]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
17 | * Contributions by Hugh Dickins <[email protected]> 2003, 2004 | |
18 | */ | |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * inode->i_alloc_sem (vmtruncate_range) |
25 | * mm->mmap_sem | |
26 | * page->flags PG_locked (lock_page) | |
27 | * mapping->i_mmap_lock | |
28 | * anon_vma->lock | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
38 | * within inode_lock in __sync_single_inode) | |
1da177e4 LT |
39 | */ |
40 | ||
41 | #include <linux/mm.h> | |
42 | #include <linux/pagemap.h> | |
43 | #include <linux/swap.h> | |
44 | #include <linux/swapops.h> | |
45 | #include <linux/slab.h> | |
46 | #include <linux/init.h> | |
47 | #include <linux/rmap.h> | |
48 | #include <linux/rcupdate.h> | |
a48d07af | 49 | #include <linux/module.h> |
8a9f3ccd | 50 | #include <linux/memcontrol.h> |
cddb8a5c | 51 | #include <linux/mmu_notifier.h> |
64cdd548 | 52 | #include <linux/migrate.h> |
1da177e4 LT |
53 | |
54 | #include <asm/tlbflush.h> | |
55 | ||
b291f000 NP |
56 | #include "internal.h" |
57 | ||
fdd2e5f8 AB |
58 | static struct kmem_cache *anon_vma_cachep; |
59 | ||
60 | static inline struct anon_vma *anon_vma_alloc(void) | |
61 | { | |
62 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
63 | } | |
64 | ||
65 | static inline void anon_vma_free(struct anon_vma *anon_vma) | |
66 | { | |
67 | kmem_cache_free(anon_vma_cachep, anon_vma); | |
68 | } | |
1da177e4 | 69 | |
d9d332e0 LT |
70 | /** |
71 | * anon_vma_prepare - attach an anon_vma to a memory region | |
72 | * @vma: the memory region in question | |
73 | * | |
74 | * This makes sure the memory mapping described by 'vma' has | |
75 | * an 'anon_vma' attached to it, so that we can associate the | |
76 | * anonymous pages mapped into it with that anon_vma. | |
77 | * | |
78 | * The common case will be that we already have one, but if | |
79 | * if not we either need to find an adjacent mapping that we | |
80 | * can re-use the anon_vma from (very common when the only | |
81 | * reason for splitting a vma has been mprotect()), or we | |
82 | * allocate a new one. | |
83 | * | |
84 | * Anon-vma allocations are very subtle, because we may have | |
85 | * optimistically looked up an anon_vma in page_lock_anon_vma() | |
86 | * and that may actually touch the spinlock even in the newly | |
87 | * allocated vma (it depends on RCU to make sure that the | |
88 | * anon_vma isn't actually destroyed). | |
89 | * | |
90 | * As a result, we need to do proper anon_vma locking even | |
91 | * for the new allocation. At the same time, we do not want | |
92 | * to do any locking for the common case of already having | |
93 | * an anon_vma. | |
94 | * | |
95 | * This must be called with the mmap_sem held for reading. | |
96 | */ | |
1da177e4 LT |
97 | int anon_vma_prepare(struct vm_area_struct *vma) |
98 | { | |
99 | struct anon_vma *anon_vma = vma->anon_vma; | |
100 | ||
101 | might_sleep(); | |
102 | if (unlikely(!anon_vma)) { | |
103 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 104 | struct anon_vma *allocated; |
1da177e4 LT |
105 | |
106 | anon_vma = find_mergeable_anon_vma(vma); | |
d9d332e0 LT |
107 | allocated = NULL; |
108 | if (!anon_vma) { | |
1da177e4 LT |
109 | anon_vma = anon_vma_alloc(); |
110 | if (unlikely(!anon_vma)) | |
111 | return -ENOMEM; | |
112 | allocated = anon_vma; | |
1da177e4 | 113 | } |
d9d332e0 | 114 | spin_lock(&anon_vma->lock); |
1da177e4 LT |
115 | |
116 | /* page_table_lock to protect against threads */ | |
117 | spin_lock(&mm->page_table_lock); | |
118 | if (likely(!vma->anon_vma)) { | |
119 | vma->anon_vma = anon_vma; | |
0697212a | 120 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
121 | allocated = NULL; |
122 | } | |
123 | spin_unlock(&mm->page_table_lock); | |
124 | ||
d9d332e0 | 125 | spin_unlock(&anon_vma->lock); |
1da177e4 LT |
126 | if (unlikely(allocated)) |
127 | anon_vma_free(allocated); | |
128 | } | |
129 | return 0; | |
130 | } | |
131 | ||
132 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) | |
133 | { | |
134 | BUG_ON(vma->anon_vma != next->anon_vma); | |
135 | list_del(&next->anon_vma_node); | |
136 | } | |
137 | ||
138 | void __anon_vma_link(struct vm_area_struct *vma) | |
139 | { | |
140 | struct anon_vma *anon_vma = vma->anon_vma; | |
141 | ||
30acbaba | 142 | if (anon_vma) |
0697212a | 143 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
144 | } |
145 | ||
146 | void anon_vma_link(struct vm_area_struct *vma) | |
147 | { | |
148 | struct anon_vma *anon_vma = vma->anon_vma; | |
149 | ||
150 | if (anon_vma) { | |
151 | spin_lock(&anon_vma->lock); | |
0697212a | 152 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
153 | spin_unlock(&anon_vma->lock); |
154 | } | |
155 | } | |
156 | ||
157 | void anon_vma_unlink(struct vm_area_struct *vma) | |
158 | { | |
159 | struct anon_vma *anon_vma = vma->anon_vma; | |
160 | int empty; | |
161 | ||
162 | if (!anon_vma) | |
163 | return; | |
164 | ||
165 | spin_lock(&anon_vma->lock); | |
1da177e4 LT |
166 | list_del(&vma->anon_vma_node); |
167 | ||
168 | /* We must garbage collect the anon_vma if it's empty */ | |
169 | empty = list_empty(&anon_vma->head); | |
170 | spin_unlock(&anon_vma->lock); | |
171 | ||
172 | if (empty) | |
173 | anon_vma_free(anon_vma); | |
174 | } | |
175 | ||
51cc5068 | 176 | static void anon_vma_ctor(void *data) |
1da177e4 | 177 | { |
a35afb83 | 178 | struct anon_vma *anon_vma = data; |
1da177e4 | 179 | |
a35afb83 CL |
180 | spin_lock_init(&anon_vma->lock); |
181 | INIT_LIST_HEAD(&anon_vma->head); | |
1da177e4 LT |
182 | } |
183 | ||
184 | void __init anon_vma_init(void) | |
185 | { | |
186 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 187 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
1da177e4 LT |
188 | } |
189 | ||
190 | /* | |
191 | * Getting a lock on a stable anon_vma from a page off the LRU is | |
192 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | |
193 | */ | |
2afd1c92 | 194 | static struct anon_vma *page_lock_anon_vma(struct page *page) |
1da177e4 | 195 | { |
34bbd704 | 196 | struct anon_vma *anon_vma; |
1da177e4 LT |
197 | unsigned long anon_mapping; |
198 | ||
199 | rcu_read_lock(); | |
200 | anon_mapping = (unsigned long) page->mapping; | |
201 | if (!(anon_mapping & PAGE_MAPPING_ANON)) | |
202 | goto out; | |
203 | if (!page_mapped(page)) | |
204 | goto out; | |
205 | ||
206 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
207 | spin_lock(&anon_vma->lock); | |
34bbd704 | 208 | return anon_vma; |
1da177e4 LT |
209 | out: |
210 | rcu_read_unlock(); | |
34bbd704 ON |
211 | return NULL; |
212 | } | |
213 | ||
2afd1c92 | 214 | static void page_unlock_anon_vma(struct anon_vma *anon_vma) |
34bbd704 ON |
215 | { |
216 | spin_unlock(&anon_vma->lock); | |
217 | rcu_read_unlock(); | |
1da177e4 LT |
218 | } |
219 | ||
220 | /* | |
3ad33b24 LS |
221 | * At what user virtual address is page expected in @vma? |
222 | * Returns virtual address or -EFAULT if page's index/offset is not | |
223 | * within the range mapped the @vma. | |
1da177e4 LT |
224 | */ |
225 | static inline unsigned long | |
226 | vma_address(struct page *page, struct vm_area_struct *vma) | |
227 | { | |
228 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
229 | unsigned long address; | |
230 | ||
231 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
232 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
3ad33b24 | 233 | /* page should be within @vma mapping range */ |
1da177e4 LT |
234 | return -EFAULT; |
235 | } | |
236 | return address; | |
237 | } | |
238 | ||
239 | /* | |
240 | * At what user virtual address is page expected in vma? checking that the | |
ee498ed7 | 241 | * page matches the vma: currently only used on anon pages, by unuse_vma; |
1da177e4 LT |
242 | */ |
243 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
244 | { | |
245 | if (PageAnon(page)) { | |
246 | if ((void *)vma->anon_vma != | |
247 | (void *)page->mapping - PAGE_MAPPING_ANON) | |
248 | return -EFAULT; | |
249 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
250 | if (!vma->vm_file || |
251 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
252 | return -EFAULT; |
253 | } else | |
254 | return -EFAULT; | |
255 | return vma_address(page, vma); | |
256 | } | |
257 | ||
81b4082d ND |
258 | /* |
259 | * Check that @page is mapped at @address into @mm. | |
260 | * | |
479db0bf NP |
261 | * If @sync is false, page_check_address may perform a racy check to avoid |
262 | * the page table lock when the pte is not present (helpful when reclaiming | |
263 | * highly shared pages). | |
264 | * | |
b8072f09 | 265 | * On success returns with pte mapped and locked. |
81b4082d | 266 | */ |
ceffc078 | 267 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 268 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d ND |
269 | { |
270 | pgd_t *pgd; | |
271 | pud_t *pud; | |
272 | pmd_t *pmd; | |
273 | pte_t *pte; | |
c0718806 | 274 | spinlock_t *ptl; |
81b4082d | 275 | |
81b4082d | 276 | pgd = pgd_offset(mm, address); |
c0718806 HD |
277 | if (!pgd_present(*pgd)) |
278 | return NULL; | |
279 | ||
280 | pud = pud_offset(pgd, address); | |
281 | if (!pud_present(*pud)) | |
282 | return NULL; | |
283 | ||
284 | pmd = pmd_offset(pud, address); | |
285 | if (!pmd_present(*pmd)) | |
286 | return NULL; | |
287 | ||
288 | pte = pte_offset_map(pmd, address); | |
289 | /* Make a quick check before getting the lock */ | |
479db0bf | 290 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
291 | pte_unmap(pte); |
292 | return NULL; | |
293 | } | |
294 | ||
4c21e2f2 | 295 | ptl = pte_lockptr(mm, pmd); |
c0718806 HD |
296 | spin_lock(ptl); |
297 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
298 | *ptlp = ptl; | |
299 | return pte; | |
81b4082d | 300 | } |
c0718806 HD |
301 | pte_unmap_unlock(pte, ptl); |
302 | return NULL; | |
81b4082d ND |
303 | } |
304 | ||
b291f000 NP |
305 | /** |
306 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
307 | * @page: the page to test | |
308 | * @vma: the VMA to test | |
309 | * | |
310 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
311 | * if the page is not mapped into the page tables of this VMA. Only | |
312 | * valid for normal file or anonymous VMAs. | |
313 | */ | |
314 | static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) | |
315 | { | |
316 | unsigned long address; | |
317 | pte_t *pte; | |
318 | spinlock_t *ptl; | |
319 | ||
320 | address = vma_address(page, vma); | |
321 | if (address == -EFAULT) /* out of vma range */ | |
322 | return 0; | |
323 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
324 | if (!pte) /* the page is not in this mm */ | |
325 | return 0; | |
326 | pte_unmap_unlock(pte, ptl); | |
327 | ||
328 | return 1; | |
329 | } | |
330 | ||
1da177e4 LT |
331 | /* |
332 | * Subfunctions of page_referenced: page_referenced_one called | |
333 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
334 | */ | |
335 | static int page_referenced_one(struct page *page, | |
f7b7fd8f | 336 | struct vm_area_struct *vma, unsigned int *mapcount) |
1da177e4 LT |
337 | { |
338 | struct mm_struct *mm = vma->vm_mm; | |
339 | unsigned long address; | |
1da177e4 | 340 | pte_t *pte; |
c0718806 | 341 | spinlock_t *ptl; |
1da177e4 LT |
342 | int referenced = 0; |
343 | ||
1da177e4 LT |
344 | address = vma_address(page, vma); |
345 | if (address == -EFAULT) | |
346 | goto out; | |
347 | ||
479db0bf | 348 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 HD |
349 | if (!pte) |
350 | goto out; | |
1da177e4 | 351 | |
b291f000 NP |
352 | /* |
353 | * Don't want to elevate referenced for mlocked page that gets this far, | |
354 | * in order that it progresses to try_to_unmap and is moved to the | |
355 | * unevictable list. | |
356 | */ | |
5a9bbdcd | 357 | if (vma->vm_flags & VM_LOCKED) { |
5a9bbdcd | 358 | *mapcount = 1; /* break early from loop */ |
b291f000 NP |
359 | goto out_unmap; |
360 | } | |
361 | ||
4917e5d0 JW |
362 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
363 | /* | |
364 | * Don't treat a reference through a sequentially read | |
365 | * mapping as such. If the page has been used in | |
366 | * another mapping, we will catch it; if this other | |
367 | * mapping is already gone, the unmap path will have | |
368 | * set PG_referenced or activated the page. | |
369 | */ | |
370 | if (likely(!VM_SequentialReadHint(vma))) | |
371 | referenced++; | |
372 | } | |
1da177e4 | 373 | |
c0718806 HD |
374 | /* Pretend the page is referenced if the task has the |
375 | swap token and is in the middle of a page fault. */ | |
f7b7fd8f | 376 | if (mm != current->mm && has_swap_token(mm) && |
c0718806 HD |
377 | rwsem_is_locked(&mm->mmap_sem)) |
378 | referenced++; | |
379 | ||
b291f000 | 380 | out_unmap: |
c0718806 HD |
381 | (*mapcount)--; |
382 | pte_unmap_unlock(pte, ptl); | |
1da177e4 LT |
383 | out: |
384 | return referenced; | |
385 | } | |
386 | ||
bed7161a BS |
387 | static int page_referenced_anon(struct page *page, |
388 | struct mem_cgroup *mem_cont) | |
1da177e4 LT |
389 | { |
390 | unsigned int mapcount; | |
391 | struct anon_vma *anon_vma; | |
392 | struct vm_area_struct *vma; | |
393 | int referenced = 0; | |
394 | ||
395 | anon_vma = page_lock_anon_vma(page); | |
396 | if (!anon_vma) | |
397 | return referenced; | |
398 | ||
399 | mapcount = page_mapcount(page); | |
400 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
bed7161a BS |
401 | /* |
402 | * If we are reclaiming on behalf of a cgroup, skip | |
403 | * counting on behalf of references from different | |
404 | * cgroups | |
405 | */ | |
bd845e38 | 406 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 407 | continue; |
f7b7fd8f | 408 | referenced += page_referenced_one(page, vma, &mapcount); |
1da177e4 LT |
409 | if (!mapcount) |
410 | break; | |
411 | } | |
34bbd704 ON |
412 | |
413 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
414 | return referenced; |
415 | } | |
416 | ||
417 | /** | |
418 | * page_referenced_file - referenced check for object-based rmap | |
419 | * @page: the page we're checking references on. | |
43d8eac4 | 420 | * @mem_cont: target memory controller |
1da177e4 LT |
421 | * |
422 | * For an object-based mapped page, find all the places it is mapped and | |
423 | * check/clear the referenced flag. This is done by following the page->mapping | |
424 | * pointer, then walking the chain of vmas it holds. It returns the number | |
425 | * of references it found. | |
426 | * | |
427 | * This function is only called from page_referenced for object-based pages. | |
428 | */ | |
bed7161a BS |
429 | static int page_referenced_file(struct page *page, |
430 | struct mem_cgroup *mem_cont) | |
1da177e4 LT |
431 | { |
432 | unsigned int mapcount; | |
433 | struct address_space *mapping = page->mapping; | |
434 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
435 | struct vm_area_struct *vma; | |
436 | struct prio_tree_iter iter; | |
437 | int referenced = 0; | |
438 | ||
439 | /* | |
440 | * The caller's checks on page->mapping and !PageAnon have made | |
441 | * sure that this is a file page: the check for page->mapping | |
442 | * excludes the case just before it gets set on an anon page. | |
443 | */ | |
444 | BUG_ON(PageAnon(page)); | |
445 | ||
446 | /* | |
447 | * The page lock not only makes sure that page->mapping cannot | |
448 | * suddenly be NULLified by truncation, it makes sure that the | |
449 | * structure at mapping cannot be freed and reused yet, | |
450 | * so we can safely take mapping->i_mmap_lock. | |
451 | */ | |
452 | BUG_ON(!PageLocked(page)); | |
453 | ||
454 | spin_lock(&mapping->i_mmap_lock); | |
455 | ||
456 | /* | |
457 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | |
458 | * is more likely to be accurate if we note it after spinning. | |
459 | */ | |
460 | mapcount = page_mapcount(page); | |
461 | ||
462 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
bed7161a BS |
463 | /* |
464 | * If we are reclaiming on behalf of a cgroup, skip | |
465 | * counting on behalf of references from different | |
466 | * cgroups | |
467 | */ | |
bd845e38 | 468 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 469 | continue; |
f7b7fd8f | 470 | referenced += page_referenced_one(page, vma, &mapcount); |
1da177e4 LT |
471 | if (!mapcount) |
472 | break; | |
473 | } | |
474 | ||
475 | spin_unlock(&mapping->i_mmap_lock); | |
476 | return referenced; | |
477 | } | |
478 | ||
479 | /** | |
480 | * page_referenced - test if the page was referenced | |
481 | * @page: the page to test | |
482 | * @is_locked: caller holds lock on the page | |
43d8eac4 | 483 | * @mem_cont: target memory controller |
1da177e4 LT |
484 | * |
485 | * Quick test_and_clear_referenced for all mappings to a page, | |
486 | * returns the number of ptes which referenced the page. | |
487 | */ | |
bed7161a BS |
488 | int page_referenced(struct page *page, int is_locked, |
489 | struct mem_cgroup *mem_cont) | |
1da177e4 LT |
490 | { |
491 | int referenced = 0; | |
492 | ||
1da177e4 LT |
493 | if (TestClearPageReferenced(page)) |
494 | referenced++; | |
495 | ||
496 | if (page_mapped(page) && page->mapping) { | |
497 | if (PageAnon(page)) | |
bed7161a | 498 | referenced += page_referenced_anon(page, mem_cont); |
1da177e4 | 499 | else if (is_locked) |
bed7161a | 500 | referenced += page_referenced_file(page, mem_cont); |
529ae9aa | 501 | else if (!trylock_page(page)) |
1da177e4 LT |
502 | referenced++; |
503 | else { | |
504 | if (page->mapping) | |
bed7161a BS |
505 | referenced += |
506 | page_referenced_file(page, mem_cont); | |
1da177e4 LT |
507 | unlock_page(page); |
508 | } | |
509 | } | |
5b7baf05 CB |
510 | |
511 | if (page_test_and_clear_young(page)) | |
512 | referenced++; | |
513 | ||
1da177e4 LT |
514 | return referenced; |
515 | } | |
516 | ||
d08b3851 PZ |
517 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) |
518 | { | |
519 | struct mm_struct *mm = vma->vm_mm; | |
520 | unsigned long address; | |
c2fda5fe | 521 | pte_t *pte; |
d08b3851 PZ |
522 | spinlock_t *ptl; |
523 | int ret = 0; | |
524 | ||
525 | address = vma_address(page, vma); | |
526 | if (address == -EFAULT) | |
527 | goto out; | |
528 | ||
479db0bf | 529 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
530 | if (!pte) |
531 | goto out; | |
532 | ||
c2fda5fe PZ |
533 | if (pte_dirty(*pte) || pte_write(*pte)) { |
534 | pte_t entry; | |
d08b3851 | 535 | |
c2fda5fe | 536 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 537 | entry = ptep_clear_flush_notify(vma, address, pte); |
c2fda5fe PZ |
538 | entry = pte_wrprotect(entry); |
539 | entry = pte_mkclean(entry); | |
d6e88e67 | 540 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
541 | ret = 1; |
542 | } | |
d08b3851 | 543 | |
d08b3851 PZ |
544 | pte_unmap_unlock(pte, ptl); |
545 | out: | |
546 | return ret; | |
547 | } | |
548 | ||
549 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
550 | { | |
551 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
552 | struct vm_area_struct *vma; | |
553 | struct prio_tree_iter iter; | |
554 | int ret = 0; | |
555 | ||
556 | BUG_ON(PageAnon(page)); | |
557 | ||
558 | spin_lock(&mapping->i_mmap_lock); | |
559 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
560 | if (vma->vm_flags & VM_SHARED) | |
561 | ret += page_mkclean_one(page, vma); | |
562 | } | |
563 | spin_unlock(&mapping->i_mmap_lock); | |
564 | return ret; | |
565 | } | |
566 | ||
567 | int page_mkclean(struct page *page) | |
568 | { | |
569 | int ret = 0; | |
570 | ||
571 | BUG_ON(!PageLocked(page)); | |
572 | ||
573 | if (page_mapped(page)) { | |
574 | struct address_space *mapping = page_mapping(page); | |
ce7e9fae | 575 | if (mapping) { |
d08b3851 | 576 | ret = page_mkclean_file(mapping, page); |
ce7e9fae CB |
577 | if (page_test_dirty(page)) { |
578 | page_clear_dirty(page); | |
579 | ret = 1; | |
580 | } | |
6c210482 | 581 | } |
d08b3851 PZ |
582 | } |
583 | ||
584 | return ret; | |
585 | } | |
60b59bea | 586 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 587 | |
9617d95e | 588 | /** |
43d8eac4 | 589 | * __page_set_anon_rmap - setup new anonymous rmap |
9617d95e NP |
590 | * @page: the page to add the mapping to |
591 | * @vma: the vm area in which the mapping is added | |
592 | * @address: the user virtual address mapped | |
593 | */ | |
594 | static void __page_set_anon_rmap(struct page *page, | |
595 | struct vm_area_struct *vma, unsigned long address) | |
596 | { | |
597 | struct anon_vma *anon_vma = vma->anon_vma; | |
598 | ||
599 | BUG_ON(!anon_vma); | |
600 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
601 | page->mapping = (struct address_space *) anon_vma; | |
602 | ||
603 | page->index = linear_page_index(vma, address); | |
604 | ||
a74609fa NP |
605 | /* |
606 | * nr_mapped state can be updated without turning off | |
607 | * interrupts because it is not modified via interrupt. | |
608 | */ | |
f3dbd344 | 609 | __inc_zone_page_state(page, NR_ANON_PAGES); |
9617d95e NP |
610 | } |
611 | ||
c97a9e10 | 612 | /** |
43d8eac4 | 613 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
614 | * @page: the page to add the mapping to |
615 | * @vma: the vm area in which the mapping is added | |
616 | * @address: the user virtual address mapped | |
617 | */ | |
618 | static void __page_check_anon_rmap(struct page *page, | |
619 | struct vm_area_struct *vma, unsigned long address) | |
620 | { | |
621 | #ifdef CONFIG_DEBUG_VM | |
622 | /* | |
623 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
624 | * be set up correctly at this point. | |
625 | * | |
626 | * We have exclusion against page_add_anon_rmap because the caller | |
627 | * always holds the page locked, except if called from page_dup_rmap, | |
628 | * in which case the page is already known to be setup. | |
629 | * | |
630 | * We have exclusion against page_add_new_anon_rmap because those pages | |
631 | * are initially only visible via the pagetables, and the pte is locked | |
632 | * over the call to page_add_new_anon_rmap. | |
633 | */ | |
634 | struct anon_vma *anon_vma = vma->anon_vma; | |
635 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
636 | BUG_ON(page->mapping != (struct address_space *)anon_vma); | |
637 | BUG_ON(page->index != linear_page_index(vma, address)); | |
638 | #endif | |
639 | } | |
640 | ||
1da177e4 LT |
641 | /** |
642 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
643 | * @page: the page to add the mapping to | |
644 | * @vma: the vm area in which the mapping is added | |
645 | * @address: the user virtual address mapped | |
646 | * | |
c97a9e10 | 647 | * The caller needs to hold the pte lock and the page must be locked. |
1da177e4 LT |
648 | */ |
649 | void page_add_anon_rmap(struct page *page, | |
650 | struct vm_area_struct *vma, unsigned long address) | |
651 | { | |
c97a9e10 NP |
652 | VM_BUG_ON(!PageLocked(page)); |
653 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
9617d95e NP |
654 | if (atomic_inc_and_test(&page->_mapcount)) |
655 | __page_set_anon_rmap(page, vma, address); | |
69029cd5 | 656 | else |
c97a9e10 | 657 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
658 | } |
659 | ||
43d8eac4 | 660 | /** |
9617d95e NP |
661 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
662 | * @page: the page to add the mapping to | |
663 | * @vma: the vm area in which the mapping is added | |
664 | * @address: the user virtual address mapped | |
665 | * | |
666 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
667 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 668 | * Page does not have to be locked. |
9617d95e NP |
669 | */ |
670 | void page_add_new_anon_rmap(struct page *page, | |
671 | struct vm_area_struct *vma, unsigned long address) | |
672 | { | |
b5934c53 | 673 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
cbf84b7a HD |
674 | SetPageSwapBacked(page); |
675 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
9617d95e | 676 | __page_set_anon_rmap(page, vma, address); |
b5934c53 | 677 | if (page_evictable(page, vma)) |
cbf84b7a | 678 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); |
b5934c53 HD |
679 | else |
680 | add_page_to_unevictable_list(page); | |
9617d95e NP |
681 | } |
682 | ||
1da177e4 LT |
683 | /** |
684 | * page_add_file_rmap - add pte mapping to a file page | |
685 | * @page: the page to add the mapping to | |
686 | * | |
b8072f09 | 687 | * The caller needs to hold the pte lock. |
1da177e4 LT |
688 | */ |
689 | void page_add_file_rmap(struct page *page) | |
690 | { | |
1da177e4 | 691 | if (atomic_inc_and_test(&page->_mapcount)) |
65ba55f5 | 692 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
1da177e4 LT |
693 | } |
694 | ||
c97a9e10 NP |
695 | #ifdef CONFIG_DEBUG_VM |
696 | /** | |
697 | * page_dup_rmap - duplicate pte mapping to a page | |
698 | * @page: the page to add the mapping to | |
43d8eac4 RD |
699 | * @vma: the vm area being duplicated |
700 | * @address: the user virtual address mapped | |
c97a9e10 NP |
701 | * |
702 | * For copy_page_range only: minimal extract from page_add_file_rmap / | |
703 | * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's | |
704 | * quicker. | |
705 | * | |
706 | * The caller needs to hold the pte lock. | |
707 | */ | |
708 | void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) | |
709 | { | |
c97a9e10 NP |
710 | if (PageAnon(page)) |
711 | __page_check_anon_rmap(page, vma, address); | |
712 | atomic_inc(&page->_mapcount); | |
713 | } | |
714 | #endif | |
715 | ||
1da177e4 LT |
716 | /** |
717 | * page_remove_rmap - take down pte mapping from a page | |
718 | * @page: page to remove mapping from | |
719 | * | |
b8072f09 | 720 | * The caller needs to hold the pte lock. |
1da177e4 | 721 | */ |
edc315fd | 722 | void page_remove_rmap(struct page *page) |
1da177e4 | 723 | { |
1da177e4 | 724 | if (atomic_add_negative(-1, &page->_mapcount)) { |
1da177e4 | 725 | /* |
16f8c5b2 HD |
726 | * Now that the last pte has gone, s390 must transfer dirty |
727 | * flag from storage key to struct page. We can usually skip | |
728 | * this if the page is anon, so about to be freed; but perhaps | |
729 | * not if it's in swapcache - there might be another pte slot | |
730 | * containing the swap entry, but page not yet written to swap. | |
1da177e4 | 731 | */ |
a4b526b3 MS |
732 | if ((!PageAnon(page) || PageSwapCache(page)) && |
733 | page_test_dirty(page)) { | |
6c210482 | 734 | page_clear_dirty(page); |
1da177e4 | 735 | set_page_dirty(page); |
6c210482 | 736 | } |
5b4e655e KH |
737 | if (PageAnon(page)) |
738 | mem_cgroup_uncharge_page(page); | |
f3dbd344 | 739 | __dec_zone_page_state(page, |
16f8c5b2 HD |
740 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); |
741 | /* | |
742 | * It would be tidy to reset the PageAnon mapping here, | |
743 | * but that might overwrite a racing page_add_anon_rmap | |
744 | * which increments mapcount after us but sets mapping | |
745 | * before us: so leave the reset to free_hot_cold_page, | |
746 | * and remember that it's only reliable while mapped. | |
747 | * Leaving it set also helps swapoff to reinstate ptes | |
748 | * faster for those pages still in swapcache. | |
749 | */ | |
1da177e4 LT |
750 | } |
751 | } | |
752 | ||
753 | /* | |
754 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
755 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
756 | */ | |
a48d07af | 757 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
7352349a | 758 | int migration) |
1da177e4 LT |
759 | { |
760 | struct mm_struct *mm = vma->vm_mm; | |
761 | unsigned long address; | |
1da177e4 LT |
762 | pte_t *pte; |
763 | pte_t pteval; | |
c0718806 | 764 | spinlock_t *ptl; |
1da177e4 LT |
765 | int ret = SWAP_AGAIN; |
766 | ||
1da177e4 LT |
767 | address = vma_address(page, vma); |
768 | if (address == -EFAULT) | |
769 | goto out; | |
770 | ||
479db0bf | 771 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 772 | if (!pte) |
81b4082d | 773 | goto out; |
1da177e4 LT |
774 | |
775 | /* | |
776 | * If the page is mlock()d, we cannot swap it out. | |
777 | * If it's recently referenced (perhaps page_referenced | |
778 | * skipped over this mm) then we should reactivate it. | |
779 | */ | |
b291f000 NP |
780 | if (!migration) { |
781 | if (vma->vm_flags & VM_LOCKED) { | |
782 | ret = SWAP_MLOCK; | |
783 | goto out_unmap; | |
784 | } | |
785 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | |
786 | ret = SWAP_FAIL; | |
787 | goto out_unmap; | |
788 | } | |
789 | } | |
1da177e4 | 790 | |
1da177e4 LT |
791 | /* Nuke the page table entry. */ |
792 | flush_cache_page(vma, address, page_to_pfn(page)); | |
cddb8a5c | 793 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
794 | |
795 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
796 | if (pte_dirty(pteval)) | |
797 | set_page_dirty(page); | |
798 | ||
365e9c87 HD |
799 | /* Update high watermark before we lower rss */ |
800 | update_hiwater_rss(mm); | |
801 | ||
1da177e4 | 802 | if (PageAnon(page)) { |
4c21e2f2 | 803 | swp_entry_t entry = { .val = page_private(page) }; |
0697212a CL |
804 | |
805 | if (PageSwapCache(page)) { | |
806 | /* | |
807 | * Store the swap location in the pte. | |
808 | * See handle_pte_fault() ... | |
809 | */ | |
810 | swap_duplicate(entry); | |
811 | if (list_empty(&mm->mmlist)) { | |
812 | spin_lock(&mmlist_lock); | |
813 | if (list_empty(&mm->mmlist)) | |
814 | list_add(&mm->mmlist, &init_mm.mmlist); | |
815 | spin_unlock(&mmlist_lock); | |
816 | } | |
442c9137 | 817 | dec_mm_counter(mm, anon_rss); |
64cdd548 | 818 | } else if (PAGE_MIGRATION) { |
0697212a CL |
819 | /* |
820 | * Store the pfn of the page in a special migration | |
821 | * pte. do_swap_page() will wait until the migration | |
822 | * pte is removed and then restart fault handling. | |
823 | */ | |
824 | BUG_ON(!migration); | |
825 | entry = make_migration_entry(page, pte_write(pteval)); | |
1da177e4 LT |
826 | } |
827 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
828 | BUG_ON(pte_file(*pte)); | |
64cdd548 | 829 | } else if (PAGE_MIGRATION && migration) { |
04e62a29 CL |
830 | /* Establish migration entry for a file page */ |
831 | swp_entry_t entry; | |
832 | entry = make_migration_entry(page, pte_write(pteval)); | |
833 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
834 | } else | |
4294621f | 835 | dec_mm_counter(mm, file_rss); |
1da177e4 | 836 | |
04e62a29 | 837 | |
edc315fd | 838 | page_remove_rmap(page); |
1da177e4 LT |
839 | page_cache_release(page); |
840 | ||
841 | out_unmap: | |
c0718806 | 842 | pte_unmap_unlock(pte, ptl); |
1da177e4 LT |
843 | out: |
844 | return ret; | |
845 | } | |
846 | ||
847 | /* | |
848 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
849 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
850 | * Consequently, given a particular page and its ->index, we cannot locate the | |
851 | * ptes which are mapping that page without an exhaustive linear search. | |
852 | * | |
853 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
854 | * maps the file to which the target page belongs. The ->vm_private_data field | |
855 | * holds the current cursor into that scan. Successive searches will circulate | |
856 | * around the vma's virtual address space. | |
857 | * | |
858 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
859 | * more scanning pressure is placed against them as well. Eventually pages | |
860 | * will become fully unmapped and are eligible for eviction. | |
861 | * | |
862 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
863 | * there there won't be many ptes located within the scan cluster. In this case | |
864 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
865 | * |
866 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
867 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
868 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
869 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
870 | */ |
871 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
872 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
873 | ||
b291f000 NP |
874 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
875 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
876 | { |
877 | struct mm_struct *mm = vma->vm_mm; | |
878 | pgd_t *pgd; | |
879 | pud_t *pud; | |
880 | pmd_t *pmd; | |
c0718806 | 881 | pte_t *pte; |
1da177e4 | 882 | pte_t pteval; |
c0718806 | 883 | spinlock_t *ptl; |
1da177e4 LT |
884 | struct page *page; |
885 | unsigned long address; | |
886 | unsigned long end; | |
b291f000 NP |
887 | int ret = SWAP_AGAIN; |
888 | int locked_vma = 0; | |
1da177e4 | 889 | |
1da177e4 LT |
890 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
891 | end = address + CLUSTER_SIZE; | |
892 | if (address < vma->vm_start) | |
893 | address = vma->vm_start; | |
894 | if (end > vma->vm_end) | |
895 | end = vma->vm_end; | |
896 | ||
897 | pgd = pgd_offset(mm, address); | |
898 | if (!pgd_present(*pgd)) | |
b291f000 | 899 | return ret; |
1da177e4 LT |
900 | |
901 | pud = pud_offset(pgd, address); | |
902 | if (!pud_present(*pud)) | |
b291f000 | 903 | return ret; |
1da177e4 LT |
904 | |
905 | pmd = pmd_offset(pud, address); | |
906 | if (!pmd_present(*pmd)) | |
b291f000 NP |
907 | return ret; |
908 | ||
909 | /* | |
910 | * MLOCK_PAGES => feature is configured. | |
911 | * if we can acquire the mmap_sem for read, and vma is VM_LOCKED, | |
912 | * keep the sem while scanning the cluster for mlocking pages. | |
913 | */ | |
914 | if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
915 | locked_vma = (vma->vm_flags & VM_LOCKED); | |
916 | if (!locked_vma) | |
917 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
918 | } | |
c0718806 HD |
919 | |
920 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 921 | |
365e9c87 HD |
922 | /* Update high watermark before we lower rss */ |
923 | update_hiwater_rss(mm); | |
924 | ||
c0718806 | 925 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
926 | if (!pte_present(*pte)) |
927 | continue; | |
6aab341e LT |
928 | page = vm_normal_page(vma, address, *pte); |
929 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 930 | |
b291f000 NP |
931 | if (locked_vma) { |
932 | mlock_vma_page(page); /* no-op if already mlocked */ | |
933 | if (page == check_page) | |
934 | ret = SWAP_MLOCK; | |
935 | continue; /* don't unmap */ | |
936 | } | |
937 | ||
cddb8a5c | 938 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1da177e4 LT |
939 | continue; |
940 | ||
941 | /* Nuke the page table entry. */ | |
eca35133 | 942 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 943 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
944 | |
945 | /* If nonlinear, store the file page offset in the pte. */ | |
946 | if (page->index != linear_page_index(vma, address)) | |
947 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
948 | ||
949 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
950 | if (pte_dirty(pteval)) | |
951 | set_page_dirty(page); | |
952 | ||
edc315fd | 953 | page_remove_rmap(page); |
1da177e4 | 954 | page_cache_release(page); |
4294621f | 955 | dec_mm_counter(mm, file_rss); |
1da177e4 LT |
956 | (*mapcount)--; |
957 | } | |
c0718806 | 958 | pte_unmap_unlock(pte - 1, ptl); |
b291f000 NP |
959 | if (locked_vma) |
960 | up_read(&vma->vm_mm->mmap_sem); | |
961 | return ret; | |
1da177e4 LT |
962 | } |
963 | ||
b291f000 NP |
964 | /* |
965 | * common handling for pages mapped in VM_LOCKED vmas | |
966 | */ | |
967 | static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma) | |
968 | { | |
969 | int mlocked = 0; | |
970 | ||
971 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
972 | if (vma->vm_flags & VM_LOCKED) { | |
973 | mlock_vma_page(page); | |
974 | mlocked++; /* really mlocked the page */ | |
975 | } | |
976 | up_read(&vma->vm_mm->mmap_sem); | |
977 | } | |
978 | return mlocked; | |
979 | } | |
980 | ||
981 | /** | |
982 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | |
983 | * rmap method | |
984 | * @page: the page to unmap/unlock | |
985 | * @unlock: request for unlock rather than unmap [unlikely] | |
986 | * @migration: unmapping for migration - ignored if @unlock | |
987 | * | |
988 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
989 | * contained in the anon_vma struct it points to. | |
990 | * | |
991 | * This function is only called from try_to_unmap/try_to_munlock for | |
992 | * anonymous pages. | |
993 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
994 | * where the page was found will be held for write. So, we won't recheck | |
995 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
996 | * 'LOCKED. | |
997 | */ | |
998 | static int try_to_unmap_anon(struct page *page, int unlock, int migration) | |
1da177e4 LT |
999 | { |
1000 | struct anon_vma *anon_vma; | |
1001 | struct vm_area_struct *vma; | |
b291f000 | 1002 | unsigned int mlocked = 0; |
1da177e4 LT |
1003 | int ret = SWAP_AGAIN; |
1004 | ||
b291f000 NP |
1005 | if (MLOCK_PAGES && unlikely(unlock)) |
1006 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | |
1007 | ||
1da177e4 LT |
1008 | anon_vma = page_lock_anon_vma(page); |
1009 | if (!anon_vma) | |
1010 | return ret; | |
1011 | ||
1012 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
b291f000 NP |
1013 | if (MLOCK_PAGES && unlikely(unlock)) { |
1014 | if (!((vma->vm_flags & VM_LOCKED) && | |
1015 | page_mapped_in_vma(page, vma))) | |
1016 | continue; /* must visit all unlocked vmas */ | |
1017 | ret = SWAP_MLOCK; /* saw at least one mlocked vma */ | |
1018 | } else { | |
1019 | ret = try_to_unmap_one(page, vma, migration); | |
1020 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
1021 | break; | |
1022 | } | |
1023 | if (ret == SWAP_MLOCK) { | |
1024 | mlocked = try_to_mlock_page(page, vma); | |
1025 | if (mlocked) | |
1026 | break; /* stop if actually mlocked page */ | |
1027 | } | |
1da177e4 | 1028 | } |
34bbd704 ON |
1029 | |
1030 | page_unlock_anon_vma(anon_vma); | |
b291f000 NP |
1031 | |
1032 | if (mlocked) | |
1033 | ret = SWAP_MLOCK; /* actually mlocked the page */ | |
1034 | else if (ret == SWAP_MLOCK) | |
1035 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | |
1036 | ||
1da177e4 LT |
1037 | return ret; |
1038 | } | |
1039 | ||
1040 | /** | |
b291f000 NP |
1041 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1042 | * @page: the page to unmap/unlock | |
1043 | * @unlock: request for unlock rather than unmap [unlikely] | |
1044 | * @migration: unmapping for migration - ignored if @unlock | |
1da177e4 LT |
1045 | * |
1046 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1047 | * contained in the address_space struct it points to. | |
1048 | * | |
b291f000 NP |
1049 | * This function is only called from try_to_unmap/try_to_munlock for |
1050 | * object-based pages. | |
1051 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1052 | * where the page was found will be held for write. So, we won't recheck | |
1053 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1054 | * 'LOCKED. | |
1da177e4 | 1055 | */ |
b291f000 | 1056 | static int try_to_unmap_file(struct page *page, int unlock, int migration) |
1da177e4 LT |
1057 | { |
1058 | struct address_space *mapping = page->mapping; | |
1059 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1060 | struct vm_area_struct *vma; | |
1061 | struct prio_tree_iter iter; | |
1062 | int ret = SWAP_AGAIN; | |
1063 | unsigned long cursor; | |
1064 | unsigned long max_nl_cursor = 0; | |
1065 | unsigned long max_nl_size = 0; | |
1066 | unsigned int mapcount; | |
b291f000 NP |
1067 | unsigned int mlocked = 0; |
1068 | ||
1069 | if (MLOCK_PAGES && unlikely(unlock)) | |
1070 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | |
1da177e4 LT |
1071 | |
1072 | spin_lock(&mapping->i_mmap_lock); | |
1073 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
b291f000 NP |
1074 | if (MLOCK_PAGES && unlikely(unlock)) { |
1075 | if (!(vma->vm_flags & VM_LOCKED)) | |
1076 | continue; /* must visit all vmas */ | |
1077 | ret = SWAP_MLOCK; | |
1078 | } else { | |
1079 | ret = try_to_unmap_one(page, vma, migration); | |
1080 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
1081 | goto out; | |
1082 | } | |
1083 | if (ret == SWAP_MLOCK) { | |
1084 | mlocked = try_to_mlock_page(page, vma); | |
1085 | if (mlocked) | |
1086 | break; /* stop if actually mlocked page */ | |
1087 | } | |
1da177e4 LT |
1088 | } |
1089 | ||
b291f000 NP |
1090 | if (mlocked) |
1091 | goto out; | |
1092 | ||
1da177e4 LT |
1093 | if (list_empty(&mapping->i_mmap_nonlinear)) |
1094 | goto out; | |
1095 | ||
1096 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1097 | shared.vm_set.list) { | |
b291f000 NP |
1098 | if (MLOCK_PAGES && unlikely(unlock)) { |
1099 | if (!(vma->vm_flags & VM_LOCKED)) | |
1100 | continue; /* must visit all vmas */ | |
1101 | ret = SWAP_MLOCK; /* leave mlocked == 0 */ | |
1102 | goto out; /* no need to look further */ | |
1103 | } | |
1104 | if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) | |
1da177e4 LT |
1105 | continue; |
1106 | cursor = (unsigned long) vma->vm_private_data; | |
1107 | if (cursor > max_nl_cursor) | |
1108 | max_nl_cursor = cursor; | |
1109 | cursor = vma->vm_end - vma->vm_start; | |
1110 | if (cursor > max_nl_size) | |
1111 | max_nl_size = cursor; | |
1112 | } | |
1113 | ||
b291f000 | 1114 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1da177e4 LT |
1115 | ret = SWAP_FAIL; |
1116 | goto out; | |
1117 | } | |
1118 | ||
1119 | /* | |
1120 | * We don't try to search for this page in the nonlinear vmas, | |
1121 | * and page_referenced wouldn't have found it anyway. Instead | |
1122 | * just walk the nonlinear vmas trying to age and unmap some. | |
1123 | * The mapcount of the page we came in with is irrelevant, | |
1124 | * but even so use it as a guide to how hard we should try? | |
1125 | */ | |
1126 | mapcount = page_mapcount(page); | |
1127 | if (!mapcount) | |
1128 | goto out; | |
1129 | cond_resched_lock(&mapping->i_mmap_lock); | |
1130 | ||
1131 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1132 | if (max_nl_cursor == 0) | |
1133 | max_nl_cursor = CLUSTER_SIZE; | |
1134 | ||
1135 | do { | |
1136 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1137 | shared.vm_set.list) { | |
b291f000 NP |
1138 | if (!MLOCK_PAGES && !migration && |
1139 | (vma->vm_flags & VM_LOCKED)) | |
1da177e4 LT |
1140 | continue; |
1141 | cursor = (unsigned long) vma->vm_private_data; | |
839b9685 | 1142 | while ( cursor < max_nl_cursor && |
1da177e4 | 1143 | cursor < vma->vm_end - vma->vm_start) { |
b291f000 NP |
1144 | ret = try_to_unmap_cluster(cursor, &mapcount, |
1145 | vma, page); | |
1146 | if (ret == SWAP_MLOCK) | |
1147 | mlocked = 2; /* to return below */ | |
1da177e4 LT |
1148 | cursor += CLUSTER_SIZE; |
1149 | vma->vm_private_data = (void *) cursor; | |
1150 | if ((int)mapcount <= 0) | |
1151 | goto out; | |
1152 | } | |
1153 | vma->vm_private_data = (void *) max_nl_cursor; | |
1154 | } | |
1155 | cond_resched_lock(&mapping->i_mmap_lock); | |
1156 | max_nl_cursor += CLUSTER_SIZE; | |
1157 | } while (max_nl_cursor <= max_nl_size); | |
1158 | ||
1159 | /* | |
1160 | * Don't loop forever (perhaps all the remaining pages are | |
1161 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1162 | * vmas, now forgetting on which ones it had fallen behind. | |
1163 | */ | |
101d2be7 HD |
1164 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1165 | vma->vm_private_data = NULL; | |
1da177e4 LT |
1166 | out: |
1167 | spin_unlock(&mapping->i_mmap_lock); | |
b291f000 NP |
1168 | if (mlocked) |
1169 | ret = SWAP_MLOCK; /* actually mlocked the page */ | |
1170 | else if (ret == SWAP_MLOCK) | |
1171 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | |
1da177e4 LT |
1172 | return ret; |
1173 | } | |
1174 | ||
1175 | /** | |
1176 | * try_to_unmap - try to remove all page table mappings to a page | |
1177 | * @page: the page to get unmapped | |
43d8eac4 | 1178 | * @migration: migration flag |
1da177e4 LT |
1179 | * |
1180 | * Tries to remove all the page table entries which are mapping this | |
1181 | * page, used in the pageout path. Caller must hold the page lock. | |
1182 | * Return values are: | |
1183 | * | |
1184 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1185 | * SWAP_AGAIN - we missed a mapping, try again later | |
1186 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1187 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1188 | */ |
7352349a | 1189 | int try_to_unmap(struct page *page, int migration) |
1da177e4 LT |
1190 | { |
1191 | int ret; | |
1192 | ||
1da177e4 LT |
1193 | BUG_ON(!PageLocked(page)); |
1194 | ||
1195 | if (PageAnon(page)) | |
b291f000 | 1196 | ret = try_to_unmap_anon(page, 0, migration); |
1da177e4 | 1197 | else |
b291f000 NP |
1198 | ret = try_to_unmap_file(page, 0, migration); |
1199 | if (ret != SWAP_MLOCK && !page_mapped(page)) | |
1da177e4 LT |
1200 | ret = SWAP_SUCCESS; |
1201 | return ret; | |
1202 | } | |
81b4082d | 1203 | |
b291f000 NP |
1204 | #ifdef CONFIG_UNEVICTABLE_LRU |
1205 | /** | |
1206 | * try_to_munlock - try to munlock a page | |
1207 | * @page: the page to be munlocked | |
1208 | * | |
1209 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1210 | * to make sure nobody else has this page mlocked. The page will be | |
1211 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1212 | * | |
1213 | * Return values are: | |
1214 | * | |
1215 | * SWAP_SUCCESS - no vma's holding page mlocked. | |
1216 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem | |
1217 | * SWAP_MLOCK - page is now mlocked. | |
1218 | */ | |
1219 | int try_to_munlock(struct page *page) | |
1220 | { | |
1221 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | |
1222 | ||
1223 | if (PageAnon(page)) | |
1224 | return try_to_unmap_anon(page, 1, 0); | |
1225 | else | |
1226 | return try_to_unmap_file(page, 1, 0); | |
1227 | } | |
1228 | #endif |