]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <[email protected]> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <[email protected]> | |
8 | * | |
2e72b634 KS |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
7ae1e1d0 GC |
13 | * Kernel Memory Controller |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
15 | * Authors: Glauber Costa and Suleiman Souhlal | |
16 | * | |
8cdea7c0 BS |
17 | * This program is free software; you can redistribute it and/or modify |
18 | * it under the terms of the GNU General Public License as published by | |
19 | * the Free Software Foundation; either version 2 of the License, or | |
20 | * (at your option) any later version. | |
21 | * | |
22 | * This program is distributed in the hope that it will be useful, | |
23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
25 | * GNU General Public License for more details. | |
26 | */ | |
27 | ||
28 | #include <linux/res_counter.h> | |
29 | #include <linux/memcontrol.h> | |
30 | #include <linux/cgroup.h> | |
78fb7466 | 31 | #include <linux/mm.h> |
4ffef5fe | 32 | #include <linux/hugetlb.h> |
d13d1443 | 33 | #include <linux/pagemap.h> |
d52aa412 | 34 | #include <linux/smp.h> |
8a9f3ccd | 35 | #include <linux/page-flags.h> |
66e1707b | 36 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
37 | #include <linux/bit_spinlock.h> |
38 | #include <linux/rcupdate.h> | |
e222432b | 39 | #include <linux/limits.h> |
b9e15baf | 40 | #include <linux/export.h> |
8c7c6e34 | 41 | #include <linux/mutex.h> |
f64c3f54 | 42 | #include <linux/rbtree.h> |
b6ac57d5 | 43 | #include <linux/slab.h> |
66e1707b | 44 | #include <linux/swap.h> |
02491447 | 45 | #include <linux/swapops.h> |
66e1707b | 46 | #include <linux/spinlock.h> |
2e72b634 KS |
47 | #include <linux/eventfd.h> |
48 | #include <linux/sort.h> | |
66e1707b | 49 | #include <linux/fs.h> |
d2ceb9b7 | 50 | #include <linux/seq_file.h> |
33327948 | 51 | #include <linux/vmalloc.h> |
70ddf637 | 52 | #include <linux/vmpressure.h> |
b69408e8 | 53 | #include <linux/mm_inline.h> |
52d4b9ac | 54 | #include <linux/page_cgroup.h> |
cdec2e42 | 55 | #include <linux/cpu.h> |
158e0a2d | 56 | #include <linux/oom.h> |
08e552c6 | 57 | #include "internal.h" |
d1a4c0b3 | 58 | #include <net/sock.h> |
4bd2c1ee | 59 | #include <net/ip.h> |
d1a4c0b3 | 60 | #include <net/tcp_memcontrol.h> |
8cdea7c0 | 61 | |
8697d331 BS |
62 | #include <asm/uaccess.h> |
63 | ||
cc8e970c KM |
64 | #include <trace/events/vmscan.h> |
65 | ||
a181b0e8 | 66 | struct cgroup_subsys mem_cgroup_subsys __read_mostly; |
68ae564b DR |
67 | EXPORT_SYMBOL(mem_cgroup_subsys); |
68 | ||
a181b0e8 | 69 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
6bbda35c | 70 | static struct mem_cgroup *root_mem_cgroup __read_mostly; |
8cdea7c0 | 71 | |
c255a458 | 72 | #ifdef CONFIG_MEMCG_SWAP |
338c8431 | 73 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
c077719b | 74 | int do_swap_account __read_mostly; |
a42c390c MH |
75 | |
76 | /* for remember boot option*/ | |
c255a458 | 77 | #ifdef CONFIG_MEMCG_SWAP_ENABLED |
a42c390c MH |
78 | static int really_do_swap_account __initdata = 1; |
79 | #else | |
80 | static int really_do_swap_account __initdata = 0; | |
81 | #endif | |
82 | ||
c077719b | 83 | #else |
a0db00fc | 84 | #define do_swap_account 0 |
c077719b KH |
85 | #endif |
86 | ||
87 | ||
d52aa412 KH |
88 | /* |
89 | * Statistics for memory cgroup. | |
90 | */ | |
91 | enum mem_cgroup_stat_index { | |
92 | /* | |
93 | * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. | |
94 | */ | |
b070e65c DR |
95 | MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ |
96 | MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ | |
97 | MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ | |
98 | MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ | |
99 | MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ | |
d52aa412 KH |
100 | MEM_CGROUP_STAT_NSTATS, |
101 | }; | |
102 | ||
af7c4b0e JW |
103 | static const char * const mem_cgroup_stat_names[] = { |
104 | "cache", | |
105 | "rss", | |
b070e65c | 106 | "rss_huge", |
af7c4b0e JW |
107 | "mapped_file", |
108 | "swap", | |
109 | }; | |
110 | ||
e9f8974f JW |
111 | enum mem_cgroup_events_index { |
112 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ | |
113 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ | |
456f998e YH |
114 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ |
115 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ | |
e9f8974f JW |
116 | MEM_CGROUP_EVENTS_NSTATS, |
117 | }; | |
af7c4b0e JW |
118 | |
119 | static const char * const mem_cgroup_events_names[] = { | |
120 | "pgpgin", | |
121 | "pgpgout", | |
122 | "pgfault", | |
123 | "pgmajfault", | |
124 | }; | |
125 | ||
58cf188e SZ |
126 | static const char * const mem_cgroup_lru_names[] = { |
127 | "inactive_anon", | |
128 | "active_anon", | |
129 | "inactive_file", | |
130 | "active_file", | |
131 | "unevictable", | |
132 | }; | |
133 | ||
7a159cc9 JW |
134 | /* |
135 | * Per memcg event counter is incremented at every pagein/pageout. With THP, | |
136 | * it will be incremated by the number of pages. This counter is used for | |
137 | * for trigger some periodic events. This is straightforward and better | |
138 | * than using jiffies etc. to handle periodic memcg event. | |
139 | */ | |
140 | enum mem_cgroup_events_target { | |
141 | MEM_CGROUP_TARGET_THRESH, | |
142 | MEM_CGROUP_TARGET_SOFTLIMIT, | |
453a9bf3 | 143 | MEM_CGROUP_TARGET_NUMAINFO, |
7a159cc9 JW |
144 | MEM_CGROUP_NTARGETS, |
145 | }; | |
a0db00fc KS |
146 | #define THRESHOLDS_EVENTS_TARGET 128 |
147 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
148 | #define NUMAINFO_EVENTS_TARGET 1024 | |
e9f8974f | 149 | |
d52aa412 | 150 | struct mem_cgroup_stat_cpu { |
7a159cc9 | 151 | long count[MEM_CGROUP_STAT_NSTATS]; |
e9f8974f | 152 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
13114716 | 153 | unsigned long nr_page_events; |
7a159cc9 | 154 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
d52aa412 KH |
155 | }; |
156 | ||
527a5ec9 | 157 | struct mem_cgroup_reclaim_iter { |
5f578161 MH |
158 | /* |
159 | * last scanned hierarchy member. Valid only if last_dead_count | |
160 | * matches memcg->dead_count of the hierarchy root group. | |
161 | */ | |
542f85f9 | 162 | struct mem_cgroup *last_visited; |
5f578161 MH |
163 | unsigned long last_dead_count; |
164 | ||
527a5ec9 JW |
165 | /* scan generation, increased every round-trip */ |
166 | unsigned int generation; | |
167 | }; | |
168 | ||
6d12e2d8 KH |
169 | /* |
170 | * per-zone information in memory controller. | |
171 | */ | |
6d12e2d8 | 172 | struct mem_cgroup_per_zone { |
6290df54 | 173 | struct lruvec lruvec; |
1eb49272 | 174 | unsigned long lru_size[NR_LRU_LISTS]; |
3e2f41f1 | 175 | |
527a5ec9 JW |
176 | struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; |
177 | ||
f64c3f54 BS |
178 | struct rb_node tree_node; /* RB tree node */ |
179 | unsigned long long usage_in_excess;/* Set to the value by which */ | |
180 | /* the soft limit is exceeded*/ | |
181 | bool on_tree; | |
d79154bb | 182 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ |
4e416953 | 183 | /* use container_of */ |
6d12e2d8 | 184 | }; |
6d12e2d8 KH |
185 | |
186 | struct mem_cgroup_per_node { | |
187 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
188 | }; | |
189 | ||
190 | struct mem_cgroup_lru_info { | |
45cf7ebd | 191 | struct mem_cgroup_per_node *nodeinfo[0]; |
6d12e2d8 KH |
192 | }; |
193 | ||
f64c3f54 BS |
194 | /* |
195 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
196 | * their hierarchy representation | |
197 | */ | |
198 | ||
199 | struct mem_cgroup_tree_per_zone { | |
200 | struct rb_root rb_root; | |
201 | spinlock_t lock; | |
202 | }; | |
203 | ||
204 | struct mem_cgroup_tree_per_node { | |
205 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
206 | }; | |
207 | ||
208 | struct mem_cgroup_tree { | |
209 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
210 | }; | |
211 | ||
212 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
213 | ||
2e72b634 KS |
214 | struct mem_cgroup_threshold { |
215 | struct eventfd_ctx *eventfd; | |
216 | u64 threshold; | |
217 | }; | |
218 | ||
9490ff27 | 219 | /* For threshold */ |
2e72b634 | 220 | struct mem_cgroup_threshold_ary { |
748dad36 | 221 | /* An array index points to threshold just below or equal to usage. */ |
5407a562 | 222 | int current_threshold; |
2e72b634 KS |
223 | /* Size of entries[] */ |
224 | unsigned int size; | |
225 | /* Array of thresholds */ | |
226 | struct mem_cgroup_threshold entries[0]; | |
227 | }; | |
2c488db2 KS |
228 | |
229 | struct mem_cgroup_thresholds { | |
230 | /* Primary thresholds array */ | |
231 | struct mem_cgroup_threshold_ary *primary; | |
232 | /* | |
233 | * Spare threshold array. | |
234 | * This is needed to make mem_cgroup_unregister_event() "never fail". | |
235 | * It must be able to store at least primary->size - 1 entries. | |
236 | */ | |
237 | struct mem_cgroup_threshold_ary *spare; | |
238 | }; | |
239 | ||
9490ff27 KH |
240 | /* for OOM */ |
241 | struct mem_cgroup_eventfd_list { | |
242 | struct list_head list; | |
243 | struct eventfd_ctx *eventfd; | |
244 | }; | |
2e72b634 | 245 | |
c0ff4b85 R |
246 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
247 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
2e72b634 | 248 | |
8cdea7c0 BS |
249 | /* |
250 | * The memory controller data structure. The memory controller controls both | |
251 | * page cache and RSS per cgroup. We would eventually like to provide | |
252 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
253 | * to help the administrator determine what knobs to tune. | |
254 | * | |
255 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
256 | * we hit the water mark. May be even add a low water mark, such that |
257 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
258 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
259 | */ |
260 | struct mem_cgroup { | |
261 | struct cgroup_subsys_state css; | |
262 | /* | |
263 | * the counter to account for memory usage | |
264 | */ | |
265 | struct res_counter res; | |
59927fb9 | 266 | |
70ddf637 AV |
267 | /* vmpressure notifications */ |
268 | struct vmpressure vmpressure; | |
269 | ||
59927fb9 HD |
270 | union { |
271 | /* | |
272 | * the counter to account for mem+swap usage. | |
273 | */ | |
274 | struct res_counter memsw; | |
275 | ||
276 | /* | |
277 | * rcu_freeing is used only when freeing struct mem_cgroup, | |
278 | * so put it into a union to avoid wasting more memory. | |
279 | * It must be disjoint from the css field. It could be | |
280 | * in a union with the res field, but res plays a much | |
281 | * larger part in mem_cgroup life than memsw, and might | |
282 | * be of interest, even at time of free, when debugging. | |
283 | * So share rcu_head with the less interesting memsw. | |
284 | */ | |
285 | struct rcu_head rcu_freeing; | |
286 | /* | |
3afe36b1 GC |
287 | * We also need some space for a worker in deferred freeing. |
288 | * By the time we call it, rcu_freeing is no longer in use. | |
59927fb9 HD |
289 | */ |
290 | struct work_struct work_freeing; | |
291 | }; | |
292 | ||
510fc4e1 GC |
293 | /* |
294 | * the counter to account for kernel memory usage. | |
295 | */ | |
296 | struct res_counter kmem; | |
18f59ea7 BS |
297 | /* |
298 | * Should the accounting and control be hierarchical, per subtree? | |
299 | */ | |
300 | bool use_hierarchy; | |
510fc4e1 | 301 | unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ |
79dfdacc MH |
302 | |
303 | bool oom_lock; | |
304 | atomic_t under_oom; | |
305 | ||
8c7c6e34 | 306 | atomic_t refcnt; |
14797e23 | 307 | |
1f4c025b | 308 | int swappiness; |
3c11ecf4 KH |
309 | /* OOM-Killer disable */ |
310 | int oom_kill_disable; | |
a7885eb8 | 311 | |
22a668d7 KH |
312 | /* set when res.limit == memsw.limit */ |
313 | bool memsw_is_minimum; | |
314 | ||
2e72b634 KS |
315 | /* protect arrays of thresholds */ |
316 | struct mutex thresholds_lock; | |
317 | ||
318 | /* thresholds for memory usage. RCU-protected */ | |
2c488db2 | 319 | struct mem_cgroup_thresholds thresholds; |
907860ed | 320 | |
2e72b634 | 321 | /* thresholds for mem+swap usage. RCU-protected */ |
2c488db2 | 322 | struct mem_cgroup_thresholds memsw_thresholds; |
907860ed | 323 | |
9490ff27 KH |
324 | /* For oom notifier event fd */ |
325 | struct list_head oom_notify; | |
185efc0f | 326 | |
7dc74be0 DN |
327 | /* |
328 | * Should we move charges of a task when a task is moved into this | |
329 | * mem_cgroup ? And what type of charges should we move ? | |
330 | */ | |
331 | unsigned long move_charge_at_immigrate; | |
619d094b KH |
332 | /* |
333 | * set > 0 if pages under this cgroup are moving to other cgroup. | |
334 | */ | |
335 | atomic_t moving_account; | |
312734c0 KH |
336 | /* taken only while moving_account > 0 */ |
337 | spinlock_t move_lock; | |
d52aa412 | 338 | /* |
c62b1a3b | 339 | * percpu counter. |
d52aa412 | 340 | */ |
3a7951b4 | 341 | struct mem_cgroup_stat_cpu __percpu *stat; |
711d3d2c KH |
342 | /* |
343 | * used when a cpu is offlined or other synchronizations | |
344 | * See mem_cgroup_read_stat(). | |
345 | */ | |
346 | struct mem_cgroup_stat_cpu nocpu_base; | |
347 | spinlock_t pcp_counter_lock; | |
d1a4c0b3 | 348 | |
5f578161 | 349 | atomic_t dead_count; |
4bd2c1ee | 350 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) |
d1a4c0b3 GC |
351 | struct tcp_memcontrol tcp_mem; |
352 | #endif | |
2633d7a0 GC |
353 | #if defined(CONFIG_MEMCG_KMEM) |
354 | /* analogous to slab_common's slab_caches list. per-memcg */ | |
355 | struct list_head memcg_slab_caches; | |
356 | /* Not a spinlock, we can take a lot of time walking the list */ | |
357 | struct mutex slab_caches_mutex; | |
358 | /* Index in the kmem_cache->memcg_params->memcg_caches array */ | |
359 | int kmemcg_id; | |
360 | #endif | |
45cf7ebd GC |
361 | |
362 | int last_scanned_node; | |
363 | #if MAX_NUMNODES > 1 | |
364 | nodemask_t scan_nodes; | |
365 | atomic_t numainfo_events; | |
366 | atomic_t numainfo_updating; | |
367 | #endif | |
70ddf637 | 368 | |
45cf7ebd GC |
369 | /* |
370 | * Per cgroup active and inactive list, similar to the | |
371 | * per zone LRU lists. | |
372 | * | |
373 | * WARNING: This has to be the last element of the struct. Don't | |
374 | * add new fields after this point. | |
375 | */ | |
376 | struct mem_cgroup_lru_info info; | |
8cdea7c0 BS |
377 | }; |
378 | ||
45cf7ebd GC |
379 | static size_t memcg_size(void) |
380 | { | |
381 | return sizeof(struct mem_cgroup) + | |
382 | nr_node_ids * sizeof(struct mem_cgroup_per_node); | |
383 | } | |
384 | ||
510fc4e1 GC |
385 | /* internal only representation about the status of kmem accounting. */ |
386 | enum { | |
387 | KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ | |
a8964b9b | 388 | KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ |
7de37682 | 389 | KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ |
510fc4e1 GC |
390 | }; |
391 | ||
a8964b9b GC |
392 | /* We account when limit is on, but only after call sites are patched */ |
393 | #define KMEM_ACCOUNTED_MASK \ | |
394 | ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) | |
510fc4e1 GC |
395 | |
396 | #ifdef CONFIG_MEMCG_KMEM | |
397 | static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) | |
398 | { | |
399 | set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | |
400 | } | |
7de37682 GC |
401 | |
402 | static bool memcg_kmem_is_active(struct mem_cgroup *memcg) | |
403 | { | |
404 | return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); | |
405 | } | |
406 | ||
a8964b9b GC |
407 | static void memcg_kmem_set_activated(struct mem_cgroup *memcg) |
408 | { | |
409 | set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); | |
410 | } | |
411 | ||
55007d84 GC |
412 | static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) |
413 | { | |
414 | clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); | |
415 | } | |
416 | ||
7de37682 GC |
417 | static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) |
418 | { | |
419 | if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) | |
420 | set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); | |
421 | } | |
422 | ||
423 | static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) | |
424 | { | |
425 | return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, | |
426 | &memcg->kmem_account_flags); | |
427 | } | |
510fc4e1 GC |
428 | #endif |
429 | ||
7dc74be0 DN |
430 | /* Stuffs for move charges at task migration. */ |
431 | /* | |
ee5e8472 GC |
432 | * Types of charges to be moved. "move_charge_at_immitgrate" and |
433 | * "immigrate_flags" are treated as a left-shifted bitmap of these types. | |
7dc74be0 DN |
434 | */ |
435 | enum move_type { | |
4ffef5fe | 436 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
87946a72 | 437 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
7dc74be0 DN |
438 | NR_MOVE_TYPE, |
439 | }; | |
440 | ||
4ffef5fe DN |
441 | /* "mc" and its members are protected by cgroup_mutex */ |
442 | static struct move_charge_struct { | |
b1dd693e | 443 | spinlock_t lock; /* for from, to */ |
4ffef5fe DN |
444 | struct mem_cgroup *from; |
445 | struct mem_cgroup *to; | |
ee5e8472 | 446 | unsigned long immigrate_flags; |
4ffef5fe | 447 | unsigned long precharge; |
854ffa8d | 448 | unsigned long moved_charge; |
483c30b5 | 449 | unsigned long moved_swap; |
8033b97c DN |
450 | struct task_struct *moving_task; /* a task moving charges */ |
451 | wait_queue_head_t waitq; /* a waitq for other context */ | |
452 | } mc = { | |
2bd9bb20 | 453 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
8033b97c DN |
454 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
455 | }; | |
4ffef5fe | 456 | |
90254a65 DN |
457 | static bool move_anon(void) |
458 | { | |
ee5e8472 | 459 | return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); |
90254a65 DN |
460 | } |
461 | ||
87946a72 DN |
462 | static bool move_file(void) |
463 | { | |
ee5e8472 | 464 | return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); |
87946a72 DN |
465 | } |
466 | ||
4e416953 BS |
467 | /* |
468 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
469 | * limit reclaim to prevent infinite loops, if they ever occur. | |
470 | */ | |
a0db00fc KS |
471 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
472 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 | |
4e416953 | 473 | |
217bc319 KH |
474 | enum charge_type { |
475 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
41326c17 | 476 | MEM_CGROUP_CHARGE_TYPE_ANON, |
d13d1443 | 477 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
8a9478ca | 478 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
c05555b5 KH |
479 | NR_CHARGE_TYPE, |
480 | }; | |
481 | ||
8c7c6e34 | 482 | /* for encoding cft->private value on file */ |
86ae53e1 GC |
483 | enum res_type { |
484 | _MEM, | |
485 | _MEMSWAP, | |
486 | _OOM_TYPE, | |
510fc4e1 | 487 | _KMEM, |
86ae53e1 GC |
488 | }; |
489 | ||
a0db00fc KS |
490 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
491 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
8c7c6e34 | 492 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
9490ff27 KH |
493 | /* Used for OOM nofiier */ |
494 | #define OOM_CONTROL (0) | |
8c7c6e34 | 495 | |
75822b44 BS |
496 | /* |
497 | * Reclaim flags for mem_cgroup_hierarchical_reclaim | |
498 | */ | |
499 | #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 | |
500 | #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) | |
501 | #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 | |
502 | #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) | |
503 | ||
0999821b GC |
504 | /* |
505 | * The memcg_create_mutex will be held whenever a new cgroup is created. | |
506 | * As a consequence, any change that needs to protect against new child cgroups | |
507 | * appearing has to hold it as well. | |
508 | */ | |
509 | static DEFINE_MUTEX(memcg_create_mutex); | |
510 | ||
c0ff4b85 R |
511 | static void mem_cgroup_get(struct mem_cgroup *memcg); |
512 | static void mem_cgroup_put(struct mem_cgroup *memcg); | |
e1aab161 | 513 | |
b2145145 WL |
514 | static inline |
515 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) | |
516 | { | |
517 | return container_of(s, struct mem_cgroup, css); | |
518 | } | |
519 | ||
70ddf637 AV |
520 | /* Some nice accessors for the vmpressure. */ |
521 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
522 | { | |
523 | if (!memcg) | |
524 | memcg = root_mem_cgroup; | |
525 | return &memcg->vmpressure; | |
526 | } | |
527 | ||
528 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | |
529 | { | |
530 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | |
531 | } | |
532 | ||
533 | struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) | |
534 | { | |
535 | return &mem_cgroup_from_css(css)->vmpressure; | |
536 | } | |
537 | ||
7ffc0edc MH |
538 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
539 | { | |
540 | return (memcg == root_mem_cgroup); | |
541 | } | |
542 | ||
e1aab161 | 543 | /* Writing them here to avoid exposing memcg's inner layout */ |
4bd2c1ee | 544 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) |
e1aab161 | 545 | |
e1aab161 GC |
546 | void sock_update_memcg(struct sock *sk) |
547 | { | |
376be5ff | 548 | if (mem_cgroup_sockets_enabled) { |
e1aab161 | 549 | struct mem_cgroup *memcg; |
3f134619 | 550 | struct cg_proto *cg_proto; |
e1aab161 GC |
551 | |
552 | BUG_ON(!sk->sk_prot->proto_cgroup); | |
553 | ||
f3f511e1 GC |
554 | /* Socket cloning can throw us here with sk_cgrp already |
555 | * filled. It won't however, necessarily happen from | |
556 | * process context. So the test for root memcg given | |
557 | * the current task's memcg won't help us in this case. | |
558 | * | |
559 | * Respecting the original socket's memcg is a better | |
560 | * decision in this case. | |
561 | */ | |
562 | if (sk->sk_cgrp) { | |
563 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); | |
564 | mem_cgroup_get(sk->sk_cgrp->memcg); | |
565 | return; | |
566 | } | |
567 | ||
e1aab161 GC |
568 | rcu_read_lock(); |
569 | memcg = mem_cgroup_from_task(current); | |
3f134619 GC |
570 | cg_proto = sk->sk_prot->proto_cgroup(memcg); |
571 | if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { | |
e1aab161 | 572 | mem_cgroup_get(memcg); |
3f134619 | 573 | sk->sk_cgrp = cg_proto; |
e1aab161 GC |
574 | } |
575 | rcu_read_unlock(); | |
576 | } | |
577 | } | |
578 | EXPORT_SYMBOL(sock_update_memcg); | |
579 | ||
580 | void sock_release_memcg(struct sock *sk) | |
581 | { | |
376be5ff | 582 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { |
e1aab161 GC |
583 | struct mem_cgroup *memcg; |
584 | WARN_ON(!sk->sk_cgrp->memcg); | |
585 | memcg = sk->sk_cgrp->memcg; | |
586 | mem_cgroup_put(memcg); | |
587 | } | |
588 | } | |
d1a4c0b3 GC |
589 | |
590 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) | |
591 | { | |
592 | if (!memcg || mem_cgroup_is_root(memcg)) | |
593 | return NULL; | |
594 | ||
595 | return &memcg->tcp_mem.cg_proto; | |
596 | } | |
597 | EXPORT_SYMBOL(tcp_proto_cgroup); | |
e1aab161 | 598 | |
3f134619 GC |
599 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
600 | { | |
601 | if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) | |
602 | return; | |
603 | static_key_slow_dec(&memcg_socket_limit_enabled); | |
604 | } | |
605 | #else | |
606 | static void disarm_sock_keys(struct mem_cgroup *memcg) | |
607 | { | |
608 | } | |
609 | #endif | |
610 | ||
a8964b9b | 611 | #ifdef CONFIG_MEMCG_KMEM |
55007d84 GC |
612 | /* |
613 | * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. | |
614 | * There are two main reasons for not using the css_id for this: | |
615 | * 1) this works better in sparse environments, where we have a lot of memcgs, | |
616 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
617 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
618 | * 200 entry array for that. | |
619 | * | |
620 | * 2) In order not to violate the cgroup API, we would like to do all memory | |
621 | * allocation in ->create(). At that point, we haven't yet allocated the | |
622 | * css_id. Having a separate index prevents us from messing with the cgroup | |
623 | * core for this | |
624 | * | |
625 | * The current size of the caches array is stored in | |
626 | * memcg_limited_groups_array_size. It will double each time we have to | |
627 | * increase it. | |
628 | */ | |
629 | static DEFINE_IDA(kmem_limited_groups); | |
749c5415 GC |
630 | int memcg_limited_groups_array_size; |
631 | ||
55007d84 GC |
632 | /* |
633 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
634 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
635 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
636 | * tunable, but that is strictly not necessary. | |
637 | * | |
638 | * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get | |
639 | * this constant directly from cgroup, but it is understandable that this is | |
640 | * better kept as an internal representation in cgroup.c. In any case, the | |
641 | * css_id space is not getting any smaller, and we don't have to necessarily | |
642 | * increase ours as well if it increases. | |
643 | */ | |
644 | #define MEMCG_CACHES_MIN_SIZE 4 | |
645 | #define MEMCG_CACHES_MAX_SIZE 65535 | |
646 | ||
d7f25f8a GC |
647 | /* |
648 | * A lot of the calls to the cache allocation functions are expected to be | |
649 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | |
650 | * conditional to this static branch, we'll have to allow modules that does | |
651 | * kmem_cache_alloc and the such to see this symbol as well | |
652 | */ | |
a8964b9b | 653 | struct static_key memcg_kmem_enabled_key; |
d7f25f8a | 654 | EXPORT_SYMBOL(memcg_kmem_enabled_key); |
a8964b9b GC |
655 | |
656 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
657 | { | |
55007d84 | 658 | if (memcg_kmem_is_active(memcg)) { |
a8964b9b | 659 | static_key_slow_dec(&memcg_kmem_enabled_key); |
55007d84 GC |
660 | ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); |
661 | } | |
bea207c8 GC |
662 | /* |
663 | * This check can't live in kmem destruction function, | |
664 | * since the charges will outlive the cgroup | |
665 | */ | |
666 | WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); | |
a8964b9b GC |
667 | } |
668 | #else | |
669 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
670 | { | |
671 | } | |
672 | #endif /* CONFIG_MEMCG_KMEM */ | |
673 | ||
674 | static void disarm_static_keys(struct mem_cgroup *memcg) | |
675 | { | |
676 | disarm_sock_keys(memcg); | |
677 | disarm_kmem_keys(memcg); | |
678 | } | |
679 | ||
c0ff4b85 | 680 | static void drain_all_stock_async(struct mem_cgroup *memcg); |
8c7c6e34 | 681 | |
f64c3f54 | 682 | static struct mem_cgroup_per_zone * |
c0ff4b85 | 683 | mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) |
f64c3f54 | 684 | { |
45cf7ebd | 685 | VM_BUG_ON((unsigned)nid >= nr_node_ids); |
c0ff4b85 | 686 | return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; |
f64c3f54 BS |
687 | } |
688 | ||
c0ff4b85 | 689 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) |
d324236b | 690 | { |
c0ff4b85 | 691 | return &memcg->css; |
d324236b WF |
692 | } |
693 | ||
f64c3f54 | 694 | static struct mem_cgroup_per_zone * |
c0ff4b85 | 695 | page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) |
f64c3f54 | 696 | { |
97a6c37b JW |
697 | int nid = page_to_nid(page); |
698 | int zid = page_zonenum(page); | |
f64c3f54 | 699 | |
c0ff4b85 | 700 | return mem_cgroup_zoneinfo(memcg, nid, zid); |
f64c3f54 BS |
701 | } |
702 | ||
703 | static struct mem_cgroup_tree_per_zone * | |
704 | soft_limit_tree_node_zone(int nid, int zid) | |
705 | { | |
706 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
707 | } | |
708 | ||
709 | static struct mem_cgroup_tree_per_zone * | |
710 | soft_limit_tree_from_page(struct page *page) | |
711 | { | |
712 | int nid = page_to_nid(page); | |
713 | int zid = page_zonenum(page); | |
714 | ||
715 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
716 | } | |
717 | ||
718 | static void | |
c0ff4b85 | 719 | __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, |
f64c3f54 | 720 | struct mem_cgroup_per_zone *mz, |
ef8745c1 KH |
721 | struct mem_cgroup_tree_per_zone *mctz, |
722 | unsigned long long new_usage_in_excess) | |
f64c3f54 BS |
723 | { |
724 | struct rb_node **p = &mctz->rb_root.rb_node; | |
725 | struct rb_node *parent = NULL; | |
726 | struct mem_cgroup_per_zone *mz_node; | |
727 | ||
728 | if (mz->on_tree) | |
729 | return; | |
730 | ||
ef8745c1 KH |
731 | mz->usage_in_excess = new_usage_in_excess; |
732 | if (!mz->usage_in_excess) | |
733 | return; | |
f64c3f54 BS |
734 | while (*p) { |
735 | parent = *p; | |
736 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
737 | tree_node); | |
738 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
739 | p = &(*p)->rb_left; | |
740 | /* | |
741 | * We can't avoid mem cgroups that are over their soft | |
742 | * limit by the same amount | |
743 | */ | |
744 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
745 | p = &(*p)->rb_right; | |
746 | } | |
747 | rb_link_node(&mz->tree_node, parent, p); | |
748 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
749 | mz->on_tree = true; | |
4e416953 BS |
750 | } |
751 | ||
752 | static void | |
c0ff4b85 | 753 | __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
4e416953 BS |
754 | struct mem_cgroup_per_zone *mz, |
755 | struct mem_cgroup_tree_per_zone *mctz) | |
756 | { | |
757 | if (!mz->on_tree) | |
758 | return; | |
759 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
760 | mz->on_tree = false; | |
761 | } | |
762 | ||
f64c3f54 | 763 | static void |
c0ff4b85 | 764 | mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, |
f64c3f54 BS |
765 | struct mem_cgroup_per_zone *mz, |
766 | struct mem_cgroup_tree_per_zone *mctz) | |
767 | { | |
768 | spin_lock(&mctz->lock); | |
c0ff4b85 | 769 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
f64c3f54 BS |
770 | spin_unlock(&mctz->lock); |
771 | } | |
772 | ||
f64c3f54 | 773 | |
c0ff4b85 | 774 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) |
f64c3f54 | 775 | { |
ef8745c1 | 776 | unsigned long long excess; |
f64c3f54 BS |
777 | struct mem_cgroup_per_zone *mz; |
778 | struct mem_cgroup_tree_per_zone *mctz; | |
4e649152 KH |
779 | int nid = page_to_nid(page); |
780 | int zid = page_zonenum(page); | |
f64c3f54 BS |
781 | mctz = soft_limit_tree_from_page(page); |
782 | ||
783 | /* | |
4e649152 KH |
784 | * Necessary to update all ancestors when hierarchy is used. |
785 | * because their event counter is not touched. | |
f64c3f54 | 786 | */ |
c0ff4b85 R |
787 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { |
788 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); | |
789 | excess = res_counter_soft_limit_excess(&memcg->res); | |
4e649152 KH |
790 | /* |
791 | * We have to update the tree if mz is on RB-tree or | |
792 | * mem is over its softlimit. | |
793 | */ | |
ef8745c1 | 794 | if (excess || mz->on_tree) { |
4e649152 KH |
795 | spin_lock(&mctz->lock); |
796 | /* if on-tree, remove it */ | |
797 | if (mz->on_tree) | |
c0ff4b85 | 798 | __mem_cgroup_remove_exceeded(memcg, mz, mctz); |
4e649152 | 799 | /* |
ef8745c1 KH |
800 | * Insert again. mz->usage_in_excess will be updated. |
801 | * If excess is 0, no tree ops. | |
4e649152 | 802 | */ |
c0ff4b85 | 803 | __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); |
4e649152 KH |
804 | spin_unlock(&mctz->lock); |
805 | } | |
f64c3f54 BS |
806 | } |
807 | } | |
808 | ||
c0ff4b85 | 809 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) |
f64c3f54 BS |
810 | { |
811 | int node, zone; | |
812 | struct mem_cgroup_per_zone *mz; | |
813 | struct mem_cgroup_tree_per_zone *mctz; | |
814 | ||
3ed28fa1 | 815 | for_each_node(node) { |
f64c3f54 | 816 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
c0ff4b85 | 817 | mz = mem_cgroup_zoneinfo(memcg, node, zone); |
f64c3f54 | 818 | mctz = soft_limit_tree_node_zone(node, zone); |
c0ff4b85 | 819 | mem_cgroup_remove_exceeded(memcg, mz, mctz); |
f64c3f54 BS |
820 | } |
821 | } | |
822 | } | |
823 | ||
4e416953 BS |
824 | static struct mem_cgroup_per_zone * |
825 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
826 | { | |
827 | struct rb_node *rightmost = NULL; | |
26251eaf | 828 | struct mem_cgroup_per_zone *mz; |
4e416953 BS |
829 | |
830 | retry: | |
26251eaf | 831 | mz = NULL; |
4e416953 BS |
832 | rightmost = rb_last(&mctz->rb_root); |
833 | if (!rightmost) | |
834 | goto done; /* Nothing to reclaim from */ | |
835 | ||
836 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
837 | /* | |
838 | * Remove the node now but someone else can add it back, | |
839 | * we will to add it back at the end of reclaim to its correct | |
840 | * position in the tree. | |
841 | */ | |
d79154bb HD |
842 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
843 | if (!res_counter_soft_limit_excess(&mz->memcg->res) || | |
844 | !css_tryget(&mz->memcg->css)) | |
4e416953 BS |
845 | goto retry; |
846 | done: | |
847 | return mz; | |
848 | } | |
849 | ||
850 | static struct mem_cgroup_per_zone * | |
851 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
852 | { | |
853 | struct mem_cgroup_per_zone *mz; | |
854 | ||
855 | spin_lock(&mctz->lock); | |
856 | mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
857 | spin_unlock(&mctz->lock); | |
858 | return mz; | |
859 | } | |
860 | ||
711d3d2c KH |
861 | /* |
862 | * Implementation Note: reading percpu statistics for memcg. | |
863 | * | |
864 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
865 | * synchronization to implement "quick" read. There are trade-off between | |
866 | * reading cost and precision of value. Then, we may have a chance to implement | |
867 | * a periodic synchronizion of counter in memcg's counter. | |
868 | * | |
869 | * But this _read() function is used for user interface now. The user accounts | |
870 | * memory usage by memory cgroup and he _always_ requires exact value because | |
871 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
872 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
873 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
874 | * | |
875 | * If there are kernel internal actions which can make use of some not-exact | |
876 | * value, and reading all cpu value can be performance bottleneck in some | |
877 | * common workload, threashold and synchonization as vmstat[] should be | |
878 | * implemented. | |
879 | */ | |
c0ff4b85 | 880 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, |
7a159cc9 | 881 | enum mem_cgroup_stat_index idx) |
c62b1a3b | 882 | { |
7a159cc9 | 883 | long val = 0; |
c62b1a3b | 884 | int cpu; |
c62b1a3b | 885 | |
711d3d2c KH |
886 | get_online_cpus(); |
887 | for_each_online_cpu(cpu) | |
c0ff4b85 | 888 | val += per_cpu(memcg->stat->count[idx], cpu); |
711d3d2c | 889 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
890 | spin_lock(&memcg->pcp_counter_lock); |
891 | val += memcg->nocpu_base.count[idx]; | |
892 | spin_unlock(&memcg->pcp_counter_lock); | |
711d3d2c KH |
893 | #endif |
894 | put_online_cpus(); | |
c62b1a3b KH |
895 | return val; |
896 | } | |
897 | ||
c0ff4b85 | 898 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
0c3e73e8 BS |
899 | bool charge) |
900 | { | |
901 | int val = (charge) ? 1 : -1; | |
bff6bb83 | 902 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); |
0c3e73e8 BS |
903 | } |
904 | ||
c0ff4b85 | 905 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
e9f8974f JW |
906 | enum mem_cgroup_events_index idx) |
907 | { | |
908 | unsigned long val = 0; | |
909 | int cpu; | |
910 | ||
911 | for_each_online_cpu(cpu) | |
c0ff4b85 | 912 | val += per_cpu(memcg->stat->events[idx], cpu); |
e9f8974f | 913 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
914 | spin_lock(&memcg->pcp_counter_lock); |
915 | val += memcg->nocpu_base.events[idx]; | |
916 | spin_unlock(&memcg->pcp_counter_lock); | |
e9f8974f JW |
917 | #endif |
918 | return val; | |
919 | } | |
920 | ||
c0ff4b85 | 921 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
b070e65c | 922 | struct page *page, |
b2402857 | 923 | bool anon, int nr_pages) |
d52aa412 | 924 | { |
c62b1a3b KH |
925 | preempt_disable(); |
926 | ||
b2402857 KH |
927 | /* |
928 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | |
929 | * counted as CACHE even if it's on ANON LRU. | |
930 | */ | |
931 | if (anon) | |
932 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], | |
c0ff4b85 | 933 | nr_pages); |
d52aa412 | 934 | else |
b2402857 | 935 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
c0ff4b85 | 936 | nr_pages); |
55e462b0 | 937 | |
b070e65c DR |
938 | if (PageTransHuge(page)) |
939 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | |
940 | nr_pages); | |
941 | ||
e401f176 KH |
942 | /* pagein of a big page is an event. So, ignore page size */ |
943 | if (nr_pages > 0) | |
c0ff4b85 | 944 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
3751d604 | 945 | else { |
c0ff4b85 | 946 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
3751d604 KH |
947 | nr_pages = -nr_pages; /* for event */ |
948 | } | |
e401f176 | 949 | |
13114716 | 950 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
2e72b634 | 951 | |
c62b1a3b | 952 | preempt_enable(); |
6d12e2d8 KH |
953 | } |
954 | ||
bb2a0de9 | 955 | unsigned long |
4d7dcca2 | 956 | mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
074291fe KK |
957 | { |
958 | struct mem_cgroup_per_zone *mz; | |
959 | ||
960 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | |
961 | return mz->lru_size[lru]; | |
962 | } | |
963 | ||
964 | static unsigned long | |
c0ff4b85 | 965 | mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, |
bb2a0de9 | 966 | unsigned int lru_mask) |
889976db YH |
967 | { |
968 | struct mem_cgroup_per_zone *mz; | |
f156ab93 | 969 | enum lru_list lru; |
bb2a0de9 KH |
970 | unsigned long ret = 0; |
971 | ||
c0ff4b85 | 972 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
bb2a0de9 | 973 | |
f156ab93 HD |
974 | for_each_lru(lru) { |
975 | if (BIT(lru) & lru_mask) | |
976 | ret += mz->lru_size[lru]; | |
bb2a0de9 KH |
977 | } |
978 | return ret; | |
979 | } | |
980 | ||
981 | static unsigned long | |
c0ff4b85 | 982 | mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
bb2a0de9 KH |
983 | int nid, unsigned int lru_mask) |
984 | { | |
889976db YH |
985 | u64 total = 0; |
986 | int zid; | |
987 | ||
bb2a0de9 | 988 | for (zid = 0; zid < MAX_NR_ZONES; zid++) |
c0ff4b85 R |
989 | total += mem_cgroup_zone_nr_lru_pages(memcg, |
990 | nid, zid, lru_mask); | |
bb2a0de9 | 991 | |
889976db YH |
992 | return total; |
993 | } | |
bb2a0de9 | 994 | |
c0ff4b85 | 995 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
bb2a0de9 | 996 | unsigned int lru_mask) |
6d12e2d8 | 997 | { |
889976db | 998 | int nid; |
6d12e2d8 KH |
999 | u64 total = 0; |
1000 | ||
31aaea4a | 1001 | for_each_node_state(nid, N_MEMORY) |
c0ff4b85 | 1002 | total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
6d12e2d8 | 1003 | return total; |
d52aa412 KH |
1004 | } |
1005 | ||
f53d7ce3 JW |
1006 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
1007 | enum mem_cgroup_events_target target) | |
7a159cc9 JW |
1008 | { |
1009 | unsigned long val, next; | |
1010 | ||
13114716 | 1011 | val = __this_cpu_read(memcg->stat->nr_page_events); |
4799401f | 1012 | next = __this_cpu_read(memcg->stat->targets[target]); |
7a159cc9 | 1013 | /* from time_after() in jiffies.h */ |
f53d7ce3 JW |
1014 | if ((long)next - (long)val < 0) { |
1015 | switch (target) { | |
1016 | case MEM_CGROUP_TARGET_THRESH: | |
1017 | next = val + THRESHOLDS_EVENTS_TARGET; | |
1018 | break; | |
1019 | case MEM_CGROUP_TARGET_SOFTLIMIT: | |
1020 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
1021 | break; | |
1022 | case MEM_CGROUP_TARGET_NUMAINFO: | |
1023 | next = val + NUMAINFO_EVENTS_TARGET; | |
1024 | break; | |
1025 | default: | |
1026 | break; | |
1027 | } | |
1028 | __this_cpu_write(memcg->stat->targets[target], next); | |
1029 | return true; | |
7a159cc9 | 1030 | } |
f53d7ce3 | 1031 | return false; |
d2265e6f KH |
1032 | } |
1033 | ||
1034 | /* | |
1035 | * Check events in order. | |
1036 | * | |
1037 | */ | |
c0ff4b85 | 1038 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
d2265e6f | 1039 | { |
4799401f | 1040 | preempt_disable(); |
d2265e6f | 1041 | /* threshold event is triggered in finer grain than soft limit */ |
f53d7ce3 JW |
1042 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
1043 | MEM_CGROUP_TARGET_THRESH))) { | |
82b3f2a7 AM |
1044 | bool do_softlimit; |
1045 | bool do_numainfo __maybe_unused; | |
f53d7ce3 JW |
1046 | |
1047 | do_softlimit = mem_cgroup_event_ratelimit(memcg, | |
1048 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
1049 | #if MAX_NUMNODES > 1 | |
1050 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | |
1051 | MEM_CGROUP_TARGET_NUMAINFO); | |
1052 | #endif | |
1053 | preempt_enable(); | |
1054 | ||
c0ff4b85 | 1055 | mem_cgroup_threshold(memcg); |
f53d7ce3 | 1056 | if (unlikely(do_softlimit)) |
c0ff4b85 | 1057 | mem_cgroup_update_tree(memcg, page); |
453a9bf3 | 1058 | #if MAX_NUMNODES > 1 |
f53d7ce3 | 1059 | if (unlikely(do_numainfo)) |
c0ff4b85 | 1060 | atomic_inc(&memcg->numainfo_events); |
453a9bf3 | 1061 | #endif |
f53d7ce3 JW |
1062 | } else |
1063 | preempt_enable(); | |
d2265e6f KH |
1064 | } |
1065 | ||
d1a4c0b3 | 1066 | struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) |
8cdea7c0 | 1067 | { |
b2145145 WL |
1068 | return mem_cgroup_from_css( |
1069 | cgroup_subsys_state(cont, mem_cgroup_subsys_id)); | |
8cdea7c0 BS |
1070 | } |
1071 | ||
cf475ad2 | 1072 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 1073 | { |
31a78f23 BS |
1074 | /* |
1075 | * mm_update_next_owner() may clear mm->owner to NULL | |
1076 | * if it races with swapoff, page migration, etc. | |
1077 | * So this can be called with p == NULL. | |
1078 | */ | |
1079 | if (unlikely(!p)) | |
1080 | return NULL; | |
1081 | ||
b2145145 | 1082 | return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); |
78fb7466 PE |
1083 | } |
1084 | ||
a433658c | 1085 | struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) |
54595fe2 | 1086 | { |
c0ff4b85 | 1087 | struct mem_cgroup *memcg = NULL; |
0b7f569e KH |
1088 | |
1089 | if (!mm) | |
1090 | return NULL; | |
54595fe2 KH |
1091 | /* |
1092 | * Because we have no locks, mm->owner's may be being moved to other | |
1093 | * cgroup. We use css_tryget() here even if this looks | |
1094 | * pessimistic (rather than adding locks here). | |
1095 | */ | |
1096 | rcu_read_lock(); | |
1097 | do { | |
c0ff4b85 R |
1098 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1099 | if (unlikely(!memcg)) | |
54595fe2 | 1100 | break; |
c0ff4b85 | 1101 | } while (!css_tryget(&memcg->css)); |
54595fe2 | 1102 | rcu_read_unlock(); |
c0ff4b85 | 1103 | return memcg; |
54595fe2 KH |
1104 | } |
1105 | ||
16248d8f MH |
1106 | /* |
1107 | * Returns a next (in a pre-order walk) alive memcg (with elevated css | |
1108 | * ref. count) or NULL if the whole root's subtree has been visited. | |
1109 | * | |
1110 | * helper function to be used by mem_cgroup_iter | |
1111 | */ | |
1112 | static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, | |
1113 | struct mem_cgroup *last_visited) | |
1114 | { | |
1115 | struct cgroup *prev_cgroup, *next_cgroup; | |
1116 | ||
1117 | /* | |
1118 | * Root is not visited by cgroup iterators so it needs an | |
1119 | * explicit visit. | |
1120 | */ | |
1121 | if (!last_visited) | |
1122 | return root; | |
1123 | ||
1124 | prev_cgroup = (last_visited == root) ? NULL | |
1125 | : last_visited->css.cgroup; | |
1126 | skip_node: | |
1127 | next_cgroup = cgroup_next_descendant_pre( | |
1128 | prev_cgroup, root->css.cgroup); | |
1129 | ||
1130 | /* | |
1131 | * Even if we found a group we have to make sure it is | |
1132 | * alive. css && !memcg means that the groups should be | |
1133 | * skipped and we should continue the tree walk. | |
1134 | * last_visited css is safe to use because it is | |
1135 | * protected by css_get and the tree walk is rcu safe. | |
1136 | */ | |
1137 | if (next_cgroup) { | |
1138 | struct mem_cgroup *mem = mem_cgroup_from_cont( | |
1139 | next_cgroup); | |
1140 | if (css_tryget(&mem->css)) | |
1141 | return mem; | |
1142 | else { | |
1143 | prev_cgroup = next_cgroup; | |
1144 | goto skip_node; | |
1145 | } | |
1146 | } | |
1147 | ||
1148 | return NULL; | |
1149 | } | |
1150 | ||
5660048c JW |
1151 | /** |
1152 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
1153 | * @root: hierarchy root | |
1154 | * @prev: previously returned memcg, NULL on first invocation | |
1155 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
1156 | * | |
1157 | * Returns references to children of the hierarchy below @root, or | |
1158 | * @root itself, or %NULL after a full round-trip. | |
1159 | * | |
1160 | * Caller must pass the return value in @prev on subsequent | |
1161 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
1162 | * to cancel a hierarchy walk before the round-trip is complete. | |
1163 | * | |
1164 | * Reclaimers can specify a zone and a priority level in @reclaim to | |
1165 | * divide up the memcgs in the hierarchy among all concurrent | |
1166 | * reclaimers operating on the same zone and priority. | |
1167 | */ | |
1168 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, | |
1169 | struct mem_cgroup *prev, | |
1170 | struct mem_cgroup_reclaim_cookie *reclaim) | |
14067bb3 | 1171 | { |
9f3a0d09 | 1172 | struct mem_cgroup *memcg = NULL; |
542f85f9 | 1173 | struct mem_cgroup *last_visited = NULL; |
5f578161 | 1174 | unsigned long uninitialized_var(dead_count); |
711d3d2c | 1175 | |
5660048c JW |
1176 | if (mem_cgroup_disabled()) |
1177 | return NULL; | |
1178 | ||
9f3a0d09 JW |
1179 | if (!root) |
1180 | root = root_mem_cgroup; | |
7d74b06f | 1181 | |
9f3a0d09 | 1182 | if (prev && !reclaim) |
542f85f9 | 1183 | last_visited = prev; |
14067bb3 | 1184 | |
9f3a0d09 JW |
1185 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
1186 | if (prev) | |
c40046f3 | 1187 | goto out_css_put; |
9f3a0d09 JW |
1188 | return root; |
1189 | } | |
14067bb3 | 1190 | |
542f85f9 | 1191 | rcu_read_lock(); |
9f3a0d09 | 1192 | while (!memcg) { |
527a5ec9 | 1193 | struct mem_cgroup_reclaim_iter *uninitialized_var(iter); |
711d3d2c | 1194 | |
527a5ec9 JW |
1195 | if (reclaim) { |
1196 | int nid = zone_to_nid(reclaim->zone); | |
1197 | int zid = zone_idx(reclaim->zone); | |
1198 | struct mem_cgroup_per_zone *mz; | |
1199 | ||
1200 | mz = mem_cgroup_zoneinfo(root, nid, zid); | |
1201 | iter = &mz->reclaim_iter[reclaim->priority]; | |
542f85f9 MH |
1202 | last_visited = iter->last_visited; |
1203 | if (prev && reclaim->generation != iter->generation) { | |
5f578161 | 1204 | iter->last_visited = NULL; |
542f85f9 MH |
1205 | goto out_unlock; |
1206 | } | |
5f578161 MH |
1207 | |
1208 | /* | |
1209 | * If the dead_count mismatches, a destruction | |
1210 | * has happened or is happening concurrently. | |
1211 | * If the dead_count matches, a destruction | |
1212 | * might still happen concurrently, but since | |
1213 | * we checked under RCU, that destruction | |
1214 | * won't free the object until we release the | |
1215 | * RCU reader lock. Thus, the dead_count | |
1216 | * check verifies the pointer is still valid, | |
1217 | * css_tryget() verifies the cgroup pointed to | |
1218 | * is alive. | |
1219 | */ | |
1220 | dead_count = atomic_read(&root->dead_count); | |
1221 | smp_rmb(); | |
1222 | last_visited = iter->last_visited; | |
1223 | if (last_visited) { | |
1224 | if ((dead_count != iter->last_dead_count) || | |
1225 | !css_tryget(&last_visited->css)) { | |
1226 | last_visited = NULL; | |
1227 | } | |
1228 | } | |
527a5ec9 | 1229 | } |
7d74b06f | 1230 | |
16248d8f | 1231 | memcg = __mem_cgroup_iter_next(root, last_visited); |
14067bb3 | 1232 | |
527a5ec9 | 1233 | if (reclaim) { |
542f85f9 MH |
1234 | if (last_visited) |
1235 | css_put(&last_visited->css); | |
1236 | ||
19f39402 | 1237 | iter->last_visited = memcg; |
5f578161 MH |
1238 | smp_wmb(); |
1239 | iter->last_dead_count = dead_count; | |
542f85f9 | 1240 | |
19f39402 | 1241 | if (!memcg) |
527a5ec9 JW |
1242 | iter->generation++; |
1243 | else if (!prev && memcg) | |
1244 | reclaim->generation = iter->generation; | |
1245 | } | |
9f3a0d09 | 1246 | |
19f39402 | 1247 | if (prev && !memcg) |
542f85f9 | 1248 | goto out_unlock; |
9f3a0d09 | 1249 | } |
542f85f9 MH |
1250 | out_unlock: |
1251 | rcu_read_unlock(); | |
c40046f3 MH |
1252 | out_css_put: |
1253 | if (prev && prev != root) | |
1254 | css_put(&prev->css); | |
1255 | ||
9f3a0d09 | 1256 | return memcg; |
14067bb3 | 1257 | } |
7d74b06f | 1258 | |
5660048c JW |
1259 | /** |
1260 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
1261 | * @root: hierarchy root | |
1262 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
1263 | */ | |
1264 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
1265 | struct mem_cgroup *prev) | |
9f3a0d09 JW |
1266 | { |
1267 | if (!root) | |
1268 | root = root_mem_cgroup; | |
1269 | if (prev && prev != root) | |
1270 | css_put(&prev->css); | |
1271 | } | |
7d74b06f | 1272 | |
9f3a0d09 JW |
1273 | /* |
1274 | * Iteration constructs for visiting all cgroups (under a tree). If | |
1275 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
1276 | * be used for reference counting. | |
1277 | */ | |
1278 | #define for_each_mem_cgroup_tree(iter, root) \ | |
527a5ec9 | 1279 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
9f3a0d09 | 1280 | iter != NULL; \ |
527a5ec9 | 1281 | iter = mem_cgroup_iter(root, iter, NULL)) |
711d3d2c | 1282 | |
9f3a0d09 | 1283 | #define for_each_mem_cgroup(iter) \ |
527a5ec9 | 1284 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
9f3a0d09 | 1285 | iter != NULL; \ |
527a5ec9 | 1286 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
14067bb3 | 1287 | |
68ae564b | 1288 | void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) |
456f998e | 1289 | { |
c0ff4b85 | 1290 | struct mem_cgroup *memcg; |
456f998e | 1291 | |
456f998e | 1292 | rcu_read_lock(); |
c0ff4b85 R |
1293 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1294 | if (unlikely(!memcg)) | |
456f998e YH |
1295 | goto out; |
1296 | ||
1297 | switch (idx) { | |
456f998e | 1298 | case PGFAULT: |
0e574a93 JW |
1299 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); |
1300 | break; | |
1301 | case PGMAJFAULT: | |
1302 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | |
456f998e YH |
1303 | break; |
1304 | default: | |
1305 | BUG(); | |
1306 | } | |
1307 | out: | |
1308 | rcu_read_unlock(); | |
1309 | } | |
68ae564b | 1310 | EXPORT_SYMBOL(__mem_cgroup_count_vm_event); |
456f998e | 1311 | |
925b7673 JW |
1312 | /** |
1313 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | |
1314 | * @zone: zone of the wanted lruvec | |
fa9add64 | 1315 | * @memcg: memcg of the wanted lruvec |
925b7673 JW |
1316 | * |
1317 | * Returns the lru list vector holding pages for the given @zone and | |
1318 | * @mem. This can be the global zone lruvec, if the memory controller | |
1319 | * is disabled. | |
1320 | */ | |
1321 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | |
1322 | struct mem_cgroup *memcg) | |
1323 | { | |
1324 | struct mem_cgroup_per_zone *mz; | |
bea8c150 | 1325 | struct lruvec *lruvec; |
925b7673 | 1326 | |
bea8c150 HD |
1327 | if (mem_cgroup_disabled()) { |
1328 | lruvec = &zone->lruvec; | |
1329 | goto out; | |
1330 | } | |
925b7673 JW |
1331 | |
1332 | mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); | |
bea8c150 HD |
1333 | lruvec = &mz->lruvec; |
1334 | out: | |
1335 | /* | |
1336 | * Since a node can be onlined after the mem_cgroup was created, | |
1337 | * we have to be prepared to initialize lruvec->zone here; | |
1338 | * and if offlined then reonlined, we need to reinitialize it. | |
1339 | */ | |
1340 | if (unlikely(lruvec->zone != zone)) | |
1341 | lruvec->zone = zone; | |
1342 | return lruvec; | |
925b7673 JW |
1343 | } |
1344 | ||
08e552c6 KH |
1345 | /* |
1346 | * Following LRU functions are allowed to be used without PCG_LOCK. | |
1347 | * Operations are called by routine of global LRU independently from memcg. | |
1348 | * What we have to take care of here is validness of pc->mem_cgroup. | |
1349 | * | |
1350 | * Changes to pc->mem_cgroup happens when | |
1351 | * 1. charge | |
1352 | * 2. moving account | |
1353 | * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. | |
1354 | * It is added to LRU before charge. | |
1355 | * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. | |
1356 | * When moving account, the page is not on LRU. It's isolated. | |
1357 | */ | |
4f98a2fe | 1358 | |
925b7673 | 1359 | /** |
fa9add64 | 1360 | * mem_cgroup_page_lruvec - return lruvec for adding an lru page |
925b7673 | 1361 | * @page: the page |
fa9add64 | 1362 | * @zone: zone of the page |
925b7673 | 1363 | */ |
fa9add64 | 1364 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) |
08e552c6 | 1365 | { |
08e552c6 | 1366 | struct mem_cgroup_per_zone *mz; |
925b7673 JW |
1367 | struct mem_cgroup *memcg; |
1368 | struct page_cgroup *pc; | |
bea8c150 | 1369 | struct lruvec *lruvec; |
6d12e2d8 | 1370 | |
bea8c150 HD |
1371 | if (mem_cgroup_disabled()) { |
1372 | lruvec = &zone->lruvec; | |
1373 | goto out; | |
1374 | } | |
925b7673 | 1375 | |
08e552c6 | 1376 | pc = lookup_page_cgroup(page); |
38c5d72f | 1377 | memcg = pc->mem_cgroup; |
7512102c HD |
1378 | |
1379 | /* | |
fa9add64 | 1380 | * Surreptitiously switch any uncharged offlist page to root: |
7512102c HD |
1381 | * an uncharged page off lru does nothing to secure |
1382 | * its former mem_cgroup from sudden removal. | |
1383 | * | |
1384 | * Our caller holds lru_lock, and PageCgroupUsed is updated | |
1385 | * under page_cgroup lock: between them, they make all uses | |
1386 | * of pc->mem_cgroup safe. | |
1387 | */ | |
fa9add64 | 1388 | if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) |
7512102c HD |
1389 | pc->mem_cgroup = memcg = root_mem_cgroup; |
1390 | ||
925b7673 | 1391 | mz = page_cgroup_zoneinfo(memcg, page); |
bea8c150 HD |
1392 | lruvec = &mz->lruvec; |
1393 | out: | |
1394 | /* | |
1395 | * Since a node can be onlined after the mem_cgroup was created, | |
1396 | * we have to be prepared to initialize lruvec->zone here; | |
1397 | * and if offlined then reonlined, we need to reinitialize it. | |
1398 | */ | |
1399 | if (unlikely(lruvec->zone != zone)) | |
1400 | lruvec->zone = zone; | |
1401 | return lruvec; | |
08e552c6 | 1402 | } |
b69408e8 | 1403 | |
925b7673 | 1404 | /** |
fa9add64 HD |
1405 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1406 | * @lruvec: mem_cgroup per zone lru vector | |
1407 | * @lru: index of lru list the page is sitting on | |
1408 | * @nr_pages: positive when adding or negative when removing | |
925b7673 | 1409 | * |
fa9add64 HD |
1410 | * This function must be called when a page is added to or removed from an |
1411 | * lru list. | |
3f58a829 | 1412 | */ |
fa9add64 HD |
1413 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1414 | int nr_pages) | |
3f58a829 MK |
1415 | { |
1416 | struct mem_cgroup_per_zone *mz; | |
fa9add64 | 1417 | unsigned long *lru_size; |
3f58a829 MK |
1418 | |
1419 | if (mem_cgroup_disabled()) | |
1420 | return; | |
1421 | ||
fa9add64 HD |
1422 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
1423 | lru_size = mz->lru_size + lru; | |
1424 | *lru_size += nr_pages; | |
1425 | VM_BUG_ON((long)(*lru_size) < 0); | |
08e552c6 | 1426 | } |
544122e5 | 1427 | |
3e92041d | 1428 | /* |
c0ff4b85 | 1429 | * Checks whether given mem is same or in the root_mem_cgroup's |
3e92041d MH |
1430 | * hierarchy subtree |
1431 | */ | |
c3ac9a8a JW |
1432 | bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, |
1433 | struct mem_cgroup *memcg) | |
3e92041d | 1434 | { |
91c63734 JW |
1435 | if (root_memcg == memcg) |
1436 | return true; | |
3a981f48 | 1437 | if (!root_memcg->use_hierarchy || !memcg) |
91c63734 | 1438 | return false; |
c3ac9a8a JW |
1439 | return css_is_ancestor(&memcg->css, &root_memcg->css); |
1440 | } | |
1441 | ||
1442 | static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, | |
1443 | struct mem_cgroup *memcg) | |
1444 | { | |
1445 | bool ret; | |
1446 | ||
91c63734 | 1447 | rcu_read_lock(); |
c3ac9a8a | 1448 | ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); |
91c63734 JW |
1449 | rcu_read_unlock(); |
1450 | return ret; | |
3e92041d MH |
1451 | } |
1452 | ||
c0ff4b85 | 1453 | int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) |
4c4a2214 DR |
1454 | { |
1455 | int ret; | |
0b7f569e | 1456 | struct mem_cgroup *curr = NULL; |
158e0a2d | 1457 | struct task_struct *p; |
4c4a2214 | 1458 | |
158e0a2d | 1459 | p = find_lock_task_mm(task); |
de077d22 DR |
1460 | if (p) { |
1461 | curr = try_get_mem_cgroup_from_mm(p->mm); | |
1462 | task_unlock(p); | |
1463 | } else { | |
1464 | /* | |
1465 | * All threads may have already detached their mm's, but the oom | |
1466 | * killer still needs to detect if they have already been oom | |
1467 | * killed to prevent needlessly killing additional tasks. | |
1468 | */ | |
1469 | task_lock(task); | |
1470 | curr = mem_cgroup_from_task(task); | |
1471 | if (curr) | |
1472 | css_get(&curr->css); | |
1473 | task_unlock(task); | |
1474 | } | |
0b7f569e KH |
1475 | if (!curr) |
1476 | return 0; | |
d31f56db | 1477 | /* |
c0ff4b85 | 1478 | * We should check use_hierarchy of "memcg" not "curr". Because checking |
d31f56db | 1479 | * use_hierarchy of "curr" here make this function true if hierarchy is |
c0ff4b85 R |
1480 | * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* |
1481 | * hierarchy(even if use_hierarchy is disabled in "memcg"). | |
d31f56db | 1482 | */ |
c0ff4b85 | 1483 | ret = mem_cgroup_same_or_subtree(memcg, curr); |
0b7f569e | 1484 | css_put(&curr->css); |
4c4a2214 DR |
1485 | return ret; |
1486 | } | |
1487 | ||
c56d5c7d | 1488 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1489 | { |
9b272977 | 1490 | unsigned long inactive_ratio; |
14797e23 | 1491 | unsigned long inactive; |
9b272977 | 1492 | unsigned long active; |
c772be93 | 1493 | unsigned long gb; |
14797e23 | 1494 | |
4d7dcca2 HD |
1495 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1496 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); | |
14797e23 | 1497 | |
c772be93 KM |
1498 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1499 | if (gb) | |
1500 | inactive_ratio = int_sqrt(10 * gb); | |
1501 | else | |
1502 | inactive_ratio = 1; | |
1503 | ||
9b272977 | 1504 | return inactive * inactive_ratio < active; |
14797e23 KM |
1505 | } |
1506 | ||
6d61ef40 BS |
1507 | #define mem_cgroup_from_res_counter(counter, member) \ |
1508 | container_of(counter, struct mem_cgroup, member) | |
1509 | ||
19942822 | 1510 | /** |
9d11ea9f | 1511 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
dad7557e | 1512 | * @memcg: the memory cgroup |
19942822 | 1513 | * |
9d11ea9f | 1514 | * Returns the maximum amount of memory @mem can be charged with, in |
7ec99d62 | 1515 | * pages. |
19942822 | 1516 | */ |
c0ff4b85 | 1517 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
19942822 | 1518 | { |
9d11ea9f JW |
1519 | unsigned long long margin; |
1520 | ||
c0ff4b85 | 1521 | margin = res_counter_margin(&memcg->res); |
9d11ea9f | 1522 | if (do_swap_account) |
c0ff4b85 | 1523 | margin = min(margin, res_counter_margin(&memcg->memsw)); |
7ec99d62 | 1524 | return margin >> PAGE_SHIFT; |
19942822 JW |
1525 | } |
1526 | ||
1f4c025b | 1527 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) |
a7885eb8 KM |
1528 | { |
1529 | struct cgroup *cgrp = memcg->css.cgroup; | |
a7885eb8 KM |
1530 | |
1531 | /* root ? */ | |
1532 | if (cgrp->parent == NULL) | |
1533 | return vm_swappiness; | |
1534 | ||
bf1ff263 | 1535 | return memcg->swappiness; |
a7885eb8 KM |
1536 | } |
1537 | ||
619d094b KH |
1538 | /* |
1539 | * memcg->moving_account is used for checking possibility that some thread is | |
1540 | * calling move_account(). When a thread on CPU-A starts moving pages under | |
1541 | * a memcg, other threads should check memcg->moving_account under | |
1542 | * rcu_read_lock(), like this: | |
1543 | * | |
1544 | * CPU-A CPU-B | |
1545 | * rcu_read_lock() | |
1546 | * memcg->moving_account+1 if (memcg->mocing_account) | |
1547 | * take heavy locks. | |
1548 | * synchronize_rcu() update something. | |
1549 | * rcu_read_unlock() | |
1550 | * start move here. | |
1551 | */ | |
4331f7d3 KH |
1552 | |
1553 | /* for quick checking without looking up memcg */ | |
1554 | atomic_t memcg_moving __read_mostly; | |
1555 | ||
c0ff4b85 | 1556 | static void mem_cgroup_start_move(struct mem_cgroup *memcg) |
32047e2a | 1557 | { |
4331f7d3 | 1558 | atomic_inc(&memcg_moving); |
619d094b | 1559 | atomic_inc(&memcg->moving_account); |
32047e2a KH |
1560 | synchronize_rcu(); |
1561 | } | |
1562 | ||
c0ff4b85 | 1563 | static void mem_cgroup_end_move(struct mem_cgroup *memcg) |
32047e2a | 1564 | { |
619d094b KH |
1565 | /* |
1566 | * Now, mem_cgroup_clear_mc() may call this function with NULL. | |
1567 | * We check NULL in callee rather than caller. | |
1568 | */ | |
4331f7d3 KH |
1569 | if (memcg) { |
1570 | atomic_dec(&memcg_moving); | |
619d094b | 1571 | atomic_dec(&memcg->moving_account); |
4331f7d3 | 1572 | } |
32047e2a | 1573 | } |
619d094b | 1574 | |
32047e2a KH |
1575 | /* |
1576 | * 2 routines for checking "mem" is under move_account() or not. | |
1577 | * | |
13fd1dd9 AM |
1578 | * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This |
1579 | * is used for avoiding races in accounting. If true, | |
32047e2a KH |
1580 | * pc->mem_cgroup may be overwritten. |
1581 | * | |
1582 | * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or | |
1583 | * under hierarchy of moving cgroups. This is for | |
1584 | * waiting at hith-memory prressure caused by "move". | |
1585 | */ | |
1586 | ||
13fd1dd9 | 1587 | static bool mem_cgroup_stolen(struct mem_cgroup *memcg) |
32047e2a KH |
1588 | { |
1589 | VM_BUG_ON(!rcu_read_lock_held()); | |
619d094b | 1590 | return atomic_read(&memcg->moving_account) > 0; |
32047e2a | 1591 | } |
4b534334 | 1592 | |
c0ff4b85 | 1593 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
4b534334 | 1594 | { |
2bd9bb20 KH |
1595 | struct mem_cgroup *from; |
1596 | struct mem_cgroup *to; | |
4b534334 | 1597 | bool ret = false; |
2bd9bb20 KH |
1598 | /* |
1599 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1600 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1601 | */ | |
1602 | spin_lock(&mc.lock); | |
1603 | from = mc.from; | |
1604 | to = mc.to; | |
1605 | if (!from) | |
1606 | goto unlock; | |
3e92041d | 1607 | |
c0ff4b85 R |
1608 | ret = mem_cgroup_same_or_subtree(memcg, from) |
1609 | || mem_cgroup_same_or_subtree(memcg, to); | |
2bd9bb20 KH |
1610 | unlock: |
1611 | spin_unlock(&mc.lock); | |
4b534334 KH |
1612 | return ret; |
1613 | } | |
1614 | ||
c0ff4b85 | 1615 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
4b534334 KH |
1616 | { |
1617 | if (mc.moving_task && current != mc.moving_task) { | |
c0ff4b85 | 1618 | if (mem_cgroup_under_move(memcg)) { |
4b534334 KH |
1619 | DEFINE_WAIT(wait); |
1620 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1621 | /* moving charge context might have finished. */ | |
1622 | if (mc.moving_task) | |
1623 | schedule(); | |
1624 | finish_wait(&mc.waitq, &wait); | |
1625 | return true; | |
1626 | } | |
1627 | } | |
1628 | return false; | |
1629 | } | |
1630 | ||
312734c0 KH |
1631 | /* |
1632 | * Take this lock when | |
1633 | * - a code tries to modify page's memcg while it's USED. | |
1634 | * - a code tries to modify page state accounting in a memcg. | |
13fd1dd9 | 1635 | * see mem_cgroup_stolen(), too. |
312734c0 KH |
1636 | */ |
1637 | static void move_lock_mem_cgroup(struct mem_cgroup *memcg, | |
1638 | unsigned long *flags) | |
1639 | { | |
1640 | spin_lock_irqsave(&memcg->move_lock, *flags); | |
1641 | } | |
1642 | ||
1643 | static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, | |
1644 | unsigned long *flags) | |
1645 | { | |
1646 | spin_unlock_irqrestore(&memcg->move_lock, *flags); | |
1647 | } | |
1648 | ||
58cf188e | 1649 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
e222432b | 1650 | /** |
58cf188e | 1651 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. |
e222432b BS |
1652 | * @memcg: The memory cgroup that went over limit |
1653 | * @p: Task that is going to be killed | |
1654 | * | |
1655 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1656 | * enabled | |
1657 | */ | |
1658 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1659 | { | |
1660 | struct cgroup *task_cgrp; | |
1661 | struct cgroup *mem_cgrp; | |
1662 | /* | |
1663 | * Need a buffer in BSS, can't rely on allocations. The code relies | |
1664 | * on the assumption that OOM is serialized for memory controller. | |
1665 | * If this assumption is broken, revisit this code. | |
1666 | */ | |
1667 | static char memcg_name[PATH_MAX]; | |
1668 | int ret; | |
58cf188e SZ |
1669 | struct mem_cgroup *iter; |
1670 | unsigned int i; | |
e222432b | 1671 | |
58cf188e | 1672 | if (!p) |
e222432b BS |
1673 | return; |
1674 | ||
e222432b BS |
1675 | rcu_read_lock(); |
1676 | ||
1677 | mem_cgrp = memcg->css.cgroup; | |
1678 | task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); | |
1679 | ||
1680 | ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); | |
1681 | if (ret < 0) { | |
1682 | /* | |
1683 | * Unfortunately, we are unable to convert to a useful name | |
1684 | * But we'll still print out the usage information | |
1685 | */ | |
1686 | rcu_read_unlock(); | |
1687 | goto done; | |
1688 | } | |
1689 | rcu_read_unlock(); | |
1690 | ||
d045197f | 1691 | pr_info("Task in %s killed", memcg_name); |
e222432b BS |
1692 | |
1693 | rcu_read_lock(); | |
1694 | ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); | |
1695 | if (ret < 0) { | |
1696 | rcu_read_unlock(); | |
1697 | goto done; | |
1698 | } | |
1699 | rcu_read_unlock(); | |
1700 | ||
1701 | /* | |
1702 | * Continues from above, so we don't need an KERN_ level | |
1703 | */ | |
d045197f | 1704 | pr_cont(" as a result of limit of %s\n", memcg_name); |
e222432b BS |
1705 | done: |
1706 | ||
d045197f | 1707 | pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", |
e222432b BS |
1708 | res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, |
1709 | res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, | |
1710 | res_counter_read_u64(&memcg->res, RES_FAILCNT)); | |
d045197f | 1711 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", |
e222432b BS |
1712 | res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, |
1713 | res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, | |
1714 | res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); | |
d045197f | 1715 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", |
510fc4e1 GC |
1716 | res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, |
1717 | res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, | |
1718 | res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); | |
58cf188e SZ |
1719 | |
1720 | for_each_mem_cgroup_tree(iter, memcg) { | |
1721 | pr_info("Memory cgroup stats"); | |
1722 | ||
1723 | rcu_read_lock(); | |
1724 | ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); | |
1725 | if (!ret) | |
1726 | pr_cont(" for %s", memcg_name); | |
1727 | rcu_read_unlock(); | |
1728 | pr_cont(":"); | |
1729 | ||
1730 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
1731 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
1732 | continue; | |
1733 | pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], | |
1734 | K(mem_cgroup_read_stat(iter, i))); | |
1735 | } | |
1736 | ||
1737 | for (i = 0; i < NR_LRU_LISTS; i++) | |
1738 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | |
1739 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | |
1740 | ||
1741 | pr_cont("\n"); | |
1742 | } | |
e222432b BS |
1743 | } |
1744 | ||
81d39c20 KH |
1745 | /* |
1746 | * This function returns the number of memcg under hierarchy tree. Returns | |
1747 | * 1(self count) if no children. | |
1748 | */ | |
c0ff4b85 | 1749 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
81d39c20 KH |
1750 | { |
1751 | int num = 0; | |
7d74b06f KH |
1752 | struct mem_cgroup *iter; |
1753 | ||
c0ff4b85 | 1754 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 1755 | num++; |
81d39c20 KH |
1756 | return num; |
1757 | } | |
1758 | ||
a63d83f4 DR |
1759 | /* |
1760 | * Return the memory (and swap, if configured) limit for a memcg. | |
1761 | */ | |
9cbb78bb | 1762 | static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) |
a63d83f4 DR |
1763 | { |
1764 | u64 limit; | |
a63d83f4 | 1765 | |
f3e8eb70 | 1766 | limit = res_counter_read_u64(&memcg->res, RES_LIMIT); |
f3e8eb70 | 1767 | |
a63d83f4 | 1768 | /* |
9a5a8f19 | 1769 | * Do not consider swap space if we cannot swap due to swappiness |
a63d83f4 | 1770 | */ |
9a5a8f19 MH |
1771 | if (mem_cgroup_swappiness(memcg)) { |
1772 | u64 memsw; | |
1773 | ||
1774 | limit += total_swap_pages << PAGE_SHIFT; | |
1775 | memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
1776 | ||
1777 | /* | |
1778 | * If memsw is finite and limits the amount of swap space | |
1779 | * available to this memcg, return that limit. | |
1780 | */ | |
1781 | limit = min(limit, memsw); | |
1782 | } | |
1783 | ||
1784 | return limit; | |
a63d83f4 DR |
1785 | } |
1786 | ||
19965460 DR |
1787 | static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1788 | int order) | |
9cbb78bb DR |
1789 | { |
1790 | struct mem_cgroup *iter; | |
1791 | unsigned long chosen_points = 0; | |
1792 | unsigned long totalpages; | |
1793 | unsigned int points = 0; | |
1794 | struct task_struct *chosen = NULL; | |
1795 | ||
876aafbf | 1796 | /* |
465adcf1 DR |
1797 | * If current has a pending SIGKILL or is exiting, then automatically |
1798 | * select it. The goal is to allow it to allocate so that it may | |
1799 | * quickly exit and free its memory. | |
876aafbf | 1800 | */ |
465adcf1 | 1801 | if (fatal_signal_pending(current) || current->flags & PF_EXITING) { |
876aafbf DR |
1802 | set_thread_flag(TIF_MEMDIE); |
1803 | return; | |
1804 | } | |
1805 | ||
1806 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); | |
9cbb78bb DR |
1807 | totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; |
1808 | for_each_mem_cgroup_tree(iter, memcg) { | |
1809 | struct cgroup *cgroup = iter->css.cgroup; | |
1810 | struct cgroup_iter it; | |
1811 | struct task_struct *task; | |
1812 | ||
1813 | cgroup_iter_start(cgroup, &it); | |
1814 | while ((task = cgroup_iter_next(cgroup, &it))) { | |
1815 | switch (oom_scan_process_thread(task, totalpages, NULL, | |
1816 | false)) { | |
1817 | case OOM_SCAN_SELECT: | |
1818 | if (chosen) | |
1819 | put_task_struct(chosen); | |
1820 | chosen = task; | |
1821 | chosen_points = ULONG_MAX; | |
1822 | get_task_struct(chosen); | |
1823 | /* fall through */ | |
1824 | case OOM_SCAN_CONTINUE: | |
1825 | continue; | |
1826 | case OOM_SCAN_ABORT: | |
1827 | cgroup_iter_end(cgroup, &it); | |
1828 | mem_cgroup_iter_break(memcg, iter); | |
1829 | if (chosen) | |
1830 | put_task_struct(chosen); | |
1831 | return; | |
1832 | case OOM_SCAN_OK: | |
1833 | break; | |
1834 | }; | |
1835 | points = oom_badness(task, memcg, NULL, totalpages); | |
1836 | if (points > chosen_points) { | |
1837 | if (chosen) | |
1838 | put_task_struct(chosen); | |
1839 | chosen = task; | |
1840 | chosen_points = points; | |
1841 | get_task_struct(chosen); | |
1842 | } | |
1843 | } | |
1844 | cgroup_iter_end(cgroup, &it); | |
1845 | } | |
1846 | ||
1847 | if (!chosen) | |
1848 | return; | |
1849 | points = chosen_points * 1000 / totalpages; | |
9cbb78bb DR |
1850 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, |
1851 | NULL, "Memory cgroup out of memory"); | |
9cbb78bb DR |
1852 | } |
1853 | ||
5660048c JW |
1854 | static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, |
1855 | gfp_t gfp_mask, | |
1856 | unsigned long flags) | |
1857 | { | |
1858 | unsigned long total = 0; | |
1859 | bool noswap = false; | |
1860 | int loop; | |
1861 | ||
1862 | if (flags & MEM_CGROUP_RECLAIM_NOSWAP) | |
1863 | noswap = true; | |
1864 | if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) | |
1865 | noswap = true; | |
1866 | ||
1867 | for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { | |
1868 | if (loop) | |
1869 | drain_all_stock_async(memcg); | |
1870 | total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); | |
1871 | /* | |
1872 | * Allow limit shrinkers, which are triggered directly | |
1873 | * by userspace, to catch signals and stop reclaim | |
1874 | * after minimal progress, regardless of the margin. | |
1875 | */ | |
1876 | if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) | |
1877 | break; | |
1878 | if (mem_cgroup_margin(memcg)) | |
1879 | break; | |
1880 | /* | |
1881 | * If nothing was reclaimed after two attempts, there | |
1882 | * may be no reclaimable pages in this hierarchy. | |
1883 | */ | |
1884 | if (loop && !total) | |
1885 | break; | |
1886 | } | |
1887 | return total; | |
1888 | } | |
1889 | ||
4d0c066d KH |
1890 | /** |
1891 | * test_mem_cgroup_node_reclaimable | |
dad7557e | 1892 | * @memcg: the target memcg |
4d0c066d KH |
1893 | * @nid: the node ID to be checked. |
1894 | * @noswap : specify true here if the user wants flle only information. | |
1895 | * | |
1896 | * This function returns whether the specified memcg contains any | |
1897 | * reclaimable pages on a node. Returns true if there are any reclaimable | |
1898 | * pages in the node. | |
1899 | */ | |
c0ff4b85 | 1900 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
4d0c066d KH |
1901 | int nid, bool noswap) |
1902 | { | |
c0ff4b85 | 1903 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
4d0c066d KH |
1904 | return true; |
1905 | if (noswap || !total_swap_pages) | |
1906 | return false; | |
c0ff4b85 | 1907 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
4d0c066d KH |
1908 | return true; |
1909 | return false; | |
1910 | ||
1911 | } | |
889976db YH |
1912 | #if MAX_NUMNODES > 1 |
1913 | ||
1914 | /* | |
1915 | * Always updating the nodemask is not very good - even if we have an empty | |
1916 | * list or the wrong list here, we can start from some node and traverse all | |
1917 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | |
1918 | * | |
1919 | */ | |
c0ff4b85 | 1920 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
889976db YH |
1921 | { |
1922 | int nid; | |
453a9bf3 KH |
1923 | /* |
1924 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | |
1925 | * pagein/pageout changes since the last update. | |
1926 | */ | |
c0ff4b85 | 1927 | if (!atomic_read(&memcg->numainfo_events)) |
453a9bf3 | 1928 | return; |
c0ff4b85 | 1929 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
889976db YH |
1930 | return; |
1931 | ||
889976db | 1932 | /* make a nodemask where this memcg uses memory from */ |
31aaea4a | 1933 | memcg->scan_nodes = node_states[N_MEMORY]; |
889976db | 1934 | |
31aaea4a | 1935 | for_each_node_mask(nid, node_states[N_MEMORY]) { |
889976db | 1936 | |
c0ff4b85 R |
1937 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1938 | node_clear(nid, memcg->scan_nodes); | |
889976db | 1939 | } |
453a9bf3 | 1940 | |
c0ff4b85 R |
1941 | atomic_set(&memcg->numainfo_events, 0); |
1942 | atomic_set(&memcg->numainfo_updating, 0); | |
889976db YH |
1943 | } |
1944 | ||
1945 | /* | |
1946 | * Selecting a node where we start reclaim from. Because what we need is just | |
1947 | * reducing usage counter, start from anywhere is O,K. Considering | |
1948 | * memory reclaim from current node, there are pros. and cons. | |
1949 | * | |
1950 | * Freeing memory from current node means freeing memory from a node which | |
1951 | * we'll use or we've used. So, it may make LRU bad. And if several threads | |
1952 | * hit limits, it will see a contention on a node. But freeing from remote | |
1953 | * node means more costs for memory reclaim because of memory latency. | |
1954 | * | |
1955 | * Now, we use round-robin. Better algorithm is welcomed. | |
1956 | */ | |
c0ff4b85 | 1957 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1958 | { |
1959 | int node; | |
1960 | ||
c0ff4b85 R |
1961 | mem_cgroup_may_update_nodemask(memcg); |
1962 | node = memcg->last_scanned_node; | |
889976db | 1963 | |
c0ff4b85 | 1964 | node = next_node(node, memcg->scan_nodes); |
889976db | 1965 | if (node == MAX_NUMNODES) |
c0ff4b85 | 1966 | node = first_node(memcg->scan_nodes); |
889976db YH |
1967 | /* |
1968 | * We call this when we hit limit, not when pages are added to LRU. | |
1969 | * No LRU may hold pages because all pages are UNEVICTABLE or | |
1970 | * memcg is too small and all pages are not on LRU. In that case, | |
1971 | * we use curret node. | |
1972 | */ | |
1973 | if (unlikely(node == MAX_NUMNODES)) | |
1974 | node = numa_node_id(); | |
1975 | ||
c0ff4b85 | 1976 | memcg->last_scanned_node = node; |
889976db YH |
1977 | return node; |
1978 | } | |
1979 | ||
4d0c066d KH |
1980 | /* |
1981 | * Check all nodes whether it contains reclaimable pages or not. | |
1982 | * For quick scan, we make use of scan_nodes. This will allow us to skip | |
1983 | * unused nodes. But scan_nodes is lazily updated and may not cotain | |
1984 | * enough new information. We need to do double check. | |
1985 | */ | |
6bbda35c | 1986 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
4d0c066d KH |
1987 | { |
1988 | int nid; | |
1989 | ||
1990 | /* | |
1991 | * quick check...making use of scan_node. | |
1992 | * We can skip unused nodes. | |
1993 | */ | |
c0ff4b85 R |
1994 | if (!nodes_empty(memcg->scan_nodes)) { |
1995 | for (nid = first_node(memcg->scan_nodes); | |
4d0c066d | 1996 | nid < MAX_NUMNODES; |
c0ff4b85 | 1997 | nid = next_node(nid, memcg->scan_nodes)) { |
4d0c066d | 1998 | |
c0ff4b85 | 1999 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
4d0c066d KH |
2000 | return true; |
2001 | } | |
2002 | } | |
2003 | /* | |
2004 | * Check rest of nodes. | |
2005 | */ | |
31aaea4a | 2006 | for_each_node_state(nid, N_MEMORY) { |
c0ff4b85 | 2007 | if (node_isset(nid, memcg->scan_nodes)) |
4d0c066d | 2008 | continue; |
c0ff4b85 | 2009 | if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) |
4d0c066d KH |
2010 | return true; |
2011 | } | |
2012 | return false; | |
2013 | } | |
2014 | ||
889976db | 2015 | #else |
c0ff4b85 | 2016 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
2017 | { |
2018 | return 0; | |
2019 | } | |
4d0c066d | 2020 | |
6bbda35c | 2021 | static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) |
4d0c066d | 2022 | { |
c0ff4b85 | 2023 | return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); |
4d0c066d | 2024 | } |
889976db YH |
2025 | #endif |
2026 | ||
5660048c JW |
2027 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
2028 | struct zone *zone, | |
2029 | gfp_t gfp_mask, | |
2030 | unsigned long *total_scanned) | |
6d61ef40 | 2031 | { |
9f3a0d09 | 2032 | struct mem_cgroup *victim = NULL; |
5660048c | 2033 | int total = 0; |
04046e1a | 2034 | int loop = 0; |
9d11ea9f | 2035 | unsigned long excess; |
185efc0f | 2036 | unsigned long nr_scanned; |
527a5ec9 JW |
2037 | struct mem_cgroup_reclaim_cookie reclaim = { |
2038 | .zone = zone, | |
2039 | .priority = 0, | |
2040 | }; | |
9d11ea9f | 2041 | |
c0ff4b85 | 2042 | excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; |
04046e1a | 2043 | |
4e416953 | 2044 | while (1) { |
527a5ec9 | 2045 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); |
9f3a0d09 | 2046 | if (!victim) { |
04046e1a | 2047 | loop++; |
4e416953 BS |
2048 | if (loop >= 2) { |
2049 | /* | |
2050 | * If we have not been able to reclaim | |
2051 | * anything, it might because there are | |
2052 | * no reclaimable pages under this hierarchy | |
2053 | */ | |
5660048c | 2054 | if (!total) |
4e416953 | 2055 | break; |
4e416953 | 2056 | /* |
25985edc | 2057 | * We want to do more targeted reclaim. |
4e416953 BS |
2058 | * excess >> 2 is not to excessive so as to |
2059 | * reclaim too much, nor too less that we keep | |
2060 | * coming back to reclaim from this cgroup | |
2061 | */ | |
2062 | if (total >= (excess >> 2) || | |
9f3a0d09 | 2063 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) |
4e416953 | 2064 | break; |
4e416953 | 2065 | } |
9f3a0d09 | 2066 | continue; |
4e416953 | 2067 | } |
5660048c | 2068 | if (!mem_cgroup_reclaimable(victim, false)) |
6d61ef40 | 2069 | continue; |
5660048c JW |
2070 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, |
2071 | zone, &nr_scanned); | |
2072 | *total_scanned += nr_scanned; | |
2073 | if (!res_counter_soft_limit_excess(&root_memcg->res)) | |
9f3a0d09 | 2074 | break; |
6d61ef40 | 2075 | } |
9f3a0d09 | 2076 | mem_cgroup_iter_break(root_memcg, victim); |
04046e1a | 2077 | return total; |
6d61ef40 BS |
2078 | } |
2079 | ||
867578cb KH |
2080 | /* |
2081 | * Check OOM-Killer is already running under our hierarchy. | |
2082 | * If someone is running, return false. | |
1af8efe9 | 2083 | * Has to be called with memcg_oom_lock |
867578cb | 2084 | */ |
c0ff4b85 | 2085 | static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) |
867578cb | 2086 | { |
79dfdacc | 2087 | struct mem_cgroup *iter, *failed = NULL; |
a636b327 | 2088 | |
9f3a0d09 | 2089 | for_each_mem_cgroup_tree(iter, memcg) { |
23751be0 | 2090 | if (iter->oom_lock) { |
79dfdacc MH |
2091 | /* |
2092 | * this subtree of our hierarchy is already locked | |
2093 | * so we cannot give a lock. | |
2094 | */ | |
79dfdacc | 2095 | failed = iter; |
9f3a0d09 JW |
2096 | mem_cgroup_iter_break(memcg, iter); |
2097 | break; | |
23751be0 JW |
2098 | } else |
2099 | iter->oom_lock = true; | |
7d74b06f | 2100 | } |
867578cb | 2101 | |
79dfdacc | 2102 | if (!failed) |
23751be0 | 2103 | return true; |
79dfdacc MH |
2104 | |
2105 | /* | |
2106 | * OK, we failed to lock the whole subtree so we have to clean up | |
2107 | * what we set up to the failing subtree | |
2108 | */ | |
9f3a0d09 | 2109 | for_each_mem_cgroup_tree(iter, memcg) { |
79dfdacc | 2110 | if (iter == failed) { |
9f3a0d09 JW |
2111 | mem_cgroup_iter_break(memcg, iter); |
2112 | break; | |
79dfdacc MH |
2113 | } |
2114 | iter->oom_lock = false; | |
2115 | } | |
23751be0 | 2116 | return false; |
a636b327 | 2117 | } |
0b7f569e | 2118 | |
79dfdacc | 2119 | /* |
1af8efe9 | 2120 | * Has to be called with memcg_oom_lock |
79dfdacc | 2121 | */ |
c0ff4b85 | 2122 | static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
0b7f569e | 2123 | { |
7d74b06f KH |
2124 | struct mem_cgroup *iter; |
2125 | ||
c0ff4b85 | 2126 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc MH |
2127 | iter->oom_lock = false; |
2128 | return 0; | |
2129 | } | |
2130 | ||
c0ff4b85 | 2131 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
2132 | { |
2133 | struct mem_cgroup *iter; | |
2134 | ||
c0ff4b85 | 2135 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc MH |
2136 | atomic_inc(&iter->under_oom); |
2137 | } | |
2138 | ||
c0ff4b85 | 2139 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
2140 | { |
2141 | struct mem_cgroup *iter; | |
2142 | ||
867578cb KH |
2143 | /* |
2144 | * When a new child is created while the hierarchy is under oom, | |
2145 | * mem_cgroup_oom_lock() may not be called. We have to use | |
2146 | * atomic_add_unless() here. | |
2147 | */ | |
c0ff4b85 | 2148 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc | 2149 | atomic_add_unless(&iter->under_oom, -1, 0); |
0b7f569e KH |
2150 | } |
2151 | ||
1af8efe9 | 2152 | static DEFINE_SPINLOCK(memcg_oom_lock); |
867578cb KH |
2153 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
2154 | ||
dc98df5a | 2155 | struct oom_wait_info { |
d79154bb | 2156 | struct mem_cgroup *memcg; |
dc98df5a KH |
2157 | wait_queue_t wait; |
2158 | }; | |
2159 | ||
2160 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
2161 | unsigned mode, int sync, void *arg) | |
2162 | { | |
d79154bb HD |
2163 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
2164 | struct mem_cgroup *oom_wait_memcg; | |
dc98df5a KH |
2165 | struct oom_wait_info *oom_wait_info; |
2166 | ||
2167 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
d79154bb | 2168 | oom_wait_memcg = oom_wait_info->memcg; |
dc98df5a | 2169 | |
dc98df5a | 2170 | /* |
d79154bb | 2171 | * Both of oom_wait_info->memcg and wake_memcg are stable under us. |
dc98df5a KH |
2172 | * Then we can use css_is_ancestor without taking care of RCU. |
2173 | */ | |
c0ff4b85 R |
2174 | if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) |
2175 | && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) | |
dc98df5a | 2176 | return 0; |
dc98df5a KH |
2177 | return autoremove_wake_function(wait, mode, sync, arg); |
2178 | } | |
2179 | ||
c0ff4b85 | 2180 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) |
dc98df5a | 2181 | { |
c0ff4b85 R |
2182 | /* for filtering, pass "memcg" as argument. */ |
2183 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | |
dc98df5a KH |
2184 | } |
2185 | ||
c0ff4b85 | 2186 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
3c11ecf4 | 2187 | { |
c0ff4b85 R |
2188 | if (memcg && atomic_read(&memcg->under_oom)) |
2189 | memcg_wakeup_oom(memcg); | |
3c11ecf4 KH |
2190 | } |
2191 | ||
867578cb KH |
2192 | /* |
2193 | * try to call OOM killer. returns false if we should exit memory-reclaim loop. | |
2194 | */ | |
6bbda35c KS |
2195 | static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, |
2196 | int order) | |
0b7f569e | 2197 | { |
dc98df5a | 2198 | struct oom_wait_info owait; |
3c11ecf4 | 2199 | bool locked, need_to_kill; |
867578cb | 2200 | |
d79154bb | 2201 | owait.memcg = memcg; |
dc98df5a KH |
2202 | owait.wait.flags = 0; |
2203 | owait.wait.func = memcg_oom_wake_function; | |
2204 | owait.wait.private = current; | |
2205 | INIT_LIST_HEAD(&owait.wait.task_list); | |
3c11ecf4 | 2206 | need_to_kill = true; |
c0ff4b85 | 2207 | mem_cgroup_mark_under_oom(memcg); |
79dfdacc | 2208 | |
c0ff4b85 | 2209 | /* At first, try to OOM lock hierarchy under memcg.*/ |
1af8efe9 | 2210 | spin_lock(&memcg_oom_lock); |
c0ff4b85 | 2211 | locked = mem_cgroup_oom_lock(memcg); |
867578cb KH |
2212 | /* |
2213 | * Even if signal_pending(), we can't quit charge() loop without | |
2214 | * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL | |
2215 | * under OOM is always welcomed, use TASK_KILLABLE here. | |
2216 | */ | |
3c11ecf4 | 2217 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
c0ff4b85 | 2218 | if (!locked || memcg->oom_kill_disable) |
3c11ecf4 KH |
2219 | need_to_kill = false; |
2220 | if (locked) | |
c0ff4b85 | 2221 | mem_cgroup_oom_notify(memcg); |
1af8efe9 | 2222 | spin_unlock(&memcg_oom_lock); |
867578cb | 2223 | |
3c11ecf4 KH |
2224 | if (need_to_kill) { |
2225 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
e845e199 | 2226 | mem_cgroup_out_of_memory(memcg, mask, order); |
3c11ecf4 | 2227 | } else { |
867578cb | 2228 | schedule(); |
dc98df5a | 2229 | finish_wait(&memcg_oom_waitq, &owait.wait); |
867578cb | 2230 | } |
1af8efe9 | 2231 | spin_lock(&memcg_oom_lock); |
79dfdacc | 2232 | if (locked) |
c0ff4b85 R |
2233 | mem_cgroup_oom_unlock(memcg); |
2234 | memcg_wakeup_oom(memcg); | |
1af8efe9 | 2235 | spin_unlock(&memcg_oom_lock); |
867578cb | 2236 | |
c0ff4b85 | 2237 | mem_cgroup_unmark_under_oom(memcg); |
79dfdacc | 2238 | |
867578cb KH |
2239 | if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) |
2240 | return false; | |
2241 | /* Give chance to dying process */ | |
715a5ee8 | 2242 | schedule_timeout_uninterruptible(1); |
867578cb | 2243 | return true; |
0b7f569e KH |
2244 | } |
2245 | ||
d69b042f BS |
2246 | /* |
2247 | * Currently used to update mapped file statistics, but the routine can be | |
2248 | * generalized to update other statistics as well. | |
32047e2a KH |
2249 | * |
2250 | * Notes: Race condition | |
2251 | * | |
2252 | * We usually use page_cgroup_lock() for accessing page_cgroup member but | |
2253 | * it tends to be costly. But considering some conditions, we doesn't need | |
2254 | * to do so _always_. | |
2255 | * | |
2256 | * Considering "charge", lock_page_cgroup() is not required because all | |
2257 | * file-stat operations happen after a page is attached to radix-tree. There | |
2258 | * are no race with "charge". | |
2259 | * | |
2260 | * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup | |
2261 | * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even | |
2262 | * if there are race with "uncharge". Statistics itself is properly handled | |
2263 | * by flags. | |
2264 | * | |
2265 | * Considering "move", this is an only case we see a race. To make the race | |
619d094b KH |
2266 | * small, we check mm->moving_account and detect there are possibility of race |
2267 | * If there is, we take a lock. | |
d69b042f | 2268 | */ |
26174efd | 2269 | |
89c06bd5 KH |
2270 | void __mem_cgroup_begin_update_page_stat(struct page *page, |
2271 | bool *locked, unsigned long *flags) | |
2272 | { | |
2273 | struct mem_cgroup *memcg; | |
2274 | struct page_cgroup *pc; | |
2275 | ||
2276 | pc = lookup_page_cgroup(page); | |
2277 | again: | |
2278 | memcg = pc->mem_cgroup; | |
2279 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | |
2280 | return; | |
2281 | /* | |
2282 | * If this memory cgroup is not under account moving, we don't | |
da92c47d | 2283 | * need to take move_lock_mem_cgroup(). Because we already hold |
89c06bd5 | 2284 | * rcu_read_lock(), any calls to move_account will be delayed until |
13fd1dd9 | 2285 | * rcu_read_unlock() if mem_cgroup_stolen() == true. |
89c06bd5 | 2286 | */ |
13fd1dd9 | 2287 | if (!mem_cgroup_stolen(memcg)) |
89c06bd5 KH |
2288 | return; |
2289 | ||
2290 | move_lock_mem_cgroup(memcg, flags); | |
2291 | if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { | |
2292 | move_unlock_mem_cgroup(memcg, flags); | |
2293 | goto again; | |
2294 | } | |
2295 | *locked = true; | |
2296 | } | |
2297 | ||
2298 | void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) | |
2299 | { | |
2300 | struct page_cgroup *pc = lookup_page_cgroup(page); | |
2301 | ||
2302 | /* | |
2303 | * It's guaranteed that pc->mem_cgroup never changes while | |
2304 | * lock is held because a routine modifies pc->mem_cgroup | |
da92c47d | 2305 | * should take move_lock_mem_cgroup(). |
89c06bd5 KH |
2306 | */ |
2307 | move_unlock_mem_cgroup(pc->mem_cgroup, flags); | |
2308 | } | |
2309 | ||
2a7106f2 GT |
2310 | void mem_cgroup_update_page_stat(struct page *page, |
2311 | enum mem_cgroup_page_stat_item idx, int val) | |
d69b042f | 2312 | { |
c0ff4b85 | 2313 | struct mem_cgroup *memcg; |
32047e2a | 2314 | struct page_cgroup *pc = lookup_page_cgroup(page); |
dbd4ea78 | 2315 | unsigned long uninitialized_var(flags); |
d69b042f | 2316 | |
cfa44946 | 2317 | if (mem_cgroup_disabled()) |
d69b042f | 2318 | return; |
89c06bd5 | 2319 | |
c0ff4b85 R |
2320 | memcg = pc->mem_cgroup; |
2321 | if (unlikely(!memcg || !PageCgroupUsed(pc))) | |
89c06bd5 | 2322 | return; |
26174efd | 2323 | |
26174efd | 2324 | switch (idx) { |
2a7106f2 | 2325 | case MEMCG_NR_FILE_MAPPED: |
2a7106f2 | 2326 | idx = MEM_CGROUP_STAT_FILE_MAPPED; |
26174efd KH |
2327 | break; |
2328 | default: | |
2329 | BUG(); | |
8725d541 | 2330 | } |
d69b042f | 2331 | |
c0ff4b85 | 2332 | this_cpu_add(memcg->stat->count[idx], val); |
d69b042f | 2333 | } |
26174efd | 2334 | |
cdec2e42 KH |
2335 | /* |
2336 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
2337 | * TODO: maybe necessary to use big numbers in big irons. | |
2338 | */ | |
7ec99d62 | 2339 | #define CHARGE_BATCH 32U |
cdec2e42 KH |
2340 | struct memcg_stock_pcp { |
2341 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
11c9ea4e | 2342 | unsigned int nr_pages; |
cdec2e42 | 2343 | struct work_struct work; |
26fe6168 | 2344 | unsigned long flags; |
a0db00fc | 2345 | #define FLUSHING_CACHED_CHARGE 0 |
cdec2e42 KH |
2346 | }; |
2347 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
9f50fad6 | 2348 | static DEFINE_MUTEX(percpu_charge_mutex); |
cdec2e42 | 2349 | |
a0956d54 SS |
2350 | /** |
2351 | * consume_stock: Try to consume stocked charge on this cpu. | |
2352 | * @memcg: memcg to consume from. | |
2353 | * @nr_pages: how many pages to charge. | |
2354 | * | |
2355 | * The charges will only happen if @memcg matches the current cpu's memcg | |
2356 | * stock, and at least @nr_pages are available in that stock. Failure to | |
2357 | * service an allocation will refill the stock. | |
2358 | * | |
2359 | * returns true if successful, false otherwise. | |
cdec2e42 | 2360 | */ |
a0956d54 | 2361 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2362 | { |
2363 | struct memcg_stock_pcp *stock; | |
2364 | bool ret = true; | |
2365 | ||
a0956d54 SS |
2366 | if (nr_pages > CHARGE_BATCH) |
2367 | return false; | |
2368 | ||
cdec2e42 | 2369 | stock = &get_cpu_var(memcg_stock); |
a0956d54 SS |
2370 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) |
2371 | stock->nr_pages -= nr_pages; | |
cdec2e42 KH |
2372 | else /* need to call res_counter_charge */ |
2373 | ret = false; | |
2374 | put_cpu_var(memcg_stock); | |
2375 | return ret; | |
2376 | } | |
2377 | ||
2378 | /* | |
2379 | * Returns stocks cached in percpu to res_counter and reset cached information. | |
2380 | */ | |
2381 | static void drain_stock(struct memcg_stock_pcp *stock) | |
2382 | { | |
2383 | struct mem_cgroup *old = stock->cached; | |
2384 | ||
11c9ea4e JW |
2385 | if (stock->nr_pages) { |
2386 | unsigned long bytes = stock->nr_pages * PAGE_SIZE; | |
2387 | ||
2388 | res_counter_uncharge(&old->res, bytes); | |
cdec2e42 | 2389 | if (do_swap_account) |
11c9ea4e JW |
2390 | res_counter_uncharge(&old->memsw, bytes); |
2391 | stock->nr_pages = 0; | |
cdec2e42 KH |
2392 | } |
2393 | stock->cached = NULL; | |
cdec2e42 KH |
2394 | } |
2395 | ||
2396 | /* | |
2397 | * This must be called under preempt disabled or must be called by | |
2398 | * a thread which is pinned to local cpu. | |
2399 | */ | |
2400 | static void drain_local_stock(struct work_struct *dummy) | |
2401 | { | |
2402 | struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); | |
2403 | drain_stock(stock); | |
26fe6168 | 2404 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
cdec2e42 KH |
2405 | } |
2406 | ||
e4777496 MH |
2407 | static void __init memcg_stock_init(void) |
2408 | { | |
2409 | int cpu; | |
2410 | ||
2411 | for_each_possible_cpu(cpu) { | |
2412 | struct memcg_stock_pcp *stock = | |
2413 | &per_cpu(memcg_stock, cpu); | |
2414 | INIT_WORK(&stock->work, drain_local_stock); | |
2415 | } | |
2416 | } | |
2417 | ||
cdec2e42 KH |
2418 | /* |
2419 | * Cache charges(val) which is from res_counter, to local per_cpu area. | |
320cc51d | 2420 | * This will be consumed by consume_stock() function, later. |
cdec2e42 | 2421 | */ |
c0ff4b85 | 2422 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2423 | { |
2424 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
2425 | ||
c0ff4b85 | 2426 | if (stock->cached != memcg) { /* reset if necessary */ |
cdec2e42 | 2427 | drain_stock(stock); |
c0ff4b85 | 2428 | stock->cached = memcg; |
cdec2e42 | 2429 | } |
11c9ea4e | 2430 | stock->nr_pages += nr_pages; |
cdec2e42 KH |
2431 | put_cpu_var(memcg_stock); |
2432 | } | |
2433 | ||
2434 | /* | |
c0ff4b85 | 2435 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
d38144b7 MH |
2436 | * of the hierarchy under it. sync flag says whether we should block |
2437 | * until the work is done. | |
cdec2e42 | 2438 | */ |
c0ff4b85 | 2439 | static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) |
cdec2e42 | 2440 | { |
26fe6168 | 2441 | int cpu, curcpu; |
d38144b7 | 2442 | |
cdec2e42 | 2443 | /* Notify other cpus that system-wide "drain" is running */ |
cdec2e42 | 2444 | get_online_cpus(); |
5af12d0e | 2445 | curcpu = get_cpu(); |
cdec2e42 KH |
2446 | for_each_online_cpu(cpu) { |
2447 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
c0ff4b85 | 2448 | struct mem_cgroup *memcg; |
26fe6168 | 2449 | |
c0ff4b85 R |
2450 | memcg = stock->cached; |
2451 | if (!memcg || !stock->nr_pages) | |
26fe6168 | 2452 | continue; |
c0ff4b85 | 2453 | if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) |
3e92041d | 2454 | continue; |
d1a05b69 MH |
2455 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
2456 | if (cpu == curcpu) | |
2457 | drain_local_stock(&stock->work); | |
2458 | else | |
2459 | schedule_work_on(cpu, &stock->work); | |
2460 | } | |
cdec2e42 | 2461 | } |
5af12d0e | 2462 | put_cpu(); |
d38144b7 MH |
2463 | |
2464 | if (!sync) | |
2465 | goto out; | |
2466 | ||
2467 | for_each_online_cpu(cpu) { | |
2468 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
9f50fad6 | 2469 | if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) |
d38144b7 MH |
2470 | flush_work(&stock->work); |
2471 | } | |
2472 | out: | |
cdec2e42 | 2473 | put_online_cpus(); |
d38144b7 MH |
2474 | } |
2475 | ||
2476 | /* | |
2477 | * Tries to drain stocked charges in other cpus. This function is asynchronous | |
2478 | * and just put a work per cpu for draining localy on each cpu. Caller can | |
2479 | * expects some charges will be back to res_counter later but cannot wait for | |
2480 | * it. | |
2481 | */ | |
c0ff4b85 | 2482 | static void drain_all_stock_async(struct mem_cgroup *root_memcg) |
d38144b7 | 2483 | { |
9f50fad6 MH |
2484 | /* |
2485 | * If someone calls draining, avoid adding more kworker runs. | |
2486 | */ | |
2487 | if (!mutex_trylock(&percpu_charge_mutex)) | |
2488 | return; | |
c0ff4b85 | 2489 | drain_all_stock(root_memcg, false); |
9f50fad6 | 2490 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2491 | } |
2492 | ||
2493 | /* This is a synchronous drain interface. */ | |
c0ff4b85 | 2494 | static void drain_all_stock_sync(struct mem_cgroup *root_memcg) |
cdec2e42 KH |
2495 | { |
2496 | /* called when force_empty is called */ | |
9f50fad6 | 2497 | mutex_lock(&percpu_charge_mutex); |
c0ff4b85 | 2498 | drain_all_stock(root_memcg, true); |
9f50fad6 | 2499 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2500 | } |
2501 | ||
711d3d2c KH |
2502 | /* |
2503 | * This function drains percpu counter value from DEAD cpu and | |
2504 | * move it to local cpu. Note that this function can be preempted. | |
2505 | */ | |
c0ff4b85 | 2506 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) |
711d3d2c KH |
2507 | { |
2508 | int i; | |
2509 | ||
c0ff4b85 | 2510 | spin_lock(&memcg->pcp_counter_lock); |
6104621d | 2511 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
c0ff4b85 | 2512 | long x = per_cpu(memcg->stat->count[i], cpu); |
711d3d2c | 2513 | |
c0ff4b85 R |
2514 | per_cpu(memcg->stat->count[i], cpu) = 0; |
2515 | memcg->nocpu_base.count[i] += x; | |
711d3d2c | 2516 | } |
e9f8974f | 2517 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
c0ff4b85 | 2518 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); |
e9f8974f | 2519 | |
c0ff4b85 R |
2520 | per_cpu(memcg->stat->events[i], cpu) = 0; |
2521 | memcg->nocpu_base.events[i] += x; | |
e9f8974f | 2522 | } |
c0ff4b85 | 2523 | spin_unlock(&memcg->pcp_counter_lock); |
711d3d2c KH |
2524 | } |
2525 | ||
2526 | static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, | |
cdec2e42 KH |
2527 | unsigned long action, |
2528 | void *hcpu) | |
2529 | { | |
2530 | int cpu = (unsigned long)hcpu; | |
2531 | struct memcg_stock_pcp *stock; | |
711d3d2c | 2532 | struct mem_cgroup *iter; |
cdec2e42 | 2533 | |
619d094b | 2534 | if (action == CPU_ONLINE) |
1489ebad | 2535 | return NOTIFY_OK; |
1489ebad | 2536 | |
d833049b | 2537 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) |
cdec2e42 | 2538 | return NOTIFY_OK; |
711d3d2c | 2539 | |
9f3a0d09 | 2540 | for_each_mem_cgroup(iter) |
711d3d2c KH |
2541 | mem_cgroup_drain_pcp_counter(iter, cpu); |
2542 | ||
cdec2e42 KH |
2543 | stock = &per_cpu(memcg_stock, cpu); |
2544 | drain_stock(stock); | |
2545 | return NOTIFY_OK; | |
2546 | } | |
2547 | ||
4b534334 KH |
2548 | |
2549 | /* See __mem_cgroup_try_charge() for details */ | |
2550 | enum { | |
2551 | CHARGE_OK, /* success */ | |
2552 | CHARGE_RETRY, /* need to retry but retry is not bad */ | |
2553 | CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ | |
2554 | CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ | |
2555 | CHARGE_OOM_DIE, /* the current is killed because of OOM */ | |
2556 | }; | |
2557 | ||
c0ff4b85 | 2558 | static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
4c9c5359 SS |
2559 | unsigned int nr_pages, unsigned int min_pages, |
2560 | bool oom_check) | |
4b534334 | 2561 | { |
7ec99d62 | 2562 | unsigned long csize = nr_pages * PAGE_SIZE; |
4b534334 KH |
2563 | struct mem_cgroup *mem_over_limit; |
2564 | struct res_counter *fail_res; | |
2565 | unsigned long flags = 0; | |
2566 | int ret; | |
2567 | ||
c0ff4b85 | 2568 | ret = res_counter_charge(&memcg->res, csize, &fail_res); |
4b534334 KH |
2569 | |
2570 | if (likely(!ret)) { | |
2571 | if (!do_swap_account) | |
2572 | return CHARGE_OK; | |
c0ff4b85 | 2573 | ret = res_counter_charge(&memcg->memsw, csize, &fail_res); |
4b534334 KH |
2574 | if (likely(!ret)) |
2575 | return CHARGE_OK; | |
2576 | ||
c0ff4b85 | 2577 | res_counter_uncharge(&memcg->res, csize); |
4b534334 KH |
2578 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); |
2579 | flags |= MEM_CGROUP_RECLAIM_NOSWAP; | |
2580 | } else | |
2581 | mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); | |
9221edb7 | 2582 | /* |
9221edb7 JW |
2583 | * Never reclaim on behalf of optional batching, retry with a |
2584 | * single page instead. | |
2585 | */ | |
4c9c5359 | 2586 | if (nr_pages > min_pages) |
4b534334 KH |
2587 | return CHARGE_RETRY; |
2588 | ||
2589 | if (!(gfp_mask & __GFP_WAIT)) | |
2590 | return CHARGE_WOULDBLOCK; | |
2591 | ||
4c9c5359 SS |
2592 | if (gfp_mask & __GFP_NORETRY) |
2593 | return CHARGE_NOMEM; | |
2594 | ||
5660048c | 2595 | ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); |
7ec99d62 | 2596 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
19942822 | 2597 | return CHARGE_RETRY; |
4b534334 | 2598 | /* |
19942822 JW |
2599 | * Even though the limit is exceeded at this point, reclaim |
2600 | * may have been able to free some pages. Retry the charge | |
2601 | * before killing the task. | |
2602 | * | |
2603 | * Only for regular pages, though: huge pages are rather | |
2604 | * unlikely to succeed so close to the limit, and we fall back | |
2605 | * to regular pages anyway in case of failure. | |
4b534334 | 2606 | */ |
4c9c5359 | 2607 | if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) |
4b534334 KH |
2608 | return CHARGE_RETRY; |
2609 | ||
2610 | /* | |
2611 | * At task move, charge accounts can be doubly counted. So, it's | |
2612 | * better to wait until the end of task_move if something is going on. | |
2613 | */ | |
2614 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
2615 | return CHARGE_RETRY; | |
2616 | ||
2617 | /* If we don't need to call oom-killer at el, return immediately */ | |
2618 | if (!oom_check) | |
2619 | return CHARGE_NOMEM; | |
2620 | /* check OOM */ | |
e845e199 | 2621 | if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) |
4b534334 KH |
2622 | return CHARGE_OOM_DIE; |
2623 | ||
2624 | return CHARGE_RETRY; | |
2625 | } | |
2626 | ||
f817ed48 | 2627 | /* |
38c5d72f KH |
2628 | * __mem_cgroup_try_charge() does |
2629 | * 1. detect memcg to be charged against from passed *mm and *ptr, | |
2630 | * 2. update res_counter | |
2631 | * 3. call memory reclaim if necessary. | |
2632 | * | |
2633 | * In some special case, if the task is fatal, fatal_signal_pending() or | |
2634 | * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup | |
2635 | * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon | |
2636 | * as possible without any hazards. 2: all pages should have a valid | |
2637 | * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg | |
2638 | * pointer, that is treated as a charge to root_mem_cgroup. | |
2639 | * | |
2640 | * So __mem_cgroup_try_charge() will return | |
2641 | * 0 ... on success, filling *ptr with a valid memcg pointer. | |
2642 | * -ENOMEM ... charge failure because of resource limits. | |
2643 | * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. | |
2644 | * | |
2645 | * Unlike the exported interface, an "oom" parameter is added. if oom==true, | |
2646 | * the oom-killer can be invoked. | |
8a9f3ccd | 2647 | */ |
f817ed48 | 2648 | static int __mem_cgroup_try_charge(struct mm_struct *mm, |
ec168510 | 2649 | gfp_t gfp_mask, |
7ec99d62 | 2650 | unsigned int nr_pages, |
c0ff4b85 | 2651 | struct mem_cgroup **ptr, |
7ec99d62 | 2652 | bool oom) |
8a9f3ccd | 2653 | { |
7ec99d62 | 2654 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
4b534334 | 2655 | int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; |
c0ff4b85 | 2656 | struct mem_cgroup *memcg = NULL; |
4b534334 | 2657 | int ret; |
a636b327 | 2658 | |
867578cb KH |
2659 | /* |
2660 | * Unlike gloval-vm's OOM-kill, we're not in memory shortage | |
2661 | * in system level. So, allow to go ahead dying process in addition to | |
2662 | * MEMDIE process. | |
2663 | */ | |
2664 | if (unlikely(test_thread_flag(TIF_MEMDIE) | |
2665 | || fatal_signal_pending(current))) | |
2666 | goto bypass; | |
a636b327 | 2667 | |
8a9f3ccd | 2668 | /* |
3be91277 HD |
2669 | * We always charge the cgroup the mm_struct belongs to. |
2670 | * The mm_struct's mem_cgroup changes on task migration if the | |
8a9f3ccd | 2671 | * thread group leader migrates. It's possible that mm is not |
24467cac | 2672 | * set, if so charge the root memcg (happens for pagecache usage). |
8a9f3ccd | 2673 | */ |
c0ff4b85 | 2674 | if (!*ptr && !mm) |
38c5d72f | 2675 | *ptr = root_mem_cgroup; |
f75ca962 | 2676 | again: |
c0ff4b85 R |
2677 | if (*ptr) { /* css should be a valid one */ |
2678 | memcg = *ptr; | |
c0ff4b85 | 2679 | if (mem_cgroup_is_root(memcg)) |
f75ca962 | 2680 | goto done; |
a0956d54 | 2681 | if (consume_stock(memcg, nr_pages)) |
f75ca962 | 2682 | goto done; |
c0ff4b85 | 2683 | css_get(&memcg->css); |
4b534334 | 2684 | } else { |
f75ca962 | 2685 | struct task_struct *p; |
54595fe2 | 2686 | |
f75ca962 KH |
2687 | rcu_read_lock(); |
2688 | p = rcu_dereference(mm->owner); | |
f75ca962 | 2689 | /* |
ebb76ce1 | 2690 | * Because we don't have task_lock(), "p" can exit. |
c0ff4b85 | 2691 | * In that case, "memcg" can point to root or p can be NULL with |
ebb76ce1 KH |
2692 | * race with swapoff. Then, we have small risk of mis-accouning. |
2693 | * But such kind of mis-account by race always happens because | |
2694 | * we don't have cgroup_mutex(). It's overkill and we allo that | |
2695 | * small race, here. | |
2696 | * (*) swapoff at el will charge against mm-struct not against | |
2697 | * task-struct. So, mm->owner can be NULL. | |
f75ca962 | 2698 | */ |
c0ff4b85 | 2699 | memcg = mem_cgroup_from_task(p); |
38c5d72f KH |
2700 | if (!memcg) |
2701 | memcg = root_mem_cgroup; | |
2702 | if (mem_cgroup_is_root(memcg)) { | |
f75ca962 KH |
2703 | rcu_read_unlock(); |
2704 | goto done; | |
2705 | } | |
a0956d54 | 2706 | if (consume_stock(memcg, nr_pages)) { |
f75ca962 KH |
2707 | /* |
2708 | * It seems dagerous to access memcg without css_get(). | |
2709 | * But considering how consume_stok works, it's not | |
2710 | * necessary. If consume_stock success, some charges | |
2711 | * from this memcg are cached on this cpu. So, we | |
2712 | * don't need to call css_get()/css_tryget() before | |
2713 | * calling consume_stock(). | |
2714 | */ | |
2715 | rcu_read_unlock(); | |
2716 | goto done; | |
2717 | } | |
2718 | /* after here, we may be blocked. we need to get refcnt */ | |
c0ff4b85 | 2719 | if (!css_tryget(&memcg->css)) { |
f75ca962 KH |
2720 | rcu_read_unlock(); |
2721 | goto again; | |
2722 | } | |
2723 | rcu_read_unlock(); | |
2724 | } | |
8a9f3ccd | 2725 | |
4b534334 KH |
2726 | do { |
2727 | bool oom_check; | |
7a81b88c | 2728 | |
4b534334 | 2729 | /* If killed, bypass charge */ |
f75ca962 | 2730 | if (fatal_signal_pending(current)) { |
c0ff4b85 | 2731 | css_put(&memcg->css); |
4b534334 | 2732 | goto bypass; |
f75ca962 | 2733 | } |
6d61ef40 | 2734 | |
4b534334 KH |
2735 | oom_check = false; |
2736 | if (oom && !nr_oom_retries) { | |
2737 | oom_check = true; | |
2738 | nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
cdec2e42 | 2739 | } |
66e1707b | 2740 | |
4c9c5359 SS |
2741 | ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, |
2742 | oom_check); | |
4b534334 KH |
2743 | switch (ret) { |
2744 | case CHARGE_OK: | |
2745 | break; | |
2746 | case CHARGE_RETRY: /* not in OOM situation but retry */ | |
7ec99d62 | 2747 | batch = nr_pages; |
c0ff4b85 R |
2748 | css_put(&memcg->css); |
2749 | memcg = NULL; | |
f75ca962 | 2750 | goto again; |
4b534334 | 2751 | case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ |
c0ff4b85 | 2752 | css_put(&memcg->css); |
4b534334 KH |
2753 | goto nomem; |
2754 | case CHARGE_NOMEM: /* OOM routine works */ | |
f75ca962 | 2755 | if (!oom) { |
c0ff4b85 | 2756 | css_put(&memcg->css); |
867578cb | 2757 | goto nomem; |
f75ca962 | 2758 | } |
4b534334 KH |
2759 | /* If oom, we never return -ENOMEM */ |
2760 | nr_oom_retries--; | |
2761 | break; | |
2762 | case CHARGE_OOM_DIE: /* Killed by OOM Killer */ | |
c0ff4b85 | 2763 | css_put(&memcg->css); |
867578cb | 2764 | goto bypass; |
66e1707b | 2765 | } |
4b534334 KH |
2766 | } while (ret != CHARGE_OK); |
2767 | ||
7ec99d62 | 2768 | if (batch > nr_pages) |
c0ff4b85 R |
2769 | refill_stock(memcg, batch - nr_pages); |
2770 | css_put(&memcg->css); | |
0c3e73e8 | 2771 | done: |
c0ff4b85 | 2772 | *ptr = memcg; |
7a81b88c KH |
2773 | return 0; |
2774 | nomem: | |
c0ff4b85 | 2775 | *ptr = NULL; |
7a81b88c | 2776 | return -ENOMEM; |
867578cb | 2777 | bypass: |
38c5d72f KH |
2778 | *ptr = root_mem_cgroup; |
2779 | return -EINTR; | |
7a81b88c | 2780 | } |
8a9f3ccd | 2781 | |
a3032a2c DN |
2782 | /* |
2783 | * Somemtimes we have to undo a charge we got by try_charge(). | |
2784 | * This function is for that and do uncharge, put css's refcnt. | |
2785 | * gotten by try_charge(). | |
2786 | */ | |
c0ff4b85 | 2787 | static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, |
e7018b8d | 2788 | unsigned int nr_pages) |
a3032a2c | 2789 | { |
c0ff4b85 | 2790 | if (!mem_cgroup_is_root(memcg)) { |
e7018b8d JW |
2791 | unsigned long bytes = nr_pages * PAGE_SIZE; |
2792 | ||
c0ff4b85 | 2793 | res_counter_uncharge(&memcg->res, bytes); |
a3032a2c | 2794 | if (do_swap_account) |
c0ff4b85 | 2795 | res_counter_uncharge(&memcg->memsw, bytes); |
a3032a2c | 2796 | } |
854ffa8d DN |
2797 | } |
2798 | ||
d01dd17f KH |
2799 | /* |
2800 | * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. | |
2801 | * This is useful when moving usage to parent cgroup. | |
2802 | */ | |
2803 | static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, | |
2804 | unsigned int nr_pages) | |
2805 | { | |
2806 | unsigned long bytes = nr_pages * PAGE_SIZE; | |
2807 | ||
2808 | if (mem_cgroup_is_root(memcg)) | |
2809 | return; | |
2810 | ||
2811 | res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); | |
2812 | if (do_swap_account) | |
2813 | res_counter_uncharge_until(&memcg->memsw, | |
2814 | memcg->memsw.parent, bytes); | |
2815 | } | |
2816 | ||
a3b2d692 KH |
2817 | /* |
2818 | * A helper function to get mem_cgroup from ID. must be called under | |
e9316080 TH |
2819 | * rcu_read_lock(). The caller is responsible for calling css_tryget if |
2820 | * the mem_cgroup is used for charging. (dropping refcnt from swap can be | |
2821 | * called against removed memcg.) | |
a3b2d692 KH |
2822 | */ |
2823 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | |
2824 | { | |
2825 | struct cgroup_subsys_state *css; | |
2826 | ||
2827 | /* ID 0 is unused ID */ | |
2828 | if (!id) | |
2829 | return NULL; | |
2830 | css = css_lookup(&mem_cgroup_subsys, id); | |
2831 | if (!css) | |
2832 | return NULL; | |
b2145145 | 2833 | return mem_cgroup_from_css(css); |
a3b2d692 KH |
2834 | } |
2835 | ||
e42d9d5d | 2836 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
b5a84319 | 2837 | { |
c0ff4b85 | 2838 | struct mem_cgroup *memcg = NULL; |
3c776e64 | 2839 | struct page_cgroup *pc; |
a3b2d692 | 2840 | unsigned short id; |
b5a84319 KH |
2841 | swp_entry_t ent; |
2842 | ||
3c776e64 DN |
2843 | VM_BUG_ON(!PageLocked(page)); |
2844 | ||
3c776e64 | 2845 | pc = lookup_page_cgroup(page); |
c0bd3f63 | 2846 | lock_page_cgroup(pc); |
a3b2d692 | 2847 | if (PageCgroupUsed(pc)) { |
c0ff4b85 R |
2848 | memcg = pc->mem_cgroup; |
2849 | if (memcg && !css_tryget(&memcg->css)) | |
2850 | memcg = NULL; | |
e42d9d5d | 2851 | } else if (PageSwapCache(page)) { |
3c776e64 | 2852 | ent.val = page_private(page); |
9fb4b7cc | 2853 | id = lookup_swap_cgroup_id(ent); |
a3b2d692 | 2854 | rcu_read_lock(); |
c0ff4b85 R |
2855 | memcg = mem_cgroup_lookup(id); |
2856 | if (memcg && !css_tryget(&memcg->css)) | |
2857 | memcg = NULL; | |
a3b2d692 | 2858 | rcu_read_unlock(); |
3c776e64 | 2859 | } |
c0bd3f63 | 2860 | unlock_page_cgroup(pc); |
c0ff4b85 | 2861 | return memcg; |
b5a84319 KH |
2862 | } |
2863 | ||
c0ff4b85 | 2864 | static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, |
5564e88b | 2865 | struct page *page, |
7ec99d62 | 2866 | unsigned int nr_pages, |
9ce70c02 HD |
2867 | enum charge_type ctype, |
2868 | bool lrucare) | |
7a81b88c | 2869 | { |
ce587e65 | 2870 | struct page_cgroup *pc = lookup_page_cgroup(page); |
9ce70c02 | 2871 | struct zone *uninitialized_var(zone); |
fa9add64 | 2872 | struct lruvec *lruvec; |
9ce70c02 | 2873 | bool was_on_lru = false; |
b2402857 | 2874 | bool anon; |
9ce70c02 | 2875 | |
ca3e0214 | 2876 | lock_page_cgroup(pc); |
90deb788 | 2877 | VM_BUG_ON(PageCgroupUsed(pc)); |
ca3e0214 KH |
2878 | /* |
2879 | * we don't need page_cgroup_lock about tail pages, becase they are not | |
2880 | * accessed by any other context at this point. | |
2881 | */ | |
9ce70c02 HD |
2882 | |
2883 | /* | |
2884 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | |
2885 | * may already be on some other mem_cgroup's LRU. Take care of it. | |
2886 | */ | |
2887 | if (lrucare) { | |
2888 | zone = page_zone(page); | |
2889 | spin_lock_irq(&zone->lru_lock); | |
2890 | if (PageLRU(page)) { | |
fa9add64 | 2891 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
9ce70c02 | 2892 | ClearPageLRU(page); |
fa9add64 | 2893 | del_page_from_lru_list(page, lruvec, page_lru(page)); |
9ce70c02 HD |
2894 | was_on_lru = true; |
2895 | } | |
2896 | } | |
2897 | ||
c0ff4b85 | 2898 | pc->mem_cgroup = memcg; |
261fb61a KH |
2899 | /* |
2900 | * We access a page_cgroup asynchronously without lock_page_cgroup(). | |
2901 | * Especially when a page_cgroup is taken from a page, pc->mem_cgroup | |
2902 | * is accessed after testing USED bit. To make pc->mem_cgroup visible | |
2903 | * before USED bit, we need memory barrier here. | |
2904 | * See mem_cgroup_add_lru_list(), etc. | |
2905 | */ | |
08e552c6 | 2906 | smp_wmb(); |
b2402857 | 2907 | SetPageCgroupUsed(pc); |
3be91277 | 2908 | |
9ce70c02 HD |
2909 | if (lrucare) { |
2910 | if (was_on_lru) { | |
fa9add64 | 2911 | lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); |
9ce70c02 HD |
2912 | VM_BUG_ON(PageLRU(page)); |
2913 | SetPageLRU(page); | |
fa9add64 | 2914 | add_page_to_lru_list(page, lruvec, page_lru(page)); |
9ce70c02 HD |
2915 | } |
2916 | spin_unlock_irq(&zone->lru_lock); | |
2917 | } | |
2918 | ||
41326c17 | 2919 | if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) |
b2402857 KH |
2920 | anon = true; |
2921 | else | |
2922 | anon = false; | |
2923 | ||
b070e65c | 2924 | mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); |
52d4b9ac | 2925 | unlock_page_cgroup(pc); |
9ce70c02 | 2926 | |
430e4863 KH |
2927 | /* |
2928 | * "charge_statistics" updated event counter. Then, check it. | |
2929 | * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. | |
2930 | * if they exceeds softlimit. | |
2931 | */ | |
c0ff4b85 | 2932 | memcg_check_events(memcg, page); |
7a81b88c | 2933 | } |
66e1707b | 2934 | |
7cf27982 GC |
2935 | static DEFINE_MUTEX(set_limit_mutex); |
2936 | ||
7ae1e1d0 GC |
2937 | #ifdef CONFIG_MEMCG_KMEM |
2938 | static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) | |
2939 | { | |
2940 | return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && | |
2941 | (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); | |
2942 | } | |
2943 | ||
1f458cbf GC |
2944 | /* |
2945 | * This is a bit cumbersome, but it is rarely used and avoids a backpointer | |
2946 | * in the memcg_cache_params struct. | |
2947 | */ | |
2948 | static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) | |
2949 | { | |
2950 | struct kmem_cache *cachep; | |
2951 | ||
2952 | VM_BUG_ON(p->is_root_cache); | |
2953 | cachep = p->root_cache; | |
2954 | return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; | |
2955 | } | |
2956 | ||
749c5415 GC |
2957 | #ifdef CONFIG_SLABINFO |
2958 | static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, | |
2959 | struct seq_file *m) | |
2960 | { | |
2961 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | |
2962 | struct memcg_cache_params *params; | |
2963 | ||
2964 | if (!memcg_can_account_kmem(memcg)) | |
2965 | return -EIO; | |
2966 | ||
2967 | print_slabinfo_header(m); | |
2968 | ||
2969 | mutex_lock(&memcg->slab_caches_mutex); | |
2970 | list_for_each_entry(params, &memcg->memcg_slab_caches, list) | |
2971 | cache_show(memcg_params_to_cache(params), m); | |
2972 | mutex_unlock(&memcg->slab_caches_mutex); | |
2973 | ||
2974 | return 0; | |
2975 | } | |
2976 | #endif | |
2977 | ||
7ae1e1d0 GC |
2978 | static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) |
2979 | { | |
2980 | struct res_counter *fail_res; | |
2981 | struct mem_cgroup *_memcg; | |
2982 | int ret = 0; | |
2983 | bool may_oom; | |
2984 | ||
2985 | ret = res_counter_charge(&memcg->kmem, size, &fail_res); | |
2986 | if (ret) | |
2987 | return ret; | |
2988 | ||
2989 | /* | |
2990 | * Conditions under which we can wait for the oom_killer. Those are | |
2991 | * the same conditions tested by the core page allocator | |
2992 | */ | |
2993 | may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); | |
2994 | ||
2995 | _memcg = memcg; | |
2996 | ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, | |
2997 | &_memcg, may_oom); | |
2998 | ||
2999 | if (ret == -EINTR) { | |
3000 | /* | |
3001 | * __mem_cgroup_try_charge() chosed to bypass to root due to | |
3002 | * OOM kill or fatal signal. Since our only options are to | |
3003 | * either fail the allocation or charge it to this cgroup, do | |
3004 | * it as a temporary condition. But we can't fail. From a | |
3005 | * kmem/slab perspective, the cache has already been selected, | |
3006 | * by mem_cgroup_kmem_get_cache(), so it is too late to change | |
3007 | * our minds. | |
3008 | * | |
3009 | * This condition will only trigger if the task entered | |
3010 | * memcg_charge_kmem in a sane state, but was OOM-killed during | |
3011 | * __mem_cgroup_try_charge() above. Tasks that were already | |
3012 | * dying when the allocation triggers should have been already | |
3013 | * directed to the root cgroup in memcontrol.h | |
3014 | */ | |
3015 | res_counter_charge_nofail(&memcg->res, size, &fail_res); | |
3016 | if (do_swap_account) | |
3017 | res_counter_charge_nofail(&memcg->memsw, size, | |
3018 | &fail_res); | |
3019 | ret = 0; | |
3020 | } else if (ret) | |
3021 | res_counter_uncharge(&memcg->kmem, size); | |
3022 | ||
3023 | return ret; | |
3024 | } | |
3025 | ||
3026 | static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) | |
3027 | { | |
7ae1e1d0 GC |
3028 | res_counter_uncharge(&memcg->res, size); |
3029 | if (do_swap_account) | |
3030 | res_counter_uncharge(&memcg->memsw, size); | |
7de37682 GC |
3031 | |
3032 | /* Not down to 0 */ | |
3033 | if (res_counter_uncharge(&memcg->kmem, size)) | |
3034 | return; | |
3035 | ||
3036 | if (memcg_kmem_test_and_clear_dead(memcg)) | |
3037 | mem_cgroup_put(memcg); | |
7ae1e1d0 GC |
3038 | } |
3039 | ||
2633d7a0 GC |
3040 | void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) |
3041 | { | |
3042 | if (!memcg) | |
3043 | return; | |
3044 | ||
3045 | mutex_lock(&memcg->slab_caches_mutex); | |
3046 | list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); | |
3047 | mutex_unlock(&memcg->slab_caches_mutex); | |
3048 | } | |
3049 | ||
3050 | /* | |
3051 | * helper for acessing a memcg's index. It will be used as an index in the | |
3052 | * child cache array in kmem_cache, and also to derive its name. This function | |
3053 | * will return -1 when this is not a kmem-limited memcg. | |
3054 | */ | |
3055 | int memcg_cache_id(struct mem_cgroup *memcg) | |
3056 | { | |
3057 | return memcg ? memcg->kmemcg_id : -1; | |
3058 | } | |
3059 | ||
55007d84 GC |
3060 | /* |
3061 | * This ends up being protected by the set_limit mutex, during normal | |
3062 | * operation, because that is its main call site. | |
3063 | * | |
3064 | * But when we create a new cache, we can call this as well if its parent | |
3065 | * is kmem-limited. That will have to hold set_limit_mutex as well. | |
3066 | */ | |
3067 | int memcg_update_cache_sizes(struct mem_cgroup *memcg) | |
3068 | { | |
3069 | int num, ret; | |
3070 | ||
3071 | num = ida_simple_get(&kmem_limited_groups, | |
3072 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | |
3073 | if (num < 0) | |
3074 | return num; | |
3075 | /* | |
3076 | * After this point, kmem_accounted (that we test atomically in | |
3077 | * the beginning of this conditional), is no longer 0. This | |
3078 | * guarantees only one process will set the following boolean | |
3079 | * to true. We don't need test_and_set because we're protected | |
3080 | * by the set_limit_mutex anyway. | |
3081 | */ | |
3082 | memcg_kmem_set_activated(memcg); | |
3083 | ||
3084 | ret = memcg_update_all_caches(num+1); | |
3085 | if (ret) { | |
3086 | ida_simple_remove(&kmem_limited_groups, num); | |
3087 | memcg_kmem_clear_activated(memcg); | |
3088 | return ret; | |
3089 | } | |
3090 | ||
3091 | memcg->kmemcg_id = num; | |
3092 | INIT_LIST_HEAD(&memcg->memcg_slab_caches); | |
3093 | mutex_init(&memcg->slab_caches_mutex); | |
3094 | return 0; | |
3095 | } | |
3096 | ||
3097 | static size_t memcg_caches_array_size(int num_groups) | |
3098 | { | |
3099 | ssize_t size; | |
3100 | if (num_groups <= 0) | |
3101 | return 0; | |
3102 | ||
3103 | size = 2 * num_groups; | |
3104 | if (size < MEMCG_CACHES_MIN_SIZE) | |
3105 | size = MEMCG_CACHES_MIN_SIZE; | |
3106 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
3107 | size = MEMCG_CACHES_MAX_SIZE; | |
3108 | ||
3109 | return size; | |
3110 | } | |
3111 | ||
3112 | /* | |
3113 | * We should update the current array size iff all caches updates succeed. This | |
3114 | * can only be done from the slab side. The slab mutex needs to be held when | |
3115 | * calling this. | |
3116 | */ | |
3117 | void memcg_update_array_size(int num) | |
3118 | { | |
3119 | if (num > memcg_limited_groups_array_size) | |
3120 | memcg_limited_groups_array_size = memcg_caches_array_size(num); | |
3121 | } | |
3122 | ||
15cf17d2 KK |
3123 | static void kmem_cache_destroy_work_func(struct work_struct *w); |
3124 | ||
55007d84 GC |
3125 | int memcg_update_cache_size(struct kmem_cache *s, int num_groups) |
3126 | { | |
3127 | struct memcg_cache_params *cur_params = s->memcg_params; | |
3128 | ||
3129 | VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); | |
3130 | ||
3131 | if (num_groups > memcg_limited_groups_array_size) { | |
3132 | int i; | |
3133 | ssize_t size = memcg_caches_array_size(num_groups); | |
3134 | ||
3135 | size *= sizeof(void *); | |
3136 | size += sizeof(struct memcg_cache_params); | |
3137 | ||
3138 | s->memcg_params = kzalloc(size, GFP_KERNEL); | |
3139 | if (!s->memcg_params) { | |
3140 | s->memcg_params = cur_params; | |
3141 | return -ENOMEM; | |
3142 | } | |
3143 | ||
15cf17d2 KK |
3144 | INIT_WORK(&s->memcg_params->destroy, |
3145 | kmem_cache_destroy_work_func); | |
55007d84 GC |
3146 | s->memcg_params->is_root_cache = true; |
3147 | ||
3148 | /* | |
3149 | * There is the chance it will be bigger than | |
3150 | * memcg_limited_groups_array_size, if we failed an allocation | |
3151 | * in a cache, in which case all caches updated before it, will | |
3152 | * have a bigger array. | |
3153 | * | |
3154 | * But if that is the case, the data after | |
3155 | * memcg_limited_groups_array_size is certainly unused | |
3156 | */ | |
3157 | for (i = 0; i < memcg_limited_groups_array_size; i++) { | |
3158 | if (!cur_params->memcg_caches[i]) | |
3159 | continue; | |
3160 | s->memcg_params->memcg_caches[i] = | |
3161 | cur_params->memcg_caches[i]; | |
3162 | } | |
3163 | ||
3164 | /* | |
3165 | * Ideally, we would wait until all caches succeed, and only | |
3166 | * then free the old one. But this is not worth the extra | |
3167 | * pointer per-cache we'd have to have for this. | |
3168 | * | |
3169 | * It is not a big deal if some caches are left with a size | |
3170 | * bigger than the others. And all updates will reset this | |
3171 | * anyway. | |
3172 | */ | |
3173 | kfree(cur_params); | |
3174 | } | |
3175 | return 0; | |
3176 | } | |
3177 | ||
943a451a GC |
3178 | int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, |
3179 | struct kmem_cache *root_cache) | |
2633d7a0 GC |
3180 | { |
3181 | size_t size = sizeof(struct memcg_cache_params); | |
3182 | ||
3183 | if (!memcg_kmem_enabled()) | |
3184 | return 0; | |
3185 | ||
55007d84 GC |
3186 | if (!memcg) |
3187 | size += memcg_limited_groups_array_size * sizeof(void *); | |
3188 | ||
2633d7a0 GC |
3189 | s->memcg_params = kzalloc(size, GFP_KERNEL); |
3190 | if (!s->memcg_params) | |
3191 | return -ENOMEM; | |
3192 | ||
15cf17d2 KK |
3193 | INIT_WORK(&s->memcg_params->destroy, |
3194 | kmem_cache_destroy_work_func); | |
943a451a | 3195 | if (memcg) { |
2633d7a0 | 3196 | s->memcg_params->memcg = memcg; |
943a451a | 3197 | s->memcg_params->root_cache = root_cache; |
4ba902b5 GC |
3198 | } else |
3199 | s->memcg_params->is_root_cache = true; | |
3200 | ||
2633d7a0 GC |
3201 | return 0; |
3202 | } | |
3203 | ||
3204 | void memcg_release_cache(struct kmem_cache *s) | |
3205 | { | |
d7f25f8a GC |
3206 | struct kmem_cache *root; |
3207 | struct mem_cgroup *memcg; | |
3208 | int id; | |
3209 | ||
3210 | /* | |
3211 | * This happens, for instance, when a root cache goes away before we | |
3212 | * add any memcg. | |
3213 | */ | |
3214 | if (!s->memcg_params) | |
3215 | return; | |
3216 | ||
3217 | if (s->memcg_params->is_root_cache) | |
3218 | goto out; | |
3219 | ||
3220 | memcg = s->memcg_params->memcg; | |
3221 | id = memcg_cache_id(memcg); | |
3222 | ||
3223 | root = s->memcg_params->root_cache; | |
3224 | root->memcg_params->memcg_caches[id] = NULL; | |
d7f25f8a GC |
3225 | |
3226 | mutex_lock(&memcg->slab_caches_mutex); | |
3227 | list_del(&s->memcg_params->list); | |
3228 | mutex_unlock(&memcg->slab_caches_mutex); | |
3229 | ||
fd0ccaf2 | 3230 | mem_cgroup_put(memcg); |
d7f25f8a | 3231 | out: |
2633d7a0 GC |
3232 | kfree(s->memcg_params); |
3233 | } | |
3234 | ||
0e9d92f2 GC |
3235 | /* |
3236 | * During the creation a new cache, we need to disable our accounting mechanism | |
3237 | * altogether. This is true even if we are not creating, but rather just | |
3238 | * enqueing new caches to be created. | |
3239 | * | |
3240 | * This is because that process will trigger allocations; some visible, like | |
3241 | * explicit kmallocs to auxiliary data structures, name strings and internal | |
3242 | * cache structures; some well concealed, like INIT_WORK() that can allocate | |
3243 | * objects during debug. | |
3244 | * | |
3245 | * If any allocation happens during memcg_kmem_get_cache, we will recurse back | |
3246 | * to it. This may not be a bounded recursion: since the first cache creation | |
3247 | * failed to complete (waiting on the allocation), we'll just try to create the | |
3248 | * cache again, failing at the same point. | |
3249 | * | |
3250 | * memcg_kmem_get_cache is prepared to abort after seeing a positive count of | |
3251 | * memcg_kmem_skip_account. So we enclose anything that might allocate memory | |
3252 | * inside the following two functions. | |
3253 | */ | |
3254 | static inline void memcg_stop_kmem_account(void) | |
3255 | { | |
3256 | VM_BUG_ON(!current->mm); | |
3257 | current->memcg_kmem_skip_account++; | |
3258 | } | |
3259 | ||
3260 | static inline void memcg_resume_kmem_account(void) | |
3261 | { | |
3262 | VM_BUG_ON(!current->mm); | |
3263 | current->memcg_kmem_skip_account--; | |
3264 | } | |
3265 | ||
1f458cbf GC |
3266 | static void kmem_cache_destroy_work_func(struct work_struct *w) |
3267 | { | |
3268 | struct kmem_cache *cachep; | |
3269 | struct memcg_cache_params *p; | |
3270 | ||
3271 | p = container_of(w, struct memcg_cache_params, destroy); | |
3272 | ||
3273 | cachep = memcg_params_to_cache(p); | |
3274 | ||
22933152 GC |
3275 | /* |
3276 | * If we get down to 0 after shrink, we could delete right away. | |
3277 | * However, memcg_release_pages() already puts us back in the workqueue | |
3278 | * in that case. If we proceed deleting, we'll get a dangling | |
3279 | * reference, and removing the object from the workqueue in that case | |
3280 | * is unnecessary complication. We are not a fast path. | |
3281 | * | |
3282 | * Note that this case is fundamentally different from racing with | |
3283 | * shrink_slab(): if memcg_cgroup_destroy_cache() is called in | |
3284 | * kmem_cache_shrink, not only we would be reinserting a dead cache | |
3285 | * into the queue, but doing so from inside the worker racing to | |
3286 | * destroy it. | |
3287 | * | |
3288 | * So if we aren't down to zero, we'll just schedule a worker and try | |
3289 | * again | |
3290 | */ | |
3291 | if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { | |
3292 | kmem_cache_shrink(cachep); | |
3293 | if (atomic_read(&cachep->memcg_params->nr_pages) == 0) | |
3294 | return; | |
3295 | } else | |
1f458cbf GC |
3296 | kmem_cache_destroy(cachep); |
3297 | } | |
3298 | ||
3299 | void mem_cgroup_destroy_cache(struct kmem_cache *cachep) | |
3300 | { | |
3301 | if (!cachep->memcg_params->dead) | |
3302 | return; | |
3303 | ||
22933152 GC |
3304 | /* |
3305 | * There are many ways in which we can get here. | |
3306 | * | |
3307 | * We can get to a memory-pressure situation while the delayed work is | |
3308 | * still pending to run. The vmscan shrinkers can then release all | |
3309 | * cache memory and get us to destruction. If this is the case, we'll | |
3310 | * be executed twice, which is a bug (the second time will execute over | |
3311 | * bogus data). In this case, cancelling the work should be fine. | |
3312 | * | |
3313 | * But we can also get here from the worker itself, if | |
3314 | * kmem_cache_shrink is enough to shake all the remaining objects and | |
3315 | * get the page count to 0. In this case, we'll deadlock if we try to | |
3316 | * cancel the work (the worker runs with an internal lock held, which | |
3317 | * is the same lock we would hold for cancel_work_sync().) | |
3318 | * | |
3319 | * Since we can't possibly know who got us here, just refrain from | |
3320 | * running if there is already work pending | |
3321 | */ | |
3322 | if (work_pending(&cachep->memcg_params->destroy)) | |
3323 | return; | |
1f458cbf GC |
3324 | /* |
3325 | * We have to defer the actual destroying to a workqueue, because | |
3326 | * we might currently be in a context that cannot sleep. | |
3327 | */ | |
3328 | schedule_work(&cachep->memcg_params->destroy); | |
3329 | } | |
3330 | ||
d9c10ddd MH |
3331 | /* |
3332 | * This lock protects updaters, not readers. We want readers to be as fast as | |
3333 | * they can, and they will either see NULL or a valid cache value. Our model | |
3334 | * allow them to see NULL, in which case the root memcg will be selected. | |
3335 | * | |
3336 | * We need this lock because multiple allocations to the same cache from a non | |
3337 | * will span more than one worker. Only one of them can create the cache. | |
3338 | */ | |
3339 | static DEFINE_MUTEX(memcg_cache_mutex); | |
d7f25f8a | 3340 | |
d9c10ddd MH |
3341 | /* |
3342 | * Called with memcg_cache_mutex held | |
3343 | */ | |
d7f25f8a GC |
3344 | static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, |
3345 | struct kmem_cache *s) | |
3346 | { | |
d7f25f8a | 3347 | struct kmem_cache *new; |
d9c10ddd | 3348 | static char *tmp_name = NULL; |
d7f25f8a | 3349 | |
d9c10ddd MH |
3350 | lockdep_assert_held(&memcg_cache_mutex); |
3351 | ||
3352 | /* | |
3353 | * kmem_cache_create_memcg duplicates the given name and | |
3354 | * cgroup_name for this name requires RCU context. | |
3355 | * This static temporary buffer is used to prevent from | |
3356 | * pointless shortliving allocation. | |
3357 | */ | |
3358 | if (!tmp_name) { | |
3359 | tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); | |
3360 | if (!tmp_name) | |
3361 | return NULL; | |
3362 | } | |
3363 | ||
3364 | rcu_read_lock(); | |
3365 | snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, | |
3366 | memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); | |
3367 | rcu_read_unlock(); | |
d7f25f8a | 3368 | |
d9c10ddd | 3369 | new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, |
943a451a | 3370 | (s->flags & ~SLAB_PANIC), s->ctor, s); |
d7f25f8a | 3371 | |
d79923fa GC |
3372 | if (new) |
3373 | new->allocflags |= __GFP_KMEMCG; | |
3374 | ||
d7f25f8a GC |
3375 | return new; |
3376 | } | |
3377 | ||
d7f25f8a GC |
3378 | static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, |
3379 | struct kmem_cache *cachep) | |
3380 | { | |
3381 | struct kmem_cache *new_cachep; | |
3382 | int idx; | |
3383 | ||
3384 | BUG_ON(!memcg_can_account_kmem(memcg)); | |
3385 | ||
3386 | idx = memcg_cache_id(memcg); | |
3387 | ||
3388 | mutex_lock(&memcg_cache_mutex); | |
3389 | new_cachep = cachep->memcg_params->memcg_caches[idx]; | |
3390 | if (new_cachep) | |
3391 | goto out; | |
3392 | ||
3393 | new_cachep = kmem_cache_dup(memcg, cachep); | |
d7f25f8a GC |
3394 | if (new_cachep == NULL) { |
3395 | new_cachep = cachep; | |
3396 | goto out; | |
3397 | } | |
3398 | ||
3399 | mem_cgroup_get(memcg); | |
1f458cbf | 3400 | atomic_set(&new_cachep->memcg_params->nr_pages , 0); |
d7f25f8a GC |
3401 | |
3402 | cachep->memcg_params->memcg_caches[idx] = new_cachep; | |
3403 | /* | |
3404 | * the readers won't lock, make sure everybody sees the updated value, | |
3405 | * so they won't put stuff in the queue again for no reason | |
3406 | */ | |
3407 | wmb(); | |
3408 | out: | |
3409 | mutex_unlock(&memcg_cache_mutex); | |
3410 | return new_cachep; | |
3411 | } | |
3412 | ||
7cf27982 GC |
3413 | void kmem_cache_destroy_memcg_children(struct kmem_cache *s) |
3414 | { | |
3415 | struct kmem_cache *c; | |
3416 | int i; | |
3417 | ||
3418 | if (!s->memcg_params) | |
3419 | return; | |
3420 | if (!s->memcg_params->is_root_cache) | |
3421 | return; | |
3422 | ||
3423 | /* | |
3424 | * If the cache is being destroyed, we trust that there is no one else | |
3425 | * requesting objects from it. Even if there are, the sanity checks in | |
3426 | * kmem_cache_destroy should caught this ill-case. | |
3427 | * | |
3428 | * Still, we don't want anyone else freeing memcg_caches under our | |
3429 | * noses, which can happen if a new memcg comes to life. As usual, | |
3430 | * we'll take the set_limit_mutex to protect ourselves against this. | |
3431 | */ | |
3432 | mutex_lock(&set_limit_mutex); | |
3433 | for (i = 0; i < memcg_limited_groups_array_size; i++) { | |
3434 | c = s->memcg_params->memcg_caches[i]; | |
3435 | if (!c) | |
3436 | continue; | |
3437 | ||
3438 | /* | |
3439 | * We will now manually delete the caches, so to avoid races | |
3440 | * we need to cancel all pending destruction workers and | |
3441 | * proceed with destruction ourselves. | |
3442 | * | |
3443 | * kmem_cache_destroy() will call kmem_cache_shrink internally, | |
3444 | * and that could spawn the workers again: it is likely that | |
3445 | * the cache still have active pages until this very moment. | |
3446 | * This would lead us back to mem_cgroup_destroy_cache. | |
3447 | * | |
3448 | * But that will not execute at all if the "dead" flag is not | |
3449 | * set, so flip it down to guarantee we are in control. | |
3450 | */ | |
3451 | c->memcg_params->dead = false; | |
22933152 | 3452 | cancel_work_sync(&c->memcg_params->destroy); |
7cf27982 GC |
3453 | kmem_cache_destroy(c); |
3454 | } | |
3455 | mutex_unlock(&set_limit_mutex); | |
3456 | } | |
3457 | ||
d7f25f8a GC |
3458 | struct create_work { |
3459 | struct mem_cgroup *memcg; | |
3460 | struct kmem_cache *cachep; | |
3461 | struct work_struct work; | |
3462 | }; | |
3463 | ||
1f458cbf GC |
3464 | static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) |
3465 | { | |
3466 | struct kmem_cache *cachep; | |
3467 | struct memcg_cache_params *params; | |
3468 | ||
3469 | if (!memcg_kmem_is_active(memcg)) | |
3470 | return; | |
3471 | ||
3472 | mutex_lock(&memcg->slab_caches_mutex); | |
3473 | list_for_each_entry(params, &memcg->memcg_slab_caches, list) { | |
3474 | cachep = memcg_params_to_cache(params); | |
3475 | cachep->memcg_params->dead = true; | |
1f458cbf GC |
3476 | schedule_work(&cachep->memcg_params->destroy); |
3477 | } | |
3478 | mutex_unlock(&memcg->slab_caches_mutex); | |
3479 | } | |
3480 | ||
d7f25f8a GC |
3481 | static void memcg_create_cache_work_func(struct work_struct *w) |
3482 | { | |
3483 | struct create_work *cw; | |
3484 | ||
3485 | cw = container_of(w, struct create_work, work); | |
3486 | memcg_create_kmem_cache(cw->memcg, cw->cachep); | |
3487 | /* Drop the reference gotten when we enqueued. */ | |
3488 | css_put(&cw->memcg->css); | |
3489 | kfree(cw); | |
3490 | } | |
3491 | ||
3492 | /* | |
3493 | * Enqueue the creation of a per-memcg kmem_cache. | |
d7f25f8a | 3494 | */ |
0e9d92f2 GC |
3495 | static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, |
3496 | struct kmem_cache *cachep) | |
d7f25f8a GC |
3497 | { |
3498 | struct create_work *cw; | |
3499 | ||
3500 | cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); | |
ca0dde97 LZ |
3501 | if (cw == NULL) { |
3502 | css_put(&memcg->css); | |
d7f25f8a GC |
3503 | return; |
3504 | } | |
3505 | ||
3506 | cw->memcg = memcg; | |
3507 | cw->cachep = cachep; | |
3508 | ||
3509 | INIT_WORK(&cw->work, memcg_create_cache_work_func); | |
3510 | schedule_work(&cw->work); | |
3511 | } | |
3512 | ||
0e9d92f2 GC |
3513 | static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, |
3514 | struct kmem_cache *cachep) | |
3515 | { | |
3516 | /* | |
3517 | * We need to stop accounting when we kmalloc, because if the | |
3518 | * corresponding kmalloc cache is not yet created, the first allocation | |
3519 | * in __memcg_create_cache_enqueue will recurse. | |
3520 | * | |
3521 | * However, it is better to enclose the whole function. Depending on | |
3522 | * the debugging options enabled, INIT_WORK(), for instance, can | |
3523 | * trigger an allocation. This too, will make us recurse. Because at | |
3524 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | |
3525 | * the safest choice is to do it like this, wrapping the whole function. | |
3526 | */ | |
3527 | memcg_stop_kmem_account(); | |
3528 | __memcg_create_cache_enqueue(memcg, cachep); | |
3529 | memcg_resume_kmem_account(); | |
3530 | } | |
d7f25f8a GC |
3531 | /* |
3532 | * Return the kmem_cache we're supposed to use for a slab allocation. | |
3533 | * We try to use the current memcg's version of the cache. | |
3534 | * | |
3535 | * If the cache does not exist yet, if we are the first user of it, | |
3536 | * we either create it immediately, if possible, or create it asynchronously | |
3537 | * in a workqueue. | |
3538 | * In the latter case, we will let the current allocation go through with | |
3539 | * the original cache. | |
3540 | * | |
3541 | * Can't be called in interrupt context or from kernel threads. | |
3542 | * This function needs to be called with rcu_read_lock() held. | |
3543 | */ | |
3544 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, | |
3545 | gfp_t gfp) | |
3546 | { | |
3547 | struct mem_cgroup *memcg; | |
3548 | int idx; | |
3549 | ||
3550 | VM_BUG_ON(!cachep->memcg_params); | |
3551 | VM_BUG_ON(!cachep->memcg_params->is_root_cache); | |
3552 | ||
0e9d92f2 GC |
3553 | if (!current->mm || current->memcg_kmem_skip_account) |
3554 | return cachep; | |
3555 | ||
d7f25f8a GC |
3556 | rcu_read_lock(); |
3557 | memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); | |
d7f25f8a GC |
3558 | |
3559 | if (!memcg_can_account_kmem(memcg)) | |
ca0dde97 | 3560 | goto out; |
d7f25f8a GC |
3561 | |
3562 | idx = memcg_cache_id(memcg); | |
3563 | ||
3564 | /* | |
3565 | * barrier to mare sure we're always seeing the up to date value. The | |
3566 | * code updating memcg_caches will issue a write barrier to match this. | |
3567 | */ | |
3568 | read_barrier_depends(); | |
ca0dde97 LZ |
3569 | if (likely(cachep->memcg_params->memcg_caches[idx])) { |
3570 | cachep = cachep->memcg_params->memcg_caches[idx]; | |
3571 | goto out; | |
d7f25f8a GC |
3572 | } |
3573 | ||
ca0dde97 LZ |
3574 | /* The corresponding put will be done in the workqueue. */ |
3575 | if (!css_tryget(&memcg->css)) | |
3576 | goto out; | |
3577 | rcu_read_unlock(); | |
3578 | ||
3579 | /* | |
3580 | * If we are in a safe context (can wait, and not in interrupt | |
3581 | * context), we could be be predictable and return right away. | |
3582 | * This would guarantee that the allocation being performed | |
3583 | * already belongs in the new cache. | |
3584 | * | |
3585 | * However, there are some clashes that can arrive from locking. | |
3586 | * For instance, because we acquire the slab_mutex while doing | |
3587 | * kmem_cache_dup, this means no further allocation could happen | |
3588 | * with the slab_mutex held. | |
3589 | * | |
3590 | * Also, because cache creation issue get_online_cpus(), this | |
3591 | * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, | |
3592 | * that ends up reversed during cpu hotplug. (cpuset allocates | |
3593 | * a bunch of GFP_KERNEL memory during cpuup). Due to all that, | |
3594 | * better to defer everything. | |
3595 | */ | |
3596 | memcg_create_cache_enqueue(memcg, cachep); | |
3597 | return cachep; | |
3598 | out: | |
3599 | rcu_read_unlock(); | |
3600 | return cachep; | |
d7f25f8a GC |
3601 | } |
3602 | EXPORT_SYMBOL(__memcg_kmem_get_cache); | |
3603 | ||
7ae1e1d0 GC |
3604 | /* |
3605 | * We need to verify if the allocation against current->mm->owner's memcg is | |
3606 | * possible for the given order. But the page is not allocated yet, so we'll | |
3607 | * need a further commit step to do the final arrangements. | |
3608 | * | |
3609 | * It is possible for the task to switch cgroups in this mean time, so at | |
3610 | * commit time, we can't rely on task conversion any longer. We'll then use | |
3611 | * the handle argument to return to the caller which cgroup we should commit | |
3612 | * against. We could also return the memcg directly and avoid the pointer | |
3613 | * passing, but a boolean return value gives better semantics considering | |
3614 | * the compiled-out case as well. | |
3615 | * | |
3616 | * Returning true means the allocation is possible. | |
3617 | */ | |
3618 | bool | |
3619 | __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) | |
3620 | { | |
3621 | struct mem_cgroup *memcg; | |
3622 | int ret; | |
3623 | ||
3624 | *_memcg = NULL; | |
3625 | memcg = try_get_mem_cgroup_from_mm(current->mm); | |
3626 | ||
3627 | /* | |
3628 | * very rare case described in mem_cgroup_from_task. Unfortunately there | |
3629 | * isn't much we can do without complicating this too much, and it would | |
3630 | * be gfp-dependent anyway. Just let it go | |
3631 | */ | |
3632 | if (unlikely(!memcg)) | |
3633 | return true; | |
3634 | ||
3635 | if (!memcg_can_account_kmem(memcg)) { | |
3636 | css_put(&memcg->css); | |
3637 | return true; | |
3638 | } | |
3639 | ||
7ae1e1d0 GC |
3640 | ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); |
3641 | if (!ret) | |
3642 | *_memcg = memcg; | |
7ae1e1d0 GC |
3643 | |
3644 | css_put(&memcg->css); | |
3645 | return (ret == 0); | |
3646 | } | |
3647 | ||
3648 | void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
3649 | int order) | |
3650 | { | |
3651 | struct page_cgroup *pc; | |
3652 | ||
3653 | VM_BUG_ON(mem_cgroup_is_root(memcg)); | |
3654 | ||
3655 | /* The page allocation failed. Revert */ | |
3656 | if (!page) { | |
3657 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); | |
7ae1e1d0 GC |
3658 | return; |
3659 | } | |
3660 | ||
3661 | pc = lookup_page_cgroup(page); | |
3662 | lock_page_cgroup(pc); | |
3663 | pc->mem_cgroup = memcg; | |
3664 | SetPageCgroupUsed(pc); | |
3665 | unlock_page_cgroup(pc); | |
3666 | } | |
3667 | ||
3668 | void __memcg_kmem_uncharge_pages(struct page *page, int order) | |
3669 | { | |
3670 | struct mem_cgroup *memcg = NULL; | |
3671 | struct page_cgroup *pc; | |
3672 | ||
3673 | ||
3674 | pc = lookup_page_cgroup(page); | |
3675 | /* | |
3676 | * Fast unlocked return. Theoretically might have changed, have to | |
3677 | * check again after locking. | |
3678 | */ | |
3679 | if (!PageCgroupUsed(pc)) | |
3680 | return; | |
3681 | ||
3682 | lock_page_cgroup(pc); | |
3683 | if (PageCgroupUsed(pc)) { | |
3684 | memcg = pc->mem_cgroup; | |
3685 | ClearPageCgroupUsed(pc); | |
3686 | } | |
3687 | unlock_page_cgroup(pc); | |
3688 | ||
3689 | /* | |
3690 | * We trust that only if there is a memcg associated with the page, it | |
3691 | * is a valid allocation | |
3692 | */ | |
3693 | if (!memcg) | |
3694 | return; | |
3695 | ||
3696 | VM_BUG_ON(mem_cgroup_is_root(memcg)); | |
3697 | memcg_uncharge_kmem(memcg, PAGE_SIZE << order); | |
7ae1e1d0 | 3698 | } |
1f458cbf GC |
3699 | #else |
3700 | static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) | |
3701 | { | |
3702 | } | |
7ae1e1d0 GC |
3703 | #endif /* CONFIG_MEMCG_KMEM */ |
3704 | ||
ca3e0214 KH |
3705 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
3706 | ||
a0db00fc | 3707 | #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) |
ca3e0214 KH |
3708 | /* |
3709 | * Because tail pages are not marked as "used", set it. We're under | |
e94c8a9c KH |
3710 | * zone->lru_lock, 'splitting on pmd' and compound_lock. |
3711 | * charge/uncharge will be never happen and move_account() is done under | |
3712 | * compound_lock(), so we don't have to take care of races. | |
ca3e0214 | 3713 | */ |
e94c8a9c | 3714 | void mem_cgroup_split_huge_fixup(struct page *head) |
ca3e0214 KH |
3715 | { |
3716 | struct page_cgroup *head_pc = lookup_page_cgroup(head); | |
e94c8a9c | 3717 | struct page_cgroup *pc; |
b070e65c | 3718 | struct mem_cgroup *memcg; |
e94c8a9c | 3719 | int i; |
ca3e0214 | 3720 | |
3d37c4a9 KH |
3721 | if (mem_cgroup_disabled()) |
3722 | return; | |
b070e65c DR |
3723 | |
3724 | memcg = head_pc->mem_cgroup; | |
e94c8a9c KH |
3725 | for (i = 1; i < HPAGE_PMD_NR; i++) { |
3726 | pc = head_pc + i; | |
b070e65c | 3727 | pc->mem_cgroup = memcg; |
e94c8a9c | 3728 | smp_wmb();/* see __commit_charge() */ |
e94c8a9c KH |
3729 | pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; |
3730 | } | |
b070e65c DR |
3731 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], |
3732 | HPAGE_PMD_NR); | |
ca3e0214 | 3733 | } |
12d27107 | 3734 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
ca3e0214 | 3735 | |
f817ed48 | 3736 | /** |
de3638d9 | 3737 | * mem_cgroup_move_account - move account of the page |
5564e88b | 3738 | * @page: the page |
7ec99d62 | 3739 | * @nr_pages: number of regular pages (>1 for huge pages) |
f817ed48 KH |
3740 | * @pc: page_cgroup of the page. |
3741 | * @from: mem_cgroup which the page is moved from. | |
3742 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
3743 | * | |
3744 | * The caller must confirm following. | |
08e552c6 | 3745 | * - page is not on LRU (isolate_page() is useful.) |
7ec99d62 | 3746 | * - compound_lock is held when nr_pages > 1 |
f817ed48 | 3747 | * |
2f3479b1 KH |
3748 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
3749 | * from old cgroup. | |
f817ed48 | 3750 | */ |
7ec99d62 JW |
3751 | static int mem_cgroup_move_account(struct page *page, |
3752 | unsigned int nr_pages, | |
3753 | struct page_cgroup *pc, | |
3754 | struct mem_cgroup *from, | |
2f3479b1 | 3755 | struct mem_cgroup *to) |
f817ed48 | 3756 | { |
de3638d9 JW |
3757 | unsigned long flags; |
3758 | int ret; | |
b2402857 | 3759 | bool anon = PageAnon(page); |
987eba66 | 3760 | |
f817ed48 | 3761 | VM_BUG_ON(from == to); |
5564e88b | 3762 | VM_BUG_ON(PageLRU(page)); |
de3638d9 JW |
3763 | /* |
3764 | * The page is isolated from LRU. So, collapse function | |
3765 | * will not handle this page. But page splitting can happen. | |
3766 | * Do this check under compound_page_lock(). The caller should | |
3767 | * hold it. | |
3768 | */ | |
3769 | ret = -EBUSY; | |
7ec99d62 | 3770 | if (nr_pages > 1 && !PageTransHuge(page)) |
de3638d9 JW |
3771 | goto out; |
3772 | ||
3773 | lock_page_cgroup(pc); | |
3774 | ||
3775 | ret = -EINVAL; | |
3776 | if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) | |
3777 | goto unlock; | |
3778 | ||
312734c0 | 3779 | move_lock_mem_cgroup(from, &flags); |
f817ed48 | 3780 | |
2ff76f11 | 3781 | if (!anon && page_mapped(page)) { |
c62b1a3b KH |
3782 | /* Update mapped_file data for mem_cgroup */ |
3783 | preempt_disable(); | |
3784 | __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
3785 | __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); | |
3786 | preempt_enable(); | |
d69b042f | 3787 | } |
b070e65c | 3788 | mem_cgroup_charge_statistics(from, page, anon, -nr_pages); |
d69b042f | 3789 | |
854ffa8d | 3790 | /* caller should have done css_get */ |
08e552c6 | 3791 | pc->mem_cgroup = to; |
b070e65c | 3792 | mem_cgroup_charge_statistics(to, page, anon, nr_pages); |
312734c0 | 3793 | move_unlock_mem_cgroup(from, &flags); |
de3638d9 JW |
3794 | ret = 0; |
3795 | unlock: | |
57f9fd7d | 3796 | unlock_page_cgroup(pc); |
d2265e6f KH |
3797 | /* |
3798 | * check events | |
3799 | */ | |
5564e88b JW |
3800 | memcg_check_events(to, page); |
3801 | memcg_check_events(from, page); | |
de3638d9 | 3802 | out: |
f817ed48 KH |
3803 | return ret; |
3804 | } | |
3805 | ||
2ef37d3f MH |
3806 | /** |
3807 | * mem_cgroup_move_parent - moves page to the parent group | |
3808 | * @page: the page to move | |
3809 | * @pc: page_cgroup of the page | |
3810 | * @child: page's cgroup | |
3811 | * | |
3812 | * move charges to its parent or the root cgroup if the group has no | |
3813 | * parent (aka use_hierarchy==0). | |
3814 | * Although this might fail (get_page_unless_zero, isolate_lru_page or | |
3815 | * mem_cgroup_move_account fails) the failure is always temporary and | |
3816 | * it signals a race with a page removal/uncharge or migration. In the | |
3817 | * first case the page is on the way out and it will vanish from the LRU | |
3818 | * on the next attempt and the call should be retried later. | |
3819 | * Isolation from the LRU fails only if page has been isolated from | |
3820 | * the LRU since we looked at it and that usually means either global | |
3821 | * reclaim or migration going on. The page will either get back to the | |
3822 | * LRU or vanish. | |
3823 | * Finaly mem_cgroup_move_account fails only if the page got uncharged | |
3824 | * (!PageCgroupUsed) or moved to a different group. The page will | |
3825 | * disappear in the next attempt. | |
f817ed48 | 3826 | */ |
5564e88b JW |
3827 | static int mem_cgroup_move_parent(struct page *page, |
3828 | struct page_cgroup *pc, | |
6068bf01 | 3829 | struct mem_cgroup *child) |
f817ed48 | 3830 | { |
f817ed48 | 3831 | struct mem_cgroup *parent; |
7ec99d62 | 3832 | unsigned int nr_pages; |
4be4489f | 3833 | unsigned long uninitialized_var(flags); |
f817ed48 KH |
3834 | int ret; |
3835 | ||
d8423011 | 3836 | VM_BUG_ON(mem_cgroup_is_root(child)); |
f817ed48 | 3837 | |
57f9fd7d DN |
3838 | ret = -EBUSY; |
3839 | if (!get_page_unless_zero(page)) | |
3840 | goto out; | |
3841 | if (isolate_lru_page(page)) | |
3842 | goto put; | |
52dbb905 | 3843 | |
7ec99d62 | 3844 | nr_pages = hpage_nr_pages(page); |
08e552c6 | 3845 | |
cc926f78 KH |
3846 | parent = parent_mem_cgroup(child); |
3847 | /* | |
3848 | * If no parent, move charges to root cgroup. | |
3849 | */ | |
3850 | if (!parent) | |
3851 | parent = root_mem_cgroup; | |
f817ed48 | 3852 | |
2ef37d3f MH |
3853 | if (nr_pages > 1) { |
3854 | VM_BUG_ON(!PageTransHuge(page)); | |
987eba66 | 3855 | flags = compound_lock_irqsave(page); |
2ef37d3f | 3856 | } |
987eba66 | 3857 | |
cc926f78 | 3858 | ret = mem_cgroup_move_account(page, nr_pages, |
2f3479b1 | 3859 | pc, child, parent); |
cc926f78 KH |
3860 | if (!ret) |
3861 | __mem_cgroup_cancel_local_charge(child, nr_pages); | |
8dba474f | 3862 | |
7ec99d62 | 3863 | if (nr_pages > 1) |
987eba66 | 3864 | compound_unlock_irqrestore(page, flags); |
08e552c6 | 3865 | putback_lru_page(page); |
57f9fd7d | 3866 | put: |
40d58138 | 3867 | put_page(page); |
57f9fd7d | 3868 | out: |
f817ed48 KH |
3869 | return ret; |
3870 | } | |
3871 | ||
7a81b88c KH |
3872 | /* |
3873 | * Charge the memory controller for page usage. | |
3874 | * Return | |
3875 | * 0 if the charge was successful | |
3876 | * < 0 if the cgroup is over its limit | |
3877 | */ | |
3878 | static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, | |
73045c47 | 3879 | gfp_t gfp_mask, enum charge_type ctype) |
7a81b88c | 3880 | { |
c0ff4b85 | 3881 | struct mem_cgroup *memcg = NULL; |
7ec99d62 | 3882 | unsigned int nr_pages = 1; |
8493ae43 | 3883 | bool oom = true; |
7a81b88c | 3884 | int ret; |
ec168510 | 3885 | |
37c2ac78 | 3886 | if (PageTransHuge(page)) { |
7ec99d62 | 3887 | nr_pages <<= compound_order(page); |
37c2ac78 | 3888 | VM_BUG_ON(!PageTransHuge(page)); |
8493ae43 JW |
3889 | /* |
3890 | * Never OOM-kill a process for a huge page. The | |
3891 | * fault handler will fall back to regular pages. | |
3892 | */ | |
3893 | oom = false; | |
37c2ac78 | 3894 | } |
7a81b88c | 3895 | |
c0ff4b85 | 3896 | ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); |
38c5d72f | 3897 | if (ret == -ENOMEM) |
7a81b88c | 3898 | return ret; |
ce587e65 | 3899 | __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); |
8a9f3ccd | 3900 | return 0; |
8a9f3ccd BS |
3901 | } |
3902 | ||
7a81b88c KH |
3903 | int mem_cgroup_newpage_charge(struct page *page, |
3904 | struct mm_struct *mm, gfp_t gfp_mask) | |
217bc319 | 3905 | { |
f8d66542 | 3906 | if (mem_cgroup_disabled()) |
cede86ac | 3907 | return 0; |
7a0524cf JW |
3908 | VM_BUG_ON(page_mapped(page)); |
3909 | VM_BUG_ON(page->mapping && !PageAnon(page)); | |
3910 | VM_BUG_ON(!mm); | |
217bc319 | 3911 | return mem_cgroup_charge_common(page, mm, gfp_mask, |
41326c17 | 3912 | MEM_CGROUP_CHARGE_TYPE_ANON); |
217bc319 KH |
3913 | } |
3914 | ||
54595fe2 KH |
3915 | /* |
3916 | * While swap-in, try_charge -> commit or cancel, the page is locked. | |
3917 | * And when try_charge() successfully returns, one refcnt to memcg without | |
21ae2956 | 3918 | * struct page_cgroup is acquired. This refcnt will be consumed by |
54595fe2 KH |
3919 | * "commit()" or removed by "cancel()" |
3920 | */ | |
0435a2fd JW |
3921 | static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, |
3922 | struct page *page, | |
3923 | gfp_t mask, | |
3924 | struct mem_cgroup **memcgp) | |
8c7c6e34 | 3925 | { |
c0ff4b85 | 3926 | struct mem_cgroup *memcg; |
90deb788 | 3927 | struct page_cgroup *pc; |
54595fe2 | 3928 | int ret; |
8c7c6e34 | 3929 | |
90deb788 JW |
3930 | pc = lookup_page_cgroup(page); |
3931 | /* | |
3932 | * Every swap fault against a single page tries to charge the | |
3933 | * page, bail as early as possible. shmem_unuse() encounters | |
3934 | * already charged pages, too. The USED bit is protected by | |
3935 | * the page lock, which serializes swap cache removal, which | |
3936 | * in turn serializes uncharging. | |
3937 | */ | |
3938 | if (PageCgroupUsed(pc)) | |
3939 | return 0; | |
8c7c6e34 KH |
3940 | if (!do_swap_account) |
3941 | goto charge_cur_mm; | |
c0ff4b85 R |
3942 | memcg = try_get_mem_cgroup_from_page(page); |
3943 | if (!memcg) | |
54595fe2 | 3944 | goto charge_cur_mm; |
72835c86 JW |
3945 | *memcgp = memcg; |
3946 | ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); | |
c0ff4b85 | 3947 | css_put(&memcg->css); |
38c5d72f KH |
3948 | if (ret == -EINTR) |
3949 | ret = 0; | |
54595fe2 | 3950 | return ret; |
8c7c6e34 | 3951 | charge_cur_mm: |
38c5d72f KH |
3952 | ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); |
3953 | if (ret == -EINTR) | |
3954 | ret = 0; | |
3955 | return ret; | |
8c7c6e34 KH |
3956 | } |
3957 | ||
0435a2fd JW |
3958 | int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, |
3959 | gfp_t gfp_mask, struct mem_cgroup **memcgp) | |
3960 | { | |
3961 | *memcgp = NULL; | |
3962 | if (mem_cgroup_disabled()) | |
3963 | return 0; | |
bdf4f4d2 JW |
3964 | /* |
3965 | * A racing thread's fault, or swapoff, may have already | |
3966 | * updated the pte, and even removed page from swap cache: in | |
3967 | * those cases unuse_pte()'s pte_same() test will fail; but | |
3968 | * there's also a KSM case which does need to charge the page. | |
3969 | */ | |
3970 | if (!PageSwapCache(page)) { | |
3971 | int ret; | |
3972 | ||
3973 | ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); | |
3974 | if (ret == -EINTR) | |
3975 | ret = 0; | |
3976 | return ret; | |
3977 | } | |
0435a2fd JW |
3978 | return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); |
3979 | } | |
3980 | ||
827a03d2 JW |
3981 | void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) |
3982 | { | |
3983 | if (mem_cgroup_disabled()) | |
3984 | return; | |
3985 | if (!memcg) | |
3986 | return; | |
3987 | __mem_cgroup_cancel_charge(memcg, 1); | |
3988 | } | |
3989 | ||
83aae4c7 | 3990 | static void |
72835c86 | 3991 | __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, |
83aae4c7 | 3992 | enum charge_type ctype) |
7a81b88c | 3993 | { |
f8d66542 | 3994 | if (mem_cgroup_disabled()) |
7a81b88c | 3995 | return; |
72835c86 | 3996 | if (!memcg) |
7a81b88c | 3997 | return; |
5a6475a4 | 3998 | |
ce587e65 | 3999 | __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); |
8c7c6e34 KH |
4000 | /* |
4001 | * Now swap is on-memory. This means this page may be | |
4002 | * counted both as mem and swap....double count. | |
03f3c433 KH |
4003 | * Fix it by uncharging from memsw. Basically, this SwapCache is stable |
4004 | * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() | |
4005 | * may call delete_from_swap_cache() before reach here. | |
8c7c6e34 | 4006 | */ |
03f3c433 | 4007 | if (do_swap_account && PageSwapCache(page)) { |
8c7c6e34 | 4008 | swp_entry_t ent = {.val = page_private(page)}; |
86493009 | 4009 | mem_cgroup_uncharge_swap(ent); |
8c7c6e34 | 4010 | } |
7a81b88c KH |
4011 | } |
4012 | ||
72835c86 JW |
4013 | void mem_cgroup_commit_charge_swapin(struct page *page, |
4014 | struct mem_cgroup *memcg) | |
83aae4c7 | 4015 | { |
72835c86 | 4016 | __mem_cgroup_commit_charge_swapin(page, memcg, |
41326c17 | 4017 | MEM_CGROUP_CHARGE_TYPE_ANON); |
83aae4c7 DN |
4018 | } |
4019 | ||
827a03d2 JW |
4020 | int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, |
4021 | gfp_t gfp_mask) | |
7a81b88c | 4022 | { |
827a03d2 JW |
4023 | struct mem_cgroup *memcg = NULL; |
4024 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; | |
4025 | int ret; | |
4026 | ||
f8d66542 | 4027 | if (mem_cgroup_disabled()) |
827a03d2 JW |
4028 | return 0; |
4029 | if (PageCompound(page)) | |
4030 | return 0; | |
4031 | ||
827a03d2 JW |
4032 | if (!PageSwapCache(page)) |
4033 | ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); | |
4034 | else { /* page is swapcache/shmem */ | |
0435a2fd JW |
4035 | ret = __mem_cgroup_try_charge_swapin(mm, page, |
4036 | gfp_mask, &memcg); | |
827a03d2 JW |
4037 | if (!ret) |
4038 | __mem_cgroup_commit_charge_swapin(page, memcg, type); | |
4039 | } | |
4040 | return ret; | |
7a81b88c KH |
4041 | } |
4042 | ||
c0ff4b85 | 4043 | static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, |
7ec99d62 JW |
4044 | unsigned int nr_pages, |
4045 | const enum charge_type ctype) | |
569b846d KH |
4046 | { |
4047 | struct memcg_batch_info *batch = NULL; | |
4048 | bool uncharge_memsw = true; | |
7ec99d62 | 4049 | |
569b846d KH |
4050 | /* If swapout, usage of swap doesn't decrease */ |
4051 | if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) | |
4052 | uncharge_memsw = false; | |
569b846d KH |
4053 | |
4054 | batch = ¤t->memcg_batch; | |
4055 | /* | |
4056 | * In usual, we do css_get() when we remember memcg pointer. | |
4057 | * But in this case, we keep res->usage until end of a series of | |
4058 | * uncharges. Then, it's ok to ignore memcg's refcnt. | |
4059 | */ | |
4060 | if (!batch->memcg) | |
c0ff4b85 | 4061 | batch->memcg = memcg; |
3c11ecf4 KH |
4062 | /* |
4063 | * do_batch > 0 when unmapping pages or inode invalidate/truncate. | |
25985edc | 4064 | * In those cases, all pages freed continuously can be expected to be in |
3c11ecf4 KH |
4065 | * the same cgroup and we have chance to coalesce uncharges. |
4066 | * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) | |
4067 | * because we want to do uncharge as soon as possible. | |
4068 | */ | |
4069 | ||
4070 | if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) | |
4071 | goto direct_uncharge; | |
4072 | ||
7ec99d62 | 4073 | if (nr_pages > 1) |
ec168510 AA |
4074 | goto direct_uncharge; |
4075 | ||
569b846d KH |
4076 | /* |
4077 | * In typical case, batch->memcg == mem. This means we can | |
4078 | * merge a series of uncharges to an uncharge of res_counter. | |
4079 | * If not, we uncharge res_counter ony by one. | |
4080 | */ | |
c0ff4b85 | 4081 | if (batch->memcg != memcg) |
569b846d KH |
4082 | goto direct_uncharge; |
4083 | /* remember freed charge and uncharge it later */ | |
7ffd4ca7 | 4084 | batch->nr_pages++; |
569b846d | 4085 | if (uncharge_memsw) |
7ffd4ca7 | 4086 | batch->memsw_nr_pages++; |
569b846d KH |
4087 | return; |
4088 | direct_uncharge: | |
c0ff4b85 | 4089 | res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); |
569b846d | 4090 | if (uncharge_memsw) |
c0ff4b85 R |
4091 | res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); |
4092 | if (unlikely(batch->memcg != memcg)) | |
4093 | memcg_oom_recover(memcg); | |
569b846d | 4094 | } |
7a81b88c | 4095 | |
8a9f3ccd | 4096 | /* |
69029cd5 | 4097 | * uncharge if !page_mapped(page) |
8a9f3ccd | 4098 | */ |
8c7c6e34 | 4099 | static struct mem_cgroup * |
0030f535 JW |
4100 | __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, |
4101 | bool end_migration) | |
8a9f3ccd | 4102 | { |
c0ff4b85 | 4103 | struct mem_cgroup *memcg = NULL; |
7ec99d62 JW |
4104 | unsigned int nr_pages = 1; |
4105 | struct page_cgroup *pc; | |
b2402857 | 4106 | bool anon; |
8a9f3ccd | 4107 | |
f8d66542 | 4108 | if (mem_cgroup_disabled()) |
8c7c6e34 | 4109 | return NULL; |
4077960e | 4110 | |
0c59b89c | 4111 | VM_BUG_ON(PageSwapCache(page)); |
d13d1443 | 4112 | |
37c2ac78 | 4113 | if (PageTransHuge(page)) { |
7ec99d62 | 4114 | nr_pages <<= compound_order(page); |
37c2ac78 AA |
4115 | VM_BUG_ON(!PageTransHuge(page)); |
4116 | } | |
8697d331 | 4117 | /* |
3c541e14 | 4118 | * Check if our page_cgroup is valid |
8697d331 | 4119 | */ |
52d4b9ac | 4120 | pc = lookup_page_cgroup(page); |
cfa44946 | 4121 | if (unlikely(!PageCgroupUsed(pc))) |
8c7c6e34 | 4122 | return NULL; |
b9c565d5 | 4123 | |
52d4b9ac | 4124 | lock_page_cgroup(pc); |
d13d1443 | 4125 | |
c0ff4b85 | 4126 | memcg = pc->mem_cgroup; |
8c7c6e34 | 4127 | |
d13d1443 KH |
4128 | if (!PageCgroupUsed(pc)) |
4129 | goto unlock_out; | |
4130 | ||
b2402857 KH |
4131 | anon = PageAnon(page); |
4132 | ||
d13d1443 | 4133 | switch (ctype) { |
41326c17 | 4134 | case MEM_CGROUP_CHARGE_TYPE_ANON: |
2ff76f11 KH |
4135 | /* |
4136 | * Generally PageAnon tells if it's the anon statistics to be | |
4137 | * updated; but sometimes e.g. mem_cgroup_uncharge_page() is | |
4138 | * used before page reached the stage of being marked PageAnon. | |
4139 | */ | |
b2402857 KH |
4140 | anon = true; |
4141 | /* fallthrough */ | |
8a9478ca | 4142 | case MEM_CGROUP_CHARGE_TYPE_DROP: |
ac39cf8c | 4143 | /* See mem_cgroup_prepare_migration() */ |
0030f535 JW |
4144 | if (page_mapped(page)) |
4145 | goto unlock_out; | |
4146 | /* | |
4147 | * Pages under migration may not be uncharged. But | |
4148 | * end_migration() /must/ be the one uncharging the | |
4149 | * unused post-migration page and so it has to call | |
4150 | * here with the migration bit still set. See the | |
4151 | * res_counter handling below. | |
4152 | */ | |
4153 | if (!end_migration && PageCgroupMigration(pc)) | |
d13d1443 KH |
4154 | goto unlock_out; |
4155 | break; | |
4156 | case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: | |
4157 | if (!PageAnon(page)) { /* Shared memory */ | |
4158 | if (page->mapping && !page_is_file_cache(page)) | |
4159 | goto unlock_out; | |
4160 | } else if (page_mapped(page)) /* Anon */ | |
4161 | goto unlock_out; | |
4162 | break; | |
4163 | default: | |
4164 | break; | |
52d4b9ac | 4165 | } |
d13d1443 | 4166 | |
b070e65c | 4167 | mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); |
04046e1a | 4168 | |
52d4b9ac | 4169 | ClearPageCgroupUsed(pc); |
544122e5 KH |
4170 | /* |
4171 | * pc->mem_cgroup is not cleared here. It will be accessed when it's | |
4172 | * freed from LRU. This is safe because uncharged page is expected not | |
4173 | * to be reused (freed soon). Exception is SwapCache, it's handled by | |
4174 | * special functions. | |
4175 | */ | |
b9c565d5 | 4176 | |
52d4b9ac | 4177 | unlock_page_cgroup(pc); |
f75ca962 | 4178 | /* |
c0ff4b85 | 4179 | * even after unlock, we have memcg->res.usage here and this memcg |
f75ca962 KH |
4180 | * will never be freed. |
4181 | */ | |
c0ff4b85 | 4182 | memcg_check_events(memcg, page); |
f75ca962 | 4183 | if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { |
c0ff4b85 R |
4184 | mem_cgroup_swap_statistics(memcg, true); |
4185 | mem_cgroup_get(memcg); | |
f75ca962 | 4186 | } |
0030f535 JW |
4187 | /* |
4188 | * Migration does not charge the res_counter for the | |
4189 | * replacement page, so leave it alone when phasing out the | |
4190 | * page that is unused after the migration. | |
4191 | */ | |
4192 | if (!end_migration && !mem_cgroup_is_root(memcg)) | |
c0ff4b85 | 4193 | mem_cgroup_do_uncharge(memcg, nr_pages, ctype); |
6d12e2d8 | 4194 | |
c0ff4b85 | 4195 | return memcg; |
d13d1443 KH |
4196 | |
4197 | unlock_out: | |
4198 | unlock_page_cgroup(pc); | |
8c7c6e34 | 4199 | return NULL; |
3c541e14 BS |
4200 | } |
4201 | ||
69029cd5 KH |
4202 | void mem_cgroup_uncharge_page(struct page *page) |
4203 | { | |
52d4b9ac KH |
4204 | /* early check. */ |
4205 | if (page_mapped(page)) | |
4206 | return; | |
40f23a21 | 4207 | VM_BUG_ON(page->mapping && !PageAnon(page)); |
0c59b89c JW |
4208 | if (PageSwapCache(page)) |
4209 | return; | |
0030f535 | 4210 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); |
69029cd5 KH |
4211 | } |
4212 | ||
4213 | void mem_cgroup_uncharge_cache_page(struct page *page) | |
4214 | { | |
4215 | VM_BUG_ON(page_mapped(page)); | |
b7abea96 | 4216 | VM_BUG_ON(page->mapping); |
0030f535 | 4217 | __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); |
69029cd5 KH |
4218 | } |
4219 | ||
569b846d KH |
4220 | /* |
4221 | * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. | |
4222 | * In that cases, pages are freed continuously and we can expect pages | |
4223 | * are in the same memcg. All these calls itself limits the number of | |
4224 | * pages freed at once, then uncharge_start/end() is called properly. | |
4225 | * This may be called prural(2) times in a context, | |
4226 | */ | |
4227 | ||
4228 | void mem_cgroup_uncharge_start(void) | |
4229 | { | |
4230 | current->memcg_batch.do_batch++; | |
4231 | /* We can do nest. */ | |
4232 | if (current->memcg_batch.do_batch == 1) { | |
4233 | current->memcg_batch.memcg = NULL; | |
7ffd4ca7 JW |
4234 | current->memcg_batch.nr_pages = 0; |
4235 | current->memcg_batch.memsw_nr_pages = 0; | |
569b846d KH |
4236 | } |
4237 | } | |
4238 | ||
4239 | void mem_cgroup_uncharge_end(void) | |
4240 | { | |
4241 | struct memcg_batch_info *batch = ¤t->memcg_batch; | |
4242 | ||
4243 | if (!batch->do_batch) | |
4244 | return; | |
4245 | ||
4246 | batch->do_batch--; | |
4247 | if (batch->do_batch) /* If stacked, do nothing. */ | |
4248 | return; | |
4249 | ||
4250 | if (!batch->memcg) | |
4251 | return; | |
4252 | /* | |
4253 | * This "batch->memcg" is valid without any css_get/put etc... | |
4254 | * bacause we hide charges behind us. | |
4255 | */ | |
7ffd4ca7 JW |
4256 | if (batch->nr_pages) |
4257 | res_counter_uncharge(&batch->memcg->res, | |
4258 | batch->nr_pages * PAGE_SIZE); | |
4259 | if (batch->memsw_nr_pages) | |
4260 | res_counter_uncharge(&batch->memcg->memsw, | |
4261 | batch->memsw_nr_pages * PAGE_SIZE); | |
3c11ecf4 | 4262 | memcg_oom_recover(batch->memcg); |
569b846d KH |
4263 | /* forget this pointer (for sanity check) */ |
4264 | batch->memcg = NULL; | |
4265 | } | |
4266 | ||
e767e056 | 4267 | #ifdef CONFIG_SWAP |
8c7c6e34 | 4268 | /* |
e767e056 | 4269 | * called after __delete_from_swap_cache() and drop "page" account. |
8c7c6e34 KH |
4270 | * memcg information is recorded to swap_cgroup of "ent" |
4271 | */ | |
8a9478ca KH |
4272 | void |
4273 | mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) | |
8c7c6e34 KH |
4274 | { |
4275 | struct mem_cgroup *memcg; | |
8a9478ca KH |
4276 | int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; |
4277 | ||
4278 | if (!swapout) /* this was a swap cache but the swap is unused ! */ | |
4279 | ctype = MEM_CGROUP_CHARGE_TYPE_DROP; | |
4280 | ||
0030f535 | 4281 | memcg = __mem_cgroup_uncharge_common(page, ctype, false); |
8c7c6e34 | 4282 | |
f75ca962 KH |
4283 | /* |
4284 | * record memcg information, if swapout && memcg != NULL, | |
4285 | * mem_cgroup_get() was called in uncharge(). | |
4286 | */ | |
4287 | if (do_swap_account && swapout && memcg) | |
a3b2d692 | 4288 | swap_cgroup_record(ent, css_id(&memcg->css)); |
8c7c6e34 | 4289 | } |
e767e056 | 4290 | #endif |
8c7c6e34 | 4291 | |
c255a458 | 4292 | #ifdef CONFIG_MEMCG_SWAP |
8c7c6e34 KH |
4293 | /* |
4294 | * called from swap_entry_free(). remove record in swap_cgroup and | |
4295 | * uncharge "memsw" account. | |
4296 | */ | |
4297 | void mem_cgroup_uncharge_swap(swp_entry_t ent) | |
d13d1443 | 4298 | { |
8c7c6e34 | 4299 | struct mem_cgroup *memcg; |
a3b2d692 | 4300 | unsigned short id; |
8c7c6e34 KH |
4301 | |
4302 | if (!do_swap_account) | |
4303 | return; | |
4304 | ||
a3b2d692 KH |
4305 | id = swap_cgroup_record(ent, 0); |
4306 | rcu_read_lock(); | |
4307 | memcg = mem_cgroup_lookup(id); | |
8c7c6e34 | 4308 | if (memcg) { |
a3b2d692 KH |
4309 | /* |
4310 | * We uncharge this because swap is freed. | |
4311 | * This memcg can be obsolete one. We avoid calling css_tryget | |
4312 | */ | |
0c3e73e8 | 4313 | if (!mem_cgroup_is_root(memcg)) |
4e649152 | 4314 | res_counter_uncharge(&memcg->memsw, PAGE_SIZE); |
0c3e73e8 | 4315 | mem_cgroup_swap_statistics(memcg, false); |
8c7c6e34 KH |
4316 | mem_cgroup_put(memcg); |
4317 | } | |
a3b2d692 | 4318 | rcu_read_unlock(); |
d13d1443 | 4319 | } |
02491447 DN |
4320 | |
4321 | /** | |
4322 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
4323 | * @entry: swap entry to be moved | |
4324 | * @from: mem_cgroup which the entry is moved from | |
4325 | * @to: mem_cgroup which the entry is moved to | |
4326 | * | |
4327 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
4328 | * as the mem_cgroup's id of @from. | |
4329 | * | |
4330 | * Returns 0 on success, -EINVAL on failure. | |
4331 | * | |
4332 | * The caller must have charged to @to, IOW, called res_counter_charge() about | |
4333 | * both res and memsw, and called css_get(). | |
4334 | */ | |
4335 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 4336 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
4337 | { |
4338 | unsigned short old_id, new_id; | |
4339 | ||
4340 | old_id = css_id(&from->css); | |
4341 | new_id = css_id(&to->css); | |
4342 | ||
4343 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
02491447 | 4344 | mem_cgroup_swap_statistics(from, false); |
483c30b5 | 4345 | mem_cgroup_swap_statistics(to, true); |
02491447 | 4346 | /* |
483c30b5 DN |
4347 | * This function is only called from task migration context now. |
4348 | * It postpones res_counter and refcount handling till the end | |
4349 | * of task migration(mem_cgroup_clear_mc()) for performance | |
4350 | * improvement. But we cannot postpone mem_cgroup_get(to) | |
4351 | * because if the process that has been moved to @to does | |
4352 | * swap-in, the refcount of @to might be decreased to 0. | |
02491447 | 4353 | */ |
02491447 | 4354 | mem_cgroup_get(to); |
02491447 DN |
4355 | return 0; |
4356 | } | |
4357 | return -EINVAL; | |
4358 | } | |
4359 | #else | |
4360 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 4361 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
4362 | { |
4363 | return -EINVAL; | |
4364 | } | |
8c7c6e34 | 4365 | #endif |
d13d1443 | 4366 | |
ae41be37 | 4367 | /* |
01b1ae63 KH |
4368 | * Before starting migration, account PAGE_SIZE to mem_cgroup that the old |
4369 | * page belongs to. | |
ae41be37 | 4370 | */ |
0030f535 JW |
4371 | void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, |
4372 | struct mem_cgroup **memcgp) | |
ae41be37 | 4373 | { |
c0ff4b85 | 4374 | struct mem_cgroup *memcg = NULL; |
b32967ff | 4375 | unsigned int nr_pages = 1; |
7ec99d62 | 4376 | struct page_cgroup *pc; |
ac39cf8c | 4377 | enum charge_type ctype; |
8869b8f6 | 4378 | |
72835c86 | 4379 | *memcgp = NULL; |
56039efa | 4380 | |
f8d66542 | 4381 | if (mem_cgroup_disabled()) |
0030f535 | 4382 | return; |
4077960e | 4383 | |
b32967ff MG |
4384 | if (PageTransHuge(page)) |
4385 | nr_pages <<= compound_order(page); | |
4386 | ||
52d4b9ac KH |
4387 | pc = lookup_page_cgroup(page); |
4388 | lock_page_cgroup(pc); | |
4389 | if (PageCgroupUsed(pc)) { | |
c0ff4b85 R |
4390 | memcg = pc->mem_cgroup; |
4391 | css_get(&memcg->css); | |
ac39cf8c AM |
4392 | /* |
4393 | * At migrating an anonymous page, its mapcount goes down | |
4394 | * to 0 and uncharge() will be called. But, even if it's fully | |
4395 | * unmapped, migration may fail and this page has to be | |
4396 | * charged again. We set MIGRATION flag here and delay uncharge | |
4397 | * until end_migration() is called | |
4398 | * | |
4399 | * Corner Case Thinking | |
4400 | * A) | |
4401 | * When the old page was mapped as Anon and it's unmap-and-freed | |
4402 | * while migration was ongoing. | |
4403 | * If unmap finds the old page, uncharge() of it will be delayed | |
4404 | * until end_migration(). If unmap finds a new page, it's | |
4405 | * uncharged when it make mapcount to be 1->0. If unmap code | |
4406 | * finds swap_migration_entry, the new page will not be mapped | |
4407 | * and end_migration() will find it(mapcount==0). | |
4408 | * | |
4409 | * B) | |
4410 | * When the old page was mapped but migraion fails, the kernel | |
4411 | * remaps it. A charge for it is kept by MIGRATION flag even | |
4412 | * if mapcount goes down to 0. We can do remap successfully | |
4413 | * without charging it again. | |
4414 | * | |
4415 | * C) | |
4416 | * The "old" page is under lock_page() until the end of | |
4417 | * migration, so, the old page itself will not be swapped-out. | |
4418 | * If the new page is swapped out before end_migraton, our | |
4419 | * hook to usual swap-out path will catch the event. | |
4420 | */ | |
4421 | if (PageAnon(page)) | |
4422 | SetPageCgroupMigration(pc); | |
e8589cc1 | 4423 | } |
52d4b9ac | 4424 | unlock_page_cgroup(pc); |
ac39cf8c AM |
4425 | /* |
4426 | * If the page is not charged at this point, | |
4427 | * we return here. | |
4428 | */ | |
c0ff4b85 | 4429 | if (!memcg) |
0030f535 | 4430 | return; |
01b1ae63 | 4431 | |
72835c86 | 4432 | *memcgp = memcg; |
ac39cf8c AM |
4433 | /* |
4434 | * We charge new page before it's used/mapped. So, even if unlock_page() | |
4435 | * is called before end_migration, we can catch all events on this new | |
4436 | * page. In the case new page is migrated but not remapped, new page's | |
4437 | * mapcount will be finally 0 and we call uncharge in end_migration(). | |
4438 | */ | |
ac39cf8c | 4439 | if (PageAnon(page)) |
41326c17 | 4440 | ctype = MEM_CGROUP_CHARGE_TYPE_ANON; |
ac39cf8c | 4441 | else |
62ba7442 | 4442 | ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; |
0030f535 JW |
4443 | /* |
4444 | * The page is committed to the memcg, but it's not actually | |
4445 | * charged to the res_counter since we plan on replacing the | |
4446 | * old one and only one page is going to be left afterwards. | |
4447 | */ | |
b32967ff | 4448 | __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); |
ae41be37 | 4449 | } |
8869b8f6 | 4450 | |
69029cd5 | 4451 | /* remove redundant charge if migration failed*/ |
c0ff4b85 | 4452 | void mem_cgroup_end_migration(struct mem_cgroup *memcg, |
50de1dd9 | 4453 | struct page *oldpage, struct page *newpage, bool migration_ok) |
ae41be37 | 4454 | { |
ac39cf8c | 4455 | struct page *used, *unused; |
01b1ae63 | 4456 | struct page_cgroup *pc; |
b2402857 | 4457 | bool anon; |
01b1ae63 | 4458 | |
c0ff4b85 | 4459 | if (!memcg) |
01b1ae63 | 4460 | return; |
b25ed609 | 4461 | |
50de1dd9 | 4462 | if (!migration_ok) { |
ac39cf8c AM |
4463 | used = oldpage; |
4464 | unused = newpage; | |
01b1ae63 | 4465 | } else { |
ac39cf8c | 4466 | used = newpage; |
01b1ae63 KH |
4467 | unused = oldpage; |
4468 | } | |
0030f535 | 4469 | anon = PageAnon(used); |
7d188958 JW |
4470 | __mem_cgroup_uncharge_common(unused, |
4471 | anon ? MEM_CGROUP_CHARGE_TYPE_ANON | |
4472 | : MEM_CGROUP_CHARGE_TYPE_CACHE, | |
4473 | true); | |
0030f535 | 4474 | css_put(&memcg->css); |
69029cd5 | 4475 | /* |
ac39cf8c AM |
4476 | * We disallowed uncharge of pages under migration because mapcount |
4477 | * of the page goes down to zero, temporarly. | |
4478 | * Clear the flag and check the page should be charged. | |
01b1ae63 | 4479 | */ |
ac39cf8c AM |
4480 | pc = lookup_page_cgroup(oldpage); |
4481 | lock_page_cgroup(pc); | |
4482 | ClearPageCgroupMigration(pc); | |
4483 | unlock_page_cgroup(pc); | |
ac39cf8c | 4484 | |
01b1ae63 | 4485 | /* |
ac39cf8c AM |
4486 | * If a page is a file cache, radix-tree replacement is very atomic |
4487 | * and we can skip this check. When it was an Anon page, its mapcount | |
4488 | * goes down to 0. But because we added MIGRATION flage, it's not | |
4489 | * uncharged yet. There are several case but page->mapcount check | |
4490 | * and USED bit check in mem_cgroup_uncharge_page() will do enough | |
4491 | * check. (see prepare_charge() also) | |
69029cd5 | 4492 | */ |
b2402857 | 4493 | if (anon) |
ac39cf8c | 4494 | mem_cgroup_uncharge_page(used); |
ae41be37 | 4495 | } |
78fb7466 | 4496 | |
ab936cbc KH |
4497 | /* |
4498 | * At replace page cache, newpage is not under any memcg but it's on | |
4499 | * LRU. So, this function doesn't touch res_counter but handles LRU | |
4500 | * in correct way. Both pages are locked so we cannot race with uncharge. | |
4501 | */ | |
4502 | void mem_cgroup_replace_page_cache(struct page *oldpage, | |
4503 | struct page *newpage) | |
4504 | { | |
bde05d1c | 4505 | struct mem_cgroup *memcg = NULL; |
ab936cbc | 4506 | struct page_cgroup *pc; |
ab936cbc | 4507 | enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; |
ab936cbc KH |
4508 | |
4509 | if (mem_cgroup_disabled()) | |
4510 | return; | |
4511 | ||
4512 | pc = lookup_page_cgroup(oldpage); | |
4513 | /* fix accounting on old pages */ | |
4514 | lock_page_cgroup(pc); | |
bde05d1c HD |
4515 | if (PageCgroupUsed(pc)) { |
4516 | memcg = pc->mem_cgroup; | |
b070e65c | 4517 | mem_cgroup_charge_statistics(memcg, oldpage, false, -1); |
bde05d1c HD |
4518 | ClearPageCgroupUsed(pc); |
4519 | } | |
ab936cbc KH |
4520 | unlock_page_cgroup(pc); |
4521 | ||
bde05d1c HD |
4522 | /* |
4523 | * When called from shmem_replace_page(), in some cases the | |
4524 | * oldpage has already been charged, and in some cases not. | |
4525 | */ | |
4526 | if (!memcg) | |
4527 | return; | |
ab936cbc KH |
4528 | /* |
4529 | * Even if newpage->mapping was NULL before starting replacement, | |
4530 | * the newpage may be on LRU(or pagevec for LRU) already. We lock | |
4531 | * LRU while we overwrite pc->mem_cgroup. | |
4532 | */ | |
ce587e65 | 4533 | __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); |
ab936cbc KH |
4534 | } |
4535 | ||
f212ad7c DN |
4536 | #ifdef CONFIG_DEBUG_VM |
4537 | static struct page_cgroup *lookup_page_cgroup_used(struct page *page) | |
4538 | { | |
4539 | struct page_cgroup *pc; | |
4540 | ||
4541 | pc = lookup_page_cgroup(page); | |
cfa44946 JW |
4542 | /* |
4543 | * Can be NULL while feeding pages into the page allocator for | |
4544 | * the first time, i.e. during boot or memory hotplug; | |
4545 | * or when mem_cgroup_disabled(). | |
4546 | */ | |
f212ad7c DN |
4547 | if (likely(pc) && PageCgroupUsed(pc)) |
4548 | return pc; | |
4549 | return NULL; | |
4550 | } | |
4551 | ||
4552 | bool mem_cgroup_bad_page_check(struct page *page) | |
4553 | { | |
4554 | if (mem_cgroup_disabled()) | |
4555 | return false; | |
4556 | ||
4557 | return lookup_page_cgroup_used(page) != NULL; | |
4558 | } | |
4559 | ||
4560 | void mem_cgroup_print_bad_page(struct page *page) | |
4561 | { | |
4562 | struct page_cgroup *pc; | |
4563 | ||
4564 | pc = lookup_page_cgroup_used(page); | |
4565 | if (pc) { | |
d045197f AM |
4566 | pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", |
4567 | pc, pc->flags, pc->mem_cgroup); | |
f212ad7c DN |
4568 | } |
4569 | } | |
4570 | #endif | |
4571 | ||
d38d2a75 | 4572 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
8c7c6e34 | 4573 | unsigned long long val) |
628f4235 | 4574 | { |
81d39c20 | 4575 | int retry_count; |
3c11ecf4 | 4576 | u64 memswlimit, memlimit; |
628f4235 | 4577 | int ret = 0; |
81d39c20 KH |
4578 | int children = mem_cgroup_count_children(memcg); |
4579 | u64 curusage, oldusage; | |
3c11ecf4 | 4580 | int enlarge; |
81d39c20 KH |
4581 | |
4582 | /* | |
4583 | * For keeping hierarchical_reclaim simple, how long we should retry | |
4584 | * is depends on callers. We set our retry-count to be function | |
4585 | * of # of children which we should visit in this loop. | |
4586 | */ | |
4587 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; | |
4588 | ||
4589 | oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); | |
628f4235 | 4590 | |
3c11ecf4 | 4591 | enlarge = 0; |
8c7c6e34 | 4592 | while (retry_count) { |
628f4235 KH |
4593 | if (signal_pending(current)) { |
4594 | ret = -EINTR; | |
4595 | break; | |
4596 | } | |
8c7c6e34 KH |
4597 | /* |
4598 | * Rather than hide all in some function, I do this in | |
4599 | * open coded manner. You see what this really does. | |
aaad153e | 4600 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
8c7c6e34 KH |
4601 | */ |
4602 | mutex_lock(&set_limit_mutex); | |
4603 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
4604 | if (memswlimit < val) { | |
4605 | ret = -EINVAL; | |
4606 | mutex_unlock(&set_limit_mutex); | |
628f4235 KH |
4607 | break; |
4608 | } | |
3c11ecf4 KH |
4609 | |
4610 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
4611 | if (memlimit < val) | |
4612 | enlarge = 1; | |
4613 | ||
8c7c6e34 | 4614 | ret = res_counter_set_limit(&memcg->res, val); |
22a668d7 KH |
4615 | if (!ret) { |
4616 | if (memswlimit == val) | |
4617 | memcg->memsw_is_minimum = true; | |
4618 | else | |
4619 | memcg->memsw_is_minimum = false; | |
4620 | } | |
8c7c6e34 KH |
4621 | mutex_unlock(&set_limit_mutex); |
4622 | ||
4623 | if (!ret) | |
4624 | break; | |
4625 | ||
5660048c JW |
4626 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4627 | MEM_CGROUP_RECLAIM_SHRINK); | |
81d39c20 KH |
4628 | curusage = res_counter_read_u64(&memcg->res, RES_USAGE); |
4629 | /* Usage is reduced ? */ | |
4630 | if (curusage >= oldusage) | |
4631 | retry_count--; | |
4632 | else | |
4633 | oldusage = curusage; | |
8c7c6e34 | 4634 | } |
3c11ecf4 KH |
4635 | if (!ret && enlarge) |
4636 | memcg_oom_recover(memcg); | |
14797e23 | 4637 | |
8c7c6e34 KH |
4638 | return ret; |
4639 | } | |
4640 | ||
338c8431 LZ |
4641 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
4642 | unsigned long long val) | |
8c7c6e34 | 4643 | { |
81d39c20 | 4644 | int retry_count; |
3c11ecf4 | 4645 | u64 memlimit, memswlimit, oldusage, curusage; |
81d39c20 KH |
4646 | int children = mem_cgroup_count_children(memcg); |
4647 | int ret = -EBUSY; | |
3c11ecf4 | 4648 | int enlarge = 0; |
8c7c6e34 | 4649 | |
81d39c20 KH |
4650 | /* see mem_cgroup_resize_res_limit */ |
4651 | retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; | |
4652 | oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); | |
8c7c6e34 KH |
4653 | while (retry_count) { |
4654 | if (signal_pending(current)) { | |
4655 | ret = -EINTR; | |
4656 | break; | |
4657 | } | |
4658 | /* | |
4659 | * Rather than hide all in some function, I do this in | |
4660 | * open coded manner. You see what this really does. | |
aaad153e | 4661 | * We have to guarantee memcg->res.limit <= memcg->memsw.limit. |
8c7c6e34 KH |
4662 | */ |
4663 | mutex_lock(&set_limit_mutex); | |
4664 | memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
4665 | if (memlimit > val) { | |
4666 | ret = -EINVAL; | |
4667 | mutex_unlock(&set_limit_mutex); | |
4668 | break; | |
4669 | } | |
3c11ecf4 KH |
4670 | memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); |
4671 | if (memswlimit < val) | |
4672 | enlarge = 1; | |
8c7c6e34 | 4673 | ret = res_counter_set_limit(&memcg->memsw, val); |
22a668d7 KH |
4674 | if (!ret) { |
4675 | if (memlimit == val) | |
4676 | memcg->memsw_is_minimum = true; | |
4677 | else | |
4678 | memcg->memsw_is_minimum = false; | |
4679 | } | |
8c7c6e34 KH |
4680 | mutex_unlock(&set_limit_mutex); |
4681 | ||
4682 | if (!ret) | |
4683 | break; | |
4684 | ||
5660048c JW |
4685 | mem_cgroup_reclaim(memcg, GFP_KERNEL, |
4686 | MEM_CGROUP_RECLAIM_NOSWAP | | |
4687 | MEM_CGROUP_RECLAIM_SHRINK); | |
8c7c6e34 | 4688 | curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); |
81d39c20 | 4689 | /* Usage is reduced ? */ |
8c7c6e34 | 4690 | if (curusage >= oldusage) |
628f4235 | 4691 | retry_count--; |
81d39c20 KH |
4692 | else |
4693 | oldusage = curusage; | |
628f4235 | 4694 | } |
3c11ecf4 KH |
4695 | if (!ret && enlarge) |
4696 | memcg_oom_recover(memcg); | |
628f4235 KH |
4697 | return ret; |
4698 | } | |
4699 | ||
4e416953 | 4700 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
0ae5e89c YH |
4701 | gfp_t gfp_mask, |
4702 | unsigned long *total_scanned) | |
4e416953 BS |
4703 | { |
4704 | unsigned long nr_reclaimed = 0; | |
4705 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
4706 | unsigned long reclaimed; | |
4707 | int loop = 0; | |
4708 | struct mem_cgroup_tree_per_zone *mctz; | |
ef8745c1 | 4709 | unsigned long long excess; |
0ae5e89c | 4710 | unsigned long nr_scanned; |
4e416953 BS |
4711 | |
4712 | if (order > 0) | |
4713 | return 0; | |
4714 | ||
00918b6a | 4715 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); |
4e416953 BS |
4716 | /* |
4717 | * This loop can run a while, specially if mem_cgroup's continuously | |
4718 | * keep exceeding their soft limit and putting the system under | |
4719 | * pressure | |
4720 | */ | |
4721 | do { | |
4722 | if (next_mz) | |
4723 | mz = next_mz; | |
4724 | else | |
4725 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
4726 | if (!mz) | |
4727 | break; | |
4728 | ||
0ae5e89c | 4729 | nr_scanned = 0; |
d79154bb | 4730 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, |
5660048c | 4731 | gfp_mask, &nr_scanned); |
4e416953 | 4732 | nr_reclaimed += reclaimed; |
0ae5e89c | 4733 | *total_scanned += nr_scanned; |
4e416953 BS |
4734 | spin_lock(&mctz->lock); |
4735 | ||
4736 | /* | |
4737 | * If we failed to reclaim anything from this memory cgroup | |
4738 | * it is time to move on to the next cgroup | |
4739 | */ | |
4740 | next_mz = NULL; | |
4741 | if (!reclaimed) { | |
4742 | do { | |
4743 | /* | |
4744 | * Loop until we find yet another one. | |
4745 | * | |
4746 | * By the time we get the soft_limit lock | |
4747 | * again, someone might have aded the | |
4748 | * group back on the RB tree. Iterate to | |
4749 | * make sure we get a different mem. | |
4750 | * mem_cgroup_largest_soft_limit_node returns | |
4751 | * NULL if no other cgroup is present on | |
4752 | * the tree | |
4753 | */ | |
4754 | next_mz = | |
4755 | __mem_cgroup_largest_soft_limit_node(mctz); | |
39cc98f1 | 4756 | if (next_mz == mz) |
d79154bb | 4757 | css_put(&next_mz->memcg->css); |
39cc98f1 | 4758 | else /* next_mz == NULL or other memcg */ |
4e416953 BS |
4759 | break; |
4760 | } while (1); | |
4761 | } | |
d79154bb HD |
4762 | __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); |
4763 | excess = res_counter_soft_limit_excess(&mz->memcg->res); | |
4e416953 BS |
4764 | /* |
4765 | * One school of thought says that we should not add | |
4766 | * back the node to the tree if reclaim returns 0. | |
4767 | * But our reclaim could return 0, simply because due | |
4768 | * to priority we are exposing a smaller subset of | |
4769 | * memory to reclaim from. Consider this as a longer | |
4770 | * term TODO. | |
4771 | */ | |
ef8745c1 | 4772 | /* If excess == 0, no tree ops */ |
d79154bb | 4773 | __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); |
4e416953 | 4774 | spin_unlock(&mctz->lock); |
d79154bb | 4775 | css_put(&mz->memcg->css); |
4e416953 BS |
4776 | loop++; |
4777 | /* | |
4778 | * Could not reclaim anything and there are no more | |
4779 | * mem cgroups to try or we seem to be looping without | |
4780 | * reclaiming anything. | |
4781 | */ | |
4782 | if (!nr_reclaimed && | |
4783 | (next_mz == NULL || | |
4784 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
4785 | break; | |
4786 | } while (!nr_reclaimed); | |
4787 | if (next_mz) | |
d79154bb | 4788 | css_put(&next_mz->memcg->css); |
4e416953 BS |
4789 | return nr_reclaimed; |
4790 | } | |
4791 | ||
2ef37d3f MH |
4792 | /** |
4793 | * mem_cgroup_force_empty_list - clears LRU of a group | |
4794 | * @memcg: group to clear | |
4795 | * @node: NUMA node | |
4796 | * @zid: zone id | |
4797 | * @lru: lru to to clear | |
4798 | * | |
3c935d18 | 4799 | * Traverse a specified page_cgroup list and try to drop them all. This doesn't |
2ef37d3f MH |
4800 | * reclaim the pages page themselves - pages are moved to the parent (or root) |
4801 | * group. | |
cc847582 | 4802 | */ |
2ef37d3f | 4803 | static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, |
08e552c6 | 4804 | int node, int zid, enum lru_list lru) |
cc847582 | 4805 | { |
bea8c150 | 4806 | struct lruvec *lruvec; |
2ef37d3f | 4807 | unsigned long flags; |
072c56c1 | 4808 | struct list_head *list; |
925b7673 JW |
4809 | struct page *busy; |
4810 | struct zone *zone; | |
072c56c1 | 4811 | |
08e552c6 | 4812 | zone = &NODE_DATA(node)->node_zones[zid]; |
bea8c150 HD |
4813 | lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
4814 | list = &lruvec->lists[lru]; | |
cc847582 | 4815 | |
f817ed48 | 4816 | busy = NULL; |
2ef37d3f | 4817 | do { |
925b7673 | 4818 | struct page_cgroup *pc; |
5564e88b JW |
4819 | struct page *page; |
4820 | ||
08e552c6 | 4821 | spin_lock_irqsave(&zone->lru_lock, flags); |
f817ed48 | 4822 | if (list_empty(list)) { |
08e552c6 | 4823 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
52d4b9ac | 4824 | break; |
f817ed48 | 4825 | } |
925b7673 JW |
4826 | page = list_entry(list->prev, struct page, lru); |
4827 | if (busy == page) { | |
4828 | list_move(&page->lru, list); | |
648bcc77 | 4829 | busy = NULL; |
08e552c6 | 4830 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 KH |
4831 | continue; |
4832 | } | |
08e552c6 | 4833 | spin_unlock_irqrestore(&zone->lru_lock, flags); |
f817ed48 | 4834 | |
925b7673 | 4835 | pc = lookup_page_cgroup(page); |
5564e88b | 4836 | |
3c935d18 | 4837 | if (mem_cgroup_move_parent(page, pc, memcg)) { |
f817ed48 | 4838 | /* found lock contention or "pc" is obsolete. */ |
925b7673 | 4839 | busy = page; |
f817ed48 KH |
4840 | cond_resched(); |
4841 | } else | |
4842 | busy = NULL; | |
2ef37d3f | 4843 | } while (!list_empty(list)); |
cc847582 KH |
4844 | } |
4845 | ||
4846 | /* | |
c26251f9 MH |
4847 | * make mem_cgroup's charge to be 0 if there is no task by moving |
4848 | * all the charges and pages to the parent. | |
cc847582 | 4849 | * This enables deleting this mem_cgroup. |
c26251f9 MH |
4850 | * |
4851 | * Caller is responsible for holding css reference on the memcg. | |
cc847582 | 4852 | */ |
ab5196c2 | 4853 | static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) |
cc847582 | 4854 | { |
c26251f9 | 4855 | int node, zid; |
bea207c8 | 4856 | u64 usage; |
f817ed48 | 4857 | |
fce66477 | 4858 | do { |
52d4b9ac KH |
4859 | /* This is for making all *used* pages to be on LRU. */ |
4860 | lru_add_drain_all(); | |
c0ff4b85 | 4861 | drain_all_stock_sync(memcg); |
c0ff4b85 | 4862 | mem_cgroup_start_move(memcg); |
31aaea4a | 4863 | for_each_node_state(node, N_MEMORY) { |
2ef37d3f | 4864 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
f156ab93 HD |
4865 | enum lru_list lru; |
4866 | for_each_lru(lru) { | |
2ef37d3f | 4867 | mem_cgroup_force_empty_list(memcg, |
f156ab93 | 4868 | node, zid, lru); |
f817ed48 | 4869 | } |
1ecaab2b | 4870 | } |
f817ed48 | 4871 | } |
c0ff4b85 R |
4872 | mem_cgroup_end_move(memcg); |
4873 | memcg_oom_recover(memcg); | |
52d4b9ac | 4874 | cond_resched(); |
f817ed48 | 4875 | |
2ef37d3f | 4876 | /* |
bea207c8 GC |
4877 | * Kernel memory may not necessarily be trackable to a specific |
4878 | * process. So they are not migrated, and therefore we can't | |
4879 | * expect their value to drop to 0 here. | |
4880 | * Having res filled up with kmem only is enough. | |
4881 | * | |
2ef37d3f MH |
4882 | * This is a safety check because mem_cgroup_force_empty_list |
4883 | * could have raced with mem_cgroup_replace_page_cache callers | |
4884 | * so the lru seemed empty but the page could have been added | |
4885 | * right after the check. RES_USAGE should be safe as we always | |
4886 | * charge before adding to the LRU. | |
4887 | */ | |
bea207c8 GC |
4888 | usage = res_counter_read_u64(&memcg->res, RES_USAGE) - |
4889 | res_counter_read_u64(&memcg->kmem, RES_USAGE); | |
4890 | } while (usage > 0); | |
c26251f9 MH |
4891 | } |
4892 | ||
b5f99b53 GC |
4893 | /* |
4894 | * This mainly exists for tests during the setting of set of use_hierarchy. | |
4895 | * Since this is the very setting we are changing, the current hierarchy value | |
4896 | * is meaningless | |
4897 | */ | |
4898 | static inline bool __memcg_has_children(struct mem_cgroup *memcg) | |
4899 | { | |
4900 | struct cgroup *pos; | |
4901 | ||
4902 | /* bounce at first found */ | |
4903 | cgroup_for_each_child(pos, memcg->css.cgroup) | |
4904 | return true; | |
4905 | return false; | |
4906 | } | |
4907 | ||
4908 | /* | |
0999821b GC |
4909 | * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed |
4910 | * to be already dead (as in mem_cgroup_force_empty, for instance). This is | |
b5f99b53 GC |
4911 | * from mem_cgroup_count_children(), in the sense that we don't really care how |
4912 | * many children we have; we only need to know if we have any. It also counts | |
4913 | * any memcg without hierarchy as infertile. | |
4914 | */ | |
4915 | static inline bool memcg_has_children(struct mem_cgroup *memcg) | |
4916 | { | |
4917 | return memcg->use_hierarchy && __memcg_has_children(memcg); | |
4918 | } | |
4919 | ||
c26251f9 MH |
4920 | /* |
4921 | * Reclaims as many pages from the given memcg as possible and moves | |
4922 | * the rest to the parent. | |
4923 | * | |
4924 | * Caller is responsible for holding css reference for memcg. | |
4925 | */ | |
4926 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
4927 | { | |
4928 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
4929 | struct cgroup *cgrp = memcg->css.cgroup; | |
f817ed48 | 4930 | |
c1e862c1 | 4931 | /* returns EBUSY if there is a task or if we come here twice. */ |
c26251f9 MH |
4932 | if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) |
4933 | return -EBUSY; | |
4934 | ||
c1e862c1 KH |
4935 | /* we call try-to-free pages for make this cgroup empty */ |
4936 | lru_add_drain_all(); | |
f817ed48 | 4937 | /* try to free all pages in this cgroup */ |
569530fb | 4938 | while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { |
f817ed48 | 4939 | int progress; |
c1e862c1 | 4940 | |
c26251f9 MH |
4941 | if (signal_pending(current)) |
4942 | return -EINTR; | |
4943 | ||
c0ff4b85 | 4944 | progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, |
185efc0f | 4945 | false); |
c1e862c1 | 4946 | if (!progress) { |
f817ed48 | 4947 | nr_retries--; |
c1e862c1 | 4948 | /* maybe some writeback is necessary */ |
8aa7e847 | 4949 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
c1e862c1 | 4950 | } |
f817ed48 KH |
4951 | |
4952 | } | |
08e552c6 | 4953 | lru_add_drain(); |
ab5196c2 MH |
4954 | mem_cgroup_reparent_charges(memcg); |
4955 | ||
4956 | return 0; | |
cc847582 KH |
4957 | } |
4958 | ||
6bbda35c | 4959 | static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) |
c1e862c1 | 4960 | { |
c26251f9 MH |
4961 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
4962 | int ret; | |
4963 | ||
d8423011 MH |
4964 | if (mem_cgroup_is_root(memcg)) |
4965 | return -EINVAL; | |
c26251f9 MH |
4966 | css_get(&memcg->css); |
4967 | ret = mem_cgroup_force_empty(memcg); | |
4968 | css_put(&memcg->css); | |
4969 | ||
4970 | return ret; | |
c1e862c1 KH |
4971 | } |
4972 | ||
4973 | ||
18f59ea7 BS |
4974 | static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) |
4975 | { | |
4976 | return mem_cgroup_from_cont(cont)->use_hierarchy; | |
4977 | } | |
4978 | ||
4979 | static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, | |
4980 | u64 val) | |
4981 | { | |
4982 | int retval = 0; | |
c0ff4b85 | 4983 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
18f59ea7 | 4984 | struct cgroup *parent = cont->parent; |
c0ff4b85 | 4985 | struct mem_cgroup *parent_memcg = NULL; |
18f59ea7 BS |
4986 | |
4987 | if (parent) | |
c0ff4b85 | 4988 | parent_memcg = mem_cgroup_from_cont(parent); |
18f59ea7 | 4989 | |
0999821b | 4990 | mutex_lock(&memcg_create_mutex); |
567fb435 GC |
4991 | |
4992 | if (memcg->use_hierarchy == val) | |
4993 | goto out; | |
4994 | ||
18f59ea7 | 4995 | /* |
af901ca1 | 4996 | * If parent's use_hierarchy is set, we can't make any modifications |
18f59ea7 BS |
4997 | * in the child subtrees. If it is unset, then the change can |
4998 | * occur, provided the current cgroup has no children. | |
4999 | * | |
5000 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
5001 | * set if there are no children. | |
5002 | */ | |
c0ff4b85 | 5003 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
18f59ea7 | 5004 | (val == 1 || val == 0)) { |
b5f99b53 | 5005 | if (!__memcg_has_children(memcg)) |
c0ff4b85 | 5006 | memcg->use_hierarchy = val; |
18f59ea7 BS |
5007 | else |
5008 | retval = -EBUSY; | |
5009 | } else | |
5010 | retval = -EINVAL; | |
567fb435 GC |
5011 | |
5012 | out: | |
0999821b | 5013 | mutex_unlock(&memcg_create_mutex); |
18f59ea7 BS |
5014 | |
5015 | return retval; | |
5016 | } | |
5017 | ||
0c3e73e8 | 5018 | |
c0ff4b85 | 5019 | static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, |
7a159cc9 | 5020 | enum mem_cgroup_stat_index idx) |
0c3e73e8 | 5021 | { |
7d74b06f | 5022 | struct mem_cgroup *iter; |
7a159cc9 | 5023 | long val = 0; |
0c3e73e8 | 5024 | |
7a159cc9 | 5025 | /* Per-cpu values can be negative, use a signed accumulator */ |
c0ff4b85 | 5026 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f KH |
5027 | val += mem_cgroup_read_stat(iter, idx); |
5028 | ||
5029 | if (val < 0) /* race ? */ | |
5030 | val = 0; | |
5031 | return val; | |
0c3e73e8 BS |
5032 | } |
5033 | ||
c0ff4b85 | 5034 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) |
104f3928 | 5035 | { |
7d74b06f | 5036 | u64 val; |
104f3928 | 5037 | |
c0ff4b85 | 5038 | if (!mem_cgroup_is_root(memcg)) { |
104f3928 | 5039 | if (!swap) |
65c64ce8 | 5040 | return res_counter_read_u64(&memcg->res, RES_USAGE); |
104f3928 | 5041 | else |
65c64ce8 | 5042 | return res_counter_read_u64(&memcg->memsw, RES_USAGE); |
104f3928 KS |
5043 | } |
5044 | ||
b070e65c DR |
5045 | /* |
5046 | * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS | |
5047 | * as well as in MEM_CGROUP_STAT_RSS_HUGE. | |
5048 | */ | |
c0ff4b85 R |
5049 | val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); |
5050 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); | |
104f3928 | 5051 | |
7d74b06f | 5052 | if (swap) |
bff6bb83 | 5053 | val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); |
104f3928 KS |
5054 | |
5055 | return val << PAGE_SHIFT; | |
5056 | } | |
5057 | ||
af36f906 TH |
5058 | static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, |
5059 | struct file *file, char __user *buf, | |
5060 | size_t nbytes, loff_t *ppos) | |
8cdea7c0 | 5061 | { |
c0ff4b85 | 5062 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
af36f906 | 5063 | char str[64]; |
104f3928 | 5064 | u64 val; |
86ae53e1 GC |
5065 | int name, len; |
5066 | enum res_type type; | |
8c7c6e34 KH |
5067 | |
5068 | type = MEMFILE_TYPE(cft->private); | |
5069 | name = MEMFILE_ATTR(cft->private); | |
af36f906 | 5070 | |
8c7c6e34 KH |
5071 | switch (type) { |
5072 | case _MEM: | |
104f3928 | 5073 | if (name == RES_USAGE) |
c0ff4b85 | 5074 | val = mem_cgroup_usage(memcg, false); |
104f3928 | 5075 | else |
c0ff4b85 | 5076 | val = res_counter_read_u64(&memcg->res, name); |
8c7c6e34 KH |
5077 | break; |
5078 | case _MEMSWAP: | |
104f3928 | 5079 | if (name == RES_USAGE) |
c0ff4b85 | 5080 | val = mem_cgroup_usage(memcg, true); |
104f3928 | 5081 | else |
c0ff4b85 | 5082 | val = res_counter_read_u64(&memcg->memsw, name); |
8c7c6e34 | 5083 | break; |
510fc4e1 GC |
5084 | case _KMEM: |
5085 | val = res_counter_read_u64(&memcg->kmem, name); | |
5086 | break; | |
8c7c6e34 KH |
5087 | default: |
5088 | BUG(); | |
8c7c6e34 | 5089 | } |
af36f906 TH |
5090 | |
5091 | len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); | |
5092 | return simple_read_from_buffer(buf, nbytes, ppos, str, len); | |
8cdea7c0 | 5093 | } |
510fc4e1 GC |
5094 | |
5095 | static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) | |
5096 | { | |
5097 | int ret = -EINVAL; | |
5098 | #ifdef CONFIG_MEMCG_KMEM | |
5099 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); | |
5100 | /* | |
5101 | * For simplicity, we won't allow this to be disabled. It also can't | |
5102 | * be changed if the cgroup has children already, or if tasks had | |
5103 | * already joined. | |
5104 | * | |
5105 | * If tasks join before we set the limit, a person looking at | |
5106 | * kmem.usage_in_bytes will have no way to determine when it took | |
5107 | * place, which makes the value quite meaningless. | |
5108 | * | |
5109 | * After it first became limited, changes in the value of the limit are | |
5110 | * of course permitted. | |
510fc4e1 | 5111 | */ |
0999821b | 5112 | mutex_lock(&memcg_create_mutex); |
510fc4e1 GC |
5113 | mutex_lock(&set_limit_mutex); |
5114 | if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { | |
b5f99b53 | 5115 | if (cgroup_task_count(cont) || memcg_has_children(memcg)) { |
510fc4e1 GC |
5116 | ret = -EBUSY; |
5117 | goto out; | |
5118 | } | |
5119 | ret = res_counter_set_limit(&memcg->kmem, val); | |
5120 | VM_BUG_ON(ret); | |
5121 | ||
55007d84 GC |
5122 | ret = memcg_update_cache_sizes(memcg); |
5123 | if (ret) { | |
5124 | res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); | |
5125 | goto out; | |
5126 | } | |
692e89ab GC |
5127 | static_key_slow_inc(&memcg_kmem_enabled_key); |
5128 | /* | |
5129 | * setting the active bit after the inc will guarantee no one | |
5130 | * starts accounting before all call sites are patched | |
5131 | */ | |
5132 | memcg_kmem_set_active(memcg); | |
5133 | ||
7de37682 GC |
5134 | /* |
5135 | * kmem charges can outlive the cgroup. In the case of slab | |
5136 | * pages, for instance, a page contain objects from various | |
5137 | * processes, so it is unfeasible to migrate them away. We | |
5138 | * need to reference count the memcg because of that. | |
5139 | */ | |
5140 | mem_cgroup_get(memcg); | |
510fc4e1 GC |
5141 | } else |
5142 | ret = res_counter_set_limit(&memcg->kmem, val); | |
5143 | out: | |
5144 | mutex_unlock(&set_limit_mutex); | |
0999821b | 5145 | mutex_unlock(&memcg_create_mutex); |
510fc4e1 GC |
5146 | #endif |
5147 | return ret; | |
5148 | } | |
5149 | ||
6d043990 | 5150 | #ifdef CONFIG_MEMCG_KMEM |
55007d84 | 5151 | static int memcg_propagate_kmem(struct mem_cgroup *memcg) |
510fc4e1 | 5152 | { |
55007d84 | 5153 | int ret = 0; |
510fc4e1 GC |
5154 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
5155 | if (!parent) | |
55007d84 GC |
5156 | goto out; |
5157 | ||
510fc4e1 | 5158 | memcg->kmem_account_flags = parent->kmem_account_flags; |
a8964b9b GC |
5159 | /* |
5160 | * When that happen, we need to disable the static branch only on those | |
5161 | * memcgs that enabled it. To achieve this, we would be forced to | |
5162 | * complicate the code by keeping track of which memcgs were the ones | |
5163 | * that actually enabled limits, and which ones got it from its | |
5164 | * parents. | |
5165 | * | |
5166 | * It is a lot simpler just to do static_key_slow_inc() on every child | |
5167 | * that is accounted. | |
5168 | */ | |
55007d84 GC |
5169 | if (!memcg_kmem_is_active(memcg)) |
5170 | goto out; | |
5171 | ||
5172 | /* | |
5173 | * destroy(), called if we fail, will issue static_key_slow_inc() and | |
5174 | * mem_cgroup_put() if kmem is enabled. We have to either call them | |
5175 | * unconditionally, or clear the KMEM_ACTIVE flag. I personally find | |
5176 | * this more consistent, since it always leads to the same destroy path | |
5177 | */ | |
5178 | mem_cgroup_get(memcg); | |
5179 | static_key_slow_inc(&memcg_kmem_enabled_key); | |
5180 | ||
5181 | mutex_lock(&set_limit_mutex); | |
5182 | ret = memcg_update_cache_sizes(memcg); | |
5183 | mutex_unlock(&set_limit_mutex); | |
55007d84 GC |
5184 | out: |
5185 | return ret; | |
510fc4e1 | 5186 | } |
6d043990 | 5187 | #endif /* CONFIG_MEMCG_KMEM */ |
510fc4e1 | 5188 | |
628f4235 KH |
5189 | /* |
5190 | * The user of this function is... | |
5191 | * RES_LIMIT. | |
5192 | */ | |
856c13aa PM |
5193 | static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, |
5194 | const char *buffer) | |
8cdea7c0 | 5195 | { |
628f4235 | 5196 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
86ae53e1 GC |
5197 | enum res_type type; |
5198 | int name; | |
628f4235 KH |
5199 | unsigned long long val; |
5200 | int ret; | |
5201 | ||
8c7c6e34 KH |
5202 | type = MEMFILE_TYPE(cft->private); |
5203 | name = MEMFILE_ATTR(cft->private); | |
af36f906 | 5204 | |
8c7c6e34 | 5205 | switch (name) { |
628f4235 | 5206 | case RES_LIMIT: |
4b3bde4c BS |
5207 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
5208 | ret = -EINVAL; | |
5209 | break; | |
5210 | } | |
628f4235 KH |
5211 | /* This function does all necessary parse...reuse it */ |
5212 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
8c7c6e34 KH |
5213 | if (ret) |
5214 | break; | |
5215 | if (type == _MEM) | |
628f4235 | 5216 | ret = mem_cgroup_resize_limit(memcg, val); |
510fc4e1 | 5217 | else if (type == _MEMSWAP) |
8c7c6e34 | 5218 | ret = mem_cgroup_resize_memsw_limit(memcg, val); |
510fc4e1 GC |
5219 | else if (type == _KMEM) |
5220 | ret = memcg_update_kmem_limit(cont, val); | |
5221 | else | |
5222 | return -EINVAL; | |
628f4235 | 5223 | break; |
296c81d8 BS |
5224 | case RES_SOFT_LIMIT: |
5225 | ret = res_counter_memparse_write_strategy(buffer, &val); | |
5226 | if (ret) | |
5227 | break; | |
5228 | /* | |
5229 | * For memsw, soft limits are hard to implement in terms | |
5230 | * of semantics, for now, we support soft limits for | |
5231 | * control without swap | |
5232 | */ | |
5233 | if (type == _MEM) | |
5234 | ret = res_counter_set_soft_limit(&memcg->res, val); | |
5235 | else | |
5236 | ret = -EINVAL; | |
5237 | break; | |
628f4235 KH |
5238 | default: |
5239 | ret = -EINVAL; /* should be BUG() ? */ | |
5240 | break; | |
5241 | } | |
5242 | return ret; | |
8cdea7c0 BS |
5243 | } |
5244 | ||
fee7b548 KH |
5245 | static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, |
5246 | unsigned long long *mem_limit, unsigned long long *memsw_limit) | |
5247 | { | |
5248 | struct cgroup *cgroup; | |
5249 | unsigned long long min_limit, min_memsw_limit, tmp; | |
5250 | ||
5251 | min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
5252 | min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
5253 | cgroup = memcg->css.cgroup; | |
5254 | if (!memcg->use_hierarchy) | |
5255 | goto out; | |
5256 | ||
5257 | while (cgroup->parent) { | |
5258 | cgroup = cgroup->parent; | |
5259 | memcg = mem_cgroup_from_cont(cgroup); | |
5260 | if (!memcg->use_hierarchy) | |
5261 | break; | |
5262 | tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); | |
5263 | min_limit = min(min_limit, tmp); | |
5264 | tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); | |
5265 | min_memsw_limit = min(min_memsw_limit, tmp); | |
5266 | } | |
5267 | out: | |
5268 | *mem_limit = min_limit; | |
5269 | *memsw_limit = min_memsw_limit; | |
fee7b548 KH |
5270 | } |
5271 | ||
29f2a4da | 5272 | static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) |
c84872e1 | 5273 | { |
af36f906 | 5274 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
86ae53e1 GC |
5275 | int name; |
5276 | enum res_type type; | |
c84872e1 | 5277 | |
8c7c6e34 KH |
5278 | type = MEMFILE_TYPE(event); |
5279 | name = MEMFILE_ATTR(event); | |
af36f906 | 5280 | |
8c7c6e34 | 5281 | switch (name) { |
29f2a4da | 5282 | case RES_MAX_USAGE: |
8c7c6e34 | 5283 | if (type == _MEM) |
c0ff4b85 | 5284 | res_counter_reset_max(&memcg->res); |
510fc4e1 | 5285 | else if (type == _MEMSWAP) |
c0ff4b85 | 5286 | res_counter_reset_max(&memcg->memsw); |
510fc4e1 GC |
5287 | else if (type == _KMEM) |
5288 | res_counter_reset_max(&memcg->kmem); | |
5289 | else | |
5290 | return -EINVAL; | |
29f2a4da PE |
5291 | break; |
5292 | case RES_FAILCNT: | |
8c7c6e34 | 5293 | if (type == _MEM) |
c0ff4b85 | 5294 | res_counter_reset_failcnt(&memcg->res); |
510fc4e1 | 5295 | else if (type == _MEMSWAP) |
c0ff4b85 | 5296 | res_counter_reset_failcnt(&memcg->memsw); |
510fc4e1 GC |
5297 | else if (type == _KMEM) |
5298 | res_counter_reset_failcnt(&memcg->kmem); | |
5299 | else | |
5300 | return -EINVAL; | |
29f2a4da PE |
5301 | break; |
5302 | } | |
f64c3f54 | 5303 | |
85cc59db | 5304 | return 0; |
c84872e1 PE |
5305 | } |
5306 | ||
7dc74be0 DN |
5307 | static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, |
5308 | struct cftype *cft) | |
5309 | { | |
5310 | return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; | |
5311 | } | |
5312 | ||
02491447 | 5313 | #ifdef CONFIG_MMU |
7dc74be0 DN |
5314 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, |
5315 | struct cftype *cft, u64 val) | |
5316 | { | |
c0ff4b85 | 5317 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
7dc74be0 DN |
5318 | |
5319 | if (val >= (1 << NR_MOVE_TYPE)) | |
5320 | return -EINVAL; | |
ee5e8472 | 5321 | |
7dc74be0 | 5322 | /* |
ee5e8472 GC |
5323 | * No kind of locking is needed in here, because ->can_attach() will |
5324 | * check this value once in the beginning of the process, and then carry | |
5325 | * on with stale data. This means that changes to this value will only | |
5326 | * affect task migrations starting after the change. | |
7dc74be0 | 5327 | */ |
c0ff4b85 | 5328 | memcg->move_charge_at_immigrate = val; |
7dc74be0 DN |
5329 | return 0; |
5330 | } | |
02491447 DN |
5331 | #else |
5332 | static int mem_cgroup_move_charge_write(struct cgroup *cgrp, | |
5333 | struct cftype *cft, u64 val) | |
5334 | { | |
5335 | return -ENOSYS; | |
5336 | } | |
5337 | #endif | |
7dc74be0 | 5338 | |
406eb0c9 | 5339 | #ifdef CONFIG_NUMA |
ab215884 | 5340 | static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, |
fada52ca | 5341 | struct seq_file *m) |
406eb0c9 YH |
5342 | { |
5343 | int nid; | |
5344 | unsigned long total_nr, file_nr, anon_nr, unevictable_nr; | |
5345 | unsigned long node_nr; | |
d79154bb | 5346 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
406eb0c9 | 5347 | |
d79154bb | 5348 | total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); |
406eb0c9 | 5349 | seq_printf(m, "total=%lu", total_nr); |
31aaea4a | 5350 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5351 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); |
406eb0c9 YH |
5352 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5353 | } | |
5354 | seq_putc(m, '\n'); | |
5355 | ||
d79154bb | 5356 | file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); |
406eb0c9 | 5357 | seq_printf(m, "file=%lu", file_nr); |
31aaea4a | 5358 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5359 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
bb2a0de9 | 5360 | LRU_ALL_FILE); |
406eb0c9 YH |
5361 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5362 | } | |
5363 | seq_putc(m, '\n'); | |
5364 | ||
d79154bb | 5365 | anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); |
406eb0c9 | 5366 | seq_printf(m, "anon=%lu", anon_nr); |
31aaea4a | 5367 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5368 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
bb2a0de9 | 5369 | LRU_ALL_ANON); |
406eb0c9 YH |
5370 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5371 | } | |
5372 | seq_putc(m, '\n'); | |
5373 | ||
d79154bb | 5374 | unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); |
406eb0c9 | 5375 | seq_printf(m, "unevictable=%lu", unevictable_nr); |
31aaea4a | 5376 | for_each_node_state(nid, N_MEMORY) { |
d79154bb | 5377 | node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, |
bb2a0de9 | 5378 | BIT(LRU_UNEVICTABLE)); |
406eb0c9 YH |
5379 | seq_printf(m, " N%d=%lu", nid, node_nr); |
5380 | } | |
5381 | seq_putc(m, '\n'); | |
5382 | return 0; | |
5383 | } | |
5384 | #endif /* CONFIG_NUMA */ | |
5385 | ||
af7c4b0e JW |
5386 | static inline void mem_cgroup_lru_names_not_uptodate(void) |
5387 | { | |
5388 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); | |
5389 | } | |
5390 | ||
ab215884 | 5391 | static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, |
78ccf5b5 | 5392 | struct seq_file *m) |
d2ceb9b7 | 5393 | { |
d79154bb | 5394 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
af7c4b0e JW |
5395 | struct mem_cgroup *mi; |
5396 | unsigned int i; | |
406eb0c9 | 5397 | |
af7c4b0e | 5398 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
bff6bb83 | 5399 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 5400 | continue; |
af7c4b0e JW |
5401 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], |
5402 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | |
1dd3a273 | 5403 | } |
7b854121 | 5404 | |
af7c4b0e JW |
5405 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
5406 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | |
5407 | mem_cgroup_read_events(memcg, i)); | |
5408 | ||
5409 | for (i = 0; i < NR_LRU_LISTS; i++) | |
5410 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | |
5411 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | |
5412 | ||
14067bb3 | 5413 | /* Hierarchical information */ |
fee7b548 KH |
5414 | { |
5415 | unsigned long long limit, memsw_limit; | |
d79154bb | 5416 | memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); |
78ccf5b5 | 5417 | seq_printf(m, "hierarchical_memory_limit %llu\n", limit); |
fee7b548 | 5418 | if (do_swap_account) |
78ccf5b5 JW |
5419 | seq_printf(m, "hierarchical_memsw_limit %llu\n", |
5420 | memsw_limit); | |
fee7b548 | 5421 | } |
7f016ee8 | 5422 | |
af7c4b0e JW |
5423 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
5424 | long long val = 0; | |
5425 | ||
bff6bb83 | 5426 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 5427 | continue; |
af7c4b0e JW |
5428 | for_each_mem_cgroup_tree(mi, memcg) |
5429 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | |
5430 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); | |
5431 | } | |
5432 | ||
5433 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
5434 | unsigned long long val = 0; | |
5435 | ||
5436 | for_each_mem_cgroup_tree(mi, memcg) | |
5437 | val += mem_cgroup_read_events(mi, i); | |
5438 | seq_printf(m, "total_%s %llu\n", | |
5439 | mem_cgroup_events_names[i], val); | |
5440 | } | |
5441 | ||
5442 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
5443 | unsigned long long val = 0; | |
5444 | ||
5445 | for_each_mem_cgroup_tree(mi, memcg) | |
5446 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | |
5447 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | |
1dd3a273 | 5448 | } |
14067bb3 | 5449 | |
7f016ee8 | 5450 | #ifdef CONFIG_DEBUG_VM |
7f016ee8 KM |
5451 | { |
5452 | int nid, zid; | |
5453 | struct mem_cgroup_per_zone *mz; | |
89abfab1 | 5454 | struct zone_reclaim_stat *rstat; |
7f016ee8 KM |
5455 | unsigned long recent_rotated[2] = {0, 0}; |
5456 | unsigned long recent_scanned[2] = {0, 0}; | |
5457 | ||
5458 | for_each_online_node(nid) | |
5459 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
d79154bb | 5460 | mz = mem_cgroup_zoneinfo(memcg, nid, zid); |
89abfab1 | 5461 | rstat = &mz->lruvec.reclaim_stat; |
7f016ee8 | 5462 | |
89abfab1 HD |
5463 | recent_rotated[0] += rstat->recent_rotated[0]; |
5464 | recent_rotated[1] += rstat->recent_rotated[1]; | |
5465 | recent_scanned[0] += rstat->recent_scanned[0]; | |
5466 | recent_scanned[1] += rstat->recent_scanned[1]; | |
7f016ee8 | 5467 | } |
78ccf5b5 JW |
5468 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
5469 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | |
5470 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | |
5471 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | |
7f016ee8 KM |
5472 | } |
5473 | #endif | |
5474 | ||
d2ceb9b7 KH |
5475 | return 0; |
5476 | } | |
5477 | ||
a7885eb8 KM |
5478 | static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) |
5479 | { | |
5480 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
5481 | ||
1f4c025b | 5482 | return mem_cgroup_swappiness(memcg); |
a7885eb8 KM |
5483 | } |
5484 | ||
5485 | static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, | |
5486 | u64 val) | |
5487 | { | |
5488 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
5489 | struct mem_cgroup *parent; | |
068b38c1 | 5490 | |
a7885eb8 KM |
5491 | if (val > 100) |
5492 | return -EINVAL; | |
5493 | ||
5494 | if (cgrp->parent == NULL) | |
5495 | return -EINVAL; | |
5496 | ||
5497 | parent = mem_cgroup_from_cont(cgrp->parent); | |
068b38c1 | 5498 | |
0999821b | 5499 | mutex_lock(&memcg_create_mutex); |
068b38c1 | 5500 | |
a7885eb8 | 5501 | /* If under hierarchy, only empty-root can set this value */ |
b5f99b53 | 5502 | if ((parent->use_hierarchy) || memcg_has_children(memcg)) { |
0999821b | 5503 | mutex_unlock(&memcg_create_mutex); |
a7885eb8 | 5504 | return -EINVAL; |
068b38c1 | 5505 | } |
a7885eb8 | 5506 | |
a7885eb8 | 5507 | memcg->swappiness = val; |
a7885eb8 | 5508 | |
0999821b | 5509 | mutex_unlock(&memcg_create_mutex); |
068b38c1 | 5510 | |
a7885eb8 KM |
5511 | return 0; |
5512 | } | |
5513 | ||
2e72b634 KS |
5514 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
5515 | { | |
5516 | struct mem_cgroup_threshold_ary *t; | |
5517 | u64 usage; | |
5518 | int i; | |
5519 | ||
5520 | rcu_read_lock(); | |
5521 | if (!swap) | |
2c488db2 | 5522 | t = rcu_dereference(memcg->thresholds.primary); |
2e72b634 | 5523 | else |
2c488db2 | 5524 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
2e72b634 KS |
5525 | |
5526 | if (!t) | |
5527 | goto unlock; | |
5528 | ||
5529 | usage = mem_cgroup_usage(memcg, swap); | |
5530 | ||
5531 | /* | |
748dad36 | 5532 | * current_threshold points to threshold just below or equal to usage. |
2e72b634 KS |
5533 | * If it's not true, a threshold was crossed after last |
5534 | * call of __mem_cgroup_threshold(). | |
5535 | */ | |
5407a562 | 5536 | i = t->current_threshold; |
2e72b634 KS |
5537 | |
5538 | /* | |
5539 | * Iterate backward over array of thresholds starting from | |
5540 | * current_threshold and check if a threshold is crossed. | |
5541 | * If none of thresholds below usage is crossed, we read | |
5542 | * only one element of the array here. | |
5543 | */ | |
5544 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
5545 | eventfd_signal(t->entries[i].eventfd, 1); | |
5546 | ||
5547 | /* i = current_threshold + 1 */ | |
5548 | i++; | |
5549 | ||
5550 | /* | |
5551 | * Iterate forward over array of thresholds starting from | |
5552 | * current_threshold+1 and check if a threshold is crossed. | |
5553 | * If none of thresholds above usage is crossed, we read | |
5554 | * only one element of the array here. | |
5555 | */ | |
5556 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
5557 | eventfd_signal(t->entries[i].eventfd, 1); | |
5558 | ||
5559 | /* Update current_threshold */ | |
5407a562 | 5560 | t->current_threshold = i - 1; |
2e72b634 KS |
5561 | unlock: |
5562 | rcu_read_unlock(); | |
5563 | } | |
5564 | ||
5565 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
5566 | { | |
ad4ca5f4 KS |
5567 | while (memcg) { |
5568 | __mem_cgroup_threshold(memcg, false); | |
5569 | if (do_swap_account) | |
5570 | __mem_cgroup_threshold(memcg, true); | |
5571 | ||
5572 | memcg = parent_mem_cgroup(memcg); | |
5573 | } | |
2e72b634 KS |
5574 | } |
5575 | ||
5576 | static int compare_thresholds(const void *a, const void *b) | |
5577 | { | |
5578 | const struct mem_cgroup_threshold *_a = a; | |
5579 | const struct mem_cgroup_threshold *_b = b; | |
5580 | ||
5581 | return _a->threshold - _b->threshold; | |
5582 | } | |
5583 | ||
c0ff4b85 | 5584 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
9490ff27 KH |
5585 | { |
5586 | struct mem_cgroup_eventfd_list *ev; | |
5587 | ||
c0ff4b85 | 5588 | list_for_each_entry(ev, &memcg->oom_notify, list) |
9490ff27 KH |
5589 | eventfd_signal(ev->eventfd, 1); |
5590 | return 0; | |
5591 | } | |
5592 | ||
c0ff4b85 | 5593 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
9490ff27 | 5594 | { |
7d74b06f KH |
5595 | struct mem_cgroup *iter; |
5596 | ||
c0ff4b85 | 5597 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 5598 | mem_cgroup_oom_notify_cb(iter); |
9490ff27 KH |
5599 | } |
5600 | ||
5601 | static int mem_cgroup_usage_register_event(struct cgroup *cgrp, | |
5602 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
2e72b634 KS |
5603 | { |
5604 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
5605 | struct mem_cgroup_thresholds *thresholds; |
5606 | struct mem_cgroup_threshold_ary *new; | |
86ae53e1 | 5607 | enum res_type type = MEMFILE_TYPE(cft->private); |
2e72b634 | 5608 | u64 threshold, usage; |
2c488db2 | 5609 | int i, size, ret; |
2e72b634 KS |
5610 | |
5611 | ret = res_counter_memparse_write_strategy(args, &threshold); | |
5612 | if (ret) | |
5613 | return ret; | |
5614 | ||
5615 | mutex_lock(&memcg->thresholds_lock); | |
2c488db2 | 5616 | |
2e72b634 | 5617 | if (type == _MEM) |
2c488db2 | 5618 | thresholds = &memcg->thresholds; |
2e72b634 | 5619 | else if (type == _MEMSWAP) |
2c488db2 | 5620 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
5621 | else |
5622 | BUG(); | |
5623 | ||
5624 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); | |
5625 | ||
5626 | /* Check if a threshold crossed before adding a new one */ | |
2c488db2 | 5627 | if (thresholds->primary) |
2e72b634 KS |
5628 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
5629 | ||
2c488db2 | 5630 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
2e72b634 KS |
5631 | |
5632 | /* Allocate memory for new array of thresholds */ | |
2c488db2 | 5633 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
2e72b634 | 5634 | GFP_KERNEL); |
2c488db2 | 5635 | if (!new) { |
2e72b634 KS |
5636 | ret = -ENOMEM; |
5637 | goto unlock; | |
5638 | } | |
2c488db2 | 5639 | new->size = size; |
2e72b634 KS |
5640 | |
5641 | /* Copy thresholds (if any) to new array */ | |
2c488db2 KS |
5642 | if (thresholds->primary) { |
5643 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
2e72b634 | 5644 | sizeof(struct mem_cgroup_threshold)); |
2c488db2 KS |
5645 | } |
5646 | ||
2e72b634 | 5647 | /* Add new threshold */ |
2c488db2 KS |
5648 | new->entries[size - 1].eventfd = eventfd; |
5649 | new->entries[size - 1].threshold = threshold; | |
2e72b634 KS |
5650 | |
5651 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
2c488db2 | 5652 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
2e72b634 KS |
5653 | compare_thresholds, NULL); |
5654 | ||
5655 | /* Find current threshold */ | |
2c488db2 | 5656 | new->current_threshold = -1; |
2e72b634 | 5657 | for (i = 0; i < size; i++) { |
748dad36 | 5658 | if (new->entries[i].threshold <= usage) { |
2e72b634 | 5659 | /* |
2c488db2 KS |
5660 | * new->current_threshold will not be used until |
5661 | * rcu_assign_pointer(), so it's safe to increment | |
2e72b634 KS |
5662 | * it here. |
5663 | */ | |
2c488db2 | 5664 | ++new->current_threshold; |
748dad36 SZ |
5665 | } else |
5666 | break; | |
2e72b634 KS |
5667 | } |
5668 | ||
2c488db2 KS |
5669 | /* Free old spare buffer and save old primary buffer as spare */ |
5670 | kfree(thresholds->spare); | |
5671 | thresholds->spare = thresholds->primary; | |
5672 | ||
5673 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 5674 | |
907860ed | 5675 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
5676 | synchronize_rcu(); |
5677 | ||
2e72b634 KS |
5678 | unlock: |
5679 | mutex_unlock(&memcg->thresholds_lock); | |
5680 | ||
5681 | return ret; | |
5682 | } | |
5683 | ||
907860ed | 5684 | static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, |
9490ff27 | 5685 | struct cftype *cft, struct eventfd_ctx *eventfd) |
2e72b634 KS |
5686 | { |
5687 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
2c488db2 KS |
5688 | struct mem_cgroup_thresholds *thresholds; |
5689 | struct mem_cgroup_threshold_ary *new; | |
86ae53e1 | 5690 | enum res_type type = MEMFILE_TYPE(cft->private); |
2e72b634 | 5691 | u64 usage; |
2c488db2 | 5692 | int i, j, size; |
2e72b634 KS |
5693 | |
5694 | mutex_lock(&memcg->thresholds_lock); | |
5695 | if (type == _MEM) | |
2c488db2 | 5696 | thresholds = &memcg->thresholds; |
2e72b634 | 5697 | else if (type == _MEMSWAP) |
2c488db2 | 5698 | thresholds = &memcg->memsw_thresholds; |
2e72b634 KS |
5699 | else |
5700 | BUG(); | |
5701 | ||
371528ca AV |
5702 | if (!thresholds->primary) |
5703 | goto unlock; | |
5704 | ||
2e72b634 KS |
5705 | usage = mem_cgroup_usage(memcg, type == _MEMSWAP); |
5706 | ||
5707 | /* Check if a threshold crossed before removing */ | |
5708 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
5709 | ||
5710 | /* Calculate new number of threshold */ | |
2c488db2 KS |
5711 | size = 0; |
5712 | for (i = 0; i < thresholds->primary->size; i++) { | |
5713 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
2e72b634 KS |
5714 | size++; |
5715 | } | |
5716 | ||
2c488db2 | 5717 | new = thresholds->spare; |
907860ed | 5718 | |
2e72b634 KS |
5719 | /* Set thresholds array to NULL if we don't have thresholds */ |
5720 | if (!size) { | |
2c488db2 KS |
5721 | kfree(new); |
5722 | new = NULL; | |
907860ed | 5723 | goto swap_buffers; |
2e72b634 KS |
5724 | } |
5725 | ||
2c488db2 | 5726 | new->size = size; |
2e72b634 KS |
5727 | |
5728 | /* Copy thresholds and find current threshold */ | |
2c488db2 KS |
5729 | new->current_threshold = -1; |
5730 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
5731 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
2e72b634 KS |
5732 | continue; |
5733 | ||
2c488db2 | 5734 | new->entries[j] = thresholds->primary->entries[i]; |
748dad36 | 5735 | if (new->entries[j].threshold <= usage) { |
2e72b634 | 5736 | /* |
2c488db2 | 5737 | * new->current_threshold will not be used |
2e72b634 KS |
5738 | * until rcu_assign_pointer(), so it's safe to increment |
5739 | * it here. | |
5740 | */ | |
2c488db2 | 5741 | ++new->current_threshold; |
2e72b634 KS |
5742 | } |
5743 | j++; | |
5744 | } | |
5745 | ||
907860ed | 5746 | swap_buffers: |
2c488db2 KS |
5747 | /* Swap primary and spare array */ |
5748 | thresholds->spare = thresholds->primary; | |
8c757763 SZ |
5749 | /* If all events are unregistered, free the spare array */ |
5750 | if (!new) { | |
5751 | kfree(thresholds->spare); | |
5752 | thresholds->spare = NULL; | |
5753 | } | |
5754 | ||
2c488db2 | 5755 | rcu_assign_pointer(thresholds->primary, new); |
2e72b634 | 5756 | |
907860ed | 5757 | /* To be sure that nobody uses thresholds */ |
2e72b634 | 5758 | synchronize_rcu(); |
371528ca | 5759 | unlock: |
2e72b634 | 5760 | mutex_unlock(&memcg->thresholds_lock); |
2e72b634 | 5761 | } |
c1e862c1 | 5762 | |
9490ff27 KH |
5763 | static int mem_cgroup_oom_register_event(struct cgroup *cgrp, |
5764 | struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) | |
5765 | { | |
5766 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); | |
5767 | struct mem_cgroup_eventfd_list *event; | |
86ae53e1 | 5768 | enum res_type type = MEMFILE_TYPE(cft->private); |
9490ff27 KH |
5769 | |
5770 | BUG_ON(type != _OOM_TYPE); | |
5771 | event = kmalloc(sizeof(*event), GFP_KERNEL); | |
5772 | if (!event) | |
5773 | return -ENOMEM; | |
5774 | ||
1af8efe9 | 5775 | spin_lock(&memcg_oom_lock); |
9490ff27 KH |
5776 | |
5777 | event->eventfd = eventfd; | |
5778 | list_add(&event->list, &memcg->oom_notify); | |
5779 | ||
5780 | /* already in OOM ? */ | |
79dfdacc | 5781 | if (atomic_read(&memcg->under_oom)) |
9490ff27 | 5782 | eventfd_signal(eventfd, 1); |
1af8efe9 | 5783 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
5784 | |
5785 | return 0; | |
5786 | } | |
5787 | ||
907860ed | 5788 | static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, |
9490ff27 KH |
5789 | struct cftype *cft, struct eventfd_ctx *eventfd) |
5790 | { | |
c0ff4b85 | 5791 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
9490ff27 | 5792 | struct mem_cgroup_eventfd_list *ev, *tmp; |
86ae53e1 | 5793 | enum res_type type = MEMFILE_TYPE(cft->private); |
9490ff27 KH |
5794 | |
5795 | BUG_ON(type != _OOM_TYPE); | |
5796 | ||
1af8efe9 | 5797 | spin_lock(&memcg_oom_lock); |
9490ff27 | 5798 | |
c0ff4b85 | 5799 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
9490ff27 KH |
5800 | if (ev->eventfd == eventfd) { |
5801 | list_del(&ev->list); | |
5802 | kfree(ev); | |
5803 | } | |
5804 | } | |
5805 | ||
1af8efe9 | 5806 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
5807 | } |
5808 | ||
3c11ecf4 KH |
5809 | static int mem_cgroup_oom_control_read(struct cgroup *cgrp, |
5810 | struct cftype *cft, struct cgroup_map_cb *cb) | |
5811 | { | |
c0ff4b85 | 5812 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
3c11ecf4 | 5813 | |
c0ff4b85 | 5814 | cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); |
3c11ecf4 | 5815 | |
c0ff4b85 | 5816 | if (atomic_read(&memcg->under_oom)) |
3c11ecf4 KH |
5817 | cb->fill(cb, "under_oom", 1); |
5818 | else | |
5819 | cb->fill(cb, "under_oom", 0); | |
5820 | return 0; | |
5821 | } | |
5822 | ||
3c11ecf4 KH |
5823 | static int mem_cgroup_oom_control_write(struct cgroup *cgrp, |
5824 | struct cftype *cft, u64 val) | |
5825 | { | |
c0ff4b85 | 5826 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); |
3c11ecf4 KH |
5827 | struct mem_cgroup *parent; |
5828 | ||
5829 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
5830 | if (!cgrp->parent || !((val == 0) || (val == 1))) | |
5831 | return -EINVAL; | |
5832 | ||
5833 | parent = mem_cgroup_from_cont(cgrp->parent); | |
5834 | ||
0999821b | 5835 | mutex_lock(&memcg_create_mutex); |
3c11ecf4 | 5836 | /* oom-kill-disable is a flag for subhierarchy. */ |
b5f99b53 | 5837 | if ((parent->use_hierarchy) || memcg_has_children(memcg)) { |
0999821b | 5838 | mutex_unlock(&memcg_create_mutex); |
3c11ecf4 KH |
5839 | return -EINVAL; |
5840 | } | |
c0ff4b85 | 5841 | memcg->oom_kill_disable = val; |
4d845ebf | 5842 | if (!val) |
c0ff4b85 | 5843 | memcg_oom_recover(memcg); |
0999821b | 5844 | mutex_unlock(&memcg_create_mutex); |
3c11ecf4 KH |
5845 | return 0; |
5846 | } | |
5847 | ||
c255a458 | 5848 | #ifdef CONFIG_MEMCG_KMEM |
cbe128e3 | 5849 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa | 5850 | { |
55007d84 GC |
5851 | int ret; |
5852 | ||
2633d7a0 | 5853 | memcg->kmemcg_id = -1; |
55007d84 GC |
5854 | ret = memcg_propagate_kmem(memcg); |
5855 | if (ret) | |
5856 | return ret; | |
2633d7a0 | 5857 | |
1d62e436 | 5858 | return mem_cgroup_sockets_init(memcg, ss); |
573b400d | 5859 | } |
e5671dfa | 5860 | |
1d62e436 | 5861 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
d1a4c0b3 | 5862 | { |
1d62e436 | 5863 | mem_cgroup_sockets_destroy(memcg); |
7de37682 GC |
5864 | |
5865 | memcg_kmem_mark_dead(memcg); | |
5866 | ||
5867 | if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) | |
5868 | return; | |
5869 | ||
5870 | /* | |
5871 | * Charges already down to 0, undo mem_cgroup_get() done in the charge | |
5872 | * path here, being careful not to race with memcg_uncharge_kmem: it is | |
5873 | * possible that the charges went down to 0 between mark_dead and the | |
5874 | * res_counter read, so in that case, we don't need the put | |
5875 | */ | |
5876 | if (memcg_kmem_test_and_clear_dead(memcg)) | |
5877 | mem_cgroup_put(memcg); | |
d1a4c0b3 | 5878 | } |
e5671dfa | 5879 | #else |
cbe128e3 | 5880 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa GC |
5881 | { |
5882 | return 0; | |
5883 | } | |
d1a4c0b3 | 5884 | |
1d62e436 | 5885 | static void kmem_cgroup_destroy(struct mem_cgroup *memcg) |
d1a4c0b3 GC |
5886 | { |
5887 | } | |
e5671dfa GC |
5888 | #endif |
5889 | ||
8cdea7c0 BS |
5890 | static struct cftype mem_cgroup_files[] = { |
5891 | { | |
0eea1030 | 5892 | .name = "usage_in_bytes", |
8c7c6e34 | 5893 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
af36f906 | 5894 | .read = mem_cgroup_read, |
9490ff27 KH |
5895 | .register_event = mem_cgroup_usage_register_event, |
5896 | .unregister_event = mem_cgroup_usage_unregister_event, | |
8cdea7c0 | 5897 | }, |
c84872e1 PE |
5898 | { |
5899 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 5900 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
29f2a4da | 5901 | .trigger = mem_cgroup_reset, |
af36f906 | 5902 | .read = mem_cgroup_read, |
c84872e1 | 5903 | }, |
8cdea7c0 | 5904 | { |
0eea1030 | 5905 | .name = "limit_in_bytes", |
8c7c6e34 | 5906 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
856c13aa | 5907 | .write_string = mem_cgroup_write, |
af36f906 | 5908 | .read = mem_cgroup_read, |
8cdea7c0 | 5909 | }, |
296c81d8 BS |
5910 | { |
5911 | .name = "soft_limit_in_bytes", | |
5912 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
5913 | .write_string = mem_cgroup_write, | |
af36f906 | 5914 | .read = mem_cgroup_read, |
296c81d8 | 5915 | }, |
8cdea7c0 BS |
5916 | { |
5917 | .name = "failcnt", | |
8c7c6e34 | 5918 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
29f2a4da | 5919 | .trigger = mem_cgroup_reset, |
af36f906 | 5920 | .read = mem_cgroup_read, |
8cdea7c0 | 5921 | }, |
d2ceb9b7 KH |
5922 | { |
5923 | .name = "stat", | |
ab215884 | 5924 | .read_seq_string = memcg_stat_show, |
d2ceb9b7 | 5925 | }, |
c1e862c1 KH |
5926 | { |
5927 | .name = "force_empty", | |
5928 | .trigger = mem_cgroup_force_empty_write, | |
5929 | }, | |
18f59ea7 BS |
5930 | { |
5931 | .name = "use_hierarchy", | |
f00baae7 | 5932 | .flags = CFTYPE_INSANE, |
18f59ea7 BS |
5933 | .write_u64 = mem_cgroup_hierarchy_write, |
5934 | .read_u64 = mem_cgroup_hierarchy_read, | |
5935 | }, | |
a7885eb8 KM |
5936 | { |
5937 | .name = "swappiness", | |
5938 | .read_u64 = mem_cgroup_swappiness_read, | |
5939 | .write_u64 = mem_cgroup_swappiness_write, | |
5940 | }, | |
7dc74be0 DN |
5941 | { |
5942 | .name = "move_charge_at_immigrate", | |
5943 | .read_u64 = mem_cgroup_move_charge_read, | |
5944 | .write_u64 = mem_cgroup_move_charge_write, | |
5945 | }, | |
9490ff27 KH |
5946 | { |
5947 | .name = "oom_control", | |
3c11ecf4 KH |
5948 | .read_map = mem_cgroup_oom_control_read, |
5949 | .write_u64 = mem_cgroup_oom_control_write, | |
9490ff27 KH |
5950 | .register_event = mem_cgroup_oom_register_event, |
5951 | .unregister_event = mem_cgroup_oom_unregister_event, | |
5952 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), | |
5953 | }, | |
70ddf637 AV |
5954 | { |
5955 | .name = "pressure_level", | |
5956 | .register_event = vmpressure_register_event, | |
5957 | .unregister_event = vmpressure_unregister_event, | |
5958 | }, | |
406eb0c9 YH |
5959 | #ifdef CONFIG_NUMA |
5960 | { | |
5961 | .name = "numa_stat", | |
ab215884 | 5962 | .read_seq_string = memcg_numa_stat_show, |
406eb0c9 YH |
5963 | }, |
5964 | #endif | |
510fc4e1 GC |
5965 | #ifdef CONFIG_MEMCG_KMEM |
5966 | { | |
5967 | .name = "kmem.limit_in_bytes", | |
5968 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
5969 | .write_string = mem_cgroup_write, | |
5970 | .read = mem_cgroup_read, | |
5971 | }, | |
5972 | { | |
5973 | .name = "kmem.usage_in_bytes", | |
5974 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
5975 | .read = mem_cgroup_read, | |
5976 | }, | |
5977 | { | |
5978 | .name = "kmem.failcnt", | |
5979 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
5980 | .trigger = mem_cgroup_reset, | |
5981 | .read = mem_cgroup_read, | |
5982 | }, | |
5983 | { | |
5984 | .name = "kmem.max_usage_in_bytes", | |
5985 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
5986 | .trigger = mem_cgroup_reset, | |
5987 | .read = mem_cgroup_read, | |
5988 | }, | |
749c5415 GC |
5989 | #ifdef CONFIG_SLABINFO |
5990 | { | |
5991 | .name = "kmem.slabinfo", | |
5992 | .read_seq_string = mem_cgroup_slabinfo_read, | |
5993 | }, | |
5994 | #endif | |
8c7c6e34 | 5995 | #endif |
6bc10349 | 5996 | { }, /* terminate */ |
af36f906 | 5997 | }; |
8c7c6e34 | 5998 | |
2d11085e MH |
5999 | #ifdef CONFIG_MEMCG_SWAP |
6000 | static struct cftype memsw_cgroup_files[] = { | |
6001 | { | |
6002 | .name = "memsw.usage_in_bytes", | |
6003 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
6004 | .read = mem_cgroup_read, | |
6005 | .register_event = mem_cgroup_usage_register_event, | |
6006 | .unregister_event = mem_cgroup_usage_unregister_event, | |
6007 | }, | |
6008 | { | |
6009 | .name = "memsw.max_usage_in_bytes", | |
6010 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
6011 | .trigger = mem_cgroup_reset, | |
6012 | .read = mem_cgroup_read, | |
6013 | }, | |
6014 | { | |
6015 | .name = "memsw.limit_in_bytes", | |
6016 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
6017 | .write_string = mem_cgroup_write, | |
6018 | .read = mem_cgroup_read, | |
6019 | }, | |
6020 | { | |
6021 | .name = "memsw.failcnt", | |
6022 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
6023 | .trigger = mem_cgroup_reset, | |
6024 | .read = mem_cgroup_read, | |
6025 | }, | |
6026 | { }, /* terminate */ | |
6027 | }; | |
6028 | #endif | |
c0ff4b85 | 6029 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
6d12e2d8 KH |
6030 | { |
6031 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 6032 | struct mem_cgroup_per_zone *mz; |
41e3355d | 6033 | int zone, tmp = node; |
1ecaab2b KH |
6034 | /* |
6035 | * This routine is called against possible nodes. | |
6036 | * But it's BUG to call kmalloc() against offline node. | |
6037 | * | |
6038 | * TODO: this routine can waste much memory for nodes which will | |
6039 | * never be onlined. It's better to use memory hotplug callback | |
6040 | * function. | |
6041 | */ | |
41e3355d KH |
6042 | if (!node_state(node, N_NORMAL_MEMORY)) |
6043 | tmp = -1; | |
17295c88 | 6044 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
6d12e2d8 KH |
6045 | if (!pn) |
6046 | return 1; | |
1ecaab2b | 6047 | |
1ecaab2b KH |
6048 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
6049 | mz = &pn->zoneinfo[zone]; | |
bea8c150 | 6050 | lruvec_init(&mz->lruvec); |
f64c3f54 | 6051 | mz->usage_in_excess = 0; |
4e416953 | 6052 | mz->on_tree = false; |
d79154bb | 6053 | mz->memcg = memcg; |
1ecaab2b | 6054 | } |
0a619e58 | 6055 | memcg->info.nodeinfo[node] = pn; |
6d12e2d8 KH |
6056 | return 0; |
6057 | } | |
6058 | ||
c0ff4b85 | 6059 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
1ecaab2b | 6060 | { |
c0ff4b85 | 6061 | kfree(memcg->info.nodeinfo[node]); |
1ecaab2b KH |
6062 | } |
6063 | ||
33327948 KH |
6064 | static struct mem_cgroup *mem_cgroup_alloc(void) |
6065 | { | |
d79154bb | 6066 | struct mem_cgroup *memcg; |
45cf7ebd | 6067 | size_t size = memcg_size(); |
33327948 | 6068 | |
45cf7ebd | 6069 | /* Can be very big if nr_node_ids is very big */ |
c8dad2bb | 6070 | if (size < PAGE_SIZE) |
d79154bb | 6071 | memcg = kzalloc(size, GFP_KERNEL); |
33327948 | 6072 | else |
d79154bb | 6073 | memcg = vzalloc(size); |
33327948 | 6074 | |
d79154bb | 6075 | if (!memcg) |
e7bbcdf3 DC |
6076 | return NULL; |
6077 | ||
d79154bb HD |
6078 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
6079 | if (!memcg->stat) | |
d2e61b8d | 6080 | goto out_free; |
d79154bb HD |
6081 | spin_lock_init(&memcg->pcp_counter_lock); |
6082 | return memcg; | |
d2e61b8d DC |
6083 | |
6084 | out_free: | |
6085 | if (size < PAGE_SIZE) | |
d79154bb | 6086 | kfree(memcg); |
d2e61b8d | 6087 | else |
d79154bb | 6088 | vfree(memcg); |
d2e61b8d | 6089 | return NULL; |
33327948 KH |
6090 | } |
6091 | ||
59927fb9 | 6092 | /* |
c8b2a36f GC |
6093 | * At destroying mem_cgroup, references from swap_cgroup can remain. |
6094 | * (scanning all at force_empty is too costly...) | |
6095 | * | |
6096 | * Instead of clearing all references at force_empty, we remember | |
6097 | * the number of reference from swap_cgroup and free mem_cgroup when | |
6098 | * it goes down to 0. | |
6099 | * | |
6100 | * Removal of cgroup itself succeeds regardless of refs from swap. | |
59927fb9 | 6101 | */ |
c8b2a36f GC |
6102 | |
6103 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | |
59927fb9 | 6104 | { |
c8b2a36f | 6105 | int node; |
45cf7ebd | 6106 | size_t size = memcg_size(); |
59927fb9 | 6107 | |
c8b2a36f GC |
6108 | mem_cgroup_remove_from_trees(memcg); |
6109 | free_css_id(&mem_cgroup_subsys, &memcg->css); | |
6110 | ||
6111 | for_each_node(node) | |
6112 | free_mem_cgroup_per_zone_info(memcg, node); | |
6113 | ||
6114 | free_percpu(memcg->stat); | |
6115 | ||
3f134619 GC |
6116 | /* |
6117 | * We need to make sure that (at least for now), the jump label | |
6118 | * destruction code runs outside of the cgroup lock. This is because | |
6119 | * get_online_cpus(), which is called from the static_branch update, | |
6120 | * can't be called inside the cgroup_lock. cpusets are the ones | |
6121 | * enforcing this dependency, so if they ever change, we might as well. | |
6122 | * | |
6123 | * schedule_work() will guarantee this happens. Be careful if you need | |
6124 | * to move this code around, and make sure it is outside | |
6125 | * the cgroup_lock. | |
6126 | */ | |
a8964b9b | 6127 | disarm_static_keys(memcg); |
3afe36b1 GC |
6128 | if (size < PAGE_SIZE) |
6129 | kfree(memcg); | |
6130 | else | |
6131 | vfree(memcg); | |
59927fb9 | 6132 | } |
3afe36b1 | 6133 | |
59927fb9 | 6134 | |
8c7c6e34 | 6135 | /* |
c8b2a36f GC |
6136 | * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, |
6137 | * but in process context. The work_freeing structure is overlaid | |
6138 | * on the rcu_freeing structure, which itself is overlaid on memsw. | |
8c7c6e34 | 6139 | */ |
c8b2a36f | 6140 | static void free_work(struct work_struct *work) |
33327948 | 6141 | { |
c8b2a36f | 6142 | struct mem_cgroup *memcg; |
08e552c6 | 6143 | |
c8b2a36f GC |
6144 | memcg = container_of(work, struct mem_cgroup, work_freeing); |
6145 | __mem_cgroup_free(memcg); | |
6146 | } | |
04046e1a | 6147 | |
c8b2a36f GC |
6148 | static void free_rcu(struct rcu_head *rcu_head) |
6149 | { | |
6150 | struct mem_cgroup *memcg; | |
08e552c6 | 6151 | |
c8b2a36f GC |
6152 | memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); |
6153 | INIT_WORK(&memcg->work_freeing, free_work); | |
6154 | schedule_work(&memcg->work_freeing); | |
33327948 KH |
6155 | } |
6156 | ||
c0ff4b85 | 6157 | static void mem_cgroup_get(struct mem_cgroup *memcg) |
8c7c6e34 | 6158 | { |
c0ff4b85 | 6159 | atomic_inc(&memcg->refcnt); |
8c7c6e34 KH |
6160 | } |
6161 | ||
c0ff4b85 | 6162 | static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) |
8c7c6e34 | 6163 | { |
c0ff4b85 R |
6164 | if (atomic_sub_and_test(count, &memcg->refcnt)) { |
6165 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); | |
c8b2a36f | 6166 | call_rcu(&memcg->rcu_freeing, free_rcu); |
7bcc1bb1 DN |
6167 | if (parent) |
6168 | mem_cgroup_put(parent); | |
6169 | } | |
8c7c6e34 KH |
6170 | } |
6171 | ||
c0ff4b85 | 6172 | static void mem_cgroup_put(struct mem_cgroup *memcg) |
483c30b5 | 6173 | { |
c0ff4b85 | 6174 | __mem_cgroup_put(memcg, 1); |
483c30b5 DN |
6175 | } |
6176 | ||
7bcc1bb1 DN |
6177 | /* |
6178 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | |
6179 | */ | |
e1aab161 | 6180 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) |
7bcc1bb1 | 6181 | { |
c0ff4b85 | 6182 | if (!memcg->res.parent) |
7bcc1bb1 | 6183 | return NULL; |
c0ff4b85 | 6184 | return mem_cgroup_from_res_counter(memcg->res.parent, res); |
7bcc1bb1 | 6185 | } |
e1aab161 | 6186 | EXPORT_SYMBOL(parent_mem_cgroup); |
33327948 | 6187 | |
8787a1df | 6188 | static void __init mem_cgroup_soft_limit_tree_init(void) |
f64c3f54 BS |
6189 | { |
6190 | struct mem_cgroup_tree_per_node *rtpn; | |
6191 | struct mem_cgroup_tree_per_zone *rtpz; | |
6192 | int tmp, node, zone; | |
6193 | ||
3ed28fa1 | 6194 | for_each_node(node) { |
f64c3f54 BS |
6195 | tmp = node; |
6196 | if (!node_state(node, N_NORMAL_MEMORY)) | |
6197 | tmp = -1; | |
6198 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | |
8787a1df | 6199 | BUG_ON(!rtpn); |
f64c3f54 BS |
6200 | |
6201 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
6202 | ||
6203 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
6204 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
6205 | rtpz->rb_root = RB_ROOT; | |
6206 | spin_lock_init(&rtpz->lock); | |
6207 | } | |
6208 | } | |
f64c3f54 BS |
6209 | } |
6210 | ||
0eb253e2 | 6211 | static struct cgroup_subsys_state * __ref |
92fb9748 | 6212 | mem_cgroup_css_alloc(struct cgroup *cont) |
8cdea7c0 | 6213 | { |
d142e3e6 | 6214 | struct mem_cgroup *memcg; |
04046e1a | 6215 | long error = -ENOMEM; |
6d12e2d8 | 6216 | int node; |
8cdea7c0 | 6217 | |
c0ff4b85 R |
6218 | memcg = mem_cgroup_alloc(); |
6219 | if (!memcg) | |
04046e1a | 6220 | return ERR_PTR(error); |
78fb7466 | 6221 | |
3ed28fa1 | 6222 | for_each_node(node) |
c0ff4b85 | 6223 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) |
6d12e2d8 | 6224 | goto free_out; |
f64c3f54 | 6225 | |
c077719b | 6226 | /* root ? */ |
28dbc4b6 | 6227 | if (cont->parent == NULL) { |
a41c58a6 | 6228 | root_mem_cgroup = memcg; |
d142e3e6 GC |
6229 | res_counter_init(&memcg->res, NULL); |
6230 | res_counter_init(&memcg->memsw, NULL); | |
6231 | res_counter_init(&memcg->kmem, NULL); | |
18f59ea7 | 6232 | } |
28dbc4b6 | 6233 | |
d142e3e6 GC |
6234 | memcg->last_scanned_node = MAX_NUMNODES; |
6235 | INIT_LIST_HEAD(&memcg->oom_notify); | |
6236 | atomic_set(&memcg->refcnt, 1); | |
6237 | memcg->move_charge_at_immigrate = 0; | |
6238 | mutex_init(&memcg->thresholds_lock); | |
6239 | spin_lock_init(&memcg->move_lock); | |
70ddf637 | 6240 | vmpressure_init(&memcg->vmpressure); |
d142e3e6 GC |
6241 | |
6242 | return &memcg->css; | |
6243 | ||
6244 | free_out: | |
6245 | __mem_cgroup_free(memcg); | |
6246 | return ERR_PTR(error); | |
6247 | } | |
6248 | ||
6249 | static int | |
6250 | mem_cgroup_css_online(struct cgroup *cont) | |
6251 | { | |
6252 | struct mem_cgroup *memcg, *parent; | |
6253 | int error = 0; | |
6254 | ||
6255 | if (!cont->parent) | |
6256 | return 0; | |
6257 | ||
0999821b | 6258 | mutex_lock(&memcg_create_mutex); |
d142e3e6 GC |
6259 | memcg = mem_cgroup_from_cont(cont); |
6260 | parent = mem_cgroup_from_cont(cont->parent); | |
6261 | ||
6262 | memcg->use_hierarchy = parent->use_hierarchy; | |
6263 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
6264 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
6265 | ||
6266 | if (parent->use_hierarchy) { | |
c0ff4b85 R |
6267 | res_counter_init(&memcg->res, &parent->res); |
6268 | res_counter_init(&memcg->memsw, &parent->memsw); | |
510fc4e1 | 6269 | res_counter_init(&memcg->kmem, &parent->kmem); |
55007d84 | 6270 | |
7bcc1bb1 DN |
6271 | /* |
6272 | * We increment refcnt of the parent to ensure that we can | |
6273 | * safely access it on res_counter_charge/uncharge. | |
6274 | * This refcnt will be decremented when freeing this | |
6275 | * mem_cgroup(see mem_cgroup_put). | |
6276 | */ | |
6277 | mem_cgroup_get(parent); | |
18f59ea7 | 6278 | } else { |
c0ff4b85 R |
6279 | res_counter_init(&memcg->res, NULL); |
6280 | res_counter_init(&memcg->memsw, NULL); | |
510fc4e1 | 6281 | res_counter_init(&memcg->kmem, NULL); |
8c7f6edb TH |
6282 | /* |
6283 | * Deeper hierachy with use_hierarchy == false doesn't make | |
6284 | * much sense so let cgroup subsystem know about this | |
6285 | * unfortunate state in our controller. | |
6286 | */ | |
d142e3e6 | 6287 | if (parent != root_mem_cgroup) |
8c7f6edb | 6288 | mem_cgroup_subsys.broken_hierarchy = true; |
18f59ea7 | 6289 | } |
cbe128e3 GC |
6290 | |
6291 | error = memcg_init_kmem(memcg, &mem_cgroup_subsys); | |
0999821b | 6292 | mutex_unlock(&memcg_create_mutex); |
cbe128e3 GC |
6293 | if (error) { |
6294 | /* | |
6295 | * We call put now because our (and parent's) refcnts | |
6296 | * are already in place. mem_cgroup_put() will internally | |
6297 | * call __mem_cgroup_free, so return directly | |
6298 | */ | |
6299 | mem_cgroup_put(memcg); | |
e4715f01 GC |
6300 | if (parent->use_hierarchy) |
6301 | mem_cgroup_put(parent); | |
cbe128e3 | 6302 | } |
d142e3e6 | 6303 | return error; |
8cdea7c0 BS |
6304 | } |
6305 | ||
5f578161 MH |
6306 | /* |
6307 | * Announce all parents that a group from their hierarchy is gone. | |
6308 | */ | |
6309 | static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) | |
6310 | { | |
6311 | struct mem_cgroup *parent = memcg; | |
6312 | ||
6313 | while ((parent = parent_mem_cgroup(parent))) | |
6314 | atomic_inc(&parent->dead_count); | |
6315 | ||
6316 | /* | |
6317 | * if the root memcg is not hierarchical we have to check it | |
6318 | * explicitely. | |
6319 | */ | |
6320 | if (!root_mem_cgroup->use_hierarchy) | |
6321 | atomic_inc(&root_mem_cgroup->dead_count); | |
6322 | } | |
6323 | ||
92fb9748 | 6324 | static void mem_cgroup_css_offline(struct cgroup *cont) |
df878fb0 | 6325 | { |
c0ff4b85 | 6326 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
ec64f515 | 6327 | |
5f578161 | 6328 | mem_cgroup_invalidate_reclaim_iterators(memcg); |
ab5196c2 | 6329 | mem_cgroup_reparent_charges(memcg); |
1f458cbf | 6330 | mem_cgroup_destroy_all_caches(memcg); |
df878fb0 KH |
6331 | } |
6332 | ||
92fb9748 | 6333 | static void mem_cgroup_css_free(struct cgroup *cont) |
8cdea7c0 | 6334 | { |
c0ff4b85 | 6335 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); |
c268e994 | 6336 | |
1d62e436 | 6337 | kmem_cgroup_destroy(memcg); |
d1a4c0b3 | 6338 | |
c0ff4b85 | 6339 | mem_cgroup_put(memcg); |
8cdea7c0 BS |
6340 | } |
6341 | ||
02491447 | 6342 | #ifdef CONFIG_MMU |
7dc74be0 | 6343 | /* Handlers for move charge at task migration. */ |
854ffa8d DN |
6344 | #define PRECHARGE_COUNT_AT_ONCE 256 |
6345 | static int mem_cgroup_do_precharge(unsigned long count) | |
7dc74be0 | 6346 | { |
854ffa8d DN |
6347 | int ret = 0; |
6348 | int batch_count = PRECHARGE_COUNT_AT_ONCE; | |
c0ff4b85 | 6349 | struct mem_cgroup *memcg = mc.to; |
4ffef5fe | 6350 | |
c0ff4b85 | 6351 | if (mem_cgroup_is_root(memcg)) { |
854ffa8d DN |
6352 | mc.precharge += count; |
6353 | /* we don't need css_get for root */ | |
6354 | return ret; | |
6355 | } | |
6356 | /* try to charge at once */ | |
6357 | if (count > 1) { | |
6358 | struct res_counter *dummy; | |
6359 | /* | |
c0ff4b85 | 6360 | * "memcg" cannot be under rmdir() because we've already checked |
854ffa8d DN |
6361 | * by cgroup_lock_live_cgroup() that it is not removed and we |
6362 | * are still under the same cgroup_mutex. So we can postpone | |
6363 | * css_get(). | |
6364 | */ | |
c0ff4b85 | 6365 | if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) |
854ffa8d | 6366 | goto one_by_one; |
c0ff4b85 | 6367 | if (do_swap_account && res_counter_charge(&memcg->memsw, |
854ffa8d | 6368 | PAGE_SIZE * count, &dummy)) { |
c0ff4b85 | 6369 | res_counter_uncharge(&memcg->res, PAGE_SIZE * count); |
854ffa8d DN |
6370 | goto one_by_one; |
6371 | } | |
6372 | mc.precharge += count; | |
854ffa8d DN |
6373 | return ret; |
6374 | } | |
6375 | one_by_one: | |
6376 | /* fall back to one by one charge */ | |
6377 | while (count--) { | |
6378 | if (signal_pending(current)) { | |
6379 | ret = -EINTR; | |
6380 | break; | |
6381 | } | |
6382 | if (!batch_count--) { | |
6383 | batch_count = PRECHARGE_COUNT_AT_ONCE; | |
6384 | cond_resched(); | |
6385 | } | |
c0ff4b85 R |
6386 | ret = __mem_cgroup_try_charge(NULL, |
6387 | GFP_KERNEL, 1, &memcg, false); | |
38c5d72f | 6388 | if (ret) |
854ffa8d | 6389 | /* mem_cgroup_clear_mc() will do uncharge later */ |
38c5d72f | 6390 | return ret; |
854ffa8d DN |
6391 | mc.precharge++; |
6392 | } | |
4ffef5fe DN |
6393 | return ret; |
6394 | } | |
6395 | ||
6396 | /** | |
8d32ff84 | 6397 | * get_mctgt_type - get target type of moving charge |
4ffef5fe DN |
6398 | * @vma: the vma the pte to be checked belongs |
6399 | * @addr: the address corresponding to the pte to be checked | |
6400 | * @ptent: the pte to be checked | |
02491447 | 6401 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
4ffef5fe DN |
6402 | * |
6403 | * Returns | |
6404 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
6405 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
6406 | * move charge. if @target is not NULL, the page is stored in target->page | |
6407 | * with extra refcnt got(Callers should handle it). | |
02491447 DN |
6408 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
6409 | * target for charge migration. if @target is not NULL, the entry is stored | |
6410 | * in target->ent. | |
4ffef5fe DN |
6411 | * |
6412 | * Called with pte lock held. | |
6413 | */ | |
4ffef5fe DN |
6414 | union mc_target { |
6415 | struct page *page; | |
02491447 | 6416 | swp_entry_t ent; |
4ffef5fe DN |
6417 | }; |
6418 | ||
4ffef5fe | 6419 | enum mc_target_type { |
8d32ff84 | 6420 | MC_TARGET_NONE = 0, |
4ffef5fe | 6421 | MC_TARGET_PAGE, |
02491447 | 6422 | MC_TARGET_SWAP, |
4ffef5fe DN |
6423 | }; |
6424 | ||
90254a65 DN |
6425 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
6426 | unsigned long addr, pte_t ptent) | |
4ffef5fe | 6427 | { |
90254a65 | 6428 | struct page *page = vm_normal_page(vma, addr, ptent); |
4ffef5fe | 6429 | |
90254a65 DN |
6430 | if (!page || !page_mapped(page)) |
6431 | return NULL; | |
6432 | if (PageAnon(page)) { | |
6433 | /* we don't move shared anon */ | |
4b91355e | 6434 | if (!move_anon()) |
90254a65 | 6435 | return NULL; |
87946a72 DN |
6436 | } else if (!move_file()) |
6437 | /* we ignore mapcount for file pages */ | |
90254a65 DN |
6438 | return NULL; |
6439 | if (!get_page_unless_zero(page)) | |
6440 | return NULL; | |
6441 | ||
6442 | return page; | |
6443 | } | |
6444 | ||
4b91355e | 6445 | #ifdef CONFIG_SWAP |
90254a65 DN |
6446 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
6447 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6448 | { | |
90254a65 DN |
6449 | struct page *page = NULL; |
6450 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
6451 | ||
6452 | if (!move_anon() || non_swap_entry(ent)) | |
6453 | return NULL; | |
4b91355e KH |
6454 | /* |
6455 | * Because lookup_swap_cache() updates some statistics counter, | |
6456 | * we call find_get_page() with swapper_space directly. | |
6457 | */ | |
33806f06 | 6458 | page = find_get_page(swap_address_space(ent), ent.val); |
90254a65 DN |
6459 | if (do_swap_account) |
6460 | entry->val = ent.val; | |
6461 | ||
6462 | return page; | |
6463 | } | |
4b91355e KH |
6464 | #else |
6465 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
6466 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6467 | { | |
6468 | return NULL; | |
6469 | } | |
6470 | #endif | |
90254a65 | 6471 | |
87946a72 DN |
6472 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
6473 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
6474 | { | |
6475 | struct page *page = NULL; | |
87946a72 DN |
6476 | struct address_space *mapping; |
6477 | pgoff_t pgoff; | |
6478 | ||
6479 | if (!vma->vm_file) /* anonymous vma */ | |
6480 | return NULL; | |
6481 | if (!move_file()) | |
6482 | return NULL; | |
6483 | ||
87946a72 DN |
6484 | mapping = vma->vm_file->f_mapping; |
6485 | if (pte_none(ptent)) | |
6486 | pgoff = linear_page_index(vma, addr); | |
6487 | else /* pte_file(ptent) is true */ | |
6488 | pgoff = pte_to_pgoff(ptent); | |
6489 | ||
6490 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
aa3b1895 HD |
6491 | page = find_get_page(mapping, pgoff); |
6492 | ||
6493 | #ifdef CONFIG_SWAP | |
6494 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
6495 | if (radix_tree_exceptional_entry(page)) { | |
6496 | swp_entry_t swap = radix_to_swp_entry(page); | |
87946a72 | 6497 | if (do_swap_account) |
aa3b1895 | 6498 | *entry = swap; |
33806f06 | 6499 | page = find_get_page(swap_address_space(swap), swap.val); |
87946a72 | 6500 | } |
aa3b1895 | 6501 | #endif |
87946a72 DN |
6502 | return page; |
6503 | } | |
6504 | ||
8d32ff84 | 6505 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
90254a65 DN |
6506 | unsigned long addr, pte_t ptent, union mc_target *target) |
6507 | { | |
6508 | struct page *page = NULL; | |
6509 | struct page_cgroup *pc; | |
8d32ff84 | 6510 | enum mc_target_type ret = MC_TARGET_NONE; |
90254a65 DN |
6511 | swp_entry_t ent = { .val = 0 }; |
6512 | ||
6513 | if (pte_present(ptent)) | |
6514 | page = mc_handle_present_pte(vma, addr, ptent); | |
6515 | else if (is_swap_pte(ptent)) | |
6516 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
87946a72 DN |
6517 | else if (pte_none(ptent) || pte_file(ptent)) |
6518 | page = mc_handle_file_pte(vma, addr, ptent, &ent); | |
90254a65 DN |
6519 | |
6520 | if (!page && !ent.val) | |
8d32ff84 | 6521 | return ret; |
02491447 DN |
6522 | if (page) { |
6523 | pc = lookup_page_cgroup(page); | |
6524 | /* | |
6525 | * Do only loose check w/o page_cgroup lock. | |
6526 | * mem_cgroup_move_account() checks the pc is valid or not under | |
6527 | * the lock. | |
6528 | */ | |
6529 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
6530 | ret = MC_TARGET_PAGE; | |
6531 | if (target) | |
6532 | target->page = page; | |
6533 | } | |
6534 | if (!ret || !target) | |
6535 | put_page(page); | |
6536 | } | |
90254a65 DN |
6537 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
6538 | if (ent.val && !ret && | |
9fb4b7cc | 6539 | css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { |
7f0f1546 KH |
6540 | ret = MC_TARGET_SWAP; |
6541 | if (target) | |
6542 | target->ent = ent; | |
4ffef5fe | 6543 | } |
4ffef5fe DN |
6544 | return ret; |
6545 | } | |
6546 | ||
12724850 NH |
6547 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
6548 | /* | |
6549 | * We don't consider swapping or file mapped pages because THP does not | |
6550 | * support them for now. | |
6551 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
6552 | */ | |
6553 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
6554 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
6555 | { | |
6556 | struct page *page = NULL; | |
6557 | struct page_cgroup *pc; | |
6558 | enum mc_target_type ret = MC_TARGET_NONE; | |
6559 | ||
6560 | page = pmd_page(pmd); | |
6561 | VM_BUG_ON(!page || !PageHead(page)); | |
6562 | if (!move_anon()) | |
6563 | return ret; | |
6564 | pc = lookup_page_cgroup(page); | |
6565 | if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { | |
6566 | ret = MC_TARGET_PAGE; | |
6567 | if (target) { | |
6568 | get_page(page); | |
6569 | target->page = page; | |
6570 | } | |
6571 | } | |
6572 | return ret; | |
6573 | } | |
6574 | #else | |
6575 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
6576 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
6577 | { | |
6578 | return MC_TARGET_NONE; | |
6579 | } | |
6580 | #endif | |
6581 | ||
4ffef5fe DN |
6582 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
6583 | unsigned long addr, unsigned long end, | |
6584 | struct mm_walk *walk) | |
6585 | { | |
6586 | struct vm_area_struct *vma = walk->private; | |
6587 | pte_t *pte; | |
6588 | spinlock_t *ptl; | |
6589 | ||
12724850 NH |
6590 | if (pmd_trans_huge_lock(pmd, vma) == 1) { |
6591 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) | |
6592 | mc.precharge += HPAGE_PMD_NR; | |
6593 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1a5a9906 | 6594 | return 0; |
12724850 | 6595 | } |
03319327 | 6596 | |
45f83cef AA |
6597 | if (pmd_trans_unstable(pmd)) |
6598 | return 0; | |
4ffef5fe DN |
6599 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
6600 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
8d32ff84 | 6601 | if (get_mctgt_type(vma, addr, *pte, NULL)) |
4ffef5fe DN |
6602 | mc.precharge++; /* increment precharge temporarily */ |
6603 | pte_unmap_unlock(pte - 1, ptl); | |
6604 | cond_resched(); | |
6605 | ||
7dc74be0 DN |
6606 | return 0; |
6607 | } | |
6608 | ||
4ffef5fe DN |
6609 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
6610 | { | |
6611 | unsigned long precharge; | |
6612 | struct vm_area_struct *vma; | |
6613 | ||
dfe076b0 | 6614 | down_read(&mm->mmap_sem); |
4ffef5fe DN |
6615 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
6616 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
6617 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
6618 | .mm = mm, | |
6619 | .private = vma, | |
6620 | }; | |
6621 | if (is_vm_hugetlb_page(vma)) | |
6622 | continue; | |
4ffef5fe DN |
6623 | walk_page_range(vma->vm_start, vma->vm_end, |
6624 | &mem_cgroup_count_precharge_walk); | |
6625 | } | |
dfe076b0 | 6626 | up_read(&mm->mmap_sem); |
4ffef5fe DN |
6627 | |
6628 | precharge = mc.precharge; | |
6629 | mc.precharge = 0; | |
6630 | ||
6631 | return precharge; | |
6632 | } | |
6633 | ||
4ffef5fe DN |
6634 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
6635 | { | |
dfe076b0 DN |
6636 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
6637 | ||
6638 | VM_BUG_ON(mc.moving_task); | |
6639 | mc.moving_task = current; | |
6640 | return mem_cgroup_do_precharge(precharge); | |
4ffef5fe DN |
6641 | } |
6642 | ||
dfe076b0 DN |
6643 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
6644 | static void __mem_cgroup_clear_mc(void) | |
4ffef5fe | 6645 | { |
2bd9bb20 KH |
6646 | struct mem_cgroup *from = mc.from; |
6647 | struct mem_cgroup *to = mc.to; | |
6648 | ||
4ffef5fe | 6649 | /* we must uncharge all the leftover precharges from mc.to */ |
854ffa8d DN |
6650 | if (mc.precharge) { |
6651 | __mem_cgroup_cancel_charge(mc.to, mc.precharge); | |
6652 | mc.precharge = 0; | |
6653 | } | |
6654 | /* | |
6655 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
6656 | * we must uncharge here. | |
6657 | */ | |
6658 | if (mc.moved_charge) { | |
6659 | __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); | |
6660 | mc.moved_charge = 0; | |
4ffef5fe | 6661 | } |
483c30b5 DN |
6662 | /* we must fixup refcnts and charges */ |
6663 | if (mc.moved_swap) { | |
483c30b5 DN |
6664 | /* uncharge swap account from the old cgroup */ |
6665 | if (!mem_cgroup_is_root(mc.from)) | |
6666 | res_counter_uncharge(&mc.from->memsw, | |
6667 | PAGE_SIZE * mc.moved_swap); | |
6668 | __mem_cgroup_put(mc.from, mc.moved_swap); | |
6669 | ||
6670 | if (!mem_cgroup_is_root(mc.to)) { | |
6671 | /* | |
6672 | * we charged both to->res and to->memsw, so we should | |
6673 | * uncharge to->res. | |
6674 | */ | |
6675 | res_counter_uncharge(&mc.to->res, | |
6676 | PAGE_SIZE * mc.moved_swap); | |
483c30b5 DN |
6677 | } |
6678 | /* we've already done mem_cgroup_get(mc.to) */ | |
483c30b5 DN |
6679 | mc.moved_swap = 0; |
6680 | } | |
dfe076b0 DN |
6681 | memcg_oom_recover(from); |
6682 | memcg_oom_recover(to); | |
6683 | wake_up_all(&mc.waitq); | |
6684 | } | |
6685 | ||
6686 | static void mem_cgroup_clear_mc(void) | |
6687 | { | |
6688 | struct mem_cgroup *from = mc.from; | |
6689 | ||
6690 | /* | |
6691 | * we must clear moving_task before waking up waiters at the end of | |
6692 | * task migration. | |
6693 | */ | |
6694 | mc.moving_task = NULL; | |
6695 | __mem_cgroup_clear_mc(); | |
2bd9bb20 | 6696 | spin_lock(&mc.lock); |
4ffef5fe DN |
6697 | mc.from = NULL; |
6698 | mc.to = NULL; | |
2bd9bb20 | 6699 | spin_unlock(&mc.lock); |
32047e2a | 6700 | mem_cgroup_end_move(from); |
4ffef5fe DN |
6701 | } |
6702 | ||
761b3ef5 LZ |
6703 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
6704 | struct cgroup_taskset *tset) | |
7dc74be0 | 6705 | { |
2f7ee569 | 6706 | struct task_struct *p = cgroup_taskset_first(tset); |
7dc74be0 | 6707 | int ret = 0; |
c0ff4b85 | 6708 | struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); |
ee5e8472 | 6709 | unsigned long move_charge_at_immigrate; |
7dc74be0 | 6710 | |
ee5e8472 GC |
6711 | /* |
6712 | * We are now commited to this value whatever it is. Changes in this | |
6713 | * tunable will only affect upcoming migrations, not the current one. | |
6714 | * So we need to save it, and keep it going. | |
6715 | */ | |
6716 | move_charge_at_immigrate = memcg->move_charge_at_immigrate; | |
6717 | if (move_charge_at_immigrate) { | |
7dc74be0 DN |
6718 | struct mm_struct *mm; |
6719 | struct mem_cgroup *from = mem_cgroup_from_task(p); | |
6720 | ||
c0ff4b85 | 6721 | VM_BUG_ON(from == memcg); |
7dc74be0 DN |
6722 | |
6723 | mm = get_task_mm(p); | |
6724 | if (!mm) | |
6725 | return 0; | |
7dc74be0 | 6726 | /* We move charges only when we move a owner of the mm */ |
4ffef5fe DN |
6727 | if (mm->owner == p) { |
6728 | VM_BUG_ON(mc.from); | |
6729 | VM_BUG_ON(mc.to); | |
6730 | VM_BUG_ON(mc.precharge); | |
854ffa8d | 6731 | VM_BUG_ON(mc.moved_charge); |
483c30b5 | 6732 | VM_BUG_ON(mc.moved_swap); |
32047e2a | 6733 | mem_cgroup_start_move(from); |
2bd9bb20 | 6734 | spin_lock(&mc.lock); |
4ffef5fe | 6735 | mc.from = from; |
c0ff4b85 | 6736 | mc.to = memcg; |
ee5e8472 | 6737 | mc.immigrate_flags = move_charge_at_immigrate; |
2bd9bb20 | 6738 | spin_unlock(&mc.lock); |
dfe076b0 | 6739 | /* We set mc.moving_task later */ |
4ffef5fe DN |
6740 | |
6741 | ret = mem_cgroup_precharge_mc(mm); | |
6742 | if (ret) | |
6743 | mem_cgroup_clear_mc(); | |
dfe076b0 DN |
6744 | } |
6745 | mmput(mm); | |
7dc74be0 DN |
6746 | } |
6747 | return ret; | |
6748 | } | |
6749 | ||
761b3ef5 LZ |
6750 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
6751 | struct cgroup_taskset *tset) | |
7dc74be0 | 6752 | { |
4ffef5fe | 6753 | mem_cgroup_clear_mc(); |
7dc74be0 DN |
6754 | } |
6755 | ||
4ffef5fe DN |
6756 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
6757 | unsigned long addr, unsigned long end, | |
6758 | struct mm_walk *walk) | |
7dc74be0 | 6759 | { |
4ffef5fe DN |
6760 | int ret = 0; |
6761 | struct vm_area_struct *vma = walk->private; | |
6762 | pte_t *pte; | |
6763 | spinlock_t *ptl; | |
12724850 NH |
6764 | enum mc_target_type target_type; |
6765 | union mc_target target; | |
6766 | struct page *page; | |
6767 | struct page_cgroup *pc; | |
4ffef5fe | 6768 | |
12724850 NH |
6769 | /* |
6770 | * We don't take compound_lock() here but no race with splitting thp | |
6771 | * happens because: | |
6772 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not | |
6773 | * under splitting, which means there's no concurrent thp split, | |
6774 | * - if another thread runs into split_huge_page() just after we | |
6775 | * entered this if-block, the thread must wait for page table lock | |
6776 | * to be unlocked in __split_huge_page_splitting(), where the main | |
6777 | * part of thp split is not executed yet. | |
6778 | */ | |
6779 | if (pmd_trans_huge_lock(pmd, vma) == 1) { | |
62ade86a | 6780 | if (mc.precharge < HPAGE_PMD_NR) { |
12724850 NH |
6781 | spin_unlock(&vma->vm_mm->page_table_lock); |
6782 | return 0; | |
6783 | } | |
6784 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
6785 | if (target_type == MC_TARGET_PAGE) { | |
6786 | page = target.page; | |
6787 | if (!isolate_lru_page(page)) { | |
6788 | pc = lookup_page_cgroup(page); | |
6789 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, | |
2f3479b1 | 6790 | pc, mc.from, mc.to)) { |
12724850 NH |
6791 | mc.precharge -= HPAGE_PMD_NR; |
6792 | mc.moved_charge += HPAGE_PMD_NR; | |
6793 | } | |
6794 | putback_lru_page(page); | |
6795 | } | |
6796 | put_page(page); | |
6797 | } | |
6798 | spin_unlock(&vma->vm_mm->page_table_lock); | |
1a5a9906 | 6799 | return 0; |
12724850 NH |
6800 | } |
6801 | ||
45f83cef AA |
6802 | if (pmd_trans_unstable(pmd)) |
6803 | return 0; | |
4ffef5fe DN |
6804 | retry: |
6805 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
6806 | for (; addr != end; addr += PAGE_SIZE) { | |
6807 | pte_t ptent = *(pte++); | |
02491447 | 6808 | swp_entry_t ent; |
4ffef5fe DN |
6809 | |
6810 | if (!mc.precharge) | |
6811 | break; | |
6812 | ||
8d32ff84 | 6813 | switch (get_mctgt_type(vma, addr, ptent, &target)) { |
4ffef5fe DN |
6814 | case MC_TARGET_PAGE: |
6815 | page = target.page; | |
6816 | if (isolate_lru_page(page)) | |
6817 | goto put; | |
6818 | pc = lookup_page_cgroup(page); | |
7ec99d62 | 6819 | if (!mem_cgroup_move_account(page, 1, pc, |
2f3479b1 | 6820 | mc.from, mc.to)) { |
4ffef5fe | 6821 | mc.precharge--; |
854ffa8d DN |
6822 | /* we uncharge from mc.from later. */ |
6823 | mc.moved_charge++; | |
4ffef5fe DN |
6824 | } |
6825 | putback_lru_page(page); | |
8d32ff84 | 6826 | put: /* get_mctgt_type() gets the page */ |
4ffef5fe DN |
6827 | put_page(page); |
6828 | break; | |
02491447 DN |
6829 | case MC_TARGET_SWAP: |
6830 | ent = target.ent; | |
e91cbb42 | 6831 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
02491447 | 6832 | mc.precharge--; |
483c30b5 DN |
6833 | /* we fixup refcnts and charges later. */ |
6834 | mc.moved_swap++; | |
6835 | } | |
02491447 | 6836 | break; |
4ffef5fe DN |
6837 | default: |
6838 | break; | |
6839 | } | |
6840 | } | |
6841 | pte_unmap_unlock(pte - 1, ptl); | |
6842 | cond_resched(); | |
6843 | ||
6844 | if (addr != end) { | |
6845 | /* | |
6846 | * We have consumed all precharges we got in can_attach(). | |
6847 | * We try charge one by one, but don't do any additional | |
6848 | * charges to mc.to if we have failed in charge once in attach() | |
6849 | * phase. | |
6850 | */ | |
854ffa8d | 6851 | ret = mem_cgroup_do_precharge(1); |
4ffef5fe DN |
6852 | if (!ret) |
6853 | goto retry; | |
6854 | } | |
6855 | ||
6856 | return ret; | |
6857 | } | |
6858 | ||
6859 | static void mem_cgroup_move_charge(struct mm_struct *mm) | |
6860 | { | |
6861 | struct vm_area_struct *vma; | |
6862 | ||
6863 | lru_add_drain_all(); | |
dfe076b0 DN |
6864 | retry: |
6865 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | |
6866 | /* | |
6867 | * Someone who are holding the mmap_sem might be waiting in | |
6868 | * waitq. So we cancel all extra charges, wake up all waiters, | |
6869 | * and retry. Because we cancel precharges, we might not be able | |
6870 | * to move enough charges, but moving charge is a best-effort | |
6871 | * feature anyway, so it wouldn't be a big problem. | |
6872 | */ | |
6873 | __mem_cgroup_clear_mc(); | |
6874 | cond_resched(); | |
6875 | goto retry; | |
6876 | } | |
4ffef5fe DN |
6877 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
6878 | int ret; | |
6879 | struct mm_walk mem_cgroup_move_charge_walk = { | |
6880 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
6881 | .mm = mm, | |
6882 | .private = vma, | |
6883 | }; | |
6884 | if (is_vm_hugetlb_page(vma)) | |
6885 | continue; | |
4ffef5fe DN |
6886 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
6887 | &mem_cgroup_move_charge_walk); | |
6888 | if (ret) | |
6889 | /* | |
6890 | * means we have consumed all precharges and failed in | |
6891 | * doing additional charge. Just abandon here. | |
6892 | */ | |
6893 | break; | |
6894 | } | |
dfe076b0 | 6895 | up_read(&mm->mmap_sem); |
7dc74be0 DN |
6896 | } |
6897 | ||
761b3ef5 LZ |
6898 | static void mem_cgroup_move_task(struct cgroup *cont, |
6899 | struct cgroup_taskset *tset) | |
67e465a7 | 6900 | { |
2f7ee569 | 6901 | struct task_struct *p = cgroup_taskset_first(tset); |
a433658c | 6902 | struct mm_struct *mm = get_task_mm(p); |
dfe076b0 | 6903 | |
dfe076b0 | 6904 | if (mm) { |
a433658c KM |
6905 | if (mc.to) |
6906 | mem_cgroup_move_charge(mm); | |
dfe076b0 DN |
6907 | mmput(mm); |
6908 | } | |
a433658c KM |
6909 | if (mc.to) |
6910 | mem_cgroup_clear_mc(); | |
67e465a7 | 6911 | } |
5cfb80a7 | 6912 | #else /* !CONFIG_MMU */ |
761b3ef5 LZ |
6913 | static int mem_cgroup_can_attach(struct cgroup *cgroup, |
6914 | struct cgroup_taskset *tset) | |
5cfb80a7 DN |
6915 | { |
6916 | return 0; | |
6917 | } | |
761b3ef5 LZ |
6918 | static void mem_cgroup_cancel_attach(struct cgroup *cgroup, |
6919 | struct cgroup_taskset *tset) | |
5cfb80a7 DN |
6920 | { |
6921 | } | |
761b3ef5 LZ |
6922 | static void mem_cgroup_move_task(struct cgroup *cont, |
6923 | struct cgroup_taskset *tset) | |
5cfb80a7 DN |
6924 | { |
6925 | } | |
6926 | #endif | |
67e465a7 | 6927 | |
f00baae7 TH |
6928 | /* |
6929 | * Cgroup retains root cgroups across [un]mount cycles making it necessary | |
6930 | * to verify sane_behavior flag on each mount attempt. | |
6931 | */ | |
6932 | static void mem_cgroup_bind(struct cgroup *root) | |
6933 | { | |
6934 | /* | |
6935 | * use_hierarchy is forced with sane_behavior. cgroup core | |
6936 | * guarantees that @root doesn't have any children, so turning it | |
6937 | * on for the root memcg is enough. | |
6938 | */ | |
6939 | if (cgroup_sane_behavior(root)) | |
6940 | mem_cgroup_from_cont(root)->use_hierarchy = true; | |
6941 | } | |
6942 | ||
8cdea7c0 BS |
6943 | struct cgroup_subsys mem_cgroup_subsys = { |
6944 | .name = "memory", | |
6945 | .subsys_id = mem_cgroup_subsys_id, | |
92fb9748 | 6946 | .css_alloc = mem_cgroup_css_alloc, |
d142e3e6 | 6947 | .css_online = mem_cgroup_css_online, |
92fb9748 TH |
6948 | .css_offline = mem_cgroup_css_offline, |
6949 | .css_free = mem_cgroup_css_free, | |
7dc74be0 DN |
6950 | .can_attach = mem_cgroup_can_attach, |
6951 | .cancel_attach = mem_cgroup_cancel_attach, | |
67e465a7 | 6952 | .attach = mem_cgroup_move_task, |
f00baae7 | 6953 | .bind = mem_cgroup_bind, |
6bc10349 | 6954 | .base_cftypes = mem_cgroup_files, |
6d12e2d8 | 6955 | .early_init = 0, |
04046e1a | 6956 | .use_id = 1, |
8cdea7c0 | 6957 | }; |
c077719b | 6958 | |
c255a458 | 6959 | #ifdef CONFIG_MEMCG_SWAP |
a42c390c MH |
6960 | static int __init enable_swap_account(char *s) |
6961 | { | |
6962 | /* consider enabled if no parameter or 1 is given */ | |
a2c8990a | 6963 | if (!strcmp(s, "1")) |
a42c390c | 6964 | really_do_swap_account = 1; |
a2c8990a | 6965 | else if (!strcmp(s, "0")) |
a42c390c MH |
6966 | really_do_swap_account = 0; |
6967 | return 1; | |
6968 | } | |
a2c8990a | 6969 | __setup("swapaccount=", enable_swap_account); |
c077719b | 6970 | |
2d11085e MH |
6971 | static void __init memsw_file_init(void) |
6972 | { | |
6acc8b02 MH |
6973 | WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); |
6974 | } | |
6975 | ||
6976 | static void __init enable_swap_cgroup(void) | |
6977 | { | |
6978 | if (!mem_cgroup_disabled() && really_do_swap_account) { | |
6979 | do_swap_account = 1; | |
6980 | memsw_file_init(); | |
6981 | } | |
2d11085e | 6982 | } |
6acc8b02 | 6983 | |
2d11085e | 6984 | #else |
6acc8b02 | 6985 | static void __init enable_swap_cgroup(void) |
2d11085e MH |
6986 | { |
6987 | } | |
c077719b | 6988 | #endif |
2d11085e MH |
6989 | |
6990 | /* | |
1081312f MH |
6991 | * subsys_initcall() for memory controller. |
6992 | * | |
6993 | * Some parts like hotcpu_notifier() have to be initialized from this context | |
6994 | * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | |
6995 | * everything that doesn't depend on a specific mem_cgroup structure should | |
6996 | * be initialized from here. | |
2d11085e MH |
6997 | */ |
6998 | static int __init mem_cgroup_init(void) | |
6999 | { | |
7000 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | |
6acc8b02 | 7001 | enable_swap_cgroup(); |
8787a1df | 7002 | mem_cgroup_soft_limit_tree_init(); |
e4777496 | 7003 | memcg_stock_init(); |
2d11085e MH |
7004 | return 0; |
7005 | } | |
7006 | subsys_initcall(mem_cgroup_init); |