]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <[email protected]> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <[email protected]> | |
8 | * | |
8cdea7c0 BS |
9 | * This program is free software; you can redistribute it and/or modify |
10 | * it under the terms of the GNU General Public License as published by | |
11 | * the Free Software Foundation; either version 2 of the License, or | |
12 | * (at your option) any later version. | |
13 | * | |
14 | * This program is distributed in the hope that it will be useful, | |
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | * GNU General Public License for more details. | |
18 | */ | |
19 | ||
20 | #include <linux/res_counter.h> | |
21 | #include <linux/memcontrol.h> | |
22 | #include <linux/cgroup.h> | |
78fb7466 | 23 | #include <linux/mm.h> |
d52aa412 | 24 | #include <linux/smp.h> |
8a9f3ccd | 25 | #include <linux/page-flags.h> |
66e1707b | 26 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
27 | #include <linux/bit_spinlock.h> |
28 | #include <linux/rcupdate.h> | |
b6ac57d5 | 29 | #include <linux/slab.h> |
66e1707b BS |
30 | #include <linux/swap.h> |
31 | #include <linux/spinlock.h> | |
32 | #include <linux/fs.h> | |
d2ceb9b7 | 33 | #include <linux/seq_file.h> |
33327948 | 34 | #include <linux/vmalloc.h> |
b69408e8 | 35 | #include <linux/mm_inline.h> |
8cdea7c0 | 36 | |
8697d331 BS |
37 | #include <asm/uaccess.h> |
38 | ||
a181b0e8 KH |
39 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
40 | static struct kmem_cache *page_cgroup_cache __read_mostly; | |
41 | #define MEM_CGROUP_RECLAIM_RETRIES 5 | |
8cdea7c0 | 42 | |
d52aa412 KH |
43 | /* |
44 | * Statistics for memory cgroup. | |
45 | */ | |
46 | enum mem_cgroup_stat_index { | |
47 | /* | |
48 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | |
49 | */ | |
50 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ | |
51 | MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */ | |
55e462b0 BR |
52 | MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ |
53 | MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ | |
d52aa412 KH |
54 | |
55 | MEM_CGROUP_STAT_NSTATS, | |
56 | }; | |
57 | ||
58 | struct mem_cgroup_stat_cpu { | |
59 | s64 count[MEM_CGROUP_STAT_NSTATS]; | |
60 | } ____cacheline_aligned_in_smp; | |
61 | ||
62 | struct mem_cgroup_stat { | |
63 | struct mem_cgroup_stat_cpu cpustat[NR_CPUS]; | |
64 | }; | |
65 | ||
66 | /* | |
67 | * For accounting under irq disable, no need for increment preempt count. | |
68 | */ | |
69 | static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat, | |
70 | enum mem_cgroup_stat_index idx, int val) | |
71 | { | |
72 | int cpu = smp_processor_id(); | |
73 | stat->cpustat[cpu].count[idx] += val; | |
74 | } | |
75 | ||
76 | static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, | |
77 | enum mem_cgroup_stat_index idx) | |
78 | { | |
79 | int cpu; | |
80 | s64 ret = 0; | |
81 | for_each_possible_cpu(cpu) | |
82 | ret += stat->cpustat[cpu].count[idx]; | |
83 | return ret; | |
84 | } | |
85 | ||
6d12e2d8 KH |
86 | /* |
87 | * per-zone information in memory controller. | |
88 | */ | |
6d12e2d8 | 89 | struct mem_cgroup_per_zone { |
072c56c1 KH |
90 | /* |
91 | * spin_lock to protect the per cgroup LRU | |
92 | */ | |
93 | spinlock_t lru_lock; | |
b69408e8 CL |
94 | struct list_head lists[NR_LRU_LISTS]; |
95 | unsigned long count[NR_LRU_LISTS]; | |
6d12e2d8 KH |
96 | }; |
97 | /* Macro for accessing counter */ | |
98 | #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) | |
99 | ||
100 | struct mem_cgroup_per_node { | |
101 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
102 | }; | |
103 | ||
104 | struct mem_cgroup_lru_info { | |
105 | struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; | |
106 | }; | |
107 | ||
8cdea7c0 BS |
108 | /* |
109 | * The memory controller data structure. The memory controller controls both | |
110 | * page cache and RSS per cgroup. We would eventually like to provide | |
111 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
112 | * to help the administrator determine what knobs to tune. | |
113 | * | |
114 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
115 | * we hit the water mark. May be even add a low water mark, such that |
116 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
117 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
118 | */ |
119 | struct mem_cgroup { | |
120 | struct cgroup_subsys_state css; | |
121 | /* | |
122 | * the counter to account for memory usage | |
123 | */ | |
124 | struct res_counter res; | |
78fb7466 PE |
125 | /* |
126 | * Per cgroup active and inactive list, similar to the | |
127 | * per zone LRU lists. | |
78fb7466 | 128 | */ |
6d12e2d8 | 129 | struct mem_cgroup_lru_info info; |
072c56c1 | 130 | |
6c48a1d0 | 131 | int prev_priority; /* for recording reclaim priority */ |
d52aa412 KH |
132 | /* |
133 | * statistics. | |
134 | */ | |
135 | struct mem_cgroup_stat stat; | |
8cdea7c0 | 136 | }; |
8869b8f6 | 137 | static struct mem_cgroup init_mem_cgroup; |
8cdea7c0 | 138 | |
8a9f3ccd BS |
139 | /* |
140 | * We use the lower bit of the page->page_cgroup pointer as a bit spin | |
9442ec9d HD |
141 | * lock. We need to ensure that page->page_cgroup is at least two |
142 | * byte aligned (based on comments from Nick Piggin). But since | |
143 | * bit_spin_lock doesn't actually set that lock bit in a non-debug | |
144 | * uniprocessor kernel, we should avoid setting it here too. | |
8a9f3ccd BS |
145 | */ |
146 | #define PAGE_CGROUP_LOCK_BIT 0x0 | |
9442ec9d HD |
147 | #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) |
148 | #define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT) | |
149 | #else | |
150 | #define PAGE_CGROUP_LOCK 0x0 | |
151 | #endif | |
8a9f3ccd | 152 | |
8cdea7c0 BS |
153 | /* |
154 | * A page_cgroup page is associated with every page descriptor. The | |
155 | * page_cgroup helps us identify information about the cgroup | |
156 | */ | |
157 | struct page_cgroup { | |
158 | struct list_head lru; /* per cgroup LRU list */ | |
159 | struct page *page; | |
160 | struct mem_cgroup *mem_cgroup; | |
8869b8f6 | 161 | int flags; |
8cdea7c0 | 162 | }; |
217bc319 | 163 | #define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */ |
3564c7c4 | 164 | #define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */ |
8cdea7c0 | 165 | |
d5b69e38 | 166 | static int page_cgroup_nid(struct page_cgroup *pc) |
c0149530 KH |
167 | { |
168 | return page_to_nid(pc->page); | |
169 | } | |
170 | ||
d5b69e38 | 171 | static enum zone_type page_cgroup_zid(struct page_cgroup *pc) |
c0149530 KH |
172 | { |
173 | return page_zonenum(pc->page); | |
174 | } | |
175 | ||
217bc319 KH |
176 | enum charge_type { |
177 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
178 | MEM_CGROUP_CHARGE_TYPE_MAPPED, | |
69029cd5 | 179 | MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ |
217bc319 KH |
180 | }; |
181 | ||
d52aa412 KH |
182 | /* |
183 | * Always modified under lru lock. Then, not necessary to preempt_disable() | |
184 | */ | |
185 | static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags, | |
186 | bool charge) | |
187 | { | |
188 | int val = (charge)? 1 : -1; | |
189 | struct mem_cgroup_stat *stat = &mem->stat; | |
d52aa412 | 190 | |
8869b8f6 | 191 | VM_BUG_ON(!irqs_disabled()); |
d52aa412 | 192 | if (flags & PAGE_CGROUP_FLAG_CACHE) |
8869b8f6 | 193 | __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val); |
d52aa412 KH |
194 | else |
195 | __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val); | |
55e462b0 BR |
196 | |
197 | if (charge) | |
198 | __mem_cgroup_stat_add_safe(stat, | |
199 | MEM_CGROUP_STAT_PGPGIN_COUNT, 1); | |
200 | else | |
201 | __mem_cgroup_stat_add_safe(stat, | |
202 | MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); | |
6d12e2d8 KH |
203 | } |
204 | ||
d5b69e38 | 205 | static struct mem_cgroup_per_zone * |
6d12e2d8 KH |
206 | mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) |
207 | { | |
6d12e2d8 KH |
208 | return &mem->info.nodeinfo[nid]->zoneinfo[zid]; |
209 | } | |
210 | ||
d5b69e38 | 211 | static struct mem_cgroup_per_zone * |
6d12e2d8 KH |
212 | page_cgroup_zoneinfo(struct page_cgroup *pc) |
213 | { | |
214 | struct mem_cgroup *mem = pc->mem_cgroup; | |
215 | int nid = page_cgroup_nid(pc); | |
216 | int zid = page_cgroup_zid(pc); | |
d52aa412 | 217 | |
6d12e2d8 KH |
218 | return mem_cgroup_zoneinfo(mem, nid, zid); |
219 | } | |
220 | ||
221 | static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem, | |
b69408e8 | 222 | enum lru_list idx) |
6d12e2d8 KH |
223 | { |
224 | int nid, zid; | |
225 | struct mem_cgroup_per_zone *mz; | |
226 | u64 total = 0; | |
227 | ||
228 | for_each_online_node(nid) | |
229 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
230 | mz = mem_cgroup_zoneinfo(mem, nid, zid); | |
231 | total += MEM_CGROUP_ZSTAT(mz, idx); | |
232 | } | |
233 | return total; | |
d52aa412 KH |
234 | } |
235 | ||
d5b69e38 | 236 | static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
8cdea7c0 BS |
237 | { |
238 | return container_of(cgroup_subsys_state(cont, | |
239 | mem_cgroup_subsys_id), struct mem_cgroup, | |
240 | css); | |
241 | } | |
242 | ||
cf475ad2 | 243 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 244 | { |
31a78f23 BS |
245 | /* |
246 | * mm_update_next_owner() may clear mm->owner to NULL | |
247 | * if it races with swapoff, page migration, etc. | |
248 | * So this can be called with p == NULL. | |
249 | */ | |
250 | if (unlikely(!p)) | |
251 | return NULL; | |
252 | ||
78fb7466 PE |
253 | return container_of(task_subsys_state(p, mem_cgroup_subsys_id), |
254 | struct mem_cgroup, css); | |
255 | } | |
256 | ||
8a9f3ccd BS |
257 | static inline int page_cgroup_locked(struct page *page) |
258 | { | |
8869b8f6 | 259 | return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); |
8a9f3ccd BS |
260 | } |
261 | ||
9442ec9d | 262 | static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc) |
78fb7466 | 263 | { |
9442ec9d HD |
264 | VM_BUG_ON(!page_cgroup_locked(page)); |
265 | page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK); | |
78fb7466 PE |
266 | } |
267 | ||
268 | struct page_cgroup *page_get_page_cgroup(struct page *page) | |
269 | { | |
8869b8f6 | 270 | return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK); |
8a9f3ccd BS |
271 | } |
272 | ||
d5b69e38 | 273 | static void lock_page_cgroup(struct page *page) |
8a9f3ccd BS |
274 | { |
275 | bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | |
8a9f3ccd BS |
276 | } |
277 | ||
2680eed7 HD |
278 | static int try_lock_page_cgroup(struct page *page) |
279 | { | |
280 | return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | |
281 | } | |
282 | ||
d5b69e38 | 283 | static void unlock_page_cgroup(struct page *page) |
8a9f3ccd BS |
284 | { |
285 | bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup); | |
286 | } | |
287 | ||
3eae90c3 KH |
288 | static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz, |
289 | struct page_cgroup *pc) | |
6d12e2d8 KH |
290 | { |
291 | int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE; | |
b69408e8 | 292 | int lru = !!from; |
6d12e2d8 | 293 | |
b69408e8 | 294 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; |
6d12e2d8 KH |
295 | |
296 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false); | |
508b7be0 | 297 | list_del(&pc->lru); |
6d12e2d8 KH |
298 | } |
299 | ||
3eae90c3 KH |
300 | static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz, |
301 | struct page_cgroup *pc) | |
6d12e2d8 | 302 | { |
b69408e8 CL |
303 | int lru = LRU_INACTIVE; |
304 | ||
305 | if (pc->flags & PAGE_CGROUP_FLAG_ACTIVE) | |
306 | lru += LRU_ACTIVE; | |
307 | ||
308 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | |
309 | list_add(&pc->lru, &mz->lists[lru]); | |
6d12e2d8 | 310 | |
6d12e2d8 KH |
311 | mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true); |
312 | } | |
313 | ||
8697d331 | 314 | static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active) |
66e1707b | 315 | { |
6d12e2d8 | 316 | struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc); |
b69408e8 | 317 | int lru = LRU_INACTIVE; |
6d12e2d8 | 318 | |
b69408e8 CL |
319 | if (pc->flags & PAGE_CGROUP_FLAG_ACTIVE) |
320 | lru += LRU_ACTIVE; | |
6d12e2d8 | 321 | |
b69408e8 CL |
322 | MEM_CGROUP_ZSTAT(mz, lru) -= 1; |
323 | ||
324 | if (active) | |
3564c7c4 | 325 | pc->flags |= PAGE_CGROUP_FLAG_ACTIVE; |
b69408e8 | 326 | else |
3564c7c4 | 327 | pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE; |
b69408e8 CL |
328 | |
329 | lru = !!active; | |
330 | MEM_CGROUP_ZSTAT(mz, lru) += 1; | |
331 | list_move(&pc->lru, &mz->lists[lru]); | |
66e1707b BS |
332 | } |
333 | ||
4c4a2214 DR |
334 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) |
335 | { | |
336 | int ret; | |
337 | ||
338 | task_lock(task); | |
bd845e38 | 339 | ret = task->mm && mm_match_cgroup(task->mm, mem); |
4c4a2214 DR |
340 | task_unlock(task); |
341 | return ret; | |
342 | } | |
343 | ||
66e1707b BS |
344 | /* |
345 | * This routine assumes that the appropriate zone's lru lock is already held | |
346 | */ | |
427d5416 | 347 | void mem_cgroup_move_lists(struct page *page, bool active) |
66e1707b | 348 | { |
427d5416 | 349 | struct page_cgroup *pc; |
072c56c1 KH |
350 | struct mem_cgroup_per_zone *mz; |
351 | unsigned long flags; | |
352 | ||
cede86ac LZ |
353 | if (mem_cgroup_subsys.disabled) |
354 | return; | |
355 | ||
2680eed7 HD |
356 | /* |
357 | * We cannot lock_page_cgroup while holding zone's lru_lock, | |
358 | * because other holders of lock_page_cgroup can be interrupted | |
359 | * with an attempt to rotate_reclaimable_page. But we cannot | |
360 | * safely get to page_cgroup without it, so just try_lock it: | |
361 | * mem_cgroup_isolate_pages allows for page left on wrong list. | |
362 | */ | |
363 | if (!try_lock_page_cgroup(page)) | |
66e1707b BS |
364 | return; |
365 | ||
2680eed7 HD |
366 | pc = page_get_page_cgroup(page); |
367 | if (pc) { | |
2680eed7 | 368 | mz = page_cgroup_zoneinfo(pc); |
2680eed7 | 369 | spin_lock_irqsave(&mz->lru_lock, flags); |
9b3c0a07 | 370 | __mem_cgroup_move_lists(pc, active); |
2680eed7 | 371 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
9b3c0a07 HT |
372 | } |
373 | unlock_page_cgroup(page); | |
66e1707b BS |
374 | } |
375 | ||
58ae83db KH |
376 | /* |
377 | * Calculate mapped_ratio under memory controller. This will be used in | |
378 | * vmscan.c for deteremining we have to reclaim mapped pages. | |
379 | */ | |
380 | int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem) | |
381 | { | |
382 | long total, rss; | |
383 | ||
384 | /* | |
385 | * usage is recorded in bytes. But, here, we assume the number of | |
386 | * physical pages can be represented by "long" on any arch. | |
387 | */ | |
388 | total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L; | |
389 | rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); | |
390 | return (int)((rss * 100L) / total); | |
391 | } | |
8869b8f6 | 392 | |
5932f367 KH |
393 | /* |
394 | * This function is called from vmscan.c. In page reclaiming loop. balance | |
395 | * between active and inactive list is calculated. For memory controller | |
396 | * page reclaiming, we should use using mem_cgroup's imbalance rather than | |
397 | * zone's global lru imbalance. | |
398 | */ | |
399 | long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem) | |
400 | { | |
401 | unsigned long active, inactive; | |
402 | /* active and inactive are the number of pages. 'long' is ok.*/ | |
b69408e8 CL |
403 | active = mem_cgroup_get_all_zonestat(mem, LRU_ACTIVE); |
404 | inactive = mem_cgroup_get_all_zonestat(mem, LRU_INACTIVE); | |
5932f367 KH |
405 | return (long) (active / (inactive + 1)); |
406 | } | |
58ae83db | 407 | |
6c48a1d0 KH |
408 | /* |
409 | * prev_priority control...this will be used in memory reclaim path. | |
410 | */ | |
411 | int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) | |
412 | { | |
413 | return mem->prev_priority; | |
414 | } | |
415 | ||
416 | void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) | |
417 | { | |
418 | if (priority < mem->prev_priority) | |
419 | mem->prev_priority = priority; | |
420 | } | |
421 | ||
422 | void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) | |
423 | { | |
424 | mem->prev_priority = priority; | |
425 | } | |
426 | ||
cc38108e KH |
427 | /* |
428 | * Calculate # of pages to be scanned in this priority/zone. | |
429 | * See also vmscan.c | |
430 | * | |
431 | * priority starts from "DEF_PRIORITY" and decremented in each loop. | |
432 | * (see include/linux/mmzone.h) | |
433 | */ | |
434 | ||
b69408e8 CL |
435 | long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone, |
436 | int priority, enum lru_list lru) | |
cc38108e | 437 | { |
b69408e8 | 438 | long nr_pages; |
cc38108e KH |
439 | int nid = zone->zone_pgdat->node_id; |
440 | int zid = zone_idx(zone); | |
441 | struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid); | |
442 | ||
b69408e8 | 443 | nr_pages = MEM_CGROUP_ZSTAT(mz, lru); |
cc38108e | 444 | |
b69408e8 | 445 | return (nr_pages >> priority); |
cc38108e KH |
446 | } |
447 | ||
66e1707b BS |
448 | unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, |
449 | struct list_head *dst, | |
450 | unsigned long *scanned, int order, | |
451 | int mode, struct zone *z, | |
452 | struct mem_cgroup *mem_cont, | |
453 | int active) | |
454 | { | |
455 | unsigned long nr_taken = 0; | |
456 | struct page *page; | |
457 | unsigned long scan; | |
458 | LIST_HEAD(pc_list); | |
459 | struct list_head *src; | |
ff7283fa | 460 | struct page_cgroup *pc, *tmp; |
1ecaab2b KH |
461 | int nid = z->zone_pgdat->node_id; |
462 | int zid = zone_idx(z); | |
463 | struct mem_cgroup_per_zone *mz; | |
b69408e8 | 464 | int lru = !!active; |
66e1707b | 465 | |
cf475ad2 | 466 | BUG_ON(!mem_cont); |
1ecaab2b | 467 | mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); |
b69408e8 | 468 | src = &mz->lists[lru]; |
66e1707b | 469 | |
072c56c1 | 470 | spin_lock(&mz->lru_lock); |
ff7283fa KH |
471 | scan = 0; |
472 | list_for_each_entry_safe_reverse(pc, tmp, src, lru) { | |
436c6541 | 473 | if (scan >= nr_to_scan) |
ff7283fa | 474 | break; |
66e1707b | 475 | page = pc->page; |
66e1707b | 476 | |
436c6541 | 477 | if (unlikely(!PageLRU(page))) |
ff7283fa | 478 | continue; |
ff7283fa | 479 | |
66e1707b BS |
480 | if (PageActive(page) && !active) { |
481 | __mem_cgroup_move_lists(pc, true); | |
66e1707b BS |
482 | continue; |
483 | } | |
484 | if (!PageActive(page) && active) { | |
485 | __mem_cgroup_move_lists(pc, false); | |
66e1707b BS |
486 | continue; |
487 | } | |
488 | ||
436c6541 HD |
489 | scan++; |
490 | list_move(&pc->lru, &pc_list); | |
66e1707b BS |
491 | |
492 | if (__isolate_lru_page(page, mode) == 0) { | |
493 | list_move(&page->lru, dst); | |
494 | nr_taken++; | |
495 | } | |
496 | } | |
497 | ||
498 | list_splice(&pc_list, src); | |
072c56c1 | 499 | spin_unlock(&mz->lru_lock); |
66e1707b BS |
500 | |
501 | *scanned = scan; | |
502 | return nr_taken; | |
503 | } | |
504 | ||
8a9f3ccd BS |
505 | /* |
506 | * Charge the memory controller for page usage. | |
507 | * Return | |
508 | * 0 if the charge was successful | |
509 | * < 0 if the cgroup is over its limit | |
510 | */ | |
217bc319 | 511 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, |
e8589cc1 KH |
512 | gfp_t gfp_mask, enum charge_type ctype, |
513 | struct mem_cgroup *memcg) | |
8a9f3ccd BS |
514 | { |
515 | struct mem_cgroup *mem; | |
9175e031 | 516 | struct page_cgroup *pc; |
66e1707b BS |
517 | unsigned long flags; |
518 | unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
072c56c1 | 519 | struct mem_cgroup_per_zone *mz; |
8a9f3ccd | 520 | |
508b7be0 | 521 | pc = kmem_cache_alloc(page_cgroup_cache, gfp_mask); |
b76734e5 | 522 | if (unlikely(pc == NULL)) |
8a9f3ccd BS |
523 | goto err; |
524 | ||
8a9f3ccd | 525 | /* |
3be91277 HD |
526 | * We always charge the cgroup the mm_struct belongs to. |
527 | * The mm_struct's mem_cgroup changes on task migration if the | |
8a9f3ccd BS |
528 | * thread group leader migrates. It's possible that mm is not |
529 | * set, if so charge the init_mm (happens for pagecache usage). | |
530 | */ | |
69029cd5 | 531 | if (likely(!memcg)) { |
e8589cc1 KH |
532 | rcu_read_lock(); |
533 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
31a78f23 BS |
534 | if (unlikely(!mem)) { |
535 | rcu_read_unlock(); | |
536 | kmem_cache_free(page_cgroup_cache, pc); | |
537 | return 0; | |
538 | } | |
e8589cc1 KH |
539 | /* |
540 | * For every charge from the cgroup, increment reference count | |
541 | */ | |
542 | css_get(&mem->css); | |
543 | rcu_read_unlock(); | |
544 | } else { | |
545 | mem = memcg; | |
546 | css_get(&memcg->css); | |
547 | } | |
8a9f3ccd | 548 | |
0eea1030 | 549 | while (res_counter_charge(&mem->res, PAGE_SIZE)) { |
3be91277 HD |
550 | if (!(gfp_mask & __GFP_WAIT)) |
551 | goto out; | |
e1a1cd59 BS |
552 | |
553 | if (try_to_free_mem_cgroup_pages(mem, gfp_mask)) | |
66e1707b BS |
554 | continue; |
555 | ||
556 | /* | |
8869b8f6 HD |
557 | * try_to_free_mem_cgroup_pages() might not give us a full |
558 | * picture of reclaim. Some pages are reclaimed and might be | |
559 | * moved to swap cache or just unmapped from the cgroup. | |
560 | * Check the limit again to see if the reclaim reduced the | |
561 | * current usage of the cgroup before giving up | |
562 | */ | |
66e1707b BS |
563 | if (res_counter_check_under_limit(&mem->res)) |
564 | continue; | |
3be91277 HD |
565 | |
566 | if (!nr_retries--) { | |
567 | mem_cgroup_out_of_memory(mem, gfp_mask); | |
568 | goto out; | |
66e1707b | 569 | } |
8a9f3ccd BS |
570 | } |
571 | ||
8a9f3ccd BS |
572 | pc->mem_cgroup = mem; |
573 | pc->page = page; | |
508b7be0 KH |
574 | /* |
575 | * If a page is accounted as a page cache, insert to inactive list. | |
576 | * If anon, insert to active list. | |
577 | */ | |
217bc319 | 578 | if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE) |
4a56d02e | 579 | pc->flags = PAGE_CGROUP_FLAG_CACHE; |
508b7be0 KH |
580 | else |
581 | pc->flags = PAGE_CGROUP_FLAG_ACTIVE; | |
3be91277 | 582 | |
7e924aaf | 583 | lock_page_cgroup(page); |
b76734e5 | 584 | if (unlikely(page_get_page_cgroup(page))) { |
7e924aaf | 585 | unlock_page_cgroup(page); |
9175e031 KH |
586 | res_counter_uncharge(&mem->res, PAGE_SIZE); |
587 | css_put(&mem->css); | |
b6ac57d5 | 588 | kmem_cache_free(page_cgroup_cache, pc); |
accf163e | 589 | goto done; |
9175e031 | 590 | } |
7e924aaf | 591 | page_assign_page_cgroup(page, pc); |
8a9f3ccd | 592 | |
072c56c1 KH |
593 | mz = page_cgroup_zoneinfo(pc); |
594 | spin_lock_irqsave(&mz->lru_lock, flags); | |
3eae90c3 | 595 | __mem_cgroup_add_list(mz, pc); |
072c56c1 | 596 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
66e1707b | 597 | |
fb59e9f1 | 598 | unlock_page_cgroup(page); |
8a9f3ccd | 599 | done: |
8a9f3ccd | 600 | return 0; |
3be91277 HD |
601 | out: |
602 | css_put(&mem->css); | |
b6ac57d5 | 603 | kmem_cache_free(page_cgroup_cache, pc); |
8a9f3ccd | 604 | err: |
8a9f3ccd BS |
605 | return -ENOMEM; |
606 | } | |
607 | ||
8869b8f6 | 608 | int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) |
217bc319 | 609 | { |
cede86ac LZ |
610 | if (mem_cgroup_subsys.disabled) |
611 | return 0; | |
612 | ||
69029cd5 KH |
613 | /* |
614 | * If already mapped, we don't have to account. | |
615 | * If page cache, page->mapping has address_space. | |
616 | * But page->mapping may have out-of-use anon_vma pointer, | |
617 | * detecit it by PageAnon() check. newly-mapped-anon's page->mapping | |
618 | * is NULL. | |
619 | */ | |
620 | if (page_mapped(page) || (page->mapping && !PageAnon(page))) | |
621 | return 0; | |
622 | if (unlikely(!mm)) | |
623 | mm = &init_mm; | |
217bc319 | 624 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
e8589cc1 | 625 | MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); |
217bc319 KH |
626 | } |
627 | ||
e1a1cd59 BS |
628 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
629 | gfp_t gfp_mask) | |
8697d331 | 630 | { |
cede86ac LZ |
631 | if (mem_cgroup_subsys.disabled) |
632 | return 0; | |
633 | ||
accf163e KH |
634 | /* |
635 | * Corner case handling. This is called from add_to_page_cache() | |
636 | * in usual. But some FS (shmem) precharges this page before calling it | |
637 | * and call add_to_page_cache() with GFP_NOWAIT. | |
638 | * | |
639 | * For GFP_NOWAIT case, the page may be pre-charged before calling | |
640 | * add_to_page_cache(). (See shmem.c) check it here and avoid to call | |
641 | * charge twice. (It works but has to pay a bit larger cost.) | |
642 | */ | |
643 | if (!(gfp_mask & __GFP_WAIT)) { | |
644 | struct page_cgroup *pc; | |
645 | ||
646 | lock_page_cgroup(page); | |
647 | pc = page_get_page_cgroup(page); | |
648 | if (pc) { | |
649 | VM_BUG_ON(pc->page != page); | |
650 | VM_BUG_ON(!pc->mem_cgroup); | |
651 | unlock_page_cgroup(page); | |
652 | return 0; | |
653 | } | |
654 | unlock_page_cgroup(page); | |
655 | } | |
656 | ||
69029cd5 | 657 | if (unlikely(!mm)) |
8697d331 | 658 | mm = &init_mm; |
accf163e | 659 | |
8869b8f6 | 660 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
e8589cc1 KH |
661 | MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); |
662 | } | |
663 | ||
8a9f3ccd | 664 | /* |
69029cd5 | 665 | * uncharge if !page_mapped(page) |
8a9f3ccd | 666 | */ |
69029cd5 KH |
667 | static void |
668 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) | |
8a9f3ccd | 669 | { |
8289546e | 670 | struct page_cgroup *pc; |
8a9f3ccd | 671 | struct mem_cgroup *mem; |
072c56c1 | 672 | struct mem_cgroup_per_zone *mz; |
66e1707b | 673 | unsigned long flags; |
8a9f3ccd | 674 | |
4077960e BS |
675 | if (mem_cgroup_subsys.disabled) |
676 | return; | |
677 | ||
8697d331 | 678 | /* |
3c541e14 | 679 | * Check if our page_cgroup is valid |
8697d331 | 680 | */ |
8289546e HD |
681 | lock_page_cgroup(page); |
682 | pc = page_get_page_cgroup(page); | |
b76734e5 | 683 | if (unlikely(!pc)) |
8289546e | 684 | goto unlock; |
8a9f3ccd | 685 | |
b9c565d5 | 686 | VM_BUG_ON(pc->page != page); |
b9c565d5 | 687 | |
69029cd5 KH |
688 | if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) |
689 | && ((pc->flags & PAGE_CGROUP_FLAG_CACHE) | |
690 | || page_mapped(page))) | |
691 | goto unlock; | |
b9c565d5 | 692 | |
69029cd5 KH |
693 | mz = page_cgroup_zoneinfo(pc); |
694 | spin_lock_irqsave(&mz->lru_lock, flags); | |
695 | __mem_cgroup_remove_list(mz, pc); | |
696 | spin_unlock_irqrestore(&mz->lru_lock, flags); | |
fb59e9f1 | 697 | |
69029cd5 KH |
698 | page_assign_page_cgroup(page, NULL); |
699 | unlock_page_cgroup(page); | |
6d48ff8b | 700 | |
69029cd5 KH |
701 | mem = pc->mem_cgroup; |
702 | res_counter_uncharge(&mem->res, PAGE_SIZE); | |
703 | css_put(&mem->css); | |
6d12e2d8 | 704 | |
69029cd5 KH |
705 | kmem_cache_free(page_cgroup_cache, pc); |
706 | return; | |
8289546e | 707 | unlock: |
3c541e14 BS |
708 | unlock_page_cgroup(page); |
709 | } | |
710 | ||
69029cd5 KH |
711 | void mem_cgroup_uncharge_page(struct page *page) |
712 | { | |
713 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); | |
714 | } | |
715 | ||
716 | void mem_cgroup_uncharge_cache_page(struct page *page) | |
717 | { | |
718 | VM_BUG_ON(page_mapped(page)); | |
719 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); | |
720 | } | |
721 | ||
ae41be37 | 722 | /* |
e8589cc1 | 723 | * Before starting migration, account against new page. |
ae41be37 | 724 | */ |
e8589cc1 | 725 | int mem_cgroup_prepare_migration(struct page *page, struct page *newpage) |
ae41be37 KH |
726 | { |
727 | struct page_cgroup *pc; | |
e8589cc1 KH |
728 | struct mem_cgroup *mem = NULL; |
729 | enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; | |
730 | int ret = 0; | |
8869b8f6 | 731 | |
4077960e BS |
732 | if (mem_cgroup_subsys.disabled) |
733 | return 0; | |
734 | ||
ae41be37 KH |
735 | lock_page_cgroup(page); |
736 | pc = page_get_page_cgroup(page); | |
e8589cc1 KH |
737 | if (pc) { |
738 | mem = pc->mem_cgroup; | |
739 | css_get(&mem->css); | |
740 | if (pc->flags & PAGE_CGROUP_FLAG_CACHE) | |
741 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; | |
742 | } | |
ae41be37 | 743 | unlock_page_cgroup(page); |
e8589cc1 KH |
744 | if (mem) { |
745 | ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL, | |
746 | ctype, mem); | |
747 | css_put(&mem->css); | |
748 | } | |
749 | return ret; | |
ae41be37 | 750 | } |
8869b8f6 | 751 | |
69029cd5 | 752 | /* remove redundant charge if migration failed*/ |
e8589cc1 | 753 | void mem_cgroup_end_migration(struct page *newpage) |
ae41be37 | 754 | { |
69029cd5 KH |
755 | /* |
756 | * At success, page->mapping is not NULL. | |
757 | * special rollback care is necessary when | |
758 | * 1. at migration failure. (newpage->mapping is cleared in this case) | |
759 | * 2. the newpage was moved but not remapped again because the task | |
760 | * exits and the newpage is obsolete. In this case, the new page | |
761 | * may be a swapcache. So, we just call mem_cgroup_uncharge_page() | |
762 | * always for avoiding mess. The page_cgroup will be removed if | |
763 | * unnecessary. File cache pages is still on radix-tree. Don't | |
764 | * care it. | |
765 | */ | |
766 | if (!newpage->mapping) | |
767 | __mem_cgroup_uncharge_common(newpage, | |
768 | MEM_CGROUP_CHARGE_TYPE_FORCE); | |
769 | else if (PageAnon(newpage)) | |
770 | mem_cgroup_uncharge_page(newpage); | |
ae41be37 | 771 | } |
78fb7466 | 772 | |
c9b0ed51 KH |
773 | /* |
774 | * A call to try to shrink memory usage under specified resource controller. | |
775 | * This is typically used for page reclaiming for shmem for reducing side | |
776 | * effect of page allocation from shmem, which is used by some mem_cgroup. | |
777 | */ | |
778 | int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask) | |
779 | { | |
780 | struct mem_cgroup *mem; | |
781 | int progress = 0; | |
782 | int retry = MEM_CGROUP_RECLAIM_RETRIES; | |
783 | ||
cede86ac LZ |
784 | if (mem_cgroup_subsys.disabled) |
785 | return 0; | |
9623e078 HD |
786 | if (!mm) |
787 | return 0; | |
cede86ac | 788 | |
c9b0ed51 KH |
789 | rcu_read_lock(); |
790 | mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
31a78f23 BS |
791 | if (unlikely(!mem)) { |
792 | rcu_read_unlock(); | |
793 | return 0; | |
794 | } | |
c9b0ed51 KH |
795 | css_get(&mem->css); |
796 | rcu_read_unlock(); | |
797 | ||
798 | do { | |
799 | progress = try_to_free_mem_cgroup_pages(mem, gfp_mask); | |
a10cebf5 | 800 | progress += res_counter_check_under_limit(&mem->res); |
c9b0ed51 KH |
801 | } while (!progress && --retry); |
802 | ||
803 | css_put(&mem->css); | |
804 | if (!retry) | |
805 | return -ENOMEM; | |
806 | return 0; | |
807 | } | |
808 | ||
628f4235 KH |
809 | int mem_cgroup_resize_limit(struct mem_cgroup *memcg, unsigned long long val) |
810 | { | |
811 | ||
812 | int retry_count = MEM_CGROUP_RECLAIM_RETRIES; | |
813 | int progress; | |
814 | int ret = 0; | |
815 | ||
816 | while (res_counter_set_limit(&memcg->res, val)) { | |
817 | if (signal_pending(current)) { | |
818 | ret = -EINTR; | |
819 | break; | |
820 | } | |
821 | if (!retry_count) { | |
822 | ret = -EBUSY; | |
823 | break; | |
824 | } | |
825 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL); | |
826 | if (!progress) | |
827 | retry_count--; | |
828 | } | |
829 | return ret; | |
830 | } | |
831 | ||
832 | ||
cc847582 KH |
833 | /* |
834 | * This routine traverse page_cgroup in given list and drop them all. | |
cc847582 KH |
835 | * *And* this routine doesn't reclaim page itself, just removes page_cgroup. |
836 | */ | |
837 | #define FORCE_UNCHARGE_BATCH (128) | |
8869b8f6 | 838 | static void mem_cgroup_force_empty_list(struct mem_cgroup *mem, |
072c56c1 | 839 | struct mem_cgroup_per_zone *mz, |
b69408e8 | 840 | enum lru_list lru) |
cc847582 KH |
841 | { |
842 | struct page_cgroup *pc; | |
843 | struct page *page; | |
9b3c0a07 | 844 | int count = FORCE_UNCHARGE_BATCH; |
cc847582 | 845 | unsigned long flags; |
072c56c1 KH |
846 | struct list_head *list; |
847 | ||
b69408e8 | 848 | list = &mz->lists[lru]; |
cc847582 | 849 | |
072c56c1 | 850 | spin_lock_irqsave(&mz->lru_lock, flags); |
9b3c0a07 | 851 | while (!list_empty(list)) { |
cc847582 KH |
852 | pc = list_entry(list->prev, struct page_cgroup, lru); |
853 | page = pc->page; | |
9b3c0a07 HT |
854 | get_page(page); |
855 | spin_unlock_irqrestore(&mz->lru_lock, flags); | |
e8589cc1 KH |
856 | /* |
857 | * Check if this page is on LRU. !LRU page can be found | |
858 | * if it's under page migration. | |
859 | */ | |
860 | if (PageLRU(page)) { | |
69029cd5 KH |
861 | __mem_cgroup_uncharge_common(page, |
862 | MEM_CGROUP_CHARGE_TYPE_FORCE); | |
e8589cc1 KH |
863 | put_page(page); |
864 | if (--count <= 0) { | |
865 | count = FORCE_UNCHARGE_BATCH; | |
866 | cond_resched(); | |
867 | } | |
868 | } else | |
9b3c0a07 | 869 | cond_resched(); |
9b3c0a07 | 870 | spin_lock_irqsave(&mz->lru_lock, flags); |
cc847582 | 871 | } |
072c56c1 | 872 | spin_unlock_irqrestore(&mz->lru_lock, flags); |
cc847582 KH |
873 | } |
874 | ||
875 | /* | |
876 | * make mem_cgroup's charge to be 0 if there is no task. | |
877 | * This enables deleting this mem_cgroup. | |
878 | */ | |
d5b69e38 | 879 | static int mem_cgroup_force_empty(struct mem_cgroup *mem) |
cc847582 KH |
880 | { |
881 | int ret = -EBUSY; | |
1ecaab2b | 882 | int node, zid; |
8869b8f6 | 883 | |
cc847582 KH |
884 | css_get(&mem->css); |
885 | /* | |
886 | * page reclaim code (kswapd etc..) will move pages between | |
8869b8f6 | 887 | * active_list <-> inactive_list while we don't take a lock. |
cc847582 KH |
888 | * So, we have to do loop here until all lists are empty. |
889 | */ | |
1ecaab2b | 890 | while (mem->res.usage > 0) { |
cc847582 KH |
891 | if (atomic_read(&mem->css.cgroup->count) > 0) |
892 | goto out; | |
1ecaab2b KH |
893 | for_each_node_state(node, N_POSSIBLE) |
894 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
895 | struct mem_cgroup_per_zone *mz; | |
b69408e8 | 896 | enum lru_list l; |
1ecaab2b | 897 | mz = mem_cgroup_zoneinfo(mem, node, zid); |
b69408e8 CL |
898 | for_each_lru(l) |
899 | mem_cgroup_force_empty_list(mem, mz, l); | |
1ecaab2b | 900 | } |
cc847582 KH |
901 | } |
902 | ret = 0; | |
903 | out: | |
904 | css_put(&mem->css); | |
905 | return ret; | |
906 | } | |
907 | ||
2c3daa72 | 908 | static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) |
8cdea7c0 | 909 | { |
2c3daa72 PM |
910 | return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res, |
911 | cft->private); | |
8cdea7c0 | 912 | } |
628f4235 KH |
913 | /* |
914 | * The user of this function is... | |
915 | * RES_LIMIT. | |
916 | */ | |
856c13aa PM |
917 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
918 | const char *buffer) | |
8cdea7c0 | 919 | { |
628f4235 KH |
920 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
921 | unsigned long long val; | |
922 | int ret; | |
923 | ||
924 | switch (cft->private) { | |
925 | case RES_LIMIT: | |
926 | /* This function does all necessary parse...reuse it */ | |
927 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
928 | if (!ret) | |
929 | ret = mem_cgroup_resize_limit(memcg, val); | |
930 | break; | |
931 | default: | |
932 | ret = -EINVAL; /* should be BUG() ? */ | |
933 | break; | |
934 | } | |
935 | return ret; | |
8cdea7c0 BS |
936 | } |
937 | ||
29f2a4da | 938 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
c84872e1 PE |
939 | { |
940 | struct mem_cgroup *mem; | |
941 | ||
942 | mem = mem_cgroup_from_cont(cont); | |
29f2a4da PE |
943 | switch (event) { |
944 | case RES_MAX_USAGE: | |
945 | res_counter_reset_max(&mem->res); | |
946 | break; | |
947 | case RES_FAILCNT: | |
948 | res_counter_reset_failcnt(&mem->res); | |
949 | break; | |
950 | } | |
85cc59db | 951 | return 0; |
c84872e1 PE |
952 | } |
953 | ||
85cc59db | 954 | static int mem_force_empty_write(struct cgroup *cont, unsigned int event) |
cc847582 | 955 | { |
85cc59db | 956 | return mem_cgroup_force_empty(mem_cgroup_from_cont(cont)); |
cc847582 KH |
957 | } |
958 | ||
d2ceb9b7 KH |
959 | static const struct mem_cgroup_stat_desc { |
960 | const char *msg; | |
961 | u64 unit; | |
962 | } mem_cgroup_stat_desc[] = { | |
963 | [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, }, | |
964 | [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, }, | |
55e462b0 BR |
965 | [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, }, |
966 | [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, }, | |
d2ceb9b7 KH |
967 | }; |
968 | ||
c64745cf PM |
969 | static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, |
970 | struct cgroup_map_cb *cb) | |
d2ceb9b7 | 971 | { |
d2ceb9b7 KH |
972 | struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); |
973 | struct mem_cgroup_stat *stat = &mem_cont->stat; | |
974 | int i; | |
975 | ||
976 | for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) { | |
977 | s64 val; | |
978 | ||
979 | val = mem_cgroup_read_stat(stat, i); | |
980 | val *= mem_cgroup_stat_desc[i].unit; | |
c64745cf | 981 | cb->fill(cb, mem_cgroup_stat_desc[i].msg, val); |
d2ceb9b7 | 982 | } |
6d12e2d8 KH |
983 | /* showing # of active pages */ |
984 | { | |
985 | unsigned long active, inactive; | |
986 | ||
987 | inactive = mem_cgroup_get_all_zonestat(mem_cont, | |
b69408e8 | 988 | LRU_INACTIVE); |
6d12e2d8 | 989 | active = mem_cgroup_get_all_zonestat(mem_cont, |
b69408e8 | 990 | LRU_ACTIVE); |
c64745cf PM |
991 | cb->fill(cb, "active", (active) * PAGE_SIZE); |
992 | cb->fill(cb, "inactive", (inactive) * PAGE_SIZE); | |
6d12e2d8 | 993 | } |
d2ceb9b7 KH |
994 | return 0; |
995 | } | |
996 | ||
8cdea7c0 BS |
997 | static struct cftype mem_cgroup_files[] = { |
998 | { | |
0eea1030 | 999 | .name = "usage_in_bytes", |
8cdea7c0 | 1000 | .private = RES_USAGE, |
2c3daa72 | 1001 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 1002 | }, |
c84872e1 PE |
1003 | { |
1004 | .name = "max_usage_in_bytes", | |
1005 | .private = RES_MAX_USAGE, | |
29f2a4da | 1006 | .trigger = mem_cgroup_reset, |
c84872e1 PE |
1007 | .read_u64 = mem_cgroup_read, |
1008 | }, | |
8cdea7c0 | 1009 | { |
0eea1030 | 1010 | .name = "limit_in_bytes", |
8cdea7c0 | 1011 | .private = RES_LIMIT, |
856c13aa | 1012 | .write_string = mem_cgroup_write, |
2c3daa72 | 1013 | .read_u64 = mem_cgroup_read, |
8cdea7c0 BS |
1014 | }, |
1015 | { | |
1016 | .name = "failcnt", | |
1017 | .private = RES_FAILCNT, | |
29f2a4da | 1018 | .trigger = mem_cgroup_reset, |
2c3daa72 | 1019 | .read_u64 = mem_cgroup_read, |
8cdea7c0 | 1020 | }, |
cc847582 KH |
1021 | { |
1022 | .name = "force_empty", | |
85cc59db | 1023 | .trigger = mem_force_empty_write, |
cc847582 | 1024 | }, |
d2ceb9b7 KH |
1025 | { |
1026 | .name = "stat", | |
c64745cf | 1027 | .read_map = mem_control_stat_show, |
d2ceb9b7 | 1028 | }, |
8cdea7c0 BS |
1029 | }; |
1030 | ||
6d12e2d8 KH |
1031 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
1032 | { | |
1033 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 1034 | struct mem_cgroup_per_zone *mz; |
b69408e8 | 1035 | enum lru_list l; |
41e3355d | 1036 | int zone, tmp = node; |
1ecaab2b KH |
1037 | /* |
1038 | * This routine is called against possible nodes. | |
1039 | * But it's BUG to call kmalloc() against offline node. | |
1040 | * | |
1041 | * TODO: this routine can waste much memory for nodes which will | |
1042 | * never be onlined. It's better to use memory hotplug callback | |
1043 | * function. | |
1044 | */ | |
41e3355d KH |
1045 | if (!node_state(node, N_NORMAL_MEMORY)) |
1046 | tmp = -1; | |
1047 | pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); | |
6d12e2d8 KH |
1048 | if (!pn) |
1049 | return 1; | |
1ecaab2b | 1050 | |
6d12e2d8 KH |
1051 | mem->info.nodeinfo[node] = pn; |
1052 | memset(pn, 0, sizeof(*pn)); | |
1ecaab2b KH |
1053 | |
1054 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
1055 | mz = &pn->zoneinfo[zone]; | |
072c56c1 | 1056 | spin_lock_init(&mz->lru_lock); |
b69408e8 CL |
1057 | for_each_lru(l) |
1058 | INIT_LIST_HEAD(&mz->lists[l]); | |
1ecaab2b | 1059 | } |
6d12e2d8 KH |
1060 | return 0; |
1061 | } | |
1062 | ||
1ecaab2b KH |
1063 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) |
1064 | { | |
1065 | kfree(mem->info.nodeinfo[node]); | |
1066 | } | |
1067 | ||
33327948 KH |
1068 | static struct mem_cgroup *mem_cgroup_alloc(void) |
1069 | { | |
1070 | struct mem_cgroup *mem; | |
1071 | ||
1072 | if (sizeof(*mem) < PAGE_SIZE) | |
1073 | mem = kmalloc(sizeof(*mem), GFP_KERNEL); | |
1074 | else | |
1075 | mem = vmalloc(sizeof(*mem)); | |
1076 | ||
1077 | if (mem) | |
1078 | memset(mem, 0, sizeof(*mem)); | |
1079 | return mem; | |
1080 | } | |
1081 | ||
1082 | static void mem_cgroup_free(struct mem_cgroup *mem) | |
1083 | { | |
1084 | if (sizeof(*mem) < PAGE_SIZE) | |
1085 | kfree(mem); | |
1086 | else | |
1087 | vfree(mem); | |
1088 | } | |
1089 | ||
1090 | ||
8cdea7c0 BS |
1091 | static struct cgroup_subsys_state * |
1092 | mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) | |
1093 | { | |
1094 | struct mem_cgroup *mem; | |
6d12e2d8 | 1095 | int node; |
8cdea7c0 | 1096 | |
b6ac57d5 | 1097 | if (unlikely((cont->parent) == NULL)) { |
78fb7466 | 1098 | mem = &init_mem_cgroup; |
b6ac57d5 BS |
1099 | page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC); |
1100 | } else { | |
33327948 KH |
1101 | mem = mem_cgroup_alloc(); |
1102 | if (!mem) | |
1103 | return ERR_PTR(-ENOMEM); | |
b6ac57d5 | 1104 | } |
78fb7466 | 1105 | |
8cdea7c0 | 1106 | res_counter_init(&mem->res); |
1ecaab2b | 1107 | |
6d12e2d8 KH |
1108 | for_each_node_state(node, N_POSSIBLE) |
1109 | if (alloc_mem_cgroup_per_zone_info(mem, node)) | |
1110 | goto free_out; | |
1111 | ||
8cdea7c0 | 1112 | return &mem->css; |
6d12e2d8 KH |
1113 | free_out: |
1114 | for_each_node_state(node, N_POSSIBLE) | |
1ecaab2b | 1115 | free_mem_cgroup_per_zone_info(mem, node); |
6d12e2d8 | 1116 | if (cont->parent != NULL) |
33327948 | 1117 | mem_cgroup_free(mem); |
2dda81ca | 1118 | return ERR_PTR(-ENOMEM); |
8cdea7c0 BS |
1119 | } |
1120 | ||
df878fb0 KH |
1121 | static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss, |
1122 | struct cgroup *cont) | |
1123 | { | |
1124 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
1125 | mem_cgroup_force_empty(mem); | |
1126 | } | |
1127 | ||
8cdea7c0 BS |
1128 | static void mem_cgroup_destroy(struct cgroup_subsys *ss, |
1129 | struct cgroup *cont) | |
1130 | { | |
6d12e2d8 KH |
1131 | int node; |
1132 | struct mem_cgroup *mem = mem_cgroup_from_cont(cont); | |
1133 | ||
1134 | for_each_node_state(node, N_POSSIBLE) | |
1ecaab2b | 1135 | free_mem_cgroup_per_zone_info(mem, node); |
6d12e2d8 | 1136 | |
33327948 | 1137 | mem_cgroup_free(mem_cgroup_from_cont(cont)); |
8cdea7c0 BS |
1138 | } |
1139 | ||
1140 | static int mem_cgroup_populate(struct cgroup_subsys *ss, | |
1141 | struct cgroup *cont) | |
1142 | { | |
1143 | return cgroup_add_files(cont, ss, mem_cgroup_files, | |
1144 | ARRAY_SIZE(mem_cgroup_files)); | |
1145 | } | |
1146 | ||
67e465a7 BS |
1147 | static void mem_cgroup_move_task(struct cgroup_subsys *ss, |
1148 | struct cgroup *cont, | |
1149 | struct cgroup *old_cont, | |
1150 | struct task_struct *p) | |
1151 | { | |
1152 | struct mm_struct *mm; | |
1153 | struct mem_cgroup *mem, *old_mem; | |
1154 | ||
1155 | mm = get_task_mm(p); | |
1156 | if (mm == NULL) | |
1157 | return; | |
1158 | ||
1159 | mem = mem_cgroup_from_cont(cont); | |
1160 | old_mem = mem_cgroup_from_cont(old_cont); | |
1161 | ||
67e465a7 BS |
1162 | /* |
1163 | * Only thread group leaders are allowed to migrate, the mm_struct is | |
1164 | * in effect owned by the leader | |
1165 | */ | |
52ea27eb | 1166 | if (!thread_group_leader(p)) |
67e465a7 BS |
1167 | goto out; |
1168 | ||
67e465a7 BS |
1169 | out: |
1170 | mmput(mm); | |
67e465a7 BS |
1171 | } |
1172 | ||
8cdea7c0 BS |
1173 | struct cgroup_subsys mem_cgroup_subsys = { |
1174 | .name = "memory", | |
1175 | .subsys_id = mem_cgroup_subsys_id, | |
1176 | .create = mem_cgroup_create, | |
df878fb0 | 1177 | .pre_destroy = mem_cgroup_pre_destroy, |
8cdea7c0 BS |
1178 | .destroy = mem_cgroup_destroy, |
1179 | .populate = mem_cgroup_populate, | |
67e465a7 | 1180 | .attach = mem_cgroup_move_task, |
6d12e2d8 | 1181 | .early_init = 0, |
8cdea7c0 | 1182 | }; |