]>
Commit | Line | Data |
---|---|---|
0db2e5d1 RM |
1 | /* |
2 | * A fairly generic DMA-API to IOMMU-API glue layer. | |
3 | * | |
4 | * Copyright (C) 2014-2015 ARM Ltd. | |
5 | * | |
6 | * based in part on arch/arm/mm/dma-mapping.c: | |
7 | * Copyright (C) 2000-2004 Russell King | |
8 | * | |
9 | * This program is free software; you can redistribute it and/or modify | |
10 | * it under the terms of the GNU General Public License version 2 as | |
11 | * published by the Free Software Foundation. | |
12 | * | |
13 | * This program is distributed in the hope that it will be useful, | |
14 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | * GNU General Public License for more details. | |
17 | * | |
18 | * You should have received a copy of the GNU General Public License | |
19 | * along with this program. If not, see <http://www.gnu.org/licenses/>. | |
20 | */ | |
21 | ||
22 | #include <linux/device.h> | |
23 | #include <linux/dma-iommu.h> | |
5b11e9cd | 24 | #include <linux/gfp.h> |
0db2e5d1 RM |
25 | #include <linux/huge_mm.h> |
26 | #include <linux/iommu.h> | |
27 | #include <linux/iova.h> | |
44bb7e24 | 28 | #include <linux/irq.h> |
0db2e5d1 | 29 | #include <linux/mm.h> |
fade1ec0 | 30 | #include <linux/pci.h> |
5b11e9cd RM |
31 | #include <linux/scatterlist.h> |
32 | #include <linux/vmalloc.h> | |
0db2e5d1 | 33 | |
44bb7e24 RM |
34 | struct iommu_dma_msi_page { |
35 | struct list_head list; | |
36 | dma_addr_t iova; | |
37 | phys_addr_t phys; | |
38 | }; | |
39 | ||
40 | struct iommu_dma_cookie { | |
41 | struct iova_domain iovad; | |
42 | struct list_head msi_page_list; | |
43 | spinlock_t msi_lock; | |
44 | }; | |
45 | ||
46 | static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain) | |
47 | { | |
48 | return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad; | |
49 | } | |
50 | ||
0db2e5d1 RM |
51 | int iommu_dma_init(void) |
52 | { | |
53 | return iova_cache_get(); | |
54 | } | |
55 | ||
56 | /** | |
57 | * iommu_get_dma_cookie - Acquire DMA-API resources for a domain | |
58 | * @domain: IOMMU domain to prepare for DMA-API usage | |
59 | * | |
60 | * IOMMU drivers should normally call this from their domain_alloc | |
61 | * callback when domain->type == IOMMU_DOMAIN_DMA. | |
62 | */ | |
63 | int iommu_get_dma_cookie(struct iommu_domain *domain) | |
64 | { | |
44bb7e24 | 65 | struct iommu_dma_cookie *cookie; |
0db2e5d1 RM |
66 | |
67 | if (domain->iova_cookie) | |
68 | return -EEXIST; | |
69 | ||
44bb7e24 RM |
70 | cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); |
71 | if (!cookie) | |
72 | return -ENOMEM; | |
0db2e5d1 | 73 | |
44bb7e24 RM |
74 | spin_lock_init(&cookie->msi_lock); |
75 | INIT_LIST_HEAD(&cookie->msi_page_list); | |
76 | domain->iova_cookie = cookie; | |
77 | return 0; | |
0db2e5d1 RM |
78 | } |
79 | EXPORT_SYMBOL(iommu_get_dma_cookie); | |
80 | ||
81 | /** | |
82 | * iommu_put_dma_cookie - Release a domain's DMA mapping resources | |
83 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() | |
84 | * | |
85 | * IOMMU drivers should normally call this from their domain_free callback. | |
86 | */ | |
87 | void iommu_put_dma_cookie(struct iommu_domain *domain) | |
88 | { | |
44bb7e24 RM |
89 | struct iommu_dma_cookie *cookie = domain->iova_cookie; |
90 | struct iommu_dma_msi_page *msi, *tmp; | |
0db2e5d1 | 91 | |
44bb7e24 | 92 | if (!cookie) |
0db2e5d1 RM |
93 | return; |
94 | ||
44bb7e24 RM |
95 | if (cookie->iovad.granule) |
96 | put_iova_domain(&cookie->iovad); | |
97 | ||
98 | list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) { | |
99 | list_del(&msi->list); | |
100 | kfree(msi); | |
101 | } | |
102 | kfree(cookie); | |
0db2e5d1 RM |
103 | domain->iova_cookie = NULL; |
104 | } | |
105 | EXPORT_SYMBOL(iommu_put_dma_cookie); | |
106 | ||
fade1ec0 RM |
107 | static void iova_reserve_pci_windows(struct pci_dev *dev, |
108 | struct iova_domain *iovad) | |
109 | { | |
110 | struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); | |
111 | struct resource_entry *window; | |
112 | unsigned long lo, hi; | |
113 | ||
114 | resource_list_for_each_entry(window, &bridge->windows) { | |
115 | if (resource_type(window->res) != IORESOURCE_MEM && | |
116 | resource_type(window->res) != IORESOURCE_IO) | |
117 | continue; | |
118 | ||
119 | lo = iova_pfn(iovad, window->res->start - window->offset); | |
120 | hi = iova_pfn(iovad, window->res->end - window->offset); | |
121 | reserve_iova(iovad, lo, hi); | |
122 | } | |
123 | } | |
124 | ||
0db2e5d1 RM |
125 | /** |
126 | * iommu_dma_init_domain - Initialise a DMA mapping domain | |
127 | * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() | |
128 | * @base: IOVA at which the mappable address space starts | |
129 | * @size: Size of IOVA space | |
fade1ec0 | 130 | * @dev: Device the domain is being initialised for |
0db2e5d1 RM |
131 | * |
132 | * @base and @size should be exact multiples of IOMMU page granularity to | |
133 | * avoid rounding surprises. If necessary, we reserve the page at address 0 | |
134 | * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but | |
135 | * any change which could make prior IOVAs invalid will fail. | |
136 | */ | |
fade1ec0 RM |
137 | int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base, |
138 | u64 size, struct device *dev) | |
0db2e5d1 | 139 | { |
44bb7e24 | 140 | struct iova_domain *iovad = cookie_iovad(domain); |
0db2e5d1 RM |
141 | unsigned long order, base_pfn, end_pfn; |
142 | ||
143 | if (!iovad) | |
144 | return -ENODEV; | |
145 | ||
146 | /* Use the smallest supported page size for IOVA granularity */ | |
d16e0faa | 147 | order = __ffs(domain->pgsize_bitmap); |
0db2e5d1 RM |
148 | base_pfn = max_t(unsigned long, 1, base >> order); |
149 | end_pfn = (base + size - 1) >> order; | |
150 | ||
151 | /* Check the domain allows at least some access to the device... */ | |
152 | if (domain->geometry.force_aperture) { | |
153 | if (base > domain->geometry.aperture_end || | |
154 | base + size <= domain->geometry.aperture_start) { | |
155 | pr_warn("specified DMA range outside IOMMU capability\n"); | |
156 | return -EFAULT; | |
157 | } | |
158 | /* ...then finally give it a kicking to make sure it fits */ | |
159 | base_pfn = max_t(unsigned long, base_pfn, | |
160 | domain->geometry.aperture_start >> order); | |
161 | end_pfn = min_t(unsigned long, end_pfn, | |
162 | domain->geometry.aperture_end >> order); | |
163 | } | |
164 | ||
165 | /* All we can safely do with an existing domain is enlarge it */ | |
166 | if (iovad->start_pfn) { | |
167 | if (1UL << order != iovad->granule || | |
168 | base_pfn != iovad->start_pfn || | |
169 | end_pfn < iovad->dma_32bit_pfn) { | |
170 | pr_warn("Incompatible range for DMA domain\n"); | |
171 | return -EFAULT; | |
172 | } | |
173 | iovad->dma_32bit_pfn = end_pfn; | |
174 | } else { | |
175 | init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn); | |
fade1ec0 RM |
176 | if (dev && dev_is_pci(dev)) |
177 | iova_reserve_pci_windows(to_pci_dev(dev), iovad); | |
0db2e5d1 RM |
178 | } |
179 | return 0; | |
180 | } | |
181 | EXPORT_SYMBOL(iommu_dma_init_domain); | |
182 | ||
183 | /** | |
184 | * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags | |
185 | * @dir: Direction of DMA transfer | |
186 | * @coherent: Is the DMA master cache-coherent? | |
187 | * | |
188 | * Return: corresponding IOMMU API page protection flags | |
189 | */ | |
190 | int dma_direction_to_prot(enum dma_data_direction dir, bool coherent) | |
191 | { | |
192 | int prot = coherent ? IOMMU_CACHE : 0; | |
193 | ||
194 | switch (dir) { | |
195 | case DMA_BIDIRECTIONAL: | |
196 | return prot | IOMMU_READ | IOMMU_WRITE; | |
197 | case DMA_TO_DEVICE: | |
198 | return prot | IOMMU_READ; | |
199 | case DMA_FROM_DEVICE: | |
200 | return prot | IOMMU_WRITE; | |
201 | default: | |
202 | return 0; | |
203 | } | |
204 | } | |
205 | ||
c987ff0d | 206 | static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size, |
0db2e5d1 RM |
207 | dma_addr_t dma_limit) |
208 | { | |
44bb7e24 | 209 | struct iova_domain *iovad = cookie_iovad(domain); |
0db2e5d1 RM |
210 | unsigned long shift = iova_shift(iovad); |
211 | unsigned long length = iova_align(iovad, size) >> shift; | |
212 | ||
c987ff0d RM |
213 | if (domain->geometry.force_aperture) |
214 | dma_limit = min(dma_limit, domain->geometry.aperture_end); | |
0db2e5d1 RM |
215 | /* |
216 | * Enforce size-alignment to be safe - there could perhaps be an | |
217 | * attribute to control this per-device, or at least per-domain... | |
218 | */ | |
219 | return alloc_iova(iovad, length, dma_limit >> shift, true); | |
220 | } | |
221 | ||
222 | /* The IOVA allocator knows what we mapped, so just unmap whatever that was */ | |
223 | static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr) | |
224 | { | |
44bb7e24 | 225 | struct iova_domain *iovad = cookie_iovad(domain); |
0db2e5d1 RM |
226 | unsigned long shift = iova_shift(iovad); |
227 | unsigned long pfn = dma_addr >> shift; | |
228 | struct iova *iova = find_iova(iovad, pfn); | |
229 | size_t size; | |
230 | ||
231 | if (WARN_ON(!iova)) | |
232 | return; | |
233 | ||
234 | size = iova_size(iova) << shift; | |
235 | size -= iommu_unmap(domain, pfn << shift, size); | |
236 | /* ...and if we can't, then something is horribly, horribly wrong */ | |
237 | WARN_ON(size > 0); | |
238 | __free_iova(iovad, iova); | |
239 | } | |
240 | ||
241 | static void __iommu_dma_free_pages(struct page **pages, int count) | |
242 | { | |
243 | while (count--) | |
244 | __free_page(pages[count]); | |
245 | kvfree(pages); | |
246 | } | |
247 | ||
3b6b7e19 RM |
248 | static struct page **__iommu_dma_alloc_pages(unsigned int count, |
249 | unsigned long order_mask, gfp_t gfp) | |
0db2e5d1 RM |
250 | { |
251 | struct page **pages; | |
252 | unsigned int i = 0, array_size = count * sizeof(*pages); | |
3b6b7e19 RM |
253 | |
254 | order_mask &= (2U << MAX_ORDER) - 1; | |
255 | if (!order_mask) | |
256 | return NULL; | |
0db2e5d1 RM |
257 | |
258 | if (array_size <= PAGE_SIZE) | |
259 | pages = kzalloc(array_size, GFP_KERNEL); | |
260 | else | |
261 | pages = vzalloc(array_size); | |
262 | if (!pages) | |
263 | return NULL; | |
264 | ||
265 | /* IOMMU can map any pages, so himem can also be used here */ | |
266 | gfp |= __GFP_NOWARN | __GFP_HIGHMEM; | |
267 | ||
268 | while (count) { | |
269 | struct page *page = NULL; | |
3b6b7e19 | 270 | unsigned int order_size; |
0db2e5d1 RM |
271 | |
272 | /* | |
273 | * Higher-order allocations are a convenience rather | |
274 | * than a necessity, hence using __GFP_NORETRY until | |
3b6b7e19 | 275 | * falling back to minimum-order allocations. |
0db2e5d1 | 276 | */ |
3b6b7e19 RM |
277 | for (order_mask &= (2U << __fls(count)) - 1; |
278 | order_mask; order_mask &= ~order_size) { | |
279 | unsigned int order = __fls(order_mask); | |
280 | ||
281 | order_size = 1U << order; | |
282 | page = alloc_pages((order_mask - order_size) ? | |
283 | gfp | __GFP_NORETRY : gfp, order); | |
0db2e5d1 RM |
284 | if (!page) |
285 | continue; | |
3b6b7e19 RM |
286 | if (!order) |
287 | break; | |
288 | if (!PageCompound(page)) { | |
0db2e5d1 RM |
289 | split_page(page, order); |
290 | break; | |
3b6b7e19 RM |
291 | } else if (!split_huge_page(page)) { |
292 | break; | |
0db2e5d1 | 293 | } |
3b6b7e19 | 294 | __free_pages(page, order); |
0db2e5d1 | 295 | } |
0db2e5d1 RM |
296 | if (!page) { |
297 | __iommu_dma_free_pages(pages, i); | |
298 | return NULL; | |
299 | } | |
3b6b7e19 RM |
300 | count -= order_size; |
301 | while (order_size--) | |
0db2e5d1 RM |
302 | pages[i++] = page++; |
303 | } | |
304 | return pages; | |
305 | } | |
306 | ||
307 | /** | |
308 | * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc() | |
309 | * @dev: Device which owns this buffer | |
310 | * @pages: Array of buffer pages as returned by iommu_dma_alloc() | |
311 | * @size: Size of buffer in bytes | |
312 | * @handle: DMA address of buffer | |
313 | * | |
314 | * Frees both the pages associated with the buffer, and the array | |
315 | * describing them | |
316 | */ | |
317 | void iommu_dma_free(struct device *dev, struct page **pages, size_t size, | |
318 | dma_addr_t *handle) | |
319 | { | |
320 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle); | |
321 | __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT); | |
322 | *handle = DMA_ERROR_CODE; | |
323 | } | |
324 | ||
325 | /** | |
326 | * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space | |
327 | * @dev: Device to allocate memory for. Must be a real device | |
328 | * attached to an iommu_dma_domain | |
329 | * @size: Size of buffer in bytes | |
330 | * @gfp: Allocation flags | |
3b6b7e19 | 331 | * @attrs: DMA attributes for this allocation |
0db2e5d1 RM |
332 | * @prot: IOMMU mapping flags |
333 | * @handle: Out argument for allocated DMA handle | |
334 | * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the | |
335 | * given VA/PA are visible to the given non-coherent device. | |
336 | * | |
337 | * If @size is less than PAGE_SIZE, then a full CPU page will be allocated, | |
338 | * but an IOMMU which supports smaller pages might not map the whole thing. | |
339 | * | |
340 | * Return: Array of struct page pointers describing the buffer, | |
341 | * or NULL on failure. | |
342 | */ | |
3b6b7e19 | 343 | struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp, |
00085f1e | 344 | unsigned long attrs, int prot, dma_addr_t *handle, |
0db2e5d1 RM |
345 | void (*flush_page)(struct device *, const void *, phys_addr_t)) |
346 | { | |
347 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | |
44bb7e24 | 348 | struct iova_domain *iovad = cookie_iovad(domain); |
0db2e5d1 RM |
349 | struct iova *iova; |
350 | struct page **pages; | |
351 | struct sg_table sgt; | |
352 | dma_addr_t dma_addr; | |
3b6b7e19 | 353 | unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap; |
0db2e5d1 RM |
354 | |
355 | *handle = DMA_ERROR_CODE; | |
356 | ||
3b6b7e19 RM |
357 | min_size = alloc_sizes & -alloc_sizes; |
358 | if (min_size < PAGE_SIZE) { | |
359 | min_size = PAGE_SIZE; | |
360 | alloc_sizes |= PAGE_SIZE; | |
361 | } else { | |
362 | size = ALIGN(size, min_size); | |
363 | } | |
00085f1e | 364 | if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) |
3b6b7e19 RM |
365 | alloc_sizes = min_size; |
366 | ||
367 | count = PAGE_ALIGN(size) >> PAGE_SHIFT; | |
368 | pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp); | |
0db2e5d1 RM |
369 | if (!pages) |
370 | return NULL; | |
371 | ||
c987ff0d | 372 | iova = __alloc_iova(domain, size, dev->coherent_dma_mask); |
0db2e5d1 RM |
373 | if (!iova) |
374 | goto out_free_pages; | |
375 | ||
376 | size = iova_align(iovad, size); | |
377 | if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL)) | |
378 | goto out_free_iova; | |
379 | ||
380 | if (!(prot & IOMMU_CACHE)) { | |
381 | struct sg_mapping_iter miter; | |
382 | /* | |
383 | * The CPU-centric flushing implied by SG_MITER_TO_SG isn't | |
384 | * sufficient here, so skip it by using the "wrong" direction. | |
385 | */ | |
386 | sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG); | |
387 | while (sg_miter_next(&miter)) | |
388 | flush_page(dev, miter.addr, page_to_phys(miter.page)); | |
389 | sg_miter_stop(&miter); | |
390 | } | |
391 | ||
392 | dma_addr = iova_dma_addr(iovad, iova); | |
393 | if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot) | |
394 | < size) | |
395 | goto out_free_sg; | |
396 | ||
397 | *handle = dma_addr; | |
398 | sg_free_table(&sgt); | |
399 | return pages; | |
400 | ||
401 | out_free_sg: | |
402 | sg_free_table(&sgt); | |
403 | out_free_iova: | |
404 | __free_iova(iovad, iova); | |
405 | out_free_pages: | |
406 | __iommu_dma_free_pages(pages, count); | |
407 | return NULL; | |
408 | } | |
409 | ||
410 | /** | |
411 | * iommu_dma_mmap - Map a buffer into provided user VMA | |
412 | * @pages: Array representing buffer from iommu_dma_alloc() | |
413 | * @size: Size of buffer in bytes | |
414 | * @vma: VMA describing requested userspace mapping | |
415 | * | |
416 | * Maps the pages of the buffer in @pages into @vma. The caller is responsible | |
417 | * for verifying the correct size and protection of @vma beforehand. | |
418 | */ | |
419 | ||
420 | int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma) | |
421 | { | |
422 | unsigned long uaddr = vma->vm_start; | |
423 | unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT; | |
424 | int ret = -ENXIO; | |
425 | ||
426 | for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) { | |
427 | ret = vm_insert_page(vma, uaddr, pages[i]); | |
428 | if (ret) | |
429 | break; | |
430 | uaddr += PAGE_SIZE; | |
431 | } | |
432 | return ret; | |
433 | } | |
434 | ||
51f8cc9e RM |
435 | static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys, |
436 | size_t size, int prot) | |
0db2e5d1 RM |
437 | { |
438 | dma_addr_t dma_addr; | |
439 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | |
44bb7e24 | 440 | struct iova_domain *iovad = cookie_iovad(domain); |
0db2e5d1 RM |
441 | size_t iova_off = iova_offset(iovad, phys); |
442 | size_t len = iova_align(iovad, size + iova_off); | |
c987ff0d | 443 | struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev)); |
0db2e5d1 RM |
444 | |
445 | if (!iova) | |
446 | return DMA_ERROR_CODE; | |
447 | ||
448 | dma_addr = iova_dma_addr(iovad, iova); | |
449 | if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) { | |
450 | __free_iova(iovad, iova); | |
451 | return DMA_ERROR_CODE; | |
452 | } | |
453 | return dma_addr + iova_off; | |
454 | } | |
455 | ||
51f8cc9e RM |
456 | dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page, |
457 | unsigned long offset, size_t size, int prot) | |
458 | { | |
459 | return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot); | |
460 | } | |
461 | ||
0db2e5d1 | 462 | void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size, |
00085f1e | 463 | enum dma_data_direction dir, unsigned long attrs) |
0db2e5d1 RM |
464 | { |
465 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); | |
466 | } | |
467 | ||
468 | /* | |
469 | * Prepare a successfully-mapped scatterlist to give back to the caller. | |
809eac54 RM |
470 | * |
471 | * At this point the segments are already laid out by iommu_dma_map_sg() to | |
472 | * avoid individually crossing any boundaries, so we merely need to check a | |
473 | * segment's start address to avoid concatenating across one. | |
0db2e5d1 RM |
474 | */ |
475 | static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents, | |
476 | dma_addr_t dma_addr) | |
477 | { | |
809eac54 RM |
478 | struct scatterlist *s, *cur = sg; |
479 | unsigned long seg_mask = dma_get_seg_boundary(dev); | |
480 | unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev); | |
481 | int i, count = 0; | |
0db2e5d1 RM |
482 | |
483 | for_each_sg(sg, s, nents, i) { | |
809eac54 RM |
484 | /* Restore this segment's original unaligned fields first */ |
485 | unsigned int s_iova_off = sg_dma_address(s); | |
0db2e5d1 | 486 | unsigned int s_length = sg_dma_len(s); |
809eac54 | 487 | unsigned int s_iova_len = s->length; |
0db2e5d1 | 488 | |
809eac54 | 489 | s->offset += s_iova_off; |
0db2e5d1 | 490 | s->length = s_length; |
809eac54 RM |
491 | sg_dma_address(s) = DMA_ERROR_CODE; |
492 | sg_dma_len(s) = 0; | |
493 | ||
494 | /* | |
495 | * Now fill in the real DMA data. If... | |
496 | * - there is a valid output segment to append to | |
497 | * - and this segment starts on an IOVA page boundary | |
498 | * - but doesn't fall at a segment boundary | |
499 | * - and wouldn't make the resulting output segment too long | |
500 | */ | |
501 | if (cur_len && !s_iova_off && (dma_addr & seg_mask) && | |
502 | (cur_len + s_length <= max_len)) { | |
503 | /* ...then concatenate it with the previous one */ | |
504 | cur_len += s_length; | |
505 | } else { | |
506 | /* Otherwise start the next output segment */ | |
507 | if (i > 0) | |
508 | cur = sg_next(cur); | |
509 | cur_len = s_length; | |
510 | count++; | |
511 | ||
512 | sg_dma_address(cur) = dma_addr + s_iova_off; | |
513 | } | |
514 | ||
515 | sg_dma_len(cur) = cur_len; | |
516 | dma_addr += s_iova_len; | |
517 | ||
518 | if (s_length + s_iova_off < s_iova_len) | |
519 | cur_len = 0; | |
0db2e5d1 | 520 | } |
809eac54 | 521 | return count; |
0db2e5d1 RM |
522 | } |
523 | ||
524 | /* | |
525 | * If mapping failed, then just restore the original list, | |
526 | * but making sure the DMA fields are invalidated. | |
527 | */ | |
528 | static void __invalidate_sg(struct scatterlist *sg, int nents) | |
529 | { | |
530 | struct scatterlist *s; | |
531 | int i; | |
532 | ||
533 | for_each_sg(sg, s, nents, i) { | |
534 | if (sg_dma_address(s) != DMA_ERROR_CODE) | |
07b48ac4 | 535 | s->offset += sg_dma_address(s); |
0db2e5d1 RM |
536 | if (sg_dma_len(s)) |
537 | s->length = sg_dma_len(s); | |
538 | sg_dma_address(s) = DMA_ERROR_CODE; | |
539 | sg_dma_len(s) = 0; | |
540 | } | |
541 | } | |
542 | ||
543 | /* | |
544 | * The DMA API client is passing in a scatterlist which could describe | |
545 | * any old buffer layout, but the IOMMU API requires everything to be | |
546 | * aligned to IOMMU pages. Hence the need for this complicated bit of | |
547 | * impedance-matching, to be able to hand off a suitably-aligned list, | |
548 | * but still preserve the original offsets and sizes for the caller. | |
549 | */ | |
550 | int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, | |
551 | int nents, int prot) | |
552 | { | |
553 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | |
44bb7e24 | 554 | struct iova_domain *iovad = cookie_iovad(domain); |
0db2e5d1 RM |
555 | struct iova *iova; |
556 | struct scatterlist *s, *prev = NULL; | |
557 | dma_addr_t dma_addr; | |
558 | size_t iova_len = 0; | |
809eac54 | 559 | unsigned long mask = dma_get_seg_boundary(dev); |
0db2e5d1 RM |
560 | int i; |
561 | ||
562 | /* | |
563 | * Work out how much IOVA space we need, and align the segments to | |
564 | * IOVA granules for the IOMMU driver to handle. With some clever | |
565 | * trickery we can modify the list in-place, but reversibly, by | |
809eac54 | 566 | * stashing the unaligned parts in the as-yet-unused DMA fields. |
0db2e5d1 RM |
567 | */ |
568 | for_each_sg(sg, s, nents, i) { | |
809eac54 | 569 | size_t s_iova_off = iova_offset(iovad, s->offset); |
0db2e5d1 | 570 | size_t s_length = s->length; |
809eac54 | 571 | size_t pad_len = (mask - iova_len + 1) & mask; |
0db2e5d1 | 572 | |
809eac54 | 573 | sg_dma_address(s) = s_iova_off; |
0db2e5d1 | 574 | sg_dma_len(s) = s_length; |
809eac54 RM |
575 | s->offset -= s_iova_off; |
576 | s_length = iova_align(iovad, s_length + s_iova_off); | |
0db2e5d1 RM |
577 | s->length = s_length; |
578 | ||
579 | /* | |
809eac54 RM |
580 | * Due to the alignment of our single IOVA allocation, we can |
581 | * depend on these assumptions about the segment boundary mask: | |
582 | * - If mask size >= IOVA size, then the IOVA range cannot | |
583 | * possibly fall across a boundary, so we don't care. | |
584 | * - If mask size < IOVA size, then the IOVA range must start | |
585 | * exactly on a boundary, therefore we can lay things out | |
586 | * based purely on segment lengths without needing to know | |
587 | * the actual addresses beforehand. | |
588 | * - The mask must be a power of 2, so pad_len == 0 if | |
589 | * iova_len == 0, thus we cannot dereference prev the first | |
590 | * time through here (i.e. before it has a meaningful value). | |
0db2e5d1 | 591 | */ |
809eac54 | 592 | if (pad_len && pad_len < s_length - 1) { |
0db2e5d1 RM |
593 | prev->length += pad_len; |
594 | iova_len += pad_len; | |
595 | } | |
596 | ||
597 | iova_len += s_length; | |
598 | prev = s; | |
599 | } | |
600 | ||
c987ff0d | 601 | iova = __alloc_iova(domain, iova_len, dma_get_mask(dev)); |
0db2e5d1 RM |
602 | if (!iova) |
603 | goto out_restore_sg; | |
604 | ||
605 | /* | |
606 | * We'll leave any physical concatenation to the IOMMU driver's | |
607 | * implementation - it knows better than we do. | |
608 | */ | |
609 | dma_addr = iova_dma_addr(iovad, iova); | |
610 | if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len) | |
611 | goto out_free_iova; | |
612 | ||
613 | return __finalise_sg(dev, sg, nents, dma_addr); | |
614 | ||
615 | out_free_iova: | |
616 | __free_iova(iovad, iova); | |
617 | out_restore_sg: | |
618 | __invalidate_sg(sg, nents); | |
619 | return 0; | |
620 | } | |
621 | ||
622 | void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | |
00085f1e | 623 | enum dma_data_direction dir, unsigned long attrs) |
0db2e5d1 RM |
624 | { |
625 | /* | |
626 | * The scatterlist segments are mapped into a single | |
627 | * contiguous IOVA allocation, so this is incredibly easy. | |
628 | */ | |
629 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg)); | |
630 | } | |
631 | ||
51f8cc9e RM |
632 | dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys, |
633 | size_t size, enum dma_data_direction dir, unsigned long attrs) | |
634 | { | |
635 | return __iommu_dma_map(dev, phys, size, | |
636 | dma_direction_to_prot(dir, false) | IOMMU_MMIO); | |
637 | } | |
638 | ||
639 | void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle, | |
640 | size_t size, enum dma_data_direction dir, unsigned long attrs) | |
641 | { | |
642 | __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle); | |
643 | } | |
644 | ||
0db2e5d1 RM |
645 | int iommu_dma_supported(struct device *dev, u64 mask) |
646 | { | |
647 | /* | |
648 | * 'Special' IOMMUs which don't have the same addressing capability | |
649 | * as the CPU will have to wait until we have some way to query that | |
650 | * before they'll be able to use this framework. | |
651 | */ | |
652 | return 1; | |
653 | } | |
654 | ||
655 | int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | |
656 | { | |
657 | return dma_addr == DMA_ERROR_CODE; | |
658 | } | |
44bb7e24 RM |
659 | |
660 | static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev, | |
661 | phys_addr_t msi_addr, struct iommu_domain *domain) | |
662 | { | |
663 | struct iommu_dma_cookie *cookie = domain->iova_cookie; | |
664 | struct iommu_dma_msi_page *msi_page; | |
665 | struct iova_domain *iovad = &cookie->iovad; | |
666 | struct iova *iova; | |
667 | int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO; | |
668 | ||
669 | msi_addr &= ~(phys_addr_t)iova_mask(iovad); | |
670 | list_for_each_entry(msi_page, &cookie->msi_page_list, list) | |
671 | if (msi_page->phys == msi_addr) | |
672 | return msi_page; | |
673 | ||
674 | msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC); | |
675 | if (!msi_page) | |
676 | return NULL; | |
677 | ||
678 | iova = __alloc_iova(domain, iovad->granule, dma_get_mask(dev)); | |
679 | if (!iova) | |
680 | goto out_free_page; | |
681 | ||
682 | msi_page->phys = msi_addr; | |
683 | msi_page->iova = iova_dma_addr(iovad, iova); | |
684 | if (iommu_map(domain, msi_page->iova, msi_addr, iovad->granule, prot)) | |
685 | goto out_free_iova; | |
686 | ||
687 | INIT_LIST_HEAD(&msi_page->list); | |
688 | list_add(&msi_page->list, &cookie->msi_page_list); | |
689 | return msi_page; | |
690 | ||
691 | out_free_iova: | |
692 | __free_iova(iovad, iova); | |
693 | out_free_page: | |
694 | kfree(msi_page); | |
695 | return NULL; | |
696 | } | |
697 | ||
698 | void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg) | |
699 | { | |
700 | struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq)); | |
701 | struct iommu_domain *domain = iommu_get_domain_for_dev(dev); | |
702 | struct iommu_dma_cookie *cookie; | |
703 | struct iommu_dma_msi_page *msi_page; | |
704 | phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo; | |
705 | unsigned long flags; | |
706 | ||
707 | if (!domain || !domain->iova_cookie) | |
708 | return; | |
709 | ||
710 | cookie = domain->iova_cookie; | |
711 | ||
712 | /* | |
713 | * We disable IRQs to rule out a possible inversion against | |
714 | * irq_desc_lock if, say, someone tries to retarget the affinity | |
715 | * of an MSI from within an IPI handler. | |
716 | */ | |
717 | spin_lock_irqsave(&cookie->msi_lock, flags); | |
718 | msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain); | |
719 | spin_unlock_irqrestore(&cookie->msi_lock, flags); | |
720 | ||
721 | if (WARN_ON(!msi_page)) { | |
722 | /* | |
723 | * We're called from a void callback, so the best we can do is | |
724 | * 'fail' by filling the message with obviously bogus values. | |
725 | * Since we got this far due to an IOMMU being present, it's | |
726 | * not like the existing address would have worked anyway... | |
727 | */ | |
728 | msg->address_hi = ~0U; | |
729 | msg->address_lo = ~0U; | |
730 | msg->data = ~0U; | |
731 | } else { | |
732 | msg->address_hi = upper_32_bits(msi_page->iova); | |
733 | msg->address_lo &= iova_mask(&cookie->iovad); | |
734 | msg->address_lo += lower_32_bits(msi_page->iova); | |
735 | } | |
736 | } |