]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
17 | * Contributions by Hugh Dickins <[email protected]> 2003, 2004 | |
18 | */ | |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * inode->i_alloc_sem (vmtruncate_range) |
25 | * mm->mmap_sem | |
26 | * page->flags PG_locked (lock_page) | |
27 | * mapping->i_mmap_lock | |
28 | * anon_vma->lock | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
38 | * within inode_lock in __sync_single_inode) | |
1da177e4 LT |
39 | */ |
40 | ||
41 | #include <linux/mm.h> | |
42 | #include <linux/pagemap.h> | |
43 | #include <linux/swap.h> | |
44 | #include <linux/swapops.h> | |
45 | #include <linux/slab.h> | |
46 | #include <linux/init.h> | |
47 | #include <linux/rmap.h> | |
48 | #include <linux/rcupdate.h> | |
a48d07af | 49 | #include <linux/module.h> |
b5934c53 | 50 | #include <linux/mm_inline.h> |
7de6b805 | 51 | #include <linux/kallsyms.h> |
8a9f3ccd | 52 | #include <linux/memcontrol.h> |
cddb8a5c | 53 | #include <linux/mmu_notifier.h> |
64cdd548 | 54 | #include <linux/migrate.h> |
1da177e4 LT |
55 | |
56 | #include <asm/tlbflush.h> | |
57 | ||
b291f000 NP |
58 | #include "internal.h" |
59 | ||
fdd2e5f8 AB |
60 | static struct kmem_cache *anon_vma_cachep; |
61 | ||
62 | static inline struct anon_vma *anon_vma_alloc(void) | |
63 | { | |
64 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
65 | } | |
66 | ||
67 | static inline void anon_vma_free(struct anon_vma *anon_vma) | |
68 | { | |
69 | kmem_cache_free(anon_vma_cachep, anon_vma); | |
70 | } | |
1da177e4 | 71 | |
d9d332e0 LT |
72 | /** |
73 | * anon_vma_prepare - attach an anon_vma to a memory region | |
74 | * @vma: the memory region in question | |
75 | * | |
76 | * This makes sure the memory mapping described by 'vma' has | |
77 | * an 'anon_vma' attached to it, so that we can associate the | |
78 | * anonymous pages mapped into it with that anon_vma. | |
79 | * | |
80 | * The common case will be that we already have one, but if | |
81 | * if not we either need to find an adjacent mapping that we | |
82 | * can re-use the anon_vma from (very common when the only | |
83 | * reason for splitting a vma has been mprotect()), or we | |
84 | * allocate a new one. | |
85 | * | |
86 | * Anon-vma allocations are very subtle, because we may have | |
87 | * optimistically looked up an anon_vma in page_lock_anon_vma() | |
88 | * and that may actually touch the spinlock even in the newly | |
89 | * allocated vma (it depends on RCU to make sure that the | |
90 | * anon_vma isn't actually destroyed). | |
91 | * | |
92 | * As a result, we need to do proper anon_vma locking even | |
93 | * for the new allocation. At the same time, we do not want | |
94 | * to do any locking for the common case of already having | |
95 | * an anon_vma. | |
96 | * | |
97 | * This must be called with the mmap_sem held for reading. | |
98 | */ | |
1da177e4 LT |
99 | int anon_vma_prepare(struct vm_area_struct *vma) |
100 | { | |
101 | struct anon_vma *anon_vma = vma->anon_vma; | |
102 | ||
103 | might_sleep(); | |
104 | if (unlikely(!anon_vma)) { | |
105 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 106 | struct anon_vma *allocated; |
1da177e4 LT |
107 | |
108 | anon_vma = find_mergeable_anon_vma(vma); | |
d9d332e0 LT |
109 | allocated = NULL; |
110 | if (!anon_vma) { | |
1da177e4 LT |
111 | anon_vma = anon_vma_alloc(); |
112 | if (unlikely(!anon_vma)) | |
113 | return -ENOMEM; | |
114 | allocated = anon_vma; | |
1da177e4 | 115 | } |
d9d332e0 | 116 | spin_lock(&anon_vma->lock); |
1da177e4 LT |
117 | |
118 | /* page_table_lock to protect against threads */ | |
119 | spin_lock(&mm->page_table_lock); | |
120 | if (likely(!vma->anon_vma)) { | |
121 | vma->anon_vma = anon_vma; | |
0697212a | 122 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
123 | allocated = NULL; |
124 | } | |
125 | spin_unlock(&mm->page_table_lock); | |
126 | ||
d9d332e0 | 127 | spin_unlock(&anon_vma->lock); |
1da177e4 LT |
128 | if (unlikely(allocated)) |
129 | anon_vma_free(allocated); | |
130 | } | |
131 | return 0; | |
132 | } | |
133 | ||
134 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) | |
135 | { | |
136 | BUG_ON(vma->anon_vma != next->anon_vma); | |
137 | list_del(&next->anon_vma_node); | |
138 | } | |
139 | ||
140 | void __anon_vma_link(struct vm_area_struct *vma) | |
141 | { | |
142 | struct anon_vma *anon_vma = vma->anon_vma; | |
143 | ||
30acbaba | 144 | if (anon_vma) |
0697212a | 145 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
146 | } |
147 | ||
148 | void anon_vma_link(struct vm_area_struct *vma) | |
149 | { | |
150 | struct anon_vma *anon_vma = vma->anon_vma; | |
151 | ||
152 | if (anon_vma) { | |
153 | spin_lock(&anon_vma->lock); | |
0697212a | 154 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
155 | spin_unlock(&anon_vma->lock); |
156 | } | |
157 | } | |
158 | ||
159 | void anon_vma_unlink(struct vm_area_struct *vma) | |
160 | { | |
161 | struct anon_vma *anon_vma = vma->anon_vma; | |
162 | int empty; | |
163 | ||
164 | if (!anon_vma) | |
165 | return; | |
166 | ||
167 | spin_lock(&anon_vma->lock); | |
1da177e4 LT |
168 | list_del(&vma->anon_vma_node); |
169 | ||
170 | /* We must garbage collect the anon_vma if it's empty */ | |
171 | empty = list_empty(&anon_vma->head); | |
172 | spin_unlock(&anon_vma->lock); | |
173 | ||
174 | if (empty) | |
175 | anon_vma_free(anon_vma); | |
176 | } | |
177 | ||
51cc5068 | 178 | static void anon_vma_ctor(void *data) |
1da177e4 | 179 | { |
a35afb83 | 180 | struct anon_vma *anon_vma = data; |
1da177e4 | 181 | |
a35afb83 CL |
182 | spin_lock_init(&anon_vma->lock); |
183 | INIT_LIST_HEAD(&anon_vma->head); | |
1da177e4 LT |
184 | } |
185 | ||
186 | void __init anon_vma_init(void) | |
187 | { | |
188 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 189 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
1da177e4 LT |
190 | } |
191 | ||
192 | /* | |
193 | * Getting a lock on a stable anon_vma from a page off the LRU is | |
194 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | |
195 | */ | |
af936a16 | 196 | struct anon_vma *page_lock_anon_vma(struct page *page) |
1da177e4 | 197 | { |
34bbd704 | 198 | struct anon_vma *anon_vma; |
1da177e4 LT |
199 | unsigned long anon_mapping; |
200 | ||
201 | rcu_read_lock(); | |
202 | anon_mapping = (unsigned long) page->mapping; | |
203 | if (!(anon_mapping & PAGE_MAPPING_ANON)) | |
204 | goto out; | |
205 | if (!page_mapped(page)) | |
206 | goto out; | |
207 | ||
208 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
209 | spin_lock(&anon_vma->lock); | |
34bbd704 | 210 | return anon_vma; |
1da177e4 LT |
211 | out: |
212 | rcu_read_unlock(); | |
34bbd704 ON |
213 | return NULL; |
214 | } | |
215 | ||
af936a16 | 216 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
34bbd704 ON |
217 | { |
218 | spin_unlock(&anon_vma->lock); | |
219 | rcu_read_unlock(); | |
1da177e4 LT |
220 | } |
221 | ||
222 | /* | |
3ad33b24 LS |
223 | * At what user virtual address is page expected in @vma? |
224 | * Returns virtual address or -EFAULT if page's index/offset is not | |
225 | * within the range mapped the @vma. | |
1da177e4 LT |
226 | */ |
227 | static inline unsigned long | |
228 | vma_address(struct page *page, struct vm_area_struct *vma) | |
229 | { | |
230 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
231 | unsigned long address; | |
232 | ||
233 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
234 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
3ad33b24 | 235 | /* page should be within @vma mapping range */ |
1da177e4 LT |
236 | return -EFAULT; |
237 | } | |
238 | return address; | |
239 | } | |
240 | ||
241 | /* | |
242 | * At what user virtual address is page expected in vma? checking that the | |
ee498ed7 | 243 | * page matches the vma: currently only used on anon pages, by unuse_vma; |
1da177e4 LT |
244 | */ |
245 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
246 | { | |
247 | if (PageAnon(page)) { | |
248 | if ((void *)vma->anon_vma != | |
249 | (void *)page->mapping - PAGE_MAPPING_ANON) | |
250 | return -EFAULT; | |
251 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
252 | if (!vma->vm_file || |
253 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
254 | return -EFAULT; |
255 | } else | |
256 | return -EFAULT; | |
257 | return vma_address(page, vma); | |
258 | } | |
259 | ||
81b4082d ND |
260 | /* |
261 | * Check that @page is mapped at @address into @mm. | |
262 | * | |
479db0bf NP |
263 | * If @sync is false, page_check_address may perform a racy check to avoid |
264 | * the page table lock when the pte is not present (helpful when reclaiming | |
265 | * highly shared pages). | |
266 | * | |
b8072f09 | 267 | * On success returns with pte mapped and locked. |
81b4082d | 268 | */ |
ceffc078 | 269 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 270 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d ND |
271 | { |
272 | pgd_t *pgd; | |
273 | pud_t *pud; | |
274 | pmd_t *pmd; | |
275 | pte_t *pte; | |
c0718806 | 276 | spinlock_t *ptl; |
81b4082d | 277 | |
81b4082d | 278 | pgd = pgd_offset(mm, address); |
c0718806 HD |
279 | if (!pgd_present(*pgd)) |
280 | return NULL; | |
281 | ||
282 | pud = pud_offset(pgd, address); | |
283 | if (!pud_present(*pud)) | |
284 | return NULL; | |
285 | ||
286 | pmd = pmd_offset(pud, address); | |
287 | if (!pmd_present(*pmd)) | |
288 | return NULL; | |
289 | ||
290 | pte = pte_offset_map(pmd, address); | |
291 | /* Make a quick check before getting the lock */ | |
479db0bf | 292 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
293 | pte_unmap(pte); |
294 | return NULL; | |
295 | } | |
296 | ||
4c21e2f2 | 297 | ptl = pte_lockptr(mm, pmd); |
c0718806 HD |
298 | spin_lock(ptl); |
299 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
300 | *ptlp = ptl; | |
301 | return pte; | |
81b4082d | 302 | } |
c0718806 HD |
303 | pte_unmap_unlock(pte, ptl); |
304 | return NULL; | |
81b4082d ND |
305 | } |
306 | ||
b291f000 NP |
307 | /** |
308 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
309 | * @page: the page to test | |
310 | * @vma: the VMA to test | |
311 | * | |
312 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
313 | * if the page is not mapped into the page tables of this VMA. Only | |
314 | * valid for normal file or anonymous VMAs. | |
315 | */ | |
316 | static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) | |
317 | { | |
318 | unsigned long address; | |
319 | pte_t *pte; | |
320 | spinlock_t *ptl; | |
321 | ||
322 | address = vma_address(page, vma); | |
323 | if (address == -EFAULT) /* out of vma range */ | |
324 | return 0; | |
325 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
326 | if (!pte) /* the page is not in this mm */ | |
327 | return 0; | |
328 | pte_unmap_unlock(pte, ptl); | |
329 | ||
330 | return 1; | |
331 | } | |
332 | ||
1da177e4 LT |
333 | /* |
334 | * Subfunctions of page_referenced: page_referenced_one called | |
335 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
336 | */ | |
337 | static int page_referenced_one(struct page *page, | |
f7b7fd8f | 338 | struct vm_area_struct *vma, unsigned int *mapcount) |
1da177e4 LT |
339 | { |
340 | struct mm_struct *mm = vma->vm_mm; | |
341 | unsigned long address; | |
1da177e4 | 342 | pte_t *pte; |
c0718806 | 343 | spinlock_t *ptl; |
1da177e4 LT |
344 | int referenced = 0; |
345 | ||
1da177e4 LT |
346 | address = vma_address(page, vma); |
347 | if (address == -EFAULT) | |
348 | goto out; | |
349 | ||
479db0bf | 350 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 HD |
351 | if (!pte) |
352 | goto out; | |
1da177e4 | 353 | |
b291f000 NP |
354 | /* |
355 | * Don't want to elevate referenced for mlocked page that gets this far, | |
356 | * in order that it progresses to try_to_unmap and is moved to the | |
357 | * unevictable list. | |
358 | */ | |
5a9bbdcd | 359 | if (vma->vm_flags & VM_LOCKED) { |
5a9bbdcd | 360 | *mapcount = 1; /* break early from loop */ |
b291f000 NP |
361 | goto out_unmap; |
362 | } | |
363 | ||
4917e5d0 JW |
364 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
365 | /* | |
366 | * Don't treat a reference through a sequentially read | |
367 | * mapping as such. If the page has been used in | |
368 | * another mapping, we will catch it; if this other | |
369 | * mapping is already gone, the unmap path will have | |
370 | * set PG_referenced or activated the page. | |
371 | */ | |
372 | if (likely(!VM_SequentialReadHint(vma))) | |
373 | referenced++; | |
374 | } | |
1da177e4 | 375 | |
c0718806 HD |
376 | /* Pretend the page is referenced if the task has the |
377 | swap token and is in the middle of a page fault. */ | |
f7b7fd8f | 378 | if (mm != current->mm && has_swap_token(mm) && |
c0718806 HD |
379 | rwsem_is_locked(&mm->mmap_sem)) |
380 | referenced++; | |
381 | ||
b291f000 | 382 | out_unmap: |
c0718806 HD |
383 | (*mapcount)--; |
384 | pte_unmap_unlock(pte, ptl); | |
1da177e4 LT |
385 | out: |
386 | return referenced; | |
387 | } | |
388 | ||
bed7161a BS |
389 | static int page_referenced_anon(struct page *page, |
390 | struct mem_cgroup *mem_cont) | |
1da177e4 LT |
391 | { |
392 | unsigned int mapcount; | |
393 | struct anon_vma *anon_vma; | |
394 | struct vm_area_struct *vma; | |
395 | int referenced = 0; | |
396 | ||
397 | anon_vma = page_lock_anon_vma(page); | |
398 | if (!anon_vma) | |
399 | return referenced; | |
400 | ||
401 | mapcount = page_mapcount(page); | |
402 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
bed7161a BS |
403 | /* |
404 | * If we are reclaiming on behalf of a cgroup, skip | |
405 | * counting on behalf of references from different | |
406 | * cgroups | |
407 | */ | |
bd845e38 | 408 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 409 | continue; |
f7b7fd8f | 410 | referenced += page_referenced_one(page, vma, &mapcount); |
1da177e4 LT |
411 | if (!mapcount) |
412 | break; | |
413 | } | |
34bbd704 ON |
414 | |
415 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
416 | return referenced; |
417 | } | |
418 | ||
419 | /** | |
420 | * page_referenced_file - referenced check for object-based rmap | |
421 | * @page: the page we're checking references on. | |
43d8eac4 | 422 | * @mem_cont: target memory controller |
1da177e4 LT |
423 | * |
424 | * For an object-based mapped page, find all the places it is mapped and | |
425 | * check/clear the referenced flag. This is done by following the page->mapping | |
426 | * pointer, then walking the chain of vmas it holds. It returns the number | |
427 | * of references it found. | |
428 | * | |
429 | * This function is only called from page_referenced for object-based pages. | |
430 | */ | |
bed7161a BS |
431 | static int page_referenced_file(struct page *page, |
432 | struct mem_cgroup *mem_cont) | |
1da177e4 LT |
433 | { |
434 | unsigned int mapcount; | |
435 | struct address_space *mapping = page->mapping; | |
436 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
437 | struct vm_area_struct *vma; | |
438 | struct prio_tree_iter iter; | |
439 | int referenced = 0; | |
440 | ||
441 | /* | |
442 | * The caller's checks on page->mapping and !PageAnon have made | |
443 | * sure that this is a file page: the check for page->mapping | |
444 | * excludes the case just before it gets set on an anon page. | |
445 | */ | |
446 | BUG_ON(PageAnon(page)); | |
447 | ||
448 | /* | |
449 | * The page lock not only makes sure that page->mapping cannot | |
450 | * suddenly be NULLified by truncation, it makes sure that the | |
451 | * structure at mapping cannot be freed and reused yet, | |
452 | * so we can safely take mapping->i_mmap_lock. | |
453 | */ | |
454 | BUG_ON(!PageLocked(page)); | |
455 | ||
456 | spin_lock(&mapping->i_mmap_lock); | |
457 | ||
458 | /* | |
459 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | |
460 | * is more likely to be accurate if we note it after spinning. | |
461 | */ | |
462 | mapcount = page_mapcount(page); | |
463 | ||
464 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
bed7161a BS |
465 | /* |
466 | * If we are reclaiming on behalf of a cgroup, skip | |
467 | * counting on behalf of references from different | |
468 | * cgroups | |
469 | */ | |
bd845e38 | 470 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 471 | continue; |
f7b7fd8f | 472 | referenced += page_referenced_one(page, vma, &mapcount); |
1da177e4 LT |
473 | if (!mapcount) |
474 | break; | |
475 | } | |
476 | ||
477 | spin_unlock(&mapping->i_mmap_lock); | |
478 | return referenced; | |
479 | } | |
480 | ||
481 | /** | |
482 | * page_referenced - test if the page was referenced | |
483 | * @page: the page to test | |
484 | * @is_locked: caller holds lock on the page | |
43d8eac4 | 485 | * @mem_cont: target memory controller |
1da177e4 LT |
486 | * |
487 | * Quick test_and_clear_referenced for all mappings to a page, | |
488 | * returns the number of ptes which referenced the page. | |
489 | */ | |
bed7161a BS |
490 | int page_referenced(struct page *page, int is_locked, |
491 | struct mem_cgroup *mem_cont) | |
1da177e4 LT |
492 | { |
493 | int referenced = 0; | |
494 | ||
1da177e4 LT |
495 | if (TestClearPageReferenced(page)) |
496 | referenced++; | |
497 | ||
498 | if (page_mapped(page) && page->mapping) { | |
499 | if (PageAnon(page)) | |
bed7161a | 500 | referenced += page_referenced_anon(page, mem_cont); |
1da177e4 | 501 | else if (is_locked) |
bed7161a | 502 | referenced += page_referenced_file(page, mem_cont); |
529ae9aa | 503 | else if (!trylock_page(page)) |
1da177e4 LT |
504 | referenced++; |
505 | else { | |
506 | if (page->mapping) | |
bed7161a BS |
507 | referenced += |
508 | page_referenced_file(page, mem_cont); | |
1da177e4 LT |
509 | unlock_page(page); |
510 | } | |
511 | } | |
5b7baf05 CB |
512 | |
513 | if (page_test_and_clear_young(page)) | |
514 | referenced++; | |
515 | ||
1da177e4 LT |
516 | return referenced; |
517 | } | |
518 | ||
d08b3851 PZ |
519 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) |
520 | { | |
521 | struct mm_struct *mm = vma->vm_mm; | |
522 | unsigned long address; | |
c2fda5fe | 523 | pte_t *pte; |
d08b3851 PZ |
524 | spinlock_t *ptl; |
525 | int ret = 0; | |
526 | ||
527 | address = vma_address(page, vma); | |
528 | if (address == -EFAULT) | |
529 | goto out; | |
530 | ||
479db0bf | 531 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
532 | if (!pte) |
533 | goto out; | |
534 | ||
c2fda5fe PZ |
535 | if (pte_dirty(*pte) || pte_write(*pte)) { |
536 | pte_t entry; | |
d08b3851 | 537 | |
c2fda5fe | 538 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 539 | entry = ptep_clear_flush_notify(vma, address, pte); |
c2fda5fe PZ |
540 | entry = pte_wrprotect(entry); |
541 | entry = pte_mkclean(entry); | |
d6e88e67 | 542 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
543 | ret = 1; |
544 | } | |
d08b3851 | 545 | |
d08b3851 PZ |
546 | pte_unmap_unlock(pte, ptl); |
547 | out: | |
548 | return ret; | |
549 | } | |
550 | ||
551 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
552 | { | |
553 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
554 | struct vm_area_struct *vma; | |
555 | struct prio_tree_iter iter; | |
556 | int ret = 0; | |
557 | ||
558 | BUG_ON(PageAnon(page)); | |
559 | ||
560 | spin_lock(&mapping->i_mmap_lock); | |
561 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
562 | if (vma->vm_flags & VM_SHARED) | |
563 | ret += page_mkclean_one(page, vma); | |
564 | } | |
565 | spin_unlock(&mapping->i_mmap_lock); | |
566 | return ret; | |
567 | } | |
568 | ||
569 | int page_mkclean(struct page *page) | |
570 | { | |
571 | int ret = 0; | |
572 | ||
573 | BUG_ON(!PageLocked(page)); | |
574 | ||
575 | if (page_mapped(page)) { | |
576 | struct address_space *mapping = page_mapping(page); | |
ce7e9fae | 577 | if (mapping) { |
d08b3851 | 578 | ret = page_mkclean_file(mapping, page); |
ce7e9fae CB |
579 | if (page_test_dirty(page)) { |
580 | page_clear_dirty(page); | |
581 | ret = 1; | |
582 | } | |
6c210482 | 583 | } |
d08b3851 PZ |
584 | } |
585 | ||
586 | return ret; | |
587 | } | |
60b59bea | 588 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 589 | |
9617d95e | 590 | /** |
43d8eac4 | 591 | * __page_set_anon_rmap - setup new anonymous rmap |
9617d95e NP |
592 | * @page: the page to add the mapping to |
593 | * @vma: the vm area in which the mapping is added | |
594 | * @address: the user virtual address mapped | |
595 | */ | |
596 | static void __page_set_anon_rmap(struct page *page, | |
597 | struct vm_area_struct *vma, unsigned long address) | |
598 | { | |
599 | struct anon_vma *anon_vma = vma->anon_vma; | |
600 | ||
601 | BUG_ON(!anon_vma); | |
602 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
603 | page->mapping = (struct address_space *) anon_vma; | |
604 | ||
605 | page->index = linear_page_index(vma, address); | |
606 | ||
a74609fa NP |
607 | /* |
608 | * nr_mapped state can be updated without turning off | |
609 | * interrupts because it is not modified via interrupt. | |
610 | */ | |
f3dbd344 | 611 | __inc_zone_page_state(page, NR_ANON_PAGES); |
9617d95e NP |
612 | } |
613 | ||
c97a9e10 | 614 | /** |
43d8eac4 | 615 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
616 | * @page: the page to add the mapping to |
617 | * @vma: the vm area in which the mapping is added | |
618 | * @address: the user virtual address mapped | |
619 | */ | |
620 | static void __page_check_anon_rmap(struct page *page, | |
621 | struct vm_area_struct *vma, unsigned long address) | |
622 | { | |
623 | #ifdef CONFIG_DEBUG_VM | |
624 | /* | |
625 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
626 | * be set up correctly at this point. | |
627 | * | |
628 | * We have exclusion against page_add_anon_rmap because the caller | |
629 | * always holds the page locked, except if called from page_dup_rmap, | |
630 | * in which case the page is already known to be setup. | |
631 | * | |
632 | * We have exclusion against page_add_new_anon_rmap because those pages | |
633 | * are initially only visible via the pagetables, and the pte is locked | |
634 | * over the call to page_add_new_anon_rmap. | |
635 | */ | |
636 | struct anon_vma *anon_vma = vma->anon_vma; | |
637 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
638 | BUG_ON(page->mapping != (struct address_space *)anon_vma); | |
639 | BUG_ON(page->index != linear_page_index(vma, address)); | |
640 | #endif | |
641 | } | |
642 | ||
1da177e4 LT |
643 | /** |
644 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
645 | * @page: the page to add the mapping to | |
646 | * @vma: the vm area in which the mapping is added | |
647 | * @address: the user virtual address mapped | |
648 | * | |
c97a9e10 | 649 | * The caller needs to hold the pte lock and the page must be locked. |
1da177e4 LT |
650 | */ |
651 | void page_add_anon_rmap(struct page *page, | |
652 | struct vm_area_struct *vma, unsigned long address) | |
653 | { | |
c97a9e10 NP |
654 | VM_BUG_ON(!PageLocked(page)); |
655 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
9617d95e NP |
656 | if (atomic_inc_and_test(&page->_mapcount)) |
657 | __page_set_anon_rmap(page, vma, address); | |
69029cd5 | 658 | else |
c97a9e10 | 659 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
660 | } |
661 | ||
43d8eac4 | 662 | /** |
9617d95e NP |
663 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
664 | * @page: the page to add the mapping to | |
665 | * @vma: the vm area in which the mapping is added | |
666 | * @address: the user virtual address mapped | |
667 | * | |
668 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
669 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 670 | * Page does not have to be locked. |
9617d95e NP |
671 | */ |
672 | void page_add_new_anon_rmap(struct page *page, | |
673 | struct vm_area_struct *vma, unsigned long address) | |
674 | { | |
b5934c53 | 675 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
9617d95e NP |
676 | atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ |
677 | __page_set_anon_rmap(page, vma, address); | |
b5934c53 HD |
678 | if (page_evictable(page, vma)) |
679 | lru_cache_add_lru(page, LRU_ACTIVE + page_is_file_cache(page)); | |
680 | else | |
681 | add_page_to_unevictable_list(page); | |
9617d95e NP |
682 | } |
683 | ||
1da177e4 LT |
684 | /** |
685 | * page_add_file_rmap - add pte mapping to a file page | |
686 | * @page: the page to add the mapping to | |
687 | * | |
b8072f09 | 688 | * The caller needs to hold the pte lock. |
1da177e4 LT |
689 | */ |
690 | void page_add_file_rmap(struct page *page) | |
691 | { | |
1da177e4 | 692 | if (atomic_inc_and_test(&page->_mapcount)) |
65ba55f5 | 693 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
1da177e4 LT |
694 | } |
695 | ||
c97a9e10 NP |
696 | #ifdef CONFIG_DEBUG_VM |
697 | /** | |
698 | * page_dup_rmap - duplicate pte mapping to a page | |
699 | * @page: the page to add the mapping to | |
43d8eac4 RD |
700 | * @vma: the vm area being duplicated |
701 | * @address: the user virtual address mapped | |
c97a9e10 NP |
702 | * |
703 | * For copy_page_range only: minimal extract from page_add_file_rmap / | |
704 | * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's | |
705 | * quicker. | |
706 | * | |
707 | * The caller needs to hold the pte lock. | |
708 | */ | |
709 | void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) | |
710 | { | |
711 | BUG_ON(page_mapcount(page) == 0); | |
712 | if (PageAnon(page)) | |
713 | __page_check_anon_rmap(page, vma, address); | |
714 | atomic_inc(&page->_mapcount); | |
715 | } | |
716 | #endif | |
717 | ||
1da177e4 LT |
718 | /** |
719 | * page_remove_rmap - take down pte mapping from a page | |
720 | * @page: page to remove mapping from | |
43d8eac4 | 721 | * @vma: the vm area in which the mapping is removed |
1da177e4 | 722 | * |
b8072f09 | 723 | * The caller needs to hold the pte lock. |
1da177e4 | 724 | */ |
7de6b805 | 725 | void page_remove_rmap(struct page *page, struct vm_area_struct *vma) |
1da177e4 | 726 | { |
1da177e4 | 727 | if (atomic_add_negative(-1, &page->_mapcount)) { |
b7ab795b | 728 | if (unlikely(page_mapcount(page) < 0)) { |
ef2bf0dc | 729 | printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); |
7de6b805 | 730 | printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page)); |
ef2bf0dc DJ |
731 | printk (KERN_EMERG " page->flags = %lx\n", page->flags); |
732 | printk (KERN_EMERG " page->count = %x\n", page_count(page)); | |
733 | printk (KERN_EMERG " page->mapping = %p\n", page->mapping); | |
7de6b805 | 734 | print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops); |
54cb8821 | 735 | if (vma->vm_ops) { |
54cb8821 NP |
736 | print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault); |
737 | } | |
7de6b805 NP |
738 | if (vma->vm_file && vma->vm_file->f_op) |
739 | print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap); | |
b16bc64d | 740 | BUG(); |
ef2bf0dc | 741 | } |
b16bc64d | 742 | |
1da177e4 | 743 | /* |
16f8c5b2 HD |
744 | * Now that the last pte has gone, s390 must transfer dirty |
745 | * flag from storage key to struct page. We can usually skip | |
746 | * this if the page is anon, so about to be freed; but perhaps | |
747 | * not if it's in swapcache - there might be another pte slot | |
748 | * containing the swap entry, but page not yet written to swap. | |
1da177e4 | 749 | */ |
a4b526b3 MS |
750 | if ((!PageAnon(page) || PageSwapCache(page)) && |
751 | page_test_dirty(page)) { | |
6c210482 | 752 | page_clear_dirty(page); |
1da177e4 | 753 | set_page_dirty(page); |
6c210482 | 754 | } |
5b4e655e KH |
755 | if (PageAnon(page)) |
756 | mem_cgroup_uncharge_page(page); | |
f3dbd344 | 757 | __dec_zone_page_state(page, |
16f8c5b2 HD |
758 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); |
759 | /* | |
760 | * It would be tidy to reset the PageAnon mapping here, | |
761 | * but that might overwrite a racing page_add_anon_rmap | |
762 | * which increments mapcount after us but sets mapping | |
763 | * before us: so leave the reset to free_hot_cold_page, | |
764 | * and remember that it's only reliable while mapped. | |
765 | * Leaving it set also helps swapoff to reinstate ptes | |
766 | * faster for those pages still in swapcache. | |
767 | */ | |
1da177e4 LT |
768 | } |
769 | } | |
770 | ||
771 | /* | |
772 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
773 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
774 | */ | |
a48d07af | 775 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
7352349a | 776 | int migration) |
1da177e4 LT |
777 | { |
778 | struct mm_struct *mm = vma->vm_mm; | |
779 | unsigned long address; | |
1da177e4 LT |
780 | pte_t *pte; |
781 | pte_t pteval; | |
c0718806 | 782 | spinlock_t *ptl; |
1da177e4 LT |
783 | int ret = SWAP_AGAIN; |
784 | ||
1da177e4 LT |
785 | address = vma_address(page, vma); |
786 | if (address == -EFAULT) | |
787 | goto out; | |
788 | ||
479db0bf | 789 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 790 | if (!pte) |
81b4082d | 791 | goto out; |
1da177e4 LT |
792 | |
793 | /* | |
794 | * If the page is mlock()d, we cannot swap it out. | |
795 | * If it's recently referenced (perhaps page_referenced | |
796 | * skipped over this mm) then we should reactivate it. | |
797 | */ | |
b291f000 NP |
798 | if (!migration) { |
799 | if (vma->vm_flags & VM_LOCKED) { | |
800 | ret = SWAP_MLOCK; | |
801 | goto out_unmap; | |
802 | } | |
803 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | |
804 | ret = SWAP_FAIL; | |
805 | goto out_unmap; | |
806 | } | |
807 | } | |
1da177e4 | 808 | |
1da177e4 LT |
809 | /* Nuke the page table entry. */ |
810 | flush_cache_page(vma, address, page_to_pfn(page)); | |
cddb8a5c | 811 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
812 | |
813 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
814 | if (pte_dirty(pteval)) | |
815 | set_page_dirty(page); | |
816 | ||
365e9c87 HD |
817 | /* Update high watermark before we lower rss */ |
818 | update_hiwater_rss(mm); | |
819 | ||
1da177e4 | 820 | if (PageAnon(page)) { |
4c21e2f2 | 821 | swp_entry_t entry = { .val = page_private(page) }; |
0697212a CL |
822 | |
823 | if (PageSwapCache(page)) { | |
824 | /* | |
825 | * Store the swap location in the pte. | |
826 | * See handle_pte_fault() ... | |
827 | */ | |
828 | swap_duplicate(entry); | |
829 | if (list_empty(&mm->mmlist)) { | |
830 | spin_lock(&mmlist_lock); | |
831 | if (list_empty(&mm->mmlist)) | |
832 | list_add(&mm->mmlist, &init_mm.mmlist); | |
833 | spin_unlock(&mmlist_lock); | |
834 | } | |
442c9137 | 835 | dec_mm_counter(mm, anon_rss); |
64cdd548 | 836 | } else if (PAGE_MIGRATION) { |
0697212a CL |
837 | /* |
838 | * Store the pfn of the page in a special migration | |
839 | * pte. do_swap_page() will wait until the migration | |
840 | * pte is removed and then restart fault handling. | |
841 | */ | |
842 | BUG_ON(!migration); | |
843 | entry = make_migration_entry(page, pte_write(pteval)); | |
1da177e4 LT |
844 | } |
845 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
846 | BUG_ON(pte_file(*pte)); | |
64cdd548 | 847 | } else if (PAGE_MIGRATION && migration) { |
04e62a29 CL |
848 | /* Establish migration entry for a file page */ |
849 | swp_entry_t entry; | |
850 | entry = make_migration_entry(page, pte_write(pteval)); | |
851 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
852 | } else | |
4294621f | 853 | dec_mm_counter(mm, file_rss); |
1da177e4 | 854 | |
04e62a29 | 855 | |
7de6b805 | 856 | page_remove_rmap(page, vma); |
1da177e4 LT |
857 | page_cache_release(page); |
858 | ||
859 | out_unmap: | |
c0718806 | 860 | pte_unmap_unlock(pte, ptl); |
1da177e4 LT |
861 | out: |
862 | return ret; | |
863 | } | |
864 | ||
865 | /* | |
866 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
867 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
868 | * Consequently, given a particular page and its ->index, we cannot locate the | |
869 | * ptes which are mapping that page without an exhaustive linear search. | |
870 | * | |
871 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
872 | * maps the file to which the target page belongs. The ->vm_private_data field | |
873 | * holds the current cursor into that scan. Successive searches will circulate | |
874 | * around the vma's virtual address space. | |
875 | * | |
876 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
877 | * more scanning pressure is placed against them as well. Eventually pages | |
878 | * will become fully unmapped and are eligible for eviction. | |
879 | * | |
880 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
881 | * there there won't be many ptes located within the scan cluster. In this case | |
882 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
883 | * |
884 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
885 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
886 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
887 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
888 | */ |
889 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
890 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
891 | ||
b291f000 NP |
892 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
893 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
894 | { |
895 | struct mm_struct *mm = vma->vm_mm; | |
896 | pgd_t *pgd; | |
897 | pud_t *pud; | |
898 | pmd_t *pmd; | |
c0718806 | 899 | pte_t *pte; |
1da177e4 | 900 | pte_t pteval; |
c0718806 | 901 | spinlock_t *ptl; |
1da177e4 LT |
902 | struct page *page; |
903 | unsigned long address; | |
904 | unsigned long end; | |
b291f000 NP |
905 | int ret = SWAP_AGAIN; |
906 | int locked_vma = 0; | |
1da177e4 | 907 | |
1da177e4 LT |
908 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
909 | end = address + CLUSTER_SIZE; | |
910 | if (address < vma->vm_start) | |
911 | address = vma->vm_start; | |
912 | if (end > vma->vm_end) | |
913 | end = vma->vm_end; | |
914 | ||
915 | pgd = pgd_offset(mm, address); | |
916 | if (!pgd_present(*pgd)) | |
b291f000 | 917 | return ret; |
1da177e4 LT |
918 | |
919 | pud = pud_offset(pgd, address); | |
920 | if (!pud_present(*pud)) | |
b291f000 | 921 | return ret; |
1da177e4 LT |
922 | |
923 | pmd = pmd_offset(pud, address); | |
924 | if (!pmd_present(*pmd)) | |
b291f000 NP |
925 | return ret; |
926 | ||
927 | /* | |
928 | * MLOCK_PAGES => feature is configured. | |
929 | * if we can acquire the mmap_sem for read, and vma is VM_LOCKED, | |
930 | * keep the sem while scanning the cluster for mlocking pages. | |
931 | */ | |
932 | if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
933 | locked_vma = (vma->vm_flags & VM_LOCKED); | |
934 | if (!locked_vma) | |
935 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
936 | } | |
c0718806 HD |
937 | |
938 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 939 | |
365e9c87 HD |
940 | /* Update high watermark before we lower rss */ |
941 | update_hiwater_rss(mm); | |
942 | ||
c0718806 | 943 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
944 | if (!pte_present(*pte)) |
945 | continue; | |
6aab341e LT |
946 | page = vm_normal_page(vma, address, *pte); |
947 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 948 | |
b291f000 NP |
949 | if (locked_vma) { |
950 | mlock_vma_page(page); /* no-op if already mlocked */ | |
951 | if (page == check_page) | |
952 | ret = SWAP_MLOCK; | |
953 | continue; /* don't unmap */ | |
954 | } | |
955 | ||
cddb8a5c | 956 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1da177e4 LT |
957 | continue; |
958 | ||
959 | /* Nuke the page table entry. */ | |
eca35133 | 960 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 961 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
962 | |
963 | /* If nonlinear, store the file page offset in the pte. */ | |
964 | if (page->index != linear_page_index(vma, address)) | |
965 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
966 | ||
967 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
968 | if (pte_dirty(pteval)) | |
969 | set_page_dirty(page); | |
970 | ||
7de6b805 | 971 | page_remove_rmap(page, vma); |
1da177e4 | 972 | page_cache_release(page); |
4294621f | 973 | dec_mm_counter(mm, file_rss); |
1da177e4 LT |
974 | (*mapcount)--; |
975 | } | |
c0718806 | 976 | pte_unmap_unlock(pte - 1, ptl); |
b291f000 NP |
977 | if (locked_vma) |
978 | up_read(&vma->vm_mm->mmap_sem); | |
979 | return ret; | |
1da177e4 LT |
980 | } |
981 | ||
b291f000 NP |
982 | /* |
983 | * common handling for pages mapped in VM_LOCKED vmas | |
984 | */ | |
985 | static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma) | |
986 | { | |
987 | int mlocked = 0; | |
988 | ||
989 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
990 | if (vma->vm_flags & VM_LOCKED) { | |
991 | mlock_vma_page(page); | |
992 | mlocked++; /* really mlocked the page */ | |
993 | } | |
994 | up_read(&vma->vm_mm->mmap_sem); | |
995 | } | |
996 | return mlocked; | |
997 | } | |
998 | ||
999 | /** | |
1000 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | |
1001 | * rmap method | |
1002 | * @page: the page to unmap/unlock | |
1003 | * @unlock: request for unlock rather than unmap [unlikely] | |
1004 | * @migration: unmapping for migration - ignored if @unlock | |
1005 | * | |
1006 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1007 | * contained in the anon_vma struct it points to. | |
1008 | * | |
1009 | * This function is only called from try_to_unmap/try_to_munlock for | |
1010 | * anonymous pages. | |
1011 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1012 | * where the page was found will be held for write. So, we won't recheck | |
1013 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1014 | * 'LOCKED. | |
1015 | */ | |
1016 | static int try_to_unmap_anon(struct page *page, int unlock, int migration) | |
1da177e4 LT |
1017 | { |
1018 | struct anon_vma *anon_vma; | |
1019 | struct vm_area_struct *vma; | |
b291f000 | 1020 | unsigned int mlocked = 0; |
1da177e4 LT |
1021 | int ret = SWAP_AGAIN; |
1022 | ||
b291f000 NP |
1023 | if (MLOCK_PAGES && unlikely(unlock)) |
1024 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | |
1025 | ||
1da177e4 LT |
1026 | anon_vma = page_lock_anon_vma(page); |
1027 | if (!anon_vma) | |
1028 | return ret; | |
1029 | ||
1030 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
b291f000 NP |
1031 | if (MLOCK_PAGES && unlikely(unlock)) { |
1032 | if (!((vma->vm_flags & VM_LOCKED) && | |
1033 | page_mapped_in_vma(page, vma))) | |
1034 | continue; /* must visit all unlocked vmas */ | |
1035 | ret = SWAP_MLOCK; /* saw at least one mlocked vma */ | |
1036 | } else { | |
1037 | ret = try_to_unmap_one(page, vma, migration); | |
1038 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
1039 | break; | |
1040 | } | |
1041 | if (ret == SWAP_MLOCK) { | |
1042 | mlocked = try_to_mlock_page(page, vma); | |
1043 | if (mlocked) | |
1044 | break; /* stop if actually mlocked page */ | |
1045 | } | |
1da177e4 | 1046 | } |
34bbd704 ON |
1047 | |
1048 | page_unlock_anon_vma(anon_vma); | |
b291f000 NP |
1049 | |
1050 | if (mlocked) | |
1051 | ret = SWAP_MLOCK; /* actually mlocked the page */ | |
1052 | else if (ret == SWAP_MLOCK) | |
1053 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | |
1054 | ||
1da177e4 LT |
1055 | return ret; |
1056 | } | |
1057 | ||
1058 | /** | |
b291f000 NP |
1059 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1060 | * @page: the page to unmap/unlock | |
1061 | * @unlock: request for unlock rather than unmap [unlikely] | |
1062 | * @migration: unmapping for migration - ignored if @unlock | |
1da177e4 LT |
1063 | * |
1064 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1065 | * contained in the address_space struct it points to. | |
1066 | * | |
b291f000 NP |
1067 | * This function is only called from try_to_unmap/try_to_munlock for |
1068 | * object-based pages. | |
1069 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1070 | * where the page was found will be held for write. So, we won't recheck | |
1071 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1072 | * 'LOCKED. | |
1da177e4 | 1073 | */ |
b291f000 | 1074 | static int try_to_unmap_file(struct page *page, int unlock, int migration) |
1da177e4 LT |
1075 | { |
1076 | struct address_space *mapping = page->mapping; | |
1077 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1078 | struct vm_area_struct *vma; | |
1079 | struct prio_tree_iter iter; | |
1080 | int ret = SWAP_AGAIN; | |
1081 | unsigned long cursor; | |
1082 | unsigned long max_nl_cursor = 0; | |
1083 | unsigned long max_nl_size = 0; | |
1084 | unsigned int mapcount; | |
b291f000 NP |
1085 | unsigned int mlocked = 0; |
1086 | ||
1087 | if (MLOCK_PAGES && unlikely(unlock)) | |
1088 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | |
1da177e4 LT |
1089 | |
1090 | spin_lock(&mapping->i_mmap_lock); | |
1091 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
b291f000 NP |
1092 | if (MLOCK_PAGES && unlikely(unlock)) { |
1093 | if (!(vma->vm_flags & VM_LOCKED)) | |
1094 | continue; /* must visit all vmas */ | |
1095 | ret = SWAP_MLOCK; | |
1096 | } else { | |
1097 | ret = try_to_unmap_one(page, vma, migration); | |
1098 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
1099 | goto out; | |
1100 | } | |
1101 | if (ret == SWAP_MLOCK) { | |
1102 | mlocked = try_to_mlock_page(page, vma); | |
1103 | if (mlocked) | |
1104 | break; /* stop if actually mlocked page */ | |
1105 | } | |
1da177e4 LT |
1106 | } |
1107 | ||
b291f000 NP |
1108 | if (mlocked) |
1109 | goto out; | |
1110 | ||
1da177e4 LT |
1111 | if (list_empty(&mapping->i_mmap_nonlinear)) |
1112 | goto out; | |
1113 | ||
1114 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1115 | shared.vm_set.list) { | |
b291f000 NP |
1116 | if (MLOCK_PAGES && unlikely(unlock)) { |
1117 | if (!(vma->vm_flags & VM_LOCKED)) | |
1118 | continue; /* must visit all vmas */ | |
1119 | ret = SWAP_MLOCK; /* leave mlocked == 0 */ | |
1120 | goto out; /* no need to look further */ | |
1121 | } | |
1122 | if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) | |
1da177e4 LT |
1123 | continue; |
1124 | cursor = (unsigned long) vma->vm_private_data; | |
1125 | if (cursor > max_nl_cursor) | |
1126 | max_nl_cursor = cursor; | |
1127 | cursor = vma->vm_end - vma->vm_start; | |
1128 | if (cursor > max_nl_size) | |
1129 | max_nl_size = cursor; | |
1130 | } | |
1131 | ||
b291f000 | 1132 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1da177e4 LT |
1133 | ret = SWAP_FAIL; |
1134 | goto out; | |
1135 | } | |
1136 | ||
1137 | /* | |
1138 | * We don't try to search for this page in the nonlinear vmas, | |
1139 | * and page_referenced wouldn't have found it anyway. Instead | |
1140 | * just walk the nonlinear vmas trying to age and unmap some. | |
1141 | * The mapcount of the page we came in with is irrelevant, | |
1142 | * but even so use it as a guide to how hard we should try? | |
1143 | */ | |
1144 | mapcount = page_mapcount(page); | |
1145 | if (!mapcount) | |
1146 | goto out; | |
1147 | cond_resched_lock(&mapping->i_mmap_lock); | |
1148 | ||
1149 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1150 | if (max_nl_cursor == 0) | |
1151 | max_nl_cursor = CLUSTER_SIZE; | |
1152 | ||
1153 | do { | |
1154 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1155 | shared.vm_set.list) { | |
b291f000 NP |
1156 | if (!MLOCK_PAGES && !migration && |
1157 | (vma->vm_flags & VM_LOCKED)) | |
1da177e4 LT |
1158 | continue; |
1159 | cursor = (unsigned long) vma->vm_private_data; | |
839b9685 | 1160 | while ( cursor < max_nl_cursor && |
1da177e4 | 1161 | cursor < vma->vm_end - vma->vm_start) { |
b291f000 NP |
1162 | ret = try_to_unmap_cluster(cursor, &mapcount, |
1163 | vma, page); | |
1164 | if (ret == SWAP_MLOCK) | |
1165 | mlocked = 2; /* to return below */ | |
1da177e4 LT |
1166 | cursor += CLUSTER_SIZE; |
1167 | vma->vm_private_data = (void *) cursor; | |
1168 | if ((int)mapcount <= 0) | |
1169 | goto out; | |
1170 | } | |
1171 | vma->vm_private_data = (void *) max_nl_cursor; | |
1172 | } | |
1173 | cond_resched_lock(&mapping->i_mmap_lock); | |
1174 | max_nl_cursor += CLUSTER_SIZE; | |
1175 | } while (max_nl_cursor <= max_nl_size); | |
1176 | ||
1177 | /* | |
1178 | * Don't loop forever (perhaps all the remaining pages are | |
1179 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1180 | * vmas, now forgetting on which ones it had fallen behind. | |
1181 | */ | |
101d2be7 HD |
1182 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1183 | vma->vm_private_data = NULL; | |
1da177e4 LT |
1184 | out: |
1185 | spin_unlock(&mapping->i_mmap_lock); | |
b291f000 NP |
1186 | if (mlocked) |
1187 | ret = SWAP_MLOCK; /* actually mlocked the page */ | |
1188 | else if (ret == SWAP_MLOCK) | |
1189 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | |
1da177e4 LT |
1190 | return ret; |
1191 | } | |
1192 | ||
1193 | /** | |
1194 | * try_to_unmap - try to remove all page table mappings to a page | |
1195 | * @page: the page to get unmapped | |
43d8eac4 | 1196 | * @migration: migration flag |
1da177e4 LT |
1197 | * |
1198 | * Tries to remove all the page table entries which are mapping this | |
1199 | * page, used in the pageout path. Caller must hold the page lock. | |
1200 | * Return values are: | |
1201 | * | |
1202 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1203 | * SWAP_AGAIN - we missed a mapping, try again later | |
1204 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1205 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1206 | */ |
7352349a | 1207 | int try_to_unmap(struct page *page, int migration) |
1da177e4 LT |
1208 | { |
1209 | int ret; | |
1210 | ||
1da177e4 LT |
1211 | BUG_ON(!PageLocked(page)); |
1212 | ||
1213 | if (PageAnon(page)) | |
b291f000 | 1214 | ret = try_to_unmap_anon(page, 0, migration); |
1da177e4 | 1215 | else |
b291f000 NP |
1216 | ret = try_to_unmap_file(page, 0, migration); |
1217 | if (ret != SWAP_MLOCK && !page_mapped(page)) | |
1da177e4 LT |
1218 | ret = SWAP_SUCCESS; |
1219 | return ret; | |
1220 | } | |
81b4082d | 1221 | |
b291f000 NP |
1222 | #ifdef CONFIG_UNEVICTABLE_LRU |
1223 | /** | |
1224 | * try_to_munlock - try to munlock a page | |
1225 | * @page: the page to be munlocked | |
1226 | * | |
1227 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1228 | * to make sure nobody else has this page mlocked. The page will be | |
1229 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1230 | * | |
1231 | * Return values are: | |
1232 | * | |
1233 | * SWAP_SUCCESS - no vma's holding page mlocked. | |
1234 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem | |
1235 | * SWAP_MLOCK - page is now mlocked. | |
1236 | */ | |
1237 | int try_to_munlock(struct page *page) | |
1238 | { | |
1239 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | |
1240 | ||
1241 | if (PageAnon(page)) | |
1242 | return try_to_unmap_anon(page, 1, 0); | |
1243 | else | |
1244 | return try_to_unmap_file(page, 1, 0); | |
1245 | } | |
1246 | #endif |