]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
17 | #include <linux/config.h> | |
18 | #include <linux/stddef.h> | |
19 | #include <linux/mm.h> | |
20 | #include <linux/swap.h> | |
21 | #include <linux/interrupt.h> | |
22 | #include <linux/pagemap.h> | |
23 | #include <linux/bootmem.h> | |
24 | #include <linux/compiler.h> | |
25 | #include <linux/module.h> | |
26 | #include <linux/suspend.h> | |
27 | #include <linux/pagevec.h> | |
28 | #include <linux/blkdev.h> | |
29 | #include <linux/slab.h> | |
30 | #include <linux/notifier.h> | |
31 | #include <linux/topology.h> | |
32 | #include <linux/sysctl.h> | |
33 | #include <linux/cpu.h> | |
34 | #include <linux/cpuset.h> | |
35 | #include <linux/nodemask.h> | |
36 | #include <linux/vmalloc.h> | |
37 | ||
38 | #include <asm/tlbflush.h> | |
39 | #include "internal.h" | |
40 | ||
41 | /* | |
42 | * MCD - HACK: Find somewhere to initialize this EARLY, or make this | |
43 | * initializer cleaner | |
44 | */ | |
45 | nodemask_t node_online_map = { { [0] = 1UL } }; | |
7223a93a | 46 | EXPORT_SYMBOL(node_online_map); |
1da177e4 | 47 | nodemask_t node_possible_map = NODE_MASK_ALL; |
7223a93a | 48 | EXPORT_SYMBOL(node_possible_map); |
1da177e4 LT |
49 | struct pglist_data *pgdat_list; |
50 | unsigned long totalram_pages; | |
51 | unsigned long totalhigh_pages; | |
52 | long nr_swap_pages; | |
53 | ||
54 | /* | |
55 | * results with 256, 32 in the lowmem_reserve sysctl: | |
56 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
57 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
58 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
59 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
60 | * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA | |
61 | */ | |
62 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 }; | |
63 | ||
64 | EXPORT_SYMBOL(totalram_pages); | |
65 | EXPORT_SYMBOL(nr_swap_pages); | |
66 | ||
67 | /* | |
68 | * Used by page_zone() to look up the address of the struct zone whose | |
69 | * id is encoded in the upper bits of page->flags | |
70 | */ | |
71 | struct zone *zone_table[1 << (ZONES_SHIFT + NODES_SHIFT)]; | |
72 | EXPORT_SYMBOL(zone_table); | |
73 | ||
74 | static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" }; | |
75 | int min_free_kbytes = 1024; | |
76 | ||
77 | unsigned long __initdata nr_kernel_pages; | |
78 | unsigned long __initdata nr_all_pages; | |
79 | ||
80 | /* | |
81 | * Temporary debugging check for pages not lying within a given zone. | |
82 | */ | |
83 | static int bad_range(struct zone *zone, struct page *page) | |
84 | { | |
85 | if (page_to_pfn(page) >= zone->zone_start_pfn + zone->spanned_pages) | |
86 | return 1; | |
87 | if (page_to_pfn(page) < zone->zone_start_pfn) | |
88 | return 1; | |
89 | #ifdef CONFIG_HOLES_IN_ZONE | |
90 | if (!pfn_valid(page_to_pfn(page))) | |
91 | return 1; | |
92 | #endif | |
93 | if (zone != page_zone(page)) | |
94 | return 1; | |
95 | return 0; | |
96 | } | |
97 | ||
98 | static void bad_page(const char *function, struct page *page) | |
99 | { | |
100 | printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n", | |
101 | function, current->comm, page); | |
102 | printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n", | |
103 | (int)(2*sizeof(page_flags_t)), (unsigned long)page->flags, | |
104 | page->mapping, page_mapcount(page), page_count(page)); | |
105 | printk(KERN_EMERG "Backtrace:\n"); | |
106 | dump_stack(); | |
107 | printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"); | |
108 | page->flags &= ~(1 << PG_private | | |
109 | 1 << PG_locked | | |
110 | 1 << PG_lru | | |
111 | 1 << PG_active | | |
112 | 1 << PG_dirty | | |
113 | 1 << PG_swapcache | | |
114 | 1 << PG_writeback); | |
115 | set_page_count(page, 0); | |
116 | reset_page_mapcount(page); | |
117 | page->mapping = NULL; | |
118 | tainted |= TAINT_BAD_PAGE; | |
119 | } | |
120 | ||
121 | #ifndef CONFIG_HUGETLB_PAGE | |
122 | #define prep_compound_page(page, order) do { } while (0) | |
123 | #define destroy_compound_page(page, order) do { } while (0) | |
124 | #else | |
125 | /* | |
126 | * Higher-order pages are called "compound pages". They are structured thusly: | |
127 | * | |
128 | * The first PAGE_SIZE page is called the "head page". | |
129 | * | |
130 | * The remaining PAGE_SIZE pages are called "tail pages". | |
131 | * | |
132 | * All pages have PG_compound set. All pages have their ->private pointing at | |
133 | * the head page (even the head page has this). | |
134 | * | |
135 | * The first tail page's ->mapping, if non-zero, holds the address of the | |
136 | * compound page's put_page() function. | |
137 | * | |
138 | * The order of the allocation is stored in the first tail page's ->index | |
139 | * This is only for debug at present. This usage means that zero-order pages | |
140 | * may not be compound. | |
141 | */ | |
142 | static void prep_compound_page(struct page *page, unsigned long order) | |
143 | { | |
144 | int i; | |
145 | int nr_pages = 1 << order; | |
146 | ||
147 | page[1].mapping = NULL; | |
148 | page[1].index = order; | |
149 | for (i = 0; i < nr_pages; i++) { | |
150 | struct page *p = page + i; | |
151 | ||
152 | SetPageCompound(p); | |
153 | p->private = (unsigned long)page; | |
154 | } | |
155 | } | |
156 | ||
157 | static void destroy_compound_page(struct page *page, unsigned long order) | |
158 | { | |
159 | int i; | |
160 | int nr_pages = 1 << order; | |
161 | ||
162 | if (!PageCompound(page)) | |
163 | return; | |
164 | ||
165 | if (page[1].index != order) | |
166 | bad_page(__FUNCTION__, page); | |
167 | ||
168 | for (i = 0; i < nr_pages; i++) { | |
169 | struct page *p = page + i; | |
170 | ||
171 | if (!PageCompound(p)) | |
172 | bad_page(__FUNCTION__, page); | |
173 | if (p->private != (unsigned long)page) | |
174 | bad_page(__FUNCTION__, page); | |
175 | ClearPageCompound(p); | |
176 | } | |
177 | } | |
178 | #endif /* CONFIG_HUGETLB_PAGE */ | |
179 | ||
180 | /* | |
181 | * function for dealing with page's order in buddy system. | |
182 | * zone->lock is already acquired when we use these. | |
183 | * So, we don't need atomic page->flags operations here. | |
184 | */ | |
185 | static inline unsigned long page_order(struct page *page) { | |
186 | return page->private; | |
187 | } | |
188 | ||
189 | static inline void set_page_order(struct page *page, int order) { | |
190 | page->private = order; | |
191 | __SetPagePrivate(page); | |
192 | } | |
193 | ||
194 | static inline void rmv_page_order(struct page *page) | |
195 | { | |
196 | __ClearPagePrivate(page); | |
197 | page->private = 0; | |
198 | } | |
199 | ||
200 | /* | |
201 | * Locate the struct page for both the matching buddy in our | |
202 | * pair (buddy1) and the combined O(n+1) page they form (page). | |
203 | * | |
204 | * 1) Any buddy B1 will have an order O twin B2 which satisfies | |
205 | * the following equation: | |
206 | * B2 = B1 ^ (1 << O) | |
207 | * For example, if the starting buddy (buddy2) is #8 its order | |
208 | * 1 buddy is #10: | |
209 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 | |
210 | * | |
211 | * 2) Any buddy B will have an order O+1 parent P which | |
212 | * satisfies the following equation: | |
213 | * P = B & ~(1 << O) | |
214 | * | |
215 | * Assumption: *_mem_map is contigious at least up to MAX_ORDER | |
216 | */ | |
217 | static inline struct page * | |
218 | __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) | |
219 | { | |
220 | unsigned long buddy_idx = page_idx ^ (1 << order); | |
221 | ||
222 | return page + (buddy_idx - page_idx); | |
223 | } | |
224 | ||
225 | static inline unsigned long | |
226 | __find_combined_index(unsigned long page_idx, unsigned int order) | |
227 | { | |
228 | return (page_idx & ~(1 << order)); | |
229 | } | |
230 | ||
231 | /* | |
232 | * This function checks whether a page is free && is the buddy | |
233 | * we can do coalesce a page and its buddy if | |
234 | * (a) the buddy is free && | |
235 | * (b) the buddy is on the buddy system && | |
236 | * (c) a page and its buddy have the same order. | |
237 | * for recording page's order, we use page->private and PG_private. | |
238 | * | |
239 | */ | |
240 | static inline int page_is_buddy(struct page *page, int order) | |
241 | { | |
242 | if (PagePrivate(page) && | |
243 | (page_order(page) == order) && | |
244 | !PageReserved(page) && | |
245 | page_count(page) == 0) | |
246 | return 1; | |
247 | return 0; | |
248 | } | |
249 | ||
250 | /* | |
251 | * Freeing function for a buddy system allocator. | |
252 | * | |
253 | * The concept of a buddy system is to maintain direct-mapped table | |
254 | * (containing bit values) for memory blocks of various "orders". | |
255 | * The bottom level table contains the map for the smallest allocatable | |
256 | * units of memory (here, pages), and each level above it describes | |
257 | * pairs of units from the levels below, hence, "buddies". | |
258 | * At a high level, all that happens here is marking the table entry | |
259 | * at the bottom level available, and propagating the changes upward | |
260 | * as necessary, plus some accounting needed to play nicely with other | |
261 | * parts of the VM system. | |
262 | * At each level, we keep a list of pages, which are heads of continuous | |
263 | * free pages of length of (1 << order) and marked with PG_Private.Page's | |
264 | * order is recorded in page->private field. | |
265 | * So when we are allocating or freeing one, we can derive the state of the | |
266 | * other. That is, if we allocate a small block, and both were | |
267 | * free, the remainder of the region must be split into blocks. | |
268 | * If a block is freed, and its buddy is also free, then this | |
269 | * triggers coalescing into a block of larger size. | |
270 | * | |
271 | * -- wli | |
272 | */ | |
273 | ||
274 | static inline void __free_pages_bulk (struct page *page, | |
275 | struct zone *zone, unsigned int order) | |
276 | { | |
277 | unsigned long page_idx; | |
278 | int order_size = 1 << order; | |
279 | ||
280 | if (unlikely(order)) | |
281 | destroy_compound_page(page, order); | |
282 | ||
283 | page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); | |
284 | ||
285 | BUG_ON(page_idx & (order_size - 1)); | |
286 | BUG_ON(bad_range(zone, page)); | |
287 | ||
288 | zone->free_pages += order_size; | |
289 | while (order < MAX_ORDER-1) { | |
290 | unsigned long combined_idx; | |
291 | struct free_area *area; | |
292 | struct page *buddy; | |
293 | ||
294 | combined_idx = __find_combined_index(page_idx, order); | |
295 | buddy = __page_find_buddy(page, page_idx, order); | |
296 | ||
297 | if (bad_range(zone, buddy)) | |
298 | break; | |
299 | if (!page_is_buddy(buddy, order)) | |
300 | break; /* Move the buddy up one level. */ | |
301 | list_del(&buddy->lru); | |
302 | area = zone->free_area + order; | |
303 | area->nr_free--; | |
304 | rmv_page_order(buddy); | |
305 | page = page + (combined_idx - page_idx); | |
306 | page_idx = combined_idx; | |
307 | order++; | |
308 | } | |
309 | set_page_order(page, order); | |
310 | list_add(&page->lru, &zone->free_area[order].free_list); | |
311 | zone->free_area[order].nr_free++; | |
312 | } | |
313 | ||
314 | static inline void free_pages_check(const char *function, struct page *page) | |
315 | { | |
316 | if ( page_mapcount(page) || | |
317 | page->mapping != NULL || | |
318 | page_count(page) != 0 || | |
319 | (page->flags & ( | |
320 | 1 << PG_lru | | |
321 | 1 << PG_private | | |
322 | 1 << PG_locked | | |
323 | 1 << PG_active | | |
324 | 1 << PG_reclaim | | |
325 | 1 << PG_slab | | |
326 | 1 << PG_swapcache | | |
327 | 1 << PG_writeback ))) | |
328 | bad_page(function, page); | |
329 | if (PageDirty(page)) | |
330 | ClearPageDirty(page); | |
331 | } | |
332 | ||
333 | /* | |
334 | * Frees a list of pages. | |
335 | * Assumes all pages on list are in same zone, and of same order. | |
336 | * count is the number of pages to free, or 0 for all on the list. | |
337 | * | |
338 | * If the zone was previously in an "all pages pinned" state then look to | |
339 | * see if this freeing clears that state. | |
340 | * | |
341 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
342 | * pinned" detection logic. | |
343 | */ | |
344 | static int | |
345 | free_pages_bulk(struct zone *zone, int count, | |
346 | struct list_head *list, unsigned int order) | |
347 | { | |
348 | unsigned long flags; | |
349 | struct page *page = NULL; | |
350 | int ret = 0; | |
351 | ||
352 | spin_lock_irqsave(&zone->lock, flags); | |
353 | zone->all_unreclaimable = 0; | |
354 | zone->pages_scanned = 0; | |
355 | while (!list_empty(list) && count--) { | |
356 | page = list_entry(list->prev, struct page, lru); | |
357 | /* have to delete it as __free_pages_bulk list manipulates */ | |
358 | list_del(&page->lru); | |
359 | __free_pages_bulk(page, zone, order); | |
360 | ret++; | |
361 | } | |
362 | spin_unlock_irqrestore(&zone->lock, flags); | |
363 | return ret; | |
364 | } | |
365 | ||
366 | void __free_pages_ok(struct page *page, unsigned int order) | |
367 | { | |
368 | LIST_HEAD(list); | |
369 | int i; | |
370 | ||
371 | arch_free_page(page, order); | |
372 | ||
373 | mod_page_state(pgfree, 1 << order); | |
374 | ||
375 | #ifndef CONFIG_MMU | |
376 | if (order > 0) | |
377 | for (i = 1 ; i < (1 << order) ; ++i) | |
378 | __put_page(page + i); | |
379 | #endif | |
380 | ||
381 | for (i = 0 ; i < (1 << order) ; ++i) | |
382 | free_pages_check(__FUNCTION__, page + i); | |
383 | list_add(&page->lru, &list); | |
384 | kernel_map_pages(page, 1<<order, 0); | |
385 | free_pages_bulk(page_zone(page), 1, &list, order); | |
386 | } | |
387 | ||
388 | ||
389 | /* | |
390 | * The order of subdivision here is critical for the IO subsystem. | |
391 | * Please do not alter this order without good reasons and regression | |
392 | * testing. Specifically, as large blocks of memory are subdivided, | |
393 | * the order in which smaller blocks are delivered depends on the order | |
394 | * they're subdivided in this function. This is the primary factor | |
395 | * influencing the order in which pages are delivered to the IO | |
396 | * subsystem according to empirical testing, and this is also justified | |
397 | * by considering the behavior of a buddy system containing a single | |
398 | * large block of memory acted on by a series of small allocations. | |
399 | * This behavior is a critical factor in sglist merging's success. | |
400 | * | |
401 | * -- wli | |
402 | */ | |
403 | static inline struct page * | |
404 | expand(struct zone *zone, struct page *page, | |
405 | int low, int high, struct free_area *area) | |
406 | { | |
407 | unsigned long size = 1 << high; | |
408 | ||
409 | while (high > low) { | |
410 | area--; | |
411 | high--; | |
412 | size >>= 1; | |
413 | BUG_ON(bad_range(zone, &page[size])); | |
414 | list_add(&page[size].lru, &area->free_list); | |
415 | area->nr_free++; | |
416 | set_page_order(&page[size], high); | |
417 | } | |
418 | return page; | |
419 | } | |
420 | ||
421 | void set_page_refs(struct page *page, int order) | |
422 | { | |
423 | #ifdef CONFIG_MMU | |
424 | set_page_count(page, 1); | |
425 | #else | |
426 | int i; | |
427 | ||
428 | /* | |
429 | * We need to reference all the pages for this order, otherwise if | |
430 | * anyone accesses one of the pages with (get/put) it will be freed. | |
431 | * - eg: access_process_vm() | |
432 | */ | |
433 | for (i = 0; i < (1 << order); i++) | |
434 | set_page_count(page + i, 1); | |
435 | #endif /* CONFIG_MMU */ | |
436 | } | |
437 | ||
438 | /* | |
439 | * This page is about to be returned from the page allocator | |
440 | */ | |
441 | static void prep_new_page(struct page *page, int order) | |
442 | { | |
443 | if (page->mapping || page_mapcount(page) || | |
444 | (page->flags & ( | |
445 | 1 << PG_private | | |
446 | 1 << PG_locked | | |
447 | 1 << PG_lru | | |
448 | 1 << PG_active | | |
449 | 1 << PG_dirty | | |
450 | 1 << PG_reclaim | | |
451 | 1 << PG_swapcache | | |
452 | 1 << PG_writeback ))) | |
453 | bad_page(__FUNCTION__, page); | |
454 | ||
455 | page->flags &= ~(1 << PG_uptodate | 1 << PG_error | | |
456 | 1 << PG_referenced | 1 << PG_arch_1 | | |
457 | 1 << PG_checked | 1 << PG_mappedtodisk); | |
458 | page->private = 0; | |
459 | set_page_refs(page, order); | |
460 | kernel_map_pages(page, 1 << order, 1); | |
461 | } | |
462 | ||
463 | /* | |
464 | * Do the hard work of removing an element from the buddy allocator. | |
465 | * Call me with the zone->lock already held. | |
466 | */ | |
467 | static struct page *__rmqueue(struct zone *zone, unsigned int order) | |
468 | { | |
469 | struct free_area * area; | |
470 | unsigned int current_order; | |
471 | struct page *page; | |
472 | ||
473 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
474 | area = zone->free_area + current_order; | |
475 | if (list_empty(&area->free_list)) | |
476 | continue; | |
477 | ||
478 | page = list_entry(area->free_list.next, struct page, lru); | |
479 | list_del(&page->lru); | |
480 | rmv_page_order(page); | |
481 | area->nr_free--; | |
482 | zone->free_pages -= 1UL << order; | |
483 | return expand(zone, page, order, current_order, area); | |
484 | } | |
485 | ||
486 | return NULL; | |
487 | } | |
488 | ||
489 | /* | |
490 | * Obtain a specified number of elements from the buddy allocator, all under | |
491 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
492 | * Returns the number of new pages which were placed at *list. | |
493 | */ | |
494 | static int rmqueue_bulk(struct zone *zone, unsigned int order, | |
495 | unsigned long count, struct list_head *list) | |
496 | { | |
497 | unsigned long flags; | |
498 | int i; | |
499 | int allocated = 0; | |
500 | struct page *page; | |
501 | ||
502 | spin_lock_irqsave(&zone->lock, flags); | |
503 | for (i = 0; i < count; ++i) { | |
504 | page = __rmqueue(zone, order); | |
505 | if (page == NULL) | |
506 | break; | |
507 | allocated++; | |
508 | list_add_tail(&page->lru, list); | |
509 | } | |
510 | spin_unlock_irqrestore(&zone->lock, flags); | |
511 | return allocated; | |
512 | } | |
513 | ||
514 | #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) | |
515 | static void __drain_pages(unsigned int cpu) | |
516 | { | |
517 | struct zone *zone; | |
518 | int i; | |
519 | ||
520 | for_each_zone(zone) { | |
521 | struct per_cpu_pageset *pset; | |
522 | ||
523 | pset = &zone->pageset[cpu]; | |
524 | for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { | |
525 | struct per_cpu_pages *pcp; | |
526 | ||
527 | pcp = &pset->pcp[i]; | |
528 | pcp->count -= free_pages_bulk(zone, pcp->count, | |
529 | &pcp->list, 0); | |
530 | } | |
531 | } | |
532 | } | |
533 | #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ | |
534 | ||
535 | #ifdef CONFIG_PM | |
536 | ||
537 | void mark_free_pages(struct zone *zone) | |
538 | { | |
539 | unsigned long zone_pfn, flags; | |
540 | int order; | |
541 | struct list_head *curr; | |
542 | ||
543 | if (!zone->spanned_pages) | |
544 | return; | |
545 | ||
546 | spin_lock_irqsave(&zone->lock, flags); | |
547 | for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) | |
548 | ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); | |
549 | ||
550 | for (order = MAX_ORDER - 1; order >= 0; --order) | |
551 | list_for_each(curr, &zone->free_area[order].free_list) { | |
552 | unsigned long start_pfn, i; | |
553 | ||
554 | start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); | |
555 | ||
556 | for (i=0; i < (1<<order); i++) | |
557 | SetPageNosaveFree(pfn_to_page(start_pfn+i)); | |
558 | } | |
559 | spin_unlock_irqrestore(&zone->lock, flags); | |
560 | } | |
561 | ||
562 | /* | |
563 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
564 | */ | |
565 | void drain_local_pages(void) | |
566 | { | |
567 | unsigned long flags; | |
568 | ||
569 | local_irq_save(flags); | |
570 | __drain_pages(smp_processor_id()); | |
571 | local_irq_restore(flags); | |
572 | } | |
573 | #endif /* CONFIG_PM */ | |
574 | ||
575 | static void zone_statistics(struct zonelist *zonelist, struct zone *z) | |
576 | { | |
577 | #ifdef CONFIG_NUMA | |
578 | unsigned long flags; | |
579 | int cpu; | |
580 | pg_data_t *pg = z->zone_pgdat; | |
581 | pg_data_t *orig = zonelist->zones[0]->zone_pgdat; | |
582 | struct per_cpu_pageset *p; | |
583 | ||
584 | local_irq_save(flags); | |
585 | cpu = smp_processor_id(); | |
586 | p = &z->pageset[cpu]; | |
587 | if (pg == orig) { | |
588 | z->pageset[cpu].numa_hit++; | |
589 | } else { | |
590 | p->numa_miss++; | |
591 | zonelist->zones[0]->pageset[cpu].numa_foreign++; | |
592 | } | |
593 | if (pg == NODE_DATA(numa_node_id())) | |
594 | p->local_node++; | |
595 | else | |
596 | p->other_node++; | |
597 | local_irq_restore(flags); | |
598 | #endif | |
599 | } | |
600 | ||
601 | /* | |
602 | * Free a 0-order page | |
603 | */ | |
604 | static void FASTCALL(free_hot_cold_page(struct page *page, int cold)); | |
605 | static void fastcall free_hot_cold_page(struct page *page, int cold) | |
606 | { | |
607 | struct zone *zone = page_zone(page); | |
608 | struct per_cpu_pages *pcp; | |
609 | unsigned long flags; | |
610 | ||
611 | arch_free_page(page, 0); | |
612 | ||
613 | kernel_map_pages(page, 1, 0); | |
614 | inc_page_state(pgfree); | |
615 | if (PageAnon(page)) | |
616 | page->mapping = NULL; | |
617 | free_pages_check(__FUNCTION__, page); | |
618 | pcp = &zone->pageset[get_cpu()].pcp[cold]; | |
619 | local_irq_save(flags); | |
620 | if (pcp->count >= pcp->high) | |
621 | pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0); | |
622 | list_add(&page->lru, &pcp->list); | |
623 | pcp->count++; | |
624 | local_irq_restore(flags); | |
625 | put_cpu(); | |
626 | } | |
627 | ||
628 | void fastcall free_hot_page(struct page *page) | |
629 | { | |
630 | free_hot_cold_page(page, 0); | |
631 | } | |
632 | ||
633 | void fastcall free_cold_page(struct page *page) | |
634 | { | |
635 | free_hot_cold_page(page, 1); | |
636 | } | |
637 | ||
638 | static inline void prep_zero_page(struct page *page, int order, unsigned int __nocast gfp_flags) | |
639 | { | |
640 | int i; | |
641 | ||
642 | BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); | |
643 | for(i = 0; i < (1 << order); i++) | |
644 | clear_highpage(page + i); | |
645 | } | |
646 | ||
647 | /* | |
648 | * Really, prep_compound_page() should be called from __rmqueue_bulk(). But | |
649 | * we cheat by calling it from here, in the order > 0 path. Saves a branch | |
650 | * or two. | |
651 | */ | |
652 | static struct page * | |
653 | buffered_rmqueue(struct zone *zone, int order, unsigned int __nocast gfp_flags) | |
654 | { | |
655 | unsigned long flags; | |
656 | struct page *page = NULL; | |
657 | int cold = !!(gfp_flags & __GFP_COLD); | |
658 | ||
659 | if (order == 0) { | |
660 | struct per_cpu_pages *pcp; | |
661 | ||
662 | pcp = &zone->pageset[get_cpu()].pcp[cold]; | |
663 | local_irq_save(flags); | |
664 | if (pcp->count <= pcp->low) | |
665 | pcp->count += rmqueue_bulk(zone, 0, | |
666 | pcp->batch, &pcp->list); | |
667 | if (pcp->count) { | |
668 | page = list_entry(pcp->list.next, struct page, lru); | |
669 | list_del(&page->lru); | |
670 | pcp->count--; | |
671 | } | |
672 | local_irq_restore(flags); | |
673 | put_cpu(); | |
674 | } | |
675 | ||
676 | if (page == NULL) { | |
677 | spin_lock_irqsave(&zone->lock, flags); | |
678 | page = __rmqueue(zone, order); | |
679 | spin_unlock_irqrestore(&zone->lock, flags); | |
680 | } | |
681 | ||
682 | if (page != NULL) { | |
683 | BUG_ON(bad_range(zone, page)); | |
684 | mod_page_state_zone(zone, pgalloc, 1 << order); | |
685 | prep_new_page(page, order); | |
686 | ||
687 | if (gfp_flags & __GFP_ZERO) | |
688 | prep_zero_page(page, order, gfp_flags); | |
689 | ||
690 | if (order && (gfp_flags & __GFP_COMP)) | |
691 | prep_compound_page(page, order); | |
692 | } | |
693 | return page; | |
694 | } | |
695 | ||
696 | /* | |
697 | * Return 1 if free pages are above 'mark'. This takes into account the order | |
698 | * of the allocation. | |
699 | */ | |
700 | int zone_watermark_ok(struct zone *z, int order, unsigned long mark, | |
701 | int classzone_idx, int can_try_harder, int gfp_high) | |
702 | { | |
703 | /* free_pages my go negative - that's OK */ | |
704 | long min = mark, free_pages = z->free_pages - (1 << order) + 1; | |
705 | int o; | |
706 | ||
707 | if (gfp_high) | |
708 | min -= min / 2; | |
709 | if (can_try_harder) | |
710 | min -= min / 4; | |
711 | ||
712 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
713 | return 0; | |
714 | for (o = 0; o < order; o++) { | |
715 | /* At the next order, this order's pages become unavailable */ | |
716 | free_pages -= z->free_area[o].nr_free << o; | |
717 | ||
718 | /* Require fewer higher order pages to be free */ | |
719 | min >>= 1; | |
720 | ||
721 | if (free_pages <= min) | |
722 | return 0; | |
723 | } | |
724 | return 1; | |
725 | } | |
726 | ||
727 | /* | |
728 | * This is the 'heart' of the zoned buddy allocator. | |
729 | */ | |
730 | struct page * fastcall | |
731 | __alloc_pages(unsigned int __nocast gfp_mask, unsigned int order, | |
732 | struct zonelist *zonelist) | |
733 | { | |
734 | const int wait = gfp_mask & __GFP_WAIT; | |
735 | struct zone **zones, *z; | |
736 | struct page *page; | |
737 | struct reclaim_state reclaim_state; | |
738 | struct task_struct *p = current; | |
739 | int i; | |
740 | int classzone_idx; | |
741 | int do_retry; | |
742 | int can_try_harder; | |
743 | int did_some_progress; | |
744 | ||
745 | might_sleep_if(wait); | |
746 | ||
747 | /* | |
748 | * The caller may dip into page reserves a bit more if the caller | |
749 | * cannot run direct reclaim, or is the caller has realtime scheduling | |
750 | * policy | |
751 | */ | |
752 | can_try_harder = (unlikely(rt_task(p)) && !in_interrupt()) || !wait; | |
753 | ||
754 | zones = zonelist->zones; /* the list of zones suitable for gfp_mask */ | |
755 | ||
756 | if (unlikely(zones[0] == NULL)) { | |
757 | /* Should this ever happen?? */ | |
758 | return NULL; | |
759 | } | |
760 | ||
761 | classzone_idx = zone_idx(zones[0]); | |
762 | ||
763 | restart: | |
764 | /* Go through the zonelist once, looking for a zone with enough free */ | |
765 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
766 | ||
767 | if (!zone_watermark_ok(z, order, z->pages_low, | |
768 | classzone_idx, 0, 0)) | |
769 | continue; | |
770 | ||
771 | if (!cpuset_zone_allowed(z)) | |
772 | continue; | |
773 | ||
774 | page = buffered_rmqueue(z, order, gfp_mask); | |
775 | if (page) | |
776 | goto got_pg; | |
777 | } | |
778 | ||
779 | for (i = 0; (z = zones[i]) != NULL; i++) | |
780 | wakeup_kswapd(z, order); | |
781 | ||
782 | /* | |
783 | * Go through the zonelist again. Let __GFP_HIGH and allocations | |
784 | * coming from realtime tasks to go deeper into reserves | |
785 | * | |
786 | * This is the last chance, in general, before the goto nopage. | |
787 | * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. | |
788 | */ | |
789 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
790 | if (!zone_watermark_ok(z, order, z->pages_min, | |
791 | classzone_idx, can_try_harder, | |
792 | gfp_mask & __GFP_HIGH)) | |
793 | continue; | |
794 | ||
795 | if (wait && !cpuset_zone_allowed(z)) | |
796 | continue; | |
797 | ||
798 | page = buffered_rmqueue(z, order, gfp_mask); | |
799 | if (page) | |
800 | goto got_pg; | |
801 | } | |
802 | ||
803 | /* This allocation should allow future memory freeing. */ | |
b84a35be NP |
804 | |
805 | if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) | |
806 | && !in_interrupt()) { | |
807 | if (!(gfp_mask & __GFP_NOMEMALLOC)) { | |
808 | /* go through the zonelist yet again, ignoring mins */ | |
809 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
810 | if (!cpuset_zone_allowed(z)) | |
811 | continue; | |
812 | page = buffered_rmqueue(z, order, gfp_mask); | |
813 | if (page) | |
814 | goto got_pg; | |
815 | } | |
1da177e4 LT |
816 | } |
817 | goto nopage; | |
818 | } | |
819 | ||
820 | /* Atomic allocations - we can't balance anything */ | |
821 | if (!wait) | |
822 | goto nopage; | |
823 | ||
824 | rebalance: | |
825 | cond_resched(); | |
826 | ||
827 | /* We now go into synchronous reclaim */ | |
828 | p->flags |= PF_MEMALLOC; | |
829 | reclaim_state.reclaimed_slab = 0; | |
830 | p->reclaim_state = &reclaim_state; | |
831 | ||
832 | did_some_progress = try_to_free_pages(zones, gfp_mask, order); | |
833 | ||
834 | p->reclaim_state = NULL; | |
835 | p->flags &= ~PF_MEMALLOC; | |
836 | ||
837 | cond_resched(); | |
838 | ||
839 | if (likely(did_some_progress)) { | |
840 | /* | |
841 | * Go through the zonelist yet one more time, keep | |
842 | * very high watermark here, this is only to catch | |
843 | * a parallel oom killing, we must fail if we're still | |
844 | * under heavy pressure. | |
845 | */ | |
846 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
847 | if (!zone_watermark_ok(z, order, z->pages_min, | |
848 | classzone_idx, can_try_harder, | |
849 | gfp_mask & __GFP_HIGH)) | |
850 | continue; | |
851 | ||
852 | if (!cpuset_zone_allowed(z)) | |
853 | continue; | |
854 | ||
855 | page = buffered_rmqueue(z, order, gfp_mask); | |
856 | if (page) | |
857 | goto got_pg; | |
858 | } | |
859 | } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { | |
860 | /* | |
861 | * Go through the zonelist yet one more time, keep | |
862 | * very high watermark here, this is only to catch | |
863 | * a parallel oom killing, we must fail if we're still | |
864 | * under heavy pressure. | |
865 | */ | |
866 | for (i = 0; (z = zones[i]) != NULL; i++) { | |
867 | if (!zone_watermark_ok(z, order, z->pages_high, | |
868 | classzone_idx, 0, 0)) | |
869 | continue; | |
870 | ||
871 | if (!cpuset_zone_allowed(z)) | |
872 | continue; | |
873 | ||
874 | page = buffered_rmqueue(z, order, gfp_mask); | |
875 | if (page) | |
876 | goto got_pg; | |
877 | } | |
878 | ||
879 | out_of_memory(gfp_mask); | |
880 | goto restart; | |
881 | } | |
882 | ||
883 | /* | |
884 | * Don't let big-order allocations loop unless the caller explicitly | |
885 | * requests that. Wait for some write requests to complete then retry. | |
886 | * | |
887 | * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order | |
888 | * <= 3, but that may not be true in other implementations. | |
889 | */ | |
890 | do_retry = 0; | |
891 | if (!(gfp_mask & __GFP_NORETRY)) { | |
892 | if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) | |
893 | do_retry = 1; | |
894 | if (gfp_mask & __GFP_NOFAIL) | |
895 | do_retry = 1; | |
896 | } | |
897 | if (do_retry) { | |
898 | blk_congestion_wait(WRITE, HZ/50); | |
899 | goto rebalance; | |
900 | } | |
901 | ||
902 | nopage: | |
903 | if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { | |
904 | printk(KERN_WARNING "%s: page allocation failure." | |
905 | " order:%d, mode:0x%x\n", | |
906 | p->comm, order, gfp_mask); | |
907 | dump_stack(); | |
908 | } | |
909 | return NULL; | |
910 | got_pg: | |
911 | zone_statistics(zonelist, z); | |
912 | return page; | |
913 | } | |
914 | ||
915 | EXPORT_SYMBOL(__alloc_pages); | |
916 | ||
917 | /* | |
918 | * Common helper functions. | |
919 | */ | |
920 | fastcall unsigned long __get_free_pages(unsigned int __nocast gfp_mask, unsigned int order) | |
921 | { | |
922 | struct page * page; | |
923 | page = alloc_pages(gfp_mask, order); | |
924 | if (!page) | |
925 | return 0; | |
926 | return (unsigned long) page_address(page); | |
927 | } | |
928 | ||
929 | EXPORT_SYMBOL(__get_free_pages); | |
930 | ||
931 | fastcall unsigned long get_zeroed_page(unsigned int __nocast gfp_mask) | |
932 | { | |
933 | struct page * page; | |
934 | ||
935 | /* | |
936 | * get_zeroed_page() returns a 32-bit address, which cannot represent | |
937 | * a highmem page | |
938 | */ | |
939 | BUG_ON(gfp_mask & __GFP_HIGHMEM); | |
940 | ||
941 | page = alloc_pages(gfp_mask | __GFP_ZERO, 0); | |
942 | if (page) | |
943 | return (unsigned long) page_address(page); | |
944 | return 0; | |
945 | } | |
946 | ||
947 | EXPORT_SYMBOL(get_zeroed_page); | |
948 | ||
949 | void __pagevec_free(struct pagevec *pvec) | |
950 | { | |
951 | int i = pagevec_count(pvec); | |
952 | ||
953 | while (--i >= 0) | |
954 | free_hot_cold_page(pvec->pages[i], pvec->cold); | |
955 | } | |
956 | ||
957 | fastcall void __free_pages(struct page *page, unsigned int order) | |
958 | { | |
959 | if (!PageReserved(page) && put_page_testzero(page)) { | |
960 | if (order == 0) | |
961 | free_hot_page(page); | |
962 | else | |
963 | __free_pages_ok(page, order); | |
964 | } | |
965 | } | |
966 | ||
967 | EXPORT_SYMBOL(__free_pages); | |
968 | ||
969 | fastcall void free_pages(unsigned long addr, unsigned int order) | |
970 | { | |
971 | if (addr != 0) { | |
972 | BUG_ON(!virt_addr_valid((void *)addr)); | |
973 | __free_pages(virt_to_page((void *)addr), order); | |
974 | } | |
975 | } | |
976 | ||
977 | EXPORT_SYMBOL(free_pages); | |
978 | ||
979 | /* | |
980 | * Total amount of free (allocatable) RAM: | |
981 | */ | |
982 | unsigned int nr_free_pages(void) | |
983 | { | |
984 | unsigned int sum = 0; | |
985 | struct zone *zone; | |
986 | ||
987 | for_each_zone(zone) | |
988 | sum += zone->free_pages; | |
989 | ||
990 | return sum; | |
991 | } | |
992 | ||
993 | EXPORT_SYMBOL(nr_free_pages); | |
994 | ||
995 | #ifdef CONFIG_NUMA | |
996 | unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) | |
997 | { | |
998 | unsigned int i, sum = 0; | |
999 | ||
1000 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1001 | sum += pgdat->node_zones[i].free_pages; | |
1002 | ||
1003 | return sum; | |
1004 | } | |
1005 | #endif | |
1006 | ||
1007 | static unsigned int nr_free_zone_pages(int offset) | |
1008 | { | |
1009 | pg_data_t *pgdat; | |
1010 | unsigned int sum = 0; | |
1011 | ||
1012 | for_each_pgdat(pgdat) { | |
1013 | struct zonelist *zonelist = pgdat->node_zonelists + offset; | |
1014 | struct zone **zonep = zonelist->zones; | |
1015 | struct zone *zone; | |
1016 | ||
1017 | for (zone = *zonep++; zone; zone = *zonep++) { | |
1018 | unsigned long size = zone->present_pages; | |
1019 | unsigned long high = zone->pages_high; | |
1020 | if (size > high) | |
1021 | sum += size - high; | |
1022 | } | |
1023 | } | |
1024 | ||
1025 | return sum; | |
1026 | } | |
1027 | ||
1028 | /* | |
1029 | * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL | |
1030 | */ | |
1031 | unsigned int nr_free_buffer_pages(void) | |
1032 | { | |
1033 | return nr_free_zone_pages(GFP_USER & GFP_ZONEMASK); | |
1034 | } | |
1035 | ||
1036 | /* | |
1037 | * Amount of free RAM allocatable within all zones | |
1038 | */ | |
1039 | unsigned int nr_free_pagecache_pages(void) | |
1040 | { | |
1041 | return nr_free_zone_pages(GFP_HIGHUSER & GFP_ZONEMASK); | |
1042 | } | |
1043 | ||
1044 | #ifdef CONFIG_HIGHMEM | |
1045 | unsigned int nr_free_highpages (void) | |
1046 | { | |
1047 | pg_data_t *pgdat; | |
1048 | unsigned int pages = 0; | |
1049 | ||
1050 | for_each_pgdat(pgdat) | |
1051 | pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; | |
1052 | ||
1053 | return pages; | |
1054 | } | |
1055 | #endif | |
1056 | ||
1057 | #ifdef CONFIG_NUMA | |
1058 | static void show_node(struct zone *zone) | |
1059 | { | |
1060 | printk("Node %d ", zone->zone_pgdat->node_id); | |
1061 | } | |
1062 | #else | |
1063 | #define show_node(zone) do { } while (0) | |
1064 | #endif | |
1065 | ||
1066 | /* | |
1067 | * Accumulate the page_state information across all CPUs. | |
1068 | * The result is unavoidably approximate - it can change | |
1069 | * during and after execution of this function. | |
1070 | */ | |
1071 | static DEFINE_PER_CPU(struct page_state, page_states) = {0}; | |
1072 | ||
1073 | atomic_t nr_pagecache = ATOMIC_INIT(0); | |
1074 | EXPORT_SYMBOL(nr_pagecache); | |
1075 | #ifdef CONFIG_SMP | |
1076 | DEFINE_PER_CPU(long, nr_pagecache_local) = 0; | |
1077 | #endif | |
1078 | ||
1079 | void __get_page_state(struct page_state *ret, int nr) | |
1080 | { | |
1081 | int cpu = 0; | |
1082 | ||
1083 | memset(ret, 0, sizeof(*ret)); | |
1084 | ||
1085 | cpu = first_cpu(cpu_online_map); | |
1086 | while (cpu < NR_CPUS) { | |
1087 | unsigned long *in, *out, off; | |
1088 | ||
1089 | in = (unsigned long *)&per_cpu(page_states, cpu); | |
1090 | ||
1091 | cpu = next_cpu(cpu, cpu_online_map); | |
1092 | ||
1093 | if (cpu < NR_CPUS) | |
1094 | prefetch(&per_cpu(page_states, cpu)); | |
1095 | ||
1096 | out = (unsigned long *)ret; | |
1097 | for (off = 0; off < nr; off++) | |
1098 | *out++ += *in++; | |
1099 | } | |
1100 | } | |
1101 | ||
1102 | void get_page_state(struct page_state *ret) | |
1103 | { | |
1104 | int nr; | |
1105 | ||
1106 | nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); | |
1107 | nr /= sizeof(unsigned long); | |
1108 | ||
1109 | __get_page_state(ret, nr + 1); | |
1110 | } | |
1111 | ||
1112 | void get_full_page_state(struct page_state *ret) | |
1113 | { | |
1114 | __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long)); | |
1115 | } | |
1116 | ||
1117 | unsigned long __read_page_state(unsigned offset) | |
1118 | { | |
1119 | unsigned long ret = 0; | |
1120 | int cpu; | |
1121 | ||
1122 | for_each_online_cpu(cpu) { | |
1123 | unsigned long in; | |
1124 | ||
1125 | in = (unsigned long)&per_cpu(page_states, cpu) + offset; | |
1126 | ret += *((unsigned long *)in); | |
1127 | } | |
1128 | return ret; | |
1129 | } | |
1130 | ||
1131 | void __mod_page_state(unsigned offset, unsigned long delta) | |
1132 | { | |
1133 | unsigned long flags; | |
1134 | void* ptr; | |
1135 | ||
1136 | local_irq_save(flags); | |
1137 | ptr = &__get_cpu_var(page_states); | |
1138 | *(unsigned long*)(ptr + offset) += delta; | |
1139 | local_irq_restore(flags); | |
1140 | } | |
1141 | ||
1142 | EXPORT_SYMBOL(__mod_page_state); | |
1143 | ||
1144 | void __get_zone_counts(unsigned long *active, unsigned long *inactive, | |
1145 | unsigned long *free, struct pglist_data *pgdat) | |
1146 | { | |
1147 | struct zone *zones = pgdat->node_zones; | |
1148 | int i; | |
1149 | ||
1150 | *active = 0; | |
1151 | *inactive = 0; | |
1152 | *free = 0; | |
1153 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
1154 | *active += zones[i].nr_active; | |
1155 | *inactive += zones[i].nr_inactive; | |
1156 | *free += zones[i].free_pages; | |
1157 | } | |
1158 | } | |
1159 | ||
1160 | void get_zone_counts(unsigned long *active, | |
1161 | unsigned long *inactive, unsigned long *free) | |
1162 | { | |
1163 | struct pglist_data *pgdat; | |
1164 | ||
1165 | *active = 0; | |
1166 | *inactive = 0; | |
1167 | *free = 0; | |
1168 | for_each_pgdat(pgdat) { | |
1169 | unsigned long l, m, n; | |
1170 | __get_zone_counts(&l, &m, &n, pgdat); | |
1171 | *active += l; | |
1172 | *inactive += m; | |
1173 | *free += n; | |
1174 | } | |
1175 | } | |
1176 | ||
1177 | void si_meminfo(struct sysinfo *val) | |
1178 | { | |
1179 | val->totalram = totalram_pages; | |
1180 | val->sharedram = 0; | |
1181 | val->freeram = nr_free_pages(); | |
1182 | val->bufferram = nr_blockdev_pages(); | |
1183 | #ifdef CONFIG_HIGHMEM | |
1184 | val->totalhigh = totalhigh_pages; | |
1185 | val->freehigh = nr_free_highpages(); | |
1186 | #else | |
1187 | val->totalhigh = 0; | |
1188 | val->freehigh = 0; | |
1189 | #endif | |
1190 | val->mem_unit = PAGE_SIZE; | |
1191 | } | |
1192 | ||
1193 | EXPORT_SYMBOL(si_meminfo); | |
1194 | ||
1195 | #ifdef CONFIG_NUMA | |
1196 | void si_meminfo_node(struct sysinfo *val, int nid) | |
1197 | { | |
1198 | pg_data_t *pgdat = NODE_DATA(nid); | |
1199 | ||
1200 | val->totalram = pgdat->node_present_pages; | |
1201 | val->freeram = nr_free_pages_pgdat(pgdat); | |
1202 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; | |
1203 | val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; | |
1204 | val->mem_unit = PAGE_SIZE; | |
1205 | } | |
1206 | #endif | |
1207 | ||
1208 | #define K(x) ((x) << (PAGE_SHIFT-10)) | |
1209 | ||
1210 | /* | |
1211 | * Show free area list (used inside shift_scroll-lock stuff) | |
1212 | * We also calculate the percentage fragmentation. We do this by counting the | |
1213 | * memory on each free list with the exception of the first item on the list. | |
1214 | */ | |
1215 | void show_free_areas(void) | |
1216 | { | |
1217 | struct page_state ps; | |
1218 | int cpu, temperature; | |
1219 | unsigned long active; | |
1220 | unsigned long inactive; | |
1221 | unsigned long free; | |
1222 | struct zone *zone; | |
1223 | ||
1224 | for_each_zone(zone) { | |
1225 | show_node(zone); | |
1226 | printk("%s per-cpu:", zone->name); | |
1227 | ||
1228 | if (!zone->present_pages) { | |
1229 | printk(" empty\n"); | |
1230 | continue; | |
1231 | } else | |
1232 | printk("\n"); | |
1233 | ||
1234 | for (cpu = 0; cpu < NR_CPUS; ++cpu) { | |
1235 | struct per_cpu_pageset *pageset; | |
1236 | ||
1237 | if (!cpu_possible(cpu)) | |
1238 | continue; | |
1239 | ||
1240 | pageset = zone->pageset + cpu; | |
1241 | ||
1242 | for (temperature = 0; temperature < 2; temperature++) | |
1243 | printk("cpu %d %s: low %d, high %d, batch %d\n", | |
1244 | cpu, | |
1245 | temperature ? "cold" : "hot", | |
1246 | pageset->pcp[temperature].low, | |
1247 | pageset->pcp[temperature].high, | |
1248 | pageset->pcp[temperature].batch); | |
1249 | } | |
1250 | } | |
1251 | ||
1252 | get_page_state(&ps); | |
1253 | get_zone_counts(&active, &inactive, &free); | |
1254 | ||
1255 | printk("\nFree pages: %11ukB (%ukB HighMem)\n", | |
1256 | K(nr_free_pages()), | |
1257 | K(nr_free_highpages())); | |
1258 | ||
1259 | printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " | |
1260 | "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", | |
1261 | active, | |
1262 | inactive, | |
1263 | ps.nr_dirty, | |
1264 | ps.nr_writeback, | |
1265 | ps.nr_unstable, | |
1266 | nr_free_pages(), | |
1267 | ps.nr_slab, | |
1268 | ps.nr_mapped, | |
1269 | ps.nr_page_table_pages); | |
1270 | ||
1271 | for_each_zone(zone) { | |
1272 | int i; | |
1273 | ||
1274 | show_node(zone); | |
1275 | printk("%s" | |
1276 | " free:%lukB" | |
1277 | " min:%lukB" | |
1278 | " low:%lukB" | |
1279 | " high:%lukB" | |
1280 | " active:%lukB" | |
1281 | " inactive:%lukB" | |
1282 | " present:%lukB" | |
1283 | " pages_scanned:%lu" | |
1284 | " all_unreclaimable? %s" | |
1285 | "\n", | |
1286 | zone->name, | |
1287 | K(zone->free_pages), | |
1288 | K(zone->pages_min), | |
1289 | K(zone->pages_low), | |
1290 | K(zone->pages_high), | |
1291 | K(zone->nr_active), | |
1292 | K(zone->nr_inactive), | |
1293 | K(zone->present_pages), | |
1294 | zone->pages_scanned, | |
1295 | (zone->all_unreclaimable ? "yes" : "no") | |
1296 | ); | |
1297 | printk("lowmem_reserve[]:"); | |
1298 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1299 | printk(" %lu", zone->lowmem_reserve[i]); | |
1300 | printk("\n"); | |
1301 | } | |
1302 | ||
1303 | for_each_zone(zone) { | |
1304 | unsigned long nr, flags, order, total = 0; | |
1305 | ||
1306 | show_node(zone); | |
1307 | printk("%s: ", zone->name); | |
1308 | if (!zone->present_pages) { | |
1309 | printk("empty\n"); | |
1310 | continue; | |
1311 | } | |
1312 | ||
1313 | spin_lock_irqsave(&zone->lock, flags); | |
1314 | for (order = 0; order < MAX_ORDER; order++) { | |
1315 | nr = zone->free_area[order].nr_free; | |
1316 | total += nr << order; | |
1317 | printk("%lu*%lukB ", nr, K(1UL) << order); | |
1318 | } | |
1319 | spin_unlock_irqrestore(&zone->lock, flags); | |
1320 | printk("= %lukB\n", K(total)); | |
1321 | } | |
1322 | ||
1323 | show_swap_cache_info(); | |
1324 | } | |
1325 | ||
1326 | /* | |
1327 | * Builds allocation fallback zone lists. | |
1328 | */ | |
1329 | static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k) | |
1330 | { | |
1331 | switch (k) { | |
1332 | struct zone *zone; | |
1333 | default: | |
1334 | BUG(); | |
1335 | case ZONE_HIGHMEM: | |
1336 | zone = pgdat->node_zones + ZONE_HIGHMEM; | |
1337 | if (zone->present_pages) { | |
1338 | #ifndef CONFIG_HIGHMEM | |
1339 | BUG(); | |
1340 | #endif | |
1341 | zonelist->zones[j++] = zone; | |
1342 | } | |
1343 | case ZONE_NORMAL: | |
1344 | zone = pgdat->node_zones + ZONE_NORMAL; | |
1345 | if (zone->present_pages) | |
1346 | zonelist->zones[j++] = zone; | |
1347 | case ZONE_DMA: | |
1348 | zone = pgdat->node_zones + ZONE_DMA; | |
1349 | if (zone->present_pages) | |
1350 | zonelist->zones[j++] = zone; | |
1351 | } | |
1352 | ||
1353 | return j; | |
1354 | } | |
1355 | ||
1356 | #ifdef CONFIG_NUMA | |
1357 | #define MAX_NODE_LOAD (num_online_nodes()) | |
1358 | static int __initdata node_load[MAX_NUMNODES]; | |
1359 | /** | |
4dc3b16b | 1360 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
1361 | * @node: node whose fallback list we're appending |
1362 | * @used_node_mask: nodemask_t of already used nodes | |
1363 | * | |
1364 | * We use a number of factors to determine which is the next node that should | |
1365 | * appear on a given node's fallback list. The node should not have appeared | |
1366 | * already in @node's fallback list, and it should be the next closest node | |
1367 | * according to the distance array (which contains arbitrary distance values | |
1368 | * from each node to each node in the system), and should also prefer nodes | |
1369 | * with no CPUs, since presumably they'll have very little allocation pressure | |
1370 | * on them otherwise. | |
1371 | * It returns -1 if no node is found. | |
1372 | */ | |
1373 | static int __init find_next_best_node(int node, nodemask_t *used_node_mask) | |
1374 | { | |
1375 | int i, n, val; | |
1376 | int min_val = INT_MAX; | |
1377 | int best_node = -1; | |
1378 | ||
1379 | for_each_online_node(i) { | |
1380 | cpumask_t tmp; | |
1381 | ||
1382 | /* Start from local node */ | |
1383 | n = (node+i) % num_online_nodes(); | |
1384 | ||
1385 | /* Don't want a node to appear more than once */ | |
1386 | if (node_isset(n, *used_node_mask)) | |
1387 | continue; | |
1388 | ||
1389 | /* Use the local node if we haven't already */ | |
1390 | if (!node_isset(node, *used_node_mask)) { | |
1391 | best_node = node; | |
1392 | break; | |
1393 | } | |
1394 | ||
1395 | /* Use the distance array to find the distance */ | |
1396 | val = node_distance(node, n); | |
1397 | ||
1398 | /* Give preference to headless and unused nodes */ | |
1399 | tmp = node_to_cpumask(n); | |
1400 | if (!cpus_empty(tmp)) | |
1401 | val += PENALTY_FOR_NODE_WITH_CPUS; | |
1402 | ||
1403 | /* Slight preference for less loaded node */ | |
1404 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
1405 | val += node_load[n]; | |
1406 | ||
1407 | if (val < min_val) { | |
1408 | min_val = val; | |
1409 | best_node = n; | |
1410 | } | |
1411 | } | |
1412 | ||
1413 | if (best_node >= 0) | |
1414 | node_set(best_node, *used_node_mask); | |
1415 | ||
1416 | return best_node; | |
1417 | } | |
1418 | ||
1419 | static void __init build_zonelists(pg_data_t *pgdat) | |
1420 | { | |
1421 | int i, j, k, node, local_node; | |
1422 | int prev_node, load; | |
1423 | struct zonelist *zonelist; | |
1424 | nodemask_t used_mask; | |
1425 | ||
1426 | /* initialize zonelists */ | |
1427 | for (i = 0; i < GFP_ZONETYPES; i++) { | |
1428 | zonelist = pgdat->node_zonelists + i; | |
1429 | zonelist->zones[0] = NULL; | |
1430 | } | |
1431 | ||
1432 | /* NUMA-aware ordering of nodes */ | |
1433 | local_node = pgdat->node_id; | |
1434 | load = num_online_nodes(); | |
1435 | prev_node = local_node; | |
1436 | nodes_clear(used_mask); | |
1437 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { | |
1438 | /* | |
1439 | * We don't want to pressure a particular node. | |
1440 | * So adding penalty to the first node in same | |
1441 | * distance group to make it round-robin. | |
1442 | */ | |
1443 | if (node_distance(local_node, node) != | |
1444 | node_distance(local_node, prev_node)) | |
1445 | node_load[node] += load; | |
1446 | prev_node = node; | |
1447 | load--; | |
1448 | for (i = 0; i < GFP_ZONETYPES; i++) { | |
1449 | zonelist = pgdat->node_zonelists + i; | |
1450 | for (j = 0; zonelist->zones[j] != NULL; j++); | |
1451 | ||
1452 | k = ZONE_NORMAL; | |
1453 | if (i & __GFP_HIGHMEM) | |
1454 | k = ZONE_HIGHMEM; | |
1455 | if (i & __GFP_DMA) | |
1456 | k = ZONE_DMA; | |
1457 | ||
1458 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | |
1459 | zonelist->zones[j] = NULL; | |
1460 | } | |
1461 | } | |
1462 | } | |
1463 | ||
1464 | #else /* CONFIG_NUMA */ | |
1465 | ||
1466 | static void __init build_zonelists(pg_data_t *pgdat) | |
1467 | { | |
1468 | int i, j, k, node, local_node; | |
1469 | ||
1470 | local_node = pgdat->node_id; | |
1471 | for (i = 0; i < GFP_ZONETYPES; i++) { | |
1472 | struct zonelist *zonelist; | |
1473 | ||
1474 | zonelist = pgdat->node_zonelists + i; | |
1475 | ||
1476 | j = 0; | |
1477 | k = ZONE_NORMAL; | |
1478 | if (i & __GFP_HIGHMEM) | |
1479 | k = ZONE_HIGHMEM; | |
1480 | if (i & __GFP_DMA) | |
1481 | k = ZONE_DMA; | |
1482 | ||
1483 | j = build_zonelists_node(pgdat, zonelist, j, k); | |
1484 | /* | |
1485 | * Now we build the zonelist so that it contains the zones | |
1486 | * of all the other nodes. | |
1487 | * We don't want to pressure a particular node, so when | |
1488 | * building the zones for node N, we make sure that the | |
1489 | * zones coming right after the local ones are those from | |
1490 | * node N+1 (modulo N) | |
1491 | */ | |
1492 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
1493 | if (!node_online(node)) | |
1494 | continue; | |
1495 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | |
1496 | } | |
1497 | for (node = 0; node < local_node; node++) { | |
1498 | if (!node_online(node)) | |
1499 | continue; | |
1500 | j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); | |
1501 | } | |
1502 | ||
1503 | zonelist->zones[j] = NULL; | |
1504 | } | |
1505 | } | |
1506 | ||
1507 | #endif /* CONFIG_NUMA */ | |
1508 | ||
1509 | void __init build_all_zonelists(void) | |
1510 | { | |
1511 | int i; | |
1512 | ||
1513 | for_each_online_node(i) | |
1514 | build_zonelists(NODE_DATA(i)); | |
1515 | printk("Built %i zonelists\n", num_online_nodes()); | |
1516 | cpuset_init_current_mems_allowed(); | |
1517 | } | |
1518 | ||
1519 | /* | |
1520 | * Helper functions to size the waitqueue hash table. | |
1521 | * Essentially these want to choose hash table sizes sufficiently | |
1522 | * large so that collisions trying to wait on pages are rare. | |
1523 | * But in fact, the number of active page waitqueues on typical | |
1524 | * systems is ridiculously low, less than 200. So this is even | |
1525 | * conservative, even though it seems large. | |
1526 | * | |
1527 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
1528 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
1529 | */ | |
1530 | #define PAGES_PER_WAITQUEUE 256 | |
1531 | ||
1532 | static inline unsigned long wait_table_size(unsigned long pages) | |
1533 | { | |
1534 | unsigned long size = 1; | |
1535 | ||
1536 | pages /= PAGES_PER_WAITQUEUE; | |
1537 | ||
1538 | while (size < pages) | |
1539 | size <<= 1; | |
1540 | ||
1541 | /* | |
1542 | * Once we have dozens or even hundreds of threads sleeping | |
1543 | * on IO we've got bigger problems than wait queue collision. | |
1544 | * Limit the size of the wait table to a reasonable size. | |
1545 | */ | |
1546 | size = min(size, 4096UL); | |
1547 | ||
1548 | return max(size, 4UL); | |
1549 | } | |
1550 | ||
1551 | /* | |
1552 | * This is an integer logarithm so that shifts can be used later | |
1553 | * to extract the more random high bits from the multiplicative | |
1554 | * hash function before the remainder is taken. | |
1555 | */ | |
1556 | static inline unsigned long wait_table_bits(unsigned long size) | |
1557 | { | |
1558 | return ffz(~size); | |
1559 | } | |
1560 | ||
1561 | #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) | |
1562 | ||
1563 | static void __init calculate_zone_totalpages(struct pglist_data *pgdat, | |
1564 | unsigned long *zones_size, unsigned long *zholes_size) | |
1565 | { | |
1566 | unsigned long realtotalpages, totalpages = 0; | |
1567 | int i; | |
1568 | ||
1569 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1570 | totalpages += zones_size[i]; | |
1571 | pgdat->node_spanned_pages = totalpages; | |
1572 | ||
1573 | realtotalpages = totalpages; | |
1574 | if (zholes_size) | |
1575 | for (i = 0; i < MAX_NR_ZONES; i++) | |
1576 | realtotalpages -= zholes_size[i]; | |
1577 | pgdat->node_present_pages = realtotalpages; | |
1578 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); | |
1579 | } | |
1580 | ||
1581 | ||
1582 | /* | |
1583 | * Initially all pages are reserved - free ones are freed | |
1584 | * up by free_all_bootmem() once the early boot process is | |
1585 | * done. Non-atomic initialization, single-pass. | |
1586 | */ | |
1587 | void __init memmap_init_zone(unsigned long size, int nid, unsigned long zone, | |
1588 | unsigned long start_pfn) | |
1589 | { | |
1590 | struct page *start = pfn_to_page(start_pfn); | |
1591 | struct page *page; | |
1592 | ||
1593 | for (page = start; page < (start + size); page++) { | |
1594 | set_page_zone(page, NODEZONE(nid, zone)); | |
1595 | set_page_count(page, 0); | |
1596 | reset_page_mapcount(page); | |
1597 | SetPageReserved(page); | |
1598 | INIT_LIST_HEAD(&page->lru); | |
1599 | #ifdef WANT_PAGE_VIRTUAL | |
1600 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
1601 | if (!is_highmem_idx(zone)) | |
1602 | set_page_address(page, __va(start_pfn << PAGE_SHIFT)); | |
1603 | #endif | |
1604 | start_pfn++; | |
1605 | } | |
1606 | } | |
1607 | ||
1608 | void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, | |
1609 | unsigned long size) | |
1610 | { | |
1611 | int order; | |
1612 | for (order = 0; order < MAX_ORDER ; order++) { | |
1613 | INIT_LIST_HEAD(&zone->free_area[order].free_list); | |
1614 | zone->free_area[order].nr_free = 0; | |
1615 | } | |
1616 | } | |
1617 | ||
1618 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
1619 | #define memmap_init(size, nid, zone, start_pfn) \ | |
1620 | memmap_init_zone((size), (nid), (zone), (start_pfn)) | |
1621 | #endif | |
1622 | ||
1623 | /* | |
1624 | * Set up the zone data structures: | |
1625 | * - mark all pages reserved | |
1626 | * - mark all memory queues empty | |
1627 | * - clear the memory bitmaps | |
1628 | */ | |
1629 | static void __init free_area_init_core(struct pglist_data *pgdat, | |
1630 | unsigned long *zones_size, unsigned long *zholes_size) | |
1631 | { | |
1632 | unsigned long i, j; | |
1633 | const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1); | |
1634 | int cpu, nid = pgdat->node_id; | |
1635 | unsigned long zone_start_pfn = pgdat->node_start_pfn; | |
1636 | ||
1637 | pgdat->nr_zones = 0; | |
1638 | init_waitqueue_head(&pgdat->kswapd_wait); | |
1639 | pgdat->kswapd_max_order = 0; | |
1640 | ||
1641 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
1642 | struct zone *zone = pgdat->node_zones + j; | |
1643 | unsigned long size, realsize; | |
1644 | unsigned long batch; | |
1645 | ||
1646 | zone_table[NODEZONE(nid, j)] = zone; | |
1647 | realsize = size = zones_size[j]; | |
1648 | if (zholes_size) | |
1649 | realsize -= zholes_size[j]; | |
1650 | ||
1651 | if (j == ZONE_DMA || j == ZONE_NORMAL) | |
1652 | nr_kernel_pages += realsize; | |
1653 | nr_all_pages += realsize; | |
1654 | ||
1655 | zone->spanned_pages = size; | |
1656 | zone->present_pages = realsize; | |
1657 | zone->name = zone_names[j]; | |
1658 | spin_lock_init(&zone->lock); | |
1659 | spin_lock_init(&zone->lru_lock); | |
1660 | zone->zone_pgdat = pgdat; | |
1661 | zone->free_pages = 0; | |
1662 | ||
1663 | zone->temp_priority = zone->prev_priority = DEF_PRIORITY; | |
1664 | ||
1665 | /* | |
1666 | * The per-cpu-pages pools are set to around 1000th of the | |
1667 | * size of the zone. But no more than 1/4 of a meg - there's | |
1668 | * no point in going beyond the size of L2 cache. | |
1669 | * | |
1670 | * OK, so we don't know how big the cache is. So guess. | |
1671 | */ | |
1672 | batch = zone->present_pages / 1024; | |
1673 | if (batch * PAGE_SIZE > 256 * 1024) | |
1674 | batch = (256 * 1024) / PAGE_SIZE; | |
1675 | batch /= 4; /* We effectively *= 4 below */ | |
1676 | if (batch < 1) | |
1677 | batch = 1; | |
1678 | ||
8e30f272 NP |
1679 | /* |
1680 | * Clamp the batch to a 2^n - 1 value. Having a power | |
1681 | * of 2 value was found to be more likely to have | |
1682 | * suboptimal cache aliasing properties in some cases. | |
1683 | * | |
1684 | * For example if 2 tasks are alternately allocating | |
1685 | * batches of pages, one task can end up with a lot | |
1686 | * of pages of one half of the possible page colors | |
1687 | * and the other with pages of the other colors. | |
1688 | */ | |
1689 | batch = (1 << fls(batch + batch/2)) - 1; | |
1690 | ||
1da177e4 LT |
1691 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
1692 | struct per_cpu_pages *pcp; | |
1693 | ||
1694 | pcp = &zone->pageset[cpu].pcp[0]; /* hot */ | |
1695 | pcp->count = 0; | |
1696 | pcp->low = 2 * batch; | |
1697 | pcp->high = 6 * batch; | |
1698 | pcp->batch = 1 * batch; | |
1699 | INIT_LIST_HEAD(&pcp->list); | |
1700 | ||
1701 | pcp = &zone->pageset[cpu].pcp[1]; /* cold */ | |
1702 | pcp->count = 0; | |
1703 | pcp->low = 0; | |
1704 | pcp->high = 2 * batch; | |
1705 | pcp->batch = 1 * batch; | |
1706 | INIT_LIST_HEAD(&pcp->list); | |
1707 | } | |
1708 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", | |
1709 | zone_names[j], realsize, batch); | |
1710 | INIT_LIST_HEAD(&zone->active_list); | |
1711 | INIT_LIST_HEAD(&zone->inactive_list); | |
1712 | zone->nr_scan_active = 0; | |
1713 | zone->nr_scan_inactive = 0; | |
1714 | zone->nr_active = 0; | |
1715 | zone->nr_inactive = 0; | |
1716 | if (!size) | |
1717 | continue; | |
1718 | ||
1719 | /* | |
1720 | * The per-page waitqueue mechanism uses hashed waitqueues | |
1721 | * per zone. | |
1722 | */ | |
1723 | zone->wait_table_size = wait_table_size(size); | |
1724 | zone->wait_table_bits = | |
1725 | wait_table_bits(zone->wait_table_size); | |
1726 | zone->wait_table = (wait_queue_head_t *) | |
1727 | alloc_bootmem_node(pgdat, zone->wait_table_size | |
1728 | * sizeof(wait_queue_head_t)); | |
1729 | ||
1730 | for(i = 0; i < zone->wait_table_size; ++i) | |
1731 | init_waitqueue_head(zone->wait_table + i); | |
1732 | ||
1733 | pgdat->nr_zones = j+1; | |
1734 | ||
1735 | zone->zone_mem_map = pfn_to_page(zone_start_pfn); | |
1736 | zone->zone_start_pfn = zone_start_pfn; | |
1737 | ||
1738 | if ((zone_start_pfn) & (zone_required_alignment-1)) | |
1739 | printk(KERN_CRIT "BUG: wrong zone alignment, it will crash\n"); | |
1740 | ||
1741 | memmap_init(size, nid, j, zone_start_pfn); | |
1742 | ||
1743 | zone_start_pfn += size; | |
1744 | ||
1745 | zone_init_free_lists(pgdat, zone, zone->spanned_pages); | |
1746 | } | |
1747 | } | |
1748 | ||
1749 | static void __init alloc_node_mem_map(struct pglist_data *pgdat) | |
1750 | { | |
1751 | unsigned long size; | |
1752 | ||
1753 | /* Skip empty nodes */ | |
1754 | if (!pgdat->node_spanned_pages) | |
1755 | return; | |
1756 | ||
1757 | /* ia64 gets its own node_mem_map, before this, without bootmem */ | |
1758 | if (!pgdat->node_mem_map) { | |
1759 | size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); | |
1760 | pgdat->node_mem_map = alloc_bootmem_node(pgdat, size); | |
1761 | } | |
1762 | #ifndef CONFIG_DISCONTIGMEM | |
1763 | /* | |
1764 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
1765 | */ | |
1766 | if (pgdat == NODE_DATA(0)) | |
1767 | mem_map = NODE_DATA(0)->node_mem_map; | |
1768 | #endif | |
1769 | } | |
1770 | ||
1771 | void __init free_area_init_node(int nid, struct pglist_data *pgdat, | |
1772 | unsigned long *zones_size, unsigned long node_start_pfn, | |
1773 | unsigned long *zholes_size) | |
1774 | { | |
1775 | pgdat->node_id = nid; | |
1776 | pgdat->node_start_pfn = node_start_pfn; | |
1777 | calculate_zone_totalpages(pgdat, zones_size, zholes_size); | |
1778 | ||
1779 | alloc_node_mem_map(pgdat); | |
1780 | ||
1781 | free_area_init_core(pgdat, zones_size, zholes_size); | |
1782 | } | |
1783 | ||
1784 | #ifndef CONFIG_DISCONTIGMEM | |
1785 | static bootmem_data_t contig_bootmem_data; | |
1786 | struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; | |
1787 | ||
1788 | EXPORT_SYMBOL(contig_page_data); | |
1789 | ||
1790 | void __init free_area_init(unsigned long *zones_size) | |
1791 | { | |
1792 | free_area_init_node(0, &contig_page_data, zones_size, | |
1793 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); | |
1794 | } | |
1795 | #endif | |
1796 | ||
1797 | #ifdef CONFIG_PROC_FS | |
1798 | ||
1799 | #include <linux/seq_file.h> | |
1800 | ||
1801 | static void *frag_start(struct seq_file *m, loff_t *pos) | |
1802 | { | |
1803 | pg_data_t *pgdat; | |
1804 | loff_t node = *pos; | |
1805 | ||
1806 | for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) | |
1807 | --node; | |
1808 | ||
1809 | return pgdat; | |
1810 | } | |
1811 | ||
1812 | static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) | |
1813 | { | |
1814 | pg_data_t *pgdat = (pg_data_t *)arg; | |
1815 | ||
1816 | (*pos)++; | |
1817 | return pgdat->pgdat_next; | |
1818 | } | |
1819 | ||
1820 | static void frag_stop(struct seq_file *m, void *arg) | |
1821 | { | |
1822 | } | |
1823 | ||
1824 | /* | |
1825 | * This walks the free areas for each zone. | |
1826 | */ | |
1827 | static int frag_show(struct seq_file *m, void *arg) | |
1828 | { | |
1829 | pg_data_t *pgdat = (pg_data_t *)arg; | |
1830 | struct zone *zone; | |
1831 | struct zone *node_zones = pgdat->node_zones; | |
1832 | unsigned long flags; | |
1833 | int order; | |
1834 | ||
1835 | for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { | |
1836 | if (!zone->present_pages) | |
1837 | continue; | |
1838 | ||
1839 | spin_lock_irqsave(&zone->lock, flags); | |
1840 | seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); | |
1841 | for (order = 0; order < MAX_ORDER; ++order) | |
1842 | seq_printf(m, "%6lu ", zone->free_area[order].nr_free); | |
1843 | spin_unlock_irqrestore(&zone->lock, flags); | |
1844 | seq_putc(m, '\n'); | |
1845 | } | |
1846 | return 0; | |
1847 | } | |
1848 | ||
1849 | struct seq_operations fragmentation_op = { | |
1850 | .start = frag_start, | |
1851 | .next = frag_next, | |
1852 | .stop = frag_stop, | |
1853 | .show = frag_show, | |
1854 | }; | |
1855 | ||
1856 | static char *vmstat_text[] = { | |
1857 | "nr_dirty", | |
1858 | "nr_writeback", | |
1859 | "nr_unstable", | |
1860 | "nr_page_table_pages", | |
1861 | "nr_mapped", | |
1862 | "nr_slab", | |
1863 | ||
1864 | "pgpgin", | |
1865 | "pgpgout", | |
1866 | "pswpin", | |
1867 | "pswpout", | |
1868 | "pgalloc_high", | |
1869 | ||
1870 | "pgalloc_normal", | |
1871 | "pgalloc_dma", | |
1872 | "pgfree", | |
1873 | "pgactivate", | |
1874 | "pgdeactivate", | |
1875 | ||
1876 | "pgfault", | |
1877 | "pgmajfault", | |
1878 | "pgrefill_high", | |
1879 | "pgrefill_normal", | |
1880 | "pgrefill_dma", | |
1881 | ||
1882 | "pgsteal_high", | |
1883 | "pgsteal_normal", | |
1884 | "pgsteal_dma", | |
1885 | "pgscan_kswapd_high", | |
1886 | "pgscan_kswapd_normal", | |
1887 | ||
1888 | "pgscan_kswapd_dma", | |
1889 | "pgscan_direct_high", | |
1890 | "pgscan_direct_normal", | |
1891 | "pgscan_direct_dma", | |
1892 | "pginodesteal", | |
1893 | ||
1894 | "slabs_scanned", | |
1895 | "kswapd_steal", | |
1896 | "kswapd_inodesteal", | |
1897 | "pageoutrun", | |
1898 | "allocstall", | |
1899 | ||
1900 | "pgrotated", | |
edfbe2b0 | 1901 | "nr_bounce", |
1da177e4 LT |
1902 | }; |
1903 | ||
1904 | static void *vmstat_start(struct seq_file *m, loff_t *pos) | |
1905 | { | |
1906 | struct page_state *ps; | |
1907 | ||
1908 | if (*pos >= ARRAY_SIZE(vmstat_text)) | |
1909 | return NULL; | |
1910 | ||
1911 | ps = kmalloc(sizeof(*ps), GFP_KERNEL); | |
1912 | m->private = ps; | |
1913 | if (!ps) | |
1914 | return ERR_PTR(-ENOMEM); | |
1915 | get_full_page_state(ps); | |
1916 | ps->pgpgin /= 2; /* sectors -> kbytes */ | |
1917 | ps->pgpgout /= 2; | |
1918 | return (unsigned long *)ps + *pos; | |
1919 | } | |
1920 | ||
1921 | static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) | |
1922 | { | |
1923 | (*pos)++; | |
1924 | if (*pos >= ARRAY_SIZE(vmstat_text)) | |
1925 | return NULL; | |
1926 | return (unsigned long *)m->private + *pos; | |
1927 | } | |
1928 | ||
1929 | static int vmstat_show(struct seq_file *m, void *arg) | |
1930 | { | |
1931 | unsigned long *l = arg; | |
1932 | unsigned long off = l - (unsigned long *)m->private; | |
1933 | ||
1934 | seq_printf(m, "%s %lu\n", vmstat_text[off], *l); | |
1935 | return 0; | |
1936 | } | |
1937 | ||
1938 | static void vmstat_stop(struct seq_file *m, void *arg) | |
1939 | { | |
1940 | kfree(m->private); | |
1941 | m->private = NULL; | |
1942 | } | |
1943 | ||
1944 | struct seq_operations vmstat_op = { | |
1945 | .start = vmstat_start, | |
1946 | .next = vmstat_next, | |
1947 | .stop = vmstat_stop, | |
1948 | .show = vmstat_show, | |
1949 | }; | |
1950 | ||
1951 | #endif /* CONFIG_PROC_FS */ | |
1952 | ||
1953 | #ifdef CONFIG_HOTPLUG_CPU | |
1954 | static int page_alloc_cpu_notify(struct notifier_block *self, | |
1955 | unsigned long action, void *hcpu) | |
1956 | { | |
1957 | int cpu = (unsigned long)hcpu; | |
1958 | long *count; | |
1959 | unsigned long *src, *dest; | |
1960 | ||
1961 | if (action == CPU_DEAD) { | |
1962 | int i; | |
1963 | ||
1964 | /* Drain local pagecache count. */ | |
1965 | count = &per_cpu(nr_pagecache_local, cpu); | |
1966 | atomic_add(*count, &nr_pagecache); | |
1967 | *count = 0; | |
1968 | local_irq_disable(); | |
1969 | __drain_pages(cpu); | |
1970 | ||
1971 | /* Add dead cpu's page_states to our own. */ | |
1972 | dest = (unsigned long *)&__get_cpu_var(page_states); | |
1973 | src = (unsigned long *)&per_cpu(page_states, cpu); | |
1974 | ||
1975 | for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); | |
1976 | i++) { | |
1977 | dest[i] += src[i]; | |
1978 | src[i] = 0; | |
1979 | } | |
1980 | ||
1981 | local_irq_enable(); | |
1982 | } | |
1983 | return NOTIFY_OK; | |
1984 | } | |
1985 | #endif /* CONFIG_HOTPLUG_CPU */ | |
1986 | ||
1987 | void __init page_alloc_init(void) | |
1988 | { | |
1989 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
1990 | } | |
1991 | ||
1992 | /* | |
1993 | * setup_per_zone_lowmem_reserve - called whenever | |
1994 | * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone | |
1995 | * has a correct pages reserved value, so an adequate number of | |
1996 | * pages are left in the zone after a successful __alloc_pages(). | |
1997 | */ | |
1998 | static void setup_per_zone_lowmem_reserve(void) | |
1999 | { | |
2000 | struct pglist_data *pgdat; | |
2001 | int j, idx; | |
2002 | ||
2003 | for_each_pgdat(pgdat) { | |
2004 | for (j = 0; j < MAX_NR_ZONES; j++) { | |
2005 | struct zone *zone = pgdat->node_zones + j; | |
2006 | unsigned long present_pages = zone->present_pages; | |
2007 | ||
2008 | zone->lowmem_reserve[j] = 0; | |
2009 | ||
2010 | for (idx = j-1; idx >= 0; idx--) { | |
2011 | struct zone *lower_zone; | |
2012 | ||
2013 | if (sysctl_lowmem_reserve_ratio[idx] < 1) | |
2014 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
2015 | ||
2016 | lower_zone = pgdat->node_zones + idx; | |
2017 | lower_zone->lowmem_reserve[j] = present_pages / | |
2018 | sysctl_lowmem_reserve_ratio[idx]; | |
2019 | present_pages += lower_zone->present_pages; | |
2020 | } | |
2021 | } | |
2022 | } | |
2023 | } | |
2024 | ||
2025 | /* | |
2026 | * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures | |
2027 | * that the pages_{min,low,high} values for each zone are set correctly | |
2028 | * with respect to min_free_kbytes. | |
2029 | */ | |
2030 | static void setup_per_zone_pages_min(void) | |
2031 | { | |
2032 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
2033 | unsigned long lowmem_pages = 0; | |
2034 | struct zone *zone; | |
2035 | unsigned long flags; | |
2036 | ||
2037 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
2038 | for_each_zone(zone) { | |
2039 | if (!is_highmem(zone)) | |
2040 | lowmem_pages += zone->present_pages; | |
2041 | } | |
2042 | ||
2043 | for_each_zone(zone) { | |
2044 | spin_lock_irqsave(&zone->lru_lock, flags); | |
2045 | if (is_highmem(zone)) { | |
2046 | /* | |
2047 | * Often, highmem doesn't need to reserve any pages. | |
2048 | * But the pages_min/low/high values are also used for | |
2049 | * batching up page reclaim activity so we need a | |
2050 | * decent value here. | |
2051 | */ | |
2052 | int min_pages; | |
2053 | ||
2054 | min_pages = zone->present_pages / 1024; | |
2055 | if (min_pages < SWAP_CLUSTER_MAX) | |
2056 | min_pages = SWAP_CLUSTER_MAX; | |
2057 | if (min_pages > 128) | |
2058 | min_pages = 128; | |
2059 | zone->pages_min = min_pages; | |
2060 | } else { | |
2061 | /* if it's a lowmem zone, reserve a number of pages | |
2062 | * proportionate to the zone's size. | |
2063 | */ | |
2064 | zone->pages_min = (pages_min * zone->present_pages) / | |
2065 | lowmem_pages; | |
2066 | } | |
2067 | ||
2068 | /* | |
2069 | * When interpreting these watermarks, just keep in mind that: | |
2070 | * zone->pages_min == (zone->pages_min * 4) / 4; | |
2071 | */ | |
2072 | zone->pages_low = (zone->pages_min * 5) / 4; | |
2073 | zone->pages_high = (zone->pages_min * 6) / 4; | |
2074 | spin_unlock_irqrestore(&zone->lru_lock, flags); | |
2075 | } | |
2076 | } | |
2077 | ||
2078 | /* | |
2079 | * Initialise min_free_kbytes. | |
2080 | * | |
2081 | * For small machines we want it small (128k min). For large machines | |
2082 | * we want it large (64MB max). But it is not linear, because network | |
2083 | * bandwidth does not increase linearly with machine size. We use | |
2084 | * | |
2085 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: | |
2086 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) | |
2087 | * | |
2088 | * which yields | |
2089 | * | |
2090 | * 16MB: 512k | |
2091 | * 32MB: 724k | |
2092 | * 64MB: 1024k | |
2093 | * 128MB: 1448k | |
2094 | * 256MB: 2048k | |
2095 | * 512MB: 2896k | |
2096 | * 1024MB: 4096k | |
2097 | * 2048MB: 5792k | |
2098 | * 4096MB: 8192k | |
2099 | * 8192MB: 11584k | |
2100 | * 16384MB: 16384k | |
2101 | */ | |
2102 | static int __init init_per_zone_pages_min(void) | |
2103 | { | |
2104 | unsigned long lowmem_kbytes; | |
2105 | ||
2106 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
2107 | ||
2108 | min_free_kbytes = int_sqrt(lowmem_kbytes * 16); | |
2109 | if (min_free_kbytes < 128) | |
2110 | min_free_kbytes = 128; | |
2111 | if (min_free_kbytes > 65536) | |
2112 | min_free_kbytes = 65536; | |
2113 | setup_per_zone_pages_min(); | |
2114 | setup_per_zone_lowmem_reserve(); | |
2115 | return 0; | |
2116 | } | |
2117 | module_init(init_per_zone_pages_min) | |
2118 | ||
2119 | /* | |
2120 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so | |
2121 | * that we can call two helper functions whenever min_free_kbytes | |
2122 | * changes. | |
2123 | */ | |
2124 | int min_free_kbytes_sysctl_handler(ctl_table *table, int write, | |
2125 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
2126 | { | |
2127 | proc_dointvec(table, write, file, buffer, length, ppos); | |
2128 | setup_per_zone_pages_min(); | |
2129 | return 0; | |
2130 | } | |
2131 | ||
2132 | /* | |
2133 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
2134 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
2135 | * whenever sysctl_lowmem_reserve_ratio changes. | |
2136 | * | |
2137 | * The reserve ratio obviously has absolutely no relation with the | |
2138 | * pages_min watermarks. The lowmem reserve ratio can only make sense | |
2139 | * if in function of the boot time zone sizes. | |
2140 | */ | |
2141 | int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, | |
2142 | struct file *file, void __user *buffer, size_t *length, loff_t *ppos) | |
2143 | { | |
2144 | proc_dointvec_minmax(table, write, file, buffer, length, ppos); | |
2145 | setup_per_zone_lowmem_reserve(); | |
2146 | return 0; | |
2147 | } | |
2148 | ||
2149 | __initdata int hashdist = HASHDIST_DEFAULT; | |
2150 | ||
2151 | #ifdef CONFIG_NUMA | |
2152 | static int __init set_hashdist(char *str) | |
2153 | { | |
2154 | if (!str) | |
2155 | return 0; | |
2156 | hashdist = simple_strtoul(str, &str, 0); | |
2157 | return 1; | |
2158 | } | |
2159 | __setup("hashdist=", set_hashdist); | |
2160 | #endif | |
2161 | ||
2162 | /* | |
2163 | * allocate a large system hash table from bootmem | |
2164 | * - it is assumed that the hash table must contain an exact power-of-2 | |
2165 | * quantity of entries | |
2166 | * - limit is the number of hash buckets, not the total allocation size | |
2167 | */ | |
2168 | void *__init alloc_large_system_hash(const char *tablename, | |
2169 | unsigned long bucketsize, | |
2170 | unsigned long numentries, | |
2171 | int scale, | |
2172 | int flags, | |
2173 | unsigned int *_hash_shift, | |
2174 | unsigned int *_hash_mask, | |
2175 | unsigned long limit) | |
2176 | { | |
2177 | unsigned long long max = limit; | |
2178 | unsigned long log2qty, size; | |
2179 | void *table = NULL; | |
2180 | ||
2181 | /* allow the kernel cmdline to have a say */ | |
2182 | if (!numentries) { | |
2183 | /* round applicable memory size up to nearest megabyte */ | |
2184 | numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; | |
2185 | numentries += (1UL << (20 - PAGE_SHIFT)) - 1; | |
2186 | numentries >>= 20 - PAGE_SHIFT; | |
2187 | numentries <<= 20 - PAGE_SHIFT; | |
2188 | ||
2189 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
2190 | if (scale > PAGE_SHIFT) | |
2191 | numentries >>= (scale - PAGE_SHIFT); | |
2192 | else | |
2193 | numentries <<= (PAGE_SHIFT - scale); | |
2194 | } | |
2195 | /* rounded up to nearest power of 2 in size */ | |
2196 | numentries = 1UL << (long_log2(numentries) + 1); | |
2197 | ||
2198 | /* limit allocation size to 1/16 total memory by default */ | |
2199 | if (max == 0) { | |
2200 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
2201 | do_div(max, bucketsize); | |
2202 | } | |
2203 | ||
2204 | if (numentries > max) | |
2205 | numentries = max; | |
2206 | ||
2207 | log2qty = long_log2(numentries); | |
2208 | ||
2209 | do { | |
2210 | size = bucketsize << log2qty; | |
2211 | if (flags & HASH_EARLY) | |
2212 | table = alloc_bootmem(size); | |
2213 | else if (hashdist) | |
2214 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
2215 | else { | |
2216 | unsigned long order; | |
2217 | for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) | |
2218 | ; | |
2219 | table = (void*) __get_free_pages(GFP_ATOMIC, order); | |
2220 | } | |
2221 | } while (!table && size > PAGE_SIZE && --log2qty); | |
2222 | ||
2223 | if (!table) | |
2224 | panic("Failed to allocate %s hash table\n", tablename); | |
2225 | ||
2226 | printk("%s hash table entries: %d (order: %d, %lu bytes)\n", | |
2227 | tablename, | |
2228 | (1U << log2qty), | |
2229 | long_log2(size) - PAGE_SHIFT, | |
2230 | size); | |
2231 | ||
2232 | if (_hash_shift) | |
2233 | *_hash_shift = log2qty; | |
2234 | if (_hash_mask) | |
2235 | *_hash_mask = (1 << log2qty) - 1; | |
2236 | ||
2237 | return table; | |
2238 | } |