]> Git Repo - linux.git/blame - drivers/iommu/dma-iommu.c
Merge tag 'pci-v5.5-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
[linux.git] / drivers / iommu / dma-iommu.c
CommitLineData
caab277b 1// SPDX-License-Identifier: GPL-2.0-only
0db2e5d1
RM
2/*
3 * A fairly generic DMA-API to IOMMU-API glue layer.
4 *
5 * Copyright (C) 2014-2015 ARM Ltd.
6 *
7 * based in part on arch/arm/mm/dma-mapping.c:
8 * Copyright (C) 2000-2004 Russell King
0db2e5d1
RM
9 */
10
f51dc892 11#include <linux/acpi_iort.h>
0db2e5d1 12#include <linux/device.h>
06d60728 13#include <linux/dma-contiguous.h>
0db2e5d1 14#include <linux/dma-iommu.h>
af751d43 15#include <linux/dma-noncoherent.h>
5b11e9cd 16#include <linux/gfp.h>
0db2e5d1
RM
17#include <linux/huge_mm.h>
18#include <linux/iommu.h>
19#include <linux/iova.h>
44bb7e24 20#include <linux/irq.h>
0db2e5d1 21#include <linux/mm.h>
fade1ec0 22#include <linux/pci.h>
5b11e9cd
RM
23#include <linux/scatterlist.h>
24#include <linux/vmalloc.h>
795bbbb9 25#include <linux/crash_dump.h>
0db2e5d1 26
44bb7e24
RM
27struct iommu_dma_msi_page {
28 struct list_head list;
29 dma_addr_t iova;
30 phys_addr_t phys;
31};
32
fdbe574e
RM
33enum iommu_dma_cookie_type {
34 IOMMU_DMA_IOVA_COOKIE,
35 IOMMU_DMA_MSI_COOKIE,
36};
37
44bb7e24 38struct iommu_dma_cookie {
fdbe574e
RM
39 enum iommu_dma_cookie_type type;
40 union {
41 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
42 struct iova_domain iovad;
43 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
44 dma_addr_t msi_iova;
45 };
46 struct list_head msi_page_list;
47 spinlock_t msi_lock;
2da274cd
ZL
48
49 /* Domain for flush queue callback; NULL if flush queue not in use */
50 struct iommu_domain *fq_domain;
44bb7e24
RM
51};
52
fdbe574e
RM
53static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
54{
55 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
56 return cookie->iovad.granule;
57 return PAGE_SIZE;
58}
59
fdbe574e
RM
60static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
61{
62 struct iommu_dma_cookie *cookie;
63
64 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
65 if (cookie) {
66 spin_lock_init(&cookie->msi_lock);
67 INIT_LIST_HEAD(&cookie->msi_page_list);
68 cookie->type = type;
69 }
70 return cookie;
44bb7e24
RM
71}
72
0db2e5d1
RM
73/**
74 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
75 * @domain: IOMMU domain to prepare for DMA-API usage
76 *
77 * IOMMU drivers should normally call this from their domain_alloc
78 * callback when domain->type == IOMMU_DOMAIN_DMA.
79 */
80int iommu_get_dma_cookie(struct iommu_domain *domain)
fdbe574e
RM
81{
82 if (domain->iova_cookie)
83 return -EEXIST;
84
85 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
86 if (!domain->iova_cookie)
87 return -ENOMEM;
88
89 return 0;
90}
91EXPORT_SYMBOL(iommu_get_dma_cookie);
92
93/**
94 * iommu_get_msi_cookie - Acquire just MSI remapping resources
95 * @domain: IOMMU domain to prepare
96 * @base: Start address of IOVA region for MSI mappings
97 *
98 * Users who manage their own IOVA allocation and do not want DMA API support,
99 * but would still like to take advantage of automatic MSI remapping, can use
100 * this to initialise their own domain appropriately. Users should reserve a
101 * contiguous IOVA region, starting at @base, large enough to accommodate the
102 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
103 * used by the devices attached to @domain.
104 */
105int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
0db2e5d1 106{
44bb7e24 107 struct iommu_dma_cookie *cookie;
0db2e5d1 108
fdbe574e
RM
109 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
110 return -EINVAL;
111
0db2e5d1
RM
112 if (domain->iova_cookie)
113 return -EEXIST;
114
fdbe574e 115 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
44bb7e24
RM
116 if (!cookie)
117 return -ENOMEM;
0db2e5d1 118
fdbe574e 119 cookie->msi_iova = base;
44bb7e24
RM
120 domain->iova_cookie = cookie;
121 return 0;
0db2e5d1 122}
fdbe574e 123EXPORT_SYMBOL(iommu_get_msi_cookie);
0db2e5d1
RM
124
125/**
126 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
fdbe574e
RM
127 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
128 * iommu_get_msi_cookie()
0db2e5d1
RM
129 *
130 * IOMMU drivers should normally call this from their domain_free callback.
131 */
132void iommu_put_dma_cookie(struct iommu_domain *domain)
133{
44bb7e24
RM
134 struct iommu_dma_cookie *cookie = domain->iova_cookie;
135 struct iommu_dma_msi_page *msi, *tmp;
0db2e5d1 136
44bb7e24 137 if (!cookie)
0db2e5d1
RM
138 return;
139
fdbe574e 140 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
44bb7e24
RM
141 put_iova_domain(&cookie->iovad);
142
143 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
144 list_del(&msi->list);
145 kfree(msi);
146 }
147 kfree(cookie);
0db2e5d1
RM
148 domain->iova_cookie = NULL;
149}
150EXPORT_SYMBOL(iommu_put_dma_cookie);
151
273df963
RM
152/**
153 * iommu_dma_get_resv_regions - Reserved region driver helper
154 * @dev: Device from iommu_get_resv_regions()
155 * @list: Reserved region list from iommu_get_resv_regions()
156 *
157 * IOMMU drivers can use this to implement their .get_resv_regions callback
cd2c9fcf
SK
158 * for general non-IOMMU-specific reservations. Currently, this covers GICv3
159 * ITS region reservation on ACPI based ARM platforms that may require HW MSI
160 * reservation.
273df963
RM
161 */
162void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
fade1ec0 163{
fade1ec0 164
98cc4f71 165 if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
cd2c9fcf 166 iort_iommu_msi_get_resv_regions(dev, list);
273df963 167
fade1ec0 168}
273df963 169EXPORT_SYMBOL(iommu_dma_get_resv_regions);
fade1ec0 170
7c1b058c
RM
171static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
172 phys_addr_t start, phys_addr_t end)
173{
174 struct iova_domain *iovad = &cookie->iovad;
175 struct iommu_dma_msi_page *msi_page;
176 int i, num_pages;
177
178 start -= iova_offset(iovad, start);
179 num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
180
181 msi_page = kcalloc(num_pages, sizeof(*msi_page), GFP_KERNEL);
182 if (!msi_page)
183 return -ENOMEM;
184
185 for (i = 0; i < num_pages; i++) {
186 msi_page[i].phys = start;
187 msi_page[i].iova = start;
188 INIT_LIST_HEAD(&msi_page[i].list);
189 list_add(&msi_page[i].list, &cookie->msi_page_list);
190 start += iovad->granule;
191 }
192
193 return 0;
194}
195
aadad097 196static int iova_reserve_pci_windows(struct pci_dev *dev,
cd2c9fcf
SK
197 struct iova_domain *iovad)
198{
199 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
200 struct resource_entry *window;
201 unsigned long lo, hi;
aadad097 202 phys_addr_t start = 0, end;
cd2c9fcf
SK
203
204 resource_list_for_each_entry(window, &bridge->windows) {
205 if (resource_type(window->res) != IORESOURCE_MEM)
206 continue;
207
208 lo = iova_pfn(iovad, window->res->start - window->offset);
209 hi = iova_pfn(iovad, window->res->end - window->offset);
210 reserve_iova(iovad, lo, hi);
211 }
aadad097
SM
212
213 /* Get reserved DMA windows from host bridge */
214 resource_list_for_each_entry(window, &bridge->dma_ranges) {
215 end = window->res->start - window->offset;
216resv_iova:
217 if (end > start) {
218 lo = iova_pfn(iovad, start);
219 hi = iova_pfn(iovad, end);
220 reserve_iova(iovad, lo, hi);
221 } else {
222 /* dma_ranges list should be sorted */
223 dev_err(&dev->dev, "Failed to reserve IOVA\n");
224 return -EINVAL;
225 }
226
227 start = window->res->end - window->offset + 1;
228 /* If window is last entry */
229 if (window->node.next == &bridge->dma_ranges &&
29fcea8c
AB
230 end != ~(phys_addr_t)0) {
231 end = ~(phys_addr_t)0;
aadad097
SM
232 goto resv_iova;
233 }
234 }
235
236 return 0;
cd2c9fcf
SK
237}
238
7c1b058c
RM
239static int iova_reserve_iommu_regions(struct device *dev,
240 struct iommu_domain *domain)
241{
242 struct iommu_dma_cookie *cookie = domain->iova_cookie;
243 struct iova_domain *iovad = &cookie->iovad;
244 struct iommu_resv_region *region;
245 LIST_HEAD(resv_regions);
246 int ret = 0;
247
aadad097
SM
248 if (dev_is_pci(dev)) {
249 ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
250 if (ret)
251 return ret;
252 }
cd2c9fcf 253
7c1b058c
RM
254 iommu_get_resv_regions(dev, &resv_regions);
255 list_for_each_entry(region, &resv_regions, list) {
256 unsigned long lo, hi;
257
258 /* We ARE the software that manages these! */
259 if (region->type == IOMMU_RESV_SW_MSI)
260 continue;
261
262 lo = iova_pfn(iovad, region->start);
263 hi = iova_pfn(iovad, region->start + region->length - 1);
264 reserve_iova(iovad, lo, hi);
265
266 if (region->type == IOMMU_RESV_MSI)
267 ret = cookie_init_hw_msi_region(cookie, region->start,
268 region->start + region->length);
269 if (ret)
270 break;
271 }
272 iommu_put_resv_regions(dev, &resv_regions);
273
274 return ret;
275}
276
2da274cd
ZL
277static void iommu_dma_flush_iotlb_all(struct iova_domain *iovad)
278{
279 struct iommu_dma_cookie *cookie;
280 struct iommu_domain *domain;
281
282 cookie = container_of(iovad, struct iommu_dma_cookie, iovad);
283 domain = cookie->fq_domain;
284 /*
285 * The IOMMU driver supporting DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE
286 * implies that ops->flush_iotlb_all must be non-NULL.
287 */
288 domain->ops->flush_iotlb_all(domain);
289}
290
0db2e5d1
RM
291/**
292 * iommu_dma_init_domain - Initialise a DMA mapping domain
293 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
294 * @base: IOVA at which the mappable address space starts
295 * @size: Size of IOVA space
fade1ec0 296 * @dev: Device the domain is being initialised for
0db2e5d1
RM
297 *
298 * @base and @size should be exact multiples of IOMMU page granularity to
299 * avoid rounding surprises. If necessary, we reserve the page at address 0
300 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
301 * any change which could make prior IOVAs invalid will fail.
302 */
06d60728 303static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
fade1ec0 304 u64 size, struct device *dev)
0db2e5d1 305{
fdbe574e 306 struct iommu_dma_cookie *cookie = domain->iova_cookie;
c61a4633 307 unsigned long order, base_pfn;
6b0c54e7 308 struct iova_domain *iovad;
2da274cd 309 int attr;
0db2e5d1 310
fdbe574e
RM
311 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
312 return -EINVAL;
0db2e5d1 313
6b0c54e7
YL
314 iovad = &cookie->iovad;
315
0db2e5d1 316 /* Use the smallest supported page size for IOVA granularity */
d16e0faa 317 order = __ffs(domain->pgsize_bitmap);
0db2e5d1 318 base_pfn = max_t(unsigned long, 1, base >> order);
0db2e5d1
RM
319
320 /* Check the domain allows at least some access to the device... */
321 if (domain->geometry.force_aperture) {
322 if (base > domain->geometry.aperture_end ||
323 base + size <= domain->geometry.aperture_start) {
324 pr_warn("specified DMA range outside IOMMU capability\n");
325 return -EFAULT;
326 }
327 /* ...then finally give it a kicking to make sure it fits */
328 base_pfn = max_t(unsigned long, base_pfn,
329 domain->geometry.aperture_start >> order);
0db2e5d1
RM
330 }
331
f51d7bb7 332 /* start_pfn is always nonzero for an already-initialised domain */
0db2e5d1
RM
333 if (iovad->start_pfn) {
334 if (1UL << order != iovad->granule ||
f51d7bb7 335 base_pfn != iovad->start_pfn) {
0db2e5d1
RM
336 pr_warn("Incompatible range for DMA domain\n");
337 return -EFAULT;
338 }
7c1b058c
RM
339
340 return 0;
0db2e5d1 341 }
7c1b058c 342
aa3ac946 343 init_iova_domain(iovad, 1UL << order, base_pfn);
2da274cd
ZL
344
345 if (!cookie->fq_domain && !iommu_domain_get_attr(domain,
346 DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE, &attr) && attr) {
347 cookie->fq_domain = domain;
348 init_iova_flush_queue(iovad, iommu_dma_flush_iotlb_all, NULL);
349 }
350
7c1b058c
RM
351 if (!dev)
352 return 0;
353
354 return iova_reserve_iommu_regions(dev, domain);
0db2e5d1 355}
0db2e5d1 356
795bbbb9
TM
357static int iommu_dma_deferred_attach(struct device *dev,
358 struct iommu_domain *domain)
359{
360 const struct iommu_ops *ops = domain->ops;
361
362 if (!is_kdump_kernel())
363 return 0;
364
365 if (unlikely(ops->is_attach_deferred &&
366 ops->is_attach_deferred(domain, dev)))
367 return iommu_attach_device(domain, dev);
368
369 return 0;
370}
371
0db2e5d1 372/**
737c85ca
MH
373 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
374 * page flags.
0db2e5d1
RM
375 * @dir: Direction of DMA transfer
376 * @coherent: Is the DMA master cache-coherent?
737c85ca 377 * @attrs: DMA attributes for the mapping
0db2e5d1
RM
378 *
379 * Return: corresponding IOMMU API page protection flags
380 */
06d60728 381static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
737c85ca 382 unsigned long attrs)
0db2e5d1
RM
383{
384 int prot = coherent ? IOMMU_CACHE : 0;
385
737c85ca
MH
386 if (attrs & DMA_ATTR_PRIVILEGED)
387 prot |= IOMMU_PRIV;
388
0db2e5d1
RM
389 switch (dir) {
390 case DMA_BIDIRECTIONAL:
391 return prot | IOMMU_READ | IOMMU_WRITE;
392 case DMA_TO_DEVICE:
393 return prot | IOMMU_READ;
394 case DMA_FROM_DEVICE:
395 return prot | IOMMU_WRITE;
396 default:
397 return 0;
398 }
399}
400
842fe519
RM
401static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
402 size_t size, dma_addr_t dma_limit, struct device *dev)
0db2e5d1 403{
a44e6657
RM
404 struct iommu_dma_cookie *cookie = domain->iova_cookie;
405 struct iova_domain *iovad = &cookie->iovad;
bb65a64c 406 unsigned long shift, iova_len, iova = 0;
0db2e5d1 407
a44e6657
RM
408 if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
409 cookie->msi_iova += size;
410 return cookie->msi_iova - size;
411 }
412
413 shift = iova_shift(iovad);
414 iova_len = size >> shift;
bb65a64c
RM
415 /*
416 * Freeing non-power-of-two-sized allocations back into the IOVA caches
417 * will come back to bite us badly, so we have to waste a bit of space
418 * rounding up anything cacheable to make sure that can't happen. The
419 * order of the unadjusted size will still match upon freeing.
420 */
421 if (iova_len < (1 << (IOVA_RANGE_CACHE_MAX_SIZE - 1)))
422 iova_len = roundup_pow_of_two(iova_len);
a44e6657 423
a7ba70f1 424 dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
03bfdc31 425
c987ff0d
RM
426 if (domain->geometry.force_aperture)
427 dma_limit = min(dma_limit, domain->geometry.aperture_end);
122fac03
RM
428
429 /* Try to get PCI devices a SAC address */
430 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
538d5b33
TN
431 iova = alloc_iova_fast(iovad, iova_len,
432 DMA_BIT_MASK(32) >> shift, false);
bb65a64c 433
122fac03 434 if (!iova)
538d5b33
TN
435 iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
436 true);
122fac03 437
bb65a64c 438 return (dma_addr_t)iova << shift;
0db2e5d1
RM
439}
440
842fe519
RM
441static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
442 dma_addr_t iova, size_t size)
0db2e5d1 443{
842fe519 444 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 445
a44e6657 446 /* The MSI case is only ever cleaning up its most recent allocation */
bb65a64c 447 if (cookie->type == IOMMU_DMA_MSI_COOKIE)
a44e6657 448 cookie->msi_iova -= size;
2da274cd
ZL
449 else if (cookie->fq_domain) /* non-strict mode */
450 queue_iova(iovad, iova_pfn(iovad, iova),
451 size >> iova_shift(iovad), 0);
bb65a64c 452 else
1cc896ed
RM
453 free_iova_fast(iovad, iova_pfn(iovad, iova),
454 size >> iova_shift(iovad));
842fe519
RM
455}
456
b61d271e 457static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
842fe519
RM
458 size_t size)
459{
b61d271e 460 struct iommu_domain *domain = iommu_get_dma_domain(dev);
a44e6657
RM
461 struct iommu_dma_cookie *cookie = domain->iova_cookie;
462 struct iova_domain *iovad = &cookie->iovad;
842fe519 463 size_t iova_off = iova_offset(iovad, dma_addr);
a7d20dc1
WD
464 struct iommu_iotlb_gather iotlb_gather;
465 size_t unmapped;
842fe519
RM
466
467 dma_addr -= iova_off;
468 size = iova_align(iovad, size + iova_off);
a7d20dc1
WD
469 iommu_iotlb_gather_init(&iotlb_gather);
470
471 unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
472 WARN_ON(unmapped != size);
842fe519 473
2da274cd 474 if (!cookie->fq_domain)
a7d20dc1 475 iommu_tlb_sync(domain, &iotlb_gather);
a44e6657 476 iommu_dma_free_iova(cookie, dma_addr, size);
0db2e5d1
RM
477}
478
92aec09c 479static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
6e235020 480 size_t size, int prot, dma_addr_t dma_mask)
92aec09c 481{
b61d271e 482 struct iommu_domain *domain = iommu_get_dma_domain(dev);
92aec09c 483 struct iommu_dma_cookie *cookie = domain->iova_cookie;
8af23fad
RM
484 struct iova_domain *iovad = &cookie->iovad;
485 size_t iova_off = iova_offset(iovad, phys);
92aec09c
CH
486 dma_addr_t iova;
487
795bbbb9
TM
488 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
489 return DMA_MAPPING_ERROR;
490
8af23fad 491 size = iova_align(iovad, size + iova_off);
92aec09c 492
6e235020 493 iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
92aec09c
CH
494 if (!iova)
495 return DMA_MAPPING_ERROR;
496
781ca2de 497 if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
92aec09c
CH
498 iommu_dma_free_iova(cookie, iova, size);
499 return DMA_MAPPING_ERROR;
500 }
501 return iova + iova_off;
502}
503
0db2e5d1
RM
504static void __iommu_dma_free_pages(struct page **pages, int count)
505{
506 while (count--)
507 __free_page(pages[count]);
508 kvfree(pages);
509}
510
c4b17afb
GK
511static struct page **__iommu_dma_alloc_pages(struct device *dev,
512 unsigned int count, unsigned long order_mask, gfp_t gfp)
0db2e5d1
RM
513{
514 struct page **pages;
c4b17afb 515 unsigned int i = 0, nid = dev_to_node(dev);
3b6b7e19
RM
516
517 order_mask &= (2U << MAX_ORDER) - 1;
518 if (!order_mask)
519 return NULL;
0db2e5d1 520
c4b17afb 521 pages = kvzalloc(count * sizeof(*pages), GFP_KERNEL);
0db2e5d1
RM
522 if (!pages)
523 return NULL;
524
525 /* IOMMU can map any pages, so himem can also be used here */
526 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
527
528 while (count) {
529 struct page *page = NULL;
3b6b7e19 530 unsigned int order_size;
0db2e5d1
RM
531
532 /*
533 * Higher-order allocations are a convenience rather
534 * than a necessity, hence using __GFP_NORETRY until
3b6b7e19 535 * falling back to minimum-order allocations.
0db2e5d1 536 */
3b6b7e19
RM
537 for (order_mask &= (2U << __fls(count)) - 1;
538 order_mask; order_mask &= ~order_size) {
539 unsigned int order = __fls(order_mask);
c4b17afb 540 gfp_t alloc_flags = gfp;
3b6b7e19
RM
541
542 order_size = 1U << order;
c4b17afb
GK
543 if (order_mask > order_size)
544 alloc_flags |= __GFP_NORETRY;
545 page = alloc_pages_node(nid, alloc_flags, order);
0db2e5d1
RM
546 if (!page)
547 continue;
3b6b7e19
RM
548 if (!order)
549 break;
550 if (!PageCompound(page)) {
0db2e5d1
RM
551 split_page(page, order);
552 break;
3b6b7e19
RM
553 } else if (!split_huge_page(page)) {
554 break;
0db2e5d1 555 }
3b6b7e19 556 __free_pages(page, order);
0db2e5d1 557 }
0db2e5d1
RM
558 if (!page) {
559 __iommu_dma_free_pages(pages, i);
560 return NULL;
561 }
3b6b7e19
RM
562 count -= order_size;
563 while (order_size--)
0db2e5d1
RM
564 pages[i++] = page++;
565 }
566 return pages;
567}
568
0db2e5d1 569/**
21b95aaf 570 * iommu_dma_alloc_remap - Allocate and map a buffer contiguous in IOVA space
0db2e5d1
RM
571 * @dev: Device to allocate memory for. Must be a real device
572 * attached to an iommu_dma_domain
573 * @size: Size of buffer in bytes
21b95aaf 574 * @dma_handle: Out argument for allocated DMA handle
0db2e5d1 575 * @gfp: Allocation flags
3b6b7e19 576 * @attrs: DMA attributes for this allocation
0db2e5d1
RM
577 *
578 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
579 * but an IOMMU which supports smaller pages might not map the whole thing.
580 *
21b95aaf 581 * Return: Mapped virtual address, or NULL on failure.
0db2e5d1 582 */
21b95aaf
CH
583static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
584 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
0db2e5d1 585{
43c5bf11 586 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
587 struct iommu_dma_cookie *cookie = domain->iova_cookie;
588 struct iova_domain *iovad = &cookie->iovad;
21b95aaf
CH
589 bool coherent = dev_is_dma_coherent(dev);
590 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
33dcb37c 591 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
21b95aaf 592 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
0db2e5d1
RM
593 struct page **pages;
594 struct sg_table sgt;
842fe519 595 dma_addr_t iova;
21b95aaf 596 void *vaddr;
0db2e5d1 597
21b95aaf 598 *dma_handle = DMA_MAPPING_ERROR;
0db2e5d1 599
795bbbb9
TM
600 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
601 return NULL;
602
3b6b7e19
RM
603 min_size = alloc_sizes & -alloc_sizes;
604 if (min_size < PAGE_SIZE) {
605 min_size = PAGE_SIZE;
606 alloc_sizes |= PAGE_SIZE;
607 } else {
608 size = ALIGN(size, min_size);
609 }
00085f1e 610 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
3b6b7e19
RM
611 alloc_sizes = min_size;
612
613 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
c4b17afb
GK
614 pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
615 gfp);
0db2e5d1
RM
616 if (!pages)
617 return NULL;
618
842fe519
RM
619 size = iova_align(iovad, size);
620 iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
0db2e5d1
RM
621 if (!iova)
622 goto out_free_pages;
623
0db2e5d1
RM
624 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
625 goto out_free_iova;
626
21b95aaf 627 if (!(ioprot & IOMMU_CACHE)) {
23f88e0a
CH
628 struct scatterlist *sg;
629 int i;
630
631 for_each_sg(sgt.sgl, sg, sgt.orig_nents, i)
632 arch_dma_prep_coherent(sg_page(sg), sg->length);
0db2e5d1
RM
633 }
634
781ca2de 635 if (iommu_map_sg_atomic(domain, iova, sgt.sgl, sgt.orig_nents, ioprot)
0db2e5d1
RM
636 < size)
637 goto out_free_sg;
638
51231740 639 vaddr = dma_common_pages_remap(pages, size, prot,
21b95aaf
CH
640 __builtin_return_address(0));
641 if (!vaddr)
642 goto out_unmap;
643
644 *dma_handle = iova;
0db2e5d1 645 sg_free_table(&sgt);
21b95aaf 646 return vaddr;
0db2e5d1 647
21b95aaf
CH
648out_unmap:
649 __iommu_dma_unmap(dev, iova, size);
0db2e5d1
RM
650out_free_sg:
651 sg_free_table(&sgt);
652out_free_iova:
842fe519 653 iommu_dma_free_iova(cookie, iova, size);
0db2e5d1
RM
654out_free_pages:
655 __iommu_dma_free_pages(pages, count);
656 return NULL;
657}
658
659/**
06d60728
CH
660 * __iommu_dma_mmap - Map a buffer into provided user VMA
661 * @pages: Array representing buffer from __iommu_dma_alloc()
0db2e5d1
RM
662 * @size: Size of buffer in bytes
663 * @vma: VMA describing requested userspace mapping
664 *
665 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
666 * for verifying the correct size and protection of @vma beforehand.
667 */
06d60728
CH
668static int __iommu_dma_mmap(struct page **pages, size_t size,
669 struct vm_area_struct *vma)
0db2e5d1 670{
b0d0084f 671 return vm_map_pages(vma, pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
0db2e5d1
RM
672}
673
06d60728
CH
674static void iommu_dma_sync_single_for_cpu(struct device *dev,
675 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 676{
06d60728 677 phys_addr_t phys;
0db2e5d1 678
06d60728
CH
679 if (dev_is_dma_coherent(dev))
680 return;
1cc896ed 681
06d60728 682 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
56e35f9c 683 arch_sync_dma_for_cpu(phys, size, dir);
0db2e5d1 684}
0db2e5d1 685
06d60728
CH
686static void iommu_dma_sync_single_for_device(struct device *dev,
687 dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
0db2e5d1 688{
06d60728 689 phys_addr_t phys;
0db2e5d1 690
06d60728
CH
691 if (dev_is_dma_coherent(dev))
692 return;
1cc896ed 693
06d60728 694 phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
56e35f9c 695 arch_sync_dma_for_device(phys, size, dir);
06d60728 696}
0db2e5d1 697
06d60728
CH
698static void iommu_dma_sync_sg_for_cpu(struct device *dev,
699 struct scatterlist *sgl, int nelems,
700 enum dma_data_direction dir)
701{
702 struct scatterlist *sg;
703 int i;
704
705 if (dev_is_dma_coherent(dev))
706 return;
707
708 for_each_sg(sgl, sg, nelems, i)
56e35f9c 709 arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
06d60728
CH
710}
711
712static void iommu_dma_sync_sg_for_device(struct device *dev,
713 struct scatterlist *sgl, int nelems,
714 enum dma_data_direction dir)
715{
716 struct scatterlist *sg;
717 int i;
718
719 if (dev_is_dma_coherent(dev))
720 return;
721
722 for_each_sg(sgl, sg, nelems, i)
56e35f9c 723 arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
0db2e5d1
RM
724}
725
06d60728
CH
726static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
727 unsigned long offset, size_t size, enum dma_data_direction dir,
728 unsigned long attrs)
51f8cc9e 729{
06d60728
CH
730 phys_addr_t phys = page_to_phys(page) + offset;
731 bool coherent = dev_is_dma_coherent(dev);
b61d271e 732 int prot = dma_info_to_prot(dir, coherent, attrs);
06d60728
CH
733 dma_addr_t dma_handle;
734
6e235020 735 dma_handle = __iommu_dma_map(dev, phys, size, prot, dma_get_mask(dev));
06d60728
CH
736 if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
737 dma_handle != DMA_MAPPING_ERROR)
56e35f9c 738 arch_sync_dma_for_device(phys, size, dir);
06d60728 739 return dma_handle;
51f8cc9e
RM
740}
741
06d60728
CH
742static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
743 size_t size, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 744{
06d60728
CH
745 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
746 iommu_dma_sync_single_for_cpu(dev, dma_handle, size, dir);
b61d271e 747 __iommu_dma_unmap(dev, dma_handle, size);
0db2e5d1
RM
748}
749
750/*
751 * Prepare a successfully-mapped scatterlist to give back to the caller.
809eac54
RM
752 *
753 * At this point the segments are already laid out by iommu_dma_map_sg() to
754 * avoid individually crossing any boundaries, so we merely need to check a
755 * segment's start address to avoid concatenating across one.
0db2e5d1
RM
756 */
757static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
758 dma_addr_t dma_addr)
759{
809eac54
RM
760 struct scatterlist *s, *cur = sg;
761 unsigned long seg_mask = dma_get_seg_boundary(dev);
762 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
763 int i, count = 0;
0db2e5d1
RM
764
765 for_each_sg(sg, s, nents, i) {
809eac54
RM
766 /* Restore this segment's original unaligned fields first */
767 unsigned int s_iova_off = sg_dma_address(s);
0db2e5d1 768 unsigned int s_length = sg_dma_len(s);
809eac54 769 unsigned int s_iova_len = s->length;
0db2e5d1 770
809eac54 771 s->offset += s_iova_off;
0db2e5d1 772 s->length = s_length;
cad34be7 773 sg_dma_address(s) = DMA_MAPPING_ERROR;
809eac54
RM
774 sg_dma_len(s) = 0;
775
776 /*
777 * Now fill in the real DMA data. If...
778 * - there is a valid output segment to append to
779 * - and this segment starts on an IOVA page boundary
780 * - but doesn't fall at a segment boundary
781 * - and wouldn't make the resulting output segment too long
782 */
783 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
ab2cbeb0 784 (max_len - cur_len >= s_length)) {
809eac54
RM
785 /* ...then concatenate it with the previous one */
786 cur_len += s_length;
787 } else {
788 /* Otherwise start the next output segment */
789 if (i > 0)
790 cur = sg_next(cur);
791 cur_len = s_length;
792 count++;
793
794 sg_dma_address(cur) = dma_addr + s_iova_off;
795 }
796
797 sg_dma_len(cur) = cur_len;
798 dma_addr += s_iova_len;
799
800 if (s_length + s_iova_off < s_iova_len)
801 cur_len = 0;
0db2e5d1 802 }
809eac54 803 return count;
0db2e5d1
RM
804}
805
806/*
807 * If mapping failed, then just restore the original list,
808 * but making sure the DMA fields are invalidated.
809 */
810static void __invalidate_sg(struct scatterlist *sg, int nents)
811{
812 struct scatterlist *s;
813 int i;
814
815 for_each_sg(sg, s, nents, i) {
cad34be7 816 if (sg_dma_address(s) != DMA_MAPPING_ERROR)
07b48ac4 817 s->offset += sg_dma_address(s);
0db2e5d1
RM
818 if (sg_dma_len(s))
819 s->length = sg_dma_len(s);
cad34be7 820 sg_dma_address(s) = DMA_MAPPING_ERROR;
0db2e5d1
RM
821 sg_dma_len(s) = 0;
822 }
823}
824
825/*
826 * The DMA API client is passing in a scatterlist which could describe
827 * any old buffer layout, but the IOMMU API requires everything to be
828 * aligned to IOMMU pages. Hence the need for this complicated bit of
829 * impedance-matching, to be able to hand off a suitably-aligned list,
830 * but still preserve the original offsets and sizes for the caller.
831 */
06d60728
CH
832static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
833 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 834{
43c5bf11 835 struct iommu_domain *domain = iommu_get_dma_domain(dev);
842fe519
RM
836 struct iommu_dma_cookie *cookie = domain->iova_cookie;
837 struct iova_domain *iovad = &cookie->iovad;
0db2e5d1 838 struct scatterlist *s, *prev = NULL;
06d60728 839 int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
842fe519 840 dma_addr_t iova;
0db2e5d1 841 size_t iova_len = 0;
809eac54 842 unsigned long mask = dma_get_seg_boundary(dev);
0db2e5d1
RM
843 int i;
844
795bbbb9
TM
845 if (unlikely(iommu_dma_deferred_attach(dev, domain)))
846 return 0;
847
06d60728
CH
848 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
849 iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
850
0db2e5d1
RM
851 /*
852 * Work out how much IOVA space we need, and align the segments to
853 * IOVA granules for the IOMMU driver to handle. With some clever
854 * trickery we can modify the list in-place, but reversibly, by
809eac54 855 * stashing the unaligned parts in the as-yet-unused DMA fields.
0db2e5d1
RM
856 */
857 for_each_sg(sg, s, nents, i) {
809eac54 858 size_t s_iova_off = iova_offset(iovad, s->offset);
0db2e5d1 859 size_t s_length = s->length;
809eac54 860 size_t pad_len = (mask - iova_len + 1) & mask;
0db2e5d1 861
809eac54 862 sg_dma_address(s) = s_iova_off;
0db2e5d1 863 sg_dma_len(s) = s_length;
809eac54
RM
864 s->offset -= s_iova_off;
865 s_length = iova_align(iovad, s_length + s_iova_off);
0db2e5d1
RM
866 s->length = s_length;
867
868 /*
809eac54
RM
869 * Due to the alignment of our single IOVA allocation, we can
870 * depend on these assumptions about the segment boundary mask:
871 * - If mask size >= IOVA size, then the IOVA range cannot
872 * possibly fall across a boundary, so we don't care.
873 * - If mask size < IOVA size, then the IOVA range must start
874 * exactly on a boundary, therefore we can lay things out
875 * based purely on segment lengths without needing to know
876 * the actual addresses beforehand.
877 * - The mask must be a power of 2, so pad_len == 0 if
878 * iova_len == 0, thus we cannot dereference prev the first
879 * time through here (i.e. before it has a meaningful value).
0db2e5d1 880 */
809eac54 881 if (pad_len && pad_len < s_length - 1) {
0db2e5d1
RM
882 prev->length += pad_len;
883 iova_len += pad_len;
884 }
885
886 iova_len += s_length;
887 prev = s;
888 }
889
842fe519 890 iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
0db2e5d1
RM
891 if (!iova)
892 goto out_restore_sg;
893
894 /*
895 * We'll leave any physical concatenation to the IOMMU driver's
896 * implementation - it knows better than we do.
897 */
781ca2de 898 if (iommu_map_sg_atomic(domain, iova, sg, nents, prot) < iova_len)
0db2e5d1
RM
899 goto out_free_iova;
900
842fe519 901 return __finalise_sg(dev, sg, nents, iova);
0db2e5d1
RM
902
903out_free_iova:
842fe519 904 iommu_dma_free_iova(cookie, iova, iova_len);
0db2e5d1
RM
905out_restore_sg:
906 __invalidate_sg(sg, nents);
907 return 0;
908}
909
06d60728
CH
910static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
911 int nents, enum dma_data_direction dir, unsigned long attrs)
0db2e5d1 912{
842fe519
RM
913 dma_addr_t start, end;
914 struct scatterlist *tmp;
915 int i;
06d60728 916
1b961423 917 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
06d60728
CH
918 iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
919
0db2e5d1
RM
920 /*
921 * The scatterlist segments are mapped into a single
922 * contiguous IOVA allocation, so this is incredibly easy.
923 */
842fe519
RM
924 start = sg_dma_address(sg);
925 for_each_sg(sg_next(sg), tmp, nents - 1, i) {
926 if (sg_dma_len(tmp) == 0)
927 break;
928 sg = tmp;
929 }
930 end = sg_dma_address(sg) + sg_dma_len(sg);
b61d271e 931 __iommu_dma_unmap(dev, start, end - start);
0db2e5d1
RM
932}
933
06d60728 934static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
51f8cc9e
RM
935 size_t size, enum dma_data_direction dir, unsigned long attrs)
936{
937 return __iommu_dma_map(dev, phys, size,
6e235020
TM
938 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
939 dma_get_mask(dev));
51f8cc9e
RM
940}
941
06d60728 942static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
51f8cc9e
RM
943 size_t size, enum dma_data_direction dir, unsigned long attrs)
944{
b61d271e 945 __iommu_dma_unmap(dev, handle, size);
51f8cc9e
RM
946}
947
8553f6e6 948static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
bcf4b9c4
RM
949{
950 size_t alloc_size = PAGE_ALIGN(size);
951 int count = alloc_size >> PAGE_SHIFT;
952 struct page *page = NULL, **pages = NULL;
953
bcf4b9c4 954 /* Non-coherent atomic allocation? Easy */
e6475eb0
CH
955 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
956 dma_free_from_pool(cpu_addr, alloc_size))
bcf4b9c4
RM
957 return;
958
e6475eb0 959 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
bcf4b9c4
RM
960 /*
961 * If it the address is remapped, then it's either non-coherent
962 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
963 */
5cf45379 964 pages = dma_common_find_pages(cpu_addr);
bcf4b9c4
RM
965 if (!pages)
966 page = vmalloc_to_page(cpu_addr);
51231740 967 dma_common_free_remap(cpu_addr, alloc_size);
bcf4b9c4
RM
968 } else {
969 /* Lowmem means a coherent atomic or CMA allocation */
970 page = virt_to_page(cpu_addr);
971 }
972
973 if (pages)
974 __iommu_dma_free_pages(pages, count);
591fcf3b
NC
975 if (page)
976 dma_free_contiguous(dev, page, alloc_size);
bcf4b9c4
RM
977}
978
8553f6e6
RM
979static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
980 dma_addr_t handle, unsigned long attrs)
981{
982 __iommu_dma_unmap(dev, handle, size);
983 __iommu_dma_free(dev, size, cpu_addr);
984}
985
ee1ef05d
CH
986static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
987 struct page **pagep, gfp_t gfp, unsigned long attrs)
06d60728
CH
988{
989 bool coherent = dev_is_dma_coherent(dev);
9ad5d6ed 990 size_t alloc_size = PAGE_ALIGN(size);
90ae409f 991 int node = dev_to_node(dev);
9a4ab94a 992 struct page *page = NULL;
9ad5d6ed 993 void *cpu_addr;
06d60728 994
591fcf3b 995 page = dma_alloc_contiguous(dev, alloc_size, gfp);
90ae409f
CH
996 if (!page)
997 page = alloc_pages_node(node, gfp, get_order(alloc_size));
072bebc0
RM
998 if (!page)
999 return NULL;
1000
e6475eb0 1001 if (IS_ENABLED(CONFIG_DMA_REMAP) && (!coherent || PageHighMem(page))) {
33dcb37c 1002 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
072bebc0 1003
9ad5d6ed 1004 cpu_addr = dma_common_contiguous_remap(page, alloc_size,
51231740 1005 prot, __builtin_return_address(0));
9ad5d6ed 1006 if (!cpu_addr)
ee1ef05d 1007 goto out_free_pages;
8680aa5a
RM
1008
1009 if (!coherent)
9ad5d6ed 1010 arch_dma_prep_coherent(page, size);
8680aa5a 1011 } else {
9ad5d6ed 1012 cpu_addr = page_address(page);
8680aa5a 1013 }
ee1ef05d
CH
1014
1015 *pagep = page;
9ad5d6ed
RM
1016 memset(cpu_addr, 0, alloc_size);
1017 return cpu_addr;
072bebc0 1018out_free_pages:
591fcf3b 1019 dma_free_contiguous(dev, page, alloc_size);
072bebc0 1020 return NULL;
06d60728
CH
1021}
1022
ee1ef05d
CH
1023static void *iommu_dma_alloc(struct device *dev, size_t size,
1024 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1025{
1026 bool coherent = dev_is_dma_coherent(dev);
1027 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1028 struct page *page = NULL;
1029 void *cpu_addr;
1030
1031 gfp |= __GFP_ZERO;
1032
e6475eb0 1033 if (IS_ENABLED(CONFIG_DMA_REMAP) && gfpflags_allow_blocking(gfp) &&
ee1ef05d
CH
1034 !(attrs & DMA_ATTR_FORCE_CONTIGUOUS))
1035 return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
1036
e6475eb0
CH
1037 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1038 !gfpflags_allow_blocking(gfp) && !coherent)
ee1ef05d
CH
1039 cpu_addr = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
1040 else
1041 cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1042 if (!cpu_addr)
1043 return NULL;
1044
6e235020
TM
1045 *handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1046 dev->coherent_dma_mask);
ee1ef05d
CH
1047 if (*handle == DMA_MAPPING_ERROR) {
1048 __iommu_dma_free(dev, size, cpu_addr);
1049 return NULL;
1050 }
1051
1052 return cpu_addr;
1053}
1054
06d60728
CH
1055static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1056 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1057 unsigned long attrs)
1058{
1059 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
efd9f10b 1060 unsigned long pfn, off = vma->vm_pgoff;
06d60728
CH
1061 int ret;
1062
33dcb37c 1063 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
06d60728
CH
1064
1065 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1066 return ret;
1067
1068 if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1069 return -ENXIO;
1070
e6475eb0 1071 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
5cf45379 1072 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1073
efd9f10b
CH
1074 if (pages)
1075 return __iommu_dma_mmap(pages, size, vma);
1076 pfn = vmalloc_to_pfn(cpu_addr);
1077 } else {
1078 pfn = page_to_pfn(virt_to_page(cpu_addr));
06d60728
CH
1079 }
1080
efd9f10b
CH
1081 return remap_pfn_range(vma, vma->vm_start, pfn + off,
1082 vma->vm_end - vma->vm_start,
1083 vma->vm_page_prot);
06d60728
CH
1084}
1085
06d60728
CH
1086static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1087 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1088 unsigned long attrs)
1089{
3fb3378b
CH
1090 struct page *page;
1091 int ret;
06d60728 1092
e6475eb0 1093 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
5cf45379 1094 struct page **pages = dma_common_find_pages(cpu_addr);
06d60728 1095
3fb3378b
CH
1096 if (pages) {
1097 return sg_alloc_table_from_pages(sgt, pages,
1098 PAGE_ALIGN(size) >> PAGE_SHIFT,
1099 0, size, GFP_KERNEL);
1100 }
1101
1102 page = vmalloc_to_page(cpu_addr);
1103 } else {
1104 page = virt_to_page(cpu_addr);
06d60728
CH
1105 }
1106
3fb3378b
CH
1107 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1108 if (!ret)
1109 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1110 return ret;
06d60728
CH
1111}
1112
158a6d3c
YS
1113static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1114{
1115 struct iommu_domain *domain = iommu_get_dma_domain(dev);
1116
1117 return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1118}
1119
06d60728
CH
1120static const struct dma_map_ops iommu_dma_ops = {
1121 .alloc = iommu_dma_alloc,
1122 .free = iommu_dma_free,
1123 .mmap = iommu_dma_mmap,
1124 .get_sgtable = iommu_dma_get_sgtable,
1125 .map_page = iommu_dma_map_page,
1126 .unmap_page = iommu_dma_unmap_page,
1127 .map_sg = iommu_dma_map_sg,
1128 .unmap_sg = iommu_dma_unmap_sg,
1129 .sync_single_for_cpu = iommu_dma_sync_single_for_cpu,
1130 .sync_single_for_device = iommu_dma_sync_single_for_device,
1131 .sync_sg_for_cpu = iommu_dma_sync_sg_for_cpu,
1132 .sync_sg_for_device = iommu_dma_sync_sg_for_device,
1133 .map_resource = iommu_dma_map_resource,
1134 .unmap_resource = iommu_dma_unmap_resource,
158a6d3c 1135 .get_merge_boundary = iommu_dma_get_merge_boundary,
06d60728
CH
1136};
1137
1138/*
1139 * The IOMMU core code allocates the default DMA domain, which the underlying
1140 * IOMMU driver needs to support via the dma-iommu layer.
1141 */
1142void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size)
1143{
1144 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1145
1146 if (!domain)
1147 goto out_err;
1148
1149 /*
1150 * The IOMMU core code allocates the default DMA domain, which the
1151 * underlying IOMMU driver needs to support via the dma-iommu layer.
1152 */
1153 if (domain->type == IOMMU_DOMAIN_DMA) {
1154 if (iommu_dma_init_domain(domain, dma_base, size, dev))
1155 goto out_err;
1156 dev->dma_ops = &iommu_dma_ops;
1157 }
1158
1159 return;
1160out_err:
1161 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1162 dev_name(dev));
51f8cc9e
RM
1163}
1164
44bb7e24
RM
1165static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1166 phys_addr_t msi_addr, struct iommu_domain *domain)
1167{
1168 struct iommu_dma_cookie *cookie = domain->iova_cookie;
1169 struct iommu_dma_msi_page *msi_page;
842fe519 1170 dma_addr_t iova;
44bb7e24 1171 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
fdbe574e 1172 size_t size = cookie_msi_granule(cookie);
44bb7e24 1173
fdbe574e 1174 msi_addr &= ~(phys_addr_t)(size - 1);
44bb7e24
RM
1175 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1176 if (msi_page->phys == msi_addr)
1177 return msi_page;
1178
1179 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
1180 if (!msi_page)
1181 return NULL;
1182
8af23fad
RM
1183 iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1184 if (!iova)
a44e6657 1185 goto out_free_page;
44bb7e24 1186
8af23fad
RM
1187 if (iommu_map(domain, iova, msi_addr, size, prot))
1188 goto out_free_iova;
1189
44bb7e24 1190 INIT_LIST_HEAD(&msi_page->list);
a44e6657
RM
1191 msi_page->phys = msi_addr;
1192 msi_page->iova = iova;
44bb7e24
RM
1193 list_add(&msi_page->list, &cookie->msi_page_list);
1194 return msi_page;
1195
8af23fad
RM
1196out_free_iova:
1197 iommu_dma_free_iova(cookie, iova, size);
44bb7e24
RM
1198out_free_page:
1199 kfree(msi_page);
1200 return NULL;
1201}
1202
ece6e6f0 1203int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
44bb7e24 1204{
ece6e6f0 1205 struct device *dev = msi_desc_to_dev(desc);
44bb7e24
RM
1206 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1207 struct iommu_dma_cookie *cookie;
1208 struct iommu_dma_msi_page *msi_page;
44bb7e24
RM
1209 unsigned long flags;
1210
ece6e6f0
JG
1211 if (!domain || !domain->iova_cookie) {
1212 desc->iommu_cookie = NULL;
1213 return 0;
1214 }
44bb7e24
RM
1215
1216 cookie = domain->iova_cookie;
1217
1218 /*
1219 * We disable IRQs to rule out a possible inversion against
1220 * irq_desc_lock if, say, someone tries to retarget the affinity
1221 * of an MSI from within an IPI handler.
1222 */
1223 spin_lock_irqsave(&cookie->msi_lock, flags);
1224 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1225 spin_unlock_irqrestore(&cookie->msi_lock, flags);
1226
ece6e6f0
JG
1227 msi_desc_set_iommu_cookie(desc, msi_page);
1228
1229 if (!msi_page)
1230 return -ENOMEM;
1231 return 0;
1232}
1233
1234void iommu_dma_compose_msi_msg(struct msi_desc *desc,
1235 struct msi_msg *msg)
1236{
1237 struct device *dev = msi_desc_to_dev(desc);
1238 const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1239 const struct iommu_dma_msi_page *msi_page;
1240
1241 msi_page = msi_desc_get_iommu_cookie(desc);
1242
1243 if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1244 return;
1245
1246 msg->address_hi = upper_32_bits(msi_page->iova);
1247 msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1248 msg->address_lo += lower_32_bits(msi_page->iova);
44bb7e24 1249}
06d60728
CH
1250
1251static int iommu_dma_init(void)
1252{
1253 return iova_cache_get();
44bb7e24 1254}
06d60728 1255arch_initcall(iommu_dma_init);
This page took 0.924625 seconds and 4 git commands to generate.