]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
88f306b6 KS |
26 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) |
27 | * mapping->i_mmap_rwsem | |
28 | * anon_vma->rwsem | |
29 | * mm->page_table_lock or pte_lock | |
a52633d8 | 30 | * zone_lru_lock (in mark_page_accessed, isolate_lru_page) |
88f306b6 KS |
31 | * swap_lock (in swap_duplicate, swap_info_get) |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | |
35 | * mapping->tree_lock (widely used) | |
36 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) | |
37 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
38 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
39 | * mapping->tree_lock (widely used, in set_page_dirty, | |
40 | * in arch-dependent flush_dcache_mmap_lock, | |
41 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 42 | * |
5a505085 | 43 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 44 | * ->tasklist_lock |
6a46079c | 45 | * pte map lock |
1da177e4 LT |
46 | */ |
47 | ||
48 | #include <linux/mm.h> | |
6e84f315 | 49 | #include <linux/sched/mm.h> |
29930025 | 50 | #include <linux/sched/task.h> |
1da177e4 LT |
51 | #include <linux/pagemap.h> |
52 | #include <linux/swap.h> | |
53 | #include <linux/swapops.h> | |
54 | #include <linux/slab.h> | |
55 | #include <linux/init.h> | |
5ad64688 | 56 | #include <linux/ksm.h> |
1da177e4 LT |
57 | #include <linux/rmap.h> |
58 | #include <linux/rcupdate.h> | |
b95f1b31 | 59 | #include <linux/export.h> |
8a9f3ccd | 60 | #include <linux/memcontrol.h> |
cddb8a5c | 61 | #include <linux/mmu_notifier.h> |
64cdd548 | 62 | #include <linux/migrate.h> |
0fe6e20b | 63 | #include <linux/hugetlb.h> |
ef5d437f | 64 | #include <linux/backing-dev.h> |
33c3fc71 | 65 | #include <linux/page_idle.h> |
1da177e4 LT |
66 | |
67 | #include <asm/tlbflush.h> | |
68 | ||
72b252ae MG |
69 | #include <trace/events/tlb.h> |
70 | ||
b291f000 NP |
71 | #include "internal.h" |
72 | ||
fdd2e5f8 | 73 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 74 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
75 | |
76 | static inline struct anon_vma *anon_vma_alloc(void) | |
77 | { | |
01d8b20d PZ |
78 | struct anon_vma *anon_vma; |
79 | ||
80 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
81 | if (anon_vma) { | |
82 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
83 | anon_vma->degree = 1; /* Reference for first vma */ |
84 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
85 | /* |
86 | * Initialise the anon_vma root to point to itself. If called | |
87 | * from fork, the root will be reset to the parents anon_vma. | |
88 | */ | |
89 | anon_vma->root = anon_vma; | |
90 | } | |
91 | ||
92 | return anon_vma; | |
fdd2e5f8 AB |
93 | } |
94 | ||
01d8b20d | 95 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 96 | { |
01d8b20d | 97 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
98 | |
99 | /* | |
4fc3f1d6 | 100 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
101 | * we can safely hold the lock without the anon_vma getting |
102 | * freed. | |
103 | * | |
104 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
105 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 106 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 107 | * |
4fc3f1d6 IM |
108 | * page_lock_anon_vma_read() VS put_anon_vma() |
109 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 110 | * LOCK MB |
4fc3f1d6 | 111 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
112 | * |
113 | * LOCK should suffice since the actual taking of the lock must | |
114 | * happen _before_ what follows. | |
115 | */ | |
7f39dda9 | 116 | might_sleep(); |
5a505085 | 117 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 118 | anon_vma_lock_write(anon_vma); |
08b52706 | 119 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
120 | } |
121 | ||
fdd2e5f8 AB |
122 | kmem_cache_free(anon_vma_cachep, anon_vma); |
123 | } | |
1da177e4 | 124 | |
dd34739c | 125 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 126 | { |
dd34739c | 127 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
128 | } |
129 | ||
e574b5fd | 130 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
131 | { |
132 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
133 | } | |
134 | ||
6583a843 KC |
135 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
136 | struct anon_vma_chain *avc, | |
137 | struct anon_vma *anon_vma) | |
138 | { | |
139 | avc->vma = vma; | |
140 | avc->anon_vma = anon_vma; | |
141 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 142 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
143 | } |
144 | ||
d9d332e0 | 145 | /** |
d5a187da | 146 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
147 | * @vma: the memory region in question |
148 | * | |
149 | * This makes sure the memory mapping described by 'vma' has | |
150 | * an 'anon_vma' attached to it, so that we can associate the | |
151 | * anonymous pages mapped into it with that anon_vma. | |
152 | * | |
d5a187da VB |
153 | * The common case will be that we already have one, which |
154 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 155 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
156 | * can re-use the anon_vma from (very common when the only |
157 | * reason for splitting a vma has been mprotect()), or we | |
158 | * allocate a new one. | |
159 | * | |
160 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 161 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
162 | * and that may actually touch the spinlock even in the newly |
163 | * allocated vma (it depends on RCU to make sure that the | |
164 | * anon_vma isn't actually destroyed). | |
165 | * | |
166 | * As a result, we need to do proper anon_vma locking even | |
167 | * for the new allocation. At the same time, we do not want | |
168 | * to do any locking for the common case of already having | |
169 | * an anon_vma. | |
170 | * | |
171 | * This must be called with the mmap_sem held for reading. | |
172 | */ | |
d5a187da | 173 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 174 | { |
d5a187da VB |
175 | struct mm_struct *mm = vma->vm_mm; |
176 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 177 | struct anon_vma_chain *avc; |
1da177e4 LT |
178 | |
179 | might_sleep(); | |
1da177e4 | 180 | |
d5a187da VB |
181 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
182 | if (!avc) | |
183 | goto out_enomem; | |
184 | ||
185 | anon_vma = find_mergeable_anon_vma(vma); | |
186 | allocated = NULL; | |
187 | if (!anon_vma) { | |
188 | anon_vma = anon_vma_alloc(); | |
189 | if (unlikely(!anon_vma)) | |
190 | goto out_enomem_free_avc; | |
191 | allocated = anon_vma; | |
192 | } | |
5beb4930 | 193 | |
d5a187da VB |
194 | anon_vma_lock_write(anon_vma); |
195 | /* page_table_lock to protect against threads */ | |
196 | spin_lock(&mm->page_table_lock); | |
197 | if (likely(!vma->anon_vma)) { | |
198 | vma->anon_vma = anon_vma; | |
199 | anon_vma_chain_link(vma, avc, anon_vma); | |
200 | /* vma reference or self-parent link for new root */ | |
201 | anon_vma->degree++; | |
d9d332e0 | 202 | allocated = NULL; |
d5a187da VB |
203 | avc = NULL; |
204 | } | |
205 | spin_unlock(&mm->page_table_lock); | |
206 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 207 | |
d5a187da VB |
208 | if (unlikely(allocated)) |
209 | put_anon_vma(allocated); | |
210 | if (unlikely(avc)) | |
211 | anon_vma_chain_free(avc); | |
31f2b0eb | 212 | |
1da177e4 | 213 | return 0; |
5beb4930 RR |
214 | |
215 | out_enomem_free_avc: | |
216 | anon_vma_chain_free(avc); | |
217 | out_enomem: | |
218 | return -ENOMEM; | |
1da177e4 LT |
219 | } |
220 | ||
bb4aa396 LT |
221 | /* |
222 | * This is a useful helper function for locking the anon_vma root as | |
223 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
224 | * have the same vma. | |
225 | * | |
226 | * Such anon_vma's should have the same root, so you'd expect to see | |
227 | * just a single mutex_lock for the whole traversal. | |
228 | */ | |
229 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
230 | { | |
231 | struct anon_vma *new_root = anon_vma->root; | |
232 | if (new_root != root) { | |
233 | if (WARN_ON_ONCE(root)) | |
5a505085 | 234 | up_write(&root->rwsem); |
bb4aa396 | 235 | root = new_root; |
5a505085 | 236 | down_write(&root->rwsem); |
bb4aa396 LT |
237 | } |
238 | return root; | |
239 | } | |
240 | ||
241 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
242 | { | |
243 | if (root) | |
5a505085 | 244 | up_write(&root->rwsem); |
bb4aa396 LT |
245 | } |
246 | ||
5beb4930 RR |
247 | /* |
248 | * Attach the anon_vmas from src to dst. | |
249 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
250 | * |
251 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
252 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
253 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
254 | * constantly forking task. On the other hand, an anon_vma with more than one | |
255 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
256 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
257 | * page is mapped. | |
5beb4930 RR |
258 | */ |
259 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 260 | { |
5beb4930 | 261 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 262 | struct anon_vma *root = NULL; |
5beb4930 | 263 | |
646d87b4 | 264 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
265 | struct anon_vma *anon_vma; |
266 | ||
dd34739c LT |
267 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
268 | if (unlikely(!avc)) { | |
269 | unlock_anon_vma_root(root); | |
270 | root = NULL; | |
271 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
272 | if (!avc) | |
273 | goto enomem_failure; | |
274 | } | |
bb4aa396 LT |
275 | anon_vma = pavc->anon_vma; |
276 | root = lock_anon_vma_root(root, anon_vma); | |
277 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
278 | |
279 | /* | |
280 | * Reuse existing anon_vma if its degree lower than two, | |
281 | * that means it has no vma and only one anon_vma child. | |
282 | * | |
283 | * Do not chose parent anon_vma, otherwise first child | |
284 | * will always reuse it. Root anon_vma is never reused: | |
285 | * it has self-parent reference and at least one child. | |
286 | */ | |
287 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
288 | anon_vma->degree < 2) | |
289 | dst->anon_vma = anon_vma; | |
5beb4930 | 290 | } |
7a3ef208 KK |
291 | if (dst->anon_vma) |
292 | dst->anon_vma->degree++; | |
bb4aa396 | 293 | unlock_anon_vma_root(root); |
5beb4930 | 294 | return 0; |
1da177e4 | 295 | |
5beb4930 | 296 | enomem_failure: |
3fe89b3e LY |
297 | /* |
298 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
299 | * decremented in unlink_anon_vmas(). | |
300 | * We can safely do this because callers of anon_vma_clone() don't care | |
301 | * about dst->anon_vma if anon_vma_clone() failed. | |
302 | */ | |
303 | dst->anon_vma = NULL; | |
5beb4930 RR |
304 | unlink_anon_vmas(dst); |
305 | return -ENOMEM; | |
1da177e4 LT |
306 | } |
307 | ||
5beb4930 RR |
308 | /* |
309 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
310 | * the corresponding VMA in the parent process is attached to. | |
311 | * Returns 0 on success, non-zero on failure. | |
312 | */ | |
313 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 314 | { |
5beb4930 RR |
315 | struct anon_vma_chain *avc; |
316 | struct anon_vma *anon_vma; | |
c4ea95d7 | 317 | int error; |
1da177e4 | 318 | |
5beb4930 RR |
319 | /* Don't bother if the parent process has no anon_vma here. */ |
320 | if (!pvma->anon_vma) | |
321 | return 0; | |
322 | ||
7a3ef208 KK |
323 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
324 | vma->anon_vma = NULL; | |
325 | ||
5beb4930 RR |
326 | /* |
327 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
328 | * so rmap can find non-COWed pages in child processes. | |
329 | */ | |
c4ea95d7 DF |
330 | error = anon_vma_clone(vma, pvma); |
331 | if (error) | |
332 | return error; | |
5beb4930 | 333 | |
7a3ef208 KK |
334 | /* An existing anon_vma has been reused, all done then. */ |
335 | if (vma->anon_vma) | |
336 | return 0; | |
337 | ||
5beb4930 RR |
338 | /* Then add our own anon_vma. */ |
339 | anon_vma = anon_vma_alloc(); | |
340 | if (!anon_vma) | |
341 | goto out_error; | |
dd34739c | 342 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
343 | if (!avc) |
344 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
345 | |
346 | /* | |
347 | * The root anon_vma's spinlock is the lock actually used when we | |
348 | * lock any of the anon_vmas in this anon_vma tree. | |
349 | */ | |
350 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 351 | anon_vma->parent = pvma->anon_vma; |
76545066 | 352 | /* |
01d8b20d PZ |
353 | * With refcounts, an anon_vma can stay around longer than the |
354 | * process it belongs to. The root anon_vma needs to be pinned until | |
355 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
356 | */ |
357 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
358 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
359 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 360 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 361 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 362 | anon_vma->parent->degree++; |
08b52706 | 363 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
364 | |
365 | return 0; | |
366 | ||
367 | out_error_free_anon_vma: | |
01d8b20d | 368 | put_anon_vma(anon_vma); |
5beb4930 | 369 | out_error: |
4946d54c | 370 | unlink_anon_vmas(vma); |
5beb4930 | 371 | return -ENOMEM; |
1da177e4 LT |
372 | } |
373 | ||
5beb4930 RR |
374 | void unlink_anon_vmas(struct vm_area_struct *vma) |
375 | { | |
376 | struct anon_vma_chain *avc, *next; | |
eee2acba | 377 | struct anon_vma *root = NULL; |
5beb4930 | 378 | |
5c341ee1 RR |
379 | /* |
380 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
381 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
382 | */ | |
5beb4930 | 383 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
384 | struct anon_vma *anon_vma = avc->anon_vma; |
385 | ||
386 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 387 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
388 | |
389 | /* | |
390 | * Leave empty anon_vmas on the list - we'll need | |
391 | * to free them outside the lock. | |
392 | */ | |
7a3ef208 KK |
393 | if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { |
394 | anon_vma->parent->degree--; | |
eee2acba | 395 | continue; |
7a3ef208 | 396 | } |
eee2acba PZ |
397 | |
398 | list_del(&avc->same_vma); | |
399 | anon_vma_chain_free(avc); | |
400 | } | |
7a3ef208 KK |
401 | if (vma->anon_vma) |
402 | vma->anon_vma->degree--; | |
eee2acba PZ |
403 | unlock_anon_vma_root(root); |
404 | ||
405 | /* | |
406 | * Iterate the list once more, it now only contains empty and unlinked | |
407 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 408 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
409 | */ |
410 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
411 | struct anon_vma *anon_vma = avc->anon_vma; | |
412 | ||
e4c5800a | 413 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
414 | put_anon_vma(anon_vma); |
415 | ||
5beb4930 RR |
416 | list_del(&avc->same_vma); |
417 | anon_vma_chain_free(avc); | |
418 | } | |
419 | } | |
420 | ||
51cc5068 | 421 | static void anon_vma_ctor(void *data) |
1da177e4 | 422 | { |
a35afb83 | 423 | struct anon_vma *anon_vma = data; |
1da177e4 | 424 | |
5a505085 | 425 | init_rwsem(&anon_vma->rwsem); |
83813267 | 426 | atomic_set(&anon_vma->refcount, 0); |
bf181b9f | 427 | anon_vma->rb_root = RB_ROOT; |
1da177e4 LT |
428 | } |
429 | ||
430 | void __init anon_vma_init(void) | |
431 | { | |
432 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 433 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
434 | anon_vma_ctor); |
435 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
436 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
437 | } |
438 | ||
439 | /* | |
6111e4ca PZ |
440 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
441 | * | |
442 | * Since there is no serialization what so ever against page_remove_rmap() | |
443 | * the best this function can do is return a locked anon_vma that might | |
444 | * have been relevant to this page. | |
445 | * | |
446 | * The page might have been remapped to a different anon_vma or the anon_vma | |
447 | * returned may already be freed (and even reused). | |
448 | * | |
bc658c96 PZ |
449 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
450 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
451 | * ensure that any anon_vma obtained from the page will still be valid for as | |
452 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
453 | * | |
6111e4ca PZ |
454 | * All users of this function must be very careful when walking the anon_vma |
455 | * chain and verify that the page in question is indeed mapped in it | |
456 | * [ something equivalent to page_mapped_in_vma() ]. | |
457 | * | |
458 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
459 | * that the anon_vma pointer from page->mapping is valid if there is a | |
460 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 461 | */ |
746b18d4 | 462 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 463 | { |
746b18d4 | 464 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
465 | unsigned long anon_mapping; |
466 | ||
467 | rcu_read_lock(); | |
4db0c3c2 | 468 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 469 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
470 | goto out; |
471 | if (!page_mapped(page)) | |
472 | goto out; | |
473 | ||
474 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
475 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
476 | anon_vma = NULL; | |
477 | goto out; | |
478 | } | |
f1819427 HD |
479 | |
480 | /* | |
481 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
482 | * freed. But if it has been unmapped, we have no security against the |
483 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 484 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 485 | * above cannot corrupt). |
f1819427 | 486 | */ |
746b18d4 | 487 | if (!page_mapped(page)) { |
7f39dda9 | 488 | rcu_read_unlock(); |
746b18d4 | 489 | put_anon_vma(anon_vma); |
7f39dda9 | 490 | return NULL; |
746b18d4 | 491 | } |
1da177e4 LT |
492 | out: |
493 | rcu_read_unlock(); | |
746b18d4 PZ |
494 | |
495 | return anon_vma; | |
496 | } | |
497 | ||
88c22088 PZ |
498 | /* |
499 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
500 | * | |
501 | * Its a little more complex as it tries to keep the fast path to a single | |
502 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
503 | * reference like with page_get_anon_vma() and then block on the mutex. | |
504 | */ | |
4fc3f1d6 | 505 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 506 | { |
88c22088 | 507 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 508 | struct anon_vma *root_anon_vma; |
88c22088 | 509 | unsigned long anon_mapping; |
746b18d4 | 510 | |
88c22088 | 511 | rcu_read_lock(); |
4db0c3c2 | 512 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
513 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
514 | goto out; | |
515 | if (!page_mapped(page)) | |
516 | goto out; | |
517 | ||
518 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 519 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 520 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 521 | /* |
eee0f252 HD |
522 | * If the page is still mapped, then this anon_vma is still |
523 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 524 | * not go away, see anon_vma_free(). |
88c22088 | 525 | */ |
eee0f252 | 526 | if (!page_mapped(page)) { |
4fc3f1d6 | 527 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
528 | anon_vma = NULL; |
529 | } | |
530 | goto out; | |
531 | } | |
746b18d4 | 532 | |
88c22088 PZ |
533 | /* trylock failed, we got to sleep */ |
534 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
535 | anon_vma = NULL; | |
536 | goto out; | |
537 | } | |
538 | ||
539 | if (!page_mapped(page)) { | |
7f39dda9 | 540 | rcu_read_unlock(); |
88c22088 | 541 | put_anon_vma(anon_vma); |
7f39dda9 | 542 | return NULL; |
88c22088 PZ |
543 | } |
544 | ||
545 | /* we pinned the anon_vma, its safe to sleep */ | |
546 | rcu_read_unlock(); | |
4fc3f1d6 | 547 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
548 | |
549 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
550 | /* | |
551 | * Oops, we held the last refcount, release the lock | |
552 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 553 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 554 | */ |
4fc3f1d6 | 555 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
556 | __put_anon_vma(anon_vma); |
557 | anon_vma = NULL; | |
558 | } | |
559 | ||
560 | return anon_vma; | |
561 | ||
562 | out: | |
563 | rcu_read_unlock(); | |
746b18d4 | 564 | return anon_vma; |
34bbd704 ON |
565 | } |
566 | ||
4fc3f1d6 | 567 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 568 | { |
4fc3f1d6 | 569 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
570 | } |
571 | ||
72b252ae | 572 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
573 | /* |
574 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
575 | * important if a PTE was dirty when it was unmapped that it's flushed | |
576 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
577 | * it must be flushed before freeing to prevent data leakage. | |
578 | */ | |
579 | void try_to_unmap_flush(void) | |
580 | { | |
581 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
582 | |
583 | if (!tlb_ubc->flush_required) | |
584 | return; | |
585 | ||
e73ad5ff | 586 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 587 | tlb_ubc->flush_required = false; |
d950c947 | 588 | tlb_ubc->writable = false; |
72b252ae MG |
589 | } |
590 | ||
d950c947 MG |
591 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
592 | void try_to_unmap_flush_dirty(void) | |
593 | { | |
594 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
595 | ||
596 | if (tlb_ubc->writable) | |
597 | try_to_unmap_flush(); | |
598 | } | |
599 | ||
c7ab0d2f | 600 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
601 | { |
602 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
603 | ||
e73ad5ff | 604 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 605 | tlb_ubc->flush_required = true; |
d950c947 | 606 | |
3ea27719 MG |
607 | /* |
608 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
609 | * before the PTE is cleared. | |
610 | */ | |
611 | barrier(); | |
612 | mm->tlb_flush_batched = true; | |
613 | ||
d950c947 MG |
614 | /* |
615 | * If the PTE was dirty then it's best to assume it's writable. The | |
616 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
617 | * before the page is queued for IO. | |
618 | */ | |
619 | if (writable) | |
620 | tlb_ubc->writable = true; | |
72b252ae MG |
621 | } |
622 | ||
623 | /* | |
624 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
625 | * unmap operations to reduce IPIs. | |
626 | */ | |
627 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
628 | { | |
629 | bool should_defer = false; | |
630 | ||
631 | if (!(flags & TTU_BATCH_FLUSH)) | |
632 | return false; | |
633 | ||
634 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
635 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
636 | should_defer = true; | |
637 | put_cpu(); | |
638 | ||
639 | return should_defer; | |
640 | } | |
3ea27719 MG |
641 | |
642 | /* | |
643 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
644 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
645 | * operation such as mprotect or munmap to race between reclaim unmapping | |
646 | * the page and flushing the page. If this race occurs, it potentially allows | |
647 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
648 | * batching in flight would be expensive during reclaim so instead track | |
649 | * whether TLB batching occurred in the past and if so then do a flush here | |
650 | * if required. This will cost one additional flush per reclaim cycle paid | |
651 | * by the first operation at risk such as mprotect and mumap. | |
652 | * | |
653 | * This must be called under the PTL so that an access to tlb_flush_batched | |
654 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
655 | * via the PTL. | |
656 | */ | |
657 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
658 | { | |
659 | if (mm->tlb_flush_batched) { | |
660 | flush_tlb_mm(mm); | |
661 | ||
662 | /* | |
663 | * Do not allow the compiler to re-order the clearing of | |
664 | * tlb_flush_batched before the tlb is flushed. | |
665 | */ | |
666 | barrier(); | |
667 | mm->tlb_flush_batched = false; | |
668 | } | |
669 | } | |
72b252ae | 670 | #else |
c7ab0d2f | 671 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
672 | { |
673 | } | |
674 | ||
675 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
676 | { | |
677 | return false; | |
678 | } | |
679 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
680 | ||
1da177e4 | 681 | /* |
bf89c8c8 | 682 | * At what user virtual address is page expected in vma? |
ab941e0f | 683 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
684 | */ |
685 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
686 | { | |
86c2ad19 | 687 | unsigned long address; |
21d0d443 | 688 | if (PageAnon(page)) { |
4829b906 HD |
689 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
690 | /* | |
691 | * Note: swapoff's unuse_vma() is more efficient with this | |
692 | * check, and needs it to match anon_vma when KSM is active. | |
693 | */ | |
694 | if (!vma->anon_vma || !page__anon_vma || | |
695 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 696 | return -EFAULT; |
27ba0644 KS |
697 | } else if (page->mapping) { |
698 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
699 | return -EFAULT; |
700 | } else | |
701 | return -EFAULT; | |
86c2ad19 ML |
702 | address = __vma_address(page, vma); |
703 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
704 | return -EFAULT; | |
705 | return address; | |
1da177e4 LT |
706 | } |
707 | ||
6219049a BL |
708 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
709 | { | |
710 | pgd_t *pgd; | |
c2febafc | 711 | p4d_t *p4d; |
6219049a BL |
712 | pud_t *pud; |
713 | pmd_t *pmd = NULL; | |
f72e7dcd | 714 | pmd_t pmde; |
6219049a BL |
715 | |
716 | pgd = pgd_offset(mm, address); | |
717 | if (!pgd_present(*pgd)) | |
718 | goto out; | |
719 | ||
c2febafc KS |
720 | p4d = p4d_offset(pgd, address); |
721 | if (!p4d_present(*p4d)) | |
722 | goto out; | |
723 | ||
724 | pud = pud_offset(p4d, address); | |
6219049a BL |
725 | if (!pud_present(*pud)) |
726 | goto out; | |
727 | ||
728 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 729 | /* |
8809aa2d | 730 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
731 | * without holding anon_vma lock for write. So when looking for a |
732 | * genuine pmde (in which to find pte), test present and !THP together. | |
733 | */ | |
e37c6982 CB |
734 | pmde = *pmd; |
735 | barrier(); | |
f72e7dcd | 736 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
737 | pmd = NULL; |
738 | out: | |
739 | return pmd; | |
740 | } | |
741 | ||
8749cfea VD |
742 | struct page_referenced_arg { |
743 | int mapcount; | |
744 | int referenced; | |
745 | unsigned long vm_flags; | |
746 | struct mem_cgroup *memcg; | |
747 | }; | |
748 | /* | |
749 | * arg: page_referenced_arg will be passed | |
750 | */ | |
e4b82222 | 751 | static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, |
8749cfea VD |
752 | unsigned long address, void *arg) |
753 | { | |
8749cfea | 754 | struct page_referenced_arg *pra = arg; |
8eaedede KS |
755 | struct page_vma_mapped_walk pvmw = { |
756 | .page = page, | |
757 | .vma = vma, | |
758 | .address = address, | |
759 | }; | |
8749cfea VD |
760 | int referenced = 0; |
761 | ||
8eaedede KS |
762 | while (page_vma_mapped_walk(&pvmw)) { |
763 | address = pvmw.address; | |
b20ce5e0 | 764 | |
8eaedede KS |
765 | if (vma->vm_flags & VM_LOCKED) { |
766 | page_vma_mapped_walk_done(&pvmw); | |
767 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 768 | return false; /* To break the loop */ |
8eaedede | 769 | } |
71e3aac0 | 770 | |
8eaedede KS |
771 | if (pvmw.pte) { |
772 | if (ptep_clear_flush_young_notify(vma, address, | |
773 | pvmw.pte)) { | |
774 | /* | |
775 | * Don't treat a reference through | |
776 | * a sequentially read mapping as such. | |
777 | * If the page has been used in another mapping, | |
778 | * we will catch it; if this other mapping is | |
779 | * already gone, the unmap path will have set | |
780 | * PG_referenced or activated the page. | |
781 | */ | |
782 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
783 | referenced++; | |
784 | } | |
785 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
786 | if (pmdp_clear_flush_young_notify(vma, address, | |
787 | pvmw.pmd)) | |
8749cfea | 788 | referenced++; |
8eaedede KS |
789 | } else { |
790 | /* unexpected pmd-mapped page? */ | |
791 | WARN_ON_ONCE(1); | |
8749cfea | 792 | } |
8eaedede KS |
793 | |
794 | pra->mapcount--; | |
b20ce5e0 | 795 | } |
b20ce5e0 | 796 | |
33c3fc71 VD |
797 | if (referenced) |
798 | clear_page_idle(page); | |
799 | if (test_and_clear_page_young(page)) | |
800 | referenced++; | |
801 | ||
9f32624b JK |
802 | if (referenced) { |
803 | pra->referenced++; | |
804 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 805 | } |
34bbd704 | 806 | |
9f32624b | 807 | if (!pra->mapcount) |
e4b82222 | 808 | return false; /* To break the loop */ |
9f32624b | 809 | |
e4b82222 | 810 | return true; |
1da177e4 LT |
811 | } |
812 | ||
9f32624b | 813 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 814 | { |
9f32624b JK |
815 | struct page_referenced_arg *pra = arg; |
816 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 817 | |
9f32624b JK |
818 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
819 | return true; | |
1da177e4 | 820 | |
9f32624b | 821 | return false; |
1da177e4 LT |
822 | } |
823 | ||
824 | /** | |
825 | * page_referenced - test if the page was referenced | |
826 | * @page: the page to test | |
827 | * @is_locked: caller holds lock on the page | |
72835c86 | 828 | * @memcg: target memory cgroup |
6fe6b7e3 | 829 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
830 | * |
831 | * Quick test_and_clear_referenced for all mappings to a page, | |
832 | * returns the number of ptes which referenced the page. | |
833 | */ | |
6fe6b7e3 WF |
834 | int page_referenced(struct page *page, |
835 | int is_locked, | |
72835c86 | 836 | struct mem_cgroup *memcg, |
6fe6b7e3 | 837 | unsigned long *vm_flags) |
1da177e4 | 838 | { |
5ad64688 | 839 | int we_locked = 0; |
9f32624b | 840 | struct page_referenced_arg pra = { |
b20ce5e0 | 841 | .mapcount = total_mapcount(page), |
9f32624b JK |
842 | .memcg = memcg, |
843 | }; | |
844 | struct rmap_walk_control rwc = { | |
845 | .rmap_one = page_referenced_one, | |
846 | .arg = (void *)&pra, | |
847 | .anon_lock = page_lock_anon_vma_read, | |
848 | }; | |
1da177e4 | 849 | |
6fe6b7e3 | 850 | *vm_flags = 0; |
9f32624b JK |
851 | if (!page_mapped(page)) |
852 | return 0; | |
853 | ||
854 | if (!page_rmapping(page)) | |
855 | return 0; | |
856 | ||
857 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
858 | we_locked = trylock_page(page); | |
859 | if (!we_locked) | |
860 | return 1; | |
1da177e4 | 861 | } |
9f32624b JK |
862 | |
863 | /* | |
864 | * If we are reclaiming on behalf of a cgroup, skip | |
865 | * counting on behalf of references from different | |
866 | * cgroups | |
867 | */ | |
868 | if (memcg) { | |
869 | rwc.invalid_vma = invalid_page_referenced_vma; | |
870 | } | |
871 | ||
c24f386c | 872 | rmap_walk(page, &rwc); |
9f32624b JK |
873 | *vm_flags = pra.vm_flags; |
874 | ||
875 | if (we_locked) | |
876 | unlock_page(page); | |
877 | ||
878 | return pra.referenced; | |
1da177e4 LT |
879 | } |
880 | ||
e4b82222 | 881 | static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 882 | unsigned long address, void *arg) |
d08b3851 | 883 | { |
f27176cf KS |
884 | struct page_vma_mapped_walk pvmw = { |
885 | .page = page, | |
886 | .vma = vma, | |
887 | .address = address, | |
888 | .flags = PVMW_SYNC, | |
889 | }; | |
9853a407 | 890 | int *cleaned = arg; |
d08b3851 | 891 | |
f27176cf KS |
892 | while (page_vma_mapped_walk(&pvmw)) { |
893 | int ret = 0; | |
894 | address = pvmw.address; | |
895 | if (pvmw.pte) { | |
896 | pte_t entry; | |
897 | pte_t *pte = pvmw.pte; | |
898 | ||
899 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
900 | continue; | |
901 | ||
902 | flush_cache_page(vma, address, pte_pfn(*pte)); | |
903 | entry = ptep_clear_flush(vma, address, pte); | |
904 | entry = pte_wrprotect(entry); | |
905 | entry = pte_mkclean(entry); | |
906 | set_pte_at(vma->vm_mm, address, pte, entry); | |
907 | ret = 1; | |
908 | } else { | |
909 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | |
910 | pmd_t *pmd = pvmw.pmd; | |
911 | pmd_t entry; | |
912 | ||
913 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
914 | continue; | |
915 | ||
916 | flush_cache_page(vma, address, page_to_pfn(page)); | |
917 | entry = pmdp_huge_clear_flush(vma, address, pmd); | |
918 | entry = pmd_wrprotect(entry); | |
919 | entry = pmd_mkclean(entry); | |
920 | set_pmd_at(vma->vm_mm, address, pmd, entry); | |
921 | ret = 1; | |
922 | #else | |
923 | /* unexpected pmd-mapped page? */ | |
924 | WARN_ON_ONCE(1); | |
925 | #endif | |
926 | } | |
d08b3851 | 927 | |
f27176cf KS |
928 | if (ret) { |
929 | mmu_notifier_invalidate_page(vma->vm_mm, address); | |
930 | (*cleaned)++; | |
931 | } | |
c2fda5fe | 932 | } |
d08b3851 | 933 | |
e4b82222 | 934 | return true; |
d08b3851 PZ |
935 | } |
936 | ||
9853a407 | 937 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 938 | { |
9853a407 | 939 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 940 | return false; |
d08b3851 | 941 | |
871beb8c | 942 | return true; |
d08b3851 PZ |
943 | } |
944 | ||
945 | int page_mkclean(struct page *page) | |
946 | { | |
9853a407 JK |
947 | int cleaned = 0; |
948 | struct address_space *mapping; | |
949 | struct rmap_walk_control rwc = { | |
950 | .arg = (void *)&cleaned, | |
951 | .rmap_one = page_mkclean_one, | |
952 | .invalid_vma = invalid_mkclean_vma, | |
953 | }; | |
d08b3851 PZ |
954 | |
955 | BUG_ON(!PageLocked(page)); | |
956 | ||
9853a407 JK |
957 | if (!page_mapped(page)) |
958 | return 0; | |
959 | ||
960 | mapping = page_mapping(page); | |
961 | if (!mapping) | |
962 | return 0; | |
963 | ||
964 | rmap_walk(page, &rwc); | |
d08b3851 | 965 | |
9853a407 | 966 | return cleaned; |
d08b3851 | 967 | } |
60b59bea | 968 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 969 | |
c44b6743 RR |
970 | /** |
971 | * page_move_anon_rmap - move a page to our anon_vma | |
972 | * @page: the page to move to our anon_vma | |
973 | * @vma: the vma the page belongs to | |
c44b6743 RR |
974 | * |
975 | * When a page belongs exclusively to one process after a COW event, | |
976 | * that page can be moved into the anon_vma that belongs to just that | |
977 | * process, so the rmap code will not search the parent or sibling | |
978 | * processes. | |
979 | */ | |
5a49973d | 980 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
981 | { |
982 | struct anon_vma *anon_vma = vma->anon_vma; | |
983 | ||
5a49973d HD |
984 | page = compound_head(page); |
985 | ||
309381fe | 986 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 987 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
988 | |
989 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
990 | /* |
991 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
992 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
993 | * PageAnon()) will not see one without the other. | |
994 | */ | |
995 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
996 | } |
997 | ||
9617d95e | 998 | /** |
4e1c1975 AK |
999 | * __page_set_anon_rmap - set up new anonymous rmap |
1000 | * @page: Page to add to rmap | |
1001 | * @vma: VM area to add page to. | |
1002 | * @address: User virtual address of the mapping | |
e8a03feb | 1003 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1004 | */ |
1005 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1006 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1007 | { |
e8a03feb | 1008 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1009 | |
e8a03feb | 1010 | BUG_ON(!anon_vma); |
ea90002b | 1011 | |
4e1c1975 AK |
1012 | if (PageAnon(page)) |
1013 | return; | |
1014 | ||
ea90002b | 1015 | /* |
e8a03feb RR |
1016 | * If the page isn't exclusively mapped into this vma, |
1017 | * we must use the _oldest_ possible anon_vma for the | |
1018 | * page mapping! | |
ea90002b | 1019 | */ |
4e1c1975 | 1020 | if (!exclusive) |
288468c3 | 1021 | anon_vma = anon_vma->root; |
9617d95e | 1022 | |
9617d95e NP |
1023 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1024 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1025 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1026 | } |
1027 | ||
c97a9e10 | 1028 | /** |
43d8eac4 | 1029 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1030 | * @page: the page to add the mapping to |
1031 | * @vma: the vm area in which the mapping is added | |
1032 | * @address: the user virtual address mapped | |
1033 | */ | |
1034 | static void __page_check_anon_rmap(struct page *page, | |
1035 | struct vm_area_struct *vma, unsigned long address) | |
1036 | { | |
1037 | #ifdef CONFIG_DEBUG_VM | |
1038 | /* | |
1039 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1040 | * be set up correctly at this point. | |
1041 | * | |
1042 | * We have exclusion against page_add_anon_rmap because the caller | |
1043 | * always holds the page locked, except if called from page_dup_rmap, | |
1044 | * in which case the page is already known to be setup. | |
1045 | * | |
1046 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1047 | * are initially only visible via the pagetables, and the pte is locked | |
1048 | * over the call to page_add_new_anon_rmap. | |
1049 | */ | |
44ab57a0 | 1050 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
53f9263b | 1051 | BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); |
c97a9e10 NP |
1052 | #endif |
1053 | } | |
1054 | ||
1da177e4 LT |
1055 | /** |
1056 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1057 | * @page: the page to add the mapping to | |
1058 | * @vma: the vm area in which the mapping is added | |
1059 | * @address: the user virtual address mapped | |
d281ee61 | 1060 | * @compound: charge the page as compound or small page |
1da177e4 | 1061 | * |
5ad64688 | 1062 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1063 | * the anon_vma case: to serialize mapping,index checking after setting, |
1064 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1065 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1066 | */ |
1067 | void page_add_anon_rmap(struct page *page, | |
d281ee61 | 1068 | struct vm_area_struct *vma, unsigned long address, bool compound) |
ad8c2ee8 | 1069 | { |
d281ee61 | 1070 | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); |
ad8c2ee8 RR |
1071 | } |
1072 | ||
1073 | /* | |
1074 | * Special version of the above for do_swap_page, which often runs | |
1075 | * into pages that are exclusively owned by the current process. | |
1076 | * Everybody else should continue to use page_add_anon_rmap above. | |
1077 | */ | |
1078 | void do_page_add_anon_rmap(struct page *page, | |
d281ee61 | 1079 | struct vm_area_struct *vma, unsigned long address, int flags) |
1da177e4 | 1080 | { |
53f9263b KS |
1081 | bool compound = flags & RMAP_COMPOUND; |
1082 | bool first; | |
1083 | ||
e9b61f19 KS |
1084 | if (compound) { |
1085 | atomic_t *mapcount; | |
53f9263b | 1086 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1087 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1088 | mapcount = compound_mapcount_ptr(page); | |
1089 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1090 | } else { |
1091 | first = atomic_inc_and_test(&page->_mapcount); | |
1092 | } | |
1093 | ||
79134171 | 1094 | if (first) { |
d281ee61 | 1095 | int nr = compound ? hpage_nr_pages(page) : 1; |
bea04b07 JZ |
1096 | /* |
1097 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1098 | * these counters are not modified in interrupt context, and | |
1099 | * pte lock(a spinlock) is held, which implies preemption | |
1100 | * disabled. | |
1101 | */ | |
65c45377 | 1102 | if (compound) |
11fb9989 | 1103 | __inc_node_page_state(page, NR_ANON_THPS); |
4b9d0fab | 1104 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
79134171 | 1105 | } |
5ad64688 HD |
1106 | if (unlikely(PageKsm(page))) |
1107 | return; | |
1108 | ||
309381fe | 1109 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
53f9263b | 1110 | |
5dbe0af4 | 1111 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1112 | if (first) |
d281ee61 KS |
1113 | __page_set_anon_rmap(page, vma, address, |
1114 | flags & RMAP_EXCLUSIVE); | |
69029cd5 | 1115 | else |
c97a9e10 | 1116 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1117 | } |
1118 | ||
43d8eac4 | 1119 | /** |
9617d95e NP |
1120 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1121 | * @page: the page to add the mapping to | |
1122 | * @vma: the vm area in which the mapping is added | |
1123 | * @address: the user virtual address mapped | |
d281ee61 | 1124 | * @compound: charge the page as compound or small page |
9617d95e NP |
1125 | * |
1126 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1127 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1128 | * Page does not have to be locked. |
9617d95e NP |
1129 | */ |
1130 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1131 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1132 | { |
d281ee61 KS |
1133 | int nr = compound ? hpage_nr_pages(page) : 1; |
1134 | ||
81d1b09c | 1135 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1136 | __SetPageSwapBacked(page); |
d281ee61 KS |
1137 | if (compound) { |
1138 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1139 | /* increment count (starts at -1) */ |
1140 | atomic_set(compound_mapcount_ptr(page), 0); | |
11fb9989 | 1141 | __inc_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1142 | } else { |
1143 | /* Anon THP always mapped first with PMD */ | |
1144 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1145 | /* increment count (starts at -1) */ | |
1146 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1147 | } |
4b9d0fab | 1148 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
e8a03feb | 1149 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1150 | } |
1151 | ||
1da177e4 LT |
1152 | /** |
1153 | * page_add_file_rmap - add pte mapping to a file page | |
1154 | * @page: the page to add the mapping to | |
1155 | * | |
b8072f09 | 1156 | * The caller needs to hold the pte lock. |
1da177e4 | 1157 | */ |
dd78fedd | 1158 | void page_add_file_rmap(struct page *page, bool compound) |
1da177e4 | 1159 | { |
dd78fedd KS |
1160 | int i, nr = 1; |
1161 | ||
1162 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1163 | lock_page_memcg(page); |
dd78fedd KS |
1164 | if (compound && PageTransHuge(page)) { |
1165 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1166 | if (atomic_inc_and_test(&page[i]._mapcount)) | |
1167 | nr++; | |
1168 | } | |
1169 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1170 | goto out; | |
65c45377 | 1171 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1172 | __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd | 1173 | } else { |
c8efc390 KS |
1174 | if (PageTransCompound(page) && page_mapping(page)) { |
1175 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1176 | ||
9a73f61b KS |
1177 | SetPageDoubleMap(compound_head(page)); |
1178 | if (PageMlocked(page)) | |
1179 | clear_page_mlock(compound_head(page)); | |
1180 | } | |
dd78fedd KS |
1181 | if (!atomic_inc_and_test(&page->_mapcount)) |
1182 | goto out; | |
d69b042f | 1183 | } |
00f3ca2c | 1184 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); |
dd78fedd | 1185 | out: |
62cccb8c | 1186 | unlock_page_memcg(page); |
1da177e4 LT |
1187 | } |
1188 | ||
dd78fedd | 1189 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1190 | { |
dd78fedd KS |
1191 | int i, nr = 1; |
1192 | ||
57dea93a | 1193 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
62cccb8c | 1194 | lock_page_memcg(page); |
8186eb6a | 1195 | |
53f9263b KS |
1196 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1197 | if (unlikely(PageHuge(page))) { | |
1198 | /* hugetlb pages are always mapped with pmds */ | |
1199 | atomic_dec(compound_mapcount_ptr(page)); | |
8186eb6a | 1200 | goto out; |
53f9263b | 1201 | } |
8186eb6a | 1202 | |
53f9263b | 1203 | /* page still mapped by someone else? */ |
dd78fedd KS |
1204 | if (compound && PageTransHuge(page)) { |
1205 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1206 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1207 | nr++; | |
1208 | } | |
1209 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1210 | goto out; | |
65c45377 | 1211 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1212 | __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd KS |
1213 | } else { |
1214 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1215 | goto out; | |
1216 | } | |
8186eb6a JW |
1217 | |
1218 | /* | |
00f3ca2c | 1219 | * We use the irq-unsafe __{inc|mod}_lruvec_page_state because |
8186eb6a JW |
1220 | * these counters are not modified in interrupt context, and |
1221 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1222 | */ | |
00f3ca2c | 1223 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); |
8186eb6a JW |
1224 | |
1225 | if (unlikely(PageMlocked(page))) | |
1226 | clear_page_mlock(page); | |
1227 | out: | |
62cccb8c | 1228 | unlock_page_memcg(page); |
8186eb6a JW |
1229 | } |
1230 | ||
53f9263b KS |
1231 | static void page_remove_anon_compound_rmap(struct page *page) |
1232 | { | |
1233 | int i, nr; | |
1234 | ||
1235 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1236 | return; | |
1237 | ||
1238 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1239 | if (unlikely(PageHuge(page))) | |
1240 | return; | |
1241 | ||
1242 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1243 | return; | |
1244 | ||
11fb9989 | 1245 | __dec_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1246 | |
1247 | if (TestClearPageDoubleMap(page)) { | |
1248 | /* | |
1249 | * Subpages can be mapped with PTEs too. Check how many of | |
1250 | * themi are still mapped. | |
1251 | */ | |
1252 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1253 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1254 | nr++; | |
1255 | } | |
1256 | } else { | |
1257 | nr = HPAGE_PMD_NR; | |
1258 | } | |
1259 | ||
e90309c9 KS |
1260 | if (unlikely(PageMlocked(page))) |
1261 | clear_page_mlock(page); | |
1262 | ||
9a982250 | 1263 | if (nr) { |
4b9d0fab | 1264 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); |
9a982250 KS |
1265 | deferred_split_huge_page(page); |
1266 | } | |
53f9263b KS |
1267 | } |
1268 | ||
1da177e4 LT |
1269 | /** |
1270 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 KS |
1271 | * @page: page to remove mapping from |
1272 | * @compound: uncharge the page as compound or small page | |
1da177e4 | 1273 | * |
b8072f09 | 1274 | * The caller needs to hold the pte lock. |
1da177e4 | 1275 | */ |
d281ee61 | 1276 | void page_remove_rmap(struct page *page, bool compound) |
1da177e4 | 1277 | { |
dd78fedd KS |
1278 | if (!PageAnon(page)) |
1279 | return page_remove_file_rmap(page, compound); | |
89c06bd5 | 1280 | |
53f9263b KS |
1281 | if (compound) |
1282 | return page_remove_anon_compound_rmap(page); | |
1283 | ||
b904dcfe KM |
1284 | /* page still mapped by someone else? */ |
1285 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1286 | return; |
1287 | ||
0fe6e20b | 1288 | /* |
bea04b07 JZ |
1289 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1290 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1291 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1292 | */ |
4b9d0fab | 1293 | __dec_node_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1294 | |
e6c509f8 HD |
1295 | if (unlikely(PageMlocked(page))) |
1296 | clear_page_mlock(page); | |
8186eb6a | 1297 | |
9a982250 KS |
1298 | if (PageTransCompound(page)) |
1299 | deferred_split_huge_page(compound_head(page)); | |
1300 | ||
b904dcfe KM |
1301 | /* |
1302 | * It would be tidy to reset the PageAnon mapping here, | |
1303 | * but that might overwrite a racing page_add_anon_rmap | |
1304 | * which increments mapcount after us but sets mapping | |
1305 | * before us: so leave the reset to free_hot_cold_page, | |
1306 | * and remember that it's only reliable while mapped. | |
1307 | * Leaving it set also helps swapoff to reinstate ptes | |
1308 | * faster for those pages still in swapcache. | |
1309 | */ | |
1da177e4 LT |
1310 | } |
1311 | ||
1312 | /* | |
52629506 | 1313 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1314 | */ |
e4b82222 | 1315 | static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1316 | unsigned long address, void *arg) |
1da177e4 LT |
1317 | { |
1318 | struct mm_struct *mm = vma->vm_mm; | |
c7ab0d2f KS |
1319 | struct page_vma_mapped_walk pvmw = { |
1320 | .page = page, | |
1321 | .vma = vma, | |
1322 | .address = address, | |
1323 | }; | |
1da177e4 | 1324 | pte_t pteval; |
c7ab0d2f | 1325 | struct page *subpage; |
e4b82222 | 1326 | bool ret = true; |
802a3a92 | 1327 | enum ttu_flags flags = (enum ttu_flags)arg; |
1da177e4 | 1328 | |
b87537d9 HD |
1329 | /* munlock has nothing to gain from examining un-locked vmas */ |
1330 | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | |
e4b82222 | 1331 | return true; |
b87537d9 | 1332 | |
fec89c10 KS |
1333 | if (flags & TTU_SPLIT_HUGE_PMD) { |
1334 | split_huge_pmd_address(vma, address, | |
1335 | flags & TTU_MIGRATION, page); | |
fec89c10 KS |
1336 | } |
1337 | ||
c7ab0d2f | 1338 | while (page_vma_mapped_walk(&pvmw)) { |
c7ab0d2f KS |
1339 | /* |
1340 | * If the page is mlock()d, we cannot swap it out. | |
1341 | * If it's recently referenced (perhaps page_referenced | |
1342 | * skipped over this mm) then we should reactivate it. | |
1343 | */ | |
1344 | if (!(flags & TTU_IGNORE_MLOCK)) { | |
1345 | if (vma->vm_flags & VM_LOCKED) { | |
1346 | /* PTE-mapped THP are never mlocked */ | |
1347 | if (!PageTransCompound(page)) { | |
1348 | /* | |
1349 | * Holding pte lock, we do *not* need | |
1350 | * mmap_sem here | |
1351 | */ | |
1352 | mlock_vma_page(page); | |
1353 | } | |
e4b82222 | 1354 | ret = false; |
c7ab0d2f KS |
1355 | page_vma_mapped_walk_done(&pvmw); |
1356 | break; | |
9a73f61b | 1357 | } |
c7ab0d2f KS |
1358 | if (flags & TTU_MUNLOCK) |
1359 | continue; | |
b87537d9 | 1360 | } |
c7ab0d2f | 1361 | |
8346242a KS |
1362 | /* Unexpected PMD-mapped THP? */ |
1363 | VM_BUG_ON_PAGE(!pvmw.pte, page); | |
1364 | ||
1365 | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | |
1366 | address = pvmw.address; | |
1367 | ||
1368 | ||
c7ab0d2f KS |
1369 | if (!(flags & TTU_IGNORE_ACCESS)) { |
1370 | if (ptep_clear_flush_young_notify(vma, address, | |
1371 | pvmw.pte)) { | |
e4b82222 | 1372 | ret = false; |
c7ab0d2f KS |
1373 | page_vma_mapped_walk_done(&pvmw); |
1374 | break; | |
1375 | } | |
b291f000 | 1376 | } |
1da177e4 | 1377 | |
c7ab0d2f KS |
1378 | /* Nuke the page table entry. */ |
1379 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); | |
1380 | if (should_defer_flush(mm, flags)) { | |
1381 | /* | |
1382 | * We clear the PTE but do not flush so potentially | |
1383 | * a remote CPU could still be writing to the page. | |
1384 | * If the entry was previously clean then the | |
1385 | * architecture must guarantee that a clear->dirty | |
1386 | * transition on a cached TLB entry is written through | |
1387 | * and traps if the PTE is unmapped. | |
1388 | */ | |
1389 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); | |
1390 | ||
1391 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | |
1392 | } else { | |
1393 | pteval = ptep_clear_flush(vma, address, pvmw.pte); | |
1394 | } | |
72b252ae | 1395 | |
c7ab0d2f KS |
1396 | /* Move the dirty bit to the page. Now the pte is gone. */ |
1397 | if (pte_dirty(pteval)) | |
1398 | set_page_dirty(page); | |
1da177e4 | 1399 | |
c7ab0d2f KS |
1400 | /* Update high watermark before we lower rss */ |
1401 | update_hiwater_rss(mm); | |
1da177e4 | 1402 | |
c7ab0d2f | 1403 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1404 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
c7ab0d2f KS |
1405 | if (PageHuge(page)) { |
1406 | int nr = 1 << compound_order(page); | |
1407 | hugetlb_count_sub(nr, mm); | |
5fd27b8e PA |
1408 | set_huge_swap_pte_at(mm, address, |
1409 | pvmw.pte, pteval, | |
1410 | vma_mmu_pagesize(vma)); | |
c7ab0d2f KS |
1411 | } else { |
1412 | dec_mm_counter(mm, mm_counter(page)); | |
5fd27b8e | 1413 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1414 | } |
365e9c87 | 1415 | |
c7ab0d2f KS |
1416 | } else if (pte_unused(pteval)) { |
1417 | /* | |
1418 | * The guest indicated that the page content is of no | |
1419 | * interest anymore. Simply discard the pte, vmscan | |
1420 | * will take care of the rest. | |
1421 | */ | |
eca56ff9 | 1422 | dec_mm_counter(mm, mm_counter(page)); |
c7ab0d2f KS |
1423 | } else if (IS_ENABLED(CONFIG_MIGRATION) && |
1424 | (flags & TTU_MIGRATION)) { | |
1425 | swp_entry_t entry; | |
1426 | pte_t swp_pte; | |
1427 | /* | |
1428 | * Store the pfn of the page in a special migration | |
1429 | * pte. do_swap_page() will wait until the migration | |
1430 | * pte is removed and then restart fault handling. | |
1431 | */ | |
1432 | entry = make_migration_entry(subpage, | |
1433 | pte_write(pteval)); | |
1434 | swp_pte = swp_entry_to_pte(entry); | |
1435 | if (pte_soft_dirty(pteval)) | |
1436 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1437 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
1438 | } else if (PageAnon(page)) { | |
1439 | swp_entry_t entry = { .val = page_private(subpage) }; | |
1440 | pte_t swp_pte; | |
1441 | /* | |
1442 | * Store the swap location in the pte. | |
1443 | * See handle_pte_fault() ... | |
1444 | */ | |
eb94a878 MK |
1445 | if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { |
1446 | WARN_ON_ONCE(1); | |
83612a94 | 1447 | ret = false; |
eb94a878 MK |
1448 | page_vma_mapped_walk_done(&pvmw); |
1449 | break; | |
1450 | } | |
c7ab0d2f | 1451 | |
802a3a92 SL |
1452 | /* MADV_FREE page check */ |
1453 | if (!PageSwapBacked(page)) { | |
1454 | if (!PageDirty(page)) { | |
1455 | dec_mm_counter(mm, MM_ANONPAGES); | |
1456 | goto discard; | |
1457 | } | |
1458 | ||
1459 | /* | |
1460 | * If the page was redirtied, it cannot be | |
1461 | * discarded. Remap the page to page table. | |
1462 | */ | |
1463 | set_pte_at(mm, address, pvmw.pte, pteval); | |
18863d3a | 1464 | SetPageSwapBacked(page); |
e4b82222 | 1465 | ret = false; |
802a3a92 SL |
1466 | page_vma_mapped_walk_done(&pvmw); |
1467 | break; | |
c7ab0d2f | 1468 | } |
854e9ed0 | 1469 | |
c7ab0d2f KS |
1470 | if (swap_duplicate(entry) < 0) { |
1471 | set_pte_at(mm, address, pvmw.pte, pteval); | |
e4b82222 | 1472 | ret = false; |
c7ab0d2f KS |
1473 | page_vma_mapped_walk_done(&pvmw); |
1474 | break; | |
1475 | } | |
1476 | if (list_empty(&mm->mmlist)) { | |
1477 | spin_lock(&mmlist_lock); | |
1478 | if (list_empty(&mm->mmlist)) | |
1479 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1480 | spin_unlock(&mmlist_lock); | |
1481 | } | |
854e9ed0 | 1482 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1483 | inc_mm_counter(mm, MM_SWAPENTS); |
1484 | swp_pte = swp_entry_to_pte(entry); | |
1485 | if (pte_soft_dirty(pteval)) | |
1486 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1487 | set_pte_at(mm, address, pvmw.pte, swp_pte); | |
1488 | } else | |
1489 | dec_mm_counter(mm, mm_counter_file(page)); | |
854e9ed0 | 1490 | discard: |
c7ab0d2f KS |
1491 | page_remove_rmap(subpage, PageHuge(page)); |
1492 | put_page(page); | |
2ec74c3e | 1493 | mmu_notifier_invalidate_page(mm, address); |
c7ab0d2f | 1494 | } |
caed0f48 | 1495 | return ret; |
1da177e4 LT |
1496 | } |
1497 | ||
71e3aac0 | 1498 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1499 | { |
1500 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1501 | ||
1502 | if (!maybe_stack) | |
1503 | return false; | |
1504 | ||
1505 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1506 | VM_STACK_INCOMPLETE_SETUP) | |
1507 | return true; | |
1508 | ||
1509 | return false; | |
1510 | } | |
1511 | ||
52629506 JK |
1512 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1513 | { | |
1514 | return is_vma_temporary_stack(vma); | |
1515 | } | |
1516 | ||
2a52bcbc | 1517 | static int page_mapcount_is_zero(struct page *page) |
52629506 | 1518 | { |
c7ab0d2f | 1519 | return !total_mapcount(page); |
2a52bcbc | 1520 | } |
52629506 | 1521 | |
1da177e4 LT |
1522 | /** |
1523 | * try_to_unmap - try to remove all page table mappings to a page | |
1524 | * @page: the page to get unmapped | |
14fa31b8 | 1525 | * @flags: action and flags |
1da177e4 LT |
1526 | * |
1527 | * Tries to remove all the page table entries which are mapping this | |
1528 | * page, used in the pageout path. Caller must hold the page lock. | |
1da177e4 | 1529 | * |
666e5a40 | 1530 | * If unmap is successful, return true. Otherwise, false. |
1da177e4 | 1531 | */ |
666e5a40 | 1532 | bool try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 | 1533 | { |
52629506 JK |
1534 | struct rmap_walk_control rwc = { |
1535 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1536 | .arg = (void *)flags, |
2a52bcbc | 1537 | .done = page_mapcount_is_zero, |
52629506 JK |
1538 | .anon_lock = page_lock_anon_vma_read, |
1539 | }; | |
1da177e4 | 1540 | |
52629506 JK |
1541 | /* |
1542 | * During exec, a temporary VMA is setup and later moved. | |
1543 | * The VMA is moved under the anon_vma lock but not the | |
1544 | * page tables leading to a race where migration cannot | |
1545 | * find the migration ptes. Rather than increasing the | |
1546 | * locking requirements of exec(), migration skips | |
1547 | * temporary VMAs until after exec() completes. | |
1548 | */ | |
daa5ba76 | 1549 | if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) |
52629506 JK |
1550 | rwc.invalid_vma = invalid_migration_vma; |
1551 | ||
2a52bcbc | 1552 | if (flags & TTU_RMAP_LOCKED) |
33fc80e2 | 1553 | rmap_walk_locked(page, &rwc); |
2a52bcbc | 1554 | else |
33fc80e2 | 1555 | rmap_walk(page, &rwc); |
52629506 | 1556 | |
666e5a40 | 1557 | return !page_mapcount(page) ? true : false; |
1da177e4 | 1558 | } |
81b4082d | 1559 | |
2a52bcbc KS |
1560 | static int page_not_mapped(struct page *page) |
1561 | { | |
1562 | return !page_mapped(page); | |
1563 | }; | |
1564 | ||
b291f000 NP |
1565 | /** |
1566 | * try_to_munlock - try to munlock a page | |
1567 | * @page: the page to be munlocked | |
1568 | * | |
1569 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1570 | * to make sure nobody else has this page mlocked. The page will be | |
1571 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
b291f000 | 1572 | */ |
854e9ed0 | 1573 | |
192d7232 MK |
1574 | void try_to_munlock(struct page *page) |
1575 | { | |
e8351ac9 JK |
1576 | struct rmap_walk_control rwc = { |
1577 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1578 | .arg = (void *)TTU_MUNLOCK, |
e8351ac9 | 1579 | .done = page_not_mapped, |
e8351ac9 JK |
1580 | .anon_lock = page_lock_anon_vma_read, |
1581 | ||
1582 | }; | |
1583 | ||
309381fe | 1584 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
192d7232 | 1585 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); |
b291f000 | 1586 | |
192d7232 | 1587 | rmap_walk(page, &rwc); |
b291f000 | 1588 | } |
e9995ef9 | 1589 | |
01d8b20d | 1590 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1591 | { |
01d8b20d | 1592 | struct anon_vma *root = anon_vma->root; |
76545066 | 1593 | |
624483f3 | 1594 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1595 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1596 | anon_vma_free(root); | |
76545066 | 1597 | } |
76545066 | 1598 | |
0dd1c7bb JK |
1599 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1600 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1601 | { |
1602 | struct anon_vma *anon_vma; | |
1603 | ||
0dd1c7bb JK |
1604 | if (rwc->anon_lock) |
1605 | return rwc->anon_lock(page); | |
1606 | ||
faecd8dd JK |
1607 | /* |
1608 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1609 | * because that depends on page_mapped(); but not all its usages | |
1610 | * are holding mmap_sem. Users without mmap_sem are required to | |
1611 | * take a reference count to prevent the anon_vma disappearing | |
1612 | */ | |
1613 | anon_vma = page_anon_vma(page); | |
1614 | if (!anon_vma) | |
1615 | return NULL; | |
1616 | ||
1617 | anon_vma_lock_read(anon_vma); | |
1618 | return anon_vma; | |
1619 | } | |
1620 | ||
e9995ef9 | 1621 | /* |
e8351ac9 JK |
1622 | * rmap_walk_anon - do something to anonymous page using the object-based |
1623 | * rmap method | |
1624 | * @page: the page to be handled | |
1625 | * @rwc: control variable according to each walk type | |
1626 | * | |
1627 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1628 | * contained in the anon_vma struct it points to. | |
1629 | * | |
1630 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1631 | * where the page was found will be held for write. So, we won't recheck | |
1632 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1633 | * LOCKED. | |
e9995ef9 | 1634 | */ |
1df631ae | 1635 | static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1636 | bool locked) |
e9995ef9 HD |
1637 | { |
1638 | struct anon_vma *anon_vma; | |
a8fa41ad | 1639 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 1640 | struct anon_vma_chain *avc; |
e9995ef9 | 1641 | |
b9773199 KS |
1642 | if (locked) { |
1643 | anon_vma = page_anon_vma(page); | |
1644 | /* anon_vma disappear under us? */ | |
1645 | VM_BUG_ON_PAGE(!anon_vma, page); | |
1646 | } else { | |
1647 | anon_vma = rmap_walk_anon_lock(page, rwc); | |
1648 | } | |
e9995ef9 | 1649 | if (!anon_vma) |
1df631ae | 1650 | return; |
faecd8dd | 1651 | |
a8fa41ad KS |
1652 | pgoff_start = page_to_pgoff(page); |
1653 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
1654 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | |
1655 | pgoff_start, pgoff_end) { | |
5beb4930 | 1656 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1657 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1658 | |
ad12695f AA |
1659 | cond_resched(); |
1660 | ||
0dd1c7bb JK |
1661 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1662 | continue; | |
1663 | ||
e4b82222 | 1664 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
e9995ef9 | 1665 | break; |
0dd1c7bb JK |
1666 | if (rwc->done && rwc->done(page)) |
1667 | break; | |
e9995ef9 | 1668 | } |
b9773199 KS |
1669 | |
1670 | if (!locked) | |
1671 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
1672 | } |
1673 | ||
e8351ac9 JK |
1674 | /* |
1675 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1676 | * @page: the page to be handled | |
1677 | * @rwc: control variable according to each walk type | |
1678 | * | |
1679 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1680 | * contained in the address_space struct it points to. | |
1681 | * | |
1682 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1683 | * where the page was found will be held for write. So, we won't recheck | |
1684 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1685 | * LOCKED. | |
1686 | */ | |
1df631ae | 1687 | static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1688 | bool locked) |
e9995ef9 | 1689 | { |
b9773199 | 1690 | struct address_space *mapping = page_mapping(page); |
a8fa41ad | 1691 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 1692 | struct vm_area_struct *vma; |
e9995ef9 | 1693 | |
9f32624b JK |
1694 | /* |
1695 | * The page lock not only makes sure that page->mapping cannot | |
1696 | * suddenly be NULLified by truncation, it makes sure that the | |
1697 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1698 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1699 | */ |
81d1b09c | 1700 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1701 | |
e9995ef9 | 1702 | if (!mapping) |
1df631ae | 1703 | return; |
3dec0ba0 | 1704 | |
a8fa41ad KS |
1705 | pgoff_start = page_to_pgoff(page); |
1706 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
b9773199 KS |
1707 | if (!locked) |
1708 | i_mmap_lock_read(mapping); | |
a8fa41ad KS |
1709 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
1710 | pgoff_start, pgoff_end) { | |
e9995ef9 | 1711 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1712 | |
ad12695f AA |
1713 | cond_resched(); |
1714 | ||
0dd1c7bb JK |
1715 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1716 | continue; | |
1717 | ||
e4b82222 | 1718 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
0dd1c7bb JK |
1719 | goto done; |
1720 | if (rwc->done && rwc->done(page)) | |
1721 | goto done; | |
e9995ef9 | 1722 | } |
0dd1c7bb | 1723 | |
0dd1c7bb | 1724 | done: |
b9773199 KS |
1725 | if (!locked) |
1726 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
1727 | } |
1728 | ||
1df631ae | 1729 | void rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1730 | { |
e9995ef9 | 1731 | if (unlikely(PageKsm(page))) |
1df631ae | 1732 | rmap_walk_ksm(page, rwc); |
e9995ef9 | 1733 | else if (PageAnon(page)) |
1df631ae | 1734 | rmap_walk_anon(page, rwc, false); |
b9773199 | 1735 | else |
1df631ae | 1736 | rmap_walk_file(page, rwc, false); |
b9773199 KS |
1737 | } |
1738 | ||
1739 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
1df631ae | 1740 | void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) |
b9773199 KS |
1741 | { |
1742 | /* no ksm support for now */ | |
1743 | VM_BUG_ON_PAGE(PageKsm(page), page); | |
1744 | if (PageAnon(page)) | |
1df631ae | 1745 | rmap_walk_anon(page, rwc, true); |
e9995ef9 | 1746 | else |
1df631ae | 1747 | rmap_walk_file(page, rwc, true); |
e9995ef9 | 1748 | } |
0fe6e20b | 1749 | |
e3390f67 | 1750 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1751 | /* |
1752 | * The following three functions are for anonymous (private mapped) hugepages. | |
1753 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1754 | * and no lru code, because we handle hugepages differently from common pages. | |
1755 | */ | |
1756 | static void __hugepage_set_anon_rmap(struct page *page, | |
1757 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1758 | { | |
1759 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1760 | |
0fe6e20b | 1761 | BUG_ON(!anon_vma); |
433abed6 NH |
1762 | |
1763 | if (PageAnon(page)) | |
1764 | return; | |
1765 | if (!exclusive) | |
1766 | anon_vma = anon_vma->root; | |
1767 | ||
0fe6e20b NH |
1768 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1769 | page->mapping = (struct address_space *) anon_vma; | |
1770 | page->index = linear_page_index(vma, address); | |
1771 | } | |
1772 | ||
1773 | void hugepage_add_anon_rmap(struct page *page, | |
1774 | struct vm_area_struct *vma, unsigned long address) | |
1775 | { | |
1776 | struct anon_vma *anon_vma = vma->anon_vma; | |
1777 | int first; | |
a850ea30 NH |
1778 | |
1779 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1780 | BUG_ON(!anon_vma); |
5dbe0af4 | 1781 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 1782 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b NH |
1783 | if (first) |
1784 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1785 | } | |
1786 | ||
1787 | void hugepage_add_new_anon_rmap(struct page *page, | |
1788 | struct vm_area_struct *vma, unsigned long address) | |
1789 | { | |
1790 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 1791 | atomic_set(compound_mapcount_ptr(page), 0); |
0fe6e20b NH |
1792 | __hugepage_set_anon_rmap(page, vma, address, 1); |
1793 | } | |
e3390f67 | 1794 | #endif /* CONFIG_HUGETLB_PAGE */ |