]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
17 | #include <linux/config.h> | |
18 | #include <linux/stddef.h> | |
19 | #include <linux/mm.h> | |
20 | #include <linux/swap.h> | |
21 | #include <linux/interrupt.h> | |
22 | #include <linux/pagemap.h> | |
23 | #include <linux/bootmem.h> | |
24 | #include <linux/compiler.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/suspend.h> | |
27 | #include <linux/pagevec.h> | |
28 | #include <linux/blkdev.h> | |
29 | #include <linux/slab.h> | |
30 | #include <linux/notifier.h> | |
31 | #include <linux/topology.h> | |
32 | #include <linux/sysctl.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
35 | #include <linux/nodemask.h> | |
36 | #include <linux/vmalloc.h> | |
37 | ||
38 | #include <asm/tlbflush.h> | |
39 | #include "internal.h" | |
40 | ||
41 | /* | |
42 | * MCD - HACK: Find somewhere to initialize this EARLY, or make this | |
43 | * initializer cleaner | |
44 | */ | |
45 | nodemask_t node_online_map = { { [0] = 1UL } }; | |
7223a93a | 46 | EXPORT_SYMBOL(node_online_map); |
1da177e4 | 47 | nodemask_t node_possible_map = NODE_MASK_ALL; |
7223a93a | 48 | EXPORT_SYMBOL(node_possible_map); |
1da177e4 LT |
49 | struct pglist_data *pgdat_list; |
50 | unsigned long totalram_pages; | |
51 | unsigned long totalhigh_pages; | |
52 | long nr_swap_pages; | |
53 | ||
54 | /* | |
55 | * results with 256, 32 in the lowmem_reserve sysctl: | |
56 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
57 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
58 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
59 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
60 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | |
61 | */ | |
62 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; | |
63 | ||
64 | EXPORT_SYMBOL(totalram_pages); | |
65 | EXPORT_SYMBOL(nr_swap_pages); | |
66 | ||
67 | /* | |
68 | * Used by page_zone() to look up the address of the struct zone whose | |
69 | * id is encoded in the upper bits of page->flags | |
70 | */ | |
d41dee36 | 71 | struct zone *zone_table[1 << ZONETABLE_SHIFT]; |
1da177e4 LT |
72 | EXPORT_SYMBOL(zone_table); |
73 | ||
74 | static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; | |
75 | int min_free_kbytes = 1024; | |
76 | ||
77 | unsigned long __initdata nr_kernel_pages; | |
78 | unsigned long __initdata nr_all_pages; | |
79 | ||
80 | /* | |
81 | * Temporary debugging check for pages not lying within a given zone. | |
82 | */ | |
83 | static int bad_range(struct zone *zone, struct page *page) | |
84 | { | |
85 | if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) | |
86 | return 1; | |
87 | if (page_to_pfn(page) < zone->zone_start_pfn) | |
88 | return 1; | |
89 | #ifdef CONFIG_HOLES_IN_ZONE | |
90 | if (!pfn_valid(page_to_pfn(page))) | |
91 | return 1; | |
92 | #endif | |
93 | if (zone != page_zone(page)) | |
94 | return 1; | |
95 | return 0; | |
96 | } | |
97 | ||
98 | static void bad_page(const char *function, struct page *page) | |
99 | { | |
100 | printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", | |
101 | function, current->comm, page); | |
102 | printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", | |
103 | (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, | |
104 | page->mapping, page_mapcount(page), page_count(page)); | |
105 | printk(KERN_EMERG "Backtrace:\n"); | |
106 | dump_stack(); | |
107 | printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); | |
334795ec HD |
108 | page->flags &= ~(1 << PG_lru | |
109 | 1 << PG_private | | |
1da177e4 | 110 | 1 << PG_locked | |
1da177e4 LT |
111 | 1 << PG_active | |
112 | 1 << PG_dirty | | |
334795ec HD |
113 | 1 << PG_reclaim | |
114 | 1 << PG_slab | | |
1da177e4 LT |
115 | 1 << PG_swapcache | |
116 | 1 << PG_writeback); | |
117 | set_page_count(page, 0); | |
118 | reset_page_mapcount(page); | |
119 | page->mapping = NULL; | |
120 | tainted |= TAINT_BAD_PAGE; | |
121 | } | |
122 | ||
123 | #ifndef CONFIG_HUGETLB_PAGE | |
124 | #define prep_compound_page(page, order) do { } while (0) | |
125 | #define destroy_compound_page(page, order) do { } while (0) | |
126 | #else | |
127 | /* | |
128 | * Higher-order pages are called "compound pages". They are structured thusly: | |
129 | * | |
130 | * The first PAGE_SIZE page is called the "head page". | |
131 | * | |
132 | * The remaining PAGE_SIZE pages are called "tail pages". | |
133 | * | |
134 | * All pages have PG_compound set. All pages have their ->private pointing at | |
135 | * the head page (even the head page has this). | |
136 | * | |
137 | * The first tail page's ->mapping, if non-zero, holds the address of the | |
138 | * compound page's put_page() function. | |
139 | * | |
140 | * The order of the allocation is stored in the first tail page's ->index | |
141 | * This is only for debug at present. This usage means that zero-order pages | |
142 | * may not be compound. | |
143 | */ | |
144 | static void prep_compound_page(struct page *page, unsigned long order) | |
145 | { | |
146 | int i; | |
147 | int nr_pages = 1 << order; | |
148 | ||
149 | page[1].mapping = NULL; | |
150 | page[1].index = order; | |
151 | for (i = 0; i < nr_pages; i++) { | |
152 | struct page *p = page + i; | |
153 | ||
154 | SetPageCompound(p); | |
155 | p->private = (unsigned long)page; | |
156 | } | |
157 | } | |
158 | ||
159 | static void destroy_compound_page(struct page *page, unsigned long order) | |
160 | { | |
161 | int i; | |
162 | int nr_pages = 1 << order; | |
163 | ||
164 | if (!PageCompound(page)) | |
165 | return; | |
166 | ||
167 | if (page[1].index != order) | |
168 | bad_page(__FUNCTION__, page); | |
169 | ||
170 | for (i = 0; i < nr_pages; i++) { | |
171 | struct page *p = page + i; | |
172 | ||
173 | if (!PageCompound(p)) | |
174 | bad_page(__FUNCTION__, page); | |
175 | if (p->private != (unsigned long)page) | |
176 | bad_page(__FUNCTION__, page); | |
177 | ClearPageCompound(p); | |
178 | } | |
179 | } | |
180 | #endif /* CONFIG_HUGETLB_PAGE */ | |
181 | ||
182 | /* | |
183 | * function for dealing with page's order in buddy system. | |
184 | * zone->lock is already acquired when we use these. | |
185 | * So, we don't need atomic page->flags operations here. | |
186 | */ | |
187 | static inline unsigned long page_order(struct page *page) { | |
188 | return page->private; | |
189 | } | |
190 | ||
191 | static inline void set_page_order(struct page *page, int order) { | |
192 | page->private = order; | |
193 | __SetPagePrivate(page); | |
194 | } | |
195 | ||
196 | static inline void rmv_page_order(struct page *page) | |
197 | { | |
198 | __ClearPagePrivate(page); | |
199 | page->private = 0; | |
200 | } | |
201 | ||
202 | /* | |
203 | * Locate the struct page for both the matching buddy in our | |
204 | * pair (buddy1) and the combined O(n+1) page they form (page). | |
205 | * | |
206 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | |
207 | * the following equation: | |
208 | * B2 = B1 ^ (1 << O) | |
209 | * For example, if the starting buddy (buddy2) is #8 its order | |
210 | * 1 buddy is #10: | |
211 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | |
212 | * | |
213 | * 2) Any buddy B will have an order O+1 parent P which | |
214 | * satisfies the following equation: | |
215 | * P = B & ~(1 << O) | |
216 | * | |
217 | * Assumption: *_mem_map is contigious at least up to MAX_ORDER | |
218 | */ | |
219 | static inline struct page * | |
220 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | |
221 | { | |
222 | unsigned long buddy_idx = page_idx ^ (1 << order); | |
223 | ||
224 | return page + (buddy_idx - page_idx); | |
225 | } | |
226 | ||
227 | static inline unsigned long | |
228 | __find_combined_index(unsigned long page_idx, unsigned int order) | |
229 | { | |
230 | return (page_idx & ~(1 << order)); | |
231 | } | |
232 | ||
233 | /* | |
234 | * This function checks whether a page is free && is the buddy | |
235 | * we can do coalesce a page and its buddy if | |
236 | * (a) the buddy is free && | |
237 | * (b) the buddy is on the buddy system && | |
238 | * (c) a page and its buddy have the same order. | |
239 | * for recording page's order, we use page->private and PG_private. | |
240 | * | |
241 | */ | |
242 | static inline int page_is_buddy(struct page *page, int order) | |
243 | { | |
244 | if (PagePrivate(page) && | |
245 | (page_order(page) == order) && | |
246 | !PageReserved(page) && | |
247 | page_count(page) == 0) | |
248 | return 1; | |
249 | return 0; | |
250 | } | |
251 | ||
252 | /* | |
253 | * Freeing function for a buddy system allocator. | |
254 | * | |
255 | * The concept of a buddy system is to maintain direct-mapped table | |
256 | * (containing bit values) for memory blocks of various "orders". | |
257 | * The bottom level table contains the map for the smallest allocatable | |
258 | * units of memory (here, pages), and each level above it describes | |
259 | * pairs of units from the levels below, hence, "buddies". | |
260 | * At a high level, all that happens here is marking the table entry | |
261 | * at the bottom level available, and propagating the changes upward | |
262 | * as necessary, plus some accounting needed to play nicely with other | |
263 | * parts of the VM system. | |
264 | * At each level, we keep a list of pages, which are heads of continuous | |
265 | * free pages of length of (1 << order) and marked with PG_Private.Page's | |
266 | * order is recorded in page->private field. | |
267 | * So when we are allocating or freeing one, we can derive the state of the | |
268 | * other. That is, if we allocate a small block, and both were | |
269 | * free, the remainder of the region must be split into blocks. | |
270 | * If a block is freed, and its buddy is also free, then this | |
271 | * triggers coalescing into a block of larger size. | |
272 | * | |
273 | * -- wli | |
274 | */ | |
275 | ||
276 | static inline void __free_pages_bulk (struct page *page, | |
277 | struct zone *zone, unsigned int order) | |
278 | { | |
279 | unsigned long page_idx; | |
280 | int order_size = 1 << order; | |
281 | ||
282 | if (unlikely(order)) | |
283 | destroy_compound_page(page, order); | |
284 | ||
285 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | |
286 | ||
287 | BUG_ON(page_idx & (order_size - 1)); | |
288 | BUG_ON(bad_range(zone, page)); | |
289 | ||
290 | zone->free_pages += order_size; | |
291 | while (order < MAX_ORDER-1) { | |
292 | unsigned long combined_idx; | |
293 | struct free_area *area; | |
294 | struct page *buddy; | |
295 | ||
296 | combined_idx = __find_combined_index(page_idx, order); | |
297 | buddy = __page_find_buddy(page, page_idx, order); | |
298 | ||
299 | if (bad_range(zone, buddy)) | |
300 | break; | |
301 | if (!page_is_buddy(buddy, order)) | |
302 | break; /* Move the buddy up one level. */ | |
303 | list_del(&buddy->lru); | |
304 | area = zone->free_area + order; | |
305 | area->nr_free--; | |
306 | rmv_page_order(buddy); | |
307 | page = page + (combined_idx - page_idx); | |
308 | page_idx = combined_idx; | |
309 | order++; | |
310 | } | |
311 | set_page_order(page, order); | |
312 | list_add(&page->lru, &zone->free_area[order].free_list); | |
313 | zone->free_area[order].nr_free++; | |
314 | } | |
315 | ||
316 | static inline void free_pages_check(const char *function, struct page *page) | |
317 | { | |
318 | if ( page_mapcount(page) || | |
319 | page->mapping != NULL || | |
320 | page_count(page) != 0 || | |
321 | (page->flags & ( | |
322 | 1 << PG_lru | | |
323 | 1 << PG_private | | |
324 | 1 << PG_locked | | |
325 | 1 << PG_active | | |
326 | 1 << PG_reclaim | | |
327 | 1 << PG_slab | | |
328 | 1 << PG_swapcache | | |
329 | 1 << PG_writeback ))) | |
330 | bad_page(function, page); | |
331 | if (PageDirty(page)) | |
242e5468 | 332 | __ClearPageDirty(page); |
1da177e4 LT |
333 | } |
334 | ||
335 | /* | |
336 | * Frees a list of pages. | |
337 | * Assumes all pages on list are in same zone, and of same order. | |
338 | * count is the number of pages to free, or 0 for all on the list. | |
339 | * | |
340 | * If the zone was previously in an "all pages pinned" state then look to | |
341 | * see if this freeing clears that state. | |
342 | * | |
343 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
344 | * pinned" detection logic. | |
345 | */ | |
346 | static int | |
347 | free_pages_bulk(struct zone *zone, int count, | |
348 | struct list_head *list, unsigned int order) | |
349 | { | |
350 | unsigned long flags; | |
351 | struct page *page = NULL; | |
352 | int ret = 0; | |
353 | ||
354 | spin_lock_irqsave(&zone->lock, flags); | |
355 | zone->all_unreclaimable = 0; | |
356 | zone->pages_scanned = 0; | |
357 | while (!list_empty(list) && count--) { | |
358 | page = list_entry(list->prev, struct page, lru); | |
359 | /* have to delete it as __free_pages_bulk list manipulates */ | |
360 | list_del(&page->lru); | |
361 | __free_pages_bulk(page, zone, order); | |
362 | ret++; | |
363 | } | |
364 | spin_unlock_irqrestore(&zone->lock, flags); | |
365 | return ret; | |
366 | } | |
367 | ||
368 | void __free_pages_ok(struct page *page, unsigned int order) | |
369 | { | |
370 | LIST_HEAD(list); | |
371 | int i; | |
372 | ||
373 | arch_free_page(page, order); | |
374 | ||
375 | mod_page_state(pgfree, 1 << order); | |
376 | ||
377 | #ifndef CONFIG_MMU | |
378 | if (order > 0) | |
379 | for (i = 1 ; i < (1 << order) ; ++i) | |
380 | __put_page(page + i); | |
381 | #endif | |
382 | ||
383 | for (i = 0 ; i < (1 << order) ; ++i) | |
384 | free_pages_check(__FUNCTION__, page + i); | |
385 | list_add(&page->lru, &list); | |
386 | kernel_map_pages(page, 1<<order, 0); | |
387 | free_pages_bulk(page_zone(page), 1, &list, order); | |
388 | } | |
389 | ||
390 | ||
391 | /* | |
392 | * The order of subdivision here is critical for the IO subsystem. | |
393 | * Please do not alter this order without good reasons and regression | |
394 | * testing. Specifically, as large blocks of memory are subdivided, | |
395 | * the order in which smaller blocks are delivered depends on the order | |
396 | * they're subdivided in this function. This is the primary factor | |
397 | * influencing the order in which pages are delivered to the IO | |
398 | * subsystem according to empirical testing, and this is also justified | |
399 | * by considering the behavior of a buddy system containing a single | |
400 | * large block of memory acted on by a series of small allocations. | |
401 | * This behavior is a critical factor in sglist merging's success. | |
402 | * | |
403 | * -- wli | |
404 | */ | |
405 | static inline struct page * | |
406 | expand(struct zone *zone, struct page *page, | |
407 | int low, int high, struct free_area *area) | |
408 | { | |
409 | unsigned long size = 1 << high; | |
410 | ||
411 | while (high > low) { | |
412 | area--; | |
413 | high--; | |
414 | size >>= 1; | |
415 | BUG_ON(bad_range(zone, &page[size])); | |
416 | list_add(&page[size].lru, &area->free_list); | |
417 | area->nr_free++; | |
418 | set_page_order(&page[size], high); | |
419 | } | |
420 | return page; | |
421 | } | |
422 | ||
423 | void set_page_refs(struct page *page, int order) | |
424 | { | |
425 | #ifdef CONFIG_MMU | |
426 | set_page_count(page, 1); | |
427 | #else | |
428 | int i; | |
429 | ||
430 | /* | |
431 | * We need to reference all the pages for this order, otherwise if | |
432 | * anyone accesses one of the pages with (get/put) it will be freed. | |
433 | * - eg: access_process_vm() | |
434 | */ | |
435 | for (i = 0; i < (1 << order); i++) | |
436 | set_page_count(page + i, 1); | |
437 | #endif /* CONFIG_MMU */ | |
438 | } | |
439 | ||
440 | /* | |
441 | * This page is about to be returned from the page allocator | |
442 | */ | |
443 | static void prep_new_page(struct page *page, int order) | |
444 | { | |
334795ec HD |
445 | if ( page_mapcount(page) || |
446 | page->mapping != NULL || | |
447 | page_count(page) != 0 || | |
448 | (page->flags & ( | |
449 | 1 << PG_lru | | |
1da177e4 LT |
450 | 1 << PG_private | |
451 | 1 << PG_locked | | |
1da177e4 LT |
452 | 1 << PG_active | |
453 | 1 << PG_dirty | | |
454 | 1 << PG_reclaim | | |
334795ec | 455 | 1 << PG_slab | |
1da177e4 LT |
456 | 1 << PG_swapcache | |
457 | 1 << PG_writeback ))) | |
458 | bad_page(__FUNCTION__, page); | |
459 | ||
460 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | | |
461 | 1 << PG_referenced | 1 << PG_arch_1 | | |
462 | 1 << PG_checked | 1 << PG_mappedtodisk); | |
463 | page->private = 0; | |
464 | set_page_refs(page, order); | |
465 | kernel_map_pages(page, 1 << order, 1); | |
466 | } | |
467 | ||
468 | /* | |
469 | * Do the hard work of removing an element from the buddy allocator. | |
470 | * Call me with the zone->lock already held. | |
471 | */ | |
472 | static struct page *__rmqueue(struct zone *zone, unsigned int order) | |
473 | { | |
474 | struct free_area * area; | |
475 | unsigned int current_order; | |
476 | struct page *page; | |
477 | ||
478 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
479 | area = zone->free_area + current_order; | |
480 | if (list_empty(&area->free_list)) | |
481 | continue; | |
482 | ||
483 | page = list_entry(area->free_list.next, struct page, lru); | |
484 | list_del(&page->lru); | |
485 | rmv_page_order(page); | |
486 | area->nr_free--; | |
487 | zone->free_pages -= 1UL << order; | |
488 | return expand(zone, page, order, current_order, area); | |
489 | } | |
490 | ||
491 | return NULL; | |
492 | } | |
493 | ||
494 | /* | |
495 | * Obtain a specified number of elements from the buddy allocator, all under | |
496 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
497 | * Returns the number of new pages which were placed at *list. | |
498 | */ | |
499 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | |
500 | unsigned long count, struct list_head *list) | |
501 | { | |
502 | unsigned long flags; | |
503 | int i; | |
504 | int allocated = 0; | |
505 | struct page *page; | |
506 | ||
507 | spin_lock_irqsave(&zone->lock, flags); | |
508 | for (i = 0; i < count; ++i) { | |
509 | page = __rmqueue(zone, order); | |
510 | if (page == NULL) | |
511 | break; | |
512 | allocated++; | |
513 | list_add_tail(&page->lru, list); | |
514 | } | |
515 | spin_unlock_irqrestore(&zone->lock, flags); | |
516 | return allocated; | |
517 | } | |
518 | ||
4ae7c039 CL |
519 | #ifdef CONFIG_NUMA |
520 | /* Called from the slab reaper to drain remote pagesets */ | |
521 | void drain_remote_pages(void) | |
522 | { | |
523 | struct zone *zone; | |
524 | int i; | |
525 | unsigned long flags; | |
526 | ||
527 | local_irq_save(flags); | |
528 | for_each_zone(zone) { | |
529 | struct per_cpu_pageset *pset; | |
530 | ||
531 | /* Do not drain local pagesets */ | |
532 | if (zone->zone_pgdat->node_id == numa_node_id()) | |
533 | continue; | |
534 | ||
535 | pset = zone->pageset[smp_processor_id()]; | |
536 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | |
537 | struct per_cpu_pages *pcp; | |
538 | ||
539 | pcp = &pset->pcp[i]; | |
540 | if (pcp->count) | |
541 | pcp->count -= free_pages_bulk(zone, pcp->count, | |
542 | &pcp->list, 0); | |
543 | } | |
544 | } | |
545 | local_irq_restore(flags); | |
546 | } | |
547 | #endif | |
548 | ||
1da177e4 LT |
549 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) |
550 | static void __drain_pages(unsigned int cpu) | |
551 | { | |
552 | struct zone *zone; | |
553 | int i; | |
554 | ||
555 | for_each_zone(zone) { | |
556 | struct per_cpu_pageset *pset; | |
557 | ||
e7c8d5c9 | 558 | pset = zone_pcp(zone, cpu); |
1da177e4 LT |
559 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { |
560 | struct per_cpu_pages *pcp; | |
561 | ||
562 | pcp = &pset->pcp[i]; | |
563 | pcp->count -= free_pages_bulk(zone, pcp->count, | |
564 | &pcp->list, 0); | |
565 | } | |
566 | } | |
567 | } | |
568 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ | |
569 | ||
570 | #ifdef CONFIG_PM | |
571 | ||
572 | void mark_free_pages(struct zone *zone) | |
573 | { | |
574 | unsigned long zone_pfn, flags; | |
575 | int order; | |
576 | struct list_head *curr; | |
577 | ||
578 | if (!zone->spanned_pages) | |
579 | return; | |
580 | ||
581 | spin_lock_irqsave(&zone->lock, flags); | |
582 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | |
583 | ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); | |
584 | ||
585 | for (order = MAX_ORDER - 1; order >= 0; --order) | |
586 | list_for_each(curr, &zone->free_area[order].free_list) { | |
587 | unsigned long start_pfn, i; | |
588 | ||
589 | start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); | |
590 | ||
591 | for (i=0; i < (1<<order); i++) | |
592 | SetPageNosaveFree(pfn_to_page(start_pfn+i)); | |
593 | } | |
594 | spin_unlock_irqrestore(&zone->lock, flags); | |
595 | } | |
596 | ||
597 | /* | |
598 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
599 | */ | |
600 | void drain_local_pages(void) | |
601 | { | |
602 | unsigned long flags; | |
603 | ||
604 | local_irq_save(flags); | |
605 | __drain_pages(smp_processor_id()); | |
606 | local_irq_restore(flags); | |
607 | } | |
608 | #endif /* CONFIG_PM */ | |
609 | ||
610 | static void zone_statistics(struct zonelist *zonelist, struct zone *z) | |
611 | { | |
612 | #ifdef CONFIG_NUMA | |
613 | unsigned long flags; | |
614 | int cpu; | |
615 | pg_data_t *pg = z->zone_pgdat; | |
616 | pg_data_t *orig = zonelist->zones[0]->zone_pgdat; | |
617 | struct per_cpu_pageset *p; | |
618 | ||
619 | local_irq_save(flags); | |
620 | cpu = smp_processor_id(); | |
e7c8d5c9 | 621 | p = zone_pcp(z,cpu); |
1da177e4 | 622 | if (pg == orig) { |
e7c8d5c9 | 623 | p->numa_hit++; |
1da177e4 LT |
624 | } else { |
625 | p->numa_miss++; | |
e7c8d5c9 | 626 | zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; |
1da177e4 LT |
627 | } |
628 | if (pg == NODE_DATA(numa_node_id())) | |
629 | p->local_node++; | |
630 | else | |
631 | p->other_node++; | |
632 | local_irq_restore(flags); | |
633 | #endif | |
634 | } | |
635 | ||
636 | /* | |
637 | * Free a 0-order page | |
638 | */ | |
639 | static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); | |
640 | static void fastcall free_hot_cold_page(struct page *page, int cold) | |
641 | { | |
642 | struct zone *zone = page_zone(page); | |
643 | struct per_cpu_pages *pcp; | |
644 | unsigned long flags; | |
645 | ||
646 | arch_free_page(page, 0); | |
647 | ||
648 | kernel_map_pages(page, 1, 0); | |
649 | inc_page_state(pgfree); | |
650 | if (PageAnon(page)) | |
651 | page->mapping = NULL; | |
652 | free_pages_check(__FUNCTION__, page); | |
e7c8d5c9 | 653 | pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; |
1da177e4 | 654 | local_irq_save(flags); |
1da177e4 LT |
655 | list_add(&page->lru, &pcp->list); |
656 | pcp->count++; | |
2caaad41 CL |
657 | if (pcp->count >= pcp->high) |
658 | pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | |
1da177e4 LT |
659 | local_irq_restore(flags); |
660 | put_cpu(); | |
661 | } | |
662 | ||
663 | void fastcall free_hot_page(struct page *page) | |
664 | { | |
665 | free_hot_cold_page(page, 0); | |
666 | } | |
667 | ||
668 | void fastcall free_cold_page(struct page *page) | |
669 | { | |
670 | free_hot_cold_page(page, 1); | |
671 | } | |
672 | ||
673 | static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags) | |
674 | { | |
675 | int i; | |
676 | ||
677 | BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); | |
678 | for(i = 0; i < (1 << order); i++) | |
679 | clear_highpage(page + i); | |
680 | } | |
681 | ||
682 | /* | |
683 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | |
684 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | |
685 | * or two. | |
686 | */ | |
687 | static struct page * | |
688 | buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags) | |
689 | { | |
690 | unsigned long flags; | |
691 | struct page *page = NULL; | |
692 | int cold = !!(gfp_flags & __GFP_COLD); | |
693 | ||
694 | if (order == 0) { | |
695 | struct per_cpu_pages *pcp; | |
696 | ||
e7c8d5c9 | 697 | pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; |
1da177e4 LT |
698 | local_irq_save(flags); |
699 | if (pcp->count <= pcp->low) | |
700 | pcp->count += rmqueue_bulk(zone, 0, | |
701 | pcp->batch, &pcp->list); | |
702 | if (pcp->count) { | |
703 | page = list_entry(pcp->list.next, struct page, lru); | |
704 | list_del(&page->lru); | |
705 | pcp->count--; | |
706 | } | |
707 | local_irq_restore(flags); | |
708 | put_cpu(); | |
709 | } | |
710 | ||
711 | if (page == NULL) { | |
712 | spin_lock_irqsave(&zone->lock, flags); | |
713 | page = __rmqueue(zone, order); | |
714 | spin_unlock_irqrestore(&zone->lock, flags); | |
715 | } | |
716 | ||
717 | if (page != NULL) { | |
718 | BUG_ON(bad_range(zone, page)); | |
719 | mod_page_state_zone(zone, pgalloc, 1 << order); | |
720 | prep_new_page(page, order); | |
721 | ||
722 | if (gfp_flags & __GFP_ZERO) | |
723 | prep_zero_page(page, order, gfp_flags); | |
724 | ||
725 | if (order && (gfp_flags & __GFP_COMP)) | |
726 | prep_compound_page(page, order); | |
727 | } | |
728 | return page; | |
729 | } | |
730 | ||
731 | /* | |
732 | * Return 1 if free pages are above 'mark'. This takes into account the order | |
733 | * of the allocation. | |
734 | */ | |
735 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
736 | int classzone_idx, int can_try_harder, int gfp_high) | |
737 | { | |
738 | /* free_pages my go negative - that's OK */ | |
739 | long min = mark, free_pages = z->free_pages - (1 << order) + 1; | |
740 | int o; | |
741 | ||
742 | if (gfp_high) | |
743 | min -= min / 2; | |
744 | if (can_try_harder) | |
745 | min -= min / 4; | |
746 | ||
747 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
748 | return 0; | |
749 | for (o = 0; o < order; o++) { | |
750 | /* At the next order, this order's pages become unavailable */ | |
751 | free_pages -= z->free_area[o].nr_free << o; | |
752 | ||
753 | /* Require fewer higher order pages to be free */ | |
754 | min >>= 1; | |
755 | ||
756 | if (free_pages <= min) | |
757 | return 0; | |
758 | } | |
759 | return 1; | |
760 | } | |
761 | ||
753ee728 MH |
762 | static inline int |
763 | should_reclaim_zone(struct zone *z, unsigned int gfp_mask) | |
764 | { | |
765 | if (!z->reclaim_pages) | |
766 | return 0; | |
0c35bbad MH |
767 | if (gfp_mask & __GFP_NORECLAIM) |
768 | return 0; | |
753ee728 MH |
769 | return 1; |
770 | } | |
771 | ||
1da177e4 LT |
772 | /* |
773 | * This is the 'heart' of the zoned buddy allocator. | |
774 | */ | |
775 | struct page * fastcall | |
776 | __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order, | |
777 | struct zonelist *zonelist) | |
778 | { | |
779 | const int wait = gfp_mask & __GFP_WAIT; | |
780 | struct zone **zones, *z; | |
781 | struct page *page; | |
782 | struct reclaim_state reclaim_state; | |
783 | struct task_struct *p = current; | |
784 | int i; | |
785 | int classzone_idx; | |
786 | int do_retry; | |
787 | int can_try_harder; | |
788 | int did_some_progress; | |
789 | ||
790 | might_sleep_if(wait); | |
791 | ||
792 | /* | |
793 | * The caller may dip into page reserves a bit more if the caller | |
794 | * cannot run direct reclaim, or is the caller has realtime scheduling | |
795 | * policy | |
796 | */ | |
797 | can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; | |
798 | ||
799 | zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ | |
800 | ||
801 | if (unlikely(zones[0] == NULL)) { | |
802 | /* Should this ever happen?? */ | |
803 | return NULL; | |
804 | } | |
805 | ||
806 | classzone_idx = zone_idx(zones[0]); | |
807 | ||
753ee728 | 808 | restart: |
1da177e4 LT |
809 | /* Go through the zonelist once, looking for a zone with enough free */ |
810 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
753ee728 | 811 | int do_reclaim = should_reclaim_zone(z, gfp_mask); |
1da177e4 LT |
812 | |
813 | if (!cpuset_zone_allowed(z)) | |
814 | continue; | |
815 | ||
753ee728 MH |
816 | /* |
817 | * If the zone is to attempt early page reclaim then this loop | |
818 | * will try to reclaim pages and check the watermark a second | |
819 | * time before giving up and falling back to the next zone. | |
820 | */ | |
821 | zone_reclaim_retry: | |
822 | if (!zone_watermark_ok(z, order, z->pages_low, | |
823 | classzone_idx, 0, 0)) { | |
824 | if (!do_reclaim) | |
825 | continue; | |
826 | else { | |
827 | zone_reclaim(z, gfp_mask, order); | |
828 | /* Only try reclaim once */ | |
829 | do_reclaim = 0; | |
830 | goto zone_reclaim_retry; | |
831 | } | |
832 | } | |
833 | ||
1da177e4 LT |
834 | page = buffered_rmqueue(z, order, gfp_mask); |
835 | if (page) | |
836 | goto got_pg; | |
837 | } | |
838 | ||
839 | for (i = 0; (z = zones[i]) != NULL; i++) | |
840 | wakeup_kswapd(z, order); | |
841 | ||
842 | /* | |
843 | * Go through the zonelist again. Let __GFP_HIGH and allocations | |
844 | * coming from realtime tasks to go deeper into reserves | |
845 | * | |
846 | * This is the last chance, in general, before the goto nopage. | |
847 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | |
848 | */ | |
849 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
850 | if (!zone_watermark_ok(z, order, z->pages_min, | |
851 | classzone_idx, can_try_harder, | |
852 | gfp_mask & __GFP_HIGH)) | |
853 | continue; | |
854 | ||
855 | if (wait && !cpuset_zone_allowed(z)) | |
856 | continue; | |
857 | ||
858 | page = buffered_rmqueue(z, order, gfp_mask); | |
859 | if (page) | |
860 | goto got_pg; | |
861 | } | |
862 | ||
863 | /* This allocation should allow future memory freeing. */ | |
b84a35be NP |
864 | |
865 | if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) | |
866 | && !in_interrupt()) { | |
867 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { | |
868 | /* go through the zonelist yet again, ignoring mins */ | |
869 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
870 | if (!cpuset_zone_allowed(z)) | |
871 | continue; | |
872 | page = buffered_rmqueue(z, order, gfp_mask); | |
873 | if (page) | |
874 | goto got_pg; | |
875 | } | |
1da177e4 LT |
876 | } |
877 | goto nopage; | |
878 | } | |
879 | ||
880 | /* Atomic allocations - we can't balance anything */ | |
881 | if (!wait) | |
882 | goto nopage; | |
883 | ||
884 | rebalance: | |
885 | cond_resched(); | |
886 | ||
887 | /* We now go into synchronous reclaim */ | |
888 | p->flags |= PF_MEMALLOC; | |
889 | reclaim_state.reclaimed_slab = 0; | |
890 | p->reclaim_state = &reclaim_state; | |
891 | ||
1ad539b2 | 892 | did_some_progress = try_to_free_pages(zones, gfp_mask); |
1da177e4 LT |
893 | |
894 | p->reclaim_state = NULL; | |
895 | p->flags &= ~PF_MEMALLOC; | |
896 | ||
897 | cond_resched(); | |
898 | ||
899 | if (likely(did_some_progress)) { | |
1da177e4 LT |
900 | for (i = 0; (z = zones[i]) != NULL; i++) { |
901 | if (!zone_watermark_ok(z, order, z->pages_min, | |
902 | classzone_idx, can_try_harder, | |
903 | gfp_mask & __GFP_HIGH)) | |
904 | continue; | |
905 | ||
906 | if (!cpuset_zone_allowed(z)) | |
907 | continue; | |
908 | ||
909 | page = buffered_rmqueue(z, order, gfp_mask); | |
910 | if (page) | |
911 | goto got_pg; | |
912 | } | |
913 | } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | |
914 | /* | |
915 | * Go through the zonelist yet one more time, keep | |
916 | * very high watermark here, this is only to catch | |
917 | * a parallel oom killing, we must fail if we're still | |
918 | * under heavy pressure. | |
919 | */ | |
920 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
921 | if (!zone_watermark_ok(z, order, z->pages_high, | |
922 | classzone_idx, 0, 0)) | |
923 | continue; | |
924 | ||
925 | if (!cpuset_zone_allowed(z)) | |
926 | continue; | |
927 | ||
928 | page = buffered_rmqueue(z, order, gfp_mask); | |
929 | if (page) | |
930 | goto got_pg; | |
931 | } | |
932 | ||
79b9ce31 | 933 | out_of_memory(gfp_mask, order); |
1da177e4 LT |
934 | goto restart; |
935 | } | |
936 | ||
937 | /* | |
938 | * Don't let big-order allocations loop unless the caller explicitly | |
939 | * requests that. Wait for some write requests to complete then retry. | |
940 | * | |
941 | * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order | |
942 | * <= 3, but that may not be true in other implementations. | |
943 | */ | |
944 | do_retry = 0; | |
945 | if (!(gfp_mask & __GFP_NORETRY)) { | |
946 | if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) | |
947 | do_retry = 1; | |
948 | if (gfp_mask & __GFP_NOFAIL) | |
949 | do_retry = 1; | |
950 | } | |
951 | if (do_retry) { | |
952 | blk_congestion_wait(WRITE, HZ/50); | |
953 | goto rebalance; | |
954 | } | |
955 | ||
956 | nopage: | |
957 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | |
958 | printk(KERN_WARNING "%s: page allocation failure." | |
959 | " order:%d, mode:0x%x\n", | |
960 | p->comm, order, gfp_mask); | |
961 | dump_stack(); | |
578c2fd6 | 962 | show_mem(); |
1da177e4 LT |
963 | } |
964 | return NULL; | |
965 | got_pg: | |
966 | zone_statistics(zonelist, z); | |
967 | return page; | |
968 | } | |
969 | ||
970 | EXPORT_SYMBOL(__alloc_pages); | |
971 | ||
972 | /* | |
973 | * Common helper functions. | |
974 | */ | |
975 | fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order) | |
976 | { | |
977 | struct page * page; | |
978 | page = alloc_pages(gfp_mask, order); | |
979 | if (!page) | |
980 | return 0; | |
981 | return (unsigned long) page_address(page); | |
982 | } | |
983 | ||
984 | EXPORT_SYMBOL(__get_free_pages); | |
985 | ||
986 | fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask) | |
987 | { | |
988 | struct page * page; | |
989 | ||
990 | /* | |
991 | * get_zeroed_page() returns a 32-bit address, which cannot represent | |
992 | * a highmem page | |
993 | */ | |
994 | BUG_ON(gfp_mask & __GFP_HIGHMEM); | |
995 | ||
996 | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | |
997 | if (page) | |
998 | return (unsigned long) page_address(page); | |
999 | return 0; | |
1000 | } | |
1001 | ||
1002 | EXPORT_SYMBOL(get_zeroed_page); | |
1003 | ||
1004 | void __pagevec_free(struct pagevec *pvec) | |
1005 | { | |
1006 | int i = pagevec_count(pvec); | |
1007 | ||
1008 | while (--i >= 0) | |
1009 | free_hot_cold_page(pvec->pages[i], pvec->cold); | |
1010 | } | |
1011 | ||
1012 | fastcall void __free_pages(struct page *page, unsigned int order) | |
1013 | { | |
1014 | if (!PageReserved(page) && put_page_testzero(page)) { | |
1015 | if (order == 0) | |
1016 | free_hot_page(page); | |
1017 | else | |
1018 | __free_pages_ok(page, order); | |
1019 | } | |
1020 | } | |
1021 | ||
1022 | EXPORT_SYMBOL(__free_pages); | |
1023 | ||
1024 | fastcall void free_pages(unsigned long addr, unsigned int order) | |
1025 | { | |
1026 | if (addr != 0) { | |
1027 | BUG_ON(!virt_addr_valid((void *)addr)); | |
1028 | __free_pages(virt_to_page((void *)addr), order); | |
1029 | } | |
1030 | } | |
1031 | ||
1032 | EXPORT_SYMBOL(free_pages); | |
1033 | ||
1034 | /* | |
1035 | * Total amount of free (allocatable) RAM: | |
1036 | */ | |
1037 | unsigned int nr_free_pages(void) | |
1038 | { | |
1039 | unsigned int sum = 0; | |
1040 | struct zone *zone; | |
1041 | ||
1042 | for_each_zone(zone) | |
1043 | sum += zone->free_pages; | |
1044 | ||
1045 | return sum; | |
1046 | } | |
1047 | ||
1048 | EXPORT_SYMBOL(nr_free_pages); | |
1049 | ||
1050 | #ifdef CONFIG_NUMA | |
1051 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) | |
1052 | { | |
1053 | unsigned int i, sum = 0; | |
1054 | ||
1055 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1056 | sum += pgdat->node_zones[i].free_pages; | |
1057 | ||
1058 | return sum; | |
1059 | } | |
1060 | #endif | |
1061 | ||
1062 | static unsigned int nr_free_zone_pages(int offset) | |
1063 | { | |
e310fd43 MB |
1064 | /* Just pick one node, since fallback list is circular */ |
1065 | pg_data_t *pgdat = NODE_DATA(numa_node_id()); | |
1da177e4 LT |
1066 | unsigned int sum = 0; |
1067 | ||
e310fd43 MB |
1068 | struct zonelist *zonelist = pgdat->node_zonelists + offset; |
1069 | struct zone **zonep = zonelist->zones; | |
1070 | struct zone *zone; | |
1da177e4 | 1071 | |
e310fd43 MB |
1072 | for (zone = *zonep++; zone; zone = *zonep++) { |
1073 | unsigned long size = zone->present_pages; | |
1074 | unsigned long high = zone->pages_high; | |
1075 | if (size > high) | |
1076 | sum += size - high; | |
1da177e4 LT |
1077 | } |
1078 | ||
1079 | return sum; | |
1080 | } | |
1081 | ||
1082 | /* | |
1083 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | |
1084 | */ | |
1085 | unsigned int nr_free_buffer_pages(void) | |
1086 | { | |
1087 | return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); | |
1088 | } | |
1089 | ||
1090 | /* | |
1091 | * Amount of free RAM allocatable within all zones | |
1092 | */ | |
1093 | unsigned int nr_free_pagecache_pages(void) | |
1094 | { | |
1095 | return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); | |
1096 | } | |
1097 | ||
1098 | #ifdef CONFIG_HIGHMEM | |
1099 | unsigned int nr_free_highpages (void) | |
1100 | { | |
1101 | pg_data_t *pgdat; | |
1102 | unsigned int pages = 0; | |
1103 | ||
1104 | for_each_pgdat(pgdat) | |
1105 | pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; | |
1106 | ||
1107 | return pages; | |
1108 | } | |
1109 | #endif | |
1110 | ||
1111 | #ifdef CONFIG_NUMA | |
1112 | static void show_node(struct zone *zone) | |
1113 | { | |
1114 | printk("Node %d ", zone->zone_pgdat->node_id); | |
1115 | } | |
1116 | #else | |
1117 | #define show_node(zone) do { } while (0) | |
1118 | #endif | |
1119 | ||
1120 | /* | |
1121 | * Accumulate the page_state information across all CPUs. | |
1122 | * The result is unavoidably approximate - it can change | |
1123 | * during and after execution of this function. | |
1124 | */ | |
1125 | static DEFINE_PER_CPU(struct page_state, page_states) = {0}; | |
1126 | ||
1127 | atomic_t nr_pagecache = ATOMIC_INIT(0); | |
1128 | EXPORT_SYMBOL(nr_pagecache); | |
1129 | #ifdef CONFIG_SMP | |
1130 | DEFINE_PER_CPU(long, nr_pagecache_local) = 0; | |
1131 | #endif | |
1132 | ||
1133 | void __get_page_state(struct page_state *ret, int nr) | |
1134 | { | |
1135 | int cpu = 0; | |
1136 | ||
1137 | memset(ret, 0, sizeof(*ret)); | |
1138 | ||
1139 | cpu = first_cpu(cpu_online_map); | |
1140 | while (cpu < NR_CPUS) { | |
1141 | unsigned long *in, *out, off; | |
1142 | ||
1143 | in = (unsigned long *)&per_cpu(page_states, cpu); | |
1144 | ||
1145 | cpu = next_cpu(cpu, cpu_online_map); | |
1146 | ||
1147 | if (cpu < NR_CPUS) | |
1148 | prefetch(&per_cpu(page_states, cpu)); | |
1149 | ||
1150 | out = (unsigned long *)ret; | |
1151 | for (off = 0; off < nr; off++) | |
1152 | *out++ += *in++; | |
1153 | } | |
1154 | } | |
1155 | ||
1156 | void get_page_state(struct page_state *ret) | |
1157 | { | |
1158 | int nr; | |
1159 | ||
1160 | nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); | |
1161 | nr /= sizeof(unsigned long); | |
1162 | ||
1163 | __get_page_state(ret, nr + 1); | |
1164 | } | |
1165 | ||
1166 | void get_full_page_state(struct page_state *ret) | |
1167 | { | |
1168 | __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long)); | |
1169 | } | |
1170 | ||
c2f29ea1 | 1171 | unsigned long __read_page_state(unsigned long offset) |
1da177e4 LT |
1172 | { |
1173 | unsigned long ret = 0; | |
1174 | int cpu; | |
1175 | ||
1176 | for_each_online_cpu(cpu) { | |
1177 | unsigned long in; | |
1178 | ||
1179 | in = (unsigned long)&per_cpu(page_states, cpu) + offset; | |
1180 | ret += *((unsigned long *)in); | |
1181 | } | |
1182 | return ret; | |
1183 | } | |
1184 | ||
83e5d8f7 | 1185 | void __mod_page_state(unsigned long offset, unsigned long delta) |
1da177e4 LT |
1186 | { |
1187 | unsigned long flags; | |
1188 | void* ptr; | |
1189 | ||
1190 | local_irq_save(flags); | |
1191 | ptr = &__get_cpu_var(page_states); | |
1192 | *(unsigned long*)(ptr + offset) += delta; | |
1193 | local_irq_restore(flags); | |
1194 | } | |
1195 | ||
1196 | EXPORT_SYMBOL(__mod_page_state); | |
1197 | ||
1198 | void __get_zone_counts(unsigned long *active, unsigned long *inactive, | |
1199 | unsigned long *free, struct pglist_data *pgdat) | |
1200 | { | |
1201 | struct zone *zones = pgdat->node_zones; | |
1202 | int i; | |
1203 | ||
1204 | *active = 0; | |
1205 | *inactive = 0; | |
1206 | *free = 0; | |
1207 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1208 | *active += zones[i].nr_active; | |
1209 | *inactive += zones[i].nr_inactive; | |
1210 | *free += zones[i].free_pages; | |
1211 | } | |
1212 | } | |
1213 | ||
1214 | void get_zone_counts(unsigned long *active, | |
1215 | unsigned long *inactive, unsigned long *free) | |
1216 | { | |
1217 | struct pglist_data *pgdat; | |
1218 | ||
1219 | *active = 0; | |
1220 | *inactive = 0; | |
1221 | *free = 0; | |
1222 | for_each_pgdat(pgdat) { | |
1223 | unsigned long l, m, n; | |
1224 | __get_zone_counts(&l, &m, &n, pgdat); | |
1225 | *active += l; | |
1226 | *inactive += m; | |
1227 | *free += n; | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | void si_meminfo(struct sysinfo *val) | |
1232 | { | |
1233 | val->totalram = totalram_pages; | |
1234 | val->sharedram = 0; | |
1235 | val->freeram = nr_free_pages(); | |
1236 | val->bufferram = nr_blockdev_pages(); | |
1237 | #ifdef CONFIG_HIGHMEM | |
1238 | val->totalhigh = totalhigh_pages; | |
1239 | val->freehigh = nr_free_highpages(); | |
1240 | #else | |
1241 | val->totalhigh = 0; | |
1242 | val->freehigh = 0; | |
1243 | #endif | |
1244 | val->mem_unit = PAGE_SIZE; | |
1245 | } | |
1246 | ||
1247 | EXPORT_SYMBOL(si_meminfo); | |
1248 | ||
1249 | #ifdef CONFIG_NUMA | |
1250 | void si_meminfo_node(struct sysinfo *val, int nid) | |
1251 | { | |
1252 | pg_data_t *pgdat = NODE_DATA(nid); | |
1253 | ||
1254 | val->totalram = pgdat->node_present_pages; | |
1255 | val->freeram = nr_free_pages_pgdat(pgdat); | |
1256 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | |
1257 | val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; | |
1258 | val->mem_unit = PAGE_SIZE; | |
1259 | } | |
1260 | #endif | |
1261 | ||
1262 | #define K(x) ((x) << (PAGE_SHIFT-10)) | |
1263 | ||
1264 | /* | |
1265 | * Show free area list (used inside shift_scroll-lock stuff) | |
1266 | * We also calculate the percentage fragmentation. We do this by counting the | |
1267 | * memory on each free list with the exception of the first item on the list. | |
1268 | */ | |
1269 | void show_free_areas(void) | |
1270 | { | |
1271 | struct page_state ps; | |
1272 | int cpu, temperature; | |
1273 | unsigned long active; | |
1274 | unsigned long inactive; | |
1275 | unsigned long free; | |
1276 | struct zone *zone; | |
1277 | ||
1278 | for_each_zone(zone) { | |
1279 | show_node(zone); | |
1280 | printk("%s per-cpu:", zone->name); | |
1281 | ||
1282 | if (!zone->present_pages) { | |
1283 | printk(" empty\n"); | |
1284 | continue; | |
1285 | } else | |
1286 | printk("\n"); | |
1287 | ||
1288 | for (cpu = 0; cpu < NR_CPUS; ++cpu) { | |
1289 | struct per_cpu_pageset *pageset; | |
1290 | ||
1291 | if (!cpu_possible(cpu)) | |
1292 | continue; | |
1293 | ||
e7c8d5c9 | 1294 | pageset = zone_pcp(zone, cpu); |
1da177e4 LT |
1295 | |
1296 | for (temperature = 0; temperature < 2; temperature++) | |
4ae7c039 | 1297 | printk("cpu %d %s: low %d, high %d, batch %d used:%d\n", |
1da177e4 LT |
1298 | cpu, |
1299 | temperature ? "cold" : "hot", | |
1300 | pageset->pcp[temperature].low, | |
1301 | pageset->pcp[temperature].high, | |
4ae7c039 CL |
1302 | pageset->pcp[temperature].batch, |
1303 | pageset->pcp[temperature].count); | |
1da177e4 LT |
1304 | } |
1305 | } | |
1306 | ||
1307 | get_page_state(&ps); | |
1308 | get_zone_counts(&active, &inactive, &free); | |
1309 | ||
c0d62219 | 1310 | printk("Free pages: %11ukB (%ukB HighMem)\n", |
1da177e4 LT |
1311 | K(nr_free_pages()), |
1312 | K(nr_free_highpages())); | |
1313 | ||
1314 | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " | |
1315 | "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", | |
1316 | active, | |
1317 | inactive, | |
1318 | ps.nr_dirty, | |
1319 | ps.nr_writeback, | |
1320 | ps.nr_unstable, | |
1321 | nr_free_pages(), | |
1322 | ps.nr_slab, | |
1323 | ps.nr_mapped, | |
1324 | ps.nr_page_table_pages); | |
1325 | ||
1326 | for_each_zone(zone) { | |
1327 | int i; | |
1328 | ||
1329 | show_node(zone); | |
1330 | printk("%s" | |
1331 | " free:%lukB" | |
1332 | " min:%lukB" | |
1333 | " low:%lukB" | |
1334 | " high:%lukB" | |
1335 | " active:%lukB" | |
1336 | " inactive:%lukB" | |
1337 | " present:%lukB" | |
1338 | " pages_scanned:%lu" | |
1339 | " all_unreclaimable? %s" | |
1340 | "\n", | |
1341 | zone->name, | |
1342 | K(zone->free_pages), | |
1343 | K(zone->pages_min), | |
1344 | K(zone->pages_low), | |
1345 | K(zone->pages_high), | |
1346 | K(zone->nr_active), | |
1347 | K(zone->nr_inactive), | |
1348 | K(zone->present_pages), | |
1349 | zone->pages_scanned, | |
1350 | (zone->all_unreclaimable ? "yes" : "no") | |
1351 | ); | |
1352 | printk("lowmem_reserve[]:"); | |
1353 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1354 | printk(" %lu", zone->lowmem_reserve[i]); | |
1355 | printk("\n"); | |
1356 | } | |
1357 | ||
1358 | for_each_zone(zone) { | |
1359 | unsigned long nr, flags, order, total = 0; | |
1360 | ||
1361 | show_node(zone); | |
1362 | printk("%s: ", zone->name); | |
1363 | if (!zone->present_pages) { | |
1364 | printk("empty\n"); | |
1365 | continue; | |
1366 | } | |
1367 | ||
1368 | spin_lock_irqsave(&zone->lock, flags); | |
1369 | for (order = 0; order < MAX_ORDER; order++) { | |
1370 | nr = zone->free_area[order].nr_free; | |
1371 | total += nr << order; | |
1372 | printk("%lu*%lukB ", nr, K(1UL) << order); | |
1373 | } | |
1374 | spin_unlock_irqrestore(&zone->lock, flags); | |
1375 | printk("= %lukB\n", K(total)); | |
1376 | } | |
1377 | ||
1378 | show_swap_cache_info(); | |
1379 | } | |
1380 | ||
1381 | /* | |
1382 | * Builds allocation fallback zone lists. | |
1383 | */ | |
1384 | static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) | |
1385 | { | |
1386 | switch (k) { | |
1387 | struct zone *zone; | |
1388 | default: | |
1389 | BUG(); | |
1390 | case ZONE_HIGHMEM: | |
1391 | zone = pgdat->node_zones + ZONE_HIGHMEM; | |
1392 | if (zone->present_pages) { | |
1393 | #ifndef CONFIG_HIGHMEM | |
1394 | BUG(); | |
1395 | #endif | |
1396 | zonelist->zones[j++] = zone; | |
1397 | } | |
1398 | case ZONE_NORMAL: | |
1399 | zone = pgdat->node_zones + ZONE_NORMAL; | |
1400 | if (zone->present_pages) | |
1401 | zonelist->zones[j++] = zone; | |
1402 | case ZONE_DMA: | |
1403 | zone = pgdat->node_zones + ZONE_DMA; | |
1404 | if (zone->present_pages) | |
1405 | zonelist->zones[j++] = zone; | |
1406 | } | |
1407 | ||
1408 | return j; | |
1409 | } | |
1410 | ||
1411 | #ifdef CONFIG_NUMA | |
1412 | #define MAX_NODE_LOAD (num_online_nodes()) | |
1413 | static int __initdata node_load[MAX_NUMNODES]; | |
1414 | /** | |
4dc3b16b | 1415 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
1416 | * @node: node whose fallback list we're appending |
1417 | * @used_node_mask: nodemask_t of already used nodes | |
1418 | * | |
1419 | * We use a number of factors to determine which is the next node that should | |
1420 | * appear on a given node's fallback list. The node should not have appeared | |
1421 | * already in @node's fallback list, and it should be the next closest node | |
1422 | * according to the distance array (which contains arbitrary distance values | |
1423 | * from each node to each node in the system), and should also prefer nodes | |
1424 | * with no CPUs, since presumably they'll have very little allocation pressure | |
1425 | * on them otherwise. | |
1426 | * It returns -1 if no node is found. | |
1427 | */ | |
1428 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) | |
1429 | { | |
1430 | int i, n, val; | |
1431 | int min_val = INT_MAX; | |
1432 | int best_node = -1; | |
1433 | ||
1434 | for_each_online_node(i) { | |
1435 | cpumask_t tmp; | |
1436 | ||
1437 | /* Start from local node */ | |
1438 | n = (node+i) % num_online_nodes(); | |
1439 | ||
1440 | /* Don't want a node to appear more than once */ | |
1441 | if (node_isset(n, *used_node_mask)) | |
1442 | continue; | |
1443 | ||
1444 | /* Use the local node if we haven't already */ | |
1445 | if (!node_isset(node, *used_node_mask)) { | |
1446 | best_node = node; | |
1447 | break; | |
1448 | } | |
1449 | ||
1450 | /* Use the distance array to find the distance */ | |
1451 | val = node_distance(node, n); | |
1452 | ||
1453 | /* Give preference to headless and unused nodes */ | |
1454 | tmp = node_to_cpumask(n); | |
1455 | if (!cpus_empty(tmp)) | |
1456 | val += PENALTY_FOR_NODE_WITH_CPUS; | |
1457 | ||
1458 | /* Slight preference for less loaded node */ | |
1459 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
1460 | val += node_load[n]; | |
1461 | ||
1462 | if (val < min_val) { | |
1463 | min_val = val; | |
1464 | best_node = n; | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | if (best_node >= 0) | |
1469 | node_set(best_node, *used_node_mask); | |
1470 | ||
1471 | return best_node; | |
1472 | } | |
1473 | ||
1474 | static void __init build_zonelists(pg_data_t *pgdat) | |
1475 | { | |
1476 | int i, j, k, node, local_node; | |
1477 | int prev_node, load; | |
1478 | struct zonelist *zonelist; | |
1479 | nodemask_t used_mask; | |
1480 | ||
1481 | /* initialize zonelists */ | |
1482 | for (i = 0; i < GFP_ZONETYPES; i++) { | |
1483 | zonelist = pgdat->node_zonelists + i; | |
1484 | zonelist->zones[0] = NULL; | |
1485 | } | |
1486 | ||
1487 | /* NUMA-aware ordering of nodes */ | |
1488 | local_node = pgdat->node_id; | |
1489 | load = num_online_nodes(); | |
1490 | prev_node = local_node; | |
1491 | nodes_clear(used_mask); | |
1492 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | |
1493 | /* | |
1494 | * We don't want to pressure a particular node. | |
1495 | * So adding penalty to the first node in same | |
1496 | * distance group to make it round-robin. | |
1497 | */ | |
1498 | if (node_distance(local_node, node) != | |
1499 | node_distance(local_node, prev_node)) | |
1500 | node_load[node] += load; | |
1501 | prev_node = node; | |
1502 | load--; | |
1503 | for (i = 0; i < GFP_ZONETYPES; i++) { | |
1504 | zonelist = pgdat->node_zonelists + i; | |
1505 | for (j = 0; zonelist->zones[j] != NULL; j++); | |
1506 | ||
1507 | k = ZONE_NORMAL; | |
1508 | if (i & __GFP_HIGHMEM) | |
1509 | k = ZONE_HIGHMEM; | |
1510 | if (i & __GFP_DMA) | |
1511 | k = ZONE_DMA; | |
1512 | ||
1513 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | |
1514 | zonelist->zones[j] = NULL; | |
1515 | } | |
1516 | } | |
1517 | } | |
1518 | ||
1519 | #else /* CONFIG_NUMA */ | |
1520 | ||
1521 | static void __init build_zonelists(pg_data_t *pgdat) | |
1522 | { | |
1523 | int i, j, k, node, local_node; | |
1524 | ||
1525 | local_node = pgdat->node_id; | |
1526 | for (i = 0; i < GFP_ZONETYPES; i++) { | |
1527 | struct zonelist *zonelist; | |
1528 | ||
1529 | zonelist = pgdat->node_zonelists + i; | |
1530 | ||
1531 | j = 0; | |
1532 | k = ZONE_NORMAL; | |
1533 | if (i & __GFP_HIGHMEM) | |
1534 | k = ZONE_HIGHMEM; | |
1535 | if (i & __GFP_DMA) | |
1536 | k = ZONE_DMA; | |
1537 | ||
1538 | j = build_zonelists_node(pgdat, zonelist, j, k); | |
1539 | /* | |
1540 | * Now we build the zonelist so that it contains the zones | |
1541 | * of all the other nodes. | |
1542 | * We don't want to pressure a particular node, so when | |
1543 | * building the zones for node N, we make sure that the | |
1544 | * zones coming right after the local ones are those from | |
1545 | * node N+1 (modulo N) | |
1546 | */ | |
1547 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
1548 | if (!node_online(node)) | |
1549 | continue; | |
1550 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | |
1551 | } | |
1552 | for (node = 0; node < local_node; node++) { | |
1553 | if (!node_online(node)) | |
1554 | continue; | |
1555 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | |
1556 | } | |
1557 | ||
1558 | zonelist->zones[j] = NULL; | |
1559 | } | |
1560 | } | |
1561 | ||
1562 | #endif /* CONFIG_NUMA */ | |
1563 | ||
1564 | void __init build_all_zonelists(void) | |
1565 | { | |
1566 | int i; | |
1567 | ||
1568 | for_each_online_node(i) | |
1569 | build_zonelists(NODE_DATA(i)); | |
1570 | printk("Built %i zonelists\n", num_online_nodes()); | |
1571 | cpuset_init_current_mems_allowed(); | |
1572 | } | |
1573 | ||
1574 | /* | |
1575 | * Helper functions to size the waitqueue hash table. | |
1576 | * Essentially these want to choose hash table sizes sufficiently | |
1577 | * large so that collisions trying to wait on pages are rare. | |
1578 | * But in fact, the number of active page waitqueues on typical | |
1579 | * systems is ridiculously low, less than 200. So this is even | |
1580 | * conservative, even though it seems large. | |
1581 | * | |
1582 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
1583 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
1584 | */ | |
1585 | #define PAGES_PER_WAITQUEUE 256 | |
1586 | ||
1587 | static inline unsigned long wait_table_size(unsigned long pages) | |
1588 | { | |
1589 | unsigned long size = 1; | |
1590 | ||
1591 | pages /= PAGES_PER_WAITQUEUE; | |
1592 | ||
1593 | while (size < pages) | |
1594 | size <<= 1; | |
1595 | ||
1596 | /* | |
1597 | * Once we have dozens or even hundreds of threads sleeping | |
1598 | * on IO we've got bigger problems than wait queue collision. | |
1599 | * Limit the size of the wait table to a reasonable size. | |
1600 | */ | |
1601 | size = min(size, 4096UL); | |
1602 | ||
1603 | return max(size, 4UL); | |
1604 | } | |
1605 | ||
1606 | /* | |
1607 | * This is an integer logarithm so that shifts can be used later | |
1608 | * to extract the more random high bits from the multiplicative | |
1609 | * hash function before the remainder is taken. | |
1610 | */ | |
1611 | static inline unsigned long wait_table_bits(unsigned long size) | |
1612 | { | |
1613 | return ffz(~size); | |
1614 | } | |
1615 | ||
1616 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | |
1617 | ||
1618 | static void __init calculate_zone_totalpages(struct pglist_data *pgdat, | |
1619 | unsigned long *zones_size, unsigned long *zholes_size) | |
1620 | { | |
1621 | unsigned long realtotalpages, totalpages = 0; | |
1622 | int i; | |
1623 | ||
1624 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1625 | totalpages += zones_size[i]; | |
1626 | pgdat->node_spanned_pages = totalpages; | |
1627 | ||
1628 | realtotalpages = totalpages; | |
1629 | if (zholes_size) | |
1630 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1631 | realtotalpages -= zholes_size[i]; | |
1632 | pgdat->node_present_pages = realtotalpages; | |
1633 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | |
1634 | } | |
1635 | ||
1636 | ||
1637 | /* | |
1638 | * Initially all pages are reserved - free ones are freed | |
1639 | * up by free_all_bootmem() once the early boot process is | |
1640 | * done. Non-atomic initialization, single-pass. | |
1641 | */ | |
1642 | void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, | |
1643 | unsigned long start_pfn) | |
1644 | { | |
1da177e4 | 1645 | struct page *page; |
29751f69 AW |
1646 | unsigned long end_pfn = start_pfn + size; |
1647 | unsigned long pfn; | |
1da177e4 | 1648 | |
d41dee36 AW |
1649 | for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) { |
1650 | if (!early_pfn_valid(pfn)) | |
1651 | continue; | |
641c7673 AW |
1652 | if (!early_pfn_in_nid(pfn, nid)) |
1653 | continue; | |
d41dee36 AW |
1654 | page = pfn_to_page(pfn); |
1655 | set_page_links(page, zone, nid, pfn); | |
1da177e4 LT |
1656 | set_page_count(page, 0); |
1657 | reset_page_mapcount(page); | |
1658 | SetPageReserved(page); | |
1659 | INIT_LIST_HEAD(&page->lru); | |
1660 | #ifdef WANT_PAGE_VIRTUAL | |
1661 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
1662 | if (!is_highmem_idx(zone)) | |
3212c6be | 1663 | set_page_address(page, __va(pfn << PAGE_SHIFT)); |
1da177e4 | 1664 | #endif |
1da177e4 LT |
1665 | } |
1666 | } | |
1667 | ||
1668 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, | |
1669 | unsigned long size) | |
1670 | { | |
1671 | int order; | |
1672 | for (order = 0; order < MAX_ORDER ; order++) { | |
1673 | INIT_LIST_HEAD(&zone->free_area[order].free_list); | |
1674 | zone->free_area[order].nr_free = 0; | |
1675 | } | |
1676 | } | |
1677 | ||
d41dee36 AW |
1678 | #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) |
1679 | void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, | |
1680 | unsigned long size) | |
1681 | { | |
1682 | unsigned long snum = pfn_to_section_nr(pfn); | |
1683 | unsigned long end = pfn_to_section_nr(pfn + size); | |
1684 | ||
1685 | if (FLAGS_HAS_NODE) | |
1686 | zone_table[ZONETABLE_INDEX(nid, zid)] = zone; | |
1687 | else | |
1688 | for (; snum <= end; snum++) | |
1689 | zone_table[ZONETABLE_INDEX(snum, zid)] = zone; | |
1690 | } | |
1691 | ||
1da177e4 LT |
1692 | #ifndef __HAVE_ARCH_MEMMAP_INIT |
1693 | #define memmap_init(size, nid, zone, start_pfn) \ | |
1694 | memmap_init_zone((size), (nid), (zone), (start_pfn)) | |
1695 | #endif | |
1696 | ||
e7c8d5c9 CL |
1697 | static int __devinit zone_batchsize(struct zone *zone) |
1698 | { | |
1699 | int batch; | |
1700 | ||
1701 | /* | |
1702 | * The per-cpu-pages pools are set to around 1000th of the | |
1703 | * size of the zone. But no more than 1/4 of a meg - there's | |
1704 | * no point in going beyond the size of L2 cache. | |
1705 | * | |
1706 | * OK, so we don't know how big the cache is. So guess. | |
1707 | */ | |
1708 | batch = zone->present_pages / 1024; | |
1709 | if (batch * PAGE_SIZE > 256 * 1024) | |
1710 | batch = (256 * 1024) / PAGE_SIZE; | |
1711 | batch /= 4; /* We effectively *= 4 below */ | |
1712 | if (batch < 1) | |
1713 | batch = 1; | |
1714 | ||
1715 | /* | |
1716 | * Clamp the batch to a 2^n - 1 value. Having a power | |
1717 | * of 2 value was found to be more likely to have | |
1718 | * suboptimal cache aliasing properties in some cases. | |
1719 | * | |
1720 | * For example if 2 tasks are alternately allocating | |
1721 | * batches of pages, one task can end up with a lot | |
1722 | * of pages of one half of the possible page colors | |
1723 | * and the other with pages of the other colors. | |
1724 | */ | |
1725 | batch = (1 << fls(batch + batch/2)) - 1; | |
1726 | return batch; | |
1727 | } | |
1728 | ||
2caaad41 CL |
1729 | inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
1730 | { | |
1731 | struct per_cpu_pages *pcp; | |
1732 | ||
1733 | pcp = &p->pcp[0]; /* hot */ | |
1734 | pcp->count = 0; | |
1735 | pcp->low = 2 * batch; | |
1736 | pcp->high = 6 * batch; | |
1737 | pcp->batch = max(1UL, 1 * batch); | |
1738 | INIT_LIST_HEAD(&pcp->list); | |
1739 | ||
1740 | pcp = &p->pcp[1]; /* cold*/ | |
1741 | pcp->count = 0; | |
1742 | pcp->low = 0; | |
1743 | pcp->high = 2 * batch; | |
1744 | pcp->batch = max(1UL, 1 * batch); | |
1745 | INIT_LIST_HEAD(&pcp->list); | |
1746 | } | |
1747 | ||
e7c8d5c9 CL |
1748 | #ifdef CONFIG_NUMA |
1749 | /* | |
2caaad41 CL |
1750 | * Boot pageset table. One per cpu which is going to be used for all |
1751 | * zones and all nodes. The parameters will be set in such a way | |
1752 | * that an item put on a list will immediately be handed over to | |
1753 | * the buddy list. This is safe since pageset manipulation is done | |
1754 | * with interrupts disabled. | |
1755 | * | |
1756 | * Some NUMA counter updates may also be caught by the boot pagesets. | |
b7c84c6a CL |
1757 | * |
1758 | * The boot_pagesets must be kept even after bootup is complete for | |
1759 | * unused processors and/or zones. They do play a role for bootstrapping | |
1760 | * hotplugged processors. | |
1761 | * | |
1762 | * zoneinfo_show() and maybe other functions do | |
1763 | * not check if the processor is online before following the pageset pointer. | |
1764 | * Other parts of the kernel may not check if the zone is available. | |
2caaad41 CL |
1765 | */ |
1766 | static struct per_cpu_pageset | |
b7c84c6a | 1767 | boot_pageset[NR_CPUS]; |
2caaad41 CL |
1768 | |
1769 | /* | |
1770 | * Dynamically allocate memory for the | |
e7c8d5c9 CL |
1771 | * per cpu pageset array in struct zone. |
1772 | */ | |
1773 | static int __devinit process_zones(int cpu) | |
1774 | { | |
1775 | struct zone *zone, *dzone; | |
e7c8d5c9 CL |
1776 | |
1777 | for_each_zone(zone) { | |
e7c8d5c9 | 1778 | |
2caaad41 | 1779 | zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset), |
e7c8d5c9 | 1780 | GFP_KERNEL, cpu_to_node(cpu)); |
2caaad41 | 1781 | if (!zone->pageset[cpu]) |
e7c8d5c9 | 1782 | goto bad; |
e7c8d5c9 | 1783 | |
2caaad41 | 1784 | setup_pageset(zone->pageset[cpu], zone_batchsize(zone)); |
e7c8d5c9 CL |
1785 | } |
1786 | ||
1787 | return 0; | |
1788 | bad: | |
1789 | for_each_zone(dzone) { | |
1790 | if (dzone == zone) | |
1791 | break; | |
1792 | kfree(dzone->pageset[cpu]); | |
1793 | dzone->pageset[cpu] = NULL; | |
1794 | } | |
1795 | return -ENOMEM; | |
1796 | } | |
1797 | ||
1798 | static inline void free_zone_pagesets(int cpu) | |
1799 | { | |
1800 | #ifdef CONFIG_NUMA | |
1801 | struct zone *zone; | |
1802 | ||
1803 | for_each_zone(zone) { | |
1804 | struct per_cpu_pageset *pset = zone_pcp(zone, cpu); | |
1805 | ||
1806 | zone_pcp(zone, cpu) = NULL; | |
1807 | kfree(pset); | |
1808 | } | |
1809 | #endif | |
1810 | } | |
1811 | ||
1812 | static int __devinit pageset_cpuup_callback(struct notifier_block *nfb, | |
1813 | unsigned long action, | |
1814 | void *hcpu) | |
1815 | { | |
1816 | int cpu = (long)hcpu; | |
1817 | int ret = NOTIFY_OK; | |
1818 | ||
1819 | switch (action) { | |
1820 | case CPU_UP_PREPARE: | |
1821 | if (process_zones(cpu)) | |
1822 | ret = NOTIFY_BAD; | |
1823 | break; | |
1824 | #ifdef CONFIG_HOTPLUG_CPU | |
1825 | case CPU_DEAD: | |
1826 | free_zone_pagesets(cpu); | |
1827 | break; | |
1828 | #endif | |
1829 | default: | |
1830 | break; | |
1831 | } | |
1832 | return ret; | |
1833 | } | |
1834 | ||
1835 | static struct notifier_block pageset_notifier = | |
1836 | { &pageset_cpuup_callback, NULL, 0 }; | |
1837 | ||
1838 | void __init setup_per_cpu_pageset() | |
1839 | { | |
1840 | int err; | |
1841 | ||
1842 | /* Initialize per_cpu_pageset for cpu 0. | |
1843 | * A cpuup callback will do this for every cpu | |
1844 | * as it comes online | |
1845 | */ | |
1846 | err = process_zones(smp_processor_id()); | |
1847 | BUG_ON(err); | |
1848 | register_cpu_notifier(&pageset_notifier); | |
1849 | } | |
1850 | ||
1851 | #endif | |
1852 | ||
1da177e4 LT |
1853 | /* |
1854 | * Set up the zone data structures: | |
1855 | * - mark all pages reserved | |
1856 | * - mark all memory queues empty | |
1857 | * - clear the memory bitmaps | |
1858 | */ | |
1859 | static void __init free_area_init_core(struct pglist_data *pgdat, | |
1860 | unsigned long *zones_size, unsigned long *zholes_size) | |
1861 | { | |
1862 | unsigned long i, j; | |
1da177e4 LT |
1863 | int cpu, nid = pgdat->node_id; |
1864 | unsigned long zone_start_pfn = pgdat->node_start_pfn; | |
1865 | ||
1866 | pgdat->nr_zones = 0; | |
1867 | init_waitqueue_head(&pgdat->kswapd_wait); | |
1868 | pgdat->kswapd_max_order = 0; | |
1869 | ||
1870 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
1871 | struct zone *zone = pgdat->node_zones + j; | |
1872 | unsigned long size, realsize; | |
1873 | unsigned long batch; | |
1874 | ||
1da177e4 LT |
1875 | realsize = size = zones_size[j]; |
1876 | if (zholes_size) | |
1877 | realsize -= zholes_size[j]; | |
1878 | ||
1879 | if (j == ZONE_DMA || j == ZONE_NORMAL) | |
1880 | nr_kernel_pages += realsize; | |
1881 | nr_all_pages += realsize; | |
1882 | ||
1883 | zone->spanned_pages = size; | |
1884 | zone->present_pages = realsize; | |
1885 | zone->name = zone_names[j]; | |
1886 | spin_lock_init(&zone->lock); | |
1887 | spin_lock_init(&zone->lru_lock); | |
1888 | zone->zone_pgdat = pgdat; | |
1889 | zone->free_pages = 0; | |
1890 | ||
1891 | zone->temp_priority = zone->prev_priority = DEF_PRIORITY; | |
1892 | ||
e7c8d5c9 | 1893 | batch = zone_batchsize(zone); |
8e30f272 | 1894 | |
1da177e4 | 1895 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
e7c8d5c9 | 1896 | #ifdef CONFIG_NUMA |
2caaad41 CL |
1897 | /* Early boot. Slab allocator not functional yet */ |
1898 | zone->pageset[cpu] = &boot_pageset[cpu]; | |
1899 | setup_pageset(&boot_pageset[cpu],0); | |
e7c8d5c9 | 1900 | #else |
2caaad41 | 1901 | setup_pageset(zone_pcp(zone,cpu), batch); |
e7c8d5c9 | 1902 | #endif |
1da177e4 LT |
1903 | } |
1904 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", | |
1905 | zone_names[j], realsize, batch); | |
1906 | INIT_LIST_HEAD(&zone->active_list); | |
1907 | INIT_LIST_HEAD(&zone->inactive_list); | |
1908 | zone->nr_scan_active = 0; | |
1909 | zone->nr_scan_inactive = 0; | |
1910 | zone->nr_active = 0; | |
1911 | zone->nr_inactive = 0; | |
1e7e5a90 | 1912 | atomic_set(&zone->reclaim_in_progress, -1); |
1da177e4 LT |
1913 | if (!size) |
1914 | continue; | |
1915 | ||
1916 | /* | |
1917 | * The per-page waitqueue mechanism uses hashed waitqueues | |
1918 | * per zone. | |
1919 | */ | |
1920 | zone->wait_table_size = wait_table_size(size); | |
1921 | zone->wait_table_bits = | |
1922 | wait_table_bits(zone->wait_table_size); | |
1923 | zone->wait_table = (wait_queue_head_t *) | |
1924 | alloc_bootmem_node(pgdat, zone->wait_table_size | |
1925 | * sizeof(wait_queue_head_t)); | |
1926 | ||
1927 | for(i = 0; i < zone->wait_table_size; ++i) | |
1928 | init_waitqueue_head(zone->wait_table + i); | |
1929 | ||
1930 | pgdat->nr_zones = j+1; | |
1931 | ||
1932 | zone->zone_mem_map = pfn_to_page(zone_start_pfn); | |
1933 | zone->zone_start_pfn = zone_start_pfn; | |
1934 | ||
1da177e4 LT |
1935 | memmap_init(size, nid, j, zone_start_pfn); |
1936 | ||
d41dee36 AW |
1937 | zonetable_add(zone, nid, j, zone_start_pfn, size); |
1938 | ||
1da177e4 LT |
1939 | zone_start_pfn += size; |
1940 | ||
1941 | zone_init_free_lists(pgdat, zone, zone->spanned_pages); | |
1942 | } | |
1943 | } | |
1944 | ||
1945 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | |
1946 | { | |
1da177e4 LT |
1947 | /* Skip empty nodes */ |
1948 | if (!pgdat->node_spanned_pages) | |
1949 | return; | |
1950 | ||
d41dee36 | 1951 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
1da177e4 LT |
1952 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
1953 | if (!pgdat->node_mem_map) { | |
d41dee36 AW |
1954 | unsigned long size; |
1955 | struct page *map; | |
1956 | ||
1da177e4 | 1957 | size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); |
6f167ec7 DH |
1958 | map = alloc_remap(pgdat->node_id, size); |
1959 | if (!map) | |
1960 | map = alloc_bootmem_node(pgdat, size); | |
1961 | pgdat->node_mem_map = map; | |
1da177e4 | 1962 | } |
d41dee36 | 1963 | #ifdef CONFIG_FLATMEM |
1da177e4 LT |
1964 | /* |
1965 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
1966 | */ | |
1967 | if (pgdat == NODE_DATA(0)) | |
1968 | mem_map = NODE_DATA(0)->node_mem_map; | |
1969 | #endif | |
d41dee36 | 1970 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
1971 | } |
1972 | ||
1973 | void __init free_area_init_node(int nid, struct pglist_data *pgdat, | |
1974 | unsigned long *zones_size, unsigned long node_start_pfn, | |
1975 | unsigned long *zholes_size) | |
1976 | { | |
1977 | pgdat->node_id = nid; | |
1978 | pgdat->node_start_pfn = node_start_pfn; | |
1979 | calculate_zone_totalpages(pgdat, zones_size, zholes_size); | |
1980 | ||
1981 | alloc_node_mem_map(pgdat); | |
1982 | ||
1983 | free_area_init_core(pgdat, zones_size, zholes_size); | |
1984 | } | |
1985 | ||
93b7504e | 1986 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
1987 | static bootmem_data_t contig_bootmem_data; |
1988 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | |
1989 | ||
1990 | EXPORT_SYMBOL(contig_page_data); | |
93b7504e | 1991 | #endif |
1da177e4 LT |
1992 | |
1993 | void __init free_area_init(unsigned long *zones_size) | |
1994 | { | |
93b7504e | 1995 | free_area_init_node(0, NODE_DATA(0), zones_size, |
1da177e4 LT |
1996 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
1997 | } | |
1da177e4 LT |
1998 | |
1999 | #ifdef CONFIG_PROC_FS | |
2000 | ||
2001 | #include <linux/seq_file.h> | |
2002 | ||
2003 | static void *frag_start(struct seq_file *m, loff_t *pos) | |
2004 | { | |
2005 | pg_data_t *pgdat; | |
2006 | loff_t node = *pos; | |
2007 | ||
2008 | for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) | |
2009 | --node; | |
2010 | ||
2011 | return pgdat; | |
2012 | } | |
2013 | ||
2014 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | |
2015 | { | |
2016 | pg_data_t *pgdat = (pg_data_t *)arg; | |
2017 | ||
2018 | (*pos)++; | |
2019 | return pgdat->pgdat_next; | |
2020 | } | |
2021 | ||
2022 | static void frag_stop(struct seq_file *m, void *arg) | |
2023 | { | |
2024 | } | |
2025 | ||
2026 | /* | |
2027 | * This walks the free areas for each zone. | |
2028 | */ | |
2029 | static int frag_show(struct seq_file *m, void *arg) | |
2030 | { | |
2031 | pg_data_t *pgdat = (pg_data_t *)arg; | |
2032 | struct zone *zone; | |
2033 | struct zone *node_zones = pgdat->node_zones; | |
2034 | unsigned long flags; | |
2035 | int order; | |
2036 | ||
2037 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | |
2038 | if (!zone->present_pages) | |
2039 | continue; | |
2040 | ||
2041 | spin_lock_irqsave(&zone->lock, flags); | |
2042 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | |
2043 | for (order = 0; order < MAX_ORDER; ++order) | |
2044 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | |
2045 | spin_unlock_irqrestore(&zone->lock, flags); | |
2046 | seq_putc(m, '\n'); | |
2047 | } | |
2048 | return 0; | |
2049 | } | |
2050 | ||
2051 | struct seq_operations fragmentation_op = { | |
2052 | .start = frag_start, | |
2053 | .next = frag_next, | |
2054 | .stop = frag_stop, | |
2055 | .show = frag_show, | |
2056 | }; | |
2057 | ||
295ab934 ND |
2058 | /* |
2059 | * Output information about zones in @pgdat. | |
2060 | */ | |
2061 | static int zoneinfo_show(struct seq_file *m, void *arg) | |
2062 | { | |
2063 | pg_data_t *pgdat = arg; | |
2064 | struct zone *zone; | |
2065 | struct zone *node_zones = pgdat->node_zones; | |
2066 | unsigned long flags; | |
2067 | ||
2068 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { | |
2069 | int i; | |
2070 | ||
2071 | if (!zone->present_pages) | |
2072 | continue; | |
2073 | ||
2074 | spin_lock_irqsave(&zone->lock, flags); | |
2075 | seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); | |
2076 | seq_printf(m, | |
2077 | "\n pages free %lu" | |
2078 | "\n min %lu" | |
2079 | "\n low %lu" | |
2080 | "\n high %lu" | |
2081 | "\n active %lu" | |
2082 | "\n inactive %lu" | |
2083 | "\n scanned %lu (a: %lu i: %lu)" | |
2084 | "\n spanned %lu" | |
2085 | "\n present %lu", | |
2086 | zone->free_pages, | |
2087 | zone->pages_min, | |
2088 | zone->pages_low, | |
2089 | zone->pages_high, | |
2090 | zone->nr_active, | |
2091 | zone->nr_inactive, | |
2092 | zone->pages_scanned, | |
2093 | zone->nr_scan_active, zone->nr_scan_inactive, | |
2094 | zone->spanned_pages, | |
2095 | zone->present_pages); | |
2096 | seq_printf(m, | |
2097 | "\n protection: (%lu", | |
2098 | zone->lowmem_reserve[0]); | |
2099 | for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) | |
2100 | seq_printf(m, ", %lu", zone->lowmem_reserve[i]); | |
2101 | seq_printf(m, | |
2102 | ")" | |
2103 | "\n pagesets"); | |
2104 | for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) { | |
2105 | struct per_cpu_pageset *pageset; | |
2106 | int j; | |
2107 | ||
e7c8d5c9 | 2108 | pageset = zone_pcp(zone, i); |
295ab934 ND |
2109 | for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { |
2110 | if (pageset->pcp[j].count) | |
2111 | break; | |
2112 | } | |
2113 | if (j == ARRAY_SIZE(pageset->pcp)) | |
2114 | continue; | |
2115 | for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { | |
2116 | seq_printf(m, | |
2117 | "\n cpu: %i pcp: %i" | |
2118 | "\n count: %i" | |
2119 | "\n low: %i" | |
2120 | "\n high: %i" | |
2121 | "\n batch: %i", | |
2122 | i, j, | |
2123 | pageset->pcp[j].count, | |
2124 | pageset->pcp[j].low, | |
2125 | pageset->pcp[j].high, | |
2126 | pageset->pcp[j].batch); | |
2127 | } | |
2128 | #ifdef CONFIG_NUMA | |
2129 | seq_printf(m, | |
2130 | "\n numa_hit: %lu" | |
2131 | "\n numa_miss: %lu" | |
2132 | "\n numa_foreign: %lu" | |
2133 | "\n interleave_hit: %lu" | |
2134 | "\n local_node: %lu" | |
2135 | "\n other_node: %lu", | |
2136 | pageset->numa_hit, | |
2137 | pageset->numa_miss, | |
2138 | pageset->numa_foreign, | |
2139 | pageset->interleave_hit, | |
2140 | pageset->local_node, | |
2141 | pageset->other_node); | |
2142 | #endif | |
2143 | } | |
2144 | seq_printf(m, | |
2145 | "\n all_unreclaimable: %u" | |
2146 | "\n prev_priority: %i" | |
2147 | "\n temp_priority: %i" | |
2148 | "\n start_pfn: %lu", | |
2149 | zone->all_unreclaimable, | |
2150 | zone->prev_priority, | |
2151 | zone->temp_priority, | |
2152 | zone->zone_start_pfn); | |
2153 | spin_unlock_irqrestore(&zone->lock, flags); | |
2154 | seq_putc(m, '\n'); | |
2155 | } | |
2156 | return 0; | |
2157 | } | |
2158 | ||
2159 | struct seq_operations zoneinfo_op = { | |
2160 | .start = frag_start, /* iterate over all zones. The same as in | |
2161 | * fragmentation. */ | |
2162 | .next = frag_next, | |
2163 | .stop = frag_stop, | |
2164 | .show = zoneinfo_show, | |
2165 | }; | |
2166 | ||
1da177e4 LT |
2167 | static char *vmstat_text[] = { |
2168 | "nr_dirty", | |
2169 | "nr_writeback", | |
2170 | "nr_unstable", | |
2171 | "nr_page_table_pages", | |
2172 | "nr_mapped", | |
2173 | "nr_slab", | |
2174 | ||
2175 | "pgpgin", | |
2176 | "pgpgout", | |
2177 | "pswpin", | |
2178 | "pswpout", | |
2179 | "pgalloc_high", | |
2180 | ||
2181 | "pgalloc_normal", | |
2182 | "pgalloc_dma", | |
2183 | "pgfree", | |
2184 | "pgactivate", | |
2185 | "pgdeactivate", | |
2186 | ||
2187 | "pgfault", | |
2188 | "pgmajfault", | |
2189 | "pgrefill_high", | |
2190 | "pgrefill_normal", | |
2191 | "pgrefill_dma", | |
2192 | ||
2193 | "pgsteal_high", | |
2194 | "pgsteal_normal", | |
2195 | "pgsteal_dma", | |
2196 | "pgscan_kswapd_high", | |
2197 | "pgscan_kswapd_normal", | |
2198 | ||
2199 | "pgscan_kswapd_dma", | |
2200 | "pgscan_direct_high", | |
2201 | "pgscan_direct_normal", | |
2202 | "pgscan_direct_dma", | |
2203 | "pginodesteal", | |
2204 | ||
2205 | "slabs_scanned", | |
2206 | "kswapd_steal", | |
2207 | "kswapd_inodesteal", | |
2208 | "pageoutrun", | |
2209 | "allocstall", | |
2210 | ||
2211 | "pgrotated", | |
edfbe2b0 | 2212 | "nr_bounce", |
1da177e4 LT |
2213 | }; |
2214 | ||
2215 | static void *vmstat_start(struct seq_file *m, loff_t *pos) | |
2216 | { | |
2217 | struct page_state *ps; | |
2218 | ||
2219 | if (*pos >= ARRAY_SIZE(vmstat_text)) | |
2220 | return NULL; | |
2221 | ||
2222 | ps = kmalloc(sizeof(*ps), GFP_KERNEL); | |
2223 | m->private = ps; | |
2224 | if (!ps) | |
2225 | return ERR_PTR(-ENOMEM); | |
2226 | get_full_page_state(ps); | |
2227 | ps->pgpgin /= 2; /* sectors -> kbytes */ | |
2228 | ps->pgpgout /= 2; | |
2229 | return (unsigned long *)ps + *pos; | |
2230 | } | |
2231 | ||
2232 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | |
2233 | { | |
2234 | (*pos)++; | |
2235 | if (*pos >= ARRAY_SIZE(vmstat_text)) | |
2236 | return NULL; | |
2237 | return (unsigned long *)m->private + *pos; | |
2238 | } | |
2239 | ||
2240 | static int vmstat_show(struct seq_file *m, void *arg) | |
2241 | { | |
2242 | unsigned long *l = arg; | |
2243 | unsigned long off = l - (unsigned long *)m->private; | |
2244 | ||
2245 | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); | |
2246 | return 0; | |
2247 | } | |
2248 | ||
2249 | static void vmstat_stop(struct seq_file *m, void *arg) | |
2250 | { | |
2251 | kfree(m->private); | |
2252 | m->private = NULL; | |
2253 | } | |
2254 | ||
2255 | struct seq_operations vmstat_op = { | |
2256 | .start = vmstat_start, | |
2257 | .next = vmstat_next, | |
2258 | .stop = vmstat_stop, | |
2259 | .show = vmstat_show, | |
2260 | }; | |
2261 | ||
2262 | #endif /* CONFIG_PROC_FS */ | |
2263 | ||
2264 | #ifdef CONFIG_HOTPLUG_CPU | |
2265 | static int page_alloc_cpu_notify(struct notifier_block *self, | |
2266 | unsigned long action, void *hcpu) | |
2267 | { | |
2268 | int cpu = (unsigned long)hcpu; | |
2269 | long *count; | |
2270 | unsigned long *src, *dest; | |
2271 | ||
2272 | if (action == CPU_DEAD) { | |
2273 | int i; | |
2274 | ||
2275 | /* Drain local pagecache count. */ | |
2276 | count = &per_cpu(nr_pagecache_local, cpu); | |
2277 | atomic_add(*count, &nr_pagecache); | |
2278 | *count = 0; | |
2279 | local_irq_disable(); | |
2280 | __drain_pages(cpu); | |
2281 | ||
2282 | /* Add dead cpu's page_states to our own. */ | |
2283 | dest = (unsigned long *)&__get_cpu_var(page_states); | |
2284 | src = (unsigned long *)&per_cpu(page_states, cpu); | |
2285 | ||
2286 | for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); | |
2287 | i++) { | |
2288 | dest[i] += src[i]; | |
2289 | src[i] = 0; | |
2290 | } | |
2291 | ||
2292 | local_irq_enable(); | |
2293 | } | |
2294 | return NOTIFY_OK; | |
2295 | } | |
2296 | #endif /* CONFIG_HOTPLUG_CPU */ | |
2297 | ||
2298 | void __init page_alloc_init(void) | |
2299 | { | |
2300 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
2301 | } | |
2302 | ||
2303 | /* | |
2304 | * setup_per_zone_lowmem_reserve - called whenever | |
2305 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | |
2306 | * has a correct pages reserved value, so an adequate number of | |
2307 | * pages are left in the zone after a successful __alloc_pages(). | |
2308 | */ | |
2309 | static void setup_per_zone_lowmem_reserve(void) | |
2310 | { | |
2311 | struct pglist_data *pgdat; | |
2312 | int j, idx; | |
2313 | ||
2314 | for_each_pgdat(pgdat) { | |
2315 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
2316 | struct zone *zone = pgdat->node_zones + j; | |
2317 | unsigned long present_pages = zone->present_pages; | |
2318 | ||
2319 | zone->lowmem_reserve[j] = 0; | |
2320 | ||
2321 | for (idx = j-1; idx >= 0; idx--) { | |
2322 | struct zone *lower_zone; | |
2323 | ||
2324 | if (sysctl_lowmem_reserve_ratio[idx] < 1) | |
2325 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
2326 | ||
2327 | lower_zone = pgdat->node_zones + idx; | |
2328 | lower_zone->lowmem_reserve[j] = present_pages / | |
2329 | sysctl_lowmem_reserve_ratio[idx]; | |
2330 | present_pages += lower_zone->present_pages; | |
2331 | } | |
2332 | } | |
2333 | } | |
2334 | } | |
2335 | ||
2336 | /* | |
2337 | * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures | |
2338 | * that the pages_{min,low,high} values for each zone are set correctly | |
2339 | * with respect to min_free_kbytes. | |
2340 | */ | |
2341 | static void setup_per_zone_pages_min(void) | |
2342 | { | |
2343 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
2344 | unsigned long lowmem_pages = 0; | |
2345 | struct zone *zone; | |
2346 | unsigned long flags; | |
2347 | ||
2348 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
2349 | for_each_zone(zone) { | |
2350 | if (!is_highmem(zone)) | |
2351 | lowmem_pages += zone->present_pages; | |
2352 | } | |
2353 | ||
2354 | for_each_zone(zone) { | |
2355 | spin_lock_irqsave(&zone->lru_lock, flags); | |
2356 | if (is_highmem(zone)) { | |
2357 | /* | |
2358 | * Often, highmem doesn't need to reserve any pages. | |
2359 | * But the pages_min/low/high values are also used for | |
2360 | * batching up page reclaim activity so we need a | |
2361 | * decent value here. | |
2362 | */ | |
2363 | int min_pages; | |
2364 | ||
2365 | min_pages = zone->present_pages / 1024; | |
2366 | if (min_pages < SWAP_CLUSTER_MAX) | |
2367 | min_pages = SWAP_CLUSTER_MAX; | |
2368 | if (min_pages > 128) | |
2369 | min_pages = 128; | |
2370 | zone->pages_min = min_pages; | |
2371 | } else { | |
295ab934 | 2372 | /* if it's a lowmem zone, reserve a number of pages |
1da177e4 LT |
2373 | * proportionate to the zone's size. |
2374 | */ | |
295ab934 | 2375 | zone->pages_min = (pages_min * zone->present_pages) / |
1da177e4 LT |
2376 | lowmem_pages; |
2377 | } | |
2378 | ||
2379 | /* | |
2380 | * When interpreting these watermarks, just keep in mind that: | |
2381 | * zone->pages_min == (zone->pages_min * 4) / 4; | |
2382 | */ | |
2383 | zone->pages_low = (zone->pages_min * 5) / 4; | |
2384 | zone->pages_high = (zone->pages_min * 6) / 4; | |
2385 | spin_unlock_irqrestore(&zone->lru_lock, flags); | |
2386 | } | |
2387 | } | |
2388 | ||
2389 | /* | |
2390 | * Initialise min_free_kbytes. | |
2391 | * | |
2392 | * For small machines we want it small (128k min). For large machines | |
2393 | * we want it large (64MB max). But it is not linear, because network | |
2394 | * bandwidth does not increase linearly with machine size. We use | |
2395 | * | |
2396 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | |
2397 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | |
2398 | * | |
2399 | * which yields | |
2400 | * | |
2401 | * 16MB: 512k | |
2402 | * 32MB: 724k | |
2403 | * 64MB: 1024k | |
2404 | * 128MB: 1448k | |
2405 | * 256MB: 2048k | |
2406 | * 512MB: 2896k | |
2407 | * 1024MB: 4096k | |
2408 | * 2048MB: 5792k | |
2409 | * 4096MB: 8192k | |
2410 | * 8192MB: 11584k | |
2411 | * 16384MB: 16384k | |
2412 | */ | |
2413 | static int __init init_per_zone_pages_min(void) | |
2414 | { | |
2415 | unsigned long lowmem_kbytes; | |
2416 | ||
2417 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
2418 | ||
2419 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | |
2420 | if (min_free_kbytes < 128) | |
2421 | min_free_kbytes = 128; | |
2422 | if (min_free_kbytes > 65536) | |
2423 | min_free_kbytes = 65536; | |
2424 | setup_per_zone_pages_min(); | |
2425 | setup_per_zone_lowmem_reserve(); | |
2426 | return 0; | |
2427 | } | |
2428 | module_init(init_per_zone_pages_min) | |
2429 | ||
2430 | /* | |
2431 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | |
2432 | * that we can call two helper functions whenever min_free_kbytes | |
2433 | * changes. | |
2434 | */ | |
2435 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | |
2436 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
2437 | { | |
2438 | proc_dointvec(table, write, file, buffer, length, ppos); | |
2439 | setup_per_zone_pages_min(); | |
2440 | return 0; | |
2441 | } | |
2442 | ||
2443 | /* | |
2444 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
2445 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
2446 | * whenever sysctl_lowmem_reserve_ratio changes. | |
2447 | * | |
2448 | * The reserve ratio obviously has absolutely no relation with the | |
2449 | * pages_min watermarks. The lowmem reserve ratio can only make sense | |
2450 | * if in function of the boot time zone sizes. | |
2451 | */ | |
2452 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | |
2453 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
2454 | { | |
2455 | proc_dointvec_minmax(table, write, file, buffer, length, ppos); | |
2456 | setup_per_zone_lowmem_reserve(); | |
2457 | return 0; | |
2458 | } | |
2459 | ||
2460 | __initdata int hashdist = HASHDIST_DEFAULT; | |
2461 | ||
2462 | #ifdef CONFIG_NUMA | |
2463 | static int __init set_hashdist(char *str) | |
2464 | { | |
2465 | if (!str) | |
2466 | return 0; | |
2467 | hashdist = simple_strtoul(str, &str, 0); | |
2468 | return 1; | |
2469 | } | |
2470 | __setup("hashdist=", set_hashdist); | |
2471 | #endif | |
2472 | ||
2473 | /* | |
2474 | * allocate a large system hash table from bootmem | |
2475 | * - it is assumed that the hash table must contain an exact power-of-2 | |
2476 | * quantity of entries | |
2477 | * - limit is the number of hash buckets, not the total allocation size | |
2478 | */ | |
2479 | void *__init alloc_large_system_hash(const char *tablename, | |
2480 | unsigned long bucketsize, | |
2481 | unsigned long numentries, | |
2482 | int scale, | |
2483 | int flags, | |
2484 | unsigned int *_hash_shift, | |
2485 | unsigned int *_hash_mask, | |
2486 | unsigned long limit) | |
2487 | { | |
2488 | unsigned long long max = limit; | |
2489 | unsigned long log2qty, size; | |
2490 | void *table = NULL; | |
2491 | ||
2492 | /* allow the kernel cmdline to have a say */ | |
2493 | if (!numentries) { | |
2494 | /* round applicable memory size up to nearest megabyte */ | |
2495 | numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; | |
2496 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | |
2497 | numentries >>= 20 - PAGE_SHIFT; | |
2498 | numentries <<= 20 - PAGE_SHIFT; | |
2499 | ||
2500 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
2501 | if (scale > PAGE_SHIFT) | |
2502 | numentries >>= (scale - PAGE_SHIFT); | |
2503 | else | |
2504 | numentries <<= (PAGE_SHIFT - scale); | |
2505 | } | |
2506 | /* rounded up to nearest power of 2 in size */ | |
2507 | numentries = 1UL << (long_log2(numentries) + 1); | |
2508 | ||
2509 | /* limit allocation size to 1/16 total memory by default */ | |
2510 | if (max == 0) { | |
2511 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
2512 | do_div(max, bucketsize); | |
2513 | } | |
2514 | ||
2515 | if (numentries > max) | |
2516 | numentries = max; | |
2517 | ||
2518 | log2qty = long_log2(numentries); | |
2519 | ||
2520 | do { | |
2521 | size = bucketsize << log2qty; | |
2522 | if (flags & HASH_EARLY) | |
2523 | table = alloc_bootmem(size); | |
2524 | else if (hashdist) | |
2525 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
2526 | else { | |
2527 | unsigned long order; | |
2528 | for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) | |
2529 | ; | |
2530 | table = (void*) __get_free_pages(GFP_ATOMIC, order); | |
2531 | } | |
2532 | } while (!table && size > PAGE_SIZE && --log2qty); | |
2533 | ||
2534 | if (!table) | |
2535 | panic("Failed to allocate %s hash table\n", tablename); | |
2536 | ||
2537 | printk("%s hash table entries: %d (order: %d, %lu bytes)\n", | |
2538 | tablename, | |
2539 | (1U << log2qty), | |
2540 | long_log2(size) - PAGE_SHIFT, | |
2541 | size); | |
2542 | ||
2543 | if (_hash_shift) | |
2544 | *_hash_shift = log2qty; | |
2545 | if (_hash_mask) | |
2546 | *_hash_mask = (1 << log2qty) - 1; | |
2547 | ||
2548 | return table; | |
2549 | } |