]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
88f306b6 KS |
26 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) |
27 | * mapping->i_mmap_rwsem | |
28 | * anon_vma->rwsem | |
29 | * mm->page_table_lock or pte_lock | |
a52633d8 | 30 | * zone_lru_lock (in mark_page_accessed, isolate_lru_page) |
88f306b6 KS |
31 | * swap_lock (in swap_duplicate, swap_info_get) |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | |
35 | * mapping->tree_lock (widely used) | |
36 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) | |
37 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
38 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
39 | * mapping->tree_lock (widely used, in set_page_dirty, | |
40 | * in arch-dependent flush_dcache_mmap_lock, | |
41 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 42 | * |
5a505085 | 43 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 44 | * ->tasklist_lock |
6a46079c | 45 | * pte map lock |
1da177e4 LT |
46 | */ |
47 | ||
48 | #include <linux/mm.h> | |
6e84f315 | 49 | #include <linux/sched/mm.h> |
29930025 | 50 | #include <linux/sched/task.h> |
1da177e4 LT |
51 | #include <linux/pagemap.h> |
52 | #include <linux/swap.h> | |
53 | #include <linux/swapops.h> | |
54 | #include <linux/slab.h> | |
55 | #include <linux/init.h> | |
5ad64688 | 56 | #include <linux/ksm.h> |
1da177e4 LT |
57 | #include <linux/rmap.h> |
58 | #include <linux/rcupdate.h> | |
b95f1b31 | 59 | #include <linux/export.h> |
8a9f3ccd | 60 | #include <linux/memcontrol.h> |
cddb8a5c | 61 | #include <linux/mmu_notifier.h> |
64cdd548 | 62 | #include <linux/migrate.h> |
0fe6e20b | 63 | #include <linux/hugetlb.h> |
ef5d437f | 64 | #include <linux/backing-dev.h> |
33c3fc71 | 65 | #include <linux/page_idle.h> |
a5430dda | 66 | #include <linux/memremap.h> |
1da177e4 LT |
67 | |
68 | #include <asm/tlbflush.h> | |
69 | ||
72b252ae MG |
70 | #include <trace/events/tlb.h> |
71 | ||
b291f000 NP |
72 | #include "internal.h" |
73 | ||
fdd2e5f8 | 74 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 75 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
76 | |
77 | static inline struct anon_vma *anon_vma_alloc(void) | |
78 | { | |
01d8b20d PZ |
79 | struct anon_vma *anon_vma; |
80 | ||
81 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
82 | if (anon_vma) { | |
83 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
84 | anon_vma->degree = 1; /* Reference for first vma */ |
85 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
86 | /* |
87 | * Initialise the anon_vma root to point to itself. If called | |
88 | * from fork, the root will be reset to the parents anon_vma. | |
89 | */ | |
90 | anon_vma->root = anon_vma; | |
91 | } | |
92 | ||
93 | return anon_vma; | |
fdd2e5f8 AB |
94 | } |
95 | ||
01d8b20d | 96 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 97 | { |
01d8b20d | 98 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
99 | |
100 | /* | |
4fc3f1d6 | 101 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
102 | * we can safely hold the lock without the anon_vma getting |
103 | * freed. | |
104 | * | |
105 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
106 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 107 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 108 | * |
4fc3f1d6 IM |
109 | * page_lock_anon_vma_read() VS put_anon_vma() |
110 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 111 | * LOCK MB |
4fc3f1d6 | 112 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
113 | * |
114 | * LOCK should suffice since the actual taking of the lock must | |
115 | * happen _before_ what follows. | |
116 | */ | |
7f39dda9 | 117 | might_sleep(); |
5a505085 | 118 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 119 | anon_vma_lock_write(anon_vma); |
08b52706 | 120 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
121 | } |
122 | ||
fdd2e5f8 AB |
123 | kmem_cache_free(anon_vma_cachep, anon_vma); |
124 | } | |
1da177e4 | 125 | |
dd34739c | 126 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 127 | { |
dd34739c | 128 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
129 | } |
130 | ||
e574b5fd | 131 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
132 | { |
133 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
134 | } | |
135 | ||
6583a843 KC |
136 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
137 | struct anon_vma_chain *avc, | |
138 | struct anon_vma *anon_vma) | |
139 | { | |
140 | avc->vma = vma; | |
141 | avc->anon_vma = anon_vma; | |
142 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 143 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
144 | } |
145 | ||
d9d332e0 | 146 | /** |
d5a187da | 147 | * __anon_vma_prepare - attach an anon_vma to a memory region |
d9d332e0 LT |
148 | * @vma: the memory region in question |
149 | * | |
150 | * This makes sure the memory mapping described by 'vma' has | |
151 | * an 'anon_vma' attached to it, so that we can associate the | |
152 | * anonymous pages mapped into it with that anon_vma. | |
153 | * | |
d5a187da VB |
154 | * The common case will be that we already have one, which |
155 | * is handled inline by anon_vma_prepare(). But if | |
23a0790a | 156 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
157 | * can re-use the anon_vma from (very common when the only |
158 | * reason for splitting a vma has been mprotect()), or we | |
159 | * allocate a new one. | |
160 | * | |
161 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 162 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
163 | * and that may actually touch the spinlock even in the newly |
164 | * allocated vma (it depends on RCU to make sure that the | |
165 | * anon_vma isn't actually destroyed). | |
166 | * | |
167 | * As a result, we need to do proper anon_vma locking even | |
168 | * for the new allocation. At the same time, we do not want | |
169 | * to do any locking for the common case of already having | |
170 | * an anon_vma. | |
171 | * | |
172 | * This must be called with the mmap_sem held for reading. | |
173 | */ | |
d5a187da | 174 | int __anon_vma_prepare(struct vm_area_struct *vma) |
1da177e4 | 175 | { |
d5a187da VB |
176 | struct mm_struct *mm = vma->vm_mm; |
177 | struct anon_vma *anon_vma, *allocated; | |
5beb4930 | 178 | struct anon_vma_chain *avc; |
1da177e4 LT |
179 | |
180 | might_sleep(); | |
1da177e4 | 181 | |
d5a187da VB |
182 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
183 | if (!avc) | |
184 | goto out_enomem; | |
185 | ||
186 | anon_vma = find_mergeable_anon_vma(vma); | |
187 | allocated = NULL; | |
188 | if (!anon_vma) { | |
189 | anon_vma = anon_vma_alloc(); | |
190 | if (unlikely(!anon_vma)) | |
191 | goto out_enomem_free_avc; | |
192 | allocated = anon_vma; | |
193 | } | |
5beb4930 | 194 | |
d5a187da VB |
195 | anon_vma_lock_write(anon_vma); |
196 | /* page_table_lock to protect against threads */ | |
197 | spin_lock(&mm->page_table_lock); | |
198 | if (likely(!vma->anon_vma)) { | |
199 | vma->anon_vma = anon_vma; | |
200 | anon_vma_chain_link(vma, avc, anon_vma); | |
201 | /* vma reference or self-parent link for new root */ | |
202 | anon_vma->degree++; | |
d9d332e0 | 203 | allocated = NULL; |
d5a187da VB |
204 | avc = NULL; |
205 | } | |
206 | spin_unlock(&mm->page_table_lock); | |
207 | anon_vma_unlock_write(anon_vma); | |
1da177e4 | 208 | |
d5a187da VB |
209 | if (unlikely(allocated)) |
210 | put_anon_vma(allocated); | |
211 | if (unlikely(avc)) | |
212 | anon_vma_chain_free(avc); | |
31f2b0eb | 213 | |
1da177e4 | 214 | return 0; |
5beb4930 RR |
215 | |
216 | out_enomem_free_avc: | |
217 | anon_vma_chain_free(avc); | |
218 | out_enomem: | |
219 | return -ENOMEM; | |
1da177e4 LT |
220 | } |
221 | ||
bb4aa396 LT |
222 | /* |
223 | * This is a useful helper function for locking the anon_vma root as | |
224 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
225 | * have the same vma. | |
226 | * | |
227 | * Such anon_vma's should have the same root, so you'd expect to see | |
228 | * just a single mutex_lock for the whole traversal. | |
229 | */ | |
230 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
231 | { | |
232 | struct anon_vma *new_root = anon_vma->root; | |
233 | if (new_root != root) { | |
234 | if (WARN_ON_ONCE(root)) | |
5a505085 | 235 | up_write(&root->rwsem); |
bb4aa396 | 236 | root = new_root; |
5a505085 | 237 | down_write(&root->rwsem); |
bb4aa396 LT |
238 | } |
239 | return root; | |
240 | } | |
241 | ||
242 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
243 | { | |
244 | if (root) | |
5a505085 | 245 | up_write(&root->rwsem); |
bb4aa396 LT |
246 | } |
247 | ||
5beb4930 RR |
248 | /* |
249 | * Attach the anon_vmas from src to dst. | |
250 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
251 | * |
252 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
253 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
254 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
255 | * constantly forking task. On the other hand, an anon_vma with more than one | |
256 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
257 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
258 | * page is mapped. | |
5beb4930 RR |
259 | */ |
260 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 261 | { |
5beb4930 | 262 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 263 | struct anon_vma *root = NULL; |
5beb4930 | 264 | |
646d87b4 | 265 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
266 | struct anon_vma *anon_vma; |
267 | ||
dd34739c LT |
268 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
269 | if (unlikely(!avc)) { | |
270 | unlock_anon_vma_root(root); | |
271 | root = NULL; | |
272 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
273 | if (!avc) | |
274 | goto enomem_failure; | |
275 | } | |
bb4aa396 LT |
276 | anon_vma = pavc->anon_vma; |
277 | root = lock_anon_vma_root(root, anon_vma); | |
278 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
279 | |
280 | /* | |
281 | * Reuse existing anon_vma if its degree lower than two, | |
282 | * that means it has no vma and only one anon_vma child. | |
283 | * | |
284 | * Do not chose parent anon_vma, otherwise first child | |
285 | * will always reuse it. Root anon_vma is never reused: | |
286 | * it has self-parent reference and at least one child. | |
287 | */ | |
288 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
289 | anon_vma->degree < 2) | |
290 | dst->anon_vma = anon_vma; | |
5beb4930 | 291 | } |
7a3ef208 KK |
292 | if (dst->anon_vma) |
293 | dst->anon_vma->degree++; | |
bb4aa396 | 294 | unlock_anon_vma_root(root); |
5beb4930 | 295 | return 0; |
1da177e4 | 296 | |
5beb4930 | 297 | enomem_failure: |
3fe89b3e LY |
298 | /* |
299 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
300 | * decremented in unlink_anon_vmas(). | |
301 | * We can safely do this because callers of anon_vma_clone() don't care | |
302 | * about dst->anon_vma if anon_vma_clone() failed. | |
303 | */ | |
304 | dst->anon_vma = NULL; | |
5beb4930 RR |
305 | unlink_anon_vmas(dst); |
306 | return -ENOMEM; | |
1da177e4 LT |
307 | } |
308 | ||
5beb4930 RR |
309 | /* |
310 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
311 | * the corresponding VMA in the parent process is attached to. | |
312 | * Returns 0 on success, non-zero on failure. | |
313 | */ | |
314 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 315 | { |
5beb4930 RR |
316 | struct anon_vma_chain *avc; |
317 | struct anon_vma *anon_vma; | |
c4ea95d7 | 318 | int error; |
1da177e4 | 319 | |
5beb4930 RR |
320 | /* Don't bother if the parent process has no anon_vma here. */ |
321 | if (!pvma->anon_vma) | |
322 | return 0; | |
323 | ||
7a3ef208 KK |
324 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
325 | vma->anon_vma = NULL; | |
326 | ||
5beb4930 RR |
327 | /* |
328 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
329 | * so rmap can find non-COWed pages in child processes. | |
330 | */ | |
c4ea95d7 DF |
331 | error = anon_vma_clone(vma, pvma); |
332 | if (error) | |
333 | return error; | |
5beb4930 | 334 | |
7a3ef208 KK |
335 | /* An existing anon_vma has been reused, all done then. */ |
336 | if (vma->anon_vma) | |
337 | return 0; | |
338 | ||
5beb4930 RR |
339 | /* Then add our own anon_vma. */ |
340 | anon_vma = anon_vma_alloc(); | |
341 | if (!anon_vma) | |
342 | goto out_error; | |
dd34739c | 343 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
344 | if (!avc) |
345 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
346 | |
347 | /* | |
348 | * The root anon_vma's spinlock is the lock actually used when we | |
349 | * lock any of the anon_vmas in this anon_vma tree. | |
350 | */ | |
351 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 352 | anon_vma->parent = pvma->anon_vma; |
76545066 | 353 | /* |
01d8b20d PZ |
354 | * With refcounts, an anon_vma can stay around longer than the |
355 | * process it belongs to. The root anon_vma needs to be pinned until | |
356 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
357 | */ |
358 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
359 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
360 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 361 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 362 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 363 | anon_vma->parent->degree++; |
08b52706 | 364 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
365 | |
366 | return 0; | |
367 | ||
368 | out_error_free_anon_vma: | |
01d8b20d | 369 | put_anon_vma(anon_vma); |
5beb4930 | 370 | out_error: |
4946d54c | 371 | unlink_anon_vmas(vma); |
5beb4930 | 372 | return -ENOMEM; |
1da177e4 LT |
373 | } |
374 | ||
5beb4930 RR |
375 | void unlink_anon_vmas(struct vm_area_struct *vma) |
376 | { | |
377 | struct anon_vma_chain *avc, *next; | |
eee2acba | 378 | struct anon_vma *root = NULL; |
5beb4930 | 379 | |
5c341ee1 RR |
380 | /* |
381 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
382 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
383 | */ | |
5beb4930 | 384 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
385 | struct anon_vma *anon_vma = avc->anon_vma; |
386 | ||
387 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 388 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
389 | |
390 | /* | |
391 | * Leave empty anon_vmas on the list - we'll need | |
392 | * to free them outside the lock. | |
393 | */ | |
f808c13f | 394 | if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) { |
7a3ef208 | 395 | anon_vma->parent->degree--; |
eee2acba | 396 | continue; |
7a3ef208 | 397 | } |
eee2acba PZ |
398 | |
399 | list_del(&avc->same_vma); | |
400 | anon_vma_chain_free(avc); | |
401 | } | |
7a3ef208 KK |
402 | if (vma->anon_vma) |
403 | vma->anon_vma->degree--; | |
eee2acba PZ |
404 | unlock_anon_vma_root(root); |
405 | ||
406 | /* | |
407 | * Iterate the list once more, it now only contains empty and unlinked | |
408 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 409 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
410 | */ |
411 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
412 | struct anon_vma *anon_vma = avc->anon_vma; | |
413 | ||
e4c5800a | 414 | VM_WARN_ON(anon_vma->degree); |
eee2acba PZ |
415 | put_anon_vma(anon_vma); |
416 | ||
5beb4930 RR |
417 | list_del(&avc->same_vma); |
418 | anon_vma_chain_free(avc); | |
419 | } | |
420 | } | |
421 | ||
51cc5068 | 422 | static void anon_vma_ctor(void *data) |
1da177e4 | 423 | { |
a35afb83 | 424 | struct anon_vma *anon_vma = data; |
1da177e4 | 425 | |
5a505085 | 426 | init_rwsem(&anon_vma->rwsem); |
83813267 | 427 | atomic_set(&anon_vma->refcount, 0); |
f808c13f | 428 | anon_vma->rb_root = RB_ROOT_CACHED; |
1da177e4 LT |
429 | } |
430 | ||
431 | void __init anon_vma_init(void) | |
432 | { | |
433 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5f0d5a3a | 434 | 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
5d097056 VD |
435 | anon_vma_ctor); |
436 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
437 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
438 | } |
439 | ||
440 | /* | |
6111e4ca PZ |
441 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
442 | * | |
443 | * Since there is no serialization what so ever against page_remove_rmap() | |
444 | * the best this function can do is return a locked anon_vma that might | |
445 | * have been relevant to this page. | |
446 | * | |
447 | * The page might have been remapped to a different anon_vma or the anon_vma | |
448 | * returned may already be freed (and even reused). | |
449 | * | |
bc658c96 PZ |
450 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
451 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
452 | * ensure that any anon_vma obtained from the page will still be valid for as | |
453 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
454 | * | |
6111e4ca PZ |
455 | * All users of this function must be very careful when walking the anon_vma |
456 | * chain and verify that the page in question is indeed mapped in it | |
457 | * [ something equivalent to page_mapped_in_vma() ]. | |
458 | * | |
459 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
460 | * that the anon_vma pointer from page->mapping is valid if there is a | |
461 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 462 | */ |
746b18d4 | 463 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 464 | { |
746b18d4 | 465 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
466 | unsigned long anon_mapping; |
467 | ||
468 | rcu_read_lock(); | |
4db0c3c2 | 469 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 470 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
471 | goto out; |
472 | if (!page_mapped(page)) | |
473 | goto out; | |
474 | ||
475 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
476 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
477 | anon_vma = NULL; | |
478 | goto out; | |
479 | } | |
f1819427 HD |
480 | |
481 | /* | |
482 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
483 | * freed. But if it has been unmapped, we have no security against the |
484 | * anon_vma structure being freed and reused (for another anon_vma: | |
5f0d5a3a | 485 | * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero() |
746b18d4 | 486 | * above cannot corrupt). |
f1819427 | 487 | */ |
746b18d4 | 488 | if (!page_mapped(page)) { |
7f39dda9 | 489 | rcu_read_unlock(); |
746b18d4 | 490 | put_anon_vma(anon_vma); |
7f39dda9 | 491 | return NULL; |
746b18d4 | 492 | } |
1da177e4 LT |
493 | out: |
494 | rcu_read_unlock(); | |
746b18d4 PZ |
495 | |
496 | return anon_vma; | |
497 | } | |
498 | ||
88c22088 PZ |
499 | /* |
500 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
501 | * | |
502 | * Its a little more complex as it tries to keep the fast path to a single | |
503 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
504 | * reference like with page_get_anon_vma() and then block on the mutex. | |
505 | */ | |
4fc3f1d6 | 506 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 507 | { |
88c22088 | 508 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 509 | struct anon_vma *root_anon_vma; |
88c22088 | 510 | unsigned long anon_mapping; |
746b18d4 | 511 | |
88c22088 | 512 | rcu_read_lock(); |
4db0c3c2 | 513 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
514 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
515 | goto out; | |
516 | if (!page_mapped(page)) | |
517 | goto out; | |
518 | ||
519 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 520 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 521 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 522 | /* |
eee0f252 HD |
523 | * If the page is still mapped, then this anon_vma is still |
524 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 525 | * not go away, see anon_vma_free(). |
88c22088 | 526 | */ |
eee0f252 | 527 | if (!page_mapped(page)) { |
4fc3f1d6 | 528 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
529 | anon_vma = NULL; |
530 | } | |
531 | goto out; | |
532 | } | |
746b18d4 | 533 | |
88c22088 PZ |
534 | /* trylock failed, we got to sleep */ |
535 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
536 | anon_vma = NULL; | |
537 | goto out; | |
538 | } | |
539 | ||
540 | if (!page_mapped(page)) { | |
7f39dda9 | 541 | rcu_read_unlock(); |
88c22088 | 542 | put_anon_vma(anon_vma); |
7f39dda9 | 543 | return NULL; |
88c22088 PZ |
544 | } |
545 | ||
546 | /* we pinned the anon_vma, its safe to sleep */ | |
547 | rcu_read_unlock(); | |
4fc3f1d6 | 548 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
549 | |
550 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
551 | /* | |
552 | * Oops, we held the last refcount, release the lock | |
553 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 554 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 555 | */ |
4fc3f1d6 | 556 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
557 | __put_anon_vma(anon_vma); |
558 | anon_vma = NULL; | |
559 | } | |
560 | ||
561 | return anon_vma; | |
562 | ||
563 | out: | |
564 | rcu_read_unlock(); | |
746b18d4 | 565 | return anon_vma; |
34bbd704 ON |
566 | } |
567 | ||
4fc3f1d6 | 568 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 569 | { |
4fc3f1d6 | 570 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
571 | } |
572 | ||
72b252ae | 573 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
72b252ae MG |
574 | /* |
575 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
576 | * important if a PTE was dirty when it was unmapped that it's flushed | |
577 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
578 | * it must be flushed before freeing to prevent data leakage. | |
579 | */ | |
580 | void try_to_unmap_flush(void) | |
581 | { | |
582 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
72b252ae MG |
583 | |
584 | if (!tlb_ubc->flush_required) | |
585 | return; | |
586 | ||
e73ad5ff | 587 | arch_tlbbatch_flush(&tlb_ubc->arch); |
72b252ae | 588 | tlb_ubc->flush_required = false; |
d950c947 | 589 | tlb_ubc->writable = false; |
72b252ae MG |
590 | } |
591 | ||
d950c947 MG |
592 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
593 | void try_to_unmap_flush_dirty(void) | |
594 | { | |
595 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
596 | ||
597 | if (tlb_ubc->writable) | |
598 | try_to_unmap_flush(); | |
599 | } | |
600 | ||
c7ab0d2f | 601 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
602 | { |
603 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
604 | ||
e73ad5ff | 605 | arch_tlbbatch_add_mm(&tlb_ubc->arch, mm); |
72b252ae | 606 | tlb_ubc->flush_required = true; |
d950c947 | 607 | |
3ea27719 MG |
608 | /* |
609 | * Ensure compiler does not re-order the setting of tlb_flush_batched | |
610 | * before the PTE is cleared. | |
611 | */ | |
612 | barrier(); | |
613 | mm->tlb_flush_batched = true; | |
614 | ||
d950c947 MG |
615 | /* |
616 | * If the PTE was dirty then it's best to assume it's writable. The | |
617 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
618 | * before the page is queued for IO. | |
619 | */ | |
620 | if (writable) | |
621 | tlb_ubc->writable = true; | |
72b252ae MG |
622 | } |
623 | ||
624 | /* | |
625 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
626 | * unmap operations to reduce IPIs. | |
627 | */ | |
628 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
629 | { | |
630 | bool should_defer = false; | |
631 | ||
632 | if (!(flags & TTU_BATCH_FLUSH)) | |
633 | return false; | |
634 | ||
635 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
636 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
637 | should_defer = true; | |
638 | put_cpu(); | |
639 | ||
640 | return should_defer; | |
641 | } | |
3ea27719 MG |
642 | |
643 | /* | |
644 | * Reclaim unmaps pages under the PTL but do not flush the TLB prior to | |
645 | * releasing the PTL if TLB flushes are batched. It's possible for a parallel | |
646 | * operation such as mprotect or munmap to race between reclaim unmapping | |
647 | * the page and flushing the page. If this race occurs, it potentially allows | |
648 | * access to data via a stale TLB entry. Tracking all mm's that have TLB | |
649 | * batching in flight would be expensive during reclaim so instead track | |
650 | * whether TLB batching occurred in the past and if so then do a flush here | |
651 | * if required. This will cost one additional flush per reclaim cycle paid | |
652 | * by the first operation at risk such as mprotect and mumap. | |
653 | * | |
654 | * This must be called under the PTL so that an access to tlb_flush_batched | |
655 | * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise | |
656 | * via the PTL. | |
657 | */ | |
658 | void flush_tlb_batched_pending(struct mm_struct *mm) | |
659 | { | |
660 | if (mm->tlb_flush_batched) { | |
661 | flush_tlb_mm(mm); | |
662 | ||
663 | /* | |
664 | * Do not allow the compiler to re-order the clearing of | |
665 | * tlb_flush_batched before the tlb is flushed. | |
666 | */ | |
667 | barrier(); | |
668 | mm->tlb_flush_batched = false; | |
669 | } | |
670 | } | |
72b252ae | 671 | #else |
c7ab0d2f | 672 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable) |
72b252ae MG |
673 | { |
674 | } | |
675 | ||
676 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
677 | { | |
678 | return false; | |
679 | } | |
680 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
681 | ||
1da177e4 | 682 | /* |
bf89c8c8 | 683 | * At what user virtual address is page expected in vma? |
ab941e0f | 684 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
685 | */ |
686 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
687 | { | |
86c2ad19 | 688 | unsigned long address; |
21d0d443 | 689 | if (PageAnon(page)) { |
4829b906 HD |
690 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
691 | /* | |
692 | * Note: swapoff's unuse_vma() is more efficient with this | |
693 | * check, and needs it to match anon_vma when KSM is active. | |
694 | */ | |
695 | if (!vma->anon_vma || !page__anon_vma || | |
696 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 697 | return -EFAULT; |
27ba0644 KS |
698 | } else if (page->mapping) { |
699 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
700 | return -EFAULT; |
701 | } else | |
702 | return -EFAULT; | |
86c2ad19 ML |
703 | address = __vma_address(page, vma); |
704 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
705 | return -EFAULT; | |
706 | return address; | |
1da177e4 LT |
707 | } |
708 | ||
6219049a BL |
709 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
710 | { | |
711 | pgd_t *pgd; | |
c2febafc | 712 | p4d_t *p4d; |
6219049a BL |
713 | pud_t *pud; |
714 | pmd_t *pmd = NULL; | |
f72e7dcd | 715 | pmd_t pmde; |
6219049a BL |
716 | |
717 | pgd = pgd_offset(mm, address); | |
718 | if (!pgd_present(*pgd)) | |
719 | goto out; | |
720 | ||
c2febafc KS |
721 | p4d = p4d_offset(pgd, address); |
722 | if (!p4d_present(*p4d)) | |
723 | goto out; | |
724 | ||
725 | pud = pud_offset(p4d, address); | |
6219049a BL |
726 | if (!pud_present(*pud)) |
727 | goto out; | |
728 | ||
729 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 730 | /* |
8809aa2d | 731 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
732 | * without holding anon_vma lock for write. So when looking for a |
733 | * genuine pmde (in which to find pte), test present and !THP together. | |
734 | */ | |
e37c6982 CB |
735 | pmde = *pmd; |
736 | barrier(); | |
f72e7dcd | 737 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
738 | pmd = NULL; |
739 | out: | |
740 | return pmd; | |
741 | } | |
742 | ||
8749cfea VD |
743 | struct page_referenced_arg { |
744 | int mapcount; | |
745 | int referenced; | |
746 | unsigned long vm_flags; | |
747 | struct mem_cgroup *memcg; | |
748 | }; | |
749 | /* | |
750 | * arg: page_referenced_arg will be passed | |
751 | */ | |
e4b82222 | 752 | static bool page_referenced_one(struct page *page, struct vm_area_struct *vma, |
8749cfea VD |
753 | unsigned long address, void *arg) |
754 | { | |
8749cfea | 755 | struct page_referenced_arg *pra = arg; |
8eaedede KS |
756 | struct page_vma_mapped_walk pvmw = { |
757 | .page = page, | |
758 | .vma = vma, | |
759 | .address = address, | |
760 | }; | |
8749cfea VD |
761 | int referenced = 0; |
762 | ||
8eaedede KS |
763 | while (page_vma_mapped_walk(&pvmw)) { |
764 | address = pvmw.address; | |
b20ce5e0 | 765 | |
8eaedede KS |
766 | if (vma->vm_flags & VM_LOCKED) { |
767 | page_vma_mapped_walk_done(&pvmw); | |
768 | pra->vm_flags |= VM_LOCKED; | |
e4b82222 | 769 | return false; /* To break the loop */ |
8eaedede | 770 | } |
71e3aac0 | 771 | |
8eaedede KS |
772 | if (pvmw.pte) { |
773 | if (ptep_clear_flush_young_notify(vma, address, | |
774 | pvmw.pte)) { | |
775 | /* | |
776 | * Don't treat a reference through | |
777 | * a sequentially read mapping as such. | |
778 | * If the page has been used in another mapping, | |
779 | * we will catch it; if this other mapping is | |
780 | * already gone, the unmap path will have set | |
781 | * PG_referenced or activated the page. | |
782 | */ | |
783 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
784 | referenced++; | |
785 | } | |
786 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
787 | if (pmdp_clear_flush_young_notify(vma, address, | |
788 | pvmw.pmd)) | |
8749cfea | 789 | referenced++; |
8eaedede KS |
790 | } else { |
791 | /* unexpected pmd-mapped page? */ | |
792 | WARN_ON_ONCE(1); | |
8749cfea | 793 | } |
8eaedede KS |
794 | |
795 | pra->mapcount--; | |
b20ce5e0 | 796 | } |
b20ce5e0 | 797 | |
33c3fc71 VD |
798 | if (referenced) |
799 | clear_page_idle(page); | |
800 | if (test_and_clear_page_young(page)) | |
801 | referenced++; | |
802 | ||
9f32624b JK |
803 | if (referenced) { |
804 | pra->referenced++; | |
805 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 806 | } |
34bbd704 | 807 | |
9f32624b | 808 | if (!pra->mapcount) |
e4b82222 | 809 | return false; /* To break the loop */ |
9f32624b | 810 | |
e4b82222 | 811 | return true; |
1da177e4 LT |
812 | } |
813 | ||
9f32624b | 814 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 815 | { |
9f32624b JK |
816 | struct page_referenced_arg *pra = arg; |
817 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 818 | |
9f32624b JK |
819 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
820 | return true; | |
1da177e4 | 821 | |
9f32624b | 822 | return false; |
1da177e4 LT |
823 | } |
824 | ||
825 | /** | |
826 | * page_referenced - test if the page was referenced | |
827 | * @page: the page to test | |
828 | * @is_locked: caller holds lock on the page | |
72835c86 | 829 | * @memcg: target memory cgroup |
6fe6b7e3 | 830 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
831 | * |
832 | * Quick test_and_clear_referenced for all mappings to a page, | |
833 | * returns the number of ptes which referenced the page. | |
834 | */ | |
6fe6b7e3 WF |
835 | int page_referenced(struct page *page, |
836 | int is_locked, | |
72835c86 | 837 | struct mem_cgroup *memcg, |
6fe6b7e3 | 838 | unsigned long *vm_flags) |
1da177e4 | 839 | { |
5ad64688 | 840 | int we_locked = 0; |
9f32624b | 841 | struct page_referenced_arg pra = { |
b20ce5e0 | 842 | .mapcount = total_mapcount(page), |
9f32624b JK |
843 | .memcg = memcg, |
844 | }; | |
845 | struct rmap_walk_control rwc = { | |
846 | .rmap_one = page_referenced_one, | |
847 | .arg = (void *)&pra, | |
848 | .anon_lock = page_lock_anon_vma_read, | |
849 | }; | |
1da177e4 | 850 | |
6fe6b7e3 | 851 | *vm_flags = 0; |
9f32624b JK |
852 | if (!page_mapped(page)) |
853 | return 0; | |
854 | ||
855 | if (!page_rmapping(page)) | |
856 | return 0; | |
857 | ||
858 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
859 | we_locked = trylock_page(page); | |
860 | if (!we_locked) | |
861 | return 1; | |
1da177e4 | 862 | } |
9f32624b JK |
863 | |
864 | /* | |
865 | * If we are reclaiming on behalf of a cgroup, skip | |
866 | * counting on behalf of references from different | |
867 | * cgroups | |
868 | */ | |
869 | if (memcg) { | |
870 | rwc.invalid_vma = invalid_page_referenced_vma; | |
871 | } | |
872 | ||
c24f386c | 873 | rmap_walk(page, &rwc); |
9f32624b JK |
874 | *vm_flags = pra.vm_flags; |
875 | ||
876 | if (we_locked) | |
877 | unlock_page(page); | |
878 | ||
879 | return pra.referenced; | |
1da177e4 LT |
880 | } |
881 | ||
e4b82222 | 882 | static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 883 | unsigned long address, void *arg) |
d08b3851 | 884 | { |
f27176cf KS |
885 | struct page_vma_mapped_walk pvmw = { |
886 | .page = page, | |
887 | .vma = vma, | |
888 | .address = address, | |
889 | .flags = PVMW_SYNC, | |
890 | }; | |
369ea824 | 891 | unsigned long start = address, end; |
9853a407 | 892 | int *cleaned = arg; |
d08b3851 | 893 | |
369ea824 JG |
894 | /* |
895 | * We have to assume the worse case ie pmd for invalidation. Note that | |
896 | * the page can not be free from this function. | |
897 | */ | |
898 | end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); | |
899 | mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); | |
900 | ||
f27176cf | 901 | while (page_vma_mapped_walk(&pvmw)) { |
369ea824 | 902 | unsigned long cstart, cend; |
f27176cf | 903 | int ret = 0; |
369ea824 JG |
904 | |
905 | cstart = address = pvmw.address; | |
f27176cf KS |
906 | if (pvmw.pte) { |
907 | pte_t entry; | |
908 | pte_t *pte = pvmw.pte; | |
909 | ||
910 | if (!pte_dirty(*pte) && !pte_write(*pte)) | |
911 | continue; | |
912 | ||
785373b4 LT |
913 | flush_cache_page(vma, address, pte_pfn(*pte)); |
914 | entry = ptep_clear_flush(vma, address, pte); | |
f27176cf KS |
915 | entry = pte_wrprotect(entry); |
916 | entry = pte_mkclean(entry); | |
785373b4 | 917 | set_pte_at(vma->vm_mm, address, pte, entry); |
369ea824 | 918 | cend = cstart + PAGE_SIZE; |
f27176cf KS |
919 | ret = 1; |
920 | } else { | |
921 | #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE | |
922 | pmd_t *pmd = pvmw.pmd; | |
923 | pmd_t entry; | |
924 | ||
925 | if (!pmd_dirty(*pmd) && !pmd_write(*pmd)) | |
926 | continue; | |
927 | ||
785373b4 LT |
928 | flush_cache_page(vma, address, page_to_pfn(page)); |
929 | entry = pmdp_huge_clear_flush(vma, address, pmd); | |
f27176cf KS |
930 | entry = pmd_wrprotect(entry); |
931 | entry = pmd_mkclean(entry); | |
785373b4 | 932 | set_pmd_at(vma->vm_mm, address, pmd, entry); |
369ea824 JG |
933 | cstart &= PMD_MASK; |
934 | cend = cstart + PMD_SIZE; | |
f27176cf KS |
935 | ret = 1; |
936 | #else | |
937 | /* unexpected pmd-mapped page? */ | |
938 | WARN_ON_ONCE(1); | |
939 | #endif | |
940 | } | |
d08b3851 | 941 | |
f27176cf | 942 | if (ret) { |
369ea824 | 943 | mmu_notifier_invalidate_range(vma->vm_mm, cstart, cend); |
f27176cf KS |
944 | (*cleaned)++; |
945 | } | |
c2fda5fe | 946 | } |
d08b3851 | 947 | |
369ea824 JG |
948 | mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); |
949 | ||
e4b82222 | 950 | return true; |
d08b3851 PZ |
951 | } |
952 | ||
9853a407 | 953 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 954 | { |
9853a407 | 955 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 956 | return false; |
d08b3851 | 957 | |
871beb8c | 958 | return true; |
d08b3851 PZ |
959 | } |
960 | ||
961 | int page_mkclean(struct page *page) | |
962 | { | |
9853a407 JK |
963 | int cleaned = 0; |
964 | struct address_space *mapping; | |
965 | struct rmap_walk_control rwc = { | |
966 | .arg = (void *)&cleaned, | |
967 | .rmap_one = page_mkclean_one, | |
968 | .invalid_vma = invalid_mkclean_vma, | |
969 | }; | |
d08b3851 PZ |
970 | |
971 | BUG_ON(!PageLocked(page)); | |
972 | ||
9853a407 JK |
973 | if (!page_mapped(page)) |
974 | return 0; | |
975 | ||
976 | mapping = page_mapping(page); | |
977 | if (!mapping) | |
978 | return 0; | |
979 | ||
980 | rmap_walk(page, &rwc); | |
d08b3851 | 981 | |
9853a407 | 982 | return cleaned; |
d08b3851 | 983 | } |
60b59bea | 984 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 985 | |
c44b6743 RR |
986 | /** |
987 | * page_move_anon_rmap - move a page to our anon_vma | |
988 | * @page: the page to move to our anon_vma | |
989 | * @vma: the vma the page belongs to | |
c44b6743 RR |
990 | * |
991 | * When a page belongs exclusively to one process after a COW event, | |
992 | * that page can be moved into the anon_vma that belongs to just that | |
993 | * process, so the rmap code will not search the parent or sibling | |
994 | * processes. | |
995 | */ | |
5a49973d | 996 | void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma) |
c44b6743 RR |
997 | { |
998 | struct anon_vma *anon_vma = vma->anon_vma; | |
999 | ||
5a49973d HD |
1000 | page = compound_head(page); |
1001 | ||
309381fe | 1002 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1003 | VM_BUG_ON_VMA(!anon_vma, vma); |
c44b6743 RR |
1004 | |
1005 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1006 | /* |
1007 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
1008 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
1009 | * PageAnon()) will not see one without the other. | |
1010 | */ | |
1011 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1012 | } |
1013 | ||
9617d95e | 1014 | /** |
4e1c1975 AK |
1015 | * __page_set_anon_rmap - set up new anonymous rmap |
1016 | * @page: Page to add to rmap | |
1017 | * @vma: VM area to add page to. | |
1018 | * @address: User virtual address of the mapping | |
e8a03feb | 1019 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1020 | */ |
1021 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1022 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1023 | { |
e8a03feb | 1024 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1025 | |
e8a03feb | 1026 | BUG_ON(!anon_vma); |
ea90002b | 1027 | |
4e1c1975 AK |
1028 | if (PageAnon(page)) |
1029 | return; | |
1030 | ||
ea90002b | 1031 | /* |
e8a03feb RR |
1032 | * If the page isn't exclusively mapped into this vma, |
1033 | * we must use the _oldest_ possible anon_vma for the | |
1034 | * page mapping! | |
ea90002b | 1035 | */ |
4e1c1975 | 1036 | if (!exclusive) |
288468c3 | 1037 | anon_vma = anon_vma->root; |
9617d95e | 1038 | |
9617d95e NP |
1039 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1040 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1041 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1042 | } |
1043 | ||
c97a9e10 | 1044 | /** |
43d8eac4 | 1045 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1046 | * @page: the page to add the mapping to |
1047 | * @vma: the vm area in which the mapping is added | |
1048 | * @address: the user virtual address mapped | |
1049 | */ | |
1050 | static void __page_check_anon_rmap(struct page *page, | |
1051 | struct vm_area_struct *vma, unsigned long address) | |
1052 | { | |
1053 | #ifdef CONFIG_DEBUG_VM | |
1054 | /* | |
1055 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1056 | * be set up correctly at this point. | |
1057 | * | |
1058 | * We have exclusion against page_add_anon_rmap because the caller | |
1059 | * always holds the page locked, except if called from page_dup_rmap, | |
1060 | * in which case the page is already known to be setup. | |
1061 | * | |
1062 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1063 | * are initially only visible via the pagetables, and the pte is locked | |
1064 | * over the call to page_add_new_anon_rmap. | |
1065 | */ | |
44ab57a0 | 1066 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
53f9263b | 1067 | BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); |
c97a9e10 NP |
1068 | #endif |
1069 | } | |
1070 | ||
1da177e4 LT |
1071 | /** |
1072 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1073 | * @page: the page to add the mapping to | |
1074 | * @vma: the vm area in which the mapping is added | |
1075 | * @address: the user virtual address mapped | |
d281ee61 | 1076 | * @compound: charge the page as compound or small page |
1da177e4 | 1077 | * |
5ad64688 | 1078 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1079 | * the anon_vma case: to serialize mapping,index checking after setting, |
1080 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1081 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1082 | */ |
1083 | void page_add_anon_rmap(struct page *page, | |
d281ee61 | 1084 | struct vm_area_struct *vma, unsigned long address, bool compound) |
ad8c2ee8 | 1085 | { |
d281ee61 | 1086 | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); |
ad8c2ee8 RR |
1087 | } |
1088 | ||
1089 | /* | |
1090 | * Special version of the above for do_swap_page, which often runs | |
1091 | * into pages that are exclusively owned by the current process. | |
1092 | * Everybody else should continue to use page_add_anon_rmap above. | |
1093 | */ | |
1094 | void do_page_add_anon_rmap(struct page *page, | |
d281ee61 | 1095 | struct vm_area_struct *vma, unsigned long address, int flags) |
1da177e4 | 1096 | { |
53f9263b KS |
1097 | bool compound = flags & RMAP_COMPOUND; |
1098 | bool first; | |
1099 | ||
e9b61f19 KS |
1100 | if (compound) { |
1101 | atomic_t *mapcount; | |
53f9263b | 1102 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1103 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1104 | mapcount = compound_mapcount_ptr(page); | |
1105 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1106 | } else { |
1107 | first = atomic_inc_and_test(&page->_mapcount); | |
1108 | } | |
1109 | ||
79134171 | 1110 | if (first) { |
d281ee61 | 1111 | int nr = compound ? hpage_nr_pages(page) : 1; |
bea04b07 JZ |
1112 | /* |
1113 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1114 | * these counters are not modified in interrupt context, and | |
1115 | * pte lock(a spinlock) is held, which implies preemption | |
1116 | * disabled. | |
1117 | */ | |
65c45377 | 1118 | if (compound) |
11fb9989 | 1119 | __inc_node_page_state(page, NR_ANON_THPS); |
4b9d0fab | 1120 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
79134171 | 1121 | } |
5ad64688 HD |
1122 | if (unlikely(PageKsm(page))) |
1123 | return; | |
1124 | ||
309381fe | 1125 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
53f9263b | 1126 | |
5dbe0af4 | 1127 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1128 | if (first) |
d281ee61 KS |
1129 | __page_set_anon_rmap(page, vma, address, |
1130 | flags & RMAP_EXCLUSIVE); | |
69029cd5 | 1131 | else |
c97a9e10 | 1132 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1133 | } |
1134 | ||
43d8eac4 | 1135 | /** |
9617d95e NP |
1136 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1137 | * @page: the page to add the mapping to | |
1138 | * @vma: the vm area in which the mapping is added | |
1139 | * @address: the user virtual address mapped | |
d281ee61 | 1140 | * @compound: charge the page as compound or small page |
9617d95e NP |
1141 | * |
1142 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1143 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1144 | * Page does not have to be locked. |
9617d95e NP |
1145 | */ |
1146 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1147 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1148 | { |
d281ee61 KS |
1149 | int nr = compound ? hpage_nr_pages(page) : 1; |
1150 | ||
81d1b09c | 1151 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
fa9949da | 1152 | __SetPageSwapBacked(page); |
d281ee61 KS |
1153 | if (compound) { |
1154 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1155 | /* increment count (starts at -1) */ |
1156 | atomic_set(compound_mapcount_ptr(page), 0); | |
11fb9989 | 1157 | __inc_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1158 | } else { |
1159 | /* Anon THP always mapped first with PMD */ | |
1160 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1161 | /* increment count (starts at -1) */ | |
1162 | atomic_set(&page->_mapcount, 0); | |
d281ee61 | 1163 | } |
4b9d0fab | 1164 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr); |
e8a03feb | 1165 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1166 | } |
1167 | ||
1da177e4 LT |
1168 | /** |
1169 | * page_add_file_rmap - add pte mapping to a file page | |
1170 | * @page: the page to add the mapping to | |
1171 | * | |
b8072f09 | 1172 | * The caller needs to hold the pte lock. |
1da177e4 | 1173 | */ |
dd78fedd | 1174 | void page_add_file_rmap(struct page *page, bool compound) |
1da177e4 | 1175 | { |
dd78fedd KS |
1176 | int i, nr = 1; |
1177 | ||
1178 | VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page); | |
62cccb8c | 1179 | lock_page_memcg(page); |
dd78fedd KS |
1180 | if (compound && PageTransHuge(page)) { |
1181 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1182 | if (atomic_inc_and_test(&page[i]._mapcount)) | |
1183 | nr++; | |
1184 | } | |
1185 | if (!atomic_inc_and_test(compound_mapcount_ptr(page))) | |
1186 | goto out; | |
65c45377 | 1187 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1188 | __inc_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd | 1189 | } else { |
c8efc390 KS |
1190 | if (PageTransCompound(page) && page_mapping(page)) { |
1191 | VM_WARN_ON_ONCE(!PageLocked(page)); | |
1192 | ||
9a73f61b KS |
1193 | SetPageDoubleMap(compound_head(page)); |
1194 | if (PageMlocked(page)) | |
1195 | clear_page_mlock(compound_head(page)); | |
1196 | } | |
dd78fedd KS |
1197 | if (!atomic_inc_and_test(&page->_mapcount)) |
1198 | goto out; | |
d69b042f | 1199 | } |
00f3ca2c | 1200 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr); |
dd78fedd | 1201 | out: |
62cccb8c | 1202 | unlock_page_memcg(page); |
1da177e4 LT |
1203 | } |
1204 | ||
dd78fedd | 1205 | static void page_remove_file_rmap(struct page *page, bool compound) |
8186eb6a | 1206 | { |
dd78fedd KS |
1207 | int i, nr = 1; |
1208 | ||
57dea93a | 1209 | VM_BUG_ON_PAGE(compound && !PageHead(page), page); |
62cccb8c | 1210 | lock_page_memcg(page); |
8186eb6a | 1211 | |
53f9263b KS |
1212 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1213 | if (unlikely(PageHuge(page))) { | |
1214 | /* hugetlb pages are always mapped with pmds */ | |
1215 | atomic_dec(compound_mapcount_ptr(page)); | |
8186eb6a | 1216 | goto out; |
53f9263b | 1217 | } |
8186eb6a | 1218 | |
53f9263b | 1219 | /* page still mapped by someone else? */ |
dd78fedd KS |
1220 | if (compound && PageTransHuge(page)) { |
1221 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1222 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1223 | nr++; | |
1224 | } | |
1225 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1226 | goto out; | |
65c45377 | 1227 | VM_BUG_ON_PAGE(!PageSwapBacked(page), page); |
11fb9989 | 1228 | __dec_node_page_state(page, NR_SHMEM_PMDMAPPED); |
dd78fedd KS |
1229 | } else { |
1230 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1231 | goto out; | |
1232 | } | |
8186eb6a JW |
1233 | |
1234 | /* | |
00f3ca2c | 1235 | * We use the irq-unsafe __{inc|mod}_lruvec_page_state because |
8186eb6a JW |
1236 | * these counters are not modified in interrupt context, and |
1237 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1238 | */ | |
00f3ca2c | 1239 | __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr); |
8186eb6a JW |
1240 | |
1241 | if (unlikely(PageMlocked(page))) | |
1242 | clear_page_mlock(page); | |
1243 | out: | |
62cccb8c | 1244 | unlock_page_memcg(page); |
8186eb6a JW |
1245 | } |
1246 | ||
53f9263b KS |
1247 | static void page_remove_anon_compound_rmap(struct page *page) |
1248 | { | |
1249 | int i, nr; | |
1250 | ||
1251 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1252 | return; | |
1253 | ||
1254 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1255 | if (unlikely(PageHuge(page))) | |
1256 | return; | |
1257 | ||
1258 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1259 | return; | |
1260 | ||
11fb9989 | 1261 | __dec_node_page_state(page, NR_ANON_THPS); |
53f9263b KS |
1262 | |
1263 | if (TestClearPageDoubleMap(page)) { | |
1264 | /* | |
1265 | * Subpages can be mapped with PTEs too. Check how many of | |
1266 | * themi are still mapped. | |
1267 | */ | |
1268 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1269 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1270 | nr++; | |
1271 | } | |
1272 | } else { | |
1273 | nr = HPAGE_PMD_NR; | |
1274 | } | |
1275 | ||
e90309c9 KS |
1276 | if (unlikely(PageMlocked(page))) |
1277 | clear_page_mlock(page); | |
1278 | ||
9a982250 | 1279 | if (nr) { |
4b9d0fab | 1280 | __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr); |
9a982250 KS |
1281 | deferred_split_huge_page(page); |
1282 | } | |
53f9263b KS |
1283 | } |
1284 | ||
1da177e4 LT |
1285 | /** |
1286 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 KS |
1287 | * @page: page to remove mapping from |
1288 | * @compound: uncharge the page as compound or small page | |
1da177e4 | 1289 | * |
b8072f09 | 1290 | * The caller needs to hold the pte lock. |
1da177e4 | 1291 | */ |
d281ee61 | 1292 | void page_remove_rmap(struct page *page, bool compound) |
1da177e4 | 1293 | { |
dd78fedd KS |
1294 | if (!PageAnon(page)) |
1295 | return page_remove_file_rmap(page, compound); | |
89c06bd5 | 1296 | |
53f9263b KS |
1297 | if (compound) |
1298 | return page_remove_anon_compound_rmap(page); | |
1299 | ||
b904dcfe KM |
1300 | /* page still mapped by someone else? */ |
1301 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1302 | return; |
1303 | ||
0fe6e20b | 1304 | /* |
bea04b07 JZ |
1305 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1306 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1307 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1308 | */ |
4b9d0fab | 1309 | __dec_node_page_state(page, NR_ANON_MAPPED); |
8186eb6a | 1310 | |
e6c509f8 HD |
1311 | if (unlikely(PageMlocked(page))) |
1312 | clear_page_mlock(page); | |
8186eb6a | 1313 | |
9a982250 KS |
1314 | if (PageTransCompound(page)) |
1315 | deferred_split_huge_page(compound_head(page)); | |
1316 | ||
b904dcfe KM |
1317 | /* |
1318 | * It would be tidy to reset the PageAnon mapping here, | |
1319 | * but that might overwrite a racing page_add_anon_rmap | |
1320 | * which increments mapcount after us but sets mapping | |
1321 | * before us: so leave the reset to free_hot_cold_page, | |
1322 | * and remember that it's only reliable while mapped. | |
1323 | * Leaving it set also helps swapoff to reinstate ptes | |
1324 | * faster for those pages still in swapcache. | |
1325 | */ | |
1da177e4 LT |
1326 | } |
1327 | ||
1328 | /* | |
52629506 | 1329 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1330 | */ |
e4b82222 | 1331 | static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1332 | unsigned long address, void *arg) |
1da177e4 LT |
1333 | { |
1334 | struct mm_struct *mm = vma->vm_mm; | |
c7ab0d2f KS |
1335 | struct page_vma_mapped_walk pvmw = { |
1336 | .page = page, | |
1337 | .vma = vma, | |
1338 | .address = address, | |
1339 | }; | |
1da177e4 | 1340 | pte_t pteval; |
c7ab0d2f | 1341 | struct page *subpage; |
785373b4 | 1342 | bool ret = true; |
369ea824 | 1343 | unsigned long start = address, end; |
802a3a92 | 1344 | enum ttu_flags flags = (enum ttu_flags)arg; |
1da177e4 | 1345 | |
b87537d9 HD |
1346 | /* munlock has nothing to gain from examining un-locked vmas */ |
1347 | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | |
e4b82222 | 1348 | return true; |
b87537d9 | 1349 | |
a5430dda JG |
1350 | if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) && |
1351 | is_zone_device_page(page) && !is_device_private_page(page)) | |
1352 | return true; | |
1353 | ||
fec89c10 KS |
1354 | if (flags & TTU_SPLIT_HUGE_PMD) { |
1355 | split_huge_pmd_address(vma, address, | |
b5ff8161 | 1356 | flags & TTU_SPLIT_FREEZE, page); |
fec89c10 KS |
1357 | } |
1358 | ||
369ea824 JG |
1359 | /* |
1360 | * We have to assume the worse case ie pmd for invalidation. Note that | |
1361 | * the page can not be free in this function as call of try_to_unmap() | |
1362 | * must hold a reference on the page. | |
1363 | */ | |
1364 | end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page))); | |
1365 | mmu_notifier_invalidate_range_start(vma->vm_mm, start, end); | |
1366 | ||
c7ab0d2f | 1367 | while (page_vma_mapped_walk(&pvmw)) { |
616b8371 ZY |
1368 | #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION |
1369 | /* PMD-mapped THP migration entry */ | |
1370 | if (!pvmw.pte && (flags & TTU_MIGRATION)) { | |
1371 | VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page); | |
1372 | ||
1373 | if (!PageAnon(page)) | |
1374 | continue; | |
1375 | ||
1376 | set_pmd_migration_entry(&pvmw, page); | |
1377 | continue; | |
1378 | } | |
1379 | #endif | |
1380 | ||
c7ab0d2f KS |
1381 | /* |
1382 | * If the page is mlock()d, we cannot swap it out. | |
1383 | * If it's recently referenced (perhaps page_referenced | |
1384 | * skipped over this mm) then we should reactivate it. | |
1385 | */ | |
1386 | if (!(flags & TTU_IGNORE_MLOCK)) { | |
1387 | if (vma->vm_flags & VM_LOCKED) { | |
1388 | /* PTE-mapped THP are never mlocked */ | |
1389 | if (!PageTransCompound(page)) { | |
1390 | /* | |
1391 | * Holding pte lock, we do *not* need | |
1392 | * mmap_sem here | |
1393 | */ | |
1394 | mlock_vma_page(page); | |
1395 | } | |
e4b82222 | 1396 | ret = false; |
c7ab0d2f KS |
1397 | page_vma_mapped_walk_done(&pvmw); |
1398 | break; | |
9a73f61b | 1399 | } |
c7ab0d2f KS |
1400 | if (flags & TTU_MUNLOCK) |
1401 | continue; | |
b87537d9 | 1402 | } |
c7ab0d2f | 1403 | |
8346242a KS |
1404 | /* Unexpected PMD-mapped THP? */ |
1405 | VM_BUG_ON_PAGE(!pvmw.pte, page); | |
1406 | ||
1407 | subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte); | |
785373b4 LT |
1408 | address = pvmw.address; |
1409 | ||
8346242a | 1410 | |
a5430dda JG |
1411 | if (IS_ENABLED(CONFIG_MIGRATION) && |
1412 | (flags & TTU_MIGRATION) && | |
1413 | is_zone_device_page(page)) { | |
1414 | swp_entry_t entry; | |
1415 | pte_t swp_pte; | |
1416 | ||
1417 | pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte); | |
1418 | ||
1419 | /* | |
1420 | * Store the pfn of the page in a special migration | |
1421 | * pte. do_swap_page() will wait until the migration | |
1422 | * pte is removed and then restart fault handling. | |
1423 | */ | |
1424 | entry = make_migration_entry(page, 0); | |
1425 | swp_pte = swp_entry_to_pte(entry); | |
1426 | if (pte_soft_dirty(pteval)) | |
1427 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1428 | set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte); | |
1429 | goto discard; | |
1430 | } | |
1431 | ||
c7ab0d2f | 1432 | if (!(flags & TTU_IGNORE_ACCESS)) { |
785373b4 | 1433 | if (ptep_clear_flush_young_notify(vma, address, |
c7ab0d2f | 1434 | pvmw.pte)) { |
e4b82222 | 1435 | ret = false; |
c7ab0d2f KS |
1436 | page_vma_mapped_walk_done(&pvmw); |
1437 | break; | |
1438 | } | |
b291f000 | 1439 | } |
1da177e4 | 1440 | |
c7ab0d2f | 1441 | /* Nuke the page table entry. */ |
785373b4 | 1442 | flush_cache_page(vma, address, pte_pfn(*pvmw.pte)); |
c7ab0d2f KS |
1443 | if (should_defer_flush(mm, flags)) { |
1444 | /* | |
1445 | * We clear the PTE but do not flush so potentially | |
1446 | * a remote CPU could still be writing to the page. | |
1447 | * If the entry was previously clean then the | |
1448 | * architecture must guarantee that a clear->dirty | |
1449 | * transition on a cached TLB entry is written through | |
1450 | * and traps if the PTE is unmapped. | |
1451 | */ | |
785373b4 | 1452 | pteval = ptep_get_and_clear(mm, address, pvmw.pte); |
c7ab0d2f KS |
1453 | |
1454 | set_tlb_ubc_flush_pending(mm, pte_dirty(pteval)); | |
1455 | } else { | |
785373b4 | 1456 | pteval = ptep_clear_flush(vma, address, pvmw.pte); |
c7ab0d2f | 1457 | } |
72b252ae | 1458 | |
c7ab0d2f KS |
1459 | /* Move the dirty bit to the page. Now the pte is gone. */ |
1460 | if (pte_dirty(pteval)) | |
1461 | set_page_dirty(page); | |
1da177e4 | 1462 | |
c7ab0d2f KS |
1463 | /* Update high watermark before we lower rss */ |
1464 | update_hiwater_rss(mm); | |
1da177e4 | 1465 | |
c7ab0d2f | 1466 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5fd27b8e | 1467 | pteval = swp_entry_to_pte(make_hwpoison_entry(subpage)); |
c7ab0d2f KS |
1468 | if (PageHuge(page)) { |
1469 | int nr = 1 << compound_order(page); | |
1470 | hugetlb_count_sub(nr, mm); | |
785373b4 | 1471 | set_huge_swap_pte_at(mm, address, |
5fd27b8e PA |
1472 | pvmw.pte, pteval, |
1473 | vma_mmu_pagesize(vma)); | |
c7ab0d2f KS |
1474 | } else { |
1475 | dec_mm_counter(mm, mm_counter(page)); | |
785373b4 | 1476 | set_pte_at(mm, address, pvmw.pte, pteval); |
c7ab0d2f | 1477 | } |
365e9c87 | 1478 | |
c7ab0d2f KS |
1479 | } else if (pte_unused(pteval)) { |
1480 | /* | |
1481 | * The guest indicated that the page content is of no | |
1482 | * interest anymore. Simply discard the pte, vmscan | |
1483 | * will take care of the rest. | |
1484 | */ | |
eca56ff9 | 1485 | dec_mm_counter(mm, mm_counter(page)); |
c7ab0d2f | 1486 | } else if (IS_ENABLED(CONFIG_MIGRATION) && |
b5ff8161 | 1487 | (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) { |
c7ab0d2f KS |
1488 | swp_entry_t entry; |
1489 | pte_t swp_pte; | |
1490 | /* | |
1491 | * Store the pfn of the page in a special migration | |
1492 | * pte. do_swap_page() will wait until the migration | |
1493 | * pte is removed and then restart fault handling. | |
1494 | */ | |
1495 | entry = make_migration_entry(subpage, | |
1496 | pte_write(pteval)); | |
1497 | swp_pte = swp_entry_to_pte(entry); | |
1498 | if (pte_soft_dirty(pteval)) | |
1499 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
785373b4 | 1500 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
c7ab0d2f KS |
1501 | } else if (PageAnon(page)) { |
1502 | swp_entry_t entry = { .val = page_private(subpage) }; | |
1503 | pte_t swp_pte; | |
1504 | /* | |
1505 | * Store the swap location in the pte. | |
1506 | * See handle_pte_fault() ... | |
1507 | */ | |
eb94a878 MK |
1508 | if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) { |
1509 | WARN_ON_ONCE(1); | |
83612a94 | 1510 | ret = false; |
369ea824 | 1511 | /* We have to invalidate as we cleared the pte */ |
eb94a878 MK |
1512 | page_vma_mapped_walk_done(&pvmw); |
1513 | break; | |
1514 | } | |
c7ab0d2f | 1515 | |
802a3a92 SL |
1516 | /* MADV_FREE page check */ |
1517 | if (!PageSwapBacked(page)) { | |
1518 | if (!PageDirty(page)) { | |
1519 | dec_mm_counter(mm, MM_ANONPAGES); | |
1520 | goto discard; | |
1521 | } | |
1522 | ||
1523 | /* | |
1524 | * If the page was redirtied, it cannot be | |
1525 | * discarded. Remap the page to page table. | |
1526 | */ | |
785373b4 | 1527 | set_pte_at(mm, address, pvmw.pte, pteval); |
18863d3a | 1528 | SetPageSwapBacked(page); |
e4b82222 | 1529 | ret = false; |
802a3a92 SL |
1530 | page_vma_mapped_walk_done(&pvmw); |
1531 | break; | |
c7ab0d2f | 1532 | } |
854e9ed0 | 1533 | |
c7ab0d2f | 1534 | if (swap_duplicate(entry) < 0) { |
785373b4 | 1535 | set_pte_at(mm, address, pvmw.pte, pteval); |
e4b82222 | 1536 | ret = false; |
c7ab0d2f KS |
1537 | page_vma_mapped_walk_done(&pvmw); |
1538 | break; | |
1539 | } | |
1540 | if (list_empty(&mm->mmlist)) { | |
1541 | spin_lock(&mmlist_lock); | |
1542 | if (list_empty(&mm->mmlist)) | |
1543 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1544 | spin_unlock(&mmlist_lock); | |
1545 | } | |
854e9ed0 | 1546 | dec_mm_counter(mm, MM_ANONPAGES); |
c7ab0d2f KS |
1547 | inc_mm_counter(mm, MM_SWAPENTS); |
1548 | swp_pte = swp_entry_to_pte(entry); | |
1549 | if (pte_soft_dirty(pteval)) | |
1550 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
785373b4 | 1551 | set_pte_at(mm, address, pvmw.pte, swp_pte); |
c7ab0d2f KS |
1552 | } else |
1553 | dec_mm_counter(mm, mm_counter_file(page)); | |
854e9ed0 | 1554 | discard: |
c7ab0d2f KS |
1555 | page_remove_rmap(subpage, PageHuge(page)); |
1556 | put_page(page); | |
369ea824 JG |
1557 | mmu_notifier_invalidate_range(mm, address, |
1558 | address + PAGE_SIZE); | |
c7ab0d2f | 1559 | } |
369ea824 JG |
1560 | |
1561 | mmu_notifier_invalidate_range_end(vma->vm_mm, start, end); | |
1562 | ||
caed0f48 | 1563 | return ret; |
1da177e4 LT |
1564 | } |
1565 | ||
71e3aac0 | 1566 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1567 | { |
1568 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1569 | ||
1570 | if (!maybe_stack) | |
1571 | return false; | |
1572 | ||
1573 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1574 | VM_STACK_INCOMPLETE_SETUP) | |
1575 | return true; | |
1576 | ||
1577 | return false; | |
1578 | } | |
1579 | ||
52629506 JK |
1580 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1581 | { | |
1582 | return is_vma_temporary_stack(vma); | |
1583 | } | |
1584 | ||
2a52bcbc | 1585 | static int page_mapcount_is_zero(struct page *page) |
52629506 | 1586 | { |
c7ab0d2f | 1587 | return !total_mapcount(page); |
2a52bcbc | 1588 | } |
52629506 | 1589 | |
1da177e4 LT |
1590 | /** |
1591 | * try_to_unmap - try to remove all page table mappings to a page | |
1592 | * @page: the page to get unmapped | |
14fa31b8 | 1593 | * @flags: action and flags |
1da177e4 LT |
1594 | * |
1595 | * Tries to remove all the page table entries which are mapping this | |
1596 | * page, used in the pageout path. Caller must hold the page lock. | |
1da177e4 | 1597 | * |
666e5a40 | 1598 | * If unmap is successful, return true. Otherwise, false. |
1da177e4 | 1599 | */ |
666e5a40 | 1600 | bool try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 | 1601 | { |
52629506 JK |
1602 | struct rmap_walk_control rwc = { |
1603 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1604 | .arg = (void *)flags, |
2a52bcbc | 1605 | .done = page_mapcount_is_zero, |
52629506 JK |
1606 | .anon_lock = page_lock_anon_vma_read, |
1607 | }; | |
1da177e4 | 1608 | |
52629506 JK |
1609 | /* |
1610 | * During exec, a temporary VMA is setup and later moved. | |
1611 | * The VMA is moved under the anon_vma lock but not the | |
1612 | * page tables leading to a race where migration cannot | |
1613 | * find the migration ptes. Rather than increasing the | |
1614 | * locking requirements of exec(), migration skips | |
1615 | * temporary VMAs until after exec() completes. | |
1616 | */ | |
b5ff8161 NH |
1617 | if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE)) |
1618 | && !PageKsm(page) && PageAnon(page)) | |
52629506 JK |
1619 | rwc.invalid_vma = invalid_migration_vma; |
1620 | ||
2a52bcbc | 1621 | if (flags & TTU_RMAP_LOCKED) |
33fc80e2 | 1622 | rmap_walk_locked(page, &rwc); |
2a52bcbc | 1623 | else |
33fc80e2 | 1624 | rmap_walk(page, &rwc); |
52629506 | 1625 | |
666e5a40 | 1626 | return !page_mapcount(page) ? true : false; |
1da177e4 | 1627 | } |
81b4082d | 1628 | |
2a52bcbc KS |
1629 | static int page_not_mapped(struct page *page) |
1630 | { | |
1631 | return !page_mapped(page); | |
1632 | }; | |
1633 | ||
b291f000 NP |
1634 | /** |
1635 | * try_to_munlock - try to munlock a page | |
1636 | * @page: the page to be munlocked | |
1637 | * | |
1638 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1639 | * to make sure nobody else has this page mlocked. The page will be | |
1640 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
b291f000 | 1641 | */ |
854e9ed0 | 1642 | |
192d7232 MK |
1643 | void try_to_munlock(struct page *page) |
1644 | { | |
e8351ac9 JK |
1645 | struct rmap_walk_control rwc = { |
1646 | .rmap_one = try_to_unmap_one, | |
802a3a92 | 1647 | .arg = (void *)TTU_MUNLOCK, |
e8351ac9 | 1648 | .done = page_not_mapped, |
e8351ac9 JK |
1649 | .anon_lock = page_lock_anon_vma_read, |
1650 | ||
1651 | }; | |
1652 | ||
309381fe | 1653 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
192d7232 | 1654 | VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page); |
b291f000 | 1655 | |
192d7232 | 1656 | rmap_walk(page, &rwc); |
b291f000 | 1657 | } |
e9995ef9 | 1658 | |
01d8b20d | 1659 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1660 | { |
01d8b20d | 1661 | struct anon_vma *root = anon_vma->root; |
76545066 | 1662 | |
624483f3 | 1663 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1664 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1665 | anon_vma_free(root); | |
76545066 | 1666 | } |
76545066 | 1667 | |
0dd1c7bb JK |
1668 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1669 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1670 | { |
1671 | struct anon_vma *anon_vma; | |
1672 | ||
0dd1c7bb JK |
1673 | if (rwc->anon_lock) |
1674 | return rwc->anon_lock(page); | |
1675 | ||
faecd8dd JK |
1676 | /* |
1677 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1678 | * because that depends on page_mapped(); but not all its usages | |
1679 | * are holding mmap_sem. Users without mmap_sem are required to | |
1680 | * take a reference count to prevent the anon_vma disappearing | |
1681 | */ | |
1682 | anon_vma = page_anon_vma(page); | |
1683 | if (!anon_vma) | |
1684 | return NULL; | |
1685 | ||
1686 | anon_vma_lock_read(anon_vma); | |
1687 | return anon_vma; | |
1688 | } | |
1689 | ||
e9995ef9 | 1690 | /* |
e8351ac9 JK |
1691 | * rmap_walk_anon - do something to anonymous page using the object-based |
1692 | * rmap method | |
1693 | * @page: the page to be handled | |
1694 | * @rwc: control variable according to each walk type | |
1695 | * | |
1696 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1697 | * contained in the anon_vma struct it points to. | |
1698 | * | |
1699 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1700 | * where the page was found will be held for write. So, we won't recheck | |
1701 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1702 | * LOCKED. | |
e9995ef9 | 1703 | */ |
1df631ae | 1704 | static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1705 | bool locked) |
e9995ef9 HD |
1706 | { |
1707 | struct anon_vma *anon_vma; | |
a8fa41ad | 1708 | pgoff_t pgoff_start, pgoff_end; |
5beb4930 | 1709 | struct anon_vma_chain *avc; |
e9995ef9 | 1710 | |
b9773199 KS |
1711 | if (locked) { |
1712 | anon_vma = page_anon_vma(page); | |
1713 | /* anon_vma disappear under us? */ | |
1714 | VM_BUG_ON_PAGE(!anon_vma, page); | |
1715 | } else { | |
1716 | anon_vma = rmap_walk_anon_lock(page, rwc); | |
1717 | } | |
e9995ef9 | 1718 | if (!anon_vma) |
1df631ae | 1719 | return; |
faecd8dd | 1720 | |
a8fa41ad KS |
1721 | pgoff_start = page_to_pgoff(page); |
1722 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
1723 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, | |
1724 | pgoff_start, pgoff_end) { | |
5beb4930 | 1725 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1726 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1727 | |
ad12695f AA |
1728 | cond_resched(); |
1729 | ||
0dd1c7bb JK |
1730 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1731 | continue; | |
1732 | ||
e4b82222 | 1733 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
e9995ef9 | 1734 | break; |
0dd1c7bb JK |
1735 | if (rwc->done && rwc->done(page)) |
1736 | break; | |
e9995ef9 | 1737 | } |
b9773199 KS |
1738 | |
1739 | if (!locked) | |
1740 | anon_vma_unlock_read(anon_vma); | |
e9995ef9 HD |
1741 | } |
1742 | ||
e8351ac9 JK |
1743 | /* |
1744 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1745 | * @page: the page to be handled | |
1746 | * @rwc: control variable according to each walk type | |
1747 | * | |
1748 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1749 | * contained in the address_space struct it points to. | |
1750 | * | |
1751 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1752 | * where the page was found will be held for write. So, we won't recheck | |
1753 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1754 | * LOCKED. | |
1755 | */ | |
1df631ae | 1756 | static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc, |
b9773199 | 1757 | bool locked) |
e9995ef9 | 1758 | { |
b9773199 | 1759 | struct address_space *mapping = page_mapping(page); |
a8fa41ad | 1760 | pgoff_t pgoff_start, pgoff_end; |
e9995ef9 | 1761 | struct vm_area_struct *vma; |
e9995ef9 | 1762 | |
9f32624b JK |
1763 | /* |
1764 | * The page lock not only makes sure that page->mapping cannot | |
1765 | * suddenly be NULLified by truncation, it makes sure that the | |
1766 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1767 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1768 | */ |
81d1b09c | 1769 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1770 | |
e9995ef9 | 1771 | if (!mapping) |
1df631ae | 1772 | return; |
3dec0ba0 | 1773 | |
a8fa41ad KS |
1774 | pgoff_start = page_to_pgoff(page); |
1775 | pgoff_end = pgoff_start + hpage_nr_pages(page) - 1; | |
b9773199 KS |
1776 | if (!locked) |
1777 | i_mmap_lock_read(mapping); | |
a8fa41ad KS |
1778 | vma_interval_tree_foreach(vma, &mapping->i_mmap, |
1779 | pgoff_start, pgoff_end) { | |
e9995ef9 | 1780 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1781 | |
ad12695f AA |
1782 | cond_resched(); |
1783 | ||
0dd1c7bb JK |
1784 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1785 | continue; | |
1786 | ||
e4b82222 | 1787 | if (!rwc->rmap_one(page, vma, address, rwc->arg)) |
0dd1c7bb JK |
1788 | goto done; |
1789 | if (rwc->done && rwc->done(page)) | |
1790 | goto done; | |
e9995ef9 | 1791 | } |
0dd1c7bb | 1792 | |
0dd1c7bb | 1793 | done: |
b9773199 KS |
1794 | if (!locked) |
1795 | i_mmap_unlock_read(mapping); | |
e9995ef9 HD |
1796 | } |
1797 | ||
1df631ae | 1798 | void rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1799 | { |
e9995ef9 | 1800 | if (unlikely(PageKsm(page))) |
1df631ae | 1801 | rmap_walk_ksm(page, rwc); |
e9995ef9 | 1802 | else if (PageAnon(page)) |
1df631ae | 1803 | rmap_walk_anon(page, rwc, false); |
b9773199 | 1804 | else |
1df631ae | 1805 | rmap_walk_file(page, rwc, false); |
b9773199 KS |
1806 | } |
1807 | ||
1808 | /* Like rmap_walk, but caller holds relevant rmap lock */ | |
1df631ae | 1809 | void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc) |
b9773199 KS |
1810 | { |
1811 | /* no ksm support for now */ | |
1812 | VM_BUG_ON_PAGE(PageKsm(page), page); | |
1813 | if (PageAnon(page)) | |
1df631ae | 1814 | rmap_walk_anon(page, rwc, true); |
e9995ef9 | 1815 | else |
1df631ae | 1816 | rmap_walk_file(page, rwc, true); |
e9995ef9 | 1817 | } |
0fe6e20b | 1818 | |
e3390f67 | 1819 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1820 | /* |
1821 | * The following three functions are for anonymous (private mapped) hugepages. | |
1822 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1823 | * and no lru code, because we handle hugepages differently from common pages. | |
1824 | */ | |
1825 | static void __hugepage_set_anon_rmap(struct page *page, | |
1826 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1827 | { | |
1828 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1829 | |
0fe6e20b | 1830 | BUG_ON(!anon_vma); |
433abed6 NH |
1831 | |
1832 | if (PageAnon(page)) | |
1833 | return; | |
1834 | if (!exclusive) | |
1835 | anon_vma = anon_vma->root; | |
1836 | ||
0fe6e20b NH |
1837 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1838 | page->mapping = (struct address_space *) anon_vma; | |
1839 | page->index = linear_page_index(vma, address); | |
1840 | } | |
1841 | ||
1842 | void hugepage_add_anon_rmap(struct page *page, | |
1843 | struct vm_area_struct *vma, unsigned long address) | |
1844 | { | |
1845 | struct anon_vma *anon_vma = vma->anon_vma; | |
1846 | int first; | |
a850ea30 NH |
1847 | |
1848 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1849 | BUG_ON(!anon_vma); |
5dbe0af4 | 1850 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 1851 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b NH |
1852 | if (first) |
1853 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1854 | } | |
1855 | ||
1856 | void hugepage_add_new_anon_rmap(struct page *page, | |
1857 | struct vm_area_struct *vma, unsigned long address) | |
1858 | { | |
1859 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 1860 | atomic_set(compound_mapcount_ptr(page), 0); |
0fe6e20b NH |
1861 | __hugepage_set_anon_rmap(page, vma, address, 1); |
1862 | } | |
e3390f67 | 1863 | #endif /* CONFIG_HUGETLB_PAGE */ |