | |
1899 | * in system level. So, allow to go ahead dying process in addition to | |
1900 | * MEMDIE process. | |
1901 | */ | |
1902 | if (unlikely(test_thread_flag(TIF_MEMDIE) | |
1903 | || fatal_signal_pending(current))) | |
1904 | goto bypass; | |
a636b327 | 1905 | |
8a9f3ccd | 1906 | /* |
3be91277 HD |
1907 | * We always charge the cgroup the mm_struct belongs to. |
1908 | * The mm_struct's mem_cgroup changes on task migration if the | |
8a9f3ccd BS |
1909 | * thread group leader migrates. It's possible that mm is not |
1910 | * set, if so charge the init_mm (happens for pagecache usage). | |
1911 | */ | |
f75ca962 KH |
1912 | if (!*memcg && !mm) |
1913 | goto bypass; | |
1914 | again: | |
1915 | if (*memcg) { /* css should be a valid one */ | |
4b534334 | 1916 | mem = *memcg; |
f75ca962 KH |
1917 | VM_BUG_ON(css_is_removed(&mem->css)); |
1918 | if (mem_cgroup_is_root(mem)) | |
1919 | goto done; | |
ec168510 | 1920 | if (page_size == PAGE_SIZE && consume_stock(mem)) |
f75ca962 | 1921 | goto done; |
4b534334 KH |
1922 | css_get(&mem->css); |
1923 | } else { | |
f75ca962 | 1924 | struct task_struct *p; |
54595fe2 | 1925 | |
f75ca962 KH |
1926 | rcu_read_lock(); |
1927 | p = rcu_dereference(mm->owner); | |
f75ca962 | 1928 | /* |
ebb76ce1 KH |
1929 | * Because we don't have task_lock(), "p" can exit. |
1930 | * In that case, "mem" can point to root or p can be NULL with | |
1931 | * race with swapoff. Then, we have small risk of mis-accouning. | |
1932 | * But such kind of mis-account by race always happens because | |
1933 | * we don't have cgroup_mutex(). It's overkill and we allo that | |
1934 | * small race, here. | |
1935 | * (*) swapoff at el will charge against mm-struct not against | |
1936 | * task-struct. So, mm->owner can be NULL. | |
f75ca962 KH |
1937 | */ |
1938 | mem = mem_cgroup_from_task(p); | |
ebb76ce1 | 1939 | if (!mem || mem_cgroup_is_root(mem)) { |
f75ca962 KH |
1940 | rcu_read_unlock(); |
1941 | goto done; | |
1942 | } | |
ec168510 | 1943 | if (page_size == PAGE_SIZE && consume_stock(mem)) { |
f75ca962 KH |
1944 | /* |
1945 | * It seems dagerous to access memcg without css_get(). | |
1946 | * But considering how consume_stok works, it's not | |
1947 | * necessary. If consume_stock success, some charges | |
1948 | * from this memcg are cached on this cpu. So, we | |
1949 | * don't need to call css_get()/css_tryget() before | |
1950 | * calling consume_stock(). | |
1951 | */ | |
1952 | rcu_read_unlock(); | |
1953 | goto done; | |
1954 | } | |
1955 | /* after here, we may be blocked. we need to get refcnt */ | |
1956 | if (!css_tryget(&mem->css)) { | |
1957 | rcu_read_unlock(); | |
1958 | goto again; | |
1959 | } | |
1960 | rcu_read_unlock(); | |
1961 | } | |
8a9f3ccd | 1962 | |
4b534334 KH |
1963 | do { |
1964 | bool oom_check; | |
7a81b88c | 1965 | |
4b534334 | 1966 | /* If killed, bypass charge */ |
f75ca962 KH |
1967 | if (fatal_signal_pending(current)) { |
1968 | css_put(&mem->css); | |
4b534334 | 1969 | goto bypass; |
f75ca962 | 1970 | } |
6d61ef40 | 1971 | |
4b534334 KH |
1972 | oom_check = false; |
1973 | if (oom && !nr_oom_retries) { | |
1974 | oom_check = true; | |
1975 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
cdec2e42 | 1976 | } |
66e1707b | 1977 | |
4b534334 | 1978 | ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check); |
8033b97c | 1979 | |
4b534334 KH |
1980 | switch (ret) { |
1981 | case CHARGE_OK: | |
1982 | break; | |
1983 | case CHARGE_RETRY: /* not in OOM situation but retry */ | |
ec168510 | 1984 | csize = page_size; |
f75ca962 KH |
1985 | css_put(&mem->css); |
1986 | mem = NULL; | |
1987 | goto again; | |
4b534334 | 1988 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
f75ca962 | 1989 | css_put(&mem->css); |
4b534334 KH |
1990 | goto nomem; |
1991 | case CHARGE_NOMEM: /* OOM routine works */ | |
f75ca962 KH |
1992 | if (!oom) { |
1993 | css_put(&mem->css); | |
867578cb | 1994 | goto nomem; |
f75ca962 | 1995 | } |
4b534334 KH |
1996 | /* If oom, we never return -ENOMEM */ |
1997 | nr_oom_retries--; | |
1998 | break; | |
1999 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | |
f75ca962 | 2000 | css_put(&mem->css); |
867578cb | 2001 | goto bypass; |
66e1707b | 2002 | } |
4b534334 KH |
2003 | } while (ret != CHARGE_OK); |
2004 | ||
ec168510 AA |
2005 | if (csize > page_size) |
2006 | refill_stock(mem, csize - page_size); | |
f75ca962 | 2007 | css_put(&mem->css); |
0c3e73e8 | 2008 | done: |
f75ca962 | 2009 | *memcg = mem; |
7a81b88c KH |
2010 | return 0; |
2011 | nomem: | |
f75ca962 | 2012 | *memcg = NULL; |
7a81b88c | 2013 | return -ENOMEM; |
867578cb KH |
2014 | bypass: |
2015 | *memcg = NULL; | |
2016 | return 0; | |
7a81b88c | 2017 | } |
8a9f3ccd | 2018 | |
a3032a2c DN |
2019 | /* |
2020 | * Somemtimes we have to undo a charge we got by try_charge(). | |
2021 | * This function is for that and do uncharge, put css's refcnt. | |
2022 | * gotten by try_charge(). | |
2023 | */ | |
854ffa8d DN |
2024 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, |
2025 | unsigned long count) | |
a3032a2c DN |
2026 | { |
2027 | if (!mem_cgroup_is_root(mem)) { | |
854ffa8d | 2028 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); |
a3032a2c | 2029 | if (do_swap_account) |
854ffa8d | 2030 | res_counter_uncharge(&mem->memsw, PAGE_SIZE * count); |
a3032a2c | 2031 | } |
854ffa8d DN |
2032 | } |
2033 | ||
ec168510 AA |
2034 | static void mem_cgroup_cancel_charge(struct mem_cgroup *mem, |
2035 | int page_size) | |
854ffa8d | 2036 | { |
ec168510 | 2037 | __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT); |
a3032a2c DN |
2038 | } |
2039 | ||
a3b2d692 KH |
2040 | /* |
2041 | * A helper function to get mem_cgroup from ID. must be called under | |
2042 | * rcu_read_lock(). The caller must check css_is_removed() or some if | |
2043 | * it's concern. (dropping refcnt from swap can be called against removed | |
2044 | * memcg.) | |
2045 | */ | |
2046 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | |
2047 | { | |
2048 | struct cgroup_subsys_state *css; | |
2049 | ||
2050 | /* ID 0 is unused ID */ | |
2051 | if (!id) | |
2052 | return NULL; | |
2053 | css = css_lookup(&mem_cgroup_subsys, id); | |
2054 | if (!css) | |
2055 | return NULL; | |
2056 | return container_of(css, struct mem_cgroup, css); | |
2057 | } | |
2058 | ||
e42d9d5d | 2059 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
b5a84319 | 2060 | { |
e42d9d5d | 2061 | struct mem_cgroup *mem = NULL; |
3c776e64 | 2062 | struct page_cgroup *pc; |
a3b2d692 | 2063 | unsigned short id; |
b5a84319 KH |
2064 | swp_entry_t ent; |
2065 | ||
3c776e64 DN |
2066 | VM_BUG_ON(!PageLocked(page)); |
2067 | ||
3c776e64 | 2068 | pc = lookup_page_cgroup(page); |
c0bd3f63 | 2069 | lock_page_cgroup(pc); |
a3b2d692 | 2070 | if (PageCgroupUsed(pc)) { |
3c776e64 | 2071 | mem = pc->mem_cgroup; |
a3b2d692 KH |
2072 | if (mem && !css_tryget(&mem->css)) |
2073 | mem = NULL; | |
e42d9d5d | 2074 | } else if (PageSwapCache(page)) { |
3c776e64 | 2075 | ent.val = page_private(page); |
a3b2d692 KH |
2076 | id = lookup_swap_cgroup(ent); |
2077 | rcu_read_lock(); | |
2078 | mem = mem_cgroup_lookup(id); | |
2079 | if (mem && !css_tryget(&mem->css)) | |
2080 | mem = NULL; | |
2081 | rcu_read_unlock(); | |
3c776e64 | 2082 | } |
c0bd3f63 | 2083 | unlock_page_cgroup(pc); |
b5a84319 KH |
2084 | return mem; |
2085 | } | |
2086 | ||
7a81b88c | 2087 | /* |
a5e924f5 | 2088 | * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be |
7a81b88c KH |
2089 | * USED state. If already USED, uncharge and return. |
2090 | */ | |
152c9ccb DN |
2091 | static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem, |
2092 | struct page_cgroup *pc, | |
2093 | enum charge_type ctype) | |
7a81b88c | 2094 | { |
8a9f3ccd | 2095 | pc->mem_cgroup = mem; |
261fb61a KH |
2096 | /* |
2097 | * We access a page_cgroup asynchronously without lock_page_cgroup(). | |
2098 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | |
2099 | * is accessed after testing USED bit. To make pc->mem_cgroup visible | |
2100 | * before USED bit, we need memory barrier here. | |
2101 | * See mem_cgroup_add_lru_list(), etc. | |
2102 | */ | |
08e552c6 | 2103 | smp_wmb(); |
4b3bde4c BS |
2104 | switch (ctype) { |
2105 | case MEM_CGROUP_CHARGE_TYPE_CACHE: | |
2106 | case MEM_CGROUP_CHARGE_TYPE_SHMEM: | |
2107 | SetPageCgroupCache(pc); | |
2108 | SetPageCgroupUsed(pc); | |
2109 | break; | |
2110 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | |
2111 | ClearPageCgroupCache(pc); | |
2112 | SetPageCgroupUsed(pc); | |
2113 | break; | |
2114 | default: | |
2115 | break; | |
2116 | } | |
3be91277 | 2117 | |
08e552c6 | 2118 | mem_cgroup_charge_statistics(mem, pc, true); |
152c9ccb DN |
2119 | } |
2120 | ||
2121 | static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, | |
2122 | struct page_cgroup *pc, | |
2123 | enum charge_type ctype, | |
2124 | int page_size) | |
2125 | { | |
2126 | int i; | |
2127 | int count = page_size >> PAGE_SHIFT; | |
2128 | ||
2129 | /* try_charge() can return NULL to *memcg, taking care of it. */ | |
2130 | if (!mem) | |
2131 | return; | |
2132 | ||
2133 | lock_page_cgroup(pc); | |
2134 | if (unlikely(PageCgroupUsed(pc))) { | |
2135 | unlock_page_cgroup(pc); | |
2136 | mem_cgroup_cancel_charge(mem, page_size); | |
2137 | return; | |
2138 | } | |
2139 | ||
2140 | /* | |
2141 | * we don't need page_cgroup_lock about tail pages, becase they are not | |
2142 | * accessed by any other context at this point. | |
2143 | */ | |
2144 | for (i = 0; i < count; i++) | |
2145 | ____mem_cgroup_commit_charge(mem, pc + i, ctype); | |
52d4b9ac | 2146 | |
52d4b9ac | 2147 | unlock_page_cgroup(pc); |
430e4863 KH |
2148 | /* |
2149 | * "charge_statistics" updated event counter. Then, check it. | |
2150 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | |
2151 | * if they exceeds softlimit. | |
2152 | */ | |
d2265e6f | 2153 | memcg_check_events(mem, pc->page); |
7a81b88c | 2154 | } |
66e1707b | 2155 | |
f817ed48 | 2156 | /** |
57f9fd7d | 2157 | * __mem_cgroup_move_account - move account of the page |
f817ed48 KH |
2158 | * @pc: page_cgroup of the page. |
2159 | * @from: mem_cgroup which the page is moved from. | |
2160 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
854ffa8d | 2161 | * @uncharge: whether we should call uncharge and css_put against @from. |
f817ed48 KH |
2162 | * |
2163 | * The caller must confirm following. | |
08e552c6 | 2164 | * - page is not on LRU (isolate_page() is useful.) |
57f9fd7d | 2165 | * - the pc is locked, used, and ->mem_cgroup points to @from. |
f817ed48 | 2166 | * |
854ffa8d DN |
2167 | * This function doesn't do "charge" nor css_get to new cgroup. It should be |
2168 | * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is | |
2169 | * true, this function does "uncharge" from old cgroup, but it doesn't if | |
2170 | * @uncharge is false, so a caller should do "uncharge". | |
f817ed48 KH |
2171 | */ |
2172 | ||
57f9fd7d | 2173 | static void __mem_cgroup_move_account(struct page_cgroup *pc, |
854ffa8d | 2174 | struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) |
f817ed48 | 2175 | { |
f817ed48 | 2176 | VM_BUG_ON(from == to); |
08e552c6 | 2177 | VM_BUG_ON(PageLRU(pc->page)); |
112bc2e1 | 2178 | VM_BUG_ON(!page_is_cgroup_locked(pc)); |
57f9fd7d DN |
2179 | VM_BUG_ON(!PageCgroupUsed(pc)); |
2180 | VM_BUG_ON(pc->mem_cgroup != from); | |
f817ed48 | 2181 | |
8725d541 | 2182 | if (PageCgroupFileMapped(pc)) { |
c62b1a3b KH |
2183 | /* Update mapped_file data for mem_cgroup */ |
2184 | preempt_disable(); | |
2185 | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
2186 | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
2187 | preempt_enable(); | |
d69b042f | 2188 | } |
854ffa8d DN |
2189 | mem_cgroup_charge_statistics(from, pc, false); |
2190 | if (uncharge) | |
2191 | /* This is not "cancel", but cancel_charge does all we need. */ | |
ec168510 | 2192 | mem_cgroup_cancel_charge(from, PAGE_SIZE); |
d69b042f | 2193 | |
854ffa8d | 2194 | /* caller should have done css_get */ |
08e552c6 KH |
2195 | pc->mem_cgroup = to; |
2196 | mem_cgroup_charge_statistics(to, pc, true); | |
88703267 KH |
2197 | /* |
2198 | * We charges against "to" which may not have any tasks. Then, "to" | |
2199 | * can be under rmdir(). But in current implementation, caller of | |
4ffef5fe DN |
2200 | * this function is just force_empty() and move charge, so it's |
2201 | * garanteed that "to" is never removed. So, we don't check rmdir | |
2202 | * status here. | |
88703267 | 2203 | */ |
57f9fd7d DN |
2204 | } |
2205 | ||
2206 | /* | |
2207 | * check whether the @pc is valid for moving account and call | |
2208 | * __mem_cgroup_move_account() | |
2209 | */ | |
2210 | static int mem_cgroup_move_account(struct page_cgroup *pc, | |
854ffa8d | 2211 | struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge) |
57f9fd7d DN |
2212 | { |
2213 | int ret = -EINVAL; | |
dbd4ea78 KH |
2214 | unsigned long flags; |
2215 | ||
57f9fd7d DN |
2216 | lock_page_cgroup(pc); |
2217 | if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { | |
dbd4ea78 | 2218 | move_lock_page_cgroup(pc, &flags); |
854ffa8d | 2219 | __mem_cgroup_move_account(pc, from, to, uncharge); |
dbd4ea78 | 2220 | move_unlock_page_cgroup(pc, &flags); |
57f9fd7d DN |
2221 | ret = 0; |
2222 | } | |
2223 | unlock_page_cgroup(pc); | |
d2265e6f KH |
2224 | /* |
2225 | * check events | |
2226 | */ | |
2227 | memcg_check_events(to, pc->page); | |
2228 | memcg_check_events(from, pc->page); | |
f817ed48 KH |
2229 | return ret; |
2230 | } | |
2231 | ||
2232 | /* | |
2233 | * move charges to its parent. | |
2234 | */ | |
2235 | ||
2236 | static int mem_cgroup_move_parent(struct page_cgroup *pc, | |
2237 | struct mem_cgroup *child, | |
2238 | gfp_t gfp_mask) | |
2239 | { | |
08e552c6 | 2240 | struct page *page = pc->page; |
f817ed48 KH |
2241 | struct cgroup *cg = child->css.cgroup; |
2242 | struct cgroup *pcg = cg->parent; | |
2243 | struct mem_cgroup *parent; | |
f817ed48 KH |
2244 | int ret; |
2245 | ||
2246 | /* Is ROOT ? */ | |
2247 | if (!pcg) | |
2248 | return -EINVAL; | |
2249 | ||
57f9fd7d DN |
2250 | ret = -EBUSY; |
2251 | if (!get_page_unless_zero(page)) | |
2252 | goto out; | |
2253 | if (isolate_lru_page(page)) | |
2254 | goto put; | |
08e552c6 | 2255 | |
f817ed48 | 2256 | parent = mem_cgroup_from_cont(pcg); |
ec168510 AA |
2257 | ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, |
2258 | PAGE_SIZE); | |
a636b327 | 2259 | if (ret || !parent) |
57f9fd7d | 2260 | goto put_back; |
f817ed48 | 2261 | |
854ffa8d DN |
2262 | ret = mem_cgroup_move_account(pc, child, parent, true); |
2263 | if (ret) | |
ec168510 | 2264 | mem_cgroup_cancel_charge(parent, PAGE_SIZE); |
57f9fd7d | 2265 | put_back: |
08e552c6 | 2266 | putback_lru_page(page); |
57f9fd7d | 2267 | put: |
40d58138 | 2268 | put_page(page); |
57f9fd7d | 2269 | out: |
f817ed48 KH |
2270 | return ret; |
2271 | } | |
2272 | ||
7a81b88c KH |
2273 | /* |
2274 | * Charge the memory controller for page usage. | |
2275 | * Return | |
2276 | * 0 if the charge was successful | |
2277 | * < 0 if the cgroup is over its limit | |
2278 | */ | |
2279 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |
73045c47 | 2280 | gfp_t gfp_mask, enum charge_type ctype) |
7a81b88c | 2281 | { |
73045c47 | 2282 | struct mem_cgroup *mem = NULL; |
7a81b88c KH |
2283 | struct page_cgroup *pc; |
2284 | int ret; | |
ec168510 AA |
2285 | int page_size = PAGE_SIZE; |
2286 | ||
37c2ac78 | 2287 | if (PageTransHuge(page)) { |
ec168510 | 2288 | page_size <<= compound_order(page); |
37c2ac78 AA |
2289 | VM_BUG_ON(!PageTransHuge(page)); |
2290 | } | |
7a81b88c KH |
2291 | |
2292 | pc = lookup_page_cgroup(page); | |
2293 | /* can happen at boot */ | |
2294 | if (unlikely(!pc)) | |
2295 | return 0; | |
2296 | prefetchw(pc); | |
2297 | ||
ec168510 | 2298 | ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size); |
a636b327 | 2299 | if (ret || !mem) |
7a81b88c KH |
2300 | return ret; |
2301 | ||
ec168510 | 2302 | __mem_cgroup_commit_charge(mem, pc, ctype, page_size); |
8a9f3ccd | 2303 | return 0; |
8a9f3ccd BS |
2304 | } |
2305 | ||
7a81b88c KH |
2306 | int mem_cgroup_newpage_charge(struct page *page, |
2307 | struct mm_struct *mm, gfp_t gfp_mask) | |
217bc319 | 2308 | { |
f8d66542 | 2309 | if (mem_cgroup_disabled()) |
cede86ac | 2310 | return 0; |
69029cd5 KH |
2311 | /* |
2312 | * If already mapped, we don't have to account. | |
2313 | * If page cache, page->mapping has address_space. | |
2314 | * But page->mapping may have out-of-use anon_vma pointer, | |
2315 | * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | |
2316 | * is NULL. | |
2317 | */ | |
2318 | if (page_mapped(page) || (page->mapping && !PageAnon(page))) | |
2319 | return 0; | |
2320 | if (unlikely(!mm)) | |
2321 | mm = &init_mm; | |
217bc319 | 2322 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
73045c47 | 2323 | MEM_CGROUP_CHARGE_TYPE_MAPPED); |
217bc319 KH |
2324 | } |
2325 | ||
83aae4c7 DN |
2326 | static void |
2327 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | |
2328 | enum charge_type ctype); | |
2329 | ||
e1a1cd59 BS |
2330 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
2331 | gfp_t gfp_mask) | |
8697d331 | 2332 | { |
b5a84319 KH |
2333 | int ret; |
2334 | ||
f8d66542 | 2335 | if (mem_cgroup_disabled()) |
cede86ac | 2336 | return 0; |
52d4b9ac KH |
2337 | if (PageCompound(page)) |
2338 | return 0; | |
accf163e KH |
2339 | /* |
2340 | * Corner case handling. This is called from add_to_page_cache() | |
2341 | * in usual. But some FS (shmem) precharges this page before calling it | |
2342 | * and call add_to_page_cache() with GFP_NOWAIT. | |
2343 | * | |
2344 | * For GFP_NOWAIT case, the page may be pre-charged before calling | |
2345 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | |
2346 | * charge twice. (It works but has to pay a bit larger cost.) | |
b5a84319 KH |
2347 | * And when the page is SwapCache, it should take swap information |
2348 | * into account. This is under lock_page() now. | |
accf163e KH |
2349 | */ |
2350 | if (!(gfp_mask & __GFP_WAIT)) { | |
2351 | struct page_cgroup *pc; | |
2352 | ||
52d4b9ac KH |
2353 | pc = lookup_page_cgroup(page); |
2354 | if (!pc) | |
2355 | return 0; | |
2356 | lock_page_cgroup(pc); | |
2357 | if (PageCgroupUsed(pc)) { | |
2358 | unlock_page_cgroup(pc); | |
accf163e KH |
2359 | return 0; |
2360 | } | |
52d4b9ac | 2361 | unlock_page_cgroup(pc); |
accf163e KH |
2362 | } |
2363 | ||
73045c47 | 2364 | if (unlikely(!mm)) |
8697d331 | 2365 | mm = &init_mm; |
accf163e | 2366 | |
c05555b5 KH |
2367 | if (page_is_file_cache(page)) |
2368 | return mem_cgroup_charge_common(page, mm, gfp_mask, | |
73045c47 | 2369 | MEM_CGROUP_CHARGE_TYPE_CACHE); |
b5a84319 | 2370 | |
83aae4c7 DN |
2371 | /* shmem */ |
2372 | if (PageSwapCache(page)) { | |
73045c47 DN |
2373 | struct mem_cgroup *mem = NULL; |
2374 | ||
83aae4c7 DN |
2375 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); |
2376 | if (!ret) | |
2377 | __mem_cgroup_commit_charge_swapin(page, mem, | |
2378 | MEM_CGROUP_CHARGE_TYPE_SHMEM); | |
2379 | } else | |
2380 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, | |
73045c47 | 2381 | MEM_CGROUP_CHARGE_TYPE_SHMEM); |
b5a84319 | 2382 | |
b5a84319 | 2383 | return ret; |
e8589cc1 KH |
2384 | } |
2385 | ||
54595fe2 KH |
2386 | /* |
2387 | * While swap-in, try_charge -> commit or cancel, the page is locked. | |
2388 | * And when try_charge() successfully returns, one refcnt to memcg without | |
21ae2956 | 2389 | * struct page_cgroup is acquired. This refcnt will be consumed by |
54595fe2 KH |
2390 | * "commit()" or removed by "cancel()" |
2391 | */ | |
8c7c6e34 KH |
2392 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
2393 | struct page *page, | |
2394 | gfp_t mask, struct mem_cgroup **ptr) | |
2395 | { | |
2396 | struct mem_cgroup *mem; | |
54595fe2 | 2397 | int ret; |
8c7c6e34 | 2398 | |
f8d66542 | 2399 | if (mem_cgroup_disabled()) |
8c7c6e34 KH |
2400 | return 0; |
2401 | ||
2402 | if (!do_swap_account) | |
2403 | goto charge_cur_mm; | |
8c7c6e34 KH |
2404 | /* |
2405 | * A racing thread's fault, or swapoff, may have already updated | |
407f9c8b HD |
2406 | * the pte, and even removed page from swap cache: in those cases |
2407 | * do_swap_page()'s pte_same() test will fail; but there's also a | |
2408 | * KSM case which does need to charge the page. | |
8c7c6e34 KH |
2409 | */ |
2410 | if (!PageSwapCache(page)) | |
407f9c8b | 2411 | goto charge_cur_mm; |
e42d9d5d | 2412 | mem = try_get_mem_cgroup_from_page(page); |
54595fe2 KH |
2413 | if (!mem) |
2414 | goto charge_cur_mm; | |
8c7c6e34 | 2415 | *ptr = mem; |
ec168510 | 2416 | ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE); |
54595fe2 KH |
2417 | css_put(&mem->css); |
2418 | return ret; | |
8c7c6e34 KH |
2419 | charge_cur_mm: |
2420 | if (unlikely(!mm)) | |
2421 | mm = &init_mm; | |
ec168510 | 2422 | return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE); |
8c7c6e34 KH |
2423 | } |
2424 | ||
83aae4c7 DN |
2425 | static void |
2426 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, | |
2427 | enum charge_type ctype) | |
7a81b88c KH |
2428 | { |
2429 | struct page_cgroup *pc; | |
2430 | ||
f8d66542 | 2431 | if (mem_cgroup_disabled()) |
7a81b88c KH |
2432 | return; |
2433 | if (!ptr) | |
2434 | return; | |
88703267 | 2435 | cgroup_exclude_rmdir(&ptr->css); |
7a81b88c | 2436 | pc = lookup_page_cgroup(page); |
544122e5 | 2437 | mem_cgroup_lru_del_before_commit_swapcache(page); |
ec168510 | 2438 | __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE); |
544122e5 | 2439 | mem_cgroup_lru_add_after_commit_swapcache(page); |
8c7c6e34 KH |
2440 | /* |
2441 | * Now swap is on-memory. This means this page may be | |
2442 | * counted both as mem and swap....double count. | |
03f3c433 KH |
2443 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
2444 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | |
2445 | * may call delete_from_swap_cache() before reach here. | |
8c7c6e34 | 2446 | */ |
03f3c433 | 2447 | if (do_swap_account && PageSwapCache(page)) { |
8c7c6e34 | 2448 | swp_entry_t ent = {.val = page_private(page)}; |
a3b2d692 | 2449 | unsigned short id; |
8c7c6e34 | 2450 | struct mem_cgroup *memcg; |
a3b2d692 KH |
2451 | |
2452 | id = swap_cgroup_record(ent, 0); | |
2453 | rcu_read_lock(); | |
2454 | memcg = mem_cgroup_lookup(id); | |
8c7c6e34 | 2455 | if (memcg) { |
a3b2d692 KH |
2456 | /* |
2457 | * This recorded memcg can be obsolete one. So, avoid | |
2458 | * calling css_tryget | |
2459 | */ | |
0c3e73e8 | 2460 | if (!mem_cgroup_is_root(memcg)) |
4e649152 | 2461 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
0c3e73e8 | 2462 | mem_cgroup_swap_statistics(memcg, false); |
8c7c6e34 KH |
2463 | mem_cgroup_put(memcg); |
2464 | } | |
a3b2d692 | 2465 | rcu_read_unlock(); |
8c7c6e34 | 2466 | } |
88703267 KH |
2467 | /* |
2468 | * At swapin, we may charge account against cgroup which has no tasks. | |
2469 | * So, rmdir()->pre_destroy() can be called while we do this charge. | |
2470 | * In that case, we need to call pre_destroy() again. check it here. | |
2471 | */ | |
2472 | cgroup_release_and_wakeup_rmdir(&ptr->css); | |
7a81b88c KH |
2473 | } |
2474 | ||
83aae4c7 DN |
2475 | void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) |
2476 | { | |
2477 | __mem_cgroup_commit_charge_swapin(page, ptr, | |
2478 | MEM_CGROUP_CHARGE_TYPE_MAPPED); | |
2479 | } | |
2480 | ||
7a81b88c KH |
2481 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) |
2482 | { | |
f8d66542 | 2483 | if (mem_cgroup_disabled()) |
7a81b88c KH |
2484 | return; |
2485 | if (!mem) | |
2486 | return; | |
ec168510 | 2487 | mem_cgroup_cancel_charge(mem, PAGE_SIZE); |
7a81b88c KH |
2488 | } |
2489 | ||
569b846d | 2490 | static void |
ec168510 AA |
2491 | __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype, |
2492 | int page_size) | |
569b846d KH |
2493 | { |
2494 | struct memcg_batch_info *batch = NULL; | |
2495 | bool uncharge_memsw = true; | |
2496 | /* If swapout, usage of swap doesn't decrease */ | |
2497 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | |
2498 | uncharge_memsw = false; | |
569b846d KH |
2499 | |
2500 | batch = ¤t->memcg_batch; | |
2501 | /* | |
2502 | * In usual, we do css_get() when we remember memcg pointer. | |
2503 | * But in this case, we keep res->usage until end of a series of | |
2504 | * uncharges. Then, it's ok to ignore memcg's refcnt. | |
2505 | */ | |
2506 | if (!batch->memcg) | |
2507 | batch->memcg = mem; | |
3c11ecf4 KH |
2508 | /* |
2509 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. | |
2510 | * In those cases, all pages freed continously can be expected to be in | |
2511 | * the same cgroup and we have chance to coalesce uncharges. | |
2512 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | |
2513 | * because we want to do uncharge as soon as possible. | |
2514 | */ | |
2515 | ||
2516 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | |
2517 | goto direct_uncharge; | |
2518 | ||
ec168510 AA |
2519 | if (page_size != PAGE_SIZE) |
2520 | goto direct_uncharge; | |
2521 | ||
569b846d KH |
2522 | /* |
2523 | * In typical case, batch->memcg == mem. This means we can | |
2524 | * merge a series of uncharges to an uncharge of res_counter. | |
2525 | * If not, we uncharge res_counter ony by one. | |
2526 | */ | |
2527 | if (batch->memcg != mem) | |
2528 | goto direct_uncharge; | |
2529 | /* remember freed charge and uncharge it later */ | |
2530 | batch->bytes += PAGE_SIZE; | |
2531 | if (uncharge_memsw) | |
2532 | batch->memsw_bytes += PAGE_SIZE; | |
2533 | return; | |
2534 | direct_uncharge: | |
ec168510 | 2535 | res_counter_uncharge(&mem->res, page_size); |
569b846d | 2536 | if (uncharge_memsw) |
ec168510 | 2537 | res_counter_uncharge(&mem->memsw, page_size); |
3c11ecf4 KH |
2538 | if (unlikely(batch->memcg != mem)) |
2539 | memcg_oom_recover(mem); | |
569b846d KH |
2540 | return; |
2541 | } | |
7a81b88c | 2542 | |
8a9f3ccd | 2543 | /* |
69029cd5 | 2544 | * uncharge if !page_mapped(page) |
8a9f3ccd | 2545 | */ |
8c7c6e34 | 2546 | static struct mem_cgroup * |
69029cd5 | 2547 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) |
8a9f3ccd | 2548 | { |
152c9ccb DN |
2549 | int i; |
2550 | int count; | |
8289546e | 2551 | struct page_cgroup *pc; |
8c7c6e34 | 2552 | struct mem_cgroup *mem = NULL; |
ec168510 | 2553 | int page_size = PAGE_SIZE; |
8a9f3ccd | 2554 | |
f8d66542 | 2555 | if (mem_cgroup_disabled()) |
8c7c6e34 | 2556 | return NULL; |
4077960e | 2557 | |
d13d1443 | 2558 | if (PageSwapCache(page)) |
8c7c6e34 | 2559 | return NULL; |
d13d1443 | 2560 | |
37c2ac78 | 2561 | if (PageTransHuge(page)) { |
ec168510 | 2562 | page_size <<= compound_order(page); |
37c2ac78 AA |
2563 | VM_BUG_ON(!PageTransHuge(page)); |
2564 | } | |
ec168510 | 2565 | |
152c9ccb | 2566 | count = page_size >> PAGE_SHIFT; |
8697d331 | 2567 | /* |
3c541e14 | 2568 | * Check if our page_cgroup is valid |
8697d331 | 2569 | */ |
52d4b9ac KH |
2570 | pc = lookup_page_cgroup(page); |
2571 | if (unlikely(!pc || !PageCgroupUsed(pc))) | |
8c7c6e34 | 2572 | return NULL; |
b9c565d5 | 2573 | |
52d4b9ac | 2574 | lock_page_cgroup(pc); |
d13d1443 | 2575 | |
8c7c6e34 KH |
2576 | mem = pc->mem_cgroup; |
2577 | ||
d13d1443 KH |
2578 | if (!PageCgroupUsed(pc)) |
2579 | goto unlock_out; | |
2580 | ||
2581 | switch (ctype) { | |
2582 | case MEM_CGROUP_CHARGE_TYPE_MAPPED: | |
8a9478ca | 2583 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
ac39cf8c AM |
2584 | /* See mem_cgroup_prepare_migration() */ |
2585 | if (page_mapped(page) || PageCgroupMigration(pc)) | |
d13d1443 KH |
2586 | goto unlock_out; |
2587 | break; | |
2588 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | |
2589 | if (!PageAnon(page)) { /* Shared memory */ | |
2590 | if (page->mapping && !page_is_file_cache(page)) | |
2591 | goto unlock_out; | |
2592 | } else if (page_mapped(page)) /* Anon */ | |
2593 | goto unlock_out; | |
2594 | break; | |
2595 | default: | |
2596 | break; | |
52d4b9ac | 2597 | } |
d13d1443 | 2598 | |
152c9ccb DN |
2599 | for (i = 0; i < count; i++) |
2600 | mem_cgroup_charge_statistics(mem, pc + i, false); | |
04046e1a | 2601 | |
52d4b9ac | 2602 | ClearPageCgroupUsed(pc); |
544122e5 KH |
2603 | /* |
2604 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | |
2605 | * freed from LRU. This is safe because uncharged page is expected not | |
2606 | * to be reused (freed soon). Exception is SwapCache, it's handled by | |
2607 | * special functions. | |
2608 | */ | |
b9c565d5 | 2609 | |
52d4b9ac | 2610 | unlock_page_cgroup(pc); |
f75ca962 KH |
2611 | /* |
2612 | * even after unlock, we have mem->res.usage here and this memcg | |
2613 | * will never be freed. | |
2614 | */ | |
d2265e6f | 2615 | memcg_check_events(mem, page); |
f75ca962 KH |
2616 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
2617 | mem_cgroup_swap_statistics(mem, true); | |
2618 | mem_cgroup_get(mem); | |
2619 | } | |
2620 | if (!mem_cgroup_is_root(mem)) | |
ec168510 | 2621 | __do_uncharge(mem, ctype, page_size); |
6d12e2d8 | 2622 | |
8c7c6e34 | 2623 | return mem; |
d13d1443 KH |
2624 | |
2625 | unlock_out: | |
2626 | unlock_page_cgroup(pc); | |
8c7c6e34 | 2627 | return NULL; |
3c541e14 BS |
2628 | } |
2629 | ||
69029cd5 KH |
2630 | void mem_cgroup_uncharge_page(struct page *page) |
2631 | { | |
52d4b9ac KH |
2632 | /* early check. */ |
2633 | if (page_mapped(page)) | |
2634 | return; | |
2635 | if (page->mapping && !PageAnon(page)) | |
2636 | return; | |
69029cd5 KH |
2637 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); |
2638 | } | |
2639 | ||
2640 | void mem_cgroup_uncharge_cache_page(struct page *page) | |
2641 | { | |
2642 | VM_BUG_ON(page_mapped(page)); | |
b7abea96 | 2643 | VM_BUG_ON(page->mapping); |
69029cd5 KH |
2644 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); |
2645 | } | |
2646 | ||
569b846d KH |
2647 | /* |
2648 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | |
2649 | * In that cases, pages are freed continuously and we can expect pages | |
2650 | * are in the same memcg. All these calls itself limits the number of | |
2651 | * pages freed at once, then uncharge_start/end() is called properly. | |
2652 | * This may be called prural(2) times in a context, | |
2653 | */ | |
2654 | ||
2655 | void mem_cgroup_uncharge_start(void) | |
2656 | { | |
2657 | current->memcg_batch.do_batch++; | |
2658 | /* We can do nest. */ | |
2659 | if (current->memcg_batch.do_batch == 1) { | |
2660 | current->memcg_batch.memcg = NULL; | |
2661 | current->memcg_batch.bytes = 0; | |
2662 | current->memcg_batch.memsw_bytes = 0; | |
2663 | } | |
2664 | } | |
2665 | ||
2666 | void mem_cgroup_uncharge_end(void) | |
2667 | { | |
2668 | struct memcg_batch_info *batch = ¤t->memcg_batch; | |
2669 | ||
2670 | if (!batch->do_batch) | |
2671 | return; | |
2672 | ||
2673 | batch->do_batch--; | |
2674 | if (batch->do_batch) /* If stacked, do nothing. */ | |
2675 | return; | |
2676 | ||
2677 | if (!batch->memcg) | |
2678 | return; | |
2679 | /* | |
2680 | * This "batch->memcg" is valid without any css_get/put etc... | |
2681 | * bacause we hide charges behind us. | |
2682 | */ | |
2683 | if (batch->bytes) | |
2684 | res_counter_uncharge(&batch->memcg->res, batch->bytes); | |
2685 | if (batch->memsw_bytes) | |
2686 | res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); | |
3c11ecf4 | 2687 | memcg_oom_recover(batch->memcg); |
569b846d KH |
2688 | /* forget this pointer (for sanity check) */ |
2689 | batch->memcg = NULL; | |
2690 | } | |
2691 | ||
e767e056 | 2692 | #ifdef CONFIG_SWAP |
8c7c6e34 | 2693 | /* |
e767e056 | 2694 | * called after __delete_from_swap_cache() and drop "page" account. |
8c7c6e34 KH |
2695 | * memcg information is recorded to swap_cgroup of "ent" |
2696 | */ | |
8a9478ca KH |
2697 | void |
2698 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |
8c7c6e34 KH |
2699 | { |
2700 | struct mem_cgroup *memcg; | |
8a9478ca KH |
2701 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
2702 | ||
2703 | if (!swapout) /* this was a swap cache but the swap is unused ! */ | |
2704 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | |
2705 | ||
2706 | memcg = __mem_cgroup_uncharge_common(page, ctype); | |
8c7c6e34 | 2707 | |
f75ca962 KH |
2708 | /* |
2709 | * record memcg information, if swapout && memcg != NULL, | |
2710 | * mem_cgroup_get() was called in uncharge(). | |
2711 | */ | |
2712 | if (do_swap_account && swapout && memcg) | |
a3b2d692 | 2713 | swap_cgroup_record(ent, css_id(&memcg->css)); |
8c7c6e34 | 2714 | } |
e767e056 | 2715 | #endif |
8c7c6e34 KH |
2716 | |
2717 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | |
2718 | /* | |
2719 | * called from swap_entry_free(). remove record in swap_cgroup and | |
2720 | * uncharge "memsw" account. | |
2721 | */ | |
2722 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | |
d13d1443 | 2723 | { |
8c7c6e34 | 2724 | struct mem_cgroup *memcg; |
a3b2d692 | 2725 | unsigned short id; |
8c7c6e34 KH |
2726 | |
2727 | if (!do_swap_account) | |
2728 | return; | |
2729 | ||
a3b2d692 KH |
2730 | id = swap_cgroup_record(ent, 0); |
2731 | rcu_read_lock(); | |
2732 | memcg = mem_cgroup_lookup(id); | |
8c7c6e34 | 2733 | if (memcg) { |
a3b2d692 KH |
2734 | /* |
2735 | * We uncharge this because swap is freed. | |
2736 | * This memcg can be obsolete one. We avoid calling css_tryget | |
2737 | */ | |
0c3e73e8 | 2738 | if (!mem_cgroup_is_root(memcg)) |
4e649152 | 2739 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
0c3e73e8 | 2740 | mem_cgroup_swap_statistics(memcg, false); |
8c7c6e34 KH |
2741 | mem_cgroup_put(memcg); |
2742 | } | |
a3b2d692 | 2743 | rcu_read_unlock(); |
d13d1443 | 2744 | } |
02491447 DN |
2745 | |
2746 | /** | |
2747 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
2748 | * @entry: swap entry to be moved | |
2749 | * @from: mem_cgroup which the entry is moved from | |
2750 | * @to: mem_cgroup which the entry is moved to | |
483c30b5 | 2751 | * @need_fixup: whether we should fixup res_counters and refcounts. |
02491447 DN |
2752 | * |
2753 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
2754 | * as the mem_cgroup's id of @from. | |
2755 | * | |
2756 | * Returns 0 on success, -EINVAL on failure. | |
2757 | * | |
2758 | * The caller must have charged to @to, IOW, called res_counter_charge() about | |
2759 | * both res and memsw, and called css_get(). | |
2760 | */ | |
2761 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
483c30b5 | 2762 | struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) |
02491447 DN |
2763 | { |
2764 | unsigned short old_id, new_id; | |
2765 | ||
2766 | old_id = css_id(&from->css); | |
2767 | new_id = css_id(&to->css); | |
2768 | ||
2769 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
02491447 | 2770 | mem_cgroup_swap_statistics(from, false); |
483c30b5 | 2771 | mem_cgroup_swap_statistics(to, true); |
02491447 | 2772 | /* |
483c30b5 DN |
2773 | * This function is only called from task migration context now. |
2774 | * It postpones res_counter and refcount handling till the end | |
2775 | * of task migration(mem_cgroup_clear_mc()) for performance | |
2776 | * improvement. But we cannot postpone mem_cgroup_get(to) | |
2777 | * because if the process that has been moved to @to does | |
2778 | * swap-in, the refcount of @to might be decreased to 0. | |
02491447 | 2779 | */ |
02491447 | 2780 | mem_cgroup_get(to); |
483c30b5 DN |
2781 | if (need_fixup) { |
2782 | if (!mem_cgroup_is_root(from)) | |
2783 | res_counter_uncharge(&from->memsw, PAGE_SIZE); | |
2784 | mem_cgroup_put(from); | |
2785 | /* | |
2786 | * we charged both to->res and to->memsw, so we should | |
2787 | * uncharge to->res. | |
2788 | */ | |
2789 | if (!mem_cgroup_is_root(to)) | |
2790 | res_counter_uncharge(&to->res, PAGE_SIZE); | |
483c30b5 | 2791 | } |
02491447 DN |
2792 | return 0; |
2793 | } | |
2794 | return -EINVAL; | |
2795 | } | |
2796 | #else | |
2797 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
483c30b5 | 2798 | struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) |
02491447 DN |
2799 | { |
2800 | return -EINVAL; | |
2801 | } | |
8c7c6e34 | 2802 | #endif |
d13d1443 | 2803 | |
ae41be37 | 2804 | /* |
01b1ae63 KH |
2805 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
2806 | * page belongs to. | |
ae41be37 | 2807 | */ |
ac39cf8c AM |
2808 | int mem_cgroup_prepare_migration(struct page *page, |
2809 | struct page *newpage, struct mem_cgroup **ptr) | |
ae41be37 KH |
2810 | { |
2811 | struct page_cgroup *pc; | |
e8589cc1 | 2812 | struct mem_cgroup *mem = NULL; |
ac39cf8c | 2813 | enum charge_type ctype; |
e8589cc1 | 2814 | int ret = 0; |
8869b8f6 | 2815 | |
ec168510 | 2816 | VM_BUG_ON(PageTransHuge(page)); |
f8d66542 | 2817 | if (mem_cgroup_disabled()) |
4077960e BS |
2818 | return 0; |
2819 | ||
52d4b9ac KH |
2820 | pc = lookup_page_cgroup(page); |
2821 | lock_page_cgroup(pc); | |
2822 | if (PageCgroupUsed(pc)) { | |
e8589cc1 KH |
2823 | mem = pc->mem_cgroup; |
2824 | css_get(&mem->css); | |
ac39cf8c AM |
2825 | /* |
2826 | * At migrating an anonymous page, its mapcount goes down | |
2827 | * to 0 and uncharge() will be called. But, even if it's fully | |
2828 | * unmapped, migration may fail and this page has to be | |
2829 | * charged again. We set MIGRATION flag here and delay uncharge | |
2830 | * until end_migration() is called | |
2831 | * | |
2832 | * Corner Case Thinking | |
2833 | * A) | |
2834 | * When the old page was mapped as Anon and it's unmap-and-freed | |
2835 | * while migration was ongoing. | |
2836 | * If unmap finds the old page, uncharge() of it will be delayed | |
2837 | * until end_migration(). If unmap finds a new page, it's | |
2838 | * uncharged when it make mapcount to be 1->0. If unmap code | |
2839 | * finds swap_migration_entry, the new page will not be mapped | |
2840 | * and end_migration() will find it(mapcount==0). | |
2841 | * | |
2842 | * B) | |
2843 | * When the old page was mapped but migraion fails, the kernel | |
2844 | * remaps it. A charge for it is kept by MIGRATION flag even | |
2845 | * if mapcount goes down to 0. We can do remap successfully | |
2846 | * without charging it again. | |
2847 | * | |
2848 | * C) | |
2849 | * The "old" page is under lock_page() until the end of | |
2850 | * migration, so, the old page itself will not be swapped-out. | |
2851 | * If the new page is swapped out before end_migraton, our | |
2852 | * hook to usual swap-out path will catch the event. | |
2853 | */ | |
2854 | if (PageAnon(page)) | |
2855 | SetPageCgroupMigration(pc); | |
e8589cc1 | 2856 | } |
52d4b9ac | 2857 | unlock_page_cgroup(pc); |
ac39cf8c AM |
2858 | /* |
2859 | * If the page is not charged at this point, | |
2860 | * we return here. | |
2861 | */ | |
2862 | if (!mem) | |
2863 | return 0; | |
01b1ae63 | 2864 | |
93d5c9be | 2865 | *ptr = mem; |
ec168510 | 2866 | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE); |
ac39cf8c AM |
2867 | css_put(&mem->css);/* drop extra refcnt */ |
2868 | if (ret || *ptr == NULL) { | |
2869 | if (PageAnon(page)) { | |
2870 | lock_page_cgroup(pc); | |
2871 | ClearPageCgroupMigration(pc); | |
2872 | unlock_page_cgroup(pc); | |
2873 | /* | |
2874 | * The old page may be fully unmapped while we kept it. | |
2875 | */ | |
2876 | mem_cgroup_uncharge_page(page); | |
2877 | } | |
2878 | return -ENOMEM; | |
e8589cc1 | 2879 | } |
ac39cf8c AM |
2880 | /* |
2881 | * We charge new page before it's used/mapped. So, even if unlock_page() | |
2882 | * is called before end_migration, we can catch all events on this new | |
2883 | * page. In the case new page is migrated but not remapped, new page's | |
2884 | * mapcount will be finally 0 and we call uncharge in end_migration(). | |
2885 | */ | |
2886 | pc = lookup_page_cgroup(newpage); | |
2887 | if (PageAnon(page)) | |
2888 | ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | |
2889 | else if (page_is_file_cache(page)) | |
2890 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | |
2891 | else | |
2892 | ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; | |
ec168510 | 2893 | __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE); |
e8589cc1 | 2894 | return ret; |
ae41be37 | 2895 | } |
8869b8f6 | 2896 | |
69029cd5 | 2897 | /* remove redundant charge if migration failed*/ |
01b1ae63 | 2898 | void mem_cgroup_end_migration(struct mem_cgroup *mem, |
50de1dd9 | 2899 | struct page *oldpage, struct page *newpage, bool migration_ok) |
ae41be37 | 2900 | { |
ac39cf8c | 2901 | struct page *used, *unused; |
01b1ae63 | 2902 | struct page_cgroup *pc; |
01b1ae63 KH |
2903 | |
2904 | if (!mem) | |
2905 | return; | |
ac39cf8c | 2906 | /* blocks rmdir() */ |
88703267 | 2907 | cgroup_exclude_rmdir(&mem->css); |
50de1dd9 | 2908 | if (!migration_ok) { |
ac39cf8c AM |
2909 | used = oldpage; |
2910 | unused = newpage; | |
01b1ae63 | 2911 | } else { |
ac39cf8c | 2912 | used = newpage; |
01b1ae63 KH |
2913 | unused = oldpage; |
2914 | } | |
69029cd5 | 2915 | /* |
ac39cf8c AM |
2916 | * We disallowed uncharge of pages under migration because mapcount |
2917 | * of the page goes down to zero, temporarly. | |
2918 | * Clear the flag and check the page should be charged. | |
01b1ae63 | 2919 | */ |
ac39cf8c AM |
2920 | pc = lookup_page_cgroup(oldpage); |
2921 | lock_page_cgroup(pc); | |
2922 | ClearPageCgroupMigration(pc); | |
2923 | unlock_page_cgroup(pc); | |
01b1ae63 | 2924 | |
ac39cf8c AM |
2925 | __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); |
2926 | ||
01b1ae63 | 2927 | /* |
ac39cf8c AM |
2928 | * If a page is a file cache, radix-tree replacement is very atomic |
2929 | * and we can skip this check. When it was an Anon page, its mapcount | |
2930 | * goes down to 0. But because we added MIGRATION flage, it's not | |
2931 | * uncharged yet. There are several case but page->mapcount check | |
2932 | * and USED bit check in mem_cgroup_uncharge_page() will do enough | |
2933 | * check. (see prepare_charge() also) | |
69029cd5 | 2934 | */ |
ac39cf8c AM |
2935 | if (PageAnon(used)) |
2936 | mem_cgroup_uncharge_page(used); | |
88703267 | 2937 | /* |
ac39cf8c AM |
2938 | * At migration, we may charge account against cgroup which has no |
2939 | * tasks. | |
88703267 KH |
2940 | * So, rmdir()->pre_destroy() can be called while we do this charge. |
2941 | * In that case, we need to call pre_destroy() again. check it here. | |
2942 | */ | |
2943 | cgroup_release_and_wakeup_rmdir(&mem->css); | |
ae41be37 | 2944 | } |
78fb7466 | 2945 | |
c9b0ed51 | 2946 | /* |
ae3abae6 DN |
2947 | * A call to try to shrink memory usage on charge failure at shmem's swapin. |
2948 | * Calling hierarchical_reclaim is not enough because we should update | |
2949 | * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. | |
2950 | * Moreover considering hierarchy, we should reclaim from the mem_over_limit, | |
2951 | * not from the memcg which this page would be charged to. | |
2952 | * try_charge_swapin does all of these works properly. | |
c9b0ed51 | 2953 | */ |
ae3abae6 | 2954 | int mem_cgroup_shmem_charge_fallback(struct page *page, |
b5a84319 KH |
2955 | struct mm_struct *mm, |
2956 | gfp_t gfp_mask) | |
c9b0ed51 | 2957 | { |
b5a84319 | 2958 | struct mem_cgroup *mem = NULL; |
ae3abae6 | 2959 | int ret; |
c9b0ed51 | 2960 | |
f8d66542 | 2961 | if (mem_cgroup_disabled()) |
cede86ac | 2962 | return 0; |
c9b0ed51 | 2963 | |
ae3abae6 DN |
2964 | ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); |
2965 | if (!ret) | |
2966 | mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ | |
c9b0ed51 | 2967 | |
ae3abae6 | 2968 | return ret; |
c9b0ed51 KH |
2969 | } |
2970 | ||
8c7c6e34 KH |
2971 | static DEFINE_MUTEX(set_limit_mutex); |
2972 | ||
d38d2a75 | 2973 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
8c7c6e34 | 2974 | unsigned long long val) |
628f4235 | 2975 | { |
81d39c20 | 2976 | int retry_count; |
3c11ecf4 | 2977 | u64 memswlimit, memlimit; |
628f4235 | 2978 | int ret = 0; |
81d39c20 KH |
2979 | int children = mem_cgroup_count_children(memcg); |
2980 | u64 curusage, oldusage; | |
3c11ecf4 | 2981 | int enlarge; |
81d39c20 KH |
2982 | |
2983 | /* | |
2984 | * For keeping hierarchical_reclaim simple, how long we should retry | |
2985 | * is depends on callers. We set our retry-count to be function | |
2986 | * of # of children which we should visit in this loop. | |
2987 | */ | |
2988 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | |
2989 | ||
2990 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | |
628f4235 | 2991 | |
3c11ecf4 | 2992 | enlarge = 0; |
8c7c6e34 | 2993 | while (retry_count) { |
628f4235 KH |
2994 | if (signal_pending(current)) { |
2995 | ret = -EINTR; | |
2996 | break; | |
2997 | } | |
8c7c6e34 KH |
2998 | /* |
2999 | * Rather than hide all in some function, I do this in | |
3000 | * open coded manner. You see what this really does. | |
3001 | * We have to guarantee mem->res.limit < mem->memsw.limit. | |
3002 | */ | |
3003 | mutex_lock(&set_limit_mutex); | |
3004 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
3005 | if (memswlimit < val) { | |
3006 | ret = -EINVAL; | |
3007 | mutex_unlock(&set_limit_mutex); | |
628f4235 KH |
3008 | break; |
3009 | } | |
3c11ecf4 KH |
3010 | |
3011 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3012 | if (memlimit < val) | |
3013 | enlarge = 1; | |
3014 | ||
8c7c6e34 | 3015 | ret = res_counter_set_limit(&memcg->res, val); |
22a668d7 KH |
3016 | if (!ret) { |
3017 | if (memswlimit == val) | |
3018 | memcg->memsw_is_minimum = true; | |
3019 | else | |
3020 | memcg->memsw_is_minimum = false; | |
3021 | } | |
8c7c6e34 KH |
3022 | mutex_unlock(&set_limit_mutex); |
3023 | ||
3024 | if (!ret) | |
3025 | break; | |
3026 | ||
aa20d489 | 3027 | mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, |
4e416953 | 3028 | MEM_CGROUP_RECLAIM_SHRINK); |
81d39c20 KH |
3029 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
3030 | /* Usage is reduced ? */ | |
3031 | if (curusage >= oldusage) | |
3032 | retry_count--; | |
3033 | else | |
3034 | oldusage = curusage; | |
8c7c6e34 | 3035 | } |
3c11ecf4 KH |
3036 | if (!ret && enlarge) |
3037 | memcg_oom_recover(memcg); | |
14797e23 | 3038 | |
8c7c6e34 KH |
3039 | return ret; |
3040 | } | |
3041 | ||
338c8431 LZ |
3042 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
3043 | unsigned long long val) | |
8c7c6e34 | 3044 | { |
81d39c20 | 3045 | int retry_count; |
3c11ecf4 | 3046 | u64 memlimit, memswlimit, oldusage, curusage; |
81d39c20 KH |
3047 | int children = mem_cgroup_count_children(memcg); |
3048 | int ret = -EBUSY; | |
3c11ecf4 | 3049 | int enlarge = 0; |
8c7c6e34 | 3050 | |
81d39c20 KH |
3051 | /* see mem_cgroup_resize_res_limit */ |
3052 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | |
3053 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | |
8c7c6e34 KH |
3054 | while (retry_count) { |
3055 | if (signal_pending(current)) { | |
3056 | ret = -EINTR; | |
3057 | break; | |
3058 | } | |
3059 | /* | |
3060 | * Rather than hide all in some function, I do this in | |
3061 | * open coded manner. You see what this really does. | |
3062 | * We have to guarantee mem->res.limit < mem->memsw.limit. | |
3063 | */ | |
3064 | mutex_lock(&set_limit_mutex); | |
3065 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3066 | if (memlimit > val) { | |
3067 | ret = -EINVAL; | |
3068 | mutex_unlock(&set_limit_mutex); | |
3069 | break; | |
3070 | } | |
3c11ecf4 KH |
3071 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
3072 | if (memswlimit < val) | |
3073 | enlarge = 1; | |
8c7c6e34 | 3074 | ret = res_counter_set_limit(&memcg->memsw, val); |
22a668d7 KH |
3075 | if (!ret) { |
3076 | if (memlimit == val) | |
3077 | memcg->memsw_is_minimum = true; | |
3078 | else | |
3079 | memcg->memsw_is_minimum = false; | |
3080 | } | |
8c7c6e34 KH |
3081 | mutex_unlock(&set_limit_mutex); |
3082 | ||
3083 | if (!ret) | |
3084 | break; | |
3085 | ||
4e416953 | 3086 | mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, |
75822b44 BS |
3087 | MEM_CGROUP_RECLAIM_NOSWAP | |
3088 | MEM_CGROUP_RECLAIM_SHRINK); | |
8c7c6e34 | 3089 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
81d39c20 | 3090 | /* Usage is reduced ? */ |
8c7c6e34 | 3091 | if (curusage >= oldusage) |
628f4235 | 3092 | retry_count--; |
81d39c20 KH |
3093 | else |
3094 | oldusage = curusage; | |
628f4235 | 3095 | } |
3c11ecf4 KH |
3096 | if (!ret && enlarge) |
3097 | memcg_oom_recover(memcg); | |
628f4235 KH |
3098 | return ret; |
3099 | } | |
3100 | ||
4e416953 | 3101 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
00918b6a | 3102 | gfp_t gfp_mask) |
4e416953 BS |
3103 | { |
3104 | unsigned long nr_reclaimed = 0; | |
3105 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
3106 | unsigned long reclaimed; | |
3107 | int loop = 0; | |
3108 | struct mem_cgroup_tree_per_zone *mctz; | |
ef8745c1 | 3109 | unsigned long long excess; |
4e416953 BS |
3110 | |
3111 | if (order > 0) | |
3112 | return 0; | |
3113 | ||
00918b6a | 3114 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
4e416953 BS |
3115 | /* |
3116 | * This loop can run a while, specially if mem_cgroup's continuously | |
3117 | * keep exceeding their soft limit and putting the system under | |
3118 | * pressure | |
3119 | */ | |
3120 | do { | |
3121 | if (next_mz) | |
3122 | mz = next_mz; | |
3123 | else | |
3124 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
3125 | if (!mz) | |
3126 | break; | |
3127 | ||
3128 | reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, | |
3129 | gfp_mask, | |
3130 | MEM_CGROUP_RECLAIM_SOFT); | |
3131 | nr_reclaimed += reclaimed; | |
3132 | spin_lock(&mctz->lock); | |
3133 | ||
3134 | /* | |
3135 | * If we failed to reclaim anything from this memory cgroup | |
3136 | * it is time to move on to the next cgroup | |
3137 | */ | |
3138 | next_mz = NULL; | |
3139 | if (!reclaimed) { | |
3140 | do { | |
3141 | /* | |
3142 | * Loop until we find yet another one. | |
3143 | * | |
3144 | * By the time we get the soft_limit lock | |
3145 | * again, someone might have aded the | |
3146 | * group back on the RB tree. Iterate to | |
3147 | * make sure we get a different mem. | |
3148 | * mem_cgroup_largest_soft_limit_node returns | |
3149 | * NULL if no other cgroup is present on | |
3150 | * the tree | |
3151 | */ | |
3152 | next_mz = | |
3153 | __mem_cgroup_largest_soft_limit_node(mctz); | |
3154 | if (next_mz == mz) { | |
3155 | css_put(&next_mz->mem->css); | |
3156 | next_mz = NULL; | |
3157 | } else /* next_mz == NULL or other memcg */ | |
3158 | break; | |
3159 | } while (1); | |
3160 | } | |
4e416953 | 3161 | __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); |
ef8745c1 | 3162 | excess = res_counter_soft_limit_excess(&mz->mem->res); |
4e416953 BS |
3163 | /* |
3164 | * One school of thought says that we should not add | |
3165 | * back the node to the tree if reclaim returns 0. | |
3166 | * But our reclaim could return 0, simply because due | |
3167 | * to priority we are exposing a smaller subset of | |
3168 | * memory to reclaim from. Consider this as a longer | |
3169 | * term TODO. | |
3170 | */ | |
ef8745c1 KH |
3171 | /* If excess == 0, no tree ops */ |
3172 | __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); | |
4e416953 BS |
3173 | spin_unlock(&mctz->lock); |
3174 | css_put(&mz->mem->css); | |
3175 | loop++; | |
3176 | /* | |
3177 | * Could not reclaim anything and there are no more | |
3178 | * mem cgroups to try or we seem to be looping without | |
3179 | * reclaiming anything. | |
3180 | */ | |
3181 | if (!nr_reclaimed && | |
3182 | (next_mz == NULL || | |
3183 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
3184 | break; | |
3185 | } while (!nr_reclaimed); | |
3186 | if (next_mz) | |
3187 | css_put(&next_mz->mem->css); | |
3188 | return nr_reclaimed; | |
3189 | } | |
3190 | ||
cc847582 KH |
3191 | /* |
3192 | * This routine traverse page_cgroup in given list and drop them all. | |
cc847582 KH |
3193 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
3194 | */ | |
f817ed48 | 3195 | static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
08e552c6 | 3196 | int node, int zid, enum lru_list lru) |
cc847582 | 3197 | { |
08e552c6 KH |
3198 | struct zone *zone; |
3199 | struct mem_cgroup_per_zone *mz; | |
f817ed48 | 3200 | struct page_cgroup *pc, *busy; |
08e552c6 | 3201 | unsigned long flags, loop; |
072c56c1 | 3202 | struct list_head *list; |
f817ed48 | 3203 | int ret = 0; |
072c56c1 | 3204 | |
08e552c6 KH |
3205 | zone = &NODE_DATA(node)->node_zones[zid]; |
3206 | mz = mem_cgroup_zoneinfo(mem, node, zid); | |
b69408e8 | 3207 | list = &mz->lists[lru]; |
cc847582 | 3208 | |
f817ed48 KH |
3209 | loop = MEM_CGROUP_ZSTAT(mz, lru); |
3210 | /* give some margin against EBUSY etc...*/ | |
3211 | loop += 256; | |
3212 | busy = NULL; | |
3213 | while (loop--) { | |
3214 | ret = 0; | |
08e552c6 | 3215 | spin_lock_irqsave(&zone->lru_lock, flags); |
f817ed48 | 3216 | if (list_empty(list)) { |
08e552c6 | 3217 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
52d4b9ac | 3218 | break; |
f817ed48 KH |
3219 | } |
3220 | pc = list_entry(list->prev, struct page_cgroup, lru); | |
3221 | if (busy == pc) { | |
3222 | list_move(&pc->lru, list); | |
648bcc77 | 3223 | busy = NULL; |
08e552c6 | 3224 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 KH |
3225 | continue; |
3226 | } | |
08e552c6 | 3227 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 | 3228 | |
2c26fdd7 | 3229 | ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); |
f817ed48 | 3230 | if (ret == -ENOMEM) |
52d4b9ac | 3231 | break; |
f817ed48 KH |
3232 | |
3233 | if (ret == -EBUSY || ret == -EINVAL) { | |
3234 | /* found lock contention or "pc" is obsolete. */ | |
3235 | busy = pc; | |
3236 | cond_resched(); | |
3237 | } else | |
3238 | busy = NULL; | |
cc847582 | 3239 | } |
08e552c6 | 3240 | |
f817ed48 KH |
3241 | if (!ret && !list_empty(list)) |
3242 | return -EBUSY; | |
3243 | return ret; | |
cc847582 KH |
3244 | } |
3245 | ||
3246 | /* | |
3247 | * make mem_cgroup's charge to be 0 if there is no task. | |
3248 | * This enables deleting this mem_cgroup. | |
3249 | */ | |
c1e862c1 | 3250 | static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) |
cc847582 | 3251 | { |
f817ed48 KH |
3252 | int ret; |
3253 | int node, zid, shrink; | |
3254 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
c1e862c1 | 3255 | struct cgroup *cgrp = mem->css.cgroup; |
8869b8f6 | 3256 | |
cc847582 | 3257 | css_get(&mem->css); |
f817ed48 KH |
3258 | |
3259 | shrink = 0; | |
c1e862c1 KH |
3260 | /* should free all ? */ |
3261 | if (free_all) | |
3262 | goto try_to_free; | |
f817ed48 | 3263 | move_account: |
fce66477 | 3264 | do { |
f817ed48 | 3265 | ret = -EBUSY; |
c1e862c1 KH |
3266 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
3267 | goto out; | |
3268 | ret = -EINTR; | |
3269 | if (signal_pending(current)) | |
cc847582 | 3270 | goto out; |
52d4b9ac KH |
3271 | /* This is for making all *used* pages to be on LRU. */ |
3272 | lru_add_drain_all(); | |
cdec2e42 | 3273 | drain_all_stock_sync(); |
f817ed48 | 3274 | ret = 0; |
32047e2a | 3275 | mem_cgroup_start_move(mem); |
299b4eaa | 3276 | for_each_node_state(node, N_HIGH_MEMORY) { |
f817ed48 | 3277 | for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { |
b69408e8 | 3278 | enum lru_list l; |
f817ed48 KH |
3279 | for_each_lru(l) { |
3280 | ret = mem_cgroup_force_empty_list(mem, | |
08e552c6 | 3281 | node, zid, l); |
f817ed48 KH |
3282 | if (ret) |
3283 | break; | |
3284 | } | |
1ecaab2b | 3285 | } |
f817ed48 KH |
3286 | if (ret) |
3287 | break; | |
3288 | } | |
32047e2a | 3289 | mem_cgroup_end_move(mem); |
3c11ecf4 | 3290 | memcg_oom_recover(mem); |
f817ed48 KH |
3291 | /* it seems parent cgroup doesn't have enough mem */ |
3292 | if (ret == -ENOMEM) | |
3293 | goto try_to_free; | |
52d4b9ac | 3294 | cond_resched(); |
fce66477 DN |
3295 | /* "ret" should also be checked to ensure all lists are empty. */ |
3296 | } while (mem->res.usage > 0 || ret); | |
cc847582 KH |
3297 | out: |
3298 | css_put(&mem->css); | |
3299 | return ret; | |
f817ed48 KH |
3300 | |
3301 | try_to_free: | |
c1e862c1 KH |
3302 | /* returns EBUSY if there is a task or if we come here twice. */ |
3303 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { | |
f817ed48 KH |
3304 | ret = -EBUSY; |
3305 | goto out; | |
3306 | } | |
c1e862c1 KH |
3307 | /* we call try-to-free pages for make this cgroup empty */ |
3308 | lru_add_drain_all(); | |
f817ed48 KH |
3309 | /* try to free all pages in this cgroup */ |
3310 | shrink = 1; | |
3311 | while (nr_retries && mem->res.usage > 0) { | |
3312 | int progress; | |
c1e862c1 KH |
3313 | |
3314 | if (signal_pending(current)) { | |
3315 | ret = -EINTR; | |
3316 | goto out; | |
3317 | } | |
a7885eb8 KM |
3318 | progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, |
3319 | false, get_swappiness(mem)); | |
c1e862c1 | 3320 | if (!progress) { |
f817ed48 | 3321 | nr_retries--; |
c1e862c1 | 3322 | /* maybe some writeback is necessary */ |
8aa7e847 | 3323 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
c1e862c1 | 3324 | } |
f817ed48 KH |
3325 | |
3326 | } | |
08e552c6 | 3327 | lru_add_drain(); |
f817ed48 | 3328 | /* try move_account...there may be some *locked* pages. */ |
fce66477 | 3329 | goto move_account; |
cc847582 KH |
3330 | } |
3331 | ||
c1e862c1 KH |
3332 | int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) |
3333 | { | |
3334 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); | |
3335 | } | |
3336 | ||
3337 | ||
18f59ea7 BS |
3338 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) |
3339 | { | |
3340 | return mem_cgroup_from_cont(cont)->use_hierarchy; | |
3341 | } | |
3342 | ||
3343 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | |
3344 | u64 val) | |
3345 | { | |
3346 | int retval = 0; | |
3347 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
3348 | struct cgroup *parent = cont->parent; | |
3349 | struct mem_cgroup *parent_mem = NULL; | |
3350 | ||
3351 | if (parent) | |
3352 | parent_mem = mem_cgroup_from_cont(parent); | |
3353 | ||
3354 | cgroup_lock(); | |
3355 | /* | |
af901ca1 | 3356 | * If parent's use_hierarchy is set, we can't make any modifications |
18f59ea7 BS |
3357 | * in the child subtrees. If it is unset, then the change can |
3358 | * occur, provided the current cgroup has no children. | |
3359 | * | |
3360 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
3361 | * set if there are no children. | |
3362 | */ | |
3363 | if ((!parent_mem || !parent_mem->use_hierarchy) && | |
3364 | (val == 1 || val == 0)) { | |
3365 | if (list_empty(&cont->children)) | |
3366 | mem->use_hierarchy = val; | |
3367 | else | |
3368 | retval = -EBUSY; | |
3369 | } else | |
3370 | retval = -EINVAL; | |
3371 | cgroup_unlock(); | |
3372 | ||
3373 | return retval; | |
3374 | } | |
3375 | ||
0c3e73e8 | 3376 | |
7d74b06f KH |
3377 | static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, |
3378 | enum mem_cgroup_stat_index idx) | |
0c3e73e8 | 3379 | { |
7d74b06f KH |
3380 | struct mem_cgroup *iter; |
3381 | s64 val = 0; | |
0c3e73e8 | 3382 | |
7d74b06f KH |
3383 | /* each per cpu's value can be minus.Then, use s64 */ |
3384 | for_each_mem_cgroup_tree(iter, mem) | |
3385 | val += mem_cgroup_read_stat(iter, idx); | |
3386 | ||
3387 | if (val < 0) /* race ? */ | |
3388 | val = 0; | |
3389 | return val; | |
0c3e73e8 BS |
3390 | } |
3391 | ||
104f3928 KS |
3392 | static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) |
3393 | { | |
7d74b06f | 3394 | u64 val; |
104f3928 KS |
3395 | |
3396 | if (!mem_cgroup_is_root(mem)) { | |
3397 | if (!swap) | |
3398 | return res_counter_read_u64(&mem->res, RES_USAGE); | |
3399 | else | |
3400 | return res_counter_read_u64(&mem->memsw, RES_USAGE); | |
3401 | } | |
3402 | ||
7d74b06f KH |
3403 | val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE); |
3404 | val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS); | |
104f3928 | 3405 | |
7d74b06f KH |
3406 | if (swap) |
3407 | val += mem_cgroup_get_recursive_idx_stat(mem, | |
3408 | MEM_CGROUP_STAT_SWAPOUT); | |
104f3928 KS |
3409 | |
3410 | return val << PAGE_SHIFT; | |
3411 | } | |
3412 | ||
2c3daa72 | 3413 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
8cdea7c0 | 3414 | { |
8c7c6e34 | 3415 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
104f3928 | 3416 | u64 val; |
8c7c6e34 KH |
3417 | int type, name; |
3418 | ||
3419 | type = MEMFILE_TYPE(cft->private); | |
3420 | name = MEMFILE_ATTR(cft->private); | |
3421 | switch (type) { | |
3422 | case _MEM: | |
104f3928 KS |
3423 | if (name == RES_USAGE) |
3424 | val = mem_cgroup_usage(mem, false); | |
3425 | else | |
0c3e73e8 | 3426 | val = res_counter_read_u64(&mem->res, name); |
8c7c6e34 KH |
3427 | break; |
3428 | case _MEMSWAP: | |
104f3928 KS |
3429 | if (name == RES_USAGE) |
3430 | val = mem_cgroup_usage(mem, true); | |
3431 | else | |
0c3e73e8 | 3432 | val = res_counter_read_u64(&mem->memsw, name); |
8c7c6e34 KH |
3433 | break; |
3434 | default: | |
3435 | BUG(); | |
3436 | break; | |
3437 | } | |
3438 | return val; | |
8cdea7c0 | 3439 | } |
628f4235 KH |
3440 | /* |
3441 | * The user of this function is... | |
3442 | * RES_LIMIT. | |
3443 | */ | |
856c13aa PM |
3444 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
3445 | const char *buffer) | |
8cdea7c0 | 3446 | { |
628f4235 | 3447 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
8c7c6e34 | 3448 | int type, name; |
628f4235 KH |
3449 | unsigned long long val; |
3450 | int ret; | |
3451 | ||
8c7c6e34 KH |
3452 | type = MEMFILE_TYPE(cft->private); |
3453 | name = MEMFILE_ATTR(cft->private); | |
3454 | switch (name) { | |
628f4235 | 3455 | case RES_LIMIT: |
4b3bde4c BS |
3456 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
3457 | ret = -EINVAL; | |
3458 | break; | |
3459 | } | |
628f4235 KH |
3460 | /* This function does all necessary parse...reuse it */ |
3461 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
8c7c6e34 KH |
3462 | if (ret) |
3463 | break; | |
3464 | if (type == _MEM) | |
628f4235 | 3465 | ret = mem_cgroup_resize_limit(memcg, val); |
8c7c6e34 KH |
3466 | else |
3467 | ret = mem_cgroup_resize_memsw_limit(memcg, val); | |
628f4235 | 3468 | break; |
296c81d8 BS |
3469 | case RES_SOFT_LIMIT: |
3470 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
3471 | if (ret) | |
3472 | break; | |
3473 | /* | |
3474 | * For memsw, soft limits are hard to implement in terms | |
3475 | * of semantics, for now, we support soft limits for | |
3476 | * control without swap | |
3477 | */ | |
3478 | if (type == _MEM) | |
3479 | ret = res_counter_set_soft_limit(&memcg->res, val); | |
3480 | else | |
3481 | ret = -EINVAL; | |
3482 | break; | |
628f4235 KH |
3483 | default: |
3484 | ret = -EINVAL; /* should be BUG() ? */ | |
3485 | break; | |
3486 | } | |
3487 | return ret; | |
8cdea7c0 BS |
3488 | } |
3489 | ||
fee7b548 KH |
3490 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
3491 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | |
3492 | { | |
3493 | struct cgroup *cgroup; | |
3494 | unsigned long long min_limit, min_memsw_limit, tmp; | |
3495 | ||
3496 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3497 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
3498 | cgroup = memcg->css.cgroup; | |
3499 | if (!memcg->use_hierarchy) | |
3500 | goto out; | |
3501 | ||
3502 | while (cgroup->parent) { | |
3503 | cgroup = cgroup->parent; | |
3504 | memcg = mem_cgroup_from_cont(cgroup); | |
3505 | if (!memcg->use_hierarchy) | |
3506 | break; | |
3507 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
3508 | min_limit = min(min_limit, tmp); | |
3509 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
3510 | min_memsw_limit = min(min_memsw_limit, tmp); | |
3511 | } | |
3512 | out: | |
3513 | *mem_limit = min_limit; | |
3514 | *memsw_limit = min_memsw_limit; | |
3515 | return; | |
3516 | } | |
3517 | ||
29f2a4da | 3518 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
c84872e1 PE |
3519 | { |
3520 | struct mem_cgroup *mem; | |
8c7c6e34 | 3521 | int type, name; |
c84872e1 PE |
3522 | |
3523 | mem = mem_cgroup_from_cont(cont); | |
8c7c6e34 KH |
3524 | type = MEMFILE_TYPE(event); |
3525 | name = MEMFILE_ATTR(event); | |
3526 | switch (name) { | |
29f2a4da | 3527 | case RES_MAX_USAGE: |
8c7c6e34 KH |
3528 | if (type == _MEM) |
3529 | res_counter_reset_max(&mem->res); | |
3530 | else | |
3531 | res_counter_reset_max(&mem->memsw); | |
29f2a4da PE |
3532 | break; |
3533 | case RES_FAILCNT: | |
8c7c6e34 KH |
3534 | if (type == _MEM) |
3535 | res_counter_reset_failcnt(&mem->res); | |
3536 | else | |
3537 | res_counter_reset_failcnt(&mem->memsw); | |
29f2a4da PE |
3538 | break; |
3539 | } | |
f64c3f54 | 3540 | |
85cc59db | 3541 | return 0; |
c84872e1 PE |
3542 | } |
3543 | ||
7dc74be0 DN |
3544 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, |
3545 | struct cftype *cft) | |
3546 | { | |
3547 | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; | |
3548 | } | |
3549 | ||
02491447 | 3550 | #ifdef CONFIG_MMU |
7dc74be0 DN |
3551 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
3552 | struct cftype *cft, u64 val) | |
3553 | { | |
3554 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
3555 | ||
3556 | if (val >= (1 << NR_MOVE_TYPE)) | |
3557 | return -EINVAL; | |
3558 | /* | |
3559 | * We check this value several times in both in can_attach() and | |
3560 | * attach(), so we need cgroup lock to prevent this value from being | |
3561 | * inconsistent. | |
3562 | */ | |
3563 | cgroup_lock(); | |
3564 | mem->move_charge_at_immigrate = val; | |
3565 | cgroup_unlock(); | |
3566 | ||
3567 | return 0; | |
3568 | } | |
02491447 DN |
3569 | #else |
3570 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | |
3571 | struct cftype *cft, u64 val) | |
3572 | { | |
3573 | return -ENOSYS; | |
3574 | } | |
3575 | #endif | |
7dc74be0 | 3576 | |
14067bb3 KH |
3577 | |
3578 | /* For read statistics */ | |
3579 | enum { | |
3580 | MCS_CACHE, | |
3581 | MCS_RSS, | |
d8046582 | 3582 | MCS_FILE_MAPPED, |
14067bb3 KH |
3583 | MCS_PGPGIN, |
3584 | MCS_PGPGOUT, | |
1dd3a273 | 3585 | MCS_SWAP, |
14067bb3 KH |
3586 | MCS_INACTIVE_ANON, |
3587 | MCS_ACTIVE_ANON, | |
3588 | MCS_INACTIVE_FILE, | |
3589 | MCS_ACTIVE_FILE, | |
3590 | MCS_UNEVICTABLE, | |
3591 | NR_MCS_STAT, | |
3592 | }; | |
3593 | ||
3594 | struct mcs_total_stat { | |
3595 | s64 stat[NR_MCS_STAT]; | |
d2ceb9b7 KH |
3596 | }; |
3597 | ||
14067bb3 KH |
3598 | struct { |
3599 | char *local_name; | |
3600 | char *total_name; | |
3601 | } memcg_stat_strings[NR_MCS_STAT] = { | |
3602 | {"cache", "total_cache"}, | |
3603 | {"rss", "total_rss"}, | |
d69b042f | 3604 | {"mapped_file", "total_mapped_file"}, |
14067bb3 KH |
3605 | {"pgpgin", "total_pgpgin"}, |
3606 | {"pgpgout", "total_pgpgout"}, | |
1dd3a273 | 3607 | {"swap", "total_swap"}, |
14067bb3 KH |
3608 | {"inactive_anon", "total_inactive_anon"}, |
3609 | {"active_anon", "total_active_anon"}, | |
3610 | {"inactive_file", "total_inactive_file"}, | |
3611 | {"active_file", "total_active_file"}, | |
3612 | {"unevictable", "total_unevictable"} | |
3613 | }; | |
3614 | ||
3615 | ||
7d74b06f KH |
3616 | static void |
3617 | mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | |
14067bb3 | 3618 | { |
14067bb3 KH |
3619 | s64 val; |
3620 | ||
3621 | /* per cpu stat */ | |
c62b1a3b | 3622 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); |
14067bb3 | 3623 | s->stat[MCS_CACHE] += val * PAGE_SIZE; |
c62b1a3b | 3624 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); |
14067bb3 | 3625 | s->stat[MCS_RSS] += val * PAGE_SIZE; |
c62b1a3b | 3626 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); |
d8046582 | 3627 | s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; |
c62b1a3b | 3628 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT); |
14067bb3 | 3629 | s->stat[MCS_PGPGIN] += val; |
c62b1a3b | 3630 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT); |
14067bb3 | 3631 | s->stat[MCS_PGPGOUT] += val; |
1dd3a273 | 3632 | if (do_swap_account) { |
c62b1a3b | 3633 | val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); |
1dd3a273 DN |
3634 | s->stat[MCS_SWAP] += val * PAGE_SIZE; |
3635 | } | |
14067bb3 KH |
3636 | |
3637 | /* per zone stat */ | |
3638 | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); | |
3639 | s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; | |
3640 | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); | |
3641 | s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; | |
3642 | val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); | |
3643 | s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; | |
3644 | val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); | |
3645 | s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; | |
3646 | val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); | |
3647 | s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; | |
14067bb3 KH |
3648 | } |
3649 | ||
3650 | static void | |
3651 | mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) | |
3652 | { | |
7d74b06f KH |
3653 | struct mem_cgroup *iter; |
3654 | ||
3655 | for_each_mem_cgroup_tree(iter, mem) | |
3656 | mem_cgroup_get_local_stat(iter, s); | |
14067bb3 KH |
3657 | } |
3658 | ||
c64745cf PM |
3659 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, |
3660 | struct cgroup_map_cb *cb) | |
d2ceb9b7 | 3661 | { |
d2ceb9b7 | 3662 | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); |
14067bb3 | 3663 | struct mcs_total_stat mystat; |
d2ceb9b7 KH |
3664 | int i; |
3665 | ||
14067bb3 KH |
3666 | memset(&mystat, 0, sizeof(mystat)); |
3667 | mem_cgroup_get_local_stat(mem_cont, &mystat); | |
d2ceb9b7 | 3668 | |
1dd3a273 DN |
3669 | for (i = 0; i < NR_MCS_STAT; i++) { |
3670 | if (i == MCS_SWAP && !do_swap_account) | |
3671 | continue; | |
14067bb3 | 3672 | cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); |
1dd3a273 | 3673 | } |
7b854121 | 3674 | |
14067bb3 | 3675 | /* Hierarchical information */ |
fee7b548 KH |
3676 | { |
3677 | unsigned long long limit, memsw_limit; | |
3678 | memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); | |
3679 | cb->fill(cb, "hierarchical_memory_limit", limit); | |
3680 | if (do_swap_account) | |
3681 | cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); | |
3682 | } | |
7f016ee8 | 3683 | |
14067bb3 KH |
3684 | memset(&mystat, 0, sizeof(mystat)); |
3685 | mem_cgroup_get_total_stat(mem_cont, &mystat); | |
1dd3a273 DN |
3686 | for (i = 0; i < NR_MCS_STAT; i++) { |
3687 | if (i == MCS_SWAP && !do_swap_account) | |
3688 | continue; | |
14067bb3 | 3689 | cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); |
1dd3a273 | 3690 | } |
14067bb3 | 3691 | |
7f016ee8 | 3692 | #ifdef CONFIG_DEBUG_VM |
c772be93 | 3693 | cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); |
7f016ee8 KM |
3694 | |
3695 | { | |
3696 | int nid, zid; | |
3697 | struct mem_cgroup_per_zone *mz; | |
3698 | unsigned long recent_rotated[2] = {0, 0}; | |
3699 | unsigned long recent_scanned[2] = {0, 0}; | |
3700 | ||
3701 | for_each_online_node(nid) | |
3702 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
3703 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); | |
3704 | ||
3705 | recent_rotated[0] += | |
3706 | mz->reclaim_stat.recent_rotated[0]; | |
3707 | recent_rotated[1] += | |
3708 | mz->reclaim_stat.recent_rotated[1]; | |
3709 | recent_scanned[0] += | |
3710 | mz->reclaim_stat.recent_scanned[0]; | |
3711 | recent_scanned[1] += | |
3712 | mz->reclaim_stat.recent_scanned[1]; | |
3713 | } | |
3714 | cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); | |
3715 | cb->fill(cb, "recent_rotated_file", recent_rotated[1]); | |
3716 | cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); | |
3717 | cb->fill(cb, "recent_scanned_file", recent_scanned[1]); | |
3718 | } | |
3719 | #endif | |
3720 | ||
d2ceb9b7 KH |
3721 | return 0; |
3722 | } | |
3723 | ||
a7885eb8 KM |
3724 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) |
3725 | { | |
3726 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
3727 | ||
3728 | return get_swappiness(memcg); | |
3729 | } | |
3730 | ||
3731 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | |
3732 | u64 val) | |
3733 | { | |
3734 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
3735 | struct mem_cgroup *parent; | |
068b38c1 | 3736 | |
a7885eb8 KM |
3737 | if (val > 100) |
3738 | return -EINVAL; | |
3739 | ||
3740 | if (cgrp->parent == NULL) | |
3741 | return -EINVAL; | |
3742 | ||
3743 | parent = mem_cgroup_from_cont(cgrp->parent); | |
068b38c1 LZ |
3744 | |
3745 | cgroup_lock(); | |
3746 | ||
a7885eb8 KM |
3747 | /* If under hierarchy, only empty-root can set this value */ |
3748 | if ((parent->use_hierarchy) || | |
068b38c1 LZ |
3749 | (memcg->use_hierarchy && !list_empty(&cgrp->children))) { |
3750 | cgroup_unlock(); | |
a7885eb8 | 3751 | return -EINVAL; |
068b38c1 | 3752 | } |
a7885eb8 KM |
3753 | |
3754 | spin_lock(&memcg->reclaim_param_lock); | |
3755 | memcg->swappiness = val; | |
3756 | spin_unlock(&memcg->reclaim_param_lock); | |
3757 | ||
068b38c1 LZ |
3758 | cgroup_unlock(); |
3759 | ||
a7885eb8 KM |
3760 | return 0; |
3761 | } | |
3762 | ||
2e72b634 KS |
3763 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
3764 | { | |
3765 | struct mem_cgroup_threshold_ary *t; | |
3766 | u64 usage; | |
3767 | int i; | |
3768 | ||
3769 | rcu_read_lock(); | |
3770 | if (!swap) | |
2c488db2 | 3771 | t = rcu_dereference(memcg->thresholds.primary); |
2e72b634 | 3772 | else |
2c488db2 | 3773 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
2e72b634 KS |
3774 | |
3775 | if (!t) | |
3776 | goto unlock; | |
3777 | ||
3778 | usage = mem_cgroup_usage(memcg, swap); | |
3779 | ||
3780 | /* | |
3781 | * current_threshold points to threshold just below usage. | |
3782 | * If it's not true, a threshold was crossed after last | |
3783 | * call of __mem_cgroup_threshold(). | |
3784 | */ | |
5407a562 | 3785 | i = t->current_threshold; |
2e72b634 KS |
3786 | |
3787 | /* | |
3788 | * Iterate backward over array of thresholds starting from | |
3789 | * current_threshold and check if a threshold is crossed. | |
3790 | * If none of thresholds below usage is crossed, we read | |
3791 | * only one element of the array here. | |
3792 | */ | |
3793 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
3794 | eventfd_signal(t->entries[i].eventfd, 1); | |
3795 | ||
3796 | /* i = current_threshold + 1 */ | |
3797 | i++; | |
3798 | ||
3799 | /* | |
3800 | * Iterate forward over array of thresholds starting from | |
3801 | * current_threshold+1 and check if a threshold is crossed. | |
3802 | * If none of thresholds above usage is crossed, we read | |
3803 | * only one element of the array here. | |
3804 | */ | |
3805 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
3806 | eventfd_signal(t->entries[i].eventfd, 1); | |
3807 | ||
3808 | /* Update current_threshold */ | |
5407a562 | 3809 | t->current_threshold = i - 1; |
2e72b634 KS |
3810 | unlock: |
3811 | rcu_read_unlock(); | |
3812 | } | |
3813 | ||
3814 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
3815 | { | |
ad4ca5f4 KS |
3816 | while (memcg) { |
3817 | __mem_cgroup_threshold(memcg, false); | |
3818 | if (do_swap_account) | |
3819 | __mem_cgroup_threshold(memcg, true); | |
3820 | ||
3821 | memcg = parent_mem_cgroup(memcg); | |
3822 | } | |
2e72b634 KS |
3823 | } |
3824 | ||
3825 | static int compare_thresholds(const void *a, const void *b) | |
3826 | { | |
3827 | const struct mem_cgroup_threshold *_a = a; | |
3828 | const struct mem_cgroup_threshold *_b = b; | |
3829 | ||
3830 | return _a->threshold - _b->threshold; | |
3831 | } | |
3832 | ||
7d74b06f | 3833 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) |
9490ff27 KH |
3834 | { |
3835 | struct mem_cgroup_eventfd_list *ev; | |
3836 | ||
3837 | list_for_each_entry(ev, &mem->oom_notify, list) | |
3838 | eventfd_signal(ev->eventfd, 1); | |
3839 | return 0; | |
3840 | } | |
3841 | ||
3842 | static void mem_cgroup_oom_notify(struct mem_cgroup *mem) | |
3843 | { | |
7d74b06f KH |
3844 | struct mem_cgroup *iter; |
3845 | ||
3846 | for_each_mem_cgroup_tree(iter, mem) | |
3847 | mem_cgroup_oom_notify_cb(iter); | |
9490ff27 KH |
3848 | } |
3849 | ||
3850 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | |
3851 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
2e72b634 KS |
3852 | { |
3853 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
3854 | struct mem_cgroup_thresholds *thresholds; |
3855 | struct mem_cgroup_threshold_ary *new; | |
2e72b634 KS |
3856 | int type = MEMFILE_TYPE(cft->private); |
3857 | u64 threshold, usage; | |
2c488db2 | 3858 | int i, size, ret; |
2e72b634 KS |
3859 | |
3860 | ret = res_counter_memparse_write_strategy(args, &threshold); | |
3861 | if (ret) | |
3862 | return ret; | |
3863 | ||
3864 | mutex_lock(&memcg->thresholds_lock); | |
2c488db2 | 3865 | |
2e72b634 | 3866 | if (type == _MEM) |
2c488db2 | 3867 | thresholds = &memcg->thresholds; |
2e72b634 | 3868 | else if (type == _MEMSWAP) |
2c488db2 | 3869 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
3870 | else |
3871 | BUG(); | |
3872 | ||
3873 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | |
3874 | ||
3875 | /* Check if a threshold crossed before adding a new one */ | |
2c488db2 | 3876 | if (thresholds->primary) |
2e72b634 KS |
3877 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
3878 | ||
2c488db2 | 3879 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
2e72b634 KS |
3880 | |
3881 | /* Allocate memory for new array of thresholds */ | |
2c488db2 | 3882 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
2e72b634 | 3883 | GFP_KERNEL); |
2c488db2 | 3884 | if (!new) { |
2e72b634 KS |
3885 | ret = -ENOMEM; |
3886 | goto unlock; | |
3887 | } | |
2c488db2 | 3888 | new->size = size; |
2e72b634 KS |
3889 | |
3890 | /* Copy thresholds (if any) to new array */ | |
2c488db2 KS |
3891 | if (thresholds->primary) { |
3892 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
2e72b634 | 3893 | sizeof(struct mem_cgroup_threshold)); |
2c488db2 KS |
3894 | } |
3895 | ||
2e72b634 | 3896 | /* Add new threshold */ |
2c488db2 KS |
3897 | new->entries[size - 1].eventfd = eventfd; |
3898 | new->entries[size - 1].threshold = threshold; | |
2e72b634 KS |
3899 | |
3900 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
2c488db2 | 3901 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
2e72b634 KS |
3902 | compare_thresholds, NULL); |
3903 | ||
3904 | /* Find current threshold */ | |
2c488db2 | 3905 | new->current_threshold = -1; |
2e72b634 | 3906 | for (i = 0; i < size; i++) { |
2c488db2 | 3907 | if (new->entries[i].threshold < usage) { |
2e72b634 | 3908 | /* |
2c488db2 KS |
3909 | * new->current_threshold will not be used until |
3910 | * rcu_assign_pointer(), so it's safe to increment | |
2e72b634 KS |
3911 | * it here. |
3912 | */ | |
2c488db2 | 3913 | ++new->current_threshold; |
2e72b634 KS |
3914 | } |
3915 | } | |
3916 | ||
2c488db2 KS |
3917 | /* Free old spare buffer and save old primary buffer as spare */ |
3918 | kfree(thresholds->spare); | |
3919 | thresholds->spare = thresholds->primary; | |
3920 | ||
3921 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 3922 | |
907860ed | 3923 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
3924 | synchronize_rcu(); |
3925 | ||
2e72b634 KS |
3926 | unlock: |
3927 | mutex_unlock(&memcg->thresholds_lock); | |
3928 | ||
3929 | return ret; | |
3930 | } | |
3931 | ||
907860ed | 3932 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, |
9490ff27 | 3933 | struct cftype *cft, struct eventfd_ctx *eventfd) |
2e72b634 KS |
3934 | { |
3935 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
3936 | struct mem_cgroup_thresholds *thresholds; |
3937 | struct mem_cgroup_threshold_ary *new; | |
2e72b634 KS |
3938 | int type = MEMFILE_TYPE(cft->private); |
3939 | u64 usage; | |
2c488db2 | 3940 | int i, j, size; |
2e72b634 KS |
3941 | |
3942 | mutex_lock(&memcg->thresholds_lock); | |
3943 | if (type == _MEM) | |
2c488db2 | 3944 | thresholds = &memcg->thresholds; |
2e72b634 | 3945 | else if (type == _MEMSWAP) |
2c488db2 | 3946 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
3947 | else |
3948 | BUG(); | |
3949 | ||
3950 | /* | |
3951 | * Something went wrong if we trying to unregister a threshold | |
3952 | * if we don't have thresholds | |
3953 | */ | |
3954 | BUG_ON(!thresholds); | |
3955 | ||
3956 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | |
3957 | ||
3958 | /* Check if a threshold crossed before removing */ | |
3959 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
3960 | ||
3961 | /* Calculate new number of threshold */ | |
2c488db2 KS |
3962 | size = 0; |
3963 | for (i = 0; i < thresholds->primary->size; i++) { | |
3964 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
2e72b634 KS |
3965 | size++; |
3966 | } | |
3967 | ||
2c488db2 | 3968 | new = thresholds->spare; |
907860ed | 3969 | |
2e72b634 KS |
3970 | /* Set thresholds array to NULL if we don't have thresholds */ |
3971 | if (!size) { | |
2c488db2 KS |
3972 | kfree(new); |
3973 | new = NULL; | |
907860ed | 3974 | goto swap_buffers; |
2e72b634 KS |
3975 | } |
3976 | ||
2c488db2 | 3977 | new->size = size; |
2e72b634 KS |
3978 | |
3979 | /* Copy thresholds and find current threshold */ | |
2c488db2 KS |
3980 | new->current_threshold = -1; |
3981 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
3982 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
2e72b634 KS |
3983 | continue; |
3984 | ||
2c488db2 KS |
3985 | new->entries[j] = thresholds->primary->entries[i]; |
3986 | if (new->entries[j].threshold < usage) { | |
2e72b634 | 3987 | /* |
2c488db2 | 3988 | * new->current_threshold will not be used |
2e72b634 KS |
3989 | * until rcu_assign_pointer(), so it's safe to increment |
3990 | * it here. | |
3991 | */ | |
2c488db2 | 3992 | ++new->current_threshold; |
2e72b634 KS |
3993 | } |
3994 | j++; | |
3995 | } | |
3996 | ||
907860ed | 3997 | swap_buffers: |
2c488db2 KS |
3998 | /* Swap primary and spare array */ |
3999 | thresholds->spare = thresholds->primary; | |
4000 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 4001 | |
907860ed | 4002 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
4003 | synchronize_rcu(); |
4004 | ||
2e72b634 | 4005 | mutex_unlock(&memcg->thresholds_lock); |
2e72b634 | 4006 | } |
c1e862c1 | 4007 | |
9490ff27 KH |
4008 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, |
4009 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
4010 | { | |
4011 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
4012 | struct mem_cgroup_eventfd_list *event; | |
4013 | int type = MEMFILE_TYPE(cft->private); | |
4014 | ||
4015 | BUG_ON(type != _OOM_TYPE); | |
4016 | event = kmalloc(sizeof(*event), GFP_KERNEL); | |
4017 | if (!event) | |
4018 | return -ENOMEM; | |
4019 | ||
4020 | mutex_lock(&memcg_oom_mutex); | |
4021 | ||
4022 | event->eventfd = eventfd; | |
4023 | list_add(&event->list, &memcg->oom_notify); | |
4024 | ||
4025 | /* already in OOM ? */ | |
4026 | if (atomic_read(&memcg->oom_lock)) | |
4027 | eventfd_signal(eventfd, 1); | |
4028 | mutex_unlock(&memcg_oom_mutex); | |
4029 | ||
4030 | return 0; | |
4031 | } | |
4032 | ||
907860ed | 4033 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, |
9490ff27 KH |
4034 | struct cftype *cft, struct eventfd_ctx *eventfd) |
4035 | { | |
4036 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
4037 | struct mem_cgroup_eventfd_list *ev, *tmp; | |
4038 | int type = MEMFILE_TYPE(cft->private); | |
4039 | ||
4040 | BUG_ON(type != _OOM_TYPE); | |
4041 | ||
4042 | mutex_lock(&memcg_oom_mutex); | |
4043 | ||
4044 | list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { | |
4045 | if (ev->eventfd == eventfd) { | |
4046 | list_del(&ev->list); | |
4047 | kfree(ev); | |
4048 | } | |
4049 | } | |
4050 | ||
4051 | mutex_unlock(&memcg_oom_mutex); | |
9490ff27 KH |
4052 | } |
4053 | ||
3c11ecf4 KH |
4054 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, |
4055 | struct cftype *cft, struct cgroup_map_cb *cb) | |
4056 | { | |
4057 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
4058 | ||
4059 | cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); | |
4060 | ||
4061 | if (atomic_read(&mem->oom_lock)) | |
4062 | cb->fill(cb, "under_oom", 1); | |
4063 | else | |
4064 | cb->fill(cb, "under_oom", 0); | |
4065 | return 0; | |
4066 | } | |
4067 | ||
3c11ecf4 KH |
4068 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
4069 | struct cftype *cft, u64 val) | |
4070 | { | |
4071 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); | |
4072 | struct mem_cgroup *parent; | |
4073 | ||
4074 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
4075 | if (!cgrp->parent || !((val == 0) || (val == 1))) | |
4076 | return -EINVAL; | |
4077 | ||
4078 | parent = mem_cgroup_from_cont(cgrp->parent); | |
4079 | ||
4080 | cgroup_lock(); | |
4081 | /* oom-kill-disable is a flag for subhierarchy. */ | |
4082 | if ((parent->use_hierarchy) || | |
4083 | (mem->use_hierarchy && !list_empty(&cgrp->children))) { | |
4084 | cgroup_unlock(); | |
4085 | return -EINVAL; | |
4086 | } | |
4087 | mem->oom_kill_disable = val; | |
4d845ebf KH |
4088 | if (!val) |
4089 | memcg_oom_recover(mem); | |
3c11ecf4 KH |
4090 | cgroup_unlock(); |
4091 | return 0; | |
4092 | } | |
4093 | ||
8cdea7c0 BS |
4094 | static struct cftype mem_cgroup_files[] = { |
4095 | { | |
0eea1030 | 4096 | .name = "usage_in_bytes", |
8c7c6e34 | 4097 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
2c3daa72 | 4098 | .read_u64 = mem_cgroup_read, |
9490ff27 KH |
4099 | .register_event = mem_cgroup_usage_register_event, |
4100 | .unregister_event = mem_cgroup_usage_unregister_event, | |
8cdea7c0 | 4101 | }, |
c84872e1 PE |
4102 | { |
4103 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 4104 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
29f2a4da | 4105 | .trigger = mem_cgroup_reset, |
c84872e1 PE |
4106 | .read_u64 = mem_cgroup_read, |
4107 | }, | |
8cdea7c0 | 4108 | { |
0eea1030 | 4109 | .name = "limit_in_bytes", |
8c7c6e34 | 4110 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
856c13aa | 4111 | .write_string = mem_cgroup_write, |
2c3daa72 | 4112 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 4113 | }, |
296c81d8 BS |
4114 | { |
4115 | .name = "soft_limit_in_bytes", | |
4116 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
4117 | .write_string = mem_cgroup_write, | |
4118 | .read_u64 = mem_cgroup_read, | |
4119 | }, | |
8cdea7c0 BS |
4120 | { |
4121 | .name = "failcnt", | |
8c7c6e34 | 4122 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
29f2a4da | 4123 | .trigger = mem_cgroup_reset, |
2c3daa72 | 4124 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 4125 | }, |
d2ceb9b7 KH |
4126 | { |
4127 | .name = "stat", | |
c64745cf | 4128 | .read_map = mem_control_stat_show, |
d2ceb9b7 | 4129 | }, |
c1e862c1 KH |
4130 | { |
4131 | .name = "force_empty", | |
4132 | .trigger = mem_cgroup_force_empty_write, | |
4133 | }, | |
18f59ea7 BS |
4134 | { |
4135 | .name = "use_hierarchy", | |
4136 | .write_u64 = mem_cgroup_hierarchy_write, | |
4137 | .read_u64 = mem_cgroup_hierarchy_read, | |
4138 | }, | |
a7885eb8 KM |
4139 | { |
4140 | .name = "swappiness", | |
4141 | .read_u64 = mem_cgroup_swappiness_read, | |
4142 | .write_u64 = mem_cgroup_swappiness_write, | |
4143 | }, | |
7dc74be0 DN |
4144 | { |
4145 | .name = "move_charge_at_immigrate", | |
4146 | .read_u64 = mem_cgroup_move_charge_read, | |
4147 | .write_u64 = mem_cgroup_move_charge_write, | |
4148 | }, | |
9490ff27 KH |
4149 | { |
4150 | .name = "oom_control", | |
3c11ecf4 KH |
4151 | .read_map = mem_cgroup_oom_control_read, |
4152 | .write_u64 = mem_cgroup_oom_control_write, | |
9490ff27 KH |
4153 | .register_event = mem_cgroup_oom_register_event, |
4154 | .unregister_event = mem_cgroup_oom_unregister_event, | |
4155 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | |
4156 | }, | |
8cdea7c0 BS |
4157 | }; |
4158 | ||
8c7c6e34 KH |
4159 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
4160 | static struct cftype memsw_cgroup_files[] = { | |
4161 | { | |
4162 | .name = "memsw.usage_in_bytes", | |
4163 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
4164 | .read_u64 = mem_cgroup_read, | |
9490ff27 KH |
4165 | .register_event = mem_cgroup_usage_register_event, |
4166 | .unregister_event = mem_cgroup_usage_unregister_event, | |
8c7c6e34 KH |
4167 | }, |
4168 | { | |
4169 | .name = "memsw.max_usage_in_bytes", | |
4170 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
4171 | .trigger = mem_cgroup_reset, | |
4172 | .read_u64 = mem_cgroup_read, | |
4173 | }, | |
4174 | { | |
4175 | .name = "memsw.limit_in_bytes", | |
4176 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
4177 | .write_string = mem_cgroup_write, | |
4178 | .read_u64 = mem_cgroup_read, | |
4179 | }, | |
4180 | { | |
4181 | .name = "memsw.failcnt", | |
4182 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
4183 | .trigger = mem_cgroup_reset, | |
4184 | .read_u64 = mem_cgroup_read, | |
4185 | }, | |
4186 | }; | |
4187 | ||
4188 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | |
4189 | { | |
4190 | if (!do_swap_account) | |
4191 | return 0; | |
4192 | return cgroup_add_files(cont, ss, memsw_cgroup_files, | |
4193 | ARRAY_SIZE(memsw_cgroup_files)); | |
4194 | }; | |
4195 | #else | |
4196 | static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) | |
4197 | { | |
4198 | return 0; | |
4199 | } | |
4200 | #endif | |
4201 | ||
6d12e2d8 KH |
4202 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
4203 | { | |
4204 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 4205 | struct mem_cgroup_per_zone *mz; |
b69408e8 | 4206 | enum lru_list l; |
41e3355d | 4207 | int zone, tmp = node; |
1ecaab2b KH |
4208 | /* |
4209 | * This routine is called against possible nodes. | |
4210 | * But it's BUG to call kmalloc() against offline node. | |
4211 | * | |
4212 | * TODO: this routine can waste much memory for nodes which will | |
4213 | * never be onlined. It's better to use memory hotplug callback | |
4214 | * function. | |
4215 | */ | |
41e3355d KH |
4216 | if (!node_state(node, N_NORMAL_MEMORY)) |
4217 | tmp = -1; | |
17295c88 | 4218 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
6d12e2d8 KH |
4219 | if (!pn) |
4220 | return 1; | |
1ecaab2b | 4221 | |
6d12e2d8 | 4222 | mem->info.nodeinfo[node] = pn; |
1ecaab2b KH |
4223 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4224 | mz = &pn->zoneinfo[zone]; | |
b69408e8 CL |
4225 | for_each_lru(l) |
4226 | INIT_LIST_HEAD(&mz->lists[l]); | |
f64c3f54 | 4227 | mz->usage_in_excess = 0; |
4e416953 BS |
4228 | mz->on_tree = false; |
4229 | mz->mem = mem; | |
1ecaab2b | 4230 | } |
6d12e2d8 KH |
4231 | return 0; |
4232 | } | |
4233 | ||
1ecaab2b KH |
4234 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
4235 | { | |
4236 | kfree(mem->info.nodeinfo[node]); | |
4237 | } | |
4238 | ||
33327948 KH |
4239 | static struct mem_cgroup *mem_cgroup_alloc(void) |
4240 | { | |
4241 | struct mem_cgroup *mem; | |
c62b1a3b | 4242 | int size = sizeof(struct mem_cgroup); |
33327948 | 4243 | |
c62b1a3b | 4244 | /* Can be very big if MAX_NUMNODES is very big */ |
c8dad2bb | 4245 | if (size < PAGE_SIZE) |
17295c88 | 4246 | mem = kzalloc(size, GFP_KERNEL); |
33327948 | 4247 | else |
17295c88 | 4248 | mem = vzalloc(size); |
33327948 | 4249 | |
e7bbcdf3 DC |
4250 | if (!mem) |
4251 | return NULL; | |
4252 | ||
c62b1a3b | 4253 | mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
d2e61b8d DC |
4254 | if (!mem->stat) |
4255 | goto out_free; | |
711d3d2c | 4256 | spin_lock_init(&mem->pcp_counter_lock); |
33327948 | 4257 | return mem; |
d2e61b8d DC |
4258 | |
4259 | out_free: | |
4260 | if (size < PAGE_SIZE) | |
4261 | kfree(mem); | |
4262 | else | |
4263 | vfree(mem); | |
4264 | return NULL; | |
33327948 KH |
4265 | } |
4266 | ||
8c7c6e34 KH |
4267 | /* |
4268 | * At destroying mem_cgroup, references from swap_cgroup can remain. | |
4269 | * (scanning all at force_empty is too costly...) | |
4270 | * | |
4271 | * Instead of clearing all references at force_empty, we remember | |
4272 | * the number of reference from swap_cgroup and free mem_cgroup when | |
4273 | * it goes down to 0. | |
4274 | * | |
8c7c6e34 KH |
4275 | * Removal of cgroup itself succeeds regardless of refs from swap. |
4276 | */ | |
4277 | ||
a7ba0eef | 4278 | static void __mem_cgroup_free(struct mem_cgroup *mem) |
33327948 | 4279 | { |
08e552c6 KH |
4280 | int node; |
4281 | ||
f64c3f54 | 4282 | mem_cgroup_remove_from_trees(mem); |
04046e1a KH |
4283 | free_css_id(&mem_cgroup_subsys, &mem->css); |
4284 | ||
08e552c6 KH |
4285 | for_each_node_state(node, N_POSSIBLE) |
4286 | free_mem_cgroup_per_zone_info(mem, node); | |
4287 | ||
c62b1a3b KH |
4288 | free_percpu(mem->stat); |
4289 | if (sizeof(struct mem_cgroup) < PAGE_SIZE) | |
33327948 KH |
4290 | kfree(mem); |
4291 | else | |
4292 | vfree(mem); | |
4293 | } | |
4294 | ||
8c7c6e34 KH |
4295 | static void mem_cgroup_get(struct mem_cgroup *mem) |
4296 | { | |
4297 | atomic_inc(&mem->refcnt); | |
4298 | } | |
4299 | ||
483c30b5 | 4300 | static void __mem_cgroup_put(struct mem_cgroup *mem, int count) |
8c7c6e34 | 4301 | { |
483c30b5 | 4302 | if (atomic_sub_and_test(count, &mem->refcnt)) { |
7bcc1bb1 | 4303 | struct mem_cgroup *parent = parent_mem_cgroup(mem); |
a7ba0eef | 4304 | __mem_cgroup_free(mem); |
7bcc1bb1 DN |
4305 | if (parent) |
4306 | mem_cgroup_put(parent); | |
4307 | } | |
8c7c6e34 KH |
4308 | } |
4309 | ||
483c30b5 DN |
4310 | static void mem_cgroup_put(struct mem_cgroup *mem) |
4311 | { | |
4312 | __mem_cgroup_put(mem, 1); | |
4313 | } | |
4314 | ||
7bcc1bb1 DN |
4315 | /* |
4316 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | |
4317 | */ | |
4318 | static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) | |
4319 | { | |
4320 | if (!mem->res.parent) | |
4321 | return NULL; | |
4322 | return mem_cgroup_from_res_counter(mem->res.parent, res); | |
4323 | } | |
33327948 | 4324 | |
c077719b KH |
4325 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP |
4326 | static void __init enable_swap_cgroup(void) | |
4327 | { | |
f8d66542 | 4328 | if (!mem_cgroup_disabled() && really_do_swap_account) |
c077719b KH |
4329 | do_swap_account = 1; |
4330 | } | |
4331 | #else | |
4332 | static void __init enable_swap_cgroup(void) | |
4333 | { | |
4334 | } | |
4335 | #endif | |
4336 | ||
f64c3f54 BS |
4337 | static int mem_cgroup_soft_limit_tree_init(void) |
4338 | { | |
4339 | struct mem_cgroup_tree_per_node *rtpn; | |
4340 | struct mem_cgroup_tree_per_zone *rtpz; | |
4341 | int tmp, node, zone; | |
4342 | ||
4343 | for_each_node_state(node, N_POSSIBLE) { | |
4344 | tmp = node; | |
4345 | if (!node_state(node, N_NORMAL_MEMORY)) | |
4346 | tmp = -1; | |
4347 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | |
4348 | if (!rtpn) | |
4349 | return 1; | |
4350 | ||
4351 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
4352 | ||
4353 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
4354 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
4355 | rtpz->rb_root = RB_ROOT; | |
4356 | spin_lock_init(&rtpz->lock); | |
4357 | } | |
4358 | } | |
4359 | return 0; | |
4360 | } | |
4361 | ||
0eb253e2 | 4362 | static struct cgroup_subsys_state * __ref |
8cdea7c0 BS |
4363 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) |
4364 | { | |
28dbc4b6 | 4365 | struct mem_cgroup *mem, *parent; |
04046e1a | 4366 | long error = -ENOMEM; |
6d12e2d8 | 4367 | int node; |
8cdea7c0 | 4368 | |
c8dad2bb JB |
4369 | mem = mem_cgroup_alloc(); |
4370 | if (!mem) | |
04046e1a | 4371 | return ERR_PTR(error); |
78fb7466 | 4372 | |
6d12e2d8 KH |
4373 | for_each_node_state(node, N_POSSIBLE) |
4374 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | |
4375 | goto free_out; | |
f64c3f54 | 4376 | |
c077719b | 4377 | /* root ? */ |
28dbc4b6 | 4378 | if (cont->parent == NULL) { |
cdec2e42 | 4379 | int cpu; |
c077719b | 4380 | enable_swap_cgroup(); |
28dbc4b6 | 4381 | parent = NULL; |
4b3bde4c | 4382 | root_mem_cgroup = mem; |
f64c3f54 BS |
4383 | if (mem_cgroup_soft_limit_tree_init()) |
4384 | goto free_out; | |
cdec2e42 KH |
4385 | for_each_possible_cpu(cpu) { |
4386 | struct memcg_stock_pcp *stock = | |
4387 | &per_cpu(memcg_stock, cpu); | |
4388 | INIT_WORK(&stock->work, drain_local_stock); | |
4389 | } | |
711d3d2c | 4390 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); |
18f59ea7 | 4391 | } else { |
28dbc4b6 | 4392 | parent = mem_cgroup_from_cont(cont->parent); |
18f59ea7 | 4393 | mem->use_hierarchy = parent->use_hierarchy; |
3c11ecf4 | 4394 | mem->oom_kill_disable = parent->oom_kill_disable; |
18f59ea7 | 4395 | } |
28dbc4b6 | 4396 | |
18f59ea7 BS |
4397 | if (parent && parent->use_hierarchy) { |
4398 | res_counter_init(&mem->res, &parent->res); | |
4399 | res_counter_init(&mem->memsw, &parent->memsw); | |
7bcc1bb1 DN |
4400 | /* |
4401 | * We increment refcnt of the parent to ensure that we can | |
4402 | * safely access it on res_counter_charge/uncharge. | |
4403 | * This refcnt will be decremented when freeing this | |
4404 | * mem_cgroup(see mem_cgroup_put). | |
4405 | */ | |
4406 | mem_cgroup_get(parent); | |
18f59ea7 BS |
4407 | } else { |
4408 | res_counter_init(&mem->res, NULL); | |
4409 | res_counter_init(&mem->memsw, NULL); | |
4410 | } | |
04046e1a | 4411 | mem->last_scanned_child = 0; |
2733c06a | 4412 | spin_lock_init(&mem->reclaim_param_lock); |
9490ff27 | 4413 | INIT_LIST_HEAD(&mem->oom_notify); |
6d61ef40 | 4414 | |
a7885eb8 KM |
4415 | if (parent) |
4416 | mem->swappiness = get_swappiness(parent); | |
a7ba0eef | 4417 | atomic_set(&mem->refcnt, 1); |
7dc74be0 | 4418 | mem->move_charge_at_immigrate = 0; |
2e72b634 | 4419 | mutex_init(&mem->thresholds_lock); |
8cdea7c0 | 4420 | return &mem->css; |
6d12e2d8 | 4421 | free_out: |
a7ba0eef | 4422 | __mem_cgroup_free(mem); |
4b3bde4c | 4423 | root_mem_cgroup = NULL; |
04046e1a | 4424 | return ERR_PTR(error); |
8cdea7c0 BS |
4425 | } |
4426 | ||
ec64f515 | 4427 | static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, |
df878fb0 KH |
4428 | struct cgroup *cont) |
4429 | { | |
4430 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
ec64f515 KH |
4431 | |
4432 | return mem_cgroup_force_empty(mem, false); | |
df878fb0 KH |
4433 | } |
4434 | ||
8cdea7c0 BS |
4435 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
4436 | struct cgroup *cont) | |
4437 | { | |
c268e994 | 4438 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); |
c268e994 | 4439 | |
c268e994 | 4440 | mem_cgroup_put(mem); |
8cdea7c0 BS |
4441 | } |
4442 | ||
4443 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | |
4444 | struct cgroup *cont) | |
4445 | { | |
8c7c6e34 KH |
4446 | int ret; |
4447 | ||
4448 | ret = cgroup_add_files(cont, ss, mem_cgroup_files, | |
4449 | ARRAY_SIZE(mem_cgroup_files)); | |
4450 | ||
4451 | if (!ret) | |
4452 | ret = register_memsw_files(cont, ss); | |
4453 | return ret; | |
8cdea7c0 BS |
4454 | } |
4455 | ||
02491447 | 4456 | #ifdef CONFIG_MMU |
7dc74be0 | 4457 | /* Handlers for move charge at task migration. */ |
854ffa8d DN |
4458 | #define PRECHARGE_COUNT_AT_ONCE 256 |
4459 | static int mem_cgroup_do_precharge(unsigned long count) | |
7dc74be0 | 4460 | { |
854ffa8d DN |
4461 | int ret = 0; |
4462 | int batch_count = PRECHARGE_COUNT_AT_ONCE; | |
4ffef5fe DN |
4463 | struct mem_cgroup *mem = mc.to; |
4464 | ||
854ffa8d DN |
4465 | if (mem_cgroup_is_root(mem)) { |
4466 | mc.precharge += count; | |
4467 | /* we don't need css_get for root */ | |
4468 | return ret; | |
4469 | } | |
4470 | /* try to charge at once */ | |
4471 | if (count > 1) { | |
4472 | struct res_counter *dummy; | |
4473 | /* | |
4474 | * "mem" cannot be under rmdir() because we've already checked | |
4475 | * by cgroup_lock_live_cgroup() that it is not removed and we | |
4476 | * are still under the same cgroup_mutex. So we can postpone | |
4477 | * css_get(). | |
4478 | */ | |
4479 | if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) | |
4480 | goto one_by_one; | |
4481 | if (do_swap_account && res_counter_charge(&mem->memsw, | |
4482 | PAGE_SIZE * count, &dummy)) { | |
4483 | res_counter_uncharge(&mem->res, PAGE_SIZE * count); | |
4484 | goto one_by_one; | |
4485 | } | |
4486 | mc.precharge += count; | |
854ffa8d DN |
4487 | return ret; |
4488 | } | |
4489 | one_by_one: | |
4490 | /* fall back to one by one charge */ | |
4491 | while (count--) { | |
4492 | if (signal_pending(current)) { | |
4493 | ret = -EINTR; | |
4494 | break; | |
4495 | } | |
4496 | if (!batch_count--) { | |
4497 | batch_count = PRECHARGE_COUNT_AT_ONCE; | |
4498 | cond_resched(); | |
4499 | } | |
ec168510 AA |
4500 | ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false, |
4501 | PAGE_SIZE); | |
854ffa8d DN |
4502 | if (ret || !mem) |
4503 | /* mem_cgroup_clear_mc() will do uncharge later */ | |
4504 | return -ENOMEM; | |
4505 | mc.precharge++; | |
4506 | } | |
4ffef5fe DN |
4507 | return ret; |
4508 | } | |
4509 | ||
4510 | /** | |
4511 | * is_target_pte_for_mc - check a pte whether it is valid for move charge | |
4512 | * @vma: the vma the pte to be checked belongs | |
4513 | * @addr: the address corresponding to the pte to be checked | |
4514 | * @ptent: the pte to be checked | |
02491447 | 4515 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
4ffef5fe DN |
4516 | * |
4517 | * Returns | |
4518 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
4519 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
4520 | * move charge. if @target is not NULL, the page is stored in target->page | |
4521 | * with extra refcnt got(Callers should handle it). | |
02491447 DN |
4522 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
4523 | * target for charge migration. if @target is not NULL, the entry is stored | |
4524 | * in target->ent. | |
4ffef5fe DN |
4525 | * |
4526 | * Called with pte lock held. | |
4527 | */ | |
4ffef5fe DN |
4528 | union mc_target { |
4529 | struct page *page; | |
02491447 | 4530 | swp_entry_t ent; |
4ffef5fe DN |
4531 | }; |
4532 | ||
4ffef5fe DN |
4533 | enum mc_target_type { |
4534 | MC_TARGET_NONE, /* not used */ | |
4535 | MC_TARGET_PAGE, | |
02491447 | 4536 | MC_TARGET_SWAP, |
4ffef5fe DN |
4537 | }; |
4538 | ||
90254a65 DN |
4539 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
4540 | unsigned long addr, pte_t ptent) | |
4ffef5fe | 4541 | { |
90254a65 | 4542 | struct page *page = vm_normal_page(vma, addr, ptent); |
4ffef5fe | 4543 | |
90254a65 DN |
4544 | if (!page || !page_mapped(page)) |
4545 | return NULL; | |
4546 | if (PageAnon(page)) { | |
4547 | /* we don't move shared anon */ | |
4548 | if (!move_anon() || page_mapcount(page) > 2) | |
4549 | return NULL; | |
87946a72 DN |
4550 | } else if (!move_file()) |
4551 | /* we ignore mapcount for file pages */ | |
90254a65 DN |
4552 | return NULL; |
4553 | if (!get_page_unless_zero(page)) | |
4554 | return NULL; | |
4555 | ||
4556 | return page; | |
4557 | } | |
4558 | ||
4559 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
4560 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4561 | { | |
4562 | int usage_count; | |
4563 | struct page *page = NULL; | |
4564 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
4565 | ||
4566 | if (!move_anon() || non_swap_entry(ent)) | |
4567 | return NULL; | |
4568 | usage_count = mem_cgroup_count_swap_user(ent, &page); | |
4569 | if (usage_count > 1) { /* we don't move shared anon */ | |
02491447 DN |
4570 | if (page) |
4571 | put_page(page); | |
90254a65 | 4572 | return NULL; |
02491447 | 4573 | } |
90254a65 DN |
4574 | if (do_swap_account) |
4575 | entry->val = ent.val; | |
4576 | ||
4577 | return page; | |
4578 | } | |
4579 | ||
87946a72 DN |
4580 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
4581 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4582 | { | |
4583 | struct page *page = NULL; | |
4584 | struct inode *inode; | |
4585 | struct address_space *mapping; | |
4586 | pgoff_t pgoff; | |
4587 | ||
4588 | if (!vma->vm_file) /* anonymous vma */ | |
4589 | return NULL; | |
4590 | if (!move_file()) | |
4591 | return NULL; | |
4592 | ||
4593 | inode = vma->vm_file->f_path.dentry->d_inode; | |
4594 | mapping = vma->vm_file->f_mapping; | |
4595 | if (pte_none(ptent)) | |
4596 | pgoff = linear_page_index(vma, addr); | |
4597 | else /* pte_file(ptent) is true */ | |
4598 | pgoff = pte_to_pgoff(ptent); | |
4599 | ||
4600 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
4601 | if (!mapping_cap_swap_backed(mapping)) { /* normal file */ | |
4602 | page = find_get_page(mapping, pgoff); | |
4603 | } else { /* shmem/tmpfs file. we should take account of swap too. */ | |
4604 | swp_entry_t ent; | |
4605 | mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent); | |
4606 | if (do_swap_account) | |
4607 | entry->val = ent.val; | |
4608 | } | |
4609 | ||
4610 | return page; | |
4611 | } | |
4612 | ||
90254a65 DN |
4613 | static int is_target_pte_for_mc(struct vm_area_struct *vma, |
4614 | unsigned long addr, pte_t ptent, union mc_target *target) | |
4615 | { | |
4616 | struct page *page = NULL; | |
4617 | struct page_cgroup *pc; | |
4618 | int ret = 0; | |
4619 | swp_entry_t ent = { .val = 0 }; | |
4620 | ||
4621 | if (pte_present(ptent)) | |
4622 | page = mc_handle_present_pte(vma, addr, ptent); | |
4623 | else if (is_swap_pte(ptent)) | |
4624 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
87946a72 DN |
4625 | else if (pte_none(ptent) || pte_file(ptent)) |
4626 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
90254a65 DN |
4627 | |
4628 | if (!page && !ent.val) | |
4629 | return 0; | |
02491447 DN |
4630 | if (page) { |
4631 | pc = lookup_page_cgroup(page); | |
4632 | /* | |
4633 | * Do only loose check w/o page_cgroup lock. | |
4634 | * mem_cgroup_move_account() checks the pc is valid or not under | |
4635 | * the lock. | |
4636 | */ | |
4637 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
4638 | ret = MC_TARGET_PAGE; | |
4639 | if (target) | |
4640 | target->page = page; | |
4641 | } | |
4642 | if (!ret || !target) | |
4643 | put_page(page); | |
4644 | } | |
90254a65 DN |
4645 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
4646 | if (ent.val && !ret && | |
7f0f1546 KH |
4647 | css_id(&mc.from->css) == lookup_swap_cgroup(ent)) { |
4648 | ret = MC_TARGET_SWAP; | |
4649 | if (target) | |
4650 | target->ent = ent; | |
4ffef5fe | 4651 | } |
4ffef5fe DN |
4652 | return ret; |
4653 | } | |
4654 | ||
4655 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, | |
4656 | unsigned long addr, unsigned long end, | |
4657 | struct mm_walk *walk) | |
4658 | { | |
4659 | struct vm_area_struct *vma = walk->private; | |
4660 | pte_t *pte; | |
4661 | spinlock_t *ptl; | |
4662 | ||
ec168510 | 4663 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
4ffef5fe DN |
4664 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
4665 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
4666 | if (is_target_pte_for_mc(vma, addr, *pte, NULL)) | |
4667 | mc.precharge++; /* increment precharge temporarily */ | |
4668 | pte_unmap_unlock(pte - 1, ptl); | |
4669 | cond_resched(); | |
4670 | ||
7dc74be0 DN |
4671 | return 0; |
4672 | } | |
4673 | ||
4ffef5fe DN |
4674 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
4675 | { | |
4676 | unsigned long precharge; | |
4677 | struct vm_area_struct *vma; | |
4678 | ||
dfe076b0 | 4679 | down_read(&mm->mmap_sem); |
4ffef5fe DN |
4680 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
4681 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
4682 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
4683 | .mm = mm, | |
4684 | .private = vma, | |
4685 | }; | |
4686 | if (is_vm_hugetlb_page(vma)) | |
4687 | continue; | |
4ffef5fe DN |
4688 | walk_page_range(vma->vm_start, vma->vm_end, |
4689 | &mem_cgroup_count_precharge_walk); | |
4690 | } | |
dfe076b0 | 4691 | up_read(&mm->mmap_sem); |
4ffef5fe DN |
4692 | |
4693 | precharge = mc.precharge; | |
4694 | mc.precharge = 0; | |
4695 | ||
4696 | return precharge; | |
4697 | } | |
4698 | ||
4ffef5fe DN |
4699 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
4700 | { | |
dfe076b0 DN |
4701 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
4702 | ||
4703 | VM_BUG_ON(mc.moving_task); | |
4704 | mc.moving_task = current; | |
4705 | return mem_cgroup_do_precharge(precharge); | |
4ffef5fe DN |
4706 | } |
4707 | ||
dfe076b0 DN |
4708 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
4709 | static void __mem_cgroup_clear_mc(void) | |
4ffef5fe | 4710 | { |
2bd9bb20 KH |
4711 | struct mem_cgroup *from = mc.from; |
4712 | struct mem_cgroup *to = mc.to; | |
4713 | ||
4ffef5fe | 4714 | /* we must uncharge all the leftover precharges from mc.to */ |
854ffa8d DN |
4715 | if (mc.precharge) { |
4716 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | |
4717 | mc.precharge = 0; | |
4718 | } | |
4719 | /* | |
4720 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
4721 | * we must uncharge here. | |
4722 | */ | |
4723 | if (mc.moved_charge) { | |
4724 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | |
4725 | mc.moved_charge = 0; | |
4ffef5fe | 4726 | } |
483c30b5 DN |
4727 | /* we must fixup refcnts and charges */ |
4728 | if (mc.moved_swap) { | |
483c30b5 DN |
4729 | /* uncharge swap account from the old cgroup */ |
4730 | if (!mem_cgroup_is_root(mc.from)) | |
4731 | res_counter_uncharge(&mc.from->memsw, | |
4732 | PAGE_SIZE * mc.moved_swap); | |
4733 | __mem_cgroup_put(mc.from, mc.moved_swap); | |
4734 | ||
4735 | if (!mem_cgroup_is_root(mc.to)) { | |
4736 | /* | |
4737 | * we charged both to->res and to->memsw, so we should | |
4738 | * uncharge to->res. | |
4739 | */ | |
4740 | res_counter_uncharge(&mc.to->res, | |
4741 | PAGE_SIZE * mc.moved_swap); | |
483c30b5 DN |
4742 | } |
4743 | /* we've already done mem_cgroup_get(mc.to) */ | |
483c30b5 DN |
4744 | mc.moved_swap = 0; |
4745 | } | |
dfe076b0 DN |
4746 | memcg_oom_recover(from); |
4747 | memcg_oom_recover(to); | |
4748 | wake_up_all(&mc.waitq); | |
4749 | } | |
4750 | ||
4751 | static void mem_cgroup_clear_mc(void) | |
4752 | { | |
4753 | struct mem_cgroup *from = mc.from; | |
4754 | ||
4755 | /* | |
4756 | * we must clear moving_task before waking up waiters at the end of | |
4757 | * task migration. | |
4758 | */ | |
4759 | mc.moving_task = NULL; | |
4760 | __mem_cgroup_clear_mc(); | |
2bd9bb20 | 4761 | spin_lock(&mc.lock); |
4ffef5fe DN |
4762 | mc.from = NULL; |
4763 | mc.to = NULL; | |
2bd9bb20 | 4764 | spin_unlock(&mc.lock); |
32047e2a | 4765 | mem_cgroup_end_move(from); |
4ffef5fe DN |
4766 | } |
4767 | ||
7dc74be0 DN |
4768 | static int mem_cgroup_can_attach(struct cgroup_subsys *ss, |
4769 | struct cgroup *cgroup, | |
4770 | struct task_struct *p, | |
4771 | bool threadgroup) | |
4772 | { | |
4773 | int ret = 0; | |
4774 | struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); | |
4775 | ||
4776 | if (mem->move_charge_at_immigrate) { | |
4777 | struct mm_struct *mm; | |
4778 | struct mem_cgroup *from = mem_cgroup_from_task(p); | |
4779 | ||
4780 | VM_BUG_ON(from == mem); | |
4781 | ||
4782 | mm = get_task_mm(p); | |
4783 | if (!mm) | |
4784 | return 0; | |
7dc74be0 | 4785 | /* We move charges only when we move a owner of the mm */ |
4ffef5fe DN |
4786 | if (mm->owner == p) { |
4787 | VM_BUG_ON(mc.from); | |
4788 | VM_BUG_ON(mc.to); | |
4789 | VM_BUG_ON(mc.precharge); | |
854ffa8d | 4790 | VM_BUG_ON(mc.moved_charge); |
483c30b5 | 4791 | VM_BUG_ON(mc.moved_swap); |
32047e2a | 4792 | mem_cgroup_start_move(from); |
2bd9bb20 | 4793 | spin_lock(&mc.lock); |
4ffef5fe DN |
4794 | mc.from = from; |
4795 | mc.to = mem; | |
2bd9bb20 | 4796 | spin_unlock(&mc.lock); |
dfe076b0 | 4797 | /* We set mc.moving_task later */ |
4ffef5fe DN |
4798 | |
4799 | ret = mem_cgroup_precharge_mc(mm); | |
4800 | if (ret) | |
4801 | mem_cgroup_clear_mc(); | |
dfe076b0 DN |
4802 | } |
4803 | mmput(mm); | |
7dc74be0 DN |
4804 | } |
4805 | return ret; | |
4806 | } | |
4807 | ||
4808 | static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, | |
4809 | struct cgroup *cgroup, | |
4810 | struct task_struct *p, | |
4811 | bool threadgroup) | |
4812 | { | |
4ffef5fe | 4813 | mem_cgroup_clear_mc(); |
7dc74be0 DN |
4814 | } |
4815 | ||
4ffef5fe DN |
4816 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
4817 | unsigned long addr, unsigned long end, | |
4818 | struct mm_walk *walk) | |
7dc74be0 | 4819 | { |
4ffef5fe DN |
4820 | int ret = 0; |
4821 | struct vm_area_struct *vma = walk->private; | |
4822 | pte_t *pte; | |
4823 | spinlock_t *ptl; | |
4824 | ||
4825 | retry: | |
ec168510 | 4826 | VM_BUG_ON(pmd_trans_huge(*pmd)); |
4ffef5fe DN |
4827 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
4828 | for (; addr != end; addr += PAGE_SIZE) { | |
4829 | pte_t ptent = *(pte++); | |
4830 | union mc_target target; | |
4831 | int type; | |
4832 | struct page *page; | |
4833 | struct page_cgroup *pc; | |
02491447 | 4834 | swp_entry_t ent; |
4ffef5fe DN |
4835 | |
4836 | if (!mc.precharge) | |
4837 | break; | |
4838 | ||
4839 | type = is_target_pte_for_mc(vma, addr, ptent, &target); | |
4840 | switch (type) { | |
4841 | case MC_TARGET_PAGE: | |
4842 | page = target.page; | |
4843 | if (isolate_lru_page(page)) | |
4844 | goto put; | |
4845 | pc = lookup_page_cgroup(page); | |
854ffa8d DN |
4846 | if (!mem_cgroup_move_account(pc, |
4847 | mc.from, mc.to, false)) { | |
4ffef5fe | 4848 | mc.precharge--; |
854ffa8d DN |
4849 | /* we uncharge from mc.from later. */ |
4850 | mc.moved_charge++; | |
4ffef5fe DN |
4851 | } |
4852 | putback_lru_page(page); | |
4853 | put: /* is_target_pte_for_mc() gets the page */ | |
4854 | put_page(page); | |
4855 | break; | |
02491447 DN |
4856 | case MC_TARGET_SWAP: |
4857 | ent = target.ent; | |
483c30b5 DN |
4858 | if (!mem_cgroup_move_swap_account(ent, |
4859 | mc.from, mc.to, false)) { | |
02491447 | 4860 | mc.precharge--; |
483c30b5 DN |
4861 | /* we fixup refcnts and charges later. */ |
4862 | mc.moved_swap++; | |
4863 | } | |
02491447 | 4864 | break; |
4ffef5fe DN |
4865 | default: |
4866 | break; | |
4867 | } | |
4868 | } | |
4869 | pte_unmap_unlock(pte - 1, ptl); | |
4870 | cond_resched(); | |
4871 | ||
4872 | if (addr != end) { | |
4873 | /* | |
4874 | * We have consumed all precharges we got in can_attach(). | |
4875 | * We try charge one by one, but don't do any additional | |
4876 | * charges to mc.to if we have failed in charge once in attach() | |
4877 | * phase. | |
4878 | */ | |
854ffa8d | 4879 | ret = mem_cgroup_do_precharge(1); |
4ffef5fe DN |
4880 | if (!ret) |
4881 | goto retry; | |
4882 | } | |
4883 | ||
4884 | return ret; | |
4885 | } | |
4886 | ||
4887 | static void mem_cgroup_move_charge(struct mm_struct *mm) | |
4888 | { | |
4889 | struct vm_area_struct *vma; | |
4890 | ||
4891 | lru_add_drain_all(); | |
dfe076b0 DN |
4892 | retry: |
4893 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | |
4894 | /* | |
4895 | * Someone who are holding the mmap_sem might be waiting in | |
4896 | * waitq. So we cancel all extra charges, wake up all waiters, | |
4897 | * and retry. Because we cancel precharges, we might not be able | |
4898 | * to move enough charges, but moving charge is a best-effort | |
4899 | * feature anyway, so it wouldn't be a big problem. | |
4900 | */ | |
4901 | __mem_cgroup_clear_mc(); | |
4902 | cond_resched(); | |
4903 | goto retry; | |
4904 | } | |
4ffef5fe DN |
4905 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
4906 | int ret; | |
4907 | struct mm_walk mem_cgroup_move_charge_walk = { | |
4908 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
4909 | .mm = mm, | |
4910 | .private = vma, | |
4911 | }; | |
4912 | if (is_vm_hugetlb_page(vma)) | |
4913 | continue; | |
4ffef5fe DN |
4914 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
4915 | &mem_cgroup_move_charge_walk); | |
4916 | if (ret) | |
4917 | /* | |
4918 | * means we have consumed all precharges and failed in | |
4919 | * doing additional charge. Just abandon here. | |
4920 | */ | |
4921 | break; | |
4922 | } | |
dfe076b0 | 4923 | up_read(&mm->mmap_sem); |
7dc74be0 DN |
4924 | } |
4925 | ||
67e465a7 BS |
4926 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
4927 | struct cgroup *cont, | |
4928 | struct cgroup *old_cont, | |
be367d09 BB |
4929 | struct task_struct *p, |
4930 | bool threadgroup) | |
67e465a7 | 4931 | { |
dfe076b0 DN |
4932 | struct mm_struct *mm; |
4933 | ||
4934 | if (!mc.to) | |
4ffef5fe DN |
4935 | /* no need to move charge */ |
4936 | return; | |
4937 | ||
dfe076b0 DN |
4938 | mm = get_task_mm(p); |
4939 | if (mm) { | |
4940 | mem_cgroup_move_charge(mm); | |
4941 | mmput(mm); | |
4942 | } | |
4ffef5fe | 4943 | mem_cgroup_clear_mc(); |
67e465a7 | 4944 | } |
5cfb80a7 DN |
4945 | #else /* !CONFIG_MMU */ |
4946 | static int mem_cgroup_can_attach(struct cgroup_subsys *ss, | |
4947 | struct cgroup *cgroup, | |
4948 | struct task_struct *p, | |
4949 | bool threadgroup) | |
4950 | { | |
4951 | return 0; | |
4952 | } | |
4953 | static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, | |
4954 | struct cgroup *cgroup, | |
4955 | struct task_struct *p, | |
4956 | bool threadgroup) | |
4957 | { | |
4958 | } | |
4959 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, | |
4960 | struct cgroup *cont, | |
4961 | struct cgroup *old_cont, | |
4962 | struct task_struct *p, | |
4963 | bool threadgroup) | |
4964 | { | |
4965 | } | |
4966 | #endif | |
67e465a7 | 4967 | |
8cdea7c0 BS |
4968 | struct cgroup_subsys mem_cgroup_subsys = { |
4969 | .name = "memory", | |
4970 | .subsys_id = mem_cgroup_subsys_id, | |
4971 | .create = mem_cgroup_create, | |
df878fb0 | 4972 | .pre_destroy = mem_cgroup_pre_destroy, |
8cdea7c0 BS |
4973 | .destroy = mem_cgroup_destroy, |
4974 | .populate = mem_cgroup_populate, | |
7dc74be0 DN |
4975 | .can_attach = mem_cgroup_can_attach, |
4976 | .cancel_attach = mem_cgroup_cancel_attach, | |
67e465a7 | 4977 | .attach = mem_cgroup_move_task, |
6d12e2d8 | 4978 | .early_init = 0, |
04046e1a | 4979 | .use_id = 1, |
8cdea7c0 | 4980 | }; |
c077719b KH |
4981 | |
4982 | #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP | |
a42c390c MH |
4983 | static int __init enable_swap_account(char *s) |
4984 | { | |
4985 | /* consider enabled if no parameter or 1 is given */ | |
4986 | if (!s || !strcmp(s, "1")) | |
4987 | really_do_swap_account = 1; | |
4988 | else if (!strcmp(s, "0")) | |
4989 | really_do_swap_account = 0; | |
4990 | return 1; | |
4991 | } | |
4992 | __setup("swapaccount", enable_swap_account); | |
c077719b KH |
4993 | |
4994 | static int __init disable_swap_account(char *s) | |
4995 | { | |
a42c390c | 4996 | enable_swap_account("0"); |
c077719b KH |
4997 | return 1; |
4998 | } | |
4999 | __setup("noswapaccount", disable_swap_account); | |
5000 | #endif |