]> Git Repo - linux.git/blame - fs/btrfs/volumes.c
btrfs: scan but don't register device on single device filesystem
[linux.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
5a0e3ad6 8#include <linux/slab.h>
442a4f63 9#include <linux/ratelimit.h>
59641015 10#include <linux/kthread.h>
803b2f54 11#include <linux/semaphore.h>
8da4b8c4 12#include <linux/uuid.h>
f8e10cd3 13#include <linux/list_sort.h>
54fde91f 14#include <linux/namei.h>
784352fe 15#include "misc.h"
0b86a832
CM
16#include "ctree.h"
17#include "extent_map.h"
18#include "disk-io.h"
19#include "transaction.h"
20#include "print-tree.h"
21#include "volumes.h"
53b381b3 22#include "raid56.h"
606686ee 23#include "rcu-string.h"
8dabb742 24#include "dev-replace.h"
99994cde 25#include "sysfs.h"
82fc28fb 26#include "tree-checker.h"
8719aaae 27#include "space-info.h"
aac0023c 28#include "block-group.h"
b0643e59 29#include "discard.h"
5b316468 30#include "zoned.h"
c7f13d42 31#include "fs.h"
07e81dc9 32#include "accessors.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
7f0add25 37#include "super.h"
0b86a832 38
bf08387f
QW
39#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
40 BTRFS_BLOCK_GROUP_RAID10 | \
41 BTRFS_BLOCK_GROUP_RAID56_MASK)
42
af902047
ZL
43const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
44 [BTRFS_RAID_RAID10] = {
45 .sub_stripes = 2,
46 .dev_stripes = 1,
47 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 48 .devs_min = 2,
8789f4fe 49 .tolerated_failures = 1,
af902047
ZL
50 .devs_increment = 2,
51 .ncopies = 2,
b50836ed 52 .nparity = 0,
ed23467b 53 .raid_name = "raid10",
41a6e891 54 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 55 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
56 },
57 [BTRFS_RAID_RAID1] = {
58 .sub_stripes = 1,
59 .dev_stripes = 1,
60 .devs_max = 2,
61 .devs_min = 2,
8789f4fe 62 .tolerated_failures = 1,
af902047
ZL
63 .devs_increment = 2,
64 .ncopies = 2,
b50836ed 65 .nparity = 0,
ed23467b 66 .raid_name = "raid1",
41a6e891 67 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 68 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 69 },
47e6f742
DS
70 [BTRFS_RAID_RAID1C3] = {
71 .sub_stripes = 1,
72 .dev_stripes = 1,
cf93e15e 73 .devs_max = 3,
47e6f742
DS
74 .devs_min = 3,
75 .tolerated_failures = 2,
76 .devs_increment = 3,
77 .ncopies = 3,
db26a024 78 .nparity = 0,
47e6f742
DS
79 .raid_name = "raid1c3",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
81 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
82 },
8d6fac00
DS
83 [BTRFS_RAID_RAID1C4] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
cf93e15e 86 .devs_max = 4,
8d6fac00
DS
87 .devs_min = 4,
88 .tolerated_failures = 3,
89 .devs_increment = 4,
90 .ncopies = 4,
db26a024 91 .nparity = 0,
8d6fac00
DS
92 .raid_name = "raid1c4",
93 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
94 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
95 },
af902047
ZL
96 [BTRFS_RAID_DUP] = {
97 .sub_stripes = 1,
98 .dev_stripes = 2,
99 .devs_max = 1,
100 .devs_min = 1,
8789f4fe 101 .tolerated_failures = 0,
af902047
ZL
102 .devs_increment = 1,
103 .ncopies = 2,
b50836ed 104 .nparity = 0,
ed23467b 105 .raid_name = "dup",
41a6e891 106 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 107 .mindev_error = 0,
af902047
ZL
108 },
109 [BTRFS_RAID_RAID0] = {
110 .sub_stripes = 1,
111 .dev_stripes = 1,
112 .devs_max = 0,
b2f78e88 113 .devs_min = 1,
8789f4fe 114 .tolerated_failures = 0,
af902047
ZL
115 .devs_increment = 1,
116 .ncopies = 1,
b50836ed 117 .nparity = 0,
ed23467b 118 .raid_name = "raid0",
41a6e891 119 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 120 .mindev_error = 0,
af902047
ZL
121 },
122 [BTRFS_RAID_SINGLE] = {
123 .sub_stripes = 1,
124 .dev_stripes = 1,
125 .devs_max = 1,
126 .devs_min = 1,
8789f4fe 127 .tolerated_failures = 0,
af902047
ZL
128 .devs_increment = 1,
129 .ncopies = 1,
b50836ed 130 .nparity = 0,
ed23467b 131 .raid_name = "single",
41a6e891 132 .bg_flag = 0,
f9fbcaa2 133 .mindev_error = 0,
af902047
ZL
134 },
135 [BTRFS_RAID_RAID5] = {
136 .sub_stripes = 1,
137 .dev_stripes = 1,
138 .devs_max = 0,
139 .devs_min = 2,
8789f4fe 140 .tolerated_failures = 1,
af902047 141 .devs_increment = 1,
da612e31 142 .ncopies = 1,
b50836ed 143 .nparity = 1,
ed23467b 144 .raid_name = "raid5",
41a6e891 145 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 146 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
147 },
148 [BTRFS_RAID_RAID6] = {
149 .sub_stripes = 1,
150 .dev_stripes = 1,
151 .devs_max = 0,
152 .devs_min = 3,
8789f4fe 153 .tolerated_failures = 2,
af902047 154 .devs_increment = 1,
da612e31 155 .ncopies = 1,
b50836ed 156 .nparity = 2,
ed23467b 157 .raid_name = "raid6",
41a6e891 158 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 159 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
160 },
161};
162
500a44c9
DS
163/*
164 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
165 * can be used as index to access btrfs_raid_array[].
166 */
167enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
168{
719fae89 169 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
500a44c9 170
719fae89
QW
171 if (!profile)
172 return BTRFS_RAID_SINGLE;
173
174 return BTRFS_BG_FLAG_TO_INDEX(profile);
500a44c9
DS
175}
176
158da513 177const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 178{
158da513
DS
179 const int index = btrfs_bg_flags_to_raid_index(flags);
180
181 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
182 return NULL;
183
158da513 184 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
185}
186
0b30f719
QW
187int btrfs_nr_parity_stripes(u64 type)
188{
189 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
190
191 return btrfs_raid_array[index].nparity;
192}
193
f89e09cf
AJ
194/*
195 * Fill @buf with textual description of @bg_flags, no more than @size_buf
196 * bytes including terminating null byte.
197 */
198void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
199{
200 int i;
201 int ret;
202 char *bp = buf;
203 u64 flags = bg_flags;
204 u32 size_bp = size_buf;
205
206 if (!flags) {
207 strcpy(bp, "NONE");
208 return;
209 }
210
211#define DESCRIBE_FLAG(flag, desc) \
212 do { \
213 if (flags & (flag)) { \
214 ret = snprintf(bp, size_bp, "%s|", (desc)); \
215 if (ret < 0 || ret >= size_bp) \
216 goto out_overflow; \
217 size_bp -= ret; \
218 bp += ret; \
219 flags &= ~(flag); \
220 } \
221 } while (0)
222
223 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
224 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
225 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
226
227 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
228 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
229 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
230 btrfs_raid_array[i].raid_name);
231#undef DESCRIBE_FLAG
232
233 if (flags) {
234 ret = snprintf(bp, size_bp, "0x%llx|", flags);
235 size_bp -= ret;
236 }
237
238 if (size_bp < size_buf)
239 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
240
241 /*
242 * The text is trimmed, it's up to the caller to provide sufficiently
243 * large buffer
244 */
245out_overflow:;
246}
247
6f8e0fc7 248static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 249static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
733f4fbb 250static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
2b82032c 251
9c6b1c4d
DS
252/*
253 * Device locking
254 * ==============
255 *
256 * There are several mutexes that protect manipulation of devices and low-level
257 * structures like chunks but not block groups, extents or files
258 *
259 * uuid_mutex (global lock)
260 * ------------------------
261 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
262 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
263 * device) or requested by the device= mount option
264 *
265 * the mutex can be very coarse and can cover long-running operations
266 *
267 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 268 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
269 *
270 * global::fs_devs - add, remove, updates to the global list
271 *
18c850fd
JB
272 * does not protect: manipulation of the fs_devices::devices list in general
273 * but in mount context it could be used to exclude list modifications by eg.
274 * scan ioctl
9c6b1c4d
DS
275 *
276 * btrfs_device::name - renames (write side), read is RCU
277 *
278 * fs_devices::device_list_mutex (per-fs, with RCU)
279 * ------------------------------------------------
280 * protects updates to fs_devices::devices, ie. adding and deleting
281 *
282 * simple list traversal with read-only actions can be done with RCU protection
283 *
284 * may be used to exclude some operations from running concurrently without any
285 * modifications to the list (see write_all_supers)
286 *
18c850fd
JB
287 * Is not required at mount and close times, because our device list is
288 * protected by the uuid_mutex at that point.
289 *
9c6b1c4d
DS
290 * balance_mutex
291 * -------------
292 * protects balance structures (status, state) and context accessed from
293 * several places (internally, ioctl)
294 *
295 * chunk_mutex
296 * -----------
297 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
298 * device is added/removed. Additionally it also protects post_commit_list of
299 * individual devices, since they can be added to the transaction's
300 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
301 *
302 * cleaner_mutex
303 * -------------
304 * a big lock that is held by the cleaner thread and prevents running subvolume
305 * cleaning together with relocation or delayed iputs
306 *
307 *
308 * Lock nesting
309 * ============
310 *
311 * uuid_mutex
ae3e715f
AJ
312 * device_list_mutex
313 * chunk_mutex
314 * balance_mutex
89595e80
AJ
315 *
316 *
c3e1f96c
GR
317 * Exclusive operations
318 * ====================
89595e80
AJ
319 *
320 * Maintains the exclusivity of the following operations that apply to the
321 * whole filesystem and cannot run in parallel.
322 *
323 * - Balance (*)
324 * - Device add
325 * - Device remove
326 * - Device replace (*)
327 * - Resize
328 *
329 * The device operations (as above) can be in one of the following states:
330 *
331 * - Running state
332 * - Paused state
333 * - Completed state
334 *
335 * Only device operations marked with (*) can go into the Paused state for the
336 * following reasons:
337 *
338 * - ioctl (only Balance can be Paused through ioctl)
339 * - filesystem remounted as read-only
340 * - filesystem unmounted and mounted as read-only
341 * - system power-cycle and filesystem mounted as read-only
342 * - filesystem or device errors leading to forced read-only
343 *
c3e1f96c
GR
344 * The status of exclusive operation is set and cleared atomically.
345 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
346 * A device operation in Paused or Running state can be canceled or resumed
347 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 348 * The exclusive status is cleared when the device operation is canceled or
89595e80 349 * completed.
9c6b1c4d
DS
350 */
351
67a2c45e 352DEFINE_MUTEX(uuid_mutex);
8a4b83cc 353static LIST_HEAD(fs_uuids);
4143cb8b 354struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
355{
356 return &fs_uuids;
357}
8a4b83cc 358
2dfeca9b 359/*
f7361d8c
AJ
360 * Allocate new btrfs_fs_devices structure identified by a fsid.
361 *
362 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
363 * fs_devices::metadata_fsid
2dfeca9b
DS
364 *
365 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
366 * The returned struct is not linked onto any lists and can be destroyed with
367 * kfree() right away.
368 */
f7361d8c 369static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
2208a378
ID
370{
371 struct btrfs_fs_devices *fs_devs;
372
78f2c9e6 373 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
374 if (!fs_devs)
375 return ERR_PTR(-ENOMEM);
376
377 mutex_init(&fs_devs->device_list_mutex);
378
379 INIT_LIST_HEAD(&fs_devs->devices);
380 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 381 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 382 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378 383
19c4c49c
AJ
384 if (fsid) {
385 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
f7361d8c 386 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
19c4c49c 387 }
7239ff4b 388
2208a378
ID
389 return fs_devs;
390}
391
f2db4d5c 392static void btrfs_free_device(struct btrfs_device *device)
48dae9cf 393{
bbbf7243 394 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 395 rcu_string_free(device->name);
611ccc58 396 extent_io_tree_release(&device->alloc_state);
5b316468 397 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
398 kfree(device);
399}
400
e4404d6e
YZ
401static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
402{
403 struct btrfs_device *device;
5f58d783 404
e4404d6e
YZ
405 WARN_ON(fs_devices->opened);
406 while (!list_empty(&fs_devices->devices)) {
407 device = list_entry(fs_devices->devices.next,
408 struct btrfs_device, dev_list);
409 list_del(&device->dev_list);
a425f9d4 410 btrfs_free_device(device);
e4404d6e
YZ
411 }
412 kfree(fs_devices);
413}
414
ffc5a379 415void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
416{
417 struct btrfs_fs_devices *fs_devices;
8a4b83cc 418
2b82032c
YZ
419 while (!list_empty(&fs_uuids)) {
420 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
421 struct btrfs_fs_devices, fs_list);
422 list_del(&fs_devices->fs_list);
e4404d6e 423 free_fs_devices(fs_devices);
8a4b83cc 424 }
8a4b83cc
CM
425}
426
1a898345
AJ
427static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
428 const u8 *fsid, const u8 *metadata_fsid)
429{
430 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
431 return false;
432
433 if (!metadata_fsid)
434 return true;
435
436 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
437 return false;
438
439 return true;
440}
441
7239ff4b
NB
442static noinline struct btrfs_fs_devices *find_fsid(
443 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 444{
8a4b83cc
CM
445 struct btrfs_fs_devices *fs_devices;
446
7239ff4b
NB
447 ASSERT(fsid);
448
7a62d0f0 449 /* Handle non-split brain cases */
c4babc5e 450 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1a898345
AJ
451 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
452 return fs_devices;
8a4b83cc
CM
453 }
454 return NULL;
455}
456
a3c54b0b
AJ
457/*
458 * First check if the metadata_uuid is different from the fsid in the given
459 * fs_devices. Then check if the given fsid is the same as the metadata_uuid
460 * in the fs_devices. If it is, return true; otherwise, return false.
461 */
462static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices,
463 const u8 *fsid)
464{
465 return memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
466 BTRFS_FSID_SIZE) != 0 &&
467 memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0;
468}
469
c6730a0e
SY
470static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
471 struct btrfs_super_block *disk_super)
472{
473
474 struct btrfs_fs_devices *fs_devices;
475
476 /*
477 * Handle scanned device having completed its fsid change but
478 * belonging to a fs_devices that was created by first scanning
479 * a device which didn't have its fsid/metadata_uuid changed
480 * at all and the CHANGING_FSID_V2 flag set.
481 */
482 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1a898345
AJ
483 if (!fs_devices->fsid_change)
484 continue;
485
486 if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid,
487 fs_devices->fsid))
c6730a0e 488 return fs_devices;
c6730a0e 489 }
1a898345 490
c6730a0e
SY
491 /*
492 * Handle scanned device having completed its fsid change but
493 * belonging to a fs_devices that was created by a device that
494 * has an outdated pair of fsid/metadata_uuid and
495 * CHANGING_FSID_V2 flag set.
496 */
497 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
a3c54b0b
AJ
498 if (!fs_devices->fsid_change)
499 continue;
500
501 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid))
c6730a0e 502 return fs_devices;
c6730a0e
SY
503 }
504
505 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
506}
507
508
beaf8ab3 509static int
05bdb996 510btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
beaf8ab3 511 int flush, struct block_device **bdev,
8f32380d 512 struct btrfs_super_block **disk_super)
beaf8ab3
SB
513{
514 int ret;
515
0718afd4 516 *bdev = blkdev_get_by_path(device_path, flags, holder, NULL);
beaf8ab3
SB
517
518 if (IS_ERR(*bdev)) {
519 ret = PTR_ERR(*bdev);
beaf8ab3
SB
520 goto error;
521 }
522
523 if (flush)
1226dfff 524 sync_blockdev(*bdev);
9f6d2510 525 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3 526 if (ret) {
2736e8ee 527 blkdev_put(*bdev, holder);
beaf8ab3
SB
528 goto error;
529 }
530 invalidate_bdev(*bdev);
8f32380d
JT
531 *disk_super = btrfs_read_dev_super(*bdev);
532 if (IS_ERR(*disk_super)) {
533 ret = PTR_ERR(*disk_super);
2736e8ee 534 blkdev_put(*bdev, holder);
beaf8ab3
SB
535 goto error;
536 }
537
538 return 0;
539
540error:
541 *bdev = NULL;
beaf8ab3
SB
542 return ret;
543}
544
43dd529a
DS
545/*
546 * Search and remove all stale devices (which are not mounted). When both
547 * inputs are NULL, it will search and release all stale devices.
16cab91a 548 *
43dd529a
DS
549 * @devt: Optional. When provided will it release all unmounted devices
550 * matching this devt only.
16cab91a 551 * @skip_device: Optional. Will skip this device when searching for the stale
43dd529a 552 * devices.
16cab91a
AJ
553 *
554 * Return: 0 for success or if @devt is 0.
555 * -EBUSY if @devt is a mounted device.
556 * -ENOENT if @devt does not match any device in the list.
d8367db3 557 */
16cab91a 558static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
4fde46f0 559{
fa6d2ae5
AJ
560 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
561 struct btrfs_device *device, *tmp_device;
bc27d6f0
AJ
562 int ret;
563 bool freed = false;
70bc7088 564
c1247069
AJ
565 lockdep_assert_held(&uuid_mutex);
566
bc27d6f0
AJ
567 /* Return good status if there is no instance of devt. */
568 ret = 0;
fa6d2ae5 569 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 570
70bc7088 571 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
572 list_for_each_entry_safe(device, tmp_device,
573 &fs_devices->devices, dev_list) {
fa6d2ae5 574 if (skip_device && skip_device == device)
d8367db3 575 continue;
330a5bf4 576 if (devt && devt != device->devt)
38cf665d 577 continue;
70bc7088 578 if (fs_devices->opened) {
bc27d6f0 579 if (devt)
70bc7088
AJ
580 ret = -EBUSY;
581 break;
582 }
4fde46f0 583
4fde46f0 584 /* delete the stale device */
7bcb8164
AJ
585 fs_devices->num_devices--;
586 list_del(&device->dev_list);
587 btrfs_free_device(device);
588
bc27d6f0 589 freed = true;
7bcb8164
AJ
590 }
591 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 592
7bcb8164
AJ
593 if (fs_devices->num_devices == 0) {
594 btrfs_sysfs_remove_fsid(fs_devices);
595 list_del(&fs_devices->fs_list);
596 free_fs_devices(fs_devices);
4fde46f0
AJ
597 }
598 }
70bc7088 599
bc27d6f0
AJ
600 /* If there is at least one freed device return 0. */
601 if (freed)
602 return 0;
603
70bc7088 604 return ret;
4fde46f0
AJ
605}
606
18c850fd
JB
607/*
608 * This is only used on mount, and we are protected from competing things
609 * messing with our fs_devices by the uuid_mutex, thus we do not need the
610 * fs_devices->device_list_mutex here.
611 */
0fb08bcc 612static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
05bdb996 613 struct btrfs_device *device, blk_mode_t flags,
0fb08bcc
AJ
614 void *holder)
615{
0fb08bcc 616 struct block_device *bdev;
0fb08bcc
AJ
617 struct btrfs_super_block *disk_super;
618 u64 devid;
619 int ret;
620
621 if (device->bdev)
622 return -EINVAL;
623 if (!device->name)
624 return -EINVAL;
625
626 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 627 &bdev, &disk_super);
0fb08bcc
AJ
628 if (ret)
629 return ret;
630
0fb08bcc
AJ
631 devid = btrfs_stack_device_id(&disk_super->dev_item);
632 if (devid != device->devid)
8f32380d 633 goto error_free_page;
0fb08bcc
AJ
634
635 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 636 goto error_free_page;
0fb08bcc
AJ
637
638 device->generation = btrfs_super_generation(disk_super);
639
640 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
641 if (btrfs_super_incompat_flags(disk_super) &
642 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
643 pr_err(
644 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 645 goto error_free_page;
7239ff4b
NB
646 }
647
ebbede42 648 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 649 fs_devices->seeding = true;
0fb08bcc 650 } else {
ebbede42
AJ
651 if (bdev_read_only(bdev))
652 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
653 else
654 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
655 }
656
10f0d2a5 657 if (!bdev_nonrot(bdev))
7f0432d0 658 fs_devices->rotating = true;
0fb08bcc 659
63a7cb13
DS
660 if (bdev_max_discard_sectors(bdev))
661 fs_devices->discardable = true;
662
0fb08bcc 663 device->bdev = bdev;
e12c9621 664 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2736e8ee 665 device->holder = holder;
0fb08bcc
AJ
666
667 fs_devices->open_devices++;
ebbede42
AJ
668 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
669 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 670 fs_devices->rw_devices++;
b1b8e386 671 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 672 }
8f32380d 673 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
674
675 return 0;
676
8f32380d
JT
677error_free_page:
678 btrfs_release_disk_super(disk_super);
2736e8ee 679 blkdev_put(bdev, holder);
0fb08bcc
AJ
680
681 return -EINVAL;
682}
683
4844c366
AJ
684u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb)
685{
686 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
687 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
688
689 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
690}
691
7a62d0f0
NB
692/*
693 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
694 * being created with a disk that has already completed its fsid change. Such
695 * disk can belong to an fs which has its FSID changed or to one which doesn't.
696 * Handle both cases here.
7a62d0f0
NB
697 */
698static struct btrfs_fs_devices *find_fsid_inprogress(
699 struct btrfs_super_block *disk_super)
700{
701 struct btrfs_fs_devices *fs_devices;
702
703 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
a3c54b0b
AJ
704 if (fs_devices->fsid_change)
705 continue;
706
707 if (check_fsid_changed(fs_devices, disk_super->fsid))
7a62d0f0 708 return fs_devices;
7a62d0f0
NB
709 }
710
c0d81c7c 711 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
712}
713
cc5de4e7
NB
714static struct btrfs_fs_devices *find_fsid_changed(
715 struct btrfs_super_block *disk_super)
716{
717 struct btrfs_fs_devices *fs_devices;
718
719 /*
720 * Handles the case where scanned device is part of an fs that had
1a9fd417 721 * multiple successful changes of FSID but currently device didn't
05840710
NB
722 * observe it. Meaning our fsid will be different than theirs. We need
723 * to handle two subcases :
724 * 1 - The fs still continues to have different METADATA/FSID uuids.
725 * 2 - The fs is switched back to its original FSID (METADATA/FSID
726 * are equal).
cc5de4e7
NB
727 */
728 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 729 /* Changed UUIDs */
a3c54b0b 730 if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) &&
cc5de4e7 731 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
732 BTRFS_FSID_SIZE) != 0)
733 return fs_devices;
734
735 /* Unchanged UUIDs */
736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
737 BTRFS_FSID_SIZE) == 0 &&
738 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
739 BTRFS_FSID_SIZE) == 0)
cc5de4e7 740 return fs_devices;
cc5de4e7
NB
741 }
742
743 return NULL;
744}
1362089d
NB
745
746static struct btrfs_fs_devices *find_fsid_reverted_metadata(
747 struct btrfs_super_block *disk_super)
748{
749 struct btrfs_fs_devices *fs_devices;
750
751 /*
752 * Handle the case where the scanned device is part of an fs whose last
753 * metadata UUID change reverted it to the original FSID. At the same
67da05b3 754 * time fs_devices was first created by another constituent device
1362089d
NB
755 * which didn't fully observe the operation. This results in an
756 * btrfs_fs_devices created with metadata/fsid different AND
757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
758 * fs_devices equal to the FSID of the disk.
759 */
760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
a3c54b0b
AJ
761 if (!fs_devices->fsid_change)
762 continue;
763
764 if (check_fsid_changed(fs_devices, disk_super->fsid))
1362089d
NB
765 return fs_devices;
766 }
767
768 return NULL;
769}
60999ca4
DS
770/*
771 * Add new device to list of registered devices
772 *
773 * Returns:
e124ece5
AJ
774 * device pointer which was just added or updated when successful
775 * error pointer when failed
60999ca4 776 */
e124ece5 777static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
778 struct btrfs_super_block *disk_super,
779 bool *new_device_added)
8a4b83cc
CM
780{
781 struct btrfs_device *device;
7a62d0f0 782 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 783 struct rcu_string *name;
8a4b83cc 784 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 785 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
4889bc05
AJ
786 dev_t path_devt;
787 int error;
7239ff4b
NB
788 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
789 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
790 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
791 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 792
4889bc05 793 error = lookup_bdev(path, &path_devt);
ed02363f
QW
794 if (error) {
795 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
796 path, error);
4889bc05 797 return ERR_PTR(error);
ed02363f 798 }
4889bc05 799
cc5de4e7 800 if (fsid_change_in_progress) {
c0d81c7c 801 if (!has_metadata_uuid)
cc5de4e7 802 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 803 else
cc5de4e7 804 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 805 } else if (has_metadata_uuid) {
c6730a0e 806 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 807 } else {
1362089d
NB
808 fs_devices = find_fsid_reverted_metadata(disk_super);
809 if (!fs_devices)
810 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
811 }
812
8a4b83cc 813
8a4b83cc 814 if (!fs_devices) {
f7361d8c
AJ
815 fs_devices = alloc_fs_devices(disk_super->fsid);
816 if (has_metadata_uuid)
817 memcpy(fs_devices->metadata_uuid,
818 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
819
2208a378 820 if (IS_ERR(fs_devices))
e124ece5 821 return ERR_CAST(fs_devices);
2208a378 822
92900e51
AV
823 fs_devices->fsid_change = fsid_change_in_progress;
824
9c6d173e 825 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 826 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 827
8a4b83cc
CM
828 device = NULL;
829 } else {
562d7b15
JB
830 struct btrfs_dev_lookup_args args = {
831 .devid = devid,
832 .uuid = disk_super->dev_item.uuid,
833 };
834
9c6d173e 835 mutex_lock(&fs_devices->device_list_mutex);
562d7b15 836 device = btrfs_find_device(fs_devices, &args);
7a62d0f0
NB
837
838 /*
839 * If this disk has been pulled into an fs devices created by
840 * a device which had the CHANGING_FSID_V2 flag then replace the
841 * metadata_uuid/fsid values of the fs_devices.
842 */
1362089d 843 if (fs_devices->fsid_change &&
7a62d0f0
NB
844 found_transid > fs_devices->latest_generation) {
845 memcpy(fs_devices->fsid, disk_super->fsid,
846 BTRFS_FSID_SIZE);
319baafc
AJ
847 memcpy(fs_devices->metadata_uuid,
848 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
7a62d0f0
NB
849 fs_devices->fsid_change = false;
850 }
8a4b83cc 851 }
443f24fe 852
8a4b83cc 853 if (!device) {
bb21e302
AJ
854 unsigned int nofs_flag;
855
9c6d173e 856 if (fs_devices->opened) {
ed02363f 857 btrfs_err(NULL,
7f9879eb
AJ
858"device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
859 path, fs_devices->fsid, current->comm,
860 task_pid_nr(current));
9c6d173e 861 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 862 return ERR_PTR(-EBUSY);
9c6d173e 863 }
2b82032c 864
bb21e302 865 nofs_flag = memalloc_nofs_save();
12bd2fc0 866 device = btrfs_alloc_device(NULL, &devid,
bb21e302
AJ
867 disk_super->dev_item.uuid, path);
868 memalloc_nofs_restore(nofs_flag);
12bd2fc0 869 if (IS_ERR(device)) {
9c6d173e 870 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 871 /* we can safely leave the fs_devices entry around */
e124ece5 872 return device;
8a4b83cc 873 }
606686ee 874
4889bc05 875 device->devt = path_devt;
90519d66 876
1f78160c 877 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 878 fs_devices->num_devices++;
e5e9a520 879
2b82032c 880 device->fs_devices = fs_devices;
4306a974 881 *new_device_added = true;
327f18cc
AJ
882
883 if (disk_super->label[0])
aa6c0df7
AJ
884 pr_info(
885 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
886 disk_super->label, devid, found_transid, path,
887 current->comm, task_pid_nr(current));
327f18cc 888 else
aa6c0df7
AJ
889 pr_info(
890 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
891 disk_super->fsid, devid, found_transid, path,
892 current->comm, task_pid_nr(current));
327f18cc 893
606686ee 894 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
895 /*
896 * When FS is already mounted.
897 * 1. If you are here and if the device->name is NULL that
898 * means this device was missing at time of FS mount.
899 * 2. If you are here and if the device->name is different
900 * from 'path' that means either
901 * a. The same device disappeared and reappeared with
902 * different name. or
903 * b. The missing-disk-which-was-replaced, has
904 * reappeared now.
905 *
906 * We must allow 1 and 2a above. But 2b would be a spurious
907 * and unintentional.
908 *
909 * Further in case of 1 and 2a above, the disk at 'path'
910 * would have missed some transaction when it was away and
911 * in case of 2a the stale bdev has to be updated as well.
912 * 2b must not be allowed at all time.
913 */
914
915 /*
0f23ae74
CM
916 * For now, we do allow update to btrfs_fs_device through the
917 * btrfs dev scan cli after FS has been mounted. We're still
918 * tracking a problem where systems fail mount by subvolume id
919 * when we reject replacement on a mounted FS.
b96de000 920 */
0f23ae74 921 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
922 /*
923 * That is if the FS is _not_ mounted and if you
924 * are here, that means there is more than one
925 * disk with same uuid and devid.We keep the one
926 * with larger generation number or the last-in if
927 * generation are equal.
928 */
9c6d173e 929 mutex_unlock(&fs_devices->device_list_mutex);
ed02363f
QW
930 btrfs_err(NULL,
931"device %s already registered with a higher generation, found %llu expect %llu",
932 path, found_transid, device->generation);
e124ece5 933 return ERR_PTR(-EEXIST);
77bdae4d 934 }
b96de000 935
a9261d41
AJ
936 /*
937 * We are going to replace the device path for a given devid,
938 * make sure it's the same device if the device is mounted
79c9234b
DM
939 *
940 * NOTE: the device->fs_info may not be reliable here so pass
941 * in a NULL to message helpers instead. This avoids a possible
942 * use-after-free when the fs_info and fs_info->sb are already
943 * torn down.
a9261d41
AJ
944 */
945 if (device->bdev) {
4889bc05 946 if (device->devt != path_devt) {
a9261d41 947 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6 948 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
949 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
950 path, devid, found_transid,
951 current->comm,
952 task_pid_nr(current));
a9261d41
AJ
953 return ERR_PTR(-EEXIST);
954 }
79c9234b 955 btrfs_info_in_rcu(NULL,
79dae17d 956 "devid %llu device path %s changed to %s scanned by %s (%d)",
cb3e217b 957 devid, btrfs_dev_name(device),
79dae17d
AJ
958 path, current->comm,
959 task_pid_nr(current));
a9261d41
AJ
960 }
961
606686ee 962 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
963 if (!name) {
964 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 965 return ERR_PTR(-ENOMEM);
9c6d173e 966 }
606686ee
JB
967 rcu_string_free(device->name);
968 rcu_assign_pointer(device->name, name);
e6e674bd 969 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 970 fs_devices->missing_devices--;
e6e674bd 971 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 972 }
4889bc05 973 device->devt = path_devt;
8a4b83cc
CM
974 }
975
77bdae4d
AJ
976 /*
977 * Unmount does not free the btrfs_device struct but would zero
978 * generation along with most of the other members. So just update
979 * it back. We need it to pick the disk with largest generation
980 * (as above).
981 */
d1a63002 982 if (!fs_devices->opened) {
77bdae4d 983 device->generation = found_transid;
d1a63002
NB
984 fs_devices->latest_generation = max_t(u64, found_transid,
985 fs_devices->latest_generation);
986 }
77bdae4d 987
f2788d2f
AJ
988 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
989
9c6d173e 990 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 991 return device;
8a4b83cc
CM
992}
993
e4404d6e
YZ
994static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
995{
996 struct btrfs_fs_devices *fs_devices;
997 struct btrfs_device *device;
998 struct btrfs_device *orig_dev;
d2979aa2 999 int ret = 0;
e4404d6e 1000
c1247069
AJ
1001 lockdep_assert_held(&uuid_mutex);
1002
f7361d8c 1003 fs_devices = alloc_fs_devices(orig->fsid);
2208a378
ID
1004 if (IS_ERR(fs_devices))
1005 return fs_devices;
e4404d6e 1006
02db0844 1007 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
1008
1009 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
bb21e302
AJ
1010 const char *dev_path = NULL;
1011
1012 /*
1013 * This is ok to do without RCU read locked because we hold the
1014 * uuid mutex so nothing we touch in here is going to disappear.
1015 */
1016 if (orig_dev->name)
1017 dev_path = orig_dev->name->str;
606686ee 1018
12bd2fc0 1019 device = btrfs_alloc_device(NULL, &orig_dev->devid,
bb21e302 1020 orig_dev->uuid, dev_path);
d2979aa2
AJ
1021 if (IS_ERR(device)) {
1022 ret = PTR_ERR(device);
e4404d6e 1023 goto error;
d2979aa2 1024 }
e4404d6e 1025
21e61ec6
JT
1026 if (orig_dev->zone_info) {
1027 struct btrfs_zoned_device_info *zone_info;
1028
1029 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1030 if (!zone_info) {
1031 btrfs_free_device(device);
1032 ret = -ENOMEM;
1033 goto error;
1034 }
1035 device->zone_info = zone_info;
1036 }
1037
e4404d6e
YZ
1038 list_add(&device->dev_list, &fs_devices->devices);
1039 device->fs_devices = fs_devices;
1040 fs_devices->num_devices++;
1041 }
1042 return fs_devices;
1043error:
1044 free_fs_devices(fs_devices);
d2979aa2 1045 return ERR_PTR(ret);
e4404d6e
YZ
1046}
1047
3712ccb7 1048static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1049 struct btrfs_device **latest_dev)
dfe25020 1050{
c6e30871 1051 struct btrfs_device *device, *next;
a6b0d5c8 1052
46224705 1053 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1054 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1055 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1056 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1057 &device->dev_state) &&
998a0671
AJ
1058 !test_bit(BTRFS_DEV_STATE_MISSING,
1059 &device->dev_state) &&
3712ccb7
NB
1060 (!*latest_dev ||
1061 device->generation > (*latest_dev)->generation)) {
1062 *latest_dev = device;
a6b0d5c8 1063 }
2b82032c 1064 continue;
a6b0d5c8 1065 }
2b82032c 1066
cf89af14
AJ
1067 /*
1068 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1069 * in btrfs_init_dev_replace() so just continue.
1070 */
1071 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1072 continue;
1073
2b82032c 1074 if (device->bdev) {
2736e8ee 1075 blkdev_put(device->bdev, device->holder);
2b82032c
YZ
1076 device->bdev = NULL;
1077 fs_devices->open_devices--;
1078 }
ebbede42 1079 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1080 list_del_init(&device->dev_alloc_list);
ebbede42 1081 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1082 fs_devices->rw_devices--;
2b82032c 1083 }
e4404d6e
YZ
1084 list_del_init(&device->dev_list);
1085 fs_devices->num_devices--;
a425f9d4 1086 btrfs_free_device(device);
dfe25020 1087 }
2b82032c 1088
3712ccb7
NB
1089}
1090
1091/*
1092 * After we have read the system tree and know devids belonging to this
1093 * filesystem, remove the device which does not belong there.
1094 */
bacce86a 1095void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1096{
1097 struct btrfs_device *latest_dev = NULL;
944d3f9f 1098 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1099
1100 mutex_lock(&uuid_mutex);
bacce86a 1101 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1102
1103 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1104 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1105
d24fa5c1 1106 fs_devices->latest_dev = latest_dev;
a6b0d5c8 1107
dfe25020 1108 mutex_unlock(&uuid_mutex);
dfe25020 1109}
a0af469b 1110
14238819
AJ
1111static void btrfs_close_bdev(struct btrfs_device *device)
1112{
08ffcae8
DS
1113 if (!device->bdev)
1114 return;
1115
ebbede42 1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1117 sync_blockdev(device->bdev);
1118 invalidate_bdev(device->bdev);
1119 }
1120
2736e8ee 1121 blkdev_put(device->bdev, device->holder);
14238819
AJ
1122}
1123
959b1c04 1124static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1125{
1126 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1127
ebbede42 1128 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1129 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1130 list_del_init(&device->dev_alloc_list);
1131 fs_devices->rw_devices--;
1132 }
1133
0d977e0e
DCZX
1134 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1135 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1136
5d03dbeb
LZ
1137 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1138 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
f448341a 1139 fs_devices->missing_devices--;
5d03dbeb 1140 }
f448341a 1141
959b1c04 1142 btrfs_close_bdev(device);
321f69f8 1143 if (device->bdev) {
3fff3975 1144 fs_devices->open_devices--;
321f69f8 1145 device->bdev = NULL;
f448341a 1146 }
321f69f8 1147 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1148 btrfs_destroy_dev_zone_info(device);
f448341a 1149
321f69f8
JT
1150 device->fs_info = NULL;
1151 atomic_set(&device->dev_stats_ccnt, 0);
1152 extent_io_tree_release(&device->alloc_state);
959b1c04 1153
6b225baa
FM
1154 /*
1155 * Reset the flush error record. We might have a transient flush error
1156 * in this mount, and if so we aborted the current transaction and set
1157 * the fs to an error state, guaranteeing no super blocks can be further
1158 * committed. However that error might be transient and if we unmount the
1159 * filesystem and mount it again, we should allow the mount to succeed
1160 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1161 * filesystem again we still get flush errors, then we will again abort
1162 * any transaction and set the error state, guaranteeing no commits of
1163 * unsafe super blocks.
1164 */
1165 device->last_flush_error = 0;
1166
321f69f8 1167 /* Verify the device is back in a pristine state */
1f16033c
AJ
1168 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1169 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1170 WARN_ON(!list_empty(&device->dev_alloc_list));
1171 WARN_ON(!list_empty(&device->post_commit_list));
f448341a
AJ
1172}
1173
54eed6ae 1174static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1175{
2037a093 1176 struct btrfs_device *device, *tmp;
e4404d6e 1177
425c6ed6
JB
1178 lockdep_assert_held(&uuid_mutex);
1179
2b82032c 1180 if (--fs_devices->opened > 0)
54eed6ae 1181 return;
8a4b83cc 1182
425c6ed6 1183 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1184 btrfs_close_one_device(device);
c9513edb 1185
e4404d6e
YZ
1186 WARN_ON(fs_devices->open_devices);
1187 WARN_ON(fs_devices->rw_devices);
2b82032c 1188 fs_devices->opened = 0;
0395d84f 1189 fs_devices->seeding = false;
c4989c2f 1190 fs_devices->fs_info = NULL;
8a4b83cc
CM
1191}
1192
54eed6ae 1193void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1194{
944d3f9f
NB
1195 LIST_HEAD(list);
1196 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1197
1198 mutex_lock(&uuid_mutex);
54eed6ae 1199 close_fs_devices(fs_devices);
5f58d783 1200 if (!fs_devices->opened) {
944d3f9f 1201 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1202
5f58d783
AJ
1203 /*
1204 * If the struct btrfs_fs_devices is not assembled with any
1205 * other device, it can be re-initialized during the next mount
1206 * without the needing device-scan step. Therefore, it can be
1207 * fully freed.
1208 */
1209 if (fs_devices->num_devices == 1) {
1210 list_del(&fs_devices->fs_list);
1211 free_fs_devices(fs_devices);
1212 }
1213 }
1214
1215
944d3f9f 1216 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1217 close_fs_devices(fs_devices);
944d3f9f 1218 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1219 free_fs_devices(fs_devices);
1220 }
425c6ed6 1221 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1222}
1223
897fb573 1224static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
05bdb996 1225 blk_mode_t flags, void *holder)
8a4b83cc 1226{
8a4b83cc 1227 struct btrfs_device *device;
443f24fe 1228 struct btrfs_device *latest_dev = NULL;
96c2e067 1229 struct btrfs_device *tmp_device;
8a4b83cc 1230
96c2e067
AJ
1231 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1232 dev_list) {
1233 int ret;
a0af469b 1234
96c2e067
AJ
1235 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1236 if (ret == 0 &&
1237 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1238 latest_dev = device;
96c2e067
AJ
1239 } else if (ret == -ENODATA) {
1240 fs_devices->num_devices--;
1241 list_del(&device->dev_list);
1242 btrfs_free_device(device);
1243 }
8a4b83cc 1244 }
1ed802c9
AJ
1245 if (fs_devices->open_devices == 0)
1246 return -EINVAL;
1247
2b82032c 1248 fs_devices->opened = 1;
d24fa5c1 1249 fs_devices->latest_dev = latest_dev;
2b82032c 1250 fs_devices->total_rw_bytes = 0;
c4a816c6 1251 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1252 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1253
1254 return 0;
2b82032c
YZ
1255}
1256
4f0f586b
ST
1257static int devid_cmp(void *priv, const struct list_head *a,
1258 const struct list_head *b)
f8e10cd3 1259{
214cc184 1260 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1261
1262 dev1 = list_entry(a, struct btrfs_device, dev_list);
1263 dev2 = list_entry(b, struct btrfs_device, dev_list);
1264
1265 if (dev1->devid < dev2->devid)
1266 return -1;
1267 else if (dev1->devid > dev2->devid)
1268 return 1;
1269 return 0;
1270}
1271
2b82032c 1272int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
05bdb996 1273 blk_mode_t flags, void *holder)
2b82032c
YZ
1274{
1275 int ret;
1276
f5194e34 1277 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1278 /*
1279 * The device_list_mutex cannot be taken here in case opening the
a8698707 1280 * underlying device takes further locks like open_mutex.
18c850fd
JB
1281 *
1282 * We also don't need the lock here as this is called during mount and
1283 * exclusion is provided by uuid_mutex
1284 */
f5194e34 1285
2b82032c 1286 if (fs_devices->opened) {
e4404d6e
YZ
1287 fs_devices->opened++;
1288 ret = 0;
2b82032c 1289 } else {
f8e10cd3 1290 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1291 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1292 }
542c5908 1293
8a4b83cc
CM
1294 return ret;
1295}
1296
8f32380d 1297void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1298{
8f32380d
JT
1299 struct page *page = virt_to_page(super);
1300
6cf86a00
AJ
1301 put_page(page);
1302}
1303
b335eab8 1304static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1305 u64 bytenr, u64 bytenr_orig)
6cf86a00 1306{
b335eab8
NB
1307 struct btrfs_super_block *disk_super;
1308 struct page *page;
6cf86a00
AJ
1309 void *p;
1310 pgoff_t index;
1311
1312 /* make sure our super fits in the device */
cda00eba 1313 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
b335eab8 1314 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1315
1316 /* make sure our super fits in the page */
b335eab8
NB
1317 if (sizeof(*disk_super) > PAGE_SIZE)
1318 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1319
1320 /* make sure our super doesn't straddle pages on disk */
1321 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1322 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1323 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1324
1325 /* pull in the page with our super */
b335eab8 1326 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1327
b335eab8
NB
1328 if (IS_ERR(page))
1329 return ERR_CAST(page);
6cf86a00 1330
b335eab8 1331 p = page_address(page);
6cf86a00
AJ
1332
1333 /* align our pointer to the offset of the super block */
b335eab8 1334 disk_super = p + offset_in_page(bytenr);
6cf86a00 1335
12659251 1336 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1337 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1338 btrfs_release_disk_super(p);
b335eab8 1339 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1340 }
1341
b335eab8
NB
1342 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1343 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1344
b335eab8 1345 return disk_super;
6cf86a00
AJ
1346}
1347
16cab91a 1348int btrfs_forget_devices(dev_t devt)
228a73ab
AJ
1349{
1350 int ret;
1351
1352 mutex_lock(&uuid_mutex);
16cab91a 1353 ret = btrfs_free_stale_devices(devt, NULL);
228a73ab
AJ
1354 mutex_unlock(&uuid_mutex);
1355
1356 return ret;
1357}
1358
6f60cbd3
DS
1359/*
1360 * Look for a btrfs signature on a device. This may be called out of the mount path
1361 * and we are not allowed to call set_blocksize during the scan. The superblock
bc27d6f0
AJ
1362 * is read via pagecache.
1363 *
1364 * With @mount_arg_dev it's a scan during mount time that will always register
1365 * the device or return an error. Multi-device and seeding devices are registered
1366 * in both cases.
6f60cbd3 1367 */
bc27d6f0
AJ
1368struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags,
1369 bool mount_arg_dev)
8a4b83cc
CM
1370{
1371 struct btrfs_super_block *disk_super;
4306a974 1372 bool new_device_added = false;
36350e95 1373 struct btrfs_device *device = NULL;
8a4b83cc 1374 struct block_device *bdev;
12659251
NA
1375 u64 bytenr, bytenr_orig;
1376 int ret;
8a4b83cc 1377
899f9307
DS
1378 lockdep_assert_held(&uuid_mutex);
1379
6f60cbd3
DS
1380 /*
1381 * we would like to check all the supers, but that would make
1382 * a btrfs mount succeed after a mkfs from a different FS.
1383 * So, we need to add a special mount option to scan for
1384 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1385 */
6f60cbd3 1386
50d281fc 1387 /*
2ef78928
CH
1388 * Avoid an exclusive open here, as the systemd-udev may initiate the
1389 * device scan which may race with the user's mount or mkfs command,
1390 * resulting in failure.
1391 * Since the device scan is solely for reading purposes, there is no
1392 * need for an exclusive open. Additionally, the devices are read again
50d281fc
AJ
1393 * during the mount process. It is ok to get some inconsistent
1394 * values temporarily, as the device paths of the fsid are the only
1395 * required information for assembling the volume.
1396 */
2ef78928 1397 bdev = blkdev_get_by_path(path, flags, NULL, NULL);
b6ed73bc 1398 if (IS_ERR(bdev))
36350e95 1399 return ERR_CAST(bdev);
6f60cbd3 1400
12659251
NA
1401 bytenr_orig = btrfs_sb_offset(0);
1402 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
4989d4a0
SK
1403 if (ret) {
1404 device = ERR_PTR(ret);
1405 goto error_bdev_put;
1406 }
12659251
NA
1407
1408 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1409 if (IS_ERR(disk_super)) {
1410 device = ERR_CAST(disk_super);
6f60cbd3 1411 goto error_bdev_put;
05a5c55d 1412 }
6f60cbd3 1413
bc27d6f0
AJ
1414 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1415 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)) {
1416 dev_t devt;
1417
1418 ret = lookup_bdev(path, &devt);
1419 if (ret)
1420 btrfs_warn(NULL, "lookup bdev failed for path %s: %d",
1421 path, ret);
1422 else
1423 btrfs_free_stale_devices(devt, NULL);
1424
1425 pr_debug("BTRFS: skip registering single non-seed device %s\n", path);
1426 device = NULL;
1427 goto free_disk_super;
1428 }
1429
4306a974 1430 device = device_list_add(path, disk_super, &new_device_added);
4889bc05
AJ
1431 if (!IS_ERR(device) && new_device_added)
1432 btrfs_free_stale_devices(device->devt, device);
6f60cbd3 1433
bc27d6f0 1434free_disk_super:
8f32380d 1435 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1436
1437error_bdev_put:
2736e8ee 1438 blkdev_put(bdev, NULL);
b6ed73bc 1439
36350e95 1440 return device;
8a4b83cc 1441}
0b86a832 1442
1c11b63e
JM
1443/*
1444 * Try to find a chunk that intersects [start, start + len] range and when one
1445 * such is found, record the end of it in *start
1446 */
1c11b63e
JM
1447static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1448 u64 len)
6df9a95e 1449{
1c11b63e 1450 u64 physical_start, physical_end;
6df9a95e 1451
1c11b63e 1452 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1453
e5860f82
FM
1454 if (find_first_extent_bit(&device->alloc_state, *start,
1455 &physical_start, &physical_end,
1456 CHUNK_ALLOCATED, NULL)) {
c152b63e 1457
1c11b63e
JM
1458 if (in_range(physical_start, *start, len) ||
1459 in_range(*start, physical_start,
1460 physical_end - physical_start)) {
1461 *start = physical_end + 1;
1462 return true;
6df9a95e
JB
1463 }
1464 }
1c11b63e 1465 return false;
6df9a95e
JB
1466}
1467
ed8947bc 1468static u64 dev_extent_search_start(struct btrfs_device *device)
3b4ffa40
NA
1469{
1470 switch (device->fs_devices->chunk_alloc_policy) {
1471 case BTRFS_CHUNK_ALLOC_REGULAR:
ed8947bc 1472 return BTRFS_DEVICE_RANGE_RESERVED;
1cd6121f
NA
1473 case BTRFS_CHUNK_ALLOC_ZONED:
1474 /*
1475 * We don't care about the starting region like regular
1476 * allocator, because we anyway use/reserve the first two zones
1477 * for superblock logging.
1478 */
ed8947bc 1479 return 0;
3b4ffa40
NA
1480 default:
1481 BUG();
1482 }
1483}
1484
1cd6121f
NA
1485static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1486 u64 *hole_start, u64 *hole_size,
1487 u64 num_bytes)
1488{
1489 u64 zone_size = device->zone_info->zone_size;
1490 u64 pos;
1491 int ret;
1492 bool changed = false;
1493
1494 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1495
1496 while (*hole_size > 0) {
1497 pos = btrfs_find_allocatable_zones(device, *hole_start,
1498 *hole_start + *hole_size,
1499 num_bytes);
1500 if (pos != *hole_start) {
1501 *hole_size = *hole_start + *hole_size - pos;
1502 *hole_start = pos;
1503 changed = true;
1504 if (*hole_size < num_bytes)
1505 break;
1506 }
1507
1508 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1509
1510 /* Range is ensured to be empty */
1511 if (!ret)
1512 return changed;
1513
1514 /* Given hole range was invalid (outside of device) */
1515 if (ret == -ERANGE) {
1516 *hole_start += *hole_size;
d6f67afb 1517 *hole_size = 0;
7000babd 1518 return true;
1cd6121f
NA
1519 }
1520
1521 *hole_start += zone_size;
1522 *hole_size -= zone_size;
1523 changed = true;
1524 }
1525
1526 return changed;
1527}
1528
43dd529a
DS
1529/*
1530 * Check if specified hole is suitable for allocation.
1531 *
3b4ffa40
NA
1532 * @device: the device which we have the hole
1533 * @hole_start: starting position of the hole
1534 * @hole_size: the size of the hole
1535 * @num_bytes: the size of the free space that we need
1536 *
1cd6121f 1537 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1538 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1539 */
1540static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1541 u64 *hole_size, u64 num_bytes)
1542{
1543 bool changed = false;
1544 u64 hole_end = *hole_start + *hole_size;
1545
1cd6121f
NA
1546 for (;;) {
1547 /*
1548 * Check before we set max_hole_start, otherwise we could end up
1549 * sending back this offset anyway.
1550 */
1551 if (contains_pending_extent(device, hole_start, *hole_size)) {
1552 if (hole_end >= *hole_start)
1553 *hole_size = hole_end - *hole_start;
1554 else
1555 *hole_size = 0;
1556 changed = true;
1557 }
1558
1559 switch (device->fs_devices->chunk_alloc_policy) {
1560 case BTRFS_CHUNK_ALLOC_REGULAR:
1561 /* No extra check */
1562 break;
1563 case BTRFS_CHUNK_ALLOC_ZONED:
1564 if (dev_extent_hole_check_zoned(device, hole_start,
1565 hole_size, num_bytes)) {
1566 changed = true;
1567 /*
1568 * The changed hole can contain pending extent.
1569 * Loop again to check that.
1570 */
1571 continue;
1572 }
1573 break;
1574 default:
1575 BUG();
1576 }
3b4ffa40 1577
3b4ffa40 1578 break;
3b4ffa40
NA
1579 }
1580
1581 return changed;
1582}
6df9a95e 1583
0b86a832 1584/*
43dd529a
DS
1585 * Find free space in the specified device.
1586 *
499f377f
JM
1587 * @device: the device which we search the free space in
1588 * @num_bytes: the size of the free space that we need
1589 * @search_start: the position from which to begin the search
1590 * @start: store the start of the free space.
1591 * @len: the size of the free space. that we find, or the size
1592 * of the max free space if we don't find suitable free space
7bfc837d 1593 *
43dd529a
DS
1594 * This does a pretty simple search, the expectation is that it is called very
1595 * infrequently and that a given device has a small number of extents.
7bfc837d
MX
1596 *
1597 * @start is used to store the start of the free space if we find. But if we
1598 * don't find suitable free space, it will be used to store the start position
1599 * of the max free space.
1600 *
1601 * @len is used to store the size of the free space that we find.
1602 * But if we don't find suitable free space, it is used to store the size of
1603 * the max free space.
135da976
QW
1604 *
1605 * NOTE: This function will search *commit* root of device tree, and does extra
1606 * check to ensure dev extents are not double allocated.
1607 * This makes the function safe to allocate dev extents but may not report
1608 * correct usable device space, as device extent freed in current transaction
1a9fd417 1609 * is not reported as available.
0b86a832 1610 */
ed8947bc
FM
1611static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1612 u64 *start, u64 *len)
0b86a832 1613{
0b246afa
JM
1614 struct btrfs_fs_info *fs_info = device->fs_info;
1615 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1616 struct btrfs_key key;
7bfc837d 1617 struct btrfs_dev_extent *dev_extent;
2b82032c 1618 struct btrfs_path *path;
ed8947bc 1619 u64 search_start;
7bfc837d
MX
1620 u64 hole_size;
1621 u64 max_hole_start;
20218dfb 1622 u64 max_hole_size = 0;
7bfc837d 1623 u64 extent_end;
0b86a832
CM
1624 u64 search_end = device->total_bytes;
1625 int ret;
7bfc837d 1626 int slot;
0b86a832 1627 struct extent_buffer *l;
8cdc7c5b 1628
ed8947bc 1629 search_start = dev_extent_search_start(device);
20218dfb 1630 max_hole_start = search_start;
0b86a832 1631
1cd6121f
NA
1632 WARN_ON(device->zone_info &&
1633 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1634
6df9a95e 1635 path = btrfs_alloc_path();
20218dfb
JB
1636 if (!path) {
1637 ret = -ENOMEM;
1638 goto out;
1639 }
f2ab7618 1640again:
401e29c1
AJ
1641 if (search_start >= search_end ||
1642 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1643 ret = -ENOSPC;
6df9a95e 1644 goto out;
7bfc837d
MX
1645 }
1646
e4058b54 1647 path->reada = READA_FORWARD;
6df9a95e
JB
1648 path->search_commit_root = 1;
1649 path->skip_locking = 1;
7bfc837d 1650
0b86a832
CM
1651 key.objectid = device->devid;
1652 key.offset = search_start;
1653 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1654
0ff40a91 1655 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1656 if (ret < 0)
7bfc837d 1657 goto out;
7bfc837d 1658
3c538de0 1659 while (search_start < search_end) {
0b86a832
CM
1660 l = path->nodes[0];
1661 slot = path->slots[0];
1662 if (slot >= btrfs_header_nritems(l)) {
1663 ret = btrfs_next_leaf(root, path);
1664 if (ret == 0)
1665 continue;
1666 if (ret < 0)
7bfc837d
MX
1667 goto out;
1668
1669 break;
0b86a832
CM
1670 }
1671 btrfs_item_key_to_cpu(l, &key, slot);
1672
1673 if (key.objectid < device->devid)
1674 goto next;
1675
1676 if (key.objectid > device->devid)
7bfc837d 1677 break;
0b86a832 1678
962a298f 1679 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1680 goto next;
9779b72f 1681
3c538de0
JB
1682 if (key.offset > search_end)
1683 break;
1684
7bfc837d
MX
1685 if (key.offset > search_start) {
1686 hole_size = key.offset - search_start;
3b4ffa40
NA
1687 dev_extent_hole_check(device, &search_start, &hole_size,
1688 num_bytes);
6df9a95e 1689
7bfc837d
MX
1690 if (hole_size > max_hole_size) {
1691 max_hole_start = search_start;
1692 max_hole_size = hole_size;
1693 }
9779b72f 1694
7bfc837d
MX
1695 /*
1696 * If this free space is greater than which we need,
1697 * it must be the max free space that we have found
1698 * until now, so max_hole_start must point to the start
1699 * of this free space and the length of this free space
1700 * is stored in max_hole_size. Thus, we return
1701 * max_hole_start and max_hole_size and go back to the
1702 * caller.
1703 */
1704 if (hole_size >= num_bytes) {
1705 ret = 0;
1706 goto out;
0b86a832
CM
1707 }
1708 }
0b86a832 1709
0b86a832 1710 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1711 extent_end = key.offset + btrfs_dev_extent_length(l,
1712 dev_extent);
1713 if (extent_end > search_start)
1714 search_start = extent_end;
0b86a832
CM
1715next:
1716 path->slots[0]++;
1717 cond_resched();
1718 }
0b86a832 1719
38c01b96 1720 /*
1721 * At this point, search_start should be the end of
1722 * allocated dev extents, and when shrinking the device,
1723 * search_end may be smaller than search_start.
1724 */
f2ab7618 1725 if (search_end > search_start) {
38c01b96 1726 hole_size = search_end - search_start;
3b4ffa40
NA
1727 if (dev_extent_hole_check(device, &search_start, &hole_size,
1728 num_bytes)) {
f2ab7618
ZL
1729 btrfs_release_path(path);
1730 goto again;
1731 }
0b86a832 1732
f2ab7618
ZL
1733 if (hole_size > max_hole_size) {
1734 max_hole_start = search_start;
1735 max_hole_size = hole_size;
1736 }
6df9a95e
JB
1737 }
1738
7bfc837d 1739 /* See above. */
f2ab7618 1740 if (max_hole_size < num_bytes)
7bfc837d
MX
1741 ret = -ENOSPC;
1742 else
1743 ret = 0;
1744
3c538de0 1745 ASSERT(max_hole_start + max_hole_size <= search_end);
7bfc837d 1746out:
2b82032c 1747 btrfs_free_path(path);
7bfc837d 1748 *start = max_hole_start;
b2117a39 1749 if (len)
7bfc837d 1750 *len = max_hole_size;
0b86a832
CM
1751 return ret;
1752}
1753
b2950863 1754static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1755 struct btrfs_device *device,
2196d6e8 1756 u64 start, u64 *dev_extent_len)
8f18cf13 1757{
0b246afa
JM
1758 struct btrfs_fs_info *fs_info = device->fs_info;
1759 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1760 int ret;
1761 struct btrfs_path *path;
8f18cf13 1762 struct btrfs_key key;
a061fc8d
CM
1763 struct btrfs_key found_key;
1764 struct extent_buffer *leaf = NULL;
1765 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1766
1767 path = btrfs_alloc_path();
1768 if (!path)
1769 return -ENOMEM;
1770
1771 key.objectid = device->devid;
1772 key.offset = start;
1773 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1774again:
8f18cf13 1775 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1776 if (ret > 0) {
1777 ret = btrfs_previous_item(root, path, key.objectid,
1778 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1779 if (ret)
1780 goto out;
a061fc8d
CM
1781 leaf = path->nodes[0];
1782 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1783 extent = btrfs_item_ptr(leaf, path->slots[0],
1784 struct btrfs_dev_extent);
1785 BUG_ON(found_key.offset > start || found_key.offset +
1786 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1787 key = found_key;
1788 btrfs_release_path(path);
1789 goto again;
a061fc8d
CM
1790 } else if (ret == 0) {
1791 leaf = path->nodes[0];
1792 extent = btrfs_item_ptr(leaf, path->slots[0],
1793 struct btrfs_dev_extent);
79787eaa 1794 } else {
79787eaa 1795 goto out;
a061fc8d 1796 }
8f18cf13 1797
2196d6e8
MX
1798 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1799
8f18cf13 1800 ret = btrfs_del_item(trans, root, path);
79bd3712 1801 if (ret == 0)
3204d33c 1802 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1803out:
8f18cf13
CM
1804 btrfs_free_path(path);
1805 return ret;
1806}
1807
6df9a95e 1808static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1809{
6df9a95e
JB
1810 struct extent_map_tree *em_tree;
1811 struct extent_map *em;
1812 struct rb_node *n;
1813 u64 ret = 0;
0b86a832 1814
c8bf1b67 1815 em_tree = &fs_info->mapping_tree;
6df9a95e 1816 read_lock(&em_tree->lock);
07e1ce09 1817 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1818 if (n) {
1819 em = rb_entry(n, struct extent_map, rb_node);
1820 ret = em->start + em->len;
0b86a832 1821 }
6df9a95e
JB
1822 read_unlock(&em_tree->lock);
1823
0b86a832
CM
1824 return ret;
1825}
1826
53f10659
ID
1827static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1828 u64 *devid_ret)
0b86a832
CM
1829{
1830 int ret;
1831 struct btrfs_key key;
1832 struct btrfs_key found_key;
2b82032c
YZ
1833 struct btrfs_path *path;
1834
2b82032c
YZ
1835 path = btrfs_alloc_path();
1836 if (!path)
1837 return -ENOMEM;
0b86a832
CM
1838
1839 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1840 key.type = BTRFS_DEV_ITEM_KEY;
1841 key.offset = (u64)-1;
1842
53f10659 1843 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1844 if (ret < 0)
1845 goto error;
1846
a06dee4d
AJ
1847 if (ret == 0) {
1848 /* Corruption */
1849 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1850 ret = -EUCLEAN;
1851 goto error;
1852 }
0b86a832 1853
53f10659
ID
1854 ret = btrfs_previous_item(fs_info->chunk_root, path,
1855 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1856 BTRFS_DEV_ITEM_KEY);
1857 if (ret) {
53f10659 1858 *devid_ret = 1;
0b86a832
CM
1859 } else {
1860 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1861 path->slots[0]);
53f10659 1862 *devid_ret = found_key.offset + 1;
0b86a832
CM
1863 }
1864 ret = 0;
1865error:
2b82032c 1866 btrfs_free_path(path);
0b86a832
CM
1867 return ret;
1868}
1869
1870/*
1871 * the device information is stored in the chunk root
1872 * the btrfs_device struct should be fully filled in
1873 */
c74a0b02 1874static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1875 struct btrfs_device *device)
0b86a832
CM
1876{
1877 int ret;
1878 struct btrfs_path *path;
1879 struct btrfs_dev_item *dev_item;
1880 struct extent_buffer *leaf;
1881 struct btrfs_key key;
1882 unsigned long ptr;
0b86a832 1883
0b86a832
CM
1884 path = btrfs_alloc_path();
1885 if (!path)
1886 return -ENOMEM;
1887
0b86a832
CM
1888 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1889 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1890 key.offset = device->devid;
0b86a832 1891
2bb2e00e 1892 btrfs_reserve_chunk_metadata(trans, true);
8e87e856
NB
1893 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1894 &key, sizeof(*dev_item));
2bb2e00e 1895 btrfs_trans_release_chunk_metadata(trans);
0b86a832
CM
1896 if (ret)
1897 goto out;
1898
1899 leaf = path->nodes[0];
1900 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1901
1902 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1903 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1904 btrfs_set_device_type(leaf, dev_item, device->type);
1905 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1906 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1907 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1908 btrfs_set_device_total_bytes(leaf, dev_item,
1909 btrfs_device_get_disk_total_bytes(device));
1910 btrfs_set_device_bytes_used(leaf, dev_item,
1911 btrfs_device_get_bytes_used(device));
e17cade2
CM
1912 btrfs_set_device_group(leaf, dev_item, 0);
1913 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1914 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1915 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1916
410ba3a2 1917 ptr = btrfs_device_uuid(dev_item);
e17cade2 1918 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1919 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1920 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1921 ptr, BTRFS_FSID_SIZE);
0b86a832 1922 btrfs_mark_buffer_dirty(leaf);
0b86a832 1923
2b82032c 1924 ret = 0;
0b86a832
CM
1925out:
1926 btrfs_free_path(path);
1927 return ret;
1928}
8f18cf13 1929
5a1972bd
QW
1930/*
1931 * Function to update ctime/mtime for a given device path.
1932 * Mainly used for ctime/mtime based probe like libblkid.
54fde91f
JB
1933 *
1934 * We don't care about errors here, this is just to be kind to userspace.
5a1972bd 1935 */
54fde91f 1936static void update_dev_time(const char *device_path)
5a1972bd 1937{
54fde91f 1938 struct path path;
54fde91f 1939 int ret;
5a1972bd 1940
54fde91f
JB
1941 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1942 if (ret)
5a1972bd 1943 return;
8f96a5bf 1944
913e9928 1945 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
54fde91f 1946 path_put(&path);
5a1972bd
QW
1947}
1948
bbac5869
QW
1949static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1950 struct btrfs_device *device)
a061fc8d 1951{
f331a952 1952 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1953 int ret;
1954 struct btrfs_path *path;
a061fc8d 1955 struct btrfs_key key;
a061fc8d 1956
a061fc8d
CM
1957 path = btrfs_alloc_path();
1958 if (!path)
1959 return -ENOMEM;
1960
a061fc8d
CM
1961 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1962 key.type = BTRFS_DEV_ITEM_KEY;
1963 key.offset = device->devid;
1964
2bb2e00e 1965 btrfs_reserve_chunk_metadata(trans, false);
a061fc8d 1966 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2bb2e00e 1967 btrfs_trans_release_chunk_metadata(trans);
5e9f2ad5
NB
1968 if (ret) {
1969 if (ret > 0)
1970 ret = -ENOENT;
a061fc8d
CM
1971 goto out;
1972 }
1973
1974 ret = btrfs_del_item(trans, root, path);
a061fc8d
CM
1975out:
1976 btrfs_free_path(path);
a061fc8d
CM
1977 return ret;
1978}
1979
3cc31a0d
DS
1980/*
1981 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1982 * filesystem. It's up to the caller to adjust that number regarding eg. device
1983 * replace.
1984 */
1985static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1986 u64 num_devices)
a061fc8d 1987{
a061fc8d 1988 u64 all_avail;
de98ced9 1989 unsigned seq;
418775a2 1990 int i;
a061fc8d 1991
de98ced9 1992 do {
bd45ffbc 1993 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1994
bd45ffbc
AJ
1995 all_avail = fs_info->avail_data_alloc_bits |
1996 fs_info->avail_system_alloc_bits |
1997 fs_info->avail_metadata_alloc_bits;
1998 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1999
418775a2 2000 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 2001 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 2002 continue;
a061fc8d 2003
efc222f8
AJ
2004 if (num_devices < btrfs_raid_array[i].devs_min)
2005 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
2006 }
2007
bd45ffbc 2008 return 0;
f1fa7f26
AJ
2009}
2010
c9162bdf
OS
2011static struct btrfs_device * btrfs_find_next_active_device(
2012 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 2013{
2b82032c 2014 struct btrfs_device *next_device;
88acff64
AJ
2015
2016 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2017 if (next_device != device &&
e6e674bd
AJ
2018 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2019 && next_device->bdev)
88acff64
AJ
2020 return next_device;
2021 }
2022
2023 return NULL;
2024}
2025
2026/*
d24fa5c1 2027 * Helper function to check if the given device is part of s_bdev / latest_dev
88acff64
AJ
2028 * and replace it with the provided or the next active device, in the context
2029 * where this function called, there should be always be another device (or
2030 * this_dev) which is active.
2031 */
b105e927 2032void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 2033 struct btrfs_device *next_device)
88acff64 2034{
d6507cf1 2035 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 2036
e493e8f9 2037 if (!next_device)
88acff64 2038 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 2039 device);
88acff64
AJ
2040 ASSERT(next_device);
2041
2042 if (fs_info->sb->s_bdev &&
2043 (fs_info->sb->s_bdev == device->bdev))
2044 fs_info->sb->s_bdev = next_device->bdev;
2045
d24fa5c1
AJ
2046 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2047 fs_info->fs_devices->latest_dev = next_device;
88acff64
AJ
2048}
2049
1da73967
AJ
2050/*
2051 * Return btrfs_fs_devices::num_devices excluding the device that's being
2052 * currently replaced.
2053 */
2054static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2055{
2056 u64 num_devices = fs_info->fs_devices->num_devices;
2057
cb5583dd 2058 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2059 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2060 ASSERT(num_devices > 1);
2061 num_devices--;
2062 }
cb5583dd 2063 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2064
2065 return num_devices;
2066}
2067
0e0078f7
CH
2068static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2069 struct block_device *bdev, int copy_num)
2070{
2071 struct btrfs_super_block *disk_super;
26ecf243
CH
2072 const size_t len = sizeof(disk_super->magic);
2073 const u64 bytenr = btrfs_sb_offset(copy_num);
0e0078f7
CH
2074 int ret;
2075
26ecf243 2076 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr);
0e0078f7
CH
2077 if (IS_ERR(disk_super))
2078 return;
2079
26ecf243
CH
2080 memset(&disk_super->magic, 0, len);
2081 folio_mark_dirty(virt_to_folio(disk_super));
2082 btrfs_release_disk_super(disk_super);
2083
2084 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
0e0078f7
CH
2085 if (ret)
2086 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2087 copy_num, ret);
0e0078f7
CH
2088}
2089
313b0858
JB
2090void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2091 struct block_device *bdev,
2092 const char *device_path)
6fbceb9f 2093{
6fbceb9f
JT
2094 int copy_num;
2095
2096 if (!bdev)
2097 return;
2098
2099 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
0e0078f7 2100 if (bdev_is_zoned(bdev))
12659251 2101 btrfs_reset_sb_log_zones(bdev, copy_num);
0e0078f7
CH
2102 else
2103 btrfs_scratch_superblock(fs_info, bdev, copy_num);
6fbceb9f
JT
2104 }
2105
2106 /* Notify udev that device has changed */
2107 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2108
2109 /* Update ctime/mtime for device path for libblkid */
54fde91f 2110 update_dev_time(device_path);
6fbceb9f
JT
2111}
2112
1a15eb72
JB
2113int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2114 struct btrfs_dev_lookup_args *args,
2736e8ee 2115 struct block_device **bdev, void **holder)
f1fa7f26 2116{
bbac5869 2117 struct btrfs_trans_handle *trans;
f1fa7f26 2118 struct btrfs_device *device;
1f78160c 2119 struct btrfs_fs_devices *cur_devices;
b5185197 2120 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2121 u64 num_devices;
a061fc8d
CM
2122 int ret = 0;
2123
914a519b
JB
2124 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2125 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2126 return -EINVAL;
2127 }
2128
8ef9dc0f
JB
2129 /*
2130 * The device list in fs_devices is accessed without locks (neither
2131 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2132 * filesystem and another device rm cannot run.
2133 */
1da73967 2134 num_devices = btrfs_num_devices(fs_info);
8dabb742 2135
0b246afa 2136 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2137 if (ret)
bbac5869 2138 return ret;
a061fc8d 2139
1a15eb72
JB
2140 device = btrfs_find_device(fs_info->fs_devices, args);
2141 if (!device) {
2142 if (args->missing)
a27a94c2
NB
2143 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2144 else
1a15eb72 2145 ret = -ENOENT;
bbac5869 2146 return ret;
a27a94c2 2147 }
dfe25020 2148
eede2bf3
OS
2149 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2150 btrfs_warn_in_rcu(fs_info,
2151 "cannot remove device %s (devid %llu) due to active swapfile",
cb3e217b 2152 btrfs_dev_name(device), device->devid);
bbac5869 2153 return -ETXTBSY;
eede2bf3
OS
2154 }
2155
bbac5869
QW
2156 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2157 return BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab 2158
ebbede42 2159 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
bbac5869
QW
2160 fs_info->fs_devices->rw_devices == 1)
2161 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c 2162
ebbede42 2163 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2164 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2165 list_del_init(&device->dev_alloc_list);
c3929c36 2166 device->fs_devices->rw_devices--;
34441361 2167 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2168 }
a061fc8d
CM
2169
2170 ret = btrfs_shrink_device(device, 0);
2171 if (ret)
9b3517e9 2172 goto error_undo;
a061fc8d 2173
bbac5869
QW
2174 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2175 if (IS_ERR(trans)) {
2176 ret = PTR_ERR(trans);
9b3517e9 2177 goto error_undo;
bbac5869
QW
2178 }
2179
2180 ret = btrfs_rm_dev_item(trans, device);
2181 if (ret) {
2182 /* Any error in dev item removal is critical */
2183 btrfs_crit(fs_info,
2184 "failed to remove device item for devid %llu: %d",
2185 device->devid, ret);
2186 btrfs_abort_transaction(trans, ret);
2187 btrfs_end_transaction(trans);
2188 return ret;
2189 }
a061fc8d 2190
e12c9621 2191 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2192 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2193
2194 /*
2195 * the device list mutex makes sure that we don't change
2196 * the device list while someone else is writing out all
d7306801
FDBM
2197 * the device supers. Whoever is writing all supers, should
2198 * lock the device list mutex before getting the number of
2199 * devices in the super block (super_copy). Conversely,
2200 * whoever updates the number of devices in the super block
2201 * (super_copy) should hold the device list mutex.
e5e9a520 2202 */
1f78160c 2203
41a52a0f
AJ
2204 /*
2205 * In normal cases the cur_devices == fs_devices. But in case
2206 * of deleting a seed device, the cur_devices should point to
9675ea8c 2207 * its own fs_devices listed under the fs_devices->seed_list.
41a52a0f 2208 */
1f78160c 2209 cur_devices = device->fs_devices;
b5185197 2210 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2211 list_del_rcu(&device->dev_list);
e5e9a520 2212
41a52a0f
AJ
2213 cur_devices->num_devices--;
2214 cur_devices->total_devices--;
b4993e64
AJ
2215 /* Update total_devices of the parent fs_devices if it's seed */
2216 if (cur_devices != fs_devices)
2217 fs_devices->total_devices--;
2b82032c 2218
e6e674bd 2219 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2220 cur_devices->missing_devices--;
cd02dca5 2221
d6507cf1 2222 btrfs_assign_next_active_device(device, NULL);
2b82032c 2223
0bfaa9c5 2224 if (device->bdev) {
41a52a0f 2225 cur_devices->open_devices--;
0bfaa9c5 2226 /* remove sysfs entry */
53f8a74c 2227 btrfs_sysfs_remove_device(device);
0bfaa9c5 2228 }
99994cde 2229
0b246afa
JM
2230 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2231 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2232 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2233
cea67ab9 2234 /*
3fa421de
JB
2235 * At this point, the device is zero sized and detached from the
2236 * devices list. All that's left is to zero out the old supers and
2237 * free the device.
2238 *
2239 * We cannot call btrfs_close_bdev() here because we're holding the sb
2240 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2241 * block device and it's dependencies. Instead just flush the device
2242 * and let the caller do the final blkdev_put.
cea67ab9 2243 */
3fa421de 2244 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2245 btrfs_scratch_superblocks(fs_info, device->bdev,
2246 device->name->str);
3fa421de
JB
2247 if (device->bdev) {
2248 sync_blockdev(device->bdev);
2249 invalidate_bdev(device->bdev);
2250 }
2251 }
cea67ab9 2252
3fa421de 2253 *bdev = device->bdev;
2736e8ee 2254 *holder = device->holder;
8e75fd89
NB
2255 synchronize_rcu();
2256 btrfs_free_device(device);
cea67ab9 2257
8b41393f
JB
2258 /*
2259 * This can happen if cur_devices is the private seed devices list. We
2260 * cannot call close_fs_devices() here because it expects the uuid_mutex
2261 * to be held, but in fact we don't need that for the private
2262 * seed_devices, we can simply decrement cur_devices->opened and then
2263 * remove it from our list and free the fs_devices.
2264 */
8e906945 2265 if (cur_devices->num_devices == 0) {
944d3f9f 2266 list_del_init(&cur_devices->seed_list);
8b41393f
JB
2267 ASSERT(cur_devices->opened == 1);
2268 cur_devices->opened--;
1f78160c 2269 free_fs_devices(cur_devices);
2b82032c
YZ
2270 }
2271
bbac5869
QW
2272 ret = btrfs_commit_transaction(trans);
2273
a061fc8d 2274 return ret;
24fc572f 2275
9b3517e9 2276error_undo:
ebbede42 2277 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2278 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2279 list_add(&device->dev_alloc_list,
b5185197 2280 &fs_devices->alloc_list);
c3929c36 2281 device->fs_devices->rw_devices++;
34441361 2282 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2283 }
bbac5869 2284 return ret;
a061fc8d
CM
2285}
2286
68a9db5f 2287void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2288{
d51908ce
AJ
2289 struct btrfs_fs_devices *fs_devices;
2290
68a9db5f 2291 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2292
25e8e911
AJ
2293 /*
2294 * in case of fs with no seed, srcdev->fs_devices will point
2295 * to fs_devices of fs_info. However when the dev being replaced is
2296 * a seed dev it will point to the seed's local fs_devices. In short
2297 * srcdev will have its correct fs_devices in both the cases.
2298 */
2299 fs_devices = srcdev->fs_devices;
d51908ce 2300
e93c89c1 2301 list_del_rcu(&srcdev->dev_list);
619c47f3 2302 list_del(&srcdev->dev_alloc_list);
d51908ce 2303 fs_devices->num_devices--;
e6e674bd 2304 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2305 fs_devices->missing_devices--;
e93c89c1 2306
ebbede42 2307 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2308 fs_devices->rw_devices--;
1357272f 2309
82372bc8 2310 if (srcdev->bdev)
d51908ce 2311 fs_devices->open_devices--;
084b6e7c
QW
2312}
2313
65237ee3 2314void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2315{
2316 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2317
a466c85e
JB
2318 mutex_lock(&uuid_mutex);
2319
14238819 2320 btrfs_close_bdev(srcdev);
8e75fd89
NB
2321 synchronize_rcu();
2322 btrfs_free_device(srcdev);
94d5f0c2 2323
94d5f0c2
AJ
2324 /* if this is no devs we rather delete the fs_devices */
2325 if (!fs_devices->num_devices) {
6dd38f81
AJ
2326 /*
2327 * On a mounted FS, num_devices can't be zero unless it's a
2328 * seed. In case of a seed device being replaced, the replace
2329 * target added to the sprout FS, so there will be no more
2330 * device left under the seed FS.
2331 */
2332 ASSERT(fs_devices->seeding);
2333
944d3f9f 2334 list_del_init(&fs_devices->seed_list);
0226e0eb 2335 close_fs_devices(fs_devices);
8bef8401 2336 free_fs_devices(fs_devices);
94d5f0c2 2337 }
a466c85e 2338 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2339}
2340
4f5ad7bd 2341void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2342{
4f5ad7bd 2343 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2344
d9a071f0 2345 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2346
53f8a74c 2347 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2348
779bf3fe 2349 if (tgtdev->bdev)
d9a071f0 2350 fs_devices->open_devices--;
779bf3fe 2351
d9a071f0 2352 fs_devices->num_devices--;
e93c89c1 2353
d6507cf1 2354 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2355
e93c89c1 2356 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2357
d9a071f0 2358 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe 2359
8f32380d
JT
2360 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2361 tgtdev->name->str);
14238819
AJ
2362
2363 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2364 synchronize_rcu();
2365 btrfs_free_device(tgtdev);
e93c89c1
SB
2366}
2367
43dd529a
DS
2368/*
2369 * Populate args from device at path.
faa775c4
JB
2370 *
2371 * @fs_info: the filesystem
2372 * @args: the args to populate
2373 * @path: the path to the device
2374 *
2375 * This will read the super block of the device at @path and populate @args with
2376 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2377 * lookup a device to operate on, but need to do it before we take any locks.
2378 * This properly handles the special case of "missing" that a user may pass in,
2379 * and does some basic sanity checks. The caller must make sure that @path is
2380 * properly NUL terminated before calling in, and must call
2381 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2382 * uuid buffers.
2383 *
2384 * Return: 0 for success, -errno for failure
2385 */
2386int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2387 struct btrfs_dev_lookup_args *args,
2388 const char *path)
7ba15b7d 2389{
7ba15b7d 2390 struct btrfs_super_block *disk_super;
7ba15b7d 2391 struct block_device *bdev;
faa775c4 2392 int ret;
7ba15b7d 2393
faa775c4
JB
2394 if (!path || !path[0])
2395 return -EINVAL;
2396 if (!strcmp(path, "missing")) {
2397 args->missing = true;
2398 return 0;
2399 }
8f32380d 2400
faa775c4
JB
2401 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2402 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2403 if (!args->uuid || !args->fsid) {
2404 btrfs_put_dev_args_from_path(args);
2405 return -ENOMEM;
2406 }
8f32380d 2407
05bdb996 2408 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
faa775c4 2409 &bdev, &disk_super);
9ea0106a
ZF
2410 if (ret) {
2411 btrfs_put_dev_args_from_path(args);
faa775c4 2412 return ret;
9ea0106a
ZF
2413 }
2414
faa775c4
JB
2415 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2416 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
7239ff4b 2417 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
faa775c4 2418 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
7239ff4b 2419 else
faa775c4 2420 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
8f32380d 2421 btrfs_release_disk_super(disk_super);
2736e8ee 2422 blkdev_put(bdev, NULL);
faa775c4 2423 return 0;
7ba15b7d
SB
2424}
2425
5c5c0df0 2426/*
faa775c4
JB
2427 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2428 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2429 * that don't need to be freed.
5c5c0df0 2430 */
faa775c4
JB
2431void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2432{
2433 kfree(args->uuid);
2434 kfree(args->fsid);
2435 args->uuid = NULL;
2436 args->fsid = NULL;
2437}
2438
a27a94c2 2439struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2440 struct btrfs_fs_info *fs_info, u64 devid,
2441 const char *device_path)
24e0474b 2442{
562d7b15 2443 BTRFS_DEV_LOOKUP_ARGS(args);
a27a94c2 2444 struct btrfs_device *device;
faa775c4 2445 int ret;
24e0474b 2446
5c5c0df0 2447 if (devid) {
562d7b15
JB
2448 args.devid = devid;
2449 device = btrfs_find_device(fs_info->fs_devices, &args);
a27a94c2
NB
2450 if (!device)
2451 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2452 return device;
2453 }
2454
faa775c4
JB
2455 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2456 if (ret)
2457 return ERR_PTR(ret);
2458 device = btrfs_find_device(fs_info->fs_devices, &args);
2459 btrfs_put_dev_args_from_path(&args);
2460 if (!device)
6e927ceb 2461 return ERR_PTR(-ENOENT);
faa775c4 2462 return device;
24e0474b
AJ
2463}
2464
849eae5e 2465static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2466{
0b246afa 2467 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2468 struct btrfs_fs_devices *old_devices;
e4404d6e 2469 struct btrfs_fs_devices *seed_devices;
2b82032c 2470
a32bf9a3 2471 lockdep_assert_held(&uuid_mutex);
e4404d6e 2472 if (!fs_devices->seeding)
849eae5e 2473 return ERR_PTR(-EINVAL);
2b82032c 2474
427c8fdd
NB
2475 /*
2476 * Private copy of the seed devices, anchored at
2477 * fs_info->fs_devices->seed_list
2478 */
f7361d8c 2479 seed_devices = alloc_fs_devices(NULL);
2208a378 2480 if (IS_ERR(seed_devices))
849eae5e 2481 return seed_devices;
2b82032c 2482
427c8fdd
NB
2483 /*
2484 * It's necessary to retain a copy of the original seed fs_devices in
2485 * fs_uuids so that filesystems which have been seeded can successfully
2486 * reference the seed device from open_seed_devices. This also supports
2487 * multiple fs seed.
2488 */
e4404d6e
YZ
2489 old_devices = clone_fs_devices(fs_devices);
2490 if (IS_ERR(old_devices)) {
2491 kfree(seed_devices);
849eae5e 2492 return old_devices;
2b82032c 2493 }
e4404d6e 2494
c4babc5e 2495 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2496
e4404d6e
YZ
2497 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2498 seed_devices->opened = 1;
2499 INIT_LIST_HEAD(&seed_devices->devices);
2500 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2501 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2502
849eae5e
AJ
2503 return seed_devices;
2504}
2505
2506/*
2507 * Splice seed devices into the sprout fs_devices.
2508 * Generate a new fsid for the sprouted read-write filesystem.
2509 */
2510static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2511 struct btrfs_fs_devices *seed_devices)
2512{
2513 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2514 struct btrfs_super_block *disk_super = fs_info->super_copy;
2515 struct btrfs_device *device;
2516 u64 super_flags;
2517
2518 /*
2519 * We are updating the fsid, the thread leading to device_list_add()
2520 * could race, so uuid_mutex is needed.
2521 */
2522 lockdep_assert_held(&uuid_mutex);
2523
2524 /*
2525 * The threads listed below may traverse dev_list but can do that without
2526 * device_list_mutex:
2527 * - All device ops and balance - as we are in btrfs_exclop_start.
2528 * - Various dev_list readers - are using RCU.
2529 * - btrfs_ioctl_fitrim() - is using RCU.
2530 *
2531 * For-read threads as below are using device_list_mutex:
2532 * - Readonly scrub btrfs_scrub_dev()
2533 * - Readonly scrub btrfs_scrub_progress()
2534 * - btrfs_get_dev_stats()
2535 */
2536 lockdep_assert_held(&fs_devices->device_list_mutex);
2537
1f78160c
XG
2538 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2539 synchronize_rcu);
2196d6e8
MX
2540 list_for_each_entry(device, &seed_devices->devices, dev_list)
2541 device->fs_devices = seed_devices;
c9513edb 2542
0395d84f 2543 fs_devices->seeding = false;
2b82032c
YZ
2544 fs_devices->num_devices = 0;
2545 fs_devices->open_devices = 0;
69611ac8 2546 fs_devices->missing_devices = 0;
7f0432d0 2547 fs_devices->rotating = false;
944d3f9f 2548 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2549
2550 generate_random_uuid(fs_devices->fsid);
7239ff4b 2551 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2552 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750 2553
2b82032c
YZ
2554 super_flags = btrfs_super_flags(disk_super) &
2555 ~BTRFS_SUPER_FLAG_SEEDING;
2556 btrfs_set_super_flags(disk_super, super_flags);
2b82032c
YZ
2557}
2558
2559/*
01327610 2560 * Store the expected generation for seed devices in device items.
2b82032c 2561 */
5c466629 2562static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2563{
562d7b15 2564 BTRFS_DEV_LOOKUP_ARGS(args);
5c466629 2565 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2566 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2567 struct btrfs_path *path;
2568 struct extent_buffer *leaf;
2569 struct btrfs_dev_item *dev_item;
2570 struct btrfs_device *device;
2571 struct btrfs_key key;
44880fdc 2572 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c 2573 u8 dev_uuid[BTRFS_UUID_SIZE];
2b82032c
YZ
2574 int ret;
2575
2576 path = btrfs_alloc_path();
2577 if (!path)
2578 return -ENOMEM;
2579
2b82032c
YZ
2580 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2581 key.offset = 0;
2582 key.type = BTRFS_DEV_ITEM_KEY;
2583
2584 while (1) {
2bb2e00e 2585 btrfs_reserve_chunk_metadata(trans, false);
2b82032c 2586 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2bb2e00e 2587 btrfs_trans_release_chunk_metadata(trans);
2b82032c
YZ
2588 if (ret < 0)
2589 goto error;
2590
2591 leaf = path->nodes[0];
2592next_slot:
2593 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2594 ret = btrfs_next_leaf(root, path);
2595 if (ret > 0)
2596 break;
2597 if (ret < 0)
2598 goto error;
2599 leaf = path->nodes[0];
2600 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2601 btrfs_release_path(path);
2b82032c
YZ
2602 continue;
2603 }
2604
2605 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2606 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2607 key.type != BTRFS_DEV_ITEM_KEY)
2608 break;
2609
2610 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2611 struct btrfs_dev_item);
562d7b15 2612 args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2613 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2614 BTRFS_UUID_SIZE);
1473b24e 2615 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2616 BTRFS_FSID_SIZE);
562d7b15
JB
2617 args.uuid = dev_uuid;
2618 args.fsid = fs_uuid;
2619 device = btrfs_find_device(fs_info->fs_devices, &args);
79787eaa 2620 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2621
2622 if (device->fs_devices->seeding) {
2623 btrfs_set_device_generation(leaf, dev_item,
2624 device->generation);
2625 btrfs_mark_buffer_dirty(leaf);
2626 }
2627
2628 path->slots[0]++;
2629 goto next_slot;
2630 }
2631 ret = 0;
2632error:
2633 btrfs_free_path(path);
2634 return ret;
2635}
2636
da353f6b 2637int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2638{
5112febb 2639 struct btrfs_root *root = fs_info->dev_root;
788f20eb
CM
2640 struct btrfs_trans_handle *trans;
2641 struct btrfs_device *device;
2642 struct block_device *bdev;
0b246afa 2643 struct super_block *sb = fs_info->sb;
5da54bc1 2644 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8ba7d5f5 2645 struct btrfs_fs_devices *seed_devices = NULL;
39379faa
NA
2646 u64 orig_super_total_bytes;
2647 u64 orig_super_num_devices;
788f20eb 2648 int ret = 0;
fd880809 2649 bool seeding_dev = false;
44cab9ba 2650 bool locked = false;
788f20eb 2651
5da54bc1 2652 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2653 return -EROFS;
788f20eb 2654
05bdb996 2655 bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE,
0718afd4 2656 fs_info->bdev_holder, NULL);
7f59203a
JB
2657 if (IS_ERR(bdev))
2658 return PTR_ERR(bdev);
a2135011 2659
b70f5097
NA
2660 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2661 ret = -EINVAL;
2662 goto error;
2663 }
2664
5da54bc1 2665 if (fs_devices->seeding) {
fd880809 2666 seeding_dev = true;
2b82032c
YZ
2667 down_write(&sb->s_umount);
2668 mutex_lock(&uuid_mutex);
44cab9ba 2669 locked = true;
2b82032c
YZ
2670 }
2671
b9ba017f 2672 sync_blockdev(bdev);
a2135011 2673
f4cfa9bd
NB
2674 rcu_read_lock();
2675 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2676 if (device->bdev == bdev) {
2677 ret = -EEXIST;
f4cfa9bd 2678 rcu_read_unlock();
2b82032c 2679 goto error;
788f20eb
CM
2680 }
2681 }
f4cfa9bd 2682 rcu_read_unlock();
788f20eb 2683
bb21e302 2684 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
12bd2fc0 2685 if (IS_ERR(device)) {
788f20eb 2686 /* we can safely leave the fs_devices entry around */
12bd2fc0 2687 ret = PTR_ERR(device);
2b82032c 2688 goto error;
788f20eb
CM
2689 }
2690
5b316468
NA
2691 device->fs_info = fs_info;
2692 device->bdev = bdev;
4889bc05
AJ
2693 ret = lookup_bdev(device_path, &device->devt);
2694 if (ret)
2695 goto error_free_device;
5b316468 2696
16beac87 2697 ret = btrfs_get_dev_zone_info(device, false);
5b316468
NA
2698 if (ret)
2699 goto error_free_device;
2700
a22285a6 2701 trans = btrfs_start_transaction(root, 0);
98d5dc13 2702 if (IS_ERR(trans)) {
98d5dc13 2703 ret = PTR_ERR(trans);
5b316468 2704 goto error_free_zone;
98d5dc13
TI
2705 }
2706
ebbede42 2707 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2708 device->generation = trans->transid;
0b246afa
JM
2709 device->io_width = fs_info->sectorsize;
2710 device->io_align = fs_info->sectorsize;
2711 device->sector_size = fs_info->sectorsize;
cda00eba
CH
2712 device->total_bytes =
2713 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2cc3c559 2714 device->disk_total_bytes = device->total_bytes;
935e5cc9 2715 device->commit_total_bytes = device->total_bytes;
e12c9621 2716 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2717 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2736e8ee 2718 device->holder = fs_info->bdev_holder;
27087f37 2719 device->dev_stats_valid = 1;
9f6d2510 2720 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2721
2b82032c 2722 if (seeding_dev) {
a0a1db70 2723 btrfs_clear_sb_rdonly(sb);
849eae5e
AJ
2724
2725 /* GFP_KERNEL allocation must not be under device_list_mutex */
2726 seed_devices = btrfs_init_sprout(fs_info);
2727 if (IS_ERR(seed_devices)) {
2728 ret = PTR_ERR(seed_devices);
d31c32f6
AJ
2729 btrfs_abort_transaction(trans, ret);
2730 goto error_trans;
2731 }
849eae5e
AJ
2732 }
2733
2734 mutex_lock(&fs_devices->device_list_mutex);
2735 if (seeding_dev) {
2736 btrfs_setup_sprout(fs_info, seed_devices);
b7cb29e6
AJ
2737 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2738 device);
2b82032c 2739 }
788f20eb 2740
5da54bc1 2741 device->fs_devices = fs_devices;
e5e9a520 2742
34441361 2743 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2744 list_add_rcu(&device->dev_list, &fs_devices->devices);
2745 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2746 fs_devices->num_devices++;
2747 fs_devices->open_devices++;
2748 fs_devices->rw_devices++;
2749 fs_devices->total_devices++;
2750 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2751
a5ed45f8 2752 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2753
10f0d2a5 2754 if (!bdev_nonrot(bdev))
7f0432d0 2755 fs_devices->rotating = true;
c289811c 2756
39379faa 2757 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2758 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2759 round_down(orig_super_total_bytes + device->total_bytes,
2760 fs_info->sectorsize));
788f20eb 2761
39379faa
NA
2762 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2763 btrfs_set_super_num_devices(fs_info->super_copy,
2764 orig_super_num_devices + 1);
0d39376a 2765
2196d6e8
MX
2766 /*
2767 * we've got more storage, clear any full flags on the space
2768 * infos
2769 */
0b246afa 2770 btrfs_clear_space_info_full(fs_info);
2196d6e8 2771
34441361 2772 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2773
2774 /* Add sysfs device entry */
cd36da2e 2775 btrfs_sysfs_add_device(device);
ca10845a 2776
5da54bc1 2777 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2778
2b82032c 2779 if (seeding_dev) {
34441361 2780 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2781 ret = init_first_rw_device(trans);
34441361 2782 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2783 if (ret) {
66642832 2784 btrfs_abort_transaction(trans, ret);
d31c32f6 2785 goto error_sysfs;
005d6427 2786 }
2196d6e8
MX
2787 }
2788
8e87e856 2789 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2790 if (ret) {
66642832 2791 btrfs_abort_transaction(trans, ret);
d31c32f6 2792 goto error_sysfs;
2196d6e8
MX
2793 }
2794
2795 if (seeding_dev) {
5c466629 2796 ret = btrfs_finish_sprout(trans);
005d6427 2797 if (ret) {
66642832 2798 btrfs_abort_transaction(trans, ret);
d31c32f6 2799 goto error_sysfs;
005d6427 2800 }
b2373f25 2801
8e560081
NB
2802 /*
2803 * fs_devices now represents the newly sprouted filesystem and
849eae5e 2804 * its fsid has been changed by btrfs_sprout_splice().
8e560081
NB
2805 */
2806 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2807 }
2808
3a45bb20 2809 ret = btrfs_commit_transaction(trans);
a2135011 2810
2b82032c
YZ
2811 if (seeding_dev) {
2812 mutex_unlock(&uuid_mutex);
2813 up_write(&sb->s_umount);
44cab9ba 2814 locked = false;
788f20eb 2815
79787eaa
JM
2816 if (ret) /* transaction commit */
2817 return ret;
2818
2ff7e61e 2819 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2820 if (ret < 0)
0b246afa 2821 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2822 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2823 trans = btrfs_attach_transaction(root);
2824 if (IS_ERR(trans)) {
2825 if (PTR_ERR(trans) == -ENOENT)
2826 return 0;
7132a262
AJ
2827 ret = PTR_ERR(trans);
2828 trans = NULL;
2829 goto error_sysfs;
671415b7 2830 }
3a45bb20 2831 ret = btrfs_commit_transaction(trans);
2b82032c 2832 }
c9e9f97b 2833
7f551d96
AJ
2834 /*
2835 * Now that we have written a new super block to this device, check all
2836 * other fs_devices list if device_path alienates any other scanned
2837 * device.
2838 * We can ignore the return value as it typically returns -EINVAL and
2839 * only succeeds if the device was an alien.
2840 */
4889bc05 2841 btrfs_forget_devices(device->devt);
7f551d96
AJ
2842
2843 /* Update ctime/mtime for blkid or udev */
54fde91f 2844 update_dev_time(device_path);
7f551d96 2845
2b82032c 2846 return ret;
79787eaa 2847
d31c32f6 2848error_sysfs:
53f8a74c 2849 btrfs_sysfs_remove_device(device);
39379faa
NA
2850 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2851 mutex_lock(&fs_info->chunk_mutex);
2852 list_del_rcu(&device->dev_list);
2853 list_del(&device->dev_alloc_list);
2854 fs_info->fs_devices->num_devices--;
2855 fs_info->fs_devices->open_devices--;
2856 fs_info->fs_devices->rw_devices--;
2857 fs_info->fs_devices->total_devices--;
2858 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2859 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2860 btrfs_set_super_total_bytes(fs_info->super_copy,
2861 orig_super_total_bytes);
2862 btrfs_set_super_num_devices(fs_info->super_copy,
2863 orig_super_num_devices);
2864 mutex_unlock(&fs_info->chunk_mutex);
2865 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2866error_trans:
0af2c4bf 2867 if (seeding_dev)
a0a1db70 2868 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2869 if (trans)
2870 btrfs_end_transaction(trans);
5b316468
NA
2871error_free_zone:
2872 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2873error_free_device:
a425f9d4 2874 btrfs_free_device(device);
2b82032c 2875error:
2736e8ee 2876 blkdev_put(bdev, fs_info->bdev_holder);
44cab9ba 2877 if (locked) {
2b82032c
YZ
2878 mutex_unlock(&uuid_mutex);
2879 up_write(&sb->s_umount);
2880 }
c9e9f97b 2881 return ret;
788f20eb
CM
2882}
2883
d397712b
CM
2884static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2885 struct btrfs_device *device)
0b86a832
CM
2886{
2887 int ret;
2888 struct btrfs_path *path;
0b246afa 2889 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2890 struct btrfs_dev_item *dev_item;
2891 struct extent_buffer *leaf;
2892 struct btrfs_key key;
2893
0b86a832
CM
2894 path = btrfs_alloc_path();
2895 if (!path)
2896 return -ENOMEM;
2897
2898 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2899 key.type = BTRFS_DEV_ITEM_KEY;
2900 key.offset = device->devid;
2901
2902 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2903 if (ret < 0)
2904 goto out;
2905
2906 if (ret > 0) {
2907 ret = -ENOENT;
2908 goto out;
2909 }
2910
2911 leaf = path->nodes[0];
2912 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2913
2914 btrfs_set_device_id(leaf, dev_item, device->devid);
2915 btrfs_set_device_type(leaf, dev_item, device->type);
2916 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2917 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2918 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2919 btrfs_set_device_total_bytes(leaf, dev_item,
2920 btrfs_device_get_disk_total_bytes(device));
2921 btrfs_set_device_bytes_used(leaf, dev_item,
2922 btrfs_device_get_bytes_used(device));
0b86a832
CM
2923 btrfs_mark_buffer_dirty(leaf);
2924
2925out:
2926 btrfs_free_path(path);
2927 return ret;
2928}
2929
2196d6e8 2930int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2931 struct btrfs_device *device, u64 new_size)
2932{
0b246afa
JM
2933 struct btrfs_fs_info *fs_info = device->fs_info;
2934 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2935 u64 old_total;
2936 u64 diff;
2bb2e00e 2937 int ret;
8f18cf13 2938
ebbede42 2939 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2940 return -EACCES;
2196d6e8 2941
7dfb8be1
NB
2942 new_size = round_down(new_size, fs_info->sectorsize);
2943
34441361 2944 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2945 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2946 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2947
63a212ab 2948 if (new_size <= device->total_bytes ||
401e29c1 2949 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2950 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2951 return -EINVAL;
2196d6e8 2952 }
2b82032c 2953
7dfb8be1
NB
2954 btrfs_set_super_total_bytes(super_copy,
2955 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2956 device->fs_devices->total_rw_bytes += diff;
2957
7cc8e58d
MX
2958 btrfs_device_set_total_bytes(device, new_size);
2959 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2960 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2961 if (list_empty(&device->post_commit_list))
2962 list_add_tail(&device->post_commit_list,
2963 &trans->transaction->dev_update_list);
34441361 2964 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2965
2bb2e00e
FM
2966 btrfs_reserve_chunk_metadata(trans, false);
2967 ret = btrfs_update_device(trans, device);
2968 btrfs_trans_release_chunk_metadata(trans);
2969
2970 return ret;
8f18cf13
CM
2971}
2972
f4208794 2973static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2974{
f4208794 2975 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2976 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2977 int ret;
2978 struct btrfs_path *path;
2979 struct btrfs_key key;
2980
8f18cf13
CM
2981 path = btrfs_alloc_path();
2982 if (!path)
2983 return -ENOMEM;
2984
408fbf19 2985 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2986 key.offset = chunk_offset;
2987 key.type = BTRFS_CHUNK_ITEM_KEY;
2988
2989 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2990 if (ret < 0)
2991 goto out;
2992 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2993 btrfs_handle_fs_error(fs_info, -ENOENT,
2994 "Failed lookup while freeing chunk.");
79787eaa
JM
2995 ret = -ENOENT;
2996 goto out;
2997 }
8f18cf13
CM
2998
2999 ret = btrfs_del_item(trans, root, path);
79787eaa 3000 if (ret < 0)
0b246afa
JM
3001 btrfs_handle_fs_error(fs_info, ret,
3002 "Failed to delete chunk item.");
79787eaa 3003out:
8f18cf13 3004 btrfs_free_path(path);
65a246c5 3005 return ret;
8f18cf13
CM
3006}
3007
408fbf19 3008static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 3009{
0b246afa 3010 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
3011 struct btrfs_disk_key *disk_key;
3012 struct btrfs_chunk *chunk;
3013 u8 *ptr;
3014 int ret = 0;
3015 u32 num_stripes;
3016 u32 array_size;
3017 u32 len = 0;
3018 u32 cur;
3019 struct btrfs_key key;
3020
79bd3712 3021 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
3022 array_size = btrfs_super_sys_array_size(super_copy);
3023
3024 ptr = super_copy->sys_chunk_array;
3025 cur = 0;
3026
3027 while (cur < array_size) {
3028 disk_key = (struct btrfs_disk_key *)ptr;
3029 btrfs_disk_key_to_cpu(&key, disk_key);
3030
3031 len = sizeof(*disk_key);
3032
3033 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3034 chunk = (struct btrfs_chunk *)(ptr + len);
3035 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3036 len += btrfs_chunk_item_size(num_stripes);
3037 } else {
3038 ret = -EIO;
3039 break;
3040 }
408fbf19 3041 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
3042 key.offset == chunk_offset) {
3043 memmove(ptr, ptr + len, array_size - (cur + len));
3044 array_size -= len;
3045 btrfs_set_super_sys_array_size(super_copy, array_size);
3046 } else {
3047 ptr += len;
3048 cur += len;
3049 }
3050 }
3051 return ret;
3052}
3053
60ca842e 3054/*
9580503b
DS
3055 * Find the mapping containing the given logical extent.
3056 *
60ca842e
OS
3057 * @logical: Logical block offset in bytes.
3058 * @length: Length of extent in bytes.
3059 *
3060 * Return: Chunk mapping or ERR_PTR.
3061 */
3062struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3063 u64 logical, u64 length)
592d92ee
LB
3064{
3065 struct extent_map_tree *em_tree;
3066 struct extent_map *em;
3067
c8bf1b67 3068 em_tree = &fs_info->mapping_tree;
592d92ee
LB
3069 read_lock(&em_tree->lock);
3070 em = lookup_extent_mapping(em_tree, logical, length);
3071 read_unlock(&em_tree->lock);
3072
3073 if (!em) {
3074 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3075 logical, length);
3076 return ERR_PTR(-EINVAL);
3077 }
3078
3079 if (em->start > logical || em->start + em->len < logical) {
3080 btrfs_crit(fs_info,
3081 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3082 logical, length, em->start, em->start + em->len);
3083 free_extent_map(em);
3084 return ERR_PTR(-EINVAL);
3085 }
3086
3087 /* callers are responsible for dropping em's ref. */
3088 return em;
3089}
3090
79bd3712
FM
3091static int remove_chunk_item(struct btrfs_trans_handle *trans,
3092 struct map_lookup *map, u64 chunk_offset)
3093{
3094 int i;
3095
3096 /*
3097 * Removing chunk items and updating the device items in the chunks btree
3098 * requires holding the chunk_mutex.
3099 * See the comment at btrfs_chunk_alloc() for the details.
3100 */
3101 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3102
3103 for (i = 0; i < map->num_stripes; i++) {
3104 int ret;
3105
3106 ret = btrfs_update_device(trans, map->stripes[i].dev);
3107 if (ret)
3108 return ret;
3109 }
3110
3111 return btrfs_free_chunk(trans, chunk_offset);
3112}
3113
97aff912 3114int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3115{
97aff912 3116 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
3117 struct extent_map *em;
3118 struct map_lookup *map;
2196d6e8 3119 u64 dev_extent_len = 0;
47ab2a6c 3120 int i, ret = 0;
0b246afa 3121 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3122
60ca842e 3123 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 3124 if (IS_ERR(em)) {
47ab2a6c
JB
3125 /*
3126 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3127 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3128 * do anything we still error out.
3129 */
3130 ASSERT(0);
592d92ee 3131 return PTR_ERR(em);
47ab2a6c 3132 }
95617d69 3133 map = em->map_lookup;
8f18cf13 3134
57ba4cb8 3135 /*
79bd3712
FM
3136 * First delete the device extent items from the devices btree.
3137 * We take the device_list_mutex to avoid racing with the finishing phase
3138 * of a device replace operation. See the comment below before acquiring
3139 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3140 * because that can result in a deadlock when deleting the device extent
3141 * items from the devices btree - COWing an extent buffer from the btree
3142 * may result in allocating a new metadata chunk, which would attempt to
3143 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3144 */
3145 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3146 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3147 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3148 ret = btrfs_free_dev_extent(trans, device,
3149 map->stripes[i].physical,
3150 &dev_extent_len);
47ab2a6c 3151 if (ret) {
57ba4cb8 3152 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3153 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3154 goto out;
3155 }
a061fc8d 3156
2196d6e8 3157 if (device->bytes_used > 0) {
34441361 3158 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3159 btrfs_device_set_bytes_used(device,
3160 device->bytes_used - dev_extent_len);
a5ed45f8 3161 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3162 btrfs_clear_space_info_full(fs_info);
34441361 3163 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3164 }
79bd3712
FM
3165 }
3166 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3167
79bd3712
FM
3168 /*
3169 * We acquire fs_info->chunk_mutex for 2 reasons:
3170 *
3171 * 1) Just like with the first phase of the chunk allocation, we must
3172 * reserve system space, do all chunk btree updates and deletions, and
3173 * update the system chunk array in the superblock while holding this
3174 * mutex. This is for similar reasons as explained on the comment at
3175 * the top of btrfs_chunk_alloc();
3176 *
3177 * 2) Prevent races with the final phase of a device replace operation
3178 * that replaces the device object associated with the map's stripes,
3179 * because the device object's id can change at any time during that
3180 * final phase of the device replace operation
3181 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3182 * replaced device and then see it with an ID of
3183 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3184 * the device item, which does not exists on the chunk btree.
3185 * The finishing phase of device replace acquires both the
3186 * device_list_mutex and the chunk_mutex, in that order, so we are
3187 * safe by just acquiring the chunk_mutex.
3188 */
3189 trans->removing_chunk = true;
3190 mutex_lock(&fs_info->chunk_mutex);
3191
3192 check_system_chunk(trans, map->type);
3193
3194 ret = remove_chunk_item(trans, map, chunk_offset);
3195 /*
3196 * Normally we should not get -ENOSPC since we reserved space before
3197 * through the call to check_system_chunk().
3198 *
3199 * Despite our system space_info having enough free space, we may not
3200 * be able to allocate extents from its block groups, because all have
3201 * an incompatible profile, which will force us to allocate a new system
3202 * block group with the right profile, or right after we called
3203 * check_system_space() above, a scrub turned the only system block group
3204 * with enough free space into RO mode.
3205 * This is explained with more detail at do_chunk_alloc().
3206 *
3207 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3208 */
3209 if (ret == -ENOSPC) {
3210 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3211 struct btrfs_block_group *sys_bg;
3212
f6f39f7a 3213 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3214 if (IS_ERR(sys_bg)) {
3215 ret = PTR_ERR(sys_bg);
3216 btrfs_abort_transaction(trans, ret);
3217 goto out;
3218 }
3219
3220 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3221 if (ret) {
64bc6c2a
NB
3222 btrfs_abort_transaction(trans, ret);
3223 goto out;
dfe25020 3224 }
57ba4cb8 3225
79bd3712
FM
3226 ret = remove_chunk_item(trans, map, chunk_offset);
3227 if (ret) {
3228 btrfs_abort_transaction(trans, ret);
3229 goto out;
3230 }
3231 } else if (ret) {
66642832 3232 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3233 goto out;
3234 }
8f18cf13 3235
6bccf3ab 3236 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3237
8f18cf13 3238 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3239 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3240 if (ret) {
66642832 3241 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3242 goto out;
3243 }
8f18cf13
CM
3244 }
3245
79bd3712
FM
3246 mutex_unlock(&fs_info->chunk_mutex);
3247 trans->removing_chunk = false;
3248
3249 /*
3250 * We are done with chunk btree updates and deletions, so release the
3251 * system space we previously reserved (with check_system_chunk()).
3252 */
3253 btrfs_trans_release_chunk_metadata(trans);
3254
5a98ec01 3255 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3256 if (ret) {
66642832 3257 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3258 goto out;
3259 }
2b82032c 3260
47ab2a6c 3261out:
79bd3712
FM
3262 if (trans->removing_chunk) {
3263 mutex_unlock(&fs_info->chunk_mutex);
3264 trans->removing_chunk = false;
3265 }
2b82032c
YZ
3266 /* once for us */
3267 free_extent_map(em);
47ab2a6c
JB
3268 return ret;
3269}
2b82032c 3270
18bb8bbf 3271int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3272{
5b4aacef 3273 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3274 struct btrfs_trans_handle *trans;
b0643e59 3275 struct btrfs_block_group *block_group;
01e86008 3276 u64 length;
47ab2a6c 3277 int ret;
2b82032c 3278
4b349253
JB
3279 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3280 btrfs_err(fs_info,
3281 "relocate: not supported on extent tree v2 yet");
3282 return -EINVAL;
3283 }
3284
67c5e7d4
FM
3285 /*
3286 * Prevent races with automatic removal of unused block groups.
3287 * After we relocate and before we remove the chunk with offset
3288 * chunk_offset, automatic removal of the block group can kick in,
3289 * resulting in a failure when calling btrfs_remove_chunk() below.
3290 *
3291 * Make sure to acquire this mutex before doing a tree search (dev
3292 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3293 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3294 * we release the path used to search the chunk/dev tree and before
3295 * the current task acquires this mutex and calls us.
3296 */
f3372065 3297 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3298
47ab2a6c 3299 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3300 btrfs_scrub_pause(fs_info);
0b246afa 3301 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3302 btrfs_scrub_continue(fs_info);
2d82a40a
FM
3303 if (ret) {
3304 /*
3305 * If we had a transaction abort, stop all running scrubs.
3306 * See transaction.c:cleanup_transaction() why we do it here.
3307 */
3308 if (BTRFS_FS_ERROR(fs_info))
3309 btrfs_scrub_cancel(fs_info);
47ab2a6c 3310 return ret;
2d82a40a 3311 }
47ab2a6c 3312
b0643e59
DZ
3313 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3314 if (!block_group)
3315 return -ENOENT;
3316 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3317 length = block_group->length;
b0643e59
DZ
3318 btrfs_put_block_group(block_group);
3319
01e86008
JT
3320 /*
3321 * On a zoned file system, discard the whole block group, this will
3322 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3323 * resetting the zone fails, don't treat it as a fatal problem from the
3324 * filesystem's point of view.
3325 */
3326 if (btrfs_is_zoned(fs_info)) {
3327 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3328 if (ret)
3329 btrfs_info(fs_info,
3330 "failed to reset zone %llu after relocation",
3331 chunk_offset);
3332 }
3333
19c4d2f9
CM
3334 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3335 chunk_offset);
3336 if (IS_ERR(trans)) {
3337 ret = PTR_ERR(trans);
3338 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3339 return ret;
3340 }
3341
47ab2a6c 3342 /*
19c4d2f9
CM
3343 * step two, delete the device extents and the
3344 * chunk tree entries
47ab2a6c 3345 */
97aff912 3346 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3347 btrfs_end_transaction(trans);
19c4d2f9 3348 return ret;
2b82032c
YZ
3349}
3350
2ff7e61e 3351static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3352{
0b246afa 3353 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3354 struct btrfs_path *path;
3355 struct extent_buffer *leaf;
3356 struct btrfs_chunk *chunk;
3357 struct btrfs_key key;
3358 struct btrfs_key found_key;
2b82032c 3359 u64 chunk_type;
ba1bf481
JB
3360 bool retried = false;
3361 int failed = 0;
2b82032c
YZ
3362 int ret;
3363
3364 path = btrfs_alloc_path();
3365 if (!path)
3366 return -ENOMEM;
3367
ba1bf481 3368again:
2b82032c
YZ
3369 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3370 key.offset = (u64)-1;
3371 key.type = BTRFS_CHUNK_ITEM_KEY;
3372
3373 while (1) {
f3372065 3374 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3375 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3376 if (ret < 0) {
f3372065 3377 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3378 goto error;
67c5e7d4 3379 }
79787eaa 3380 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3381
3382 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3383 key.type);
67c5e7d4 3384 if (ret)
f3372065 3385 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3386 if (ret < 0)
3387 goto error;
3388 if (ret > 0)
3389 break;
1a40e23b 3390
2b82032c
YZ
3391 leaf = path->nodes[0];
3392 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3393
2b82032c
YZ
3394 chunk = btrfs_item_ptr(leaf, path->slots[0],
3395 struct btrfs_chunk);
3396 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3397 btrfs_release_path(path);
8f18cf13 3398
2b82032c 3399 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3400 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3401 if (ret == -ENOSPC)
3402 failed++;
14586651
HS
3403 else
3404 BUG_ON(ret);
2b82032c 3405 }
f3372065 3406 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3407
2b82032c
YZ
3408 if (found_key.offset == 0)
3409 break;
3410 key.offset = found_key.offset - 1;
3411 }
3412 ret = 0;
ba1bf481
JB
3413 if (failed && !retried) {
3414 failed = 0;
3415 retried = true;
3416 goto again;
fae7f21c 3417 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3418 ret = -ENOSPC;
3419 }
2b82032c
YZ
3420error:
3421 btrfs_free_path(path);
3422 return ret;
8f18cf13
CM
3423}
3424
a6f93c71
LB
3425/*
3426 * return 1 : allocate a data chunk successfully,
3427 * return <0: errors during allocating a data chunk,
3428 * return 0 : no need to allocate a data chunk.
3429 */
3430static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3431 u64 chunk_offset)
3432{
32da5386 3433 struct btrfs_block_group *cache;
a6f93c71
LB
3434 u64 bytes_used;
3435 u64 chunk_type;
3436
3437 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3438 ASSERT(cache);
3439 chunk_type = cache->flags;
3440 btrfs_put_block_group(cache);
3441
5ae21692
JT
3442 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3443 return 0;
3444
3445 spin_lock(&fs_info->data_sinfo->lock);
3446 bytes_used = fs_info->data_sinfo->bytes_used;
3447 spin_unlock(&fs_info->data_sinfo->lock);
3448
3449 if (!bytes_used) {
3450 struct btrfs_trans_handle *trans;
3451 int ret;
3452
3453 trans = btrfs_join_transaction(fs_info->tree_root);
3454 if (IS_ERR(trans))
3455 return PTR_ERR(trans);
3456
3457 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3458 btrfs_end_transaction(trans);
3459 if (ret < 0)
3460 return ret;
3461 return 1;
a6f93c71 3462 }
5ae21692 3463
a6f93c71
LB
3464 return 0;
3465}
3466
6bccf3ab 3467static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3468 struct btrfs_balance_control *bctl)
3469{
6bccf3ab 3470 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3471 struct btrfs_trans_handle *trans;
3472 struct btrfs_balance_item *item;
3473 struct btrfs_disk_balance_args disk_bargs;
3474 struct btrfs_path *path;
3475 struct extent_buffer *leaf;
3476 struct btrfs_key key;
3477 int ret, err;
3478
3479 path = btrfs_alloc_path();
3480 if (!path)
3481 return -ENOMEM;
3482
3483 trans = btrfs_start_transaction(root, 0);
3484 if (IS_ERR(trans)) {
3485 btrfs_free_path(path);
3486 return PTR_ERR(trans);
3487 }
3488
3489 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3490 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3491 key.offset = 0;
3492
3493 ret = btrfs_insert_empty_item(trans, root, path, &key,
3494 sizeof(*item));
3495 if (ret)
3496 goto out;
3497
3498 leaf = path->nodes[0];
3499 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3500
b159fa28 3501 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3502
3503 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3504 btrfs_set_balance_data(leaf, item, &disk_bargs);
3505 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3506 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3507 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3508 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3509
3510 btrfs_set_balance_flags(leaf, item, bctl->flags);
3511
3512 btrfs_mark_buffer_dirty(leaf);
3513out:
3514 btrfs_free_path(path);
3a45bb20 3515 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3516 if (err && !ret)
3517 ret = err;
3518 return ret;
3519}
3520
6bccf3ab 3521static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3522{
6bccf3ab 3523 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3524 struct btrfs_trans_handle *trans;
3525 struct btrfs_path *path;
3526 struct btrfs_key key;
3527 int ret, err;
3528
3529 path = btrfs_alloc_path();
3530 if (!path)
3531 return -ENOMEM;
3532
3502a8c0 3533 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3534 if (IS_ERR(trans)) {
3535 btrfs_free_path(path);
3536 return PTR_ERR(trans);
3537 }
3538
3539 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3540 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3541 key.offset = 0;
3542
3543 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3544 if (ret < 0)
3545 goto out;
3546 if (ret > 0) {
3547 ret = -ENOENT;
3548 goto out;
3549 }
3550
3551 ret = btrfs_del_item(trans, root, path);
3552out:
3553 btrfs_free_path(path);
3a45bb20 3554 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3555 if (err && !ret)
3556 ret = err;
3557 return ret;
3558}
3559
59641015
ID
3560/*
3561 * This is a heuristic used to reduce the number of chunks balanced on
3562 * resume after balance was interrupted.
3563 */
3564static void update_balance_args(struct btrfs_balance_control *bctl)
3565{
3566 /*
3567 * Turn on soft mode for chunk types that were being converted.
3568 */
3569 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3570 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3571 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3572 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3573 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3574 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3575
3576 /*
3577 * Turn on usage filter if is not already used. The idea is
3578 * that chunks that we have already balanced should be
3579 * reasonably full. Don't do it for chunks that are being
3580 * converted - that will keep us from relocating unconverted
3581 * (albeit full) chunks.
3582 */
3583 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3584 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3585 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3586 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3587 bctl->data.usage = 90;
3588 }
3589 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3590 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3591 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3592 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3593 bctl->sys.usage = 90;
3594 }
3595 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3596 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3597 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3598 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3599 bctl->meta.usage = 90;
3600 }
3601}
3602
149196a2
DS
3603/*
3604 * Clear the balance status in fs_info and delete the balance item from disk.
3605 */
3606static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3607{
3608 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3609 int ret;
c9e9f97b
ID
3610
3611 BUG_ON(!fs_info->balance_ctl);
3612
3613 spin_lock(&fs_info->balance_lock);
3614 fs_info->balance_ctl = NULL;
3615 spin_unlock(&fs_info->balance_lock);
3616
3617 kfree(bctl);
149196a2
DS
3618 ret = del_balance_item(fs_info);
3619 if (ret)
3620 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3621}
3622
ed25e9b2
ID
3623/*
3624 * Balance filters. Return 1 if chunk should be filtered out
3625 * (should not be balanced).
3626 */
899c81ea 3627static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3628 struct btrfs_balance_args *bargs)
3629{
899c81ea
ID
3630 chunk_type = chunk_to_extended(chunk_type) &
3631 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3632
899c81ea 3633 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3634 return 0;
3635
3636 return 1;
3637}
3638
dba72cb3 3639static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3640 struct btrfs_balance_args *bargs)
bc309467 3641{
32da5386 3642 struct btrfs_block_group *cache;
bc309467
DS
3643 u64 chunk_used;
3644 u64 user_thresh_min;
3645 u64 user_thresh_max;
3646 int ret = 1;
3647
3648 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3649 chunk_used = cache->used;
bc309467
DS
3650
3651 if (bargs->usage_min == 0)
3652 user_thresh_min = 0;
3653 else
428c8e03 3654 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
bc309467
DS
3655
3656 if (bargs->usage_max == 0)
3657 user_thresh_max = 1;
3658 else if (bargs->usage_max > 100)
b3470b5d 3659 user_thresh_max = cache->length;
bc309467 3660 else
428c8e03 3661 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
bc309467
DS
3662
3663 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3664 ret = 0;
3665
3666 btrfs_put_block_group(cache);
3667 return ret;
3668}
3669
dba72cb3 3670static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3671 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3672{
32da5386 3673 struct btrfs_block_group *cache;
5ce5b3c0
ID
3674 u64 chunk_used, user_thresh;
3675 int ret = 1;
3676
3677 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3678 chunk_used = cache->used;
5ce5b3c0 3679
bc309467 3680 if (bargs->usage_min == 0)
3e39cea6 3681 user_thresh = 1;
a105bb88 3682 else if (bargs->usage > 100)
b3470b5d 3683 user_thresh = cache->length;
a105bb88 3684 else
428c8e03 3685 user_thresh = mult_perc(cache->length, bargs->usage);
a105bb88 3686
5ce5b3c0
ID
3687 if (chunk_used < user_thresh)
3688 ret = 0;
3689
3690 btrfs_put_block_group(cache);
3691 return ret;
3692}
3693
409d404b
ID
3694static int chunk_devid_filter(struct extent_buffer *leaf,
3695 struct btrfs_chunk *chunk,
3696 struct btrfs_balance_args *bargs)
3697{
3698 struct btrfs_stripe *stripe;
3699 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3700 int i;
3701
3702 for (i = 0; i < num_stripes; i++) {
3703 stripe = btrfs_stripe_nr(chunk, i);
3704 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3705 return 0;
3706 }
3707
3708 return 1;
3709}
3710
946c9256
DS
3711static u64 calc_data_stripes(u64 type, int num_stripes)
3712{
3713 const int index = btrfs_bg_flags_to_raid_index(type);
3714 const int ncopies = btrfs_raid_array[index].ncopies;
3715 const int nparity = btrfs_raid_array[index].nparity;
3716
d58ede8d 3717 return (num_stripes - nparity) / ncopies;
946c9256
DS
3718}
3719
94e60d5a
ID
3720/* [pstart, pend) */
3721static int chunk_drange_filter(struct extent_buffer *leaf,
3722 struct btrfs_chunk *chunk,
94e60d5a
ID
3723 struct btrfs_balance_args *bargs)
3724{
3725 struct btrfs_stripe *stripe;
3726 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3727 u64 stripe_offset;
3728 u64 stripe_length;
946c9256 3729 u64 type;
94e60d5a
ID
3730 int factor;
3731 int i;
3732
3733 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3734 return 0;
3735
946c9256
DS
3736 type = btrfs_chunk_type(leaf, chunk);
3737 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3738
3739 for (i = 0; i < num_stripes; i++) {
3740 stripe = btrfs_stripe_nr(chunk, i);
3741 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3742 continue;
3743
3744 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3745 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3746 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3747
3748 if (stripe_offset < bargs->pend &&
3749 stripe_offset + stripe_length > bargs->pstart)
3750 return 0;
3751 }
3752
3753 return 1;
3754}
3755
ea67176a
ID
3756/* [vstart, vend) */
3757static int chunk_vrange_filter(struct extent_buffer *leaf,
3758 struct btrfs_chunk *chunk,
3759 u64 chunk_offset,
3760 struct btrfs_balance_args *bargs)
3761{
3762 if (chunk_offset < bargs->vend &&
3763 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3764 /* at least part of the chunk is inside this vrange */
3765 return 0;
3766
3767 return 1;
3768}
3769
dee32d0a
GAP
3770static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3771 struct btrfs_chunk *chunk,
3772 struct btrfs_balance_args *bargs)
3773{
3774 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3775
3776 if (bargs->stripes_min <= num_stripes
3777 && num_stripes <= bargs->stripes_max)
3778 return 0;
3779
3780 return 1;
3781}
3782
899c81ea 3783static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3784 struct btrfs_balance_args *bargs)
3785{
3786 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3787 return 0;
3788
899c81ea
ID
3789 chunk_type = chunk_to_extended(chunk_type) &
3790 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3791
899c81ea 3792 if (bargs->target == chunk_type)
cfa4c961
ID
3793 return 1;
3794
3795 return 0;
3796}
3797
6ec0896c 3798static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3799 struct btrfs_chunk *chunk, u64 chunk_offset)
3800{
6ec0896c 3801 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3802 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3803 struct btrfs_balance_args *bargs = NULL;
3804 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3805
3806 /* type filter */
3807 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3808 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3809 return 0;
3810 }
3811
3812 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3813 bargs = &bctl->data;
3814 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3815 bargs = &bctl->sys;
3816 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3817 bargs = &bctl->meta;
3818
ed25e9b2
ID
3819 /* profiles filter */
3820 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3821 chunk_profiles_filter(chunk_type, bargs)) {
3822 return 0;
5ce5b3c0
ID
3823 }
3824
3825 /* usage filter */
3826 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3827 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3828 return 0;
bc309467 3829 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3830 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3831 return 0;
409d404b
ID
3832 }
3833
3834 /* devid filter */
3835 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3836 chunk_devid_filter(leaf, chunk, bargs)) {
3837 return 0;
94e60d5a
ID
3838 }
3839
3840 /* drange filter, makes sense only with devid filter */
3841 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3842 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3843 return 0;
ea67176a
ID
3844 }
3845
3846 /* vrange filter */
3847 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3848 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3849 return 0;
ed25e9b2
ID
3850 }
3851
dee32d0a
GAP
3852 /* stripes filter */
3853 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3854 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3855 return 0;
3856 }
3857
cfa4c961
ID
3858 /* soft profile changing mode */
3859 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3860 chunk_soft_convert_filter(chunk_type, bargs)) {
3861 return 0;
3862 }
3863
7d824b6f
DS
3864 /*
3865 * limited by count, must be the last filter
3866 */
3867 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3868 if (bargs->limit == 0)
3869 return 0;
3870 else
3871 bargs->limit--;
12907fc7
DS
3872 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3873 /*
3874 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3875 * determined here because we do not have the global information
12907fc7
DS
3876 * about the count of all chunks that satisfy the filters.
3877 */
3878 if (bargs->limit_max == 0)
3879 return 0;
3880 else
3881 bargs->limit_max--;
7d824b6f
DS
3882 }
3883
f43ffb60
ID
3884 return 1;
3885}
3886
c9e9f97b 3887static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3888{
19a39dce 3889 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3890 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3891 u64 chunk_type;
f43ffb60 3892 struct btrfs_chunk *chunk;
5a488b9d 3893 struct btrfs_path *path = NULL;
ec44a35c 3894 struct btrfs_key key;
ec44a35c 3895 struct btrfs_key found_key;
f43ffb60
ID
3896 struct extent_buffer *leaf;
3897 int slot;
c9e9f97b
ID
3898 int ret;
3899 int enospc_errors = 0;
19a39dce 3900 bool counting = true;
12907fc7 3901 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3902 u64 limit_data = bctl->data.limit;
3903 u64 limit_meta = bctl->meta.limit;
3904 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3905 u32 count_data = 0;
3906 u32 count_meta = 0;
3907 u32 count_sys = 0;
2c9fe835 3908 int chunk_reserved = 0;
ec44a35c 3909
ec44a35c 3910 path = btrfs_alloc_path();
17e9f796
MF
3911 if (!path) {
3912 ret = -ENOMEM;
3913 goto error;
3914 }
19a39dce
ID
3915
3916 /* zero out stat counters */
3917 spin_lock(&fs_info->balance_lock);
3918 memset(&bctl->stat, 0, sizeof(bctl->stat));
3919 spin_unlock(&fs_info->balance_lock);
3920again:
7d824b6f 3921 if (!counting) {
12907fc7
DS
3922 /*
3923 * The single value limit and min/max limits use the same bytes
3924 * in the
3925 */
7d824b6f
DS
3926 bctl->data.limit = limit_data;
3927 bctl->meta.limit = limit_meta;
3928 bctl->sys.limit = limit_sys;
3929 }
ec44a35c
CM
3930 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3931 key.offset = (u64)-1;
3932 key.type = BTRFS_CHUNK_ITEM_KEY;
3933
d397712b 3934 while (1) {
19a39dce 3935 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3936 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3937 ret = -ECANCELED;
3938 goto error;
3939 }
3940
f3372065 3941 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3942 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3943 if (ret < 0) {
f3372065 3944 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3945 goto error;
67c5e7d4 3946 }
ec44a35c
CM
3947
3948 /*
3949 * this shouldn't happen, it means the last relocate
3950 * failed
3951 */
3952 if (ret == 0)
c9e9f97b 3953 BUG(); /* FIXME break ? */
ec44a35c
CM
3954
3955 ret = btrfs_previous_item(chunk_root, path, 0,
3956 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3957 if (ret) {
f3372065 3958 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3959 ret = 0;
ec44a35c 3960 break;
c9e9f97b 3961 }
7d9eb12c 3962
f43ffb60
ID
3963 leaf = path->nodes[0];
3964 slot = path->slots[0];
3965 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3966
67c5e7d4 3967 if (found_key.objectid != key.objectid) {
f3372065 3968 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3969 break;
67c5e7d4 3970 }
7d9eb12c 3971
f43ffb60 3972 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3973 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3974
19a39dce
ID
3975 if (!counting) {
3976 spin_lock(&fs_info->balance_lock);
3977 bctl->stat.considered++;
3978 spin_unlock(&fs_info->balance_lock);
3979 }
3980
6ec0896c 3981 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3982
b3b4aa74 3983 btrfs_release_path(path);
67c5e7d4 3984 if (!ret) {
f3372065 3985 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3986 goto loop;
67c5e7d4 3987 }
f43ffb60 3988
19a39dce 3989 if (counting) {
f3372065 3990 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3991 spin_lock(&fs_info->balance_lock);
3992 bctl->stat.expected++;
3993 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3994
3995 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3996 count_data++;
3997 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3998 count_sys++;
3999 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4000 count_meta++;
4001
4002 goto loop;
4003 }
4004
4005 /*
4006 * Apply limit_min filter, no need to check if the LIMITS
4007 * filter is used, limit_min is 0 by default
4008 */
4009 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4010 count_data < bctl->data.limit_min)
4011 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4012 count_meta < bctl->meta.limit_min)
4013 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4014 count_sys < bctl->sys.limit_min)) {
f3372065 4015 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
4016 goto loop;
4017 }
4018
a6f93c71
LB
4019 if (!chunk_reserved) {
4020 /*
4021 * We may be relocating the only data chunk we have,
4022 * which could potentially end up with losing data's
4023 * raid profile, so lets allocate an empty one in
4024 * advance.
4025 */
4026 ret = btrfs_may_alloc_data_chunk(fs_info,
4027 found_key.offset);
2c9fe835 4028 if (ret < 0) {
f3372065 4029 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 4030 goto error;
a6f93c71
LB
4031 } else if (ret == 1) {
4032 chunk_reserved = 1;
2c9fe835 4033 }
2c9fe835
ZL
4034 }
4035
5b4aacef 4036 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 4037 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 4038 if (ret == -ENOSPC) {
c9e9f97b 4039 enospc_errors++;
eede2bf3
OS
4040 } else if (ret == -ETXTBSY) {
4041 btrfs_info(fs_info,
4042 "skipping relocation of block group %llu due to active swapfile",
4043 found_key.offset);
4044 ret = 0;
4045 } else if (ret) {
4046 goto error;
19a39dce
ID
4047 } else {
4048 spin_lock(&fs_info->balance_lock);
4049 bctl->stat.completed++;
4050 spin_unlock(&fs_info->balance_lock);
4051 }
f43ffb60 4052loop:
795a3321
ID
4053 if (found_key.offset == 0)
4054 break;
ba1bf481 4055 key.offset = found_key.offset - 1;
ec44a35c 4056 }
c9e9f97b 4057
19a39dce
ID
4058 if (counting) {
4059 btrfs_release_path(path);
4060 counting = false;
4061 goto again;
4062 }
ec44a35c
CM
4063error:
4064 btrfs_free_path(path);
c9e9f97b 4065 if (enospc_errors) {
efe120a0 4066 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 4067 enospc_errors);
c9e9f97b
ID
4068 if (!ret)
4069 ret = -ENOSPC;
4070 }
4071
ec44a35c
CM
4072 return ret;
4073}
4074
43dd529a
DS
4075/*
4076 * See if a given profile is valid and reduced.
4077 *
4078 * @flags: profile to validate
4079 * @extended: if true @flags is treated as an extended profile
0c460c0d
ID
4080 */
4081static int alloc_profile_is_valid(u64 flags, int extended)
4082{
4083 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4084 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4085
4086 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4087
4088 /* 1) check that all other bits are zeroed */
4089 if (flags & ~mask)
4090 return 0;
4091
4092 /* 2) see if profile is reduced */
4093 if (flags == 0)
4094 return !extended; /* "0" is valid for usual profiles */
4095
c1499166 4096 return has_single_bit_set(flags);
0c460c0d
ID
4097}
4098
5ba366c3
DS
4099/*
4100 * Validate target profile against allowed profiles and return true if it's OK.
4101 * Otherwise print the error message and return false.
4102 */
4103static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4104 const struct btrfs_balance_args *bargs,
4105 u64 allowed, const char *type)
bdcd3c97 4106{
5ba366c3
DS
4107 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4108 return true;
4109
4110 /* Profile is valid and does not have bits outside of the allowed set */
4111 if (alloc_profile_is_valid(bargs->target, 1) &&
4112 (bargs->target & ~allowed) == 0)
4113 return true;
4114
4115 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4116 type, btrfs_bg_type_to_raid_name(bargs->target));
4117 return false;
bdcd3c97
AM
4118}
4119
56fc37d9
AJ
4120/*
4121 * Fill @buf with textual description of balance filter flags @bargs, up to
4122 * @size_buf including the terminating null. The output may be trimmed if it
4123 * does not fit into the provided buffer.
4124 */
4125static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4126 u32 size_buf)
4127{
4128 int ret;
4129 u32 size_bp = size_buf;
4130 char *bp = buf;
4131 u64 flags = bargs->flags;
4132 char tmp_buf[128] = {'\0'};
4133
4134 if (!flags)
4135 return;
4136
4137#define CHECK_APPEND_NOARG(a) \
4138 do { \
4139 ret = snprintf(bp, size_bp, (a)); \
4140 if (ret < 0 || ret >= size_bp) \
4141 goto out_overflow; \
4142 size_bp -= ret; \
4143 bp += ret; \
4144 } while (0)
4145
4146#define CHECK_APPEND_1ARG(a, v1) \
4147 do { \
4148 ret = snprintf(bp, size_bp, (a), (v1)); \
4149 if (ret < 0 || ret >= size_bp) \
4150 goto out_overflow; \
4151 size_bp -= ret; \
4152 bp += ret; \
4153 } while (0)
4154
4155#define CHECK_APPEND_2ARG(a, v1, v2) \
4156 do { \
4157 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4158 if (ret < 0 || ret >= size_bp) \
4159 goto out_overflow; \
4160 size_bp -= ret; \
4161 bp += ret; \
4162 } while (0)
4163
158da513
DS
4164 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4165 CHECK_APPEND_1ARG("convert=%s,",
4166 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4167
4168 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4169 CHECK_APPEND_NOARG("soft,");
4170
4171 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4172 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4173 sizeof(tmp_buf));
4174 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4175 }
4176
4177 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4178 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4179
4180 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4181 CHECK_APPEND_2ARG("usage=%u..%u,",
4182 bargs->usage_min, bargs->usage_max);
4183
4184 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4185 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4186
4187 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4188 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4189 bargs->pstart, bargs->pend);
4190
4191 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4192 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4193 bargs->vstart, bargs->vend);
4194
4195 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4196 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4197
4198 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4199 CHECK_APPEND_2ARG("limit=%u..%u,",
4200 bargs->limit_min, bargs->limit_max);
4201
4202 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4203 CHECK_APPEND_2ARG("stripes=%u..%u,",
4204 bargs->stripes_min, bargs->stripes_max);
4205
4206#undef CHECK_APPEND_2ARG
4207#undef CHECK_APPEND_1ARG
4208#undef CHECK_APPEND_NOARG
4209
4210out_overflow:
4211
4212 if (size_bp < size_buf)
4213 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4214 else
4215 buf[0] = '\0';
4216}
4217
4218static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4219{
4220 u32 size_buf = 1024;
4221 char tmp_buf[192] = {'\0'};
4222 char *buf;
4223 char *bp;
4224 u32 size_bp = size_buf;
4225 int ret;
4226 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4227
4228 buf = kzalloc(size_buf, GFP_KERNEL);
4229 if (!buf)
4230 return;
4231
4232 bp = buf;
4233
4234#define CHECK_APPEND_1ARG(a, v1) \
4235 do { \
4236 ret = snprintf(bp, size_bp, (a), (v1)); \
4237 if (ret < 0 || ret >= size_bp) \
4238 goto out_overflow; \
4239 size_bp -= ret; \
4240 bp += ret; \
4241 } while (0)
4242
4243 if (bctl->flags & BTRFS_BALANCE_FORCE)
4244 CHECK_APPEND_1ARG("%s", "-f ");
4245
4246 if (bctl->flags & BTRFS_BALANCE_DATA) {
4247 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4248 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4249 }
4250
4251 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4252 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4253 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4254 }
4255
4256 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4257 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4258 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4259 }
4260
4261#undef CHECK_APPEND_1ARG
4262
4263out_overflow:
4264
4265 if (size_bp < size_buf)
4266 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4267 btrfs_info(fs_info, "balance: %s %s",
4268 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4269 "resume" : "start", buf);
4270
4271 kfree(buf);
4272}
4273
c9e9f97b 4274/*
dccdb07b 4275 * Should be called with balance mutexe held
c9e9f97b 4276 */
6fcf6e2b
DS
4277int btrfs_balance(struct btrfs_fs_info *fs_info,
4278 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4279 struct btrfs_ioctl_balance_args *bargs)
4280{
14506127 4281 u64 meta_target, data_target;
f43ffb60 4282 u64 allowed;
e4837f8f 4283 int mixed = 0;
c9e9f97b 4284 int ret;
8dabb742 4285 u64 num_devices;
de98ced9 4286 unsigned seq;
e62869be 4287 bool reducing_redundancy;
b19c98f2 4288 bool paused = false;
081db89b 4289 int i;
c9e9f97b 4290
837d5b6e 4291 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4292 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4293 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4294 ret = -EINVAL;
4295 goto out;
4296 }
4297
e4837f8f
ID
4298 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4299 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4300 mixed = 1;
4301
f43ffb60
ID
4302 /*
4303 * In case of mixed groups both data and meta should be picked,
4304 * and identical options should be given for both of them.
4305 */
e4837f8f
ID
4306 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4307 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4308 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4309 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4310 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4311 btrfs_err(fs_info,
6dac13f8 4312 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4313 ret = -EINVAL;
4314 goto out;
4315 }
4316 }
4317
b35cf1f0
JB
4318 /*
4319 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4320 * are exclusive
b35cf1f0
JB
4321 */
4322 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4323
4324 /*
4325 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4326 * special bit for it, to make it easier to distinguish. Thus we need
4327 * to set it manually, or balance would refuse the profile.
4328 */
4329 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4330 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4331 if (num_devices >= btrfs_raid_array[i].devs_min)
4332 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4333
5ba366c3
DS
4334 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4335 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4336 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4337 ret = -EINVAL;
4338 goto out;
4339 }
4340
6079e12c
DS
4341 /*
4342 * Allow to reduce metadata or system integrity only if force set for
4343 * profiles with redundancy (copies, parity)
4344 */
4345 allowed = 0;
4346 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4347 if (btrfs_raid_array[i].ncopies >= 2 ||
4348 btrfs_raid_array[i].tolerated_failures >= 1)
4349 allowed |= btrfs_raid_array[i].bg_flag;
4350 }
de98ced9
MX
4351 do {
4352 seq = read_seqbegin(&fs_info->profiles_lock);
4353
4354 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4355 (fs_info->avail_system_alloc_bits & allowed) &&
4356 !(bctl->sys.target & allowed)) ||
4357 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4358 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4359 !(bctl->meta.target & allowed)))
e62869be 4360 reducing_redundancy = true;
5a8067c0 4361 else
e62869be 4362 reducing_redundancy = false;
5a8067c0
FM
4363
4364 /* if we're not converting, the target field is uninitialized */
4365 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4366 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4367 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4368 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4369 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4370
e62869be 4371 if (reducing_redundancy) {
5a8067c0
FM
4372 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4373 btrfs_info(fs_info,
e62869be 4374 "balance: force reducing metadata redundancy");
5a8067c0
FM
4375 } else {
4376 btrfs_err(fs_info,
e62869be 4377 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4378 ret = -EINVAL;
4379 goto out;
4380 }
4381 }
4382
14506127
AB
4383 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4384 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4385 btrfs_warn(fs_info,
6dac13f8 4386 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4387 btrfs_bg_type_to_raid_name(meta_target),
4388 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4389 }
4390
6bccf3ab 4391 ret = insert_balance_item(fs_info, bctl);
59641015 4392 if (ret && ret != -EEXIST)
0940ebf6
ID
4393 goto out;
4394
59641015
ID
4395 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4396 BUG_ON(ret == -EEXIST);
833aae18
DS
4397 BUG_ON(fs_info->balance_ctl);
4398 spin_lock(&fs_info->balance_lock);
4399 fs_info->balance_ctl = bctl;
4400 spin_unlock(&fs_info->balance_lock);
59641015
ID
4401 } else {
4402 BUG_ON(ret != -EEXIST);
4403 spin_lock(&fs_info->balance_lock);
4404 update_balance_args(bctl);
4405 spin_unlock(&fs_info->balance_lock);
4406 }
c9e9f97b 4407
3009a62f
DS
4408 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4409 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4410 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4411 mutex_unlock(&fs_info->balance_mutex);
4412
4413 ret = __btrfs_balance(fs_info);
4414
4415 mutex_lock(&fs_info->balance_mutex);
efc0e69c 4416 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
7333bd02 4417 btrfs_info(fs_info, "balance: paused");
efc0e69c 4418 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
b19c98f2 4419 paused = true;
efc0e69c 4420 }
44d354ab
QW
4421 /*
4422 * Balance can be canceled by:
4423 *
4424 * - Regular cancel request
4425 * Then ret == -ECANCELED and balance_cancel_req > 0
4426 *
4427 * - Fatal signal to "btrfs" process
4428 * Either the signal caught by wait_reserve_ticket() and callers
4429 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4430 * got -ECANCELED.
4431 * Either way, in this case balance_cancel_req = 0, and
4432 * ret == -EINTR or ret == -ECANCELED.
4433 *
4434 * So here we only check the return value to catch canceled balance.
4435 */
4436 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4437 btrfs_info(fs_info, "balance: canceled");
4438 else
4439 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4440
3009a62f 4441 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4442
4443 if (bargs) {
4444 memset(bargs, 0, sizeof(*bargs));
008ef096 4445 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4446 }
4447
b19c98f2
JB
4448 /* We didn't pause, we can clean everything up. */
4449 if (!paused) {
149196a2 4450 reset_balance_state(fs_info);
c3e1f96c 4451 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4452 }
4453
837d5b6e 4454 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4455
4456 return ret;
4457out:
59641015 4458 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4459 reset_balance_state(fs_info);
a17c95df 4460 else
59641015 4461 kfree(bctl);
c3e1f96c 4462 btrfs_exclop_finish(fs_info);
a17c95df 4463
59641015
ID
4464 return ret;
4465}
4466
4467static int balance_kthread(void *data)
4468{
2b6ba629 4469 struct btrfs_fs_info *fs_info = data;
9555c6c1 4470 int ret = 0;
59641015 4471
a690e5f2 4472 sb_start_write(fs_info->sb);
59641015 4473 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4474 if (fs_info->balance_ctl)
6fcf6e2b 4475 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4476 mutex_unlock(&fs_info->balance_mutex);
a690e5f2 4477 sb_end_write(fs_info->sb);
2b6ba629 4478
59641015
ID
4479 return ret;
4480}
4481
2b6ba629
ID
4482int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4483{
4484 struct task_struct *tsk;
4485
1354e1a1 4486 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4487 if (!fs_info->balance_ctl) {
1354e1a1 4488 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4489 return 0;
4490 }
1354e1a1 4491 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4492
3cdde224 4493 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4494 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4495 return 0;
4496 }
4497
efc0e69c
NB
4498 spin_lock(&fs_info->super_lock);
4499 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4500 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4501 spin_unlock(&fs_info->super_lock);
02ee654d
AJ
4502 /*
4503 * A ro->rw remount sequence should continue with the paused balance
4504 * regardless of who pauses it, system or the user as of now, so set
4505 * the resume flag.
4506 */
4507 spin_lock(&fs_info->balance_lock);
4508 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4509 spin_unlock(&fs_info->balance_lock);
4510
2b6ba629 4511 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4512 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4513}
4514
68310a5e 4515int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4516{
59641015
ID
4517 struct btrfs_balance_control *bctl;
4518 struct btrfs_balance_item *item;
4519 struct btrfs_disk_balance_args disk_bargs;
4520 struct btrfs_path *path;
4521 struct extent_buffer *leaf;
4522 struct btrfs_key key;
4523 int ret;
4524
4525 path = btrfs_alloc_path();
4526 if (!path)
4527 return -ENOMEM;
4528
59641015 4529 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4530 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4531 key.offset = 0;
4532
68310a5e 4533 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4534 if (ret < 0)
68310a5e 4535 goto out;
59641015
ID
4536 if (ret > 0) { /* ret = -ENOENT; */
4537 ret = 0;
68310a5e
ID
4538 goto out;
4539 }
4540
4541 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4542 if (!bctl) {
4543 ret = -ENOMEM;
4544 goto out;
59641015
ID
4545 }
4546
4547 leaf = path->nodes[0];
4548 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4549
68310a5e
ID
4550 bctl->flags = btrfs_balance_flags(leaf, item);
4551 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4552
4553 btrfs_balance_data(leaf, item, &disk_bargs);
4554 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4555 btrfs_balance_meta(leaf, item, &disk_bargs);
4556 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4557 btrfs_balance_sys(leaf, item, &disk_bargs);
4558 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4559
eee95e3f
DS
4560 /*
4561 * This should never happen, as the paused balance state is recovered
4562 * during mount without any chance of other exclusive ops to collide.
4563 *
4564 * This gives the exclusive op status to balance and keeps in paused
4565 * state until user intervention (cancel or umount). If the ownership
4566 * cannot be assigned, show a message but do not fail. The balance
4567 * is in a paused state and must have fs_info::balance_ctl properly
4568 * set up.
4569 */
efc0e69c 4570 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
eee95e3f 4571 btrfs_warn(fs_info,
6dac13f8 4572 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4573
fb286100
JB
4574 btrfs_release_path(path);
4575
68310a5e 4576 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4577 BUG_ON(fs_info->balance_ctl);
4578 spin_lock(&fs_info->balance_lock);
4579 fs_info->balance_ctl = bctl;
4580 spin_unlock(&fs_info->balance_lock);
68310a5e 4581 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4582out:
4583 btrfs_free_path(path);
ec44a35c
CM
4584 return ret;
4585}
4586
837d5b6e
ID
4587int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4588{
4589 int ret = 0;
4590
4591 mutex_lock(&fs_info->balance_mutex);
4592 if (!fs_info->balance_ctl) {
4593 mutex_unlock(&fs_info->balance_mutex);
4594 return -ENOTCONN;
4595 }
4596
3009a62f 4597 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4598 atomic_inc(&fs_info->balance_pause_req);
4599 mutex_unlock(&fs_info->balance_mutex);
4600
4601 wait_event(fs_info->balance_wait_q,
3009a62f 4602 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4603
4604 mutex_lock(&fs_info->balance_mutex);
4605 /* we are good with balance_ctl ripped off from under us */
3009a62f 4606 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4607 atomic_dec(&fs_info->balance_pause_req);
4608 } else {
4609 ret = -ENOTCONN;
4610 }
4611
4612 mutex_unlock(&fs_info->balance_mutex);
4613 return ret;
4614}
4615
a7e99c69
ID
4616int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4617{
4618 mutex_lock(&fs_info->balance_mutex);
4619 if (!fs_info->balance_ctl) {
4620 mutex_unlock(&fs_info->balance_mutex);
4621 return -ENOTCONN;
4622 }
4623
cf7d20f4
DS
4624 /*
4625 * A paused balance with the item stored on disk can be resumed at
4626 * mount time if the mount is read-write. Otherwise it's still paused
4627 * and we must not allow cancelling as it deletes the item.
4628 */
4629 if (sb_rdonly(fs_info->sb)) {
4630 mutex_unlock(&fs_info->balance_mutex);
4631 return -EROFS;
4632 }
4633
a7e99c69
ID
4634 atomic_inc(&fs_info->balance_cancel_req);
4635 /*
4636 * if we are running just wait and return, balance item is
4637 * deleted in btrfs_balance in this case
4638 */
3009a62f 4639 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4640 mutex_unlock(&fs_info->balance_mutex);
4641 wait_event(fs_info->balance_wait_q,
3009a62f 4642 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4643 mutex_lock(&fs_info->balance_mutex);
4644 } else {
a7e99c69 4645 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4646 /*
4647 * Lock released to allow other waiters to continue, we'll
4648 * reexamine the status again.
4649 */
a7e99c69
ID
4650 mutex_lock(&fs_info->balance_mutex);
4651
a17c95df 4652 if (fs_info->balance_ctl) {
149196a2 4653 reset_balance_state(fs_info);
c3e1f96c 4654 btrfs_exclop_finish(fs_info);
6dac13f8 4655 btrfs_info(fs_info, "balance: canceled");
a17c95df 4656 }
a7e99c69
ID
4657 }
4658
29eefa6d 4659 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4660 atomic_dec(&fs_info->balance_cancel_req);
4661 mutex_unlock(&fs_info->balance_mutex);
4662 return 0;
4663}
4664
97f4dd09 4665int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4666{
4667 struct btrfs_fs_info *fs_info = data;
4668 struct btrfs_root *root = fs_info->tree_root;
4669 struct btrfs_key key;
803b2f54
SB
4670 struct btrfs_path *path = NULL;
4671 int ret = 0;
4672 struct extent_buffer *eb;
4673 int slot;
4674 struct btrfs_root_item root_item;
4675 u32 item_size;
f45388f3 4676 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4677 bool closing = false;
803b2f54
SB
4678
4679 path = btrfs_alloc_path();
4680 if (!path) {
4681 ret = -ENOMEM;
4682 goto out;
4683 }
4684
4685 key.objectid = 0;
4686 key.type = BTRFS_ROOT_ITEM_KEY;
4687 key.offset = 0;
4688
803b2f54 4689 while (1) {
c94bec2c
JB
4690 if (btrfs_fs_closing(fs_info)) {
4691 closing = true;
4692 break;
4693 }
7c829b72
AJ
4694 ret = btrfs_search_forward(root, &key, path,
4695 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4696 if (ret) {
4697 if (ret > 0)
4698 ret = 0;
4699 break;
4700 }
4701
4702 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4703 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4704 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4705 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4706 goto skip;
4707
4708 eb = path->nodes[0];
4709 slot = path->slots[0];
3212fa14 4710 item_size = btrfs_item_size(eb, slot);
803b2f54
SB
4711 if (item_size < sizeof(root_item))
4712 goto skip;
4713
803b2f54
SB
4714 read_extent_buffer(eb, &root_item,
4715 btrfs_item_ptr_offset(eb, slot),
4716 (int)sizeof(root_item));
4717 if (btrfs_root_refs(&root_item) == 0)
4718 goto skip;
f45388f3
FDBM
4719
4720 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4721 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4722 if (trans)
4723 goto update_tree;
4724
4725 btrfs_release_path(path);
803b2f54
SB
4726 /*
4727 * 1 - subvol uuid item
4728 * 1 - received_subvol uuid item
4729 */
4730 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4731 if (IS_ERR(trans)) {
4732 ret = PTR_ERR(trans);
4733 break;
4734 }
f45388f3
FDBM
4735 continue;
4736 } else {
4737 goto skip;
4738 }
4739update_tree:
9771a5cf 4740 btrfs_release_path(path);
f45388f3 4741 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4742 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4743 BTRFS_UUID_KEY_SUBVOL,
4744 key.objectid);
4745 if (ret < 0) {
efe120a0 4746 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4747 ret);
803b2f54
SB
4748 break;
4749 }
4750 }
4751
4752 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4753 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4754 root_item.received_uuid,
4755 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4756 key.objectid);
4757 if (ret < 0) {
efe120a0 4758 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4759 ret);
803b2f54
SB
4760 break;
4761 }
4762 }
4763
f45388f3 4764skip:
9771a5cf 4765 btrfs_release_path(path);
803b2f54 4766 if (trans) {
3a45bb20 4767 ret = btrfs_end_transaction(trans);
f45388f3 4768 trans = NULL;
803b2f54
SB
4769 if (ret)
4770 break;
4771 }
4772
803b2f54
SB
4773 if (key.offset < (u64)-1) {
4774 key.offset++;
4775 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4776 key.offset = 0;
4777 key.type = BTRFS_ROOT_ITEM_KEY;
4778 } else if (key.objectid < (u64)-1) {
4779 key.offset = 0;
4780 key.type = BTRFS_ROOT_ITEM_KEY;
4781 key.objectid++;
4782 } else {
4783 break;
4784 }
4785 cond_resched();
4786 }
4787
4788out:
4789 btrfs_free_path(path);
f45388f3 4790 if (trans && !IS_ERR(trans))
3a45bb20 4791 btrfs_end_transaction(trans);
803b2f54 4792 if (ret)
efe120a0 4793 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4794 else if (!closing)
afcdd129 4795 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4796 up(&fs_info->uuid_tree_rescan_sem);
4797 return 0;
4798}
4799
f7a81ea4
SB
4800int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4801{
4802 struct btrfs_trans_handle *trans;
4803 struct btrfs_root *tree_root = fs_info->tree_root;
4804 struct btrfs_root *uuid_root;
803b2f54
SB
4805 struct task_struct *task;
4806 int ret;
f7a81ea4
SB
4807
4808 /*
4809 * 1 - root node
4810 * 1 - root item
4811 */
4812 trans = btrfs_start_transaction(tree_root, 2);
4813 if (IS_ERR(trans))
4814 return PTR_ERR(trans);
4815
9b7a2440 4816 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4817 if (IS_ERR(uuid_root)) {
6d13f549 4818 ret = PTR_ERR(uuid_root);
66642832 4819 btrfs_abort_transaction(trans, ret);
3a45bb20 4820 btrfs_end_transaction(trans);
6d13f549 4821 return ret;
f7a81ea4
SB
4822 }
4823
4824 fs_info->uuid_root = uuid_root;
4825
3a45bb20 4826 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4827 if (ret)
4828 return ret;
4829
4830 down(&fs_info->uuid_tree_rescan_sem);
4831 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4832 if (IS_ERR(task)) {
70f80175 4833 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4834 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4835 up(&fs_info->uuid_tree_rescan_sem);
4836 return PTR_ERR(task);
4837 }
4838
4839 return 0;
f7a81ea4 4840}
803b2f54 4841
8f18cf13
CM
4842/*
4843 * shrinking a device means finding all of the device extents past
4844 * the new size, and then following the back refs to the chunks.
4845 * The chunk relocation code actually frees the device extent
4846 */
4847int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4848{
0b246afa
JM
4849 struct btrfs_fs_info *fs_info = device->fs_info;
4850 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4851 struct btrfs_trans_handle *trans;
8f18cf13
CM
4852 struct btrfs_dev_extent *dev_extent = NULL;
4853 struct btrfs_path *path;
4854 u64 length;
8f18cf13
CM
4855 u64 chunk_offset;
4856 int ret;
4857 int slot;
ba1bf481
JB
4858 int failed = 0;
4859 bool retried = false;
8f18cf13
CM
4860 struct extent_buffer *l;
4861 struct btrfs_key key;
0b246afa 4862 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4863 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4864 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4865 u64 diff;
61d0d0d2 4866 u64 start;
7dfb8be1
NB
4867
4868 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4869 start = new_size;
0e4324a4 4870 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4871
401e29c1 4872 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4873 return -EINVAL;
4874
8f18cf13
CM
4875 path = btrfs_alloc_path();
4876 if (!path)
4877 return -ENOMEM;
4878
0338dff6 4879 path->reada = READA_BACK;
8f18cf13 4880
61d0d0d2
NB
4881 trans = btrfs_start_transaction(root, 0);
4882 if (IS_ERR(trans)) {
4883 btrfs_free_path(path);
4884 return PTR_ERR(trans);
4885 }
4886
34441361 4887 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4888
7cc8e58d 4889 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4890 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4891 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4892 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4893 }
61d0d0d2
NB
4894
4895 /*
4896 * Once the device's size has been set to the new size, ensure all
4897 * in-memory chunks are synced to disk so that the loop below sees them
4898 * and relocates them accordingly.
4899 */
1c11b63e 4900 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4901 mutex_unlock(&fs_info->chunk_mutex);
4902 ret = btrfs_commit_transaction(trans);
4903 if (ret)
4904 goto done;
4905 } else {
4906 mutex_unlock(&fs_info->chunk_mutex);
4907 btrfs_end_transaction(trans);
4908 }
8f18cf13 4909
ba1bf481 4910again:
8f18cf13
CM
4911 key.objectid = device->devid;
4912 key.offset = (u64)-1;
4913 key.type = BTRFS_DEV_EXTENT_KEY;
4914
213e64da 4915 do {
f3372065 4916 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4917 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4918 if (ret < 0) {
f3372065 4919 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4920 goto done;
67c5e7d4 4921 }
8f18cf13
CM
4922
4923 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4924 if (ret) {
f3372065 4925 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4926 if (ret < 0)
4927 goto done;
8f18cf13 4928 ret = 0;
b3b4aa74 4929 btrfs_release_path(path);
bf1fb512 4930 break;
8f18cf13
CM
4931 }
4932
4933 l = path->nodes[0];
4934 slot = path->slots[0];
4935 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4936
ba1bf481 4937 if (key.objectid != device->devid) {
f3372065 4938 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4939 btrfs_release_path(path);
bf1fb512 4940 break;
ba1bf481 4941 }
8f18cf13
CM
4942
4943 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4944 length = btrfs_dev_extent_length(l, dev_extent);
4945
ba1bf481 4946 if (key.offset + length <= new_size) {
f3372065 4947 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4948 btrfs_release_path(path);
d6397bae 4949 break;
ba1bf481 4950 }
8f18cf13 4951
8f18cf13 4952 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4953 btrfs_release_path(path);
8f18cf13 4954
a6f93c71
LB
4955 /*
4956 * We may be relocating the only data chunk we have,
4957 * which could potentially end up with losing data's
4958 * raid profile, so lets allocate an empty one in
4959 * advance.
4960 */
4961 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4962 if (ret < 0) {
f3372065 4963 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4964 goto done;
4965 }
4966
0b246afa 4967 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4968 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4969 if (ret == -ENOSPC) {
ba1bf481 4970 failed++;
eede2bf3
OS
4971 } else if (ret) {
4972 if (ret == -ETXTBSY) {
4973 btrfs_warn(fs_info,
4974 "could not shrink block group %llu due to active swapfile",
4975 chunk_offset);
4976 }
4977 goto done;
4978 }
213e64da 4979 } while (key.offset-- > 0);
ba1bf481
JB
4980
4981 if (failed && !retried) {
4982 failed = 0;
4983 retried = true;
4984 goto again;
4985 } else if (failed && retried) {
4986 ret = -ENOSPC;
ba1bf481 4987 goto done;
8f18cf13
CM
4988 }
4989
d6397bae 4990 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4991 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4992 if (IS_ERR(trans)) {
4993 ret = PTR_ERR(trans);
4994 goto done;
4995 }
4996
34441361 4997 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4998 /* Clear all state bits beyond the shrunk device size */
4999 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
5000 CHUNK_STATE_MASK);
5001
7cc8e58d 5002 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
5003 if (list_empty(&device->post_commit_list))
5004 list_add_tail(&device->post_commit_list,
5005 &trans->transaction->dev_update_list);
d6397bae 5006
d6397bae 5007 WARN_ON(diff > old_total);
7dfb8be1
NB
5008 btrfs_set_super_total_bytes(super_copy,
5009 round_down(old_total - diff, fs_info->sectorsize));
34441361 5010 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 5011
2bb2e00e 5012 btrfs_reserve_chunk_metadata(trans, false);
2196d6e8
MX
5013 /* Now btrfs_update_device() will change the on-disk size. */
5014 ret = btrfs_update_device(trans, device);
2bb2e00e 5015 btrfs_trans_release_chunk_metadata(trans);
801660b0
AJ
5016 if (ret < 0) {
5017 btrfs_abort_transaction(trans, ret);
5018 btrfs_end_transaction(trans);
5019 } else {
5020 ret = btrfs_commit_transaction(trans);
5021 }
8f18cf13
CM
5022done:
5023 btrfs_free_path(path);
53e489bc 5024 if (ret) {
34441361 5025 mutex_lock(&fs_info->chunk_mutex);
53e489bc 5026 btrfs_device_set_total_bytes(device, old_size);
ebbede42 5027 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 5028 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 5029 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 5030 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 5031 }
8f18cf13
CM
5032 return ret;
5033}
5034
2ff7e61e 5035static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
5036 struct btrfs_key *key,
5037 struct btrfs_chunk *chunk, int item_size)
5038{
0b246afa 5039 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
5040 struct btrfs_disk_key disk_key;
5041 u32 array_size;
5042 u8 *ptr;
5043
79bd3712
FM
5044 lockdep_assert_held(&fs_info->chunk_mutex);
5045
0b86a832 5046 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 5047 if (array_size + item_size + sizeof(disk_key)
79bd3712 5048 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
5049 return -EFBIG;
5050
5051 ptr = super_copy->sys_chunk_array + array_size;
5052 btrfs_cpu_key_to_disk(&disk_key, key);
5053 memcpy(ptr, &disk_key, sizeof(disk_key));
5054 ptr += sizeof(disk_key);
5055 memcpy(ptr, chunk, item_size);
5056 item_size += sizeof(disk_key);
5057 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 5058
0b86a832
CM
5059 return 0;
5060}
5061
73c5de00
AJ
5062/*
5063 * sort the devices in descending order by max_avail, total_avail
5064 */
5065static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 5066{
73c5de00
AJ
5067 const struct btrfs_device_info *di_a = a;
5068 const struct btrfs_device_info *di_b = b;
9b3f68b9 5069
73c5de00 5070 if (di_a->max_avail > di_b->max_avail)
b2117a39 5071 return -1;
73c5de00 5072 if (di_a->max_avail < di_b->max_avail)
b2117a39 5073 return 1;
73c5de00
AJ
5074 if (di_a->total_avail > di_b->total_avail)
5075 return -1;
5076 if (di_a->total_avail < di_b->total_avail)
5077 return 1;
5078 return 0;
b2117a39 5079}
0b86a832 5080
53b381b3
DW
5081static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5082{
ffe2d203 5083 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
5084 return;
5085
ceda0864 5086 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
5087}
5088
cfbb825c
DS
5089static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5090{
5091 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5092 return;
5093
5094 btrfs_set_fs_incompat(info, RAID1C34);
5095}
5096
4f2bafe8 5097/*
f6f39f7a 5098 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
5099 * Wraps needed parameters.
5100 */
5101struct alloc_chunk_ctl {
5102 u64 start;
5103 u64 type;
5104 /* Total number of stripes to allocate */
5105 int num_stripes;
5106 /* sub_stripes info for map */
5107 int sub_stripes;
5108 /* Stripes per device */
5109 int dev_stripes;
5110 /* Maximum number of devices to use */
5111 int devs_max;
5112 /* Minimum number of devices to use */
5113 int devs_min;
5114 /* ndevs has to be a multiple of this */
5115 int devs_increment;
5116 /* Number of copies */
5117 int ncopies;
5118 /* Number of stripes worth of bytes to store parity information */
5119 int nparity;
5120 u64 max_stripe_size;
5121 u64 max_chunk_size;
6aafb303 5122 u64 dev_extent_min;
4f2bafe8
NA
5123 u64 stripe_size;
5124 u64 chunk_size;
5125 int ndevs;
5126};
5127
27c314d5
NA
5128static void init_alloc_chunk_ctl_policy_regular(
5129 struct btrfs_fs_devices *fs_devices,
5130 struct alloc_chunk_ctl *ctl)
5131{
f6fca391 5132 struct btrfs_space_info *space_info;
27c314d5 5133
f6fca391
SR
5134 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5135 ASSERT(space_info);
5136
5137 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5138 ctl->max_stripe_size = ctl->max_chunk_size;
5139
5140 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5141 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
27c314d5
NA
5142
5143 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5144 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
27c314d5 5145 ctl->max_chunk_size);
cb091225 5146 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
27c314d5
NA
5147}
5148
1cd6121f
NA
5149static void init_alloc_chunk_ctl_policy_zoned(
5150 struct btrfs_fs_devices *fs_devices,
5151 struct alloc_chunk_ctl *ctl)
5152{
5153 u64 zone_size = fs_devices->fs_info->zone_size;
5154 u64 limit;
5155 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5156 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5157 u64 min_chunk_size = min_data_stripes * zone_size;
5158 u64 type = ctl->type;
5159
5160 ctl->max_stripe_size = zone_size;
5161 if (type & BTRFS_BLOCK_GROUP_DATA) {
5162 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5163 zone_size);
5164 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5165 ctl->max_chunk_size = ctl->max_stripe_size;
5166 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5167 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5168 ctl->devs_max = min_t(int, ctl->devs_max,
5169 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5170 } else {
5171 BUG();
1cd6121f
NA
5172 }
5173
5174 /* We don't want a chunk larger than 10% of writable space */
428c8e03 5175 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
1cd6121f
NA
5176 zone_size),
5177 min_chunk_size);
5178 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5179 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5180}
5181
27c314d5
NA
5182static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5183 struct alloc_chunk_ctl *ctl)
5184{
5185 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5186
5187 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5188 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5189 ctl->devs_max = btrfs_raid_array[index].devs_max;
5190 if (!ctl->devs_max)
5191 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5192 ctl->devs_min = btrfs_raid_array[index].devs_min;
5193 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5194 ctl->ncopies = btrfs_raid_array[index].ncopies;
5195 ctl->nparity = btrfs_raid_array[index].nparity;
5196 ctl->ndevs = 0;
5197
5198 switch (fs_devices->chunk_alloc_policy) {
5199 case BTRFS_CHUNK_ALLOC_REGULAR:
5200 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5201 break;
1cd6121f
NA
5202 case BTRFS_CHUNK_ALLOC_ZONED:
5203 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5204 break;
27c314d5
NA
5205 default:
5206 BUG();
5207 }
5208}
5209
560156cb
NA
5210static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5211 struct alloc_chunk_ctl *ctl,
5212 struct btrfs_device_info *devices_info)
b2117a39 5213{
560156cb 5214 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5215 struct btrfs_device *device;
73c5de00 5216 u64 total_avail;
560156cb 5217 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5218 int ret;
560156cb
NA
5219 int ndevs = 0;
5220 u64 max_avail;
5221 u64 dev_offset;
0cad8a11 5222
9f680ce0 5223 /*
73c5de00
AJ
5224 * in the first pass through the devices list, we gather information
5225 * about the available holes on each device.
9f680ce0 5226 */
ebcc9301 5227 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5228 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5229 WARN(1, KERN_ERR
efe120a0 5230 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5231 continue;
5232 }
b2117a39 5233
e12c9621
AJ
5234 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5235 &device->dev_state) ||
401e29c1 5236 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5237 continue;
b2117a39 5238
73c5de00
AJ
5239 if (device->total_bytes > device->bytes_used)
5240 total_avail = device->total_bytes - device->bytes_used;
5241 else
5242 total_avail = 0;
38c01b96 5243
5244 /* If there is no space on this device, skip it. */
6aafb303 5245 if (total_avail < ctl->dev_extent_min)
38c01b96 5246 continue;
b2117a39 5247
560156cb
NA
5248 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5249 &max_avail);
73c5de00 5250 if (ret && ret != -ENOSPC)
560156cb 5251 return ret;
b2117a39 5252
73c5de00 5253 if (ret == 0)
560156cb 5254 max_avail = dev_extent_want;
b2117a39 5255
6aafb303 5256 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5257 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5258 btrfs_debug(info,
560156cb 5259 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5260 __func__, device->devid, max_avail,
6aafb303 5261 ctl->dev_extent_min);
73c5de00 5262 continue;
4117f207 5263 }
b2117a39 5264
063d006f
ES
5265 if (ndevs == fs_devices->rw_devices) {
5266 WARN(1, "%s: found more than %llu devices\n",
5267 __func__, fs_devices->rw_devices);
5268 break;
5269 }
73c5de00
AJ
5270 devices_info[ndevs].dev_offset = dev_offset;
5271 devices_info[ndevs].max_avail = max_avail;
5272 devices_info[ndevs].total_avail = total_avail;
5273 devices_info[ndevs].dev = device;
5274 ++ndevs;
5275 }
560156cb 5276 ctl->ndevs = ndevs;
b2117a39 5277
73c5de00
AJ
5278 /*
5279 * now sort the devices by hole size / available space
5280 */
560156cb 5281 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5282 btrfs_cmp_device_info, NULL);
b2117a39 5283
560156cb
NA
5284 return 0;
5285}
5286
5badf512
NA
5287static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5288 struct btrfs_device_info *devices_info)
5289{
5290 /* Number of stripes that count for block group size */
5291 int data_stripes;
5292
5293 /*
5294 * The primary goal is to maximize the number of stripes, so use as
5295 * many devices as possible, even if the stripes are not maximum sized.
5296 *
5297 * The DUP profile stores more than one stripe per device, the
5298 * max_avail is the total size so we have to adjust.
5299 */
5300 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5301 ctl->dev_stripes);
5302 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5303
5304 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5305 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5306
5307 /*
5308 * Use the number of data stripes to figure out how big this chunk is
5309 * really going to be in terms of logical address space, and compare
5310 * that answer with the max chunk size. If it's higher, we try to
5311 * reduce stripe_size.
5312 */
5313 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5314 /*
5315 * Reduce stripe_size, round it up to a 16MB boundary again and
5316 * then use it, unless it ends up being even bigger than the
5317 * previous value we had already.
5318 */
5319 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5320 data_stripes), SZ_16M),
5321 ctl->stripe_size);
5322 }
5323
5da431b7
QW
5324 /* Stripe size should not go beyond 1G. */
5325 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5326
5badf512
NA
5327 /* Align to BTRFS_STRIPE_LEN */
5328 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5329 ctl->chunk_size = ctl->stripe_size * data_stripes;
5330
5331 return 0;
5332}
5333
1cd6121f
NA
5334static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5335 struct btrfs_device_info *devices_info)
5336{
5337 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5338 /* Number of stripes that count for block group size */
5339 int data_stripes;
5340
5341 /*
5342 * It should hold because:
5343 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5344 */
5345 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5346
5347 ctl->stripe_size = zone_size;
5348 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5349 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5350
5351 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5352 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5353 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5354 ctl->stripe_size) + ctl->nparity,
5355 ctl->dev_stripes);
5356 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5357 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5358 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5359 }
5360
5361 ctl->chunk_size = ctl->stripe_size * data_stripes;
5362
5363 return 0;
5364}
5365
5badf512
NA
5366static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5367 struct alloc_chunk_ctl *ctl,
5368 struct btrfs_device_info *devices_info)
5369{
5370 struct btrfs_fs_info *info = fs_devices->fs_info;
5371
5372 /*
5373 * Round down to number of usable stripes, devs_increment can be any
5374 * number so we can't use round_down() that requires power of 2, while
5375 * rounddown is safe.
5376 */
5377 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5378
5379 if (ctl->ndevs < ctl->devs_min) {
5380 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5381 btrfs_debug(info,
5382 "%s: not enough devices with free space: have=%d minimum required=%d",
5383 __func__, ctl->ndevs, ctl->devs_min);
5384 }
5385 return -ENOSPC;
5386 }
5387
5388 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5389
5390 switch (fs_devices->chunk_alloc_policy) {
5391 case BTRFS_CHUNK_ALLOC_REGULAR:
5392 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5393 case BTRFS_CHUNK_ALLOC_ZONED:
5394 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5395 default:
5396 BUG();
5397 }
5398}
5399
79bd3712 5400static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5401 struct alloc_chunk_ctl *ctl,
5402 struct btrfs_device_info *devices_info)
560156cb
NA
5403{
5404 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5405 struct map_lookup *map = NULL;
5406 struct extent_map_tree *em_tree;
79bd3712 5407 struct btrfs_block_group *block_group;
560156cb 5408 struct extent_map *em;
dce580ca
NA
5409 u64 start = ctl->start;
5410 u64 type = ctl->type;
560156cb
NA
5411 int ret;
5412 int i;
5413 int j;
5414
dce580ca
NA
5415 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5416 if (!map)
79bd3712 5417 return ERR_PTR(-ENOMEM);
dce580ca 5418 map->num_stripes = ctl->num_stripes;
560156cb 5419
dce580ca
NA
5420 for (i = 0; i < ctl->ndevs; ++i) {
5421 for (j = 0; j < ctl->dev_stripes; ++j) {
5422 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5423 map->stripes[s].dev = devices_info[i].dev;
5424 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5425 j * ctl->stripe_size;
6324fbf3 5426 }
6324fbf3 5427 }
500ceed8
NB
5428 map->io_align = BTRFS_STRIPE_LEN;
5429 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5430 map->type = type;
dce580ca 5431 map->sub_stripes = ctl->sub_stripes;
0b86a832 5432
dce580ca 5433 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5434
172ddd60 5435 em = alloc_extent_map();
2b82032c 5436 if (!em) {
298a8f9c 5437 kfree(map);
79bd3712 5438 return ERR_PTR(-ENOMEM);
593060d7 5439 }
298a8f9c 5440 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5441 em->map_lookup = map;
2b82032c 5442 em->start = start;
dce580ca 5443 em->len = ctl->chunk_size;
2b82032c
YZ
5444 em->block_start = 0;
5445 em->block_len = em->len;
dce580ca 5446 em->orig_block_len = ctl->stripe_size;
593060d7 5447
c8bf1b67 5448 em_tree = &info->mapping_tree;
890871be 5449 write_lock(&em_tree->lock);
09a2a8f9 5450 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5451 if (ret) {
1efb72a3 5452 write_unlock(&em_tree->lock);
0f5d42b2 5453 free_extent_map(em);
79bd3712 5454 return ERR_PTR(ret);
0f5d42b2 5455 }
1efb72a3
NB
5456 write_unlock(&em_tree->lock);
5457
5758d1bd 5458 block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size);
79bd3712 5459 if (IS_ERR(block_group))
6df9a95e 5460 goto error_del_extent;
2b82032c 5461
bbbf7243
NB
5462 for (i = 0; i < map->num_stripes; i++) {
5463 struct btrfs_device *dev = map->stripes[i].dev;
5464
4f2bafe8 5465 btrfs_device_set_bytes_used(dev,
dce580ca 5466 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5467 if (list_empty(&dev->post_commit_list))
5468 list_add_tail(&dev->post_commit_list,
5469 &trans->transaction->dev_update_list);
5470 }
43530c46 5471
dce580ca 5472 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5473 &info->free_chunk_space);
1c116187 5474
0f5d42b2 5475 free_extent_map(em);
0b246afa 5476 check_raid56_incompat_flag(info, type);
cfbb825c 5477 check_raid1c34_incompat_flag(info, type);
53b381b3 5478
79bd3712 5479 return block_group;
b2117a39 5480
6df9a95e 5481error_del_extent:
0f5d42b2
JB
5482 write_lock(&em_tree->lock);
5483 remove_extent_mapping(em_tree, em);
5484 write_unlock(&em_tree->lock);
5485
5486 /* One for our allocation */
5487 free_extent_map(em);
5488 /* One for the tree reference */
5489 free_extent_map(em);
dce580ca 5490
79bd3712 5491 return block_group;
dce580ca
NA
5492}
5493
f6f39f7a 5494struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5495 u64 type)
dce580ca
NA
5496{
5497 struct btrfs_fs_info *info = trans->fs_info;
5498 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5499 struct btrfs_device_info *devices_info = NULL;
5500 struct alloc_chunk_ctl ctl;
79bd3712 5501 struct btrfs_block_group *block_group;
dce580ca
NA
5502 int ret;
5503
11c67b1a
NB
5504 lockdep_assert_held(&info->chunk_mutex);
5505
dce580ca
NA
5506 if (!alloc_profile_is_valid(type, 0)) {
5507 ASSERT(0);
79bd3712 5508 return ERR_PTR(-EINVAL);
dce580ca
NA
5509 }
5510
5511 if (list_empty(&fs_devices->alloc_list)) {
5512 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5513 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5514 return ERR_PTR(-ENOSPC);
dce580ca
NA
5515 }
5516
5517 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5518 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5519 ASSERT(0);
79bd3712 5520 return ERR_PTR(-EINVAL);
dce580ca
NA
5521 }
5522
11c67b1a 5523 ctl.start = find_next_chunk(info);
dce580ca
NA
5524 ctl.type = type;
5525 init_alloc_chunk_ctl(fs_devices, &ctl);
5526
5527 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5528 GFP_NOFS);
5529 if (!devices_info)
79bd3712 5530 return ERR_PTR(-ENOMEM);
dce580ca
NA
5531
5532 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5533 if (ret < 0) {
5534 block_group = ERR_PTR(ret);
dce580ca 5535 goto out;
79bd3712 5536 }
dce580ca
NA
5537
5538 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5539 if (ret < 0) {
5540 block_group = ERR_PTR(ret);
dce580ca 5541 goto out;
79bd3712 5542 }
dce580ca 5543
79bd3712 5544 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5545
5546out:
b2117a39 5547 kfree(devices_info);
79bd3712 5548 return block_group;
2b82032c
YZ
5549}
5550
79bd3712
FM
5551/*
5552 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5553 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5554 * chunks.
5555 *
5556 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5557 * phases.
5558 */
5559int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5560 struct btrfs_block_group *bg)
5561{
5562 struct btrfs_fs_info *fs_info = trans->fs_info;
79bd3712
FM
5563 struct btrfs_root *chunk_root = fs_info->chunk_root;
5564 struct btrfs_key key;
5565 struct btrfs_chunk *chunk;
5566 struct btrfs_stripe *stripe;
5567 struct extent_map *em;
5568 struct map_lookup *map;
5569 size_t item_size;
5570 int i;
5571 int ret;
5572
5573 /*
5574 * We take the chunk_mutex for 2 reasons:
5575 *
5576 * 1) Updates and insertions in the chunk btree must be done while holding
5577 * the chunk_mutex, as well as updating the system chunk array in the
5578 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5579 * details;
5580 *
5581 * 2) To prevent races with the final phase of a device replace operation
5582 * that replaces the device object associated with the map's stripes,
5583 * because the device object's id can change at any time during that
5584 * final phase of the device replace operation
5585 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5586 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5587 * which would cause a failure when updating the device item, which does
5588 * not exists, or persisting a stripe of the chunk item with such ID.
5589 * Here we can't use the device_list_mutex because our caller already
5590 * has locked the chunk_mutex, and the final phase of device replace
5591 * acquires both mutexes - first the device_list_mutex and then the
5592 * chunk_mutex. Using any of those two mutexes protects us from a
5593 * concurrent device replace.
5594 */
5595 lockdep_assert_held(&fs_info->chunk_mutex);
5596
5597 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5598 if (IS_ERR(em)) {
5599 ret = PTR_ERR(em);
5600 btrfs_abort_transaction(trans, ret);
5601 return ret;
5602 }
5603
5604 map = em->map_lookup;
5605 item_size = btrfs_chunk_item_size(map->num_stripes);
5606
5607 chunk = kzalloc(item_size, GFP_NOFS);
5608 if (!chunk) {
5609 ret = -ENOMEM;
5610 btrfs_abort_transaction(trans, ret);
50460e37 5611 goto out;
2b82032c
YZ
5612 }
5613
79bd3712
FM
5614 for (i = 0; i < map->num_stripes; i++) {
5615 struct btrfs_device *device = map->stripes[i].dev;
5616
5617 ret = btrfs_update_device(trans, device);
5618 if (ret)
5619 goto out;
5620 }
5621
2b82032c 5622 stripe = &chunk->stripe;
6df9a95e 5623 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5624 struct btrfs_device *device = map->stripes[i].dev;
5625 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5626
e17cade2
CM
5627 btrfs_set_stack_stripe_devid(stripe, device->devid);
5628 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5629 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5630 stripe++;
0b86a832
CM
5631 }
5632
79bd3712 5633 btrfs_set_stack_chunk_length(chunk, bg->length);
fd51eb2f 5634 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
a97699d1 5635 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
2b82032c
YZ
5636 btrfs_set_stack_chunk_type(chunk, map->type);
5637 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
a97699d1
QW
5638 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5639 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
0b246afa 5640 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5641 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5642
2b82032c
YZ
5643 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5644 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5645 key.offset = bg->start;
0b86a832 5646
2b82032c 5647 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5648 if (ret)
5649 goto out;
5650
3349b57f 5651 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
79bd3712
FM
5652
5653 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5654 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5655 if (ret)
5656 goto out;
8f18cf13 5657 }
1abe9b8a 5658
6df9a95e 5659out:
0b86a832 5660 kfree(chunk);
6df9a95e 5661 free_extent_map(em);
4ed1d16e 5662 return ret;
2b82032c 5663}
0b86a832 5664
6f8e0fc7 5665static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5666{
6f8e0fc7 5667 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5668 u64 alloc_profile;
79bd3712
FM
5669 struct btrfs_block_group *meta_bg;
5670 struct btrfs_block_group *sys_bg;
5671
5672 /*
5673 * When adding a new device for sprouting, the seed device is read-only
5674 * so we must first allocate a metadata and a system chunk. But before
5675 * adding the block group items to the extent, device and chunk btrees,
5676 * we must first:
5677 *
5678 * 1) Create both chunks without doing any changes to the btrees, as
5679 * otherwise we would get -ENOSPC since the block groups from the
5680 * seed device are read-only;
5681 *
5682 * 2) Add the device item for the new sprout device - finishing the setup
5683 * of a new block group requires updating the device item in the chunk
5684 * btree, so it must exist when we attempt to do it. The previous step
5685 * ensures this does not fail with -ENOSPC.
5686 *
5687 * After that we can add the block group items to their btrees:
5688 * update existing device item in the chunk btree, add a new block group
5689 * item to the extent btree, add a new chunk item to the chunk btree and
5690 * finally add the new device extent items to the devices btree.
5691 */
2b82032c 5692
1b86826d 5693 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5694 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5695 if (IS_ERR(meta_bg))
5696 return PTR_ERR(meta_bg);
2b82032c 5697
1b86826d 5698 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5699 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5700 if (IS_ERR(sys_bg))
5701 return PTR_ERR(sys_bg);
5702
5703 return 0;
2b82032c
YZ
5704}
5705
d20983b4
MX
5706static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5707{
fc9a2ac7 5708 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5709
fc9a2ac7 5710 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5711}
5712
a09f23c3 5713bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5714{
5715 struct extent_map *em;
5716 struct map_lookup *map;
d20983b4 5717 int miss_ndevs = 0;
2b82032c 5718 int i;
a09f23c3 5719 bool ret = true;
2b82032c 5720
60ca842e 5721 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5722 if (IS_ERR(em))
a09f23c3 5723 return false;
2b82032c 5724
95617d69 5725 map = em->map_lookup;
2b82032c 5726 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5727 if (test_bit(BTRFS_DEV_STATE_MISSING,
5728 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5729 miss_ndevs++;
5730 continue;
5731 }
ebbede42
AJ
5732 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5733 &map->stripes[i].dev->dev_state)) {
a09f23c3 5734 ret = false;
d20983b4 5735 goto end;
2b82032c
YZ
5736 }
5737 }
d20983b4
MX
5738
5739 /*
a09f23c3
AJ
5740 * If the number of missing devices is larger than max errors, we can
5741 * not write the data into that chunk successfully.
d20983b4
MX
5742 */
5743 if (miss_ndevs > btrfs_chunk_max_errors(map))
a09f23c3 5744 ret = false;
d20983b4 5745end:
0b86a832 5746 free_extent_map(em);
a09f23c3 5747 return ret;
0b86a832
CM
5748}
5749
c8bf1b67 5750void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5751{
5752 struct extent_map *em;
5753
d397712b 5754 while (1) {
c8bf1b67
DS
5755 write_lock(&tree->lock);
5756 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5757 if (em)
c8bf1b67
DS
5758 remove_extent_mapping(tree, em);
5759 write_unlock(&tree->lock);
0b86a832
CM
5760 if (!em)
5761 break;
0b86a832
CM
5762 /* once for us */
5763 free_extent_map(em);
5764 /* once for the tree */
5765 free_extent_map(em);
5766 }
5767}
5768
5d964051 5769int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5770{
5771 struct extent_map *em;
5772 struct map_lookup *map;
6d322b48
QW
5773 enum btrfs_raid_types index;
5774 int ret = 1;
f188591e 5775
60ca842e 5776 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5777 if (IS_ERR(em))
5778 /*
5779 * We could return errors for these cases, but that could get
5780 * ugly and we'd probably do the same thing which is just not do
5781 * anything else and exit, so return 1 so the callers don't try
5782 * to use other copies.
5783 */
fb7669b5 5784 return 1;
fb7669b5 5785
95617d69 5786 map = em->map_lookup;
6d322b48
QW
5787 index = btrfs_bg_flags_to_raid_index(map->type);
5788
5789 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5790 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5791 ret = btrfs_raid_array[index].ncopies;
53b381b3
DW
5792 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5793 ret = 2;
5794 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5795 /*
5796 * There could be two corrupted data stripes, we need
5797 * to loop retry in order to rebuild the correct data.
e7e02096 5798 *
8810f751
LB
5799 * Fail a stripe at a time on every retry except the
5800 * stripe under reconstruction.
5801 */
5802 ret = map->num_stripes;
f188591e 5803 free_extent_map(em);
f188591e
CM
5804 return ret;
5805}
5806
2ff7e61e 5807unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5808 u64 logical)
5809{
5810 struct extent_map *em;
5811 struct map_lookup *map;
0b246afa 5812 unsigned long len = fs_info->sectorsize;
53b381b3 5813
b036f479
QW
5814 if (!btrfs_fs_incompat(fs_info, RAID56))
5815 return len;
5816
60ca842e 5817 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5818
69f03f13
NB
5819 if (!WARN_ON(IS_ERR(em))) {
5820 map = em->map_lookup;
5821 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
cb091225 5822 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
69f03f13
NB
5823 free_extent_map(em);
5824 }
53b381b3
DW
5825 return len;
5826}
5827
e4ff5fb5 5828int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5829{
5830 struct extent_map *em;
5831 struct map_lookup *map;
53b381b3
DW
5832 int ret = 0;
5833
b036f479
QW
5834 if (!btrfs_fs_incompat(fs_info, RAID56))
5835 return 0;
5836
60ca842e 5837 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5838
69f03f13
NB
5839 if(!WARN_ON(IS_ERR(em))) {
5840 map = em->map_lookup;
5841 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5842 ret = 1;
5843 free_extent_map(em);
5844 }
53b381b3
DW
5845 return ret;
5846}
5847
30d9861f 5848static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5849 struct map_lookup *map, int first,
8ba0ae78 5850 int dev_replace_is_ongoing)
dfe25020
CM
5851{
5852 int i;
99f92a7c 5853 int num_stripes;
8ba0ae78 5854 int preferred_mirror;
30d9861f
SB
5855 int tolerance;
5856 struct btrfs_device *srcdev;
5857
99f92a7c 5858 ASSERT((map->type &
c7369b3f 5859 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5860
5861 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5862 num_stripes = map->sub_stripes;
5863 else
5864 num_stripes = map->num_stripes;
5865
33fd2f71
AJ
5866 switch (fs_info->fs_devices->read_policy) {
5867 default:
5868 /* Shouldn't happen, just warn and use pid instead of failing */
5869 btrfs_warn_rl(fs_info,
5870 "unknown read_policy type %u, reset to pid",
5871 fs_info->fs_devices->read_policy);
5872 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5873 fallthrough;
5874 case BTRFS_READ_POLICY_PID:
5875 preferred_mirror = first + (current->pid % num_stripes);
5876 break;
5877 }
8ba0ae78 5878
30d9861f
SB
5879 if (dev_replace_is_ongoing &&
5880 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5881 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5882 srcdev = fs_info->dev_replace.srcdev;
5883 else
5884 srcdev = NULL;
5885
5886 /*
5887 * try to avoid the drive that is the source drive for a
5888 * dev-replace procedure, only choose it if no other non-missing
5889 * mirror is available
5890 */
5891 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5892 if (map->stripes[preferred_mirror].dev->bdev &&
5893 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5894 return preferred_mirror;
99f92a7c 5895 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5896 if (map->stripes[i].dev->bdev &&
5897 (tolerance || map->stripes[i].dev != srcdev))
5898 return i;
5899 }
dfe25020 5900 }
30d9861f 5901
dfe25020
CM
5902 /* we couldn't find one that doesn't fail. Just return something
5903 * and the io error handling code will clean up eventually
5904 */
8ba0ae78 5905 return preferred_mirror;
dfe25020
CM
5906}
5907
731ccf15 5908static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
1faf3885 5909 u16 total_stripes)
6e9606d2 5910{
4ced85f8
QW
5911 struct btrfs_io_context *bioc;
5912
5913 bioc = kzalloc(
4c664611
QW
5914 /* The size of btrfs_io_context */
5915 sizeof(struct btrfs_io_context) +
5916 /* Plus the variable array for the stripes */
18d758a2 5917 sizeof(struct btrfs_io_stripe) * (total_stripes),
9f0eac07
L
5918 GFP_NOFS);
5919
5920 if (!bioc)
5921 return NULL;
6e9606d2 5922
4c664611 5923 refcount_set(&bioc->refs, 1);
6e9606d2 5924
731ccf15 5925 bioc->fs_info = fs_info;
1faf3885 5926 bioc->replace_stripe_src = -1;
18d758a2 5927 bioc->full_stripe_logical = (u64)-1;
608769a4 5928
4c664611 5929 return bioc;
6e9606d2
ZL
5930}
5931
4c664611 5932void btrfs_get_bioc(struct btrfs_io_context *bioc)
6e9606d2 5933{
4c664611
QW
5934 WARN_ON(!refcount_read(&bioc->refs));
5935 refcount_inc(&bioc->refs);
6e9606d2
ZL
5936}
5937
4c664611 5938void btrfs_put_bioc(struct btrfs_io_context *bioc)
6e9606d2 5939{
4c664611 5940 if (!bioc)
6e9606d2 5941 return;
4c664611
QW
5942 if (refcount_dec_and_test(&bioc->refs))
5943 kfree(bioc);
6e9606d2
ZL
5944}
5945
0b3d4cd3
LB
5946/*
5947 * Please note that, discard won't be sent to target device of device
5948 * replace.
5949 */
a4012f06
CH
5950struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
5951 u64 logical, u64 *length_ret,
5952 u32 *num_stripes)
0b3d4cd3
LB
5953{
5954 struct extent_map *em;
5955 struct map_lookup *map;
a4012f06 5956 struct btrfs_discard_stripe *stripes;
6b7faadd 5957 u64 length = *length_ret;
0b3d4cd3 5958 u64 offset;
6ded22c1
QW
5959 u32 stripe_nr;
5960 u32 stripe_nr_end;
5961 u32 stripe_cnt;
0b3d4cd3 5962 u64 stripe_end_offset;
0b3d4cd3 5963 u64 stripe_offset;
0b3d4cd3
LB
5964 u32 stripe_index;
5965 u32 factor = 0;
5966 u32 sub_stripes = 0;
6ded22c1 5967 u32 stripes_per_dev = 0;
0b3d4cd3
LB
5968 u32 remaining_stripes = 0;
5969 u32 last_stripe = 0;
a4012f06 5970 int ret;
0b3d4cd3
LB
5971 int i;
5972
60ca842e 5973 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3 5974 if (IS_ERR(em))
a4012f06 5975 return ERR_CAST(em);
0b3d4cd3
LB
5976
5977 map = em->map_lookup;
a4012f06 5978
0b3d4cd3
LB
5979 /* we don't discard raid56 yet */
5980 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5981 ret = -EOPNOTSUPP;
a4012f06 5982 goto out_free_map;
a97699d1 5983 }
0b3d4cd3
LB
5984
5985 offset = logical - em->start;
2d974619 5986 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5987 *length_ret = length;
0b3d4cd3 5988
0b3d4cd3
LB
5989 /*
5990 * stripe_nr counts the total number of stripes we have to stride
5991 * to get to this block
5992 */
a97699d1 5993 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3
LB
5994
5995 /* stripe_offset is the offset of this block in its stripe */
cb091225 5996 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
0b3d4cd3 5997
a97699d1
QW
5998 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
5999 BTRFS_STRIPE_LEN_SHIFT;
0b3d4cd3 6000 stripe_cnt = stripe_nr_end - stripe_nr;
cb091225 6001 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
0b3d4cd3
LB
6002 (offset + length);
6003 /*
6004 * after this, stripe_nr is the number of stripes on this
6005 * device we have to walk to find the data, and stripe_index is
6006 * the number of our device in the stripe array
6007 */
a4012f06 6008 *num_stripes = 1;
0b3d4cd3
LB
6009 stripe_index = 0;
6010 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6011 BTRFS_BLOCK_GROUP_RAID10)) {
6012 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6013 sub_stripes = 1;
6014 else
6015 sub_stripes = map->sub_stripes;
6016
6017 factor = map->num_stripes / sub_stripes;
a4012f06 6018 *num_stripes = min_t(u64, map->num_stripes,
0b3d4cd3 6019 sub_stripes * stripe_cnt);
6ded22c1
QW
6020 stripe_index = stripe_nr % factor;
6021 stripe_nr /= factor;
0b3d4cd3 6022 stripe_index *= sub_stripes;
6ded22c1
QW
6023
6024 remaining_stripes = stripe_cnt % factor;
6025 stripes_per_dev = stripe_cnt / factor;
6026 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
c7369b3f 6027 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3 6028 BTRFS_BLOCK_GROUP_DUP)) {
a4012f06 6029 *num_stripes = map->num_stripes;
0b3d4cd3 6030 } else {
6ded22c1
QW
6031 stripe_index = stripe_nr % map->num_stripes;
6032 stripe_nr /= map->num_stripes;
0b3d4cd3
LB
6033 }
6034
a4012f06
CH
6035 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6036 if (!stripes) {
0b3d4cd3 6037 ret = -ENOMEM;
a4012f06 6038 goto out_free_map;
0b3d4cd3
LB
6039 }
6040
a4012f06
CH
6041 for (i = 0; i < *num_stripes; i++) {
6042 stripes[i].physical =
0b3d4cd3 6043 map->stripes[stripe_index].physical +
cb091225 6044 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
a4012f06 6045 stripes[i].dev = map->stripes[stripe_index].dev;
0b3d4cd3
LB
6046
6047 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6048 BTRFS_BLOCK_GROUP_RAID10)) {
cb091225 6049 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
0b3d4cd3
LB
6050
6051 if (i / sub_stripes < remaining_stripes)
a97699d1 6052 stripes[i].length += BTRFS_STRIPE_LEN;
0b3d4cd3
LB
6053
6054 /*
6055 * Special for the first stripe and
6056 * the last stripe:
6057 *
6058 * |-------|...|-------|
6059 * |----------|
6060 * off end_off
6061 */
6062 if (i < sub_stripes)
a4012f06 6063 stripes[i].length -= stripe_offset;
0b3d4cd3
LB
6064
6065 if (stripe_index >= last_stripe &&
6066 stripe_index <= (last_stripe +
6067 sub_stripes - 1))
a4012f06 6068 stripes[i].length -= stripe_end_offset;
0b3d4cd3
LB
6069
6070 if (i == sub_stripes - 1)
6071 stripe_offset = 0;
6072 } else {
a4012f06 6073 stripes[i].length = length;
0b3d4cd3
LB
6074 }
6075
6076 stripe_index++;
6077 if (stripe_index == map->num_stripes) {
6078 stripe_index = 0;
6079 stripe_nr++;
6080 }
6081 }
6082
0b3d4cd3 6083 free_extent_map(em);
a4012f06
CH
6084 return stripes;
6085out_free_map:
6086 free_extent_map(em);
6087 return ERR_PTR(ret);
0b3d4cd3
LB
6088}
6089
6143c23c
NA
6090static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6091{
6092 struct btrfs_block_group *cache;
6093 bool ret;
6094
de17addc 6095 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6096 if (!btrfs_is_zoned(fs_info))
6097 return false;
6098
6099 cache = btrfs_lookup_block_group(fs_info, logical);
6100
3349b57f 6101 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6143c23c
NA
6102
6103 btrfs_put_block_group(cache);
6104 return ret;
6105}
6106
73c0f228 6107static void handle_ops_on_dev_replace(enum btrfs_map_op op,
be5c7edb 6108 struct btrfs_io_context *bioc,
73c0f228 6109 struct btrfs_dev_replace *dev_replace,
6143c23c 6110 u64 logical,
73c0f228
LB
6111 int *num_stripes_ret, int *max_errors_ret)
6112{
73c0f228 6113 u64 srcdev_devid = dev_replace->srcdev->devid;
1faf3885
QW
6114 /*
6115 * At this stage, num_stripes is still the real number of stripes,
6116 * excluding the duplicated stripes.
6117 */
73c0f228 6118 int num_stripes = *num_stripes_ret;
1faf3885 6119 int nr_extra_stripes = 0;
73c0f228
LB
6120 int max_errors = *max_errors_ret;
6121 int i;
6122
1faf3885
QW
6123 /*
6124 * A block group which has "to_copy" set will eventually be copied by
6125 * the dev-replace process. We can avoid cloning IO here.
6126 */
6127 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6128 return;
73c0f228 6129
1faf3885
QW
6130 /*
6131 * Duplicate the write operations while the dev-replace procedure is
6132 * running. Since the copying of the old disk to the new disk takes
6133 * place at run time while the filesystem is mounted writable, the
6134 * regular write operations to the old disk have to be duplicated to go
6135 * to the new disk as well.
6136 *
6137 * Note that device->missing is handled by the caller, and that the
6138 * write to the old disk is already set up in the stripes array.
6139 */
6140 for (i = 0; i < num_stripes; i++) {
6141 struct btrfs_io_stripe *old = &bioc->stripes[i];
6142 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6143c23c 6143
1faf3885
QW
6144 if (old->dev->devid != srcdev_devid)
6145 continue;
73c0f228 6146
1faf3885
QW
6147 new->physical = old->physical;
6148 new->dev = dev_replace->tgtdev;
6149 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6150 bioc->replace_stripe_src = i;
6151 nr_extra_stripes++;
6152 }
73c0f228 6153
1faf3885
QW
6154 /* We can only have at most 2 extra nr_stripes (for DUP). */
6155 ASSERT(nr_extra_stripes <= 2);
6156 /*
6157 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6158 * replace.
6159 * If we have 2 extra stripes, only choose the one with smaller physical.
6160 */
6161 if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6162 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6163 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
73c0f228 6164
1faf3885
QW
6165 /* Only DUP can have two extra stripes. */
6166 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP);
6167
6168 /*
6169 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6170 * The extra stripe would still be there, but won't be accessed.
6171 */
6172 if (first->physical > second->physical) {
6173 swap(second->physical, first->physical);
6174 swap(second->dev, first->dev);
6175 nr_extra_stripes--;
73c0f228
LB
6176 }
6177 }
6178
1faf3885
QW
6179 *num_stripes_ret = num_stripes + nr_extra_stripes;
6180 *max_errors_ret = max_errors + nr_extra_stripes;
6181 bioc->replace_nr_stripes = nr_extra_stripes;
73c0f228
LB
6182}
6183
f8a02dc6 6184static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op,
6ded22c1 6185 u64 offset, u32 *stripe_nr, u64 *stripe_offset,
f8a02dc6 6186 u64 *full_stripe_start)
5f141126 6187{
cc353a8b 6188 /*
f8a02dc6
CH
6189 * Stripe_nr is the stripe where this block falls. stripe_offset is
6190 * the offset of this block in its stripe.
cc353a8b 6191 */
a97699d1
QW
6192 *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6193 *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
f8a02dc6 6194 ASSERT(*stripe_offset < U32_MAX);
5f141126 6195
f8a02dc6 6196 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
cb091225
QW
6197 unsigned long full_stripe_len =
6198 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5f141126 6199
a97699d1
QW
6200 /*
6201 * For full stripe start, we use previously calculated
6202 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6203 * STRIPE_LEN.
6204 *
6205 * By this we can avoid u64 division completely. And we have
6206 * to go rounddown(), not round_down(), as nr_data_stripes is
6207 * not ensured to be power of 2.
6208 */
f8a02dc6 6209 *full_stripe_start =
cb091225
QW
6210 btrfs_stripe_nr_to_offset(
6211 rounddown(*stripe_nr, nr_data_stripes(map)));
5f141126 6212
a7299a18
QW
6213 ASSERT(*full_stripe_start + full_stripe_len > offset);
6214 ASSERT(*full_stripe_start <= offset);
5f141126 6215 /*
f8a02dc6
CH
6216 * For writes to RAID56, allow to write a full stripe set, but
6217 * no straddling of stripe sets.
5f141126 6218 */
f8a02dc6
CH
6219 if (op == BTRFS_MAP_WRITE)
6220 return full_stripe_len - (offset - *full_stripe_start);
5f141126
NB
6221 }
6222
f8a02dc6
CH
6223 /*
6224 * For other RAID types and for RAID56 reads, allow a single stripe (on
6225 * a single disk).
6226 */
6227 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
a97699d1 6228 return BTRFS_STRIPE_LEN - *stripe_offset;
f8a02dc6 6229 return U64_MAX;
5f141126
NB
6230}
6231
03793cbb 6232static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map,
6ded22c1 6233 u32 stripe_index, u64 stripe_offset, u32 stripe_nr)
03793cbb
CH
6234{
6235 dst->dev = map->stripes[stripe_index].dev;
6236 dst->physical = map->stripes[stripe_index].physical +
cb091225 6237 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
03793cbb
CH
6238}
6239
ed3764f7
QW
6240/*
6241 * Map one logical range to one or more physical ranges.
6242 *
6243 * @length: (Mandatory) mapped length of this run.
6244 * One logical range can be split into different segments
6245 * due to factors like zones and RAID0/5/6/10 stripe
6246 * boundaries.
6247 *
6248 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6249 * which has one or more physical ranges (btrfs_io_stripe)
6250 * recorded inside.
6251 * Caller should call btrfs_put_bioc() to free it after use.
6252 *
6253 * @smap: (Optional) single physical range optimization.
6254 * If the map request can be fulfilled by one single
6255 * physical range, and this is parameter is not NULL,
6256 * then @bioc_ret would be NULL, and @smap would be
6257 * updated.
6258 *
6259 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6260 * value is 0.
6261 *
6262 * Mirror number 0 means to choose any live mirrors.
6263 *
6264 * For non-RAID56 profiles, non-zero mirror_num means
6265 * the Nth mirror. (e.g. mirror_num 1 means the first
6266 * copy).
6267 *
6268 * For RAID56 profile, mirror 1 means rebuild from P and
6269 * the remaining data stripes.
6270 *
6271 * For RAID6 profile, mirror > 2 means mark another
6272 * data/P stripe error and rebuild from the remaining
6273 * stripes..
ed3764f7 6274 */
cd4efd21
CH
6275int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6276 u64 logical, u64 *length,
6277 struct btrfs_io_context **bioc_ret,
9fb2acc2 6278 struct btrfs_io_stripe *smap, int *mirror_num_ret)
0b86a832
CM
6279{
6280 struct extent_map *em;
6281 struct map_lookup *map;
f8a02dc6 6282 u64 map_offset;
593060d7 6283 u64 stripe_offset;
6ded22c1 6284 u32 stripe_nr;
9d644a62 6285 u32 stripe_index;
cff82672 6286 int data_stripes;
cea9e445 6287 int i;
de11cc12 6288 int ret = 0;
03793cbb 6289 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
f2d8d74d 6290 int num_stripes;
5f50fa91 6291 int num_copies;
a236aed1 6292 int max_errors = 0;
4c664611 6293 struct btrfs_io_context *bioc = NULL;
472262f3
SB
6294 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6295 int dev_replace_is_ongoing = 0;
4ced85f8 6296 u16 num_alloc_stripes;
53b381b3 6297 u64 raid56_full_stripe_start = (u64)-1;
f8a02dc6 6298 u64 max_len;
89b798ad 6299
4c664611 6300 ASSERT(bioc_ret);
0b3d4cd3 6301
5f50fa91
QW
6302 num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize);
6303 if (mirror_num > num_copies)
6304 return -EINVAL;
6305
42034313 6306 em = btrfs_get_chunk_map(fs_info, logical, *length);
1c3ab6df
QW
6307 if (IS_ERR(em))
6308 return PTR_ERR(em);
42034313 6309
95617d69 6310 map = em->map_lookup;
cff82672 6311 data_stripes = nr_data_stripes(map);
f8a02dc6
CH
6312
6313 map_offset = logical - em->start;
6314 max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr,
6315 &stripe_offset, &raid56_full_stripe_start);
6316 *length = min_t(u64, em->len - map_offset, max_len);
593060d7 6317
cb5583dd 6318 down_read(&dev_replace->rwsem);
472262f3 6319 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6320 /*
6321 * Hold the semaphore for read during the whole operation, write is
6322 * requested at commit time but must wait.
6323 */
472262f3 6324 if (!dev_replace_is_ongoing)
cb5583dd 6325 up_read(&dev_replace->rwsem);
472262f3 6326
f2d8d74d 6327 num_stripes = 1;
cea9e445 6328 stripe_index = 0;
fce3bb9a 6329 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6ded22c1
QW
6330 stripe_index = stripe_nr % map->num_stripes;
6331 stripe_nr /= map->num_stripes;
8680e587 6332 if (op == BTRFS_MAP_READ)
28e1cc7d 6333 mirror_num = 1;
c7369b3f 6334 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
8680e587 6335 if (op != BTRFS_MAP_READ) {
f2d8d74d 6336 num_stripes = map->num_stripes;
8680e587 6337 } else if (mirror_num) {
f188591e 6338 stripe_index = mirror_num - 1;
8680e587 6339 } else {
30d9861f 6340 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6341 dev_replace_is_ongoing);
a1d3c478 6342 mirror_num = stripe_index + 1;
dfe25020 6343 }
2fff734f 6344
611f0e00 6345 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
8680e587 6346 if (op != BTRFS_MAP_READ) {
f2d8d74d 6347 num_stripes = map->num_stripes;
a1d3c478 6348 } else if (mirror_num) {
f188591e 6349 stripe_index = mirror_num - 1;
a1d3c478
JS
6350 } else {
6351 mirror_num = 1;
6352 }
2fff734f 6353
321aecc6 6354 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6355 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6356
6ded22c1
QW
6357 stripe_index = (stripe_nr % factor) * map->sub_stripes;
6358 stripe_nr /= factor;
321aecc6 6359
8680e587 6360 if (op != BTRFS_MAP_READ)
f2d8d74d 6361 num_stripes = map->sub_stripes;
321aecc6
CM
6362 else if (mirror_num)
6363 stripe_index += mirror_num - 1;
dfe25020 6364 else {
3e74317a 6365 int old_stripe_index = stripe_index;
30d9861f
SB
6366 stripe_index = find_live_mirror(fs_info, map,
6367 stripe_index,
30d9861f 6368 dev_replace_is_ongoing);
3e74317a 6369 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6370 }
53b381b3 6371
ffe2d203 6372 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
9fb2acc2 6373 if (op != BTRFS_MAP_READ || mirror_num > 1) {
6ded22c1 6374 /*
9fb2acc2
QW
6375 * Needs full stripe mapping.
6376 *
6ded22c1
QW
6377 * Push stripe_nr back to the start of the full stripe
6378 * For those cases needing a full stripe, @stripe_nr
6379 * is the full stripe number.
6380 *
6381 * Originally we go raid56_full_stripe_start / full_stripe_len,
6382 * but that can be expensive. Here we just divide
6383 * @stripe_nr with @data_stripes.
6384 */
6385 stripe_nr /= data_stripes;
53b381b3
DW
6386
6387 /* RAID[56] write or recovery. Return all stripes */
6388 num_stripes = map->num_stripes;
6dead96c 6389 max_errors = btrfs_chunk_max_errors(map);
53b381b3 6390
462b0b2a
QW
6391 /* Return the length to the full stripe end */
6392 *length = min(logical + *length,
6393 raid56_full_stripe_start + em->start +
cb091225
QW
6394 btrfs_stripe_nr_to_offset(data_stripes)) -
6395 logical;
53b381b3
DW
6396 stripe_index = 0;
6397 stripe_offset = 0;
6398 } else {
9fb2acc2
QW
6399 ASSERT(mirror_num <= 1);
6400 /* Just grab the data stripe directly. */
6ded22c1
QW
6401 stripe_index = stripe_nr % data_stripes;
6402 stripe_nr /= data_stripes;
53b381b3
DW
6403
6404 /* We distribute the parity blocks across stripes */
6ded22c1 6405 stripe_index = (stripe_nr + stripe_index) % map->num_stripes;
9fb2acc2 6406 if (op == BTRFS_MAP_READ && mirror_num < 1)
28e1cc7d 6407 mirror_num = 1;
53b381b3 6408 }
8790d502
CM
6409 } else {
6410 /*
6ded22c1 6411 * After this, stripe_nr is the number of stripes on this
47c5713f
DS
6412 * device we have to walk to find the data, and stripe_index is
6413 * the number of our device in the stripe array
8790d502 6414 */
6ded22c1
QW
6415 stripe_index = stripe_nr % map->num_stripes;
6416 stripe_nr /= map->num_stripes;
a1d3c478 6417 mirror_num = stripe_index + 1;
8790d502 6418 }
e042d1ec 6419 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6420 btrfs_crit(fs_info,
6421 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6422 stripe_index, map->num_stripes);
6423 ret = -EINVAL;
6424 goto out;
6425 }
cea9e445 6426
472262f3 6427 num_alloc_stripes = num_stripes;
1faf3885
QW
6428 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6429 op != BTRFS_MAP_READ)
6430 /*
6431 * For replace case, we need to add extra stripes for extra
6432 * duplicated stripes.
6433 *
6434 * For both WRITE and GET_READ_MIRRORS, we may have at most
6435 * 2 more stripes (DUP types, otherwise 1).
6436 */
6437 num_alloc_stripes += 2;
2c8cdd6e 6438
03793cbb
CH
6439 /*
6440 * If this I/O maps to a single device, try to return the device and
6441 * physical block information on the stack instead of allocating an
6442 * I/O context structure.
6443 */
6444 if (smap && num_alloc_stripes == 1 &&
b2cc4400 6445 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) {
5f50fa91 6446 set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr);
4e7de35e
CH
6447 if (mirror_num_ret)
6448 *mirror_num_ret = mirror_num;
03793cbb
CH
6449 *bioc_ret = NULL;
6450 ret = 0;
6451 goto out;
6452 }
6453
1faf3885 6454 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes);
4c664611 6455 if (!bioc) {
de11cc12
LZ
6456 ret = -ENOMEM;
6457 goto out;
6458 }
1faf3885 6459 bioc->map_type = map->type;
608769a4 6460
18d758a2
QW
6461 /*
6462 * For RAID56 full map, we need to make sure the stripes[] follows the
6463 * rule that data stripes are all ordered, then followed with P and Q
6464 * (if we have).
6465 *
6466 * It's still mostly the same as other profiles, just with extra rotation.
6467 */
9fb2acc2 6468 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
8680e587 6469 (op != BTRFS_MAP_READ || mirror_num > 1)) {
18d758a2
QW
6470 /*
6471 * For RAID56 @stripe_nr is already the number of full stripes
6472 * before us, which is also the rotation value (needs to modulo
6473 * with num_stripes).
6474 *
6475 * In this case, we just add @stripe_nr with @i, then do the
6476 * modulo, to reduce one modulo call.
6477 */
6478 bioc->full_stripe_logical = em->start +
cb091225 6479 btrfs_stripe_nr_to_offset(stripe_nr * data_stripes);
18d758a2
QW
6480 for (i = 0; i < num_stripes; i++)
6481 set_io_stripe(&bioc->stripes[i], map,
6482 (i + stripe_nr) % num_stripes,
6483 stripe_offset, stripe_nr);
6484 } else {
6485 /*
6486 * For all other non-RAID56 profiles, just copy the target
6487 * stripe into the bioc.
6488 */
6489 for (i = 0; i < num_stripes; i++) {
6490 set_io_stripe(&bioc->stripes[i], map, stripe_index,
6491 stripe_offset, stripe_nr);
6492 stripe_index++;
6493 }
593060d7 6494 }
de11cc12 6495
8680e587 6496 if (op != BTRFS_MAP_READ)
d20983b4 6497 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6498
73c0f228 6499 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
8680e587 6500 op != BTRFS_MAP_READ) {
be5c7edb 6501 handle_ops_on_dev_replace(op, bioc, dev_replace, logical,
6143c23c 6502 &num_stripes, &max_errors);
472262f3
SB
6503 }
6504
4c664611 6505 *bioc_ret = bioc;
4c664611
QW
6506 bioc->num_stripes = num_stripes;
6507 bioc->max_errors = max_errors;
6508 bioc->mirror_num = mirror_num;
ad6d620e 6509
cea9e445 6510out:
73beece9 6511 if (dev_replace_is_ongoing) {
53176dde
DS
6512 lockdep_assert_held(&dev_replace->rwsem);
6513 /* Unlock and let waiting writers proceed */
cb5583dd 6514 up_read(&dev_replace->rwsem);
73beece9 6515 }
0b86a832 6516 free_extent_map(em);
de11cc12 6517 return ret;
0b86a832
CM
6518}
6519
562d7b15
JB
6520static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6521 const struct btrfs_fs_devices *fs_devices)
6522{
6523 if (args->fsid == NULL)
6524 return true;
6525 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6526 return true;
6527 return false;
6528}
6529
6530static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6531 const struct btrfs_device *device)
6532{
0fca385d
LS
6533 if (args->missing) {
6534 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6535 !device->bdev)
6536 return true;
6537 return false;
6538 }
562d7b15 6539
0fca385d 6540 if (device->devid != args->devid)
562d7b15
JB
6541 return false;
6542 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6543 return false;
0fca385d 6544 return true;
562d7b15
JB
6545}
6546
09ba3bc9
AJ
6547/*
6548 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6549 * return NULL.
6550 *
6551 * If devid and uuid are both specified, the match must be exact, otherwise
6552 * only devid is used.
09ba3bc9 6553 */
562d7b15
JB
6554struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6555 const struct btrfs_dev_lookup_args *args)
0b86a832 6556{
2b82032c 6557 struct btrfs_device *device;
944d3f9f
NB
6558 struct btrfs_fs_devices *seed_devs;
6559
562d7b15 6560 if (dev_args_match_fs_devices(args, fs_devices)) {
944d3f9f 6561 list_for_each_entry(device, &fs_devices->devices, dev_list) {
562d7b15 6562 if (dev_args_match_device(args, device))
944d3f9f
NB
6563 return device;
6564 }
6565 }
2b82032c 6566
944d3f9f 6567 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
562d7b15
JB
6568 if (!dev_args_match_fs_devices(args, seed_devs))
6569 continue;
6570 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6571 if (dev_args_match_device(args, device))
6572 return device;
2b82032c 6573 }
2b82032c 6574 }
944d3f9f 6575
2b82032c 6576 return NULL;
0b86a832
CM
6577}
6578
2ff7e61e 6579static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6580 u64 devid, u8 *dev_uuid)
6581{
6582 struct btrfs_device *device;
fccc0007 6583 unsigned int nofs_flag;
dfe25020 6584
fccc0007
JB
6585 /*
6586 * We call this under the chunk_mutex, so we want to use NOFS for this
6587 * allocation, however we don't want to change btrfs_alloc_device() to
6588 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6589 * places.
6590 */
bb21e302 6591
fccc0007 6592 nofs_flag = memalloc_nofs_save();
bb21e302 6593 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
fccc0007 6594 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6595 if (IS_ERR(device))
adfb69af 6596 return device;
12bd2fc0
ID
6597
6598 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6599 device->fs_devices = fs_devices;
dfe25020 6600 fs_devices->num_devices++;
12bd2fc0 6601
e6e674bd 6602 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6603 fs_devices->missing_devices++;
12bd2fc0 6604
dfe25020
CM
6605 return device;
6606}
6607
43dd529a
DS
6608/*
6609 * Allocate new device struct, set up devid and UUID.
6610 *
12bd2fc0
ID
6611 * @fs_info: used only for generating a new devid, can be NULL if
6612 * devid is provided (i.e. @devid != NULL).
6613 * @devid: a pointer to devid for this device. If NULL a new devid
6614 * is generated.
6615 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6616 * is generated.
bb21e302 6617 * @path: a pointer to device path if available, NULL otherwise.
12bd2fc0
ID
6618 *
6619 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6620 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6621 * destroyed with btrfs_free_device.
12bd2fc0
ID
6622 */
6623struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
bb21e302
AJ
6624 const u64 *devid, const u8 *uuid,
6625 const char *path)
12bd2fc0
ID
6626{
6627 struct btrfs_device *dev;
6628 u64 tmp;
6629
fae7f21c 6630 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6631 return ERR_PTR(-EINVAL);
12bd2fc0 6632
fe4f46d4
DS
6633 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6634 if (!dev)
6635 return ERR_PTR(-ENOMEM);
6636
fe4f46d4
DS
6637 INIT_LIST_HEAD(&dev->dev_list);
6638 INIT_LIST_HEAD(&dev->dev_alloc_list);
6639 INIT_LIST_HEAD(&dev->post_commit_list);
6640
fe4f46d4
DS
6641 atomic_set(&dev->dev_stats_ccnt, 0);
6642 btrfs_device_data_ordered_init(dev);
35da5a7e 6643 extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
12bd2fc0
ID
6644
6645 if (devid)
6646 tmp = *devid;
6647 else {
6648 int ret;
6649
6650 ret = find_next_devid(fs_info, &tmp);
6651 if (ret) {
a425f9d4 6652 btrfs_free_device(dev);
12bd2fc0
ID
6653 return ERR_PTR(ret);
6654 }
6655 }
6656 dev->devid = tmp;
6657
6658 if (uuid)
6659 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6660 else
6661 generate_random_uuid(dev->uuid);
6662
bb21e302
AJ
6663 if (path) {
6664 struct rcu_string *name;
6665
6666 name = rcu_string_strdup(path, GFP_KERNEL);
6667 if (!name) {
6668 btrfs_free_device(dev);
6669 return ERR_PTR(-ENOMEM);
6670 }
6671 rcu_assign_pointer(dev->name, name);
6672 }
6673
12bd2fc0
ID
6674 return dev;
6675}
6676
5a2b8e60 6677static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6678 u64 devid, u8 *uuid, bool error)
5a2b8e60 6679{
2b902dfc
AJ
6680 if (error)
6681 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6682 devid, uuid);
6683 else
6684 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6685 devid, uuid);
5a2b8e60
AJ
6686}
6687
bc88b486 6688u64 btrfs_calc_stripe_length(const struct extent_map *em)
39e264a4 6689{
bc88b486
QW
6690 const struct map_lookup *map = em->map_lookup;
6691 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
e4f6c6be 6692
bc88b486 6693 return div_u64(em->len, data_stripes);
39e264a4
NB
6694}
6695
e9306ad4
QW
6696#if BITS_PER_LONG == 32
6697/*
6698 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6699 * can't be accessed on 32bit systems.
6700 *
6701 * This function do mount time check to reject the fs if it already has
6702 * metadata chunk beyond that limit.
6703 */
6704static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6705 u64 logical, u64 length, u64 type)
6706{
6707 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6708 return 0;
6709
6710 if (logical + length < MAX_LFS_FILESIZE)
6711 return 0;
6712
6713 btrfs_err_32bit_limit(fs_info);
6714 return -EOVERFLOW;
6715}
6716
6717/*
6718 * This is to give early warning for any metadata chunk reaching
6719 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6720 * Although we can still access the metadata, it's not going to be possible
6721 * once the limit is reached.
6722 */
6723static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6724 u64 logical, u64 length, u64 type)
6725{
6726 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6727 return;
6728
6729 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6730 return;
6731
6732 btrfs_warn_32bit_limit(fs_info);
6733}
6734#endif
6735
ff37c89f
NB
6736static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
6737 u64 devid, u8 *uuid)
6738{
6739 struct btrfs_device *dev;
6740
6741 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6742 btrfs_report_missing_device(fs_info, devid, uuid, true);
6743 return ERR_PTR(-ENOENT);
6744 }
6745
6746 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
6747 if (IS_ERR(dev)) {
6748 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
6749 devid, PTR_ERR(dev));
6750 return dev;
6751 }
6752 btrfs_report_missing_device(fs_info, devid, uuid, false);
6753
6754 return dev;
6755}
6756
9690ac09 6757static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
6758 struct btrfs_chunk *chunk)
6759{
562d7b15 6760 BTRFS_DEV_LOOKUP_ARGS(args);
9690ac09 6761 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 6762 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
6763 struct map_lookup *map;
6764 struct extent_map *em;
6765 u64 logical;
6766 u64 length;
e06cd3dd 6767 u64 devid;
e9306ad4 6768 u64 type;
e06cd3dd 6769 u8 uuid[BTRFS_UUID_SIZE];
76a66ba1 6770 int index;
e06cd3dd
LB
6771 int num_stripes;
6772 int ret;
6773 int i;
6774
6775 logical = key->offset;
6776 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 6777 type = btrfs_chunk_type(leaf, chunk);
76a66ba1 6778 index = btrfs_bg_flags_to_raid_index(type);
e06cd3dd
LB
6779 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6780
e9306ad4
QW
6781#if BITS_PER_LONG == 32
6782 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
6783 if (ret < 0)
6784 return ret;
6785 warn_32bit_meta_chunk(fs_info, logical, length, type);
6786#endif
6787
075cb3c7
QW
6788 /*
6789 * Only need to verify chunk item if we're reading from sys chunk array,
6790 * as chunk item in tree block is already verified by tree-checker.
6791 */
6792 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 6793 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
6794 if (ret)
6795 return ret;
6796 }
a061fc8d 6797
c8bf1b67
DS
6798 read_lock(&map_tree->lock);
6799 em = lookup_extent_mapping(map_tree, logical, 1);
6800 read_unlock(&map_tree->lock);
0b86a832
CM
6801
6802 /* already mapped? */
6803 if (em && em->start <= logical && em->start + em->len > logical) {
6804 free_extent_map(em);
0b86a832
CM
6805 return 0;
6806 } else if (em) {
6807 free_extent_map(em);
6808 }
0b86a832 6809
172ddd60 6810 em = alloc_extent_map();
0b86a832
CM
6811 if (!em)
6812 return -ENOMEM;
593060d7 6813 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
6814 if (!map) {
6815 free_extent_map(em);
6816 return -ENOMEM;
6817 }
6818
298a8f9c 6819 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 6820 em->map_lookup = map;
0b86a832
CM
6821 em->start = logical;
6822 em->len = length;
70c8a91c 6823 em->orig_start = 0;
0b86a832 6824 em->block_start = 0;
c8b97818 6825 em->block_len = em->len;
0b86a832 6826
593060d7
CM
6827 map->num_stripes = num_stripes;
6828 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6829 map->io_align = btrfs_chunk_io_align(leaf, chunk);
e9306ad4 6830 map->type = type;
76a66ba1
QW
6831 /*
6832 * We can't use the sub_stripes value, as for profiles other than
6833 * RAID10, they may have 0 as sub_stripes for filesystems created by
6834 * older mkfs (<v5.4).
6835 * In that case, it can cause divide-by-zero errors later.
6836 * Since currently sub_stripes is fixed for each profile, let's
6837 * use the trusted value instead.
6838 */
6839 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
cf90d884 6840 map->verified_stripes = 0;
bc88b486 6841 em->orig_block_len = btrfs_calc_stripe_length(em);
593060d7
CM
6842 for (i = 0; i < num_stripes; i++) {
6843 map->stripes[i].physical =
6844 btrfs_stripe_offset_nr(leaf, chunk, i);
6845 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
562d7b15 6846 args.devid = devid;
a443755f
CM
6847 read_extent_buffer(leaf, uuid, (unsigned long)
6848 btrfs_stripe_dev_uuid_nr(chunk, i),
6849 BTRFS_UUID_SIZE);
562d7b15
JB
6850 args.uuid = uuid;
6851 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
dfe25020 6852 if (!map->stripes[i].dev) {
ff37c89f
NB
6853 map->stripes[i].dev = handle_missing_device(fs_info,
6854 devid, uuid);
adfb69af 6855 if (IS_ERR(map->stripes[i].dev)) {
1742e1c9 6856 ret = PTR_ERR(map->stripes[i].dev);
dfe25020 6857 free_extent_map(em);
1742e1c9 6858 return ret;
dfe25020
CM
6859 }
6860 }
ff37c89f 6861
e12c9621
AJ
6862 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6863 &(map->stripes[i].dev->dev_state));
0b86a832
CM
6864 }
6865
c8bf1b67
DS
6866 write_lock(&map_tree->lock);
6867 ret = add_extent_mapping(map_tree, em, 0);
6868 write_unlock(&map_tree->lock);
64f64f43
QW
6869 if (ret < 0) {
6870 btrfs_err(fs_info,
6871 "failed to add chunk map, start=%llu len=%llu: %d",
6872 em->start, em->len, ret);
6873 }
0b86a832
CM
6874 free_extent_map(em);
6875
64f64f43 6876 return ret;
0b86a832
CM
6877}
6878
143bede5 6879static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
6880 struct btrfs_dev_item *dev_item,
6881 struct btrfs_device *device)
6882{
6883 unsigned long ptr;
0b86a832
CM
6884
6885 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
6886 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6887 device->total_bytes = device->disk_total_bytes;
935e5cc9 6888 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 6889 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 6890 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
6891 device->type = btrfs_device_type(leaf, dev_item);
6892 device->io_align = btrfs_device_io_align(leaf, dev_item);
6893 device->io_width = btrfs_device_io_width(leaf, dev_item);
6894 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 6895 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 6896 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 6897
410ba3a2 6898 ptr = btrfs_device_uuid(dev_item);
e17cade2 6899 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
6900}
6901
2ff7e61e 6902static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 6903 u8 *fsid)
2b82032c
YZ
6904{
6905 struct btrfs_fs_devices *fs_devices;
6906 int ret;
6907
a32bf9a3 6908 lockdep_assert_held(&uuid_mutex);
2dfeca9b 6909 ASSERT(fsid);
2b82032c 6910
427c8fdd 6911 /* This will match only for multi-device seed fs */
944d3f9f 6912 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 6913 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
6914 return fs_devices;
6915
2b82032c 6916
7239ff4b 6917 fs_devices = find_fsid(fsid, NULL);
2b82032c 6918 if (!fs_devices) {
0b246afa 6919 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
6920 return ERR_PTR(-ENOENT);
6921
f7361d8c 6922 fs_devices = alloc_fs_devices(fsid);
5f375835
MX
6923 if (IS_ERR(fs_devices))
6924 return fs_devices;
6925
0395d84f 6926 fs_devices->seeding = true;
5f375835
MX
6927 fs_devices->opened = 1;
6928 return fs_devices;
2b82032c 6929 }
e4404d6e 6930
427c8fdd
NB
6931 /*
6932 * Upon first call for a seed fs fsid, just create a private copy of the
6933 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
6934 */
e4404d6e 6935 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
6936 if (IS_ERR(fs_devices))
6937 return fs_devices;
2b82032c 6938
05bdb996 6939 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder);
48d28232
JL
6940 if (ret) {
6941 free_fs_devices(fs_devices);
c83b60c0 6942 return ERR_PTR(ret);
48d28232 6943 }
2b82032c
YZ
6944
6945 if (!fs_devices->seeding) {
0226e0eb 6946 close_fs_devices(fs_devices);
e4404d6e 6947 free_fs_devices(fs_devices);
c83b60c0 6948 return ERR_PTR(-EINVAL);
2b82032c
YZ
6949 }
6950
944d3f9f 6951 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 6952
5f375835 6953 return fs_devices;
2b82032c
YZ
6954}
6955
17850759 6956static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
6957 struct btrfs_dev_item *dev_item)
6958{
562d7b15 6959 BTRFS_DEV_LOOKUP_ARGS(args);
17850759 6960 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 6961 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
6962 struct btrfs_device *device;
6963 u64 devid;
6964 int ret;
44880fdc 6965 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
6966 u8 dev_uuid[BTRFS_UUID_SIZE];
6967
c1867eb3
DS
6968 devid = btrfs_device_id(leaf, dev_item);
6969 args.devid = devid;
410ba3a2 6970 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 6971 BTRFS_UUID_SIZE);
1473b24e 6972 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 6973 BTRFS_FSID_SIZE);
562d7b15
JB
6974 args.uuid = dev_uuid;
6975 args.fsid = fs_uuid;
2b82032c 6976
de37aa51 6977 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 6978 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
6979 if (IS_ERR(fs_devices))
6980 return PTR_ERR(fs_devices);
2b82032c
YZ
6981 }
6982
562d7b15 6983 device = btrfs_find_device(fs_info->fs_devices, &args);
5f375835 6984 if (!device) {
c5502451 6985 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
6986 btrfs_report_missing_device(fs_info, devid,
6987 dev_uuid, true);
45dbdbc9 6988 return -ENOENT;
c5502451 6989 }
2b82032c 6990
2ff7e61e 6991 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
6992 if (IS_ERR(device)) {
6993 btrfs_err(fs_info,
6994 "failed to add missing dev %llu: %ld",
6995 devid, PTR_ERR(device));
6996 return PTR_ERR(device);
6997 }
2b902dfc 6998 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 6999 } else {
c5502451 7000 if (!device->bdev) {
2b902dfc
AJ
7001 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7002 btrfs_report_missing_device(fs_info,
7003 devid, dev_uuid, true);
45dbdbc9 7004 return -ENOENT;
2b902dfc
AJ
7005 }
7006 btrfs_report_missing_device(fs_info, devid,
7007 dev_uuid, false);
c5502451 7008 }
5f375835 7009
e6e674bd
AJ
7010 if (!device->bdev &&
7011 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7012 /*
7013 * this happens when a device that was properly setup
7014 * in the device info lists suddenly goes bad.
7015 * device->bdev is NULL, and so we have to set
7016 * device->missing to one here
7017 */
5f375835 7018 device->fs_devices->missing_devices++;
e6e674bd 7019 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7020 }
5f375835
MX
7021
7022 /* Move the device to its own fs_devices */
7023 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7024 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7025 &device->dev_state));
5f375835
MX
7026
7027 list_move(&device->dev_list, &fs_devices->devices);
7028 device->fs_devices->num_devices--;
7029 fs_devices->num_devices++;
7030
7031 device->fs_devices->missing_devices--;
7032 fs_devices->missing_devices++;
7033
7034 device->fs_devices = fs_devices;
7035 }
2b82032c
YZ
7036 }
7037
0b246afa 7038 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7039 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7040 if (device->generation !=
7041 btrfs_device_generation(leaf, dev_item))
7042 return -EINVAL;
6324fbf3 7043 }
0b86a832
CM
7044
7045 fill_device_from_item(leaf, dev_item, device);
3a160a93 7046 if (device->bdev) {
cda00eba 7047 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
3a160a93
AJ
7048
7049 if (device->total_bytes > max_total_bytes) {
7050 btrfs_err(fs_info,
7051 "device total_bytes should be at most %llu but found %llu",
7052 max_total_bytes, device->total_bytes);
7053 return -EINVAL;
7054 }
7055 }
e12c9621 7056 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7057 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7058 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7059 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7060 atomic64_add(device->total_bytes - device->bytes_used,
7061 &fs_info->free_chunk_space);
2bf64758 7062 }
0b86a832 7063 ret = 0;
0b86a832
CM
7064 return ret;
7065}
7066
6bccf3ab 7067int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7068{
ab8d0fc4 7069 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7070 struct extent_buffer *sb;
0b86a832 7071 struct btrfs_disk_key *disk_key;
0b86a832 7072 struct btrfs_chunk *chunk;
1ffb22cf
DS
7073 u8 *array_ptr;
7074 unsigned long sb_array_offset;
84eed90f 7075 int ret = 0;
0b86a832
CM
7076 u32 num_stripes;
7077 u32 array_size;
7078 u32 len = 0;
1ffb22cf 7079 u32 cur_offset;
e06cd3dd 7080 u64 type;
84eed90f 7081 struct btrfs_key key;
0b86a832 7082
0b246afa 7083 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
e959d3c1 7084
a83fffb7 7085 /*
e959d3c1
QW
7086 * We allocated a dummy extent, just to use extent buffer accessors.
7087 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7088 * that's fine, we will not go beyond system chunk array anyway.
a83fffb7 7089 */
e959d3c1
QW
7090 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7091 if (!sb)
7092 return -ENOMEM;
4db8c528 7093 set_extent_buffer_uptodate(sb);
4008c04a 7094
a061fc8d 7095 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7096 array_size = btrfs_super_sys_array_size(super_copy);
7097
1ffb22cf
DS
7098 array_ptr = super_copy->sys_chunk_array;
7099 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7100 cur_offset = 0;
0b86a832 7101
1ffb22cf
DS
7102 while (cur_offset < array_size) {
7103 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7104 len = sizeof(*disk_key);
7105 if (cur_offset + len > array_size)
7106 goto out_short_read;
7107
0b86a832
CM
7108 btrfs_disk_key_to_cpu(&key, disk_key);
7109
1ffb22cf
DS
7110 array_ptr += len;
7111 sb_array_offset += len;
7112 cur_offset += len;
0b86a832 7113
32ab3d1b
JT
7114 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7115 btrfs_err(fs_info,
7116 "unexpected item type %u in sys_array at offset %u",
7117 (u32)key.type, cur_offset);
7118 ret = -EIO;
7119 break;
7120 }
f5cdedd7 7121
32ab3d1b
JT
7122 chunk = (struct btrfs_chunk *)sb_array_offset;
7123 /*
7124 * At least one btrfs_chunk with one stripe must be present,
7125 * exact stripe count check comes afterwards
7126 */
7127 len = btrfs_chunk_item_size(1);
7128 if (cur_offset + len > array_size)
7129 goto out_short_read;
e06cd3dd 7130
32ab3d1b
JT
7131 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7132 if (!num_stripes) {
7133 btrfs_err(fs_info,
7134 "invalid number of stripes %u in sys_array at offset %u",
7135 num_stripes, cur_offset);
7136 ret = -EIO;
7137 break;
7138 }
e3540eab 7139
32ab3d1b
JT
7140 type = btrfs_chunk_type(sb, chunk);
7141 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7142 btrfs_err(fs_info,
32ab3d1b
JT
7143 "invalid chunk type %llu in sys_array at offset %u",
7144 type, cur_offset);
84eed90f
CM
7145 ret = -EIO;
7146 break;
0b86a832 7147 }
32ab3d1b
JT
7148
7149 len = btrfs_chunk_item_size(num_stripes);
7150 if (cur_offset + len > array_size)
7151 goto out_short_read;
7152
7153 ret = read_one_chunk(&key, sb, chunk);
7154 if (ret)
7155 break;
7156
1ffb22cf
DS
7157 array_ptr += len;
7158 sb_array_offset += len;
7159 cur_offset += len;
0b86a832 7160 }
d865177a 7161 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7162 free_extent_buffer_stale(sb);
84eed90f 7163 return ret;
e3540eab
DS
7164
7165out_short_read:
ab8d0fc4 7166 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7167 len, cur_offset);
d865177a 7168 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7169 free_extent_buffer_stale(sb);
e3540eab 7170 return -EIO;
0b86a832
CM
7171}
7172
21634a19
QW
7173/*
7174 * Check if all chunks in the fs are OK for read-write degraded mount
7175 *
6528b99d
AJ
7176 * If the @failing_dev is specified, it's accounted as missing.
7177 *
21634a19
QW
7178 * Return true if all chunks meet the minimal RW mount requirements.
7179 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7180 */
6528b99d
AJ
7181bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7182 struct btrfs_device *failing_dev)
21634a19 7183{
c8bf1b67 7184 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7185 struct extent_map *em;
7186 u64 next_start = 0;
7187 bool ret = true;
7188
c8bf1b67
DS
7189 read_lock(&map_tree->lock);
7190 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7191 read_unlock(&map_tree->lock);
21634a19
QW
7192 /* No chunk at all? Return false anyway */
7193 if (!em) {
7194 ret = false;
7195 goto out;
7196 }
7197 while (em) {
7198 struct map_lookup *map;
7199 int missing = 0;
7200 int max_tolerated;
7201 int i;
7202
7203 map = em->map_lookup;
7204 max_tolerated =
7205 btrfs_get_num_tolerated_disk_barrier_failures(
7206 map->type);
7207 for (i = 0; i < map->num_stripes; i++) {
7208 struct btrfs_device *dev = map->stripes[i].dev;
7209
e6e674bd
AJ
7210 if (!dev || !dev->bdev ||
7211 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7212 dev->last_flush_error)
7213 missing++;
6528b99d
AJ
7214 else if (failing_dev && failing_dev == dev)
7215 missing++;
21634a19
QW
7216 }
7217 if (missing > max_tolerated) {
6528b99d
AJ
7218 if (!failing_dev)
7219 btrfs_warn(fs_info,
52042d8e 7220 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7221 em->start, missing, max_tolerated);
7222 free_extent_map(em);
7223 ret = false;
7224 goto out;
7225 }
7226 next_start = extent_map_end(em);
7227 free_extent_map(em);
7228
c8bf1b67
DS
7229 read_lock(&map_tree->lock);
7230 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7231 (u64)(-1) - next_start);
c8bf1b67 7232 read_unlock(&map_tree->lock);
21634a19
QW
7233 }
7234out:
7235 return ret;
7236}
7237
d85327b1
DS
7238static void readahead_tree_node_children(struct extent_buffer *node)
7239{
7240 int i;
7241 const int nr_items = btrfs_header_nritems(node);
7242
bfb484d9
JB
7243 for (i = 0; i < nr_items; i++)
7244 btrfs_readahead_node_child(node, i);
d85327b1
DS
7245}
7246
5b4aacef 7247int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7248{
5b4aacef 7249 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7250 struct btrfs_path *path;
7251 struct extent_buffer *leaf;
7252 struct btrfs_key key;
7253 struct btrfs_key found_key;
7254 int ret;
7255 int slot;
43cb1478 7256 int iter_ret = 0;
99e3ecfc 7257 u64 total_dev = 0;
d85327b1 7258 u64 last_ra_node = 0;
0b86a832 7259
0b86a832
CM
7260 path = btrfs_alloc_path();
7261 if (!path)
7262 return -ENOMEM;
7263
3dd0f7a3
AJ
7264 /*
7265 * uuid_mutex is needed only if we are mounting a sprout FS
7266 * otherwise we don't need it.
7267 */
b367e47f 7268 mutex_lock(&uuid_mutex);
b367e47f 7269
48cfa61b
BB
7270 /*
7271 * It is possible for mount and umount to race in such a way that
7272 * we execute this code path, but open_fs_devices failed to clear
7273 * total_rw_bytes. We certainly want it cleared before reading the
7274 * device items, so clear it here.
7275 */
7276 fs_info->fs_devices->total_rw_bytes = 0;
7277
4d9380e0
FM
7278 /*
7279 * Lockdep complains about possible circular locking dependency between
7280 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7281 * used for freeze procection of a fs (struct super_block.s_writers),
7282 * which we take when starting a transaction, and extent buffers of the
7283 * chunk tree if we call read_one_dev() while holding a lock on an
7284 * extent buffer of the chunk tree. Since we are mounting the filesystem
7285 * and at this point there can't be any concurrent task modifying the
7286 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7287 */
7288 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7289 path->skip_locking = 1;
7290
395927a9
FDBM
7291 /*
7292 * Read all device items, and then all the chunk items. All
7293 * device items are found before any chunk item (their object id
7294 * is smaller than the lowest possible object id for a chunk
7295 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7296 */
7297 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7298 key.offset = 0;
7299 key.type = 0;
43cb1478
GN
7300 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7301 struct extent_buffer *node = path->nodes[1];
d85327b1 7302
0b86a832
CM
7303 leaf = path->nodes[0];
7304 slot = path->slots[0];
43cb1478 7305
d85327b1
DS
7306 if (node) {
7307 if (last_ra_node != node->start) {
7308 readahead_tree_node_children(node);
7309 last_ra_node = node->start;
7310 }
7311 }
395927a9
FDBM
7312 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7313 struct btrfs_dev_item *dev_item;
7314 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7315 struct btrfs_dev_item);
17850759 7316 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7317 if (ret)
7318 goto error;
99e3ecfc 7319 total_dev++;
0b86a832
CM
7320 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7321 struct btrfs_chunk *chunk;
79bd3712
FM
7322
7323 /*
7324 * We are only called at mount time, so no need to take
7325 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7326 * we always lock first fs_info->chunk_mutex before
7327 * acquiring any locks on the chunk tree. This is a
7328 * requirement for chunk allocation, see the comment on
7329 * top of btrfs_chunk_alloc() for details.
7330 */
0b86a832 7331 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7332 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7333 if (ret)
7334 goto error;
0b86a832 7335 }
43cb1478
GN
7336 }
7337 /* Catch error found during iteration */
7338 if (iter_ret < 0) {
7339 ret = iter_ret;
7340 goto error;
0b86a832 7341 }
99e3ecfc
LB
7342
7343 /*
7344 * After loading chunk tree, we've got all device information,
7345 * do another round of validation checks.
7346 */
0b246afa 7347 if (total_dev != fs_info->fs_devices->total_devices) {
d201238c
QW
7348 btrfs_warn(fs_info,
7349"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
0b246afa 7350 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc 7351 total_dev);
d201238c
QW
7352 fs_info->fs_devices->total_devices = total_dev;
7353 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
99e3ecfc 7354 }
0b246afa
JM
7355 if (btrfs_super_total_bytes(fs_info->super_copy) <
7356 fs_info->fs_devices->total_rw_bytes) {
7357 btrfs_err(fs_info,
99e3ecfc 7358 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7359 btrfs_super_total_bytes(fs_info->super_copy),
7360 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7361 ret = -EINVAL;
7362 goto error;
7363 }
0b86a832
CM
7364 ret = 0;
7365error:
b367e47f
LZ
7366 mutex_unlock(&uuid_mutex);
7367
2b82032c 7368 btrfs_free_path(path);
0b86a832
CM
7369 return ret;
7370}
442a4f63 7371
a8d1b164 7372int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
cb517eab 7373{
944d3f9f 7374 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab 7375 struct btrfs_device *device;
a8d1b164 7376 int ret = 0;
cb517eab 7377
944d3f9f
NB
7378 fs_devices->fs_info = fs_info;
7379
7380 mutex_lock(&fs_devices->device_list_mutex);
7381 list_for_each_entry(device, &fs_devices->devices, dev_list)
7382 device->fs_info = fs_info;
944d3f9f
NB
7383
7384 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
a8d1b164 7385 list_for_each_entry(device, &seed_devs->devices, dev_list) {
fb456252 7386 device->fs_info = fs_info;
a8d1b164
JT
7387 ret = btrfs_get_dev_zone_info(device, false);
7388 if (ret)
7389 break;
7390 }
29cc83f6 7391
944d3f9f 7392 seed_devs->fs_info = fs_info;
29cc83f6 7393 }
e17125b5 7394 mutex_unlock(&fs_devices->device_list_mutex);
a8d1b164
JT
7395
7396 return ret;
cb517eab
MX
7397}
7398
1dc990df
DS
7399static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7400 const struct btrfs_dev_stats_item *ptr,
7401 int index)
7402{
7403 u64 val;
7404
7405 read_extent_buffer(eb, &val,
7406 offsetof(struct btrfs_dev_stats_item, values) +
7407 ((unsigned long)ptr) + (index * sizeof(u64)),
7408 sizeof(val));
7409 return val;
7410}
7411
7412static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7413 struct btrfs_dev_stats_item *ptr,
7414 int index, u64 val)
7415{
7416 write_extent_buffer(eb, &val,
7417 offsetof(struct btrfs_dev_stats_item, values) +
7418 ((unsigned long)ptr) + (index * sizeof(u64)),
7419 sizeof(val));
7420}
7421
92e26df4
JB
7422static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7423 struct btrfs_path *path)
733f4fbb 7424{
124604eb 7425 struct btrfs_dev_stats_item *ptr;
733f4fbb 7426 struct extent_buffer *eb;
124604eb
JB
7427 struct btrfs_key key;
7428 int item_size;
7429 int i, ret, slot;
7430
82d62d06
JB
7431 if (!device->fs_info->dev_root)
7432 return 0;
7433
124604eb
JB
7434 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7435 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7436 key.offset = device->devid;
7437 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7438 if (ret) {
7439 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7440 btrfs_dev_stat_set(device, i, 0);
7441 device->dev_stats_valid = 1;
7442 btrfs_release_path(path);
92e26df4 7443 return ret < 0 ? ret : 0;
124604eb
JB
7444 }
7445 slot = path->slots[0];
7446 eb = path->nodes[0];
3212fa14 7447 item_size = btrfs_item_size(eb, slot);
124604eb
JB
7448
7449 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7450
7451 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7452 if (item_size >= (1 + i) * sizeof(__le64))
7453 btrfs_dev_stat_set(device, i,
7454 btrfs_dev_stats_value(eb, ptr, i));
7455 else
7456 btrfs_dev_stat_set(device, i, 0);
7457 }
7458
7459 device->dev_stats_valid = 1;
7460 btrfs_dev_stat_print_on_load(device);
7461 btrfs_release_path(path);
92e26df4
JB
7462
7463 return 0;
124604eb
JB
7464}
7465
7466int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7467{
7468 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7469 struct btrfs_device *device;
7470 struct btrfs_path *path = NULL;
92e26df4 7471 int ret = 0;
733f4fbb
SB
7472
7473 path = btrfs_alloc_path();
3b80a984
AJ
7474 if (!path)
7475 return -ENOMEM;
733f4fbb
SB
7476
7477 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7478 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7479 ret = btrfs_device_init_dev_stats(device, path);
7480 if (ret)
7481 goto out;
7482 }
124604eb 7483 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7484 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7485 ret = btrfs_device_init_dev_stats(device, path);
7486 if (ret)
7487 goto out;
7488 }
733f4fbb 7489 }
92e26df4 7490out:
733f4fbb
SB
7491 mutex_unlock(&fs_devices->device_list_mutex);
7492
733f4fbb 7493 btrfs_free_path(path);
92e26df4 7494 return ret;
733f4fbb
SB
7495}
7496
7497static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7498 struct btrfs_device *device)
7499{
5495f195 7500 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7501 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7502 struct btrfs_path *path;
7503 struct btrfs_key key;
7504 struct extent_buffer *eb;
7505 struct btrfs_dev_stats_item *ptr;
7506 int ret;
7507 int i;
7508
242e2956
DS
7509 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7510 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7511 key.offset = device->devid;
7512
7513 path = btrfs_alloc_path();
fa252992
DS
7514 if (!path)
7515 return -ENOMEM;
733f4fbb
SB
7516 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7517 if (ret < 0) {
0b246afa 7518 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7519 "error %d while searching for dev_stats item for device %s",
cb3e217b 7520 ret, btrfs_dev_name(device));
733f4fbb
SB
7521 goto out;
7522 }
7523
7524 if (ret == 0 &&
3212fa14 7525 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
733f4fbb
SB
7526 /* need to delete old one and insert a new one */
7527 ret = btrfs_del_item(trans, dev_root, path);
7528 if (ret != 0) {
0b246afa 7529 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7530 "delete too small dev_stats item for device %s failed %d",
cb3e217b 7531 btrfs_dev_name(device), ret);
733f4fbb
SB
7532 goto out;
7533 }
7534 ret = 1;
7535 }
7536
7537 if (ret == 1) {
7538 /* need to insert a new item */
7539 btrfs_release_path(path);
7540 ret = btrfs_insert_empty_item(trans, dev_root, path,
7541 &key, sizeof(*ptr));
7542 if (ret < 0) {
0b246afa 7543 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7544 "insert dev_stats item for device %s failed %d",
cb3e217b 7545 btrfs_dev_name(device), ret);
733f4fbb
SB
7546 goto out;
7547 }
7548 }
7549
7550 eb = path->nodes[0];
7551 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7552 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7553 btrfs_set_dev_stats_value(eb, ptr, i,
7554 btrfs_dev_stat_read(device, i));
7555 btrfs_mark_buffer_dirty(eb);
7556
7557out:
7558 btrfs_free_path(path);
7559 return ret;
7560}
7561
7562/*
7563 * called from commit_transaction. Writes all changed device stats to disk.
7564 */
196c9d8d 7565int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7566{
196c9d8d 7567 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7568 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7569 struct btrfs_device *device;
addc3fa7 7570 int stats_cnt;
733f4fbb
SB
7571 int ret = 0;
7572
7573 mutex_lock(&fs_devices->device_list_mutex);
7574 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7575 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7576 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7577 continue;
7578
9deae968
NB
7579
7580 /*
7581 * There is a LOAD-LOAD control dependency between the value of
7582 * dev_stats_ccnt and updating the on-disk values which requires
7583 * reading the in-memory counters. Such control dependencies
7584 * require explicit read memory barriers.
7585 *
7586 * This memory barriers pairs with smp_mb__before_atomic in
7587 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7588 * barrier implied by atomic_xchg in
7589 * btrfs_dev_stats_read_and_reset
7590 */
7591 smp_rmb();
7592
5495f195 7593 ret = update_dev_stat_item(trans, device);
733f4fbb 7594 if (!ret)
addc3fa7 7595 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7596 }
7597 mutex_unlock(&fs_devices->device_list_mutex);
7598
7599 return ret;
7600}
7601
442a4f63
SB
7602void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7603{
7604 btrfs_dev_stat_inc(dev, index);
442a4f63 7605
733f4fbb
SB
7606 if (!dev->dev_stats_valid)
7607 return;
fb456252 7608 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7609 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7610 btrfs_dev_name(dev),
442a4f63
SB
7611 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7612 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7613 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7614 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7615 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7616}
c11d2c23 7617
733f4fbb
SB
7618static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7619{
a98cdb85
SB
7620 int i;
7621
7622 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7623 if (btrfs_dev_stat_read(dev, i) != 0)
7624 break;
7625 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7626 return; /* all values == 0, suppress message */
7627
fb456252 7628 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7629 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
cb3e217b 7630 btrfs_dev_name(dev),
733f4fbb
SB
7631 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7632 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7633 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7634 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7635 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7636}
7637
2ff7e61e 7638int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7639 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7640{
562d7b15 7641 BTRFS_DEV_LOOKUP_ARGS(args);
c11d2c23 7642 struct btrfs_device *dev;
0b246afa 7643 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7644 int i;
7645
7646 mutex_lock(&fs_devices->device_list_mutex);
562d7b15
JB
7647 args.devid = stats->devid;
7648 dev = btrfs_find_device(fs_info->fs_devices, &args);
c11d2c23
SB
7649 mutex_unlock(&fs_devices->device_list_mutex);
7650
7651 if (!dev) {
0b246afa 7652 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7653 return -ENODEV;
733f4fbb 7654 } else if (!dev->dev_stats_valid) {
0b246afa 7655 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7656 return -ENODEV;
b27f7c0c 7657 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7658 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7659 if (stats->nr_items > i)
7660 stats->values[i] =
7661 btrfs_dev_stat_read_and_reset(dev, i);
7662 else
4e411a7d 7663 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7664 }
a69976bc
AJ
7665 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7666 current->comm, task_pid_nr(current));
c11d2c23
SB
7667 } else {
7668 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7669 if (stats->nr_items > i)
7670 stats->values[i] = btrfs_dev_stat_read(dev, i);
7671 }
7672 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7673 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7674 return 0;
7675}
a8a6dab7 7676
935e5cc9 7677/*
bbbf7243
NB
7678 * Update the size and bytes used for each device where it changed. This is
7679 * delayed since we would otherwise get errors while writing out the
7680 * superblocks.
7681 *
7682 * Must be invoked during transaction commit.
935e5cc9 7683 */
bbbf7243 7684void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7685{
935e5cc9
MX
7686 struct btrfs_device *curr, *next;
7687
bbbf7243 7688 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7689
bbbf7243 7690 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7691 return;
7692
bbbf7243
NB
7693 /*
7694 * We don't need the device_list_mutex here. This list is owned by the
7695 * transaction and the transaction must complete before the device is
7696 * released.
7697 */
7698 mutex_lock(&trans->fs_info->chunk_mutex);
7699 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7700 post_commit_list) {
7701 list_del_init(&curr->post_commit_list);
7702 curr->commit_total_bytes = curr->disk_total_bytes;
7703 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7704 }
bbbf7243 7705 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7706}
5a13f430 7707
46df06b8
DS
7708/*
7709 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7710 */
7711int btrfs_bg_type_to_factor(u64 flags)
7712{
44b28ada
DS
7713 const int index = btrfs_bg_flags_to_raid_index(flags);
7714
7715 return btrfs_raid_array[index].ncopies;
46df06b8 7716}
cf90d884
QW
7717
7718
cf90d884
QW
7719
7720static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7721 u64 chunk_offset, u64 devid,
7722 u64 physical_offset, u64 physical_len)
7723{
562d7b15 7724 struct btrfs_dev_lookup_args args = { .devid = devid };
c8bf1b67 7725 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7726 struct extent_map *em;
7727 struct map_lookup *map;
05a37c48 7728 struct btrfs_device *dev;
cf90d884
QW
7729 u64 stripe_len;
7730 bool found = false;
7731 int ret = 0;
7732 int i;
7733
7734 read_lock(&em_tree->lock);
7735 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7736 read_unlock(&em_tree->lock);
7737
7738 if (!em) {
7739 btrfs_err(fs_info,
7740"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7741 physical_offset, devid);
7742 ret = -EUCLEAN;
7743 goto out;
7744 }
7745
7746 map = em->map_lookup;
bc88b486 7747 stripe_len = btrfs_calc_stripe_length(em);
cf90d884
QW
7748 if (physical_len != stripe_len) {
7749 btrfs_err(fs_info,
7750"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7751 physical_offset, devid, em->start, physical_len,
7752 stripe_len);
7753 ret = -EUCLEAN;
7754 goto out;
7755 }
7756
3613249a
QW
7757 /*
7758 * Very old mkfs.btrfs (before v4.1) will not respect the reserved
7759 * space. Although kernel can handle it without problem, better to warn
7760 * the users.
7761 */
7762 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7763 btrfs_warn(fs_info,
7764 "devid %llu physical %llu len %llu inside the reserved space",
7765 devid, physical_offset, physical_len);
7766
cf90d884
QW
7767 for (i = 0; i < map->num_stripes; i++) {
7768 if (map->stripes[i].dev->devid == devid &&
7769 map->stripes[i].physical == physical_offset) {
7770 found = true;
7771 if (map->verified_stripes >= map->num_stripes) {
7772 btrfs_err(fs_info,
7773 "too many dev extents for chunk %llu found",
7774 em->start);
7775 ret = -EUCLEAN;
7776 goto out;
7777 }
7778 map->verified_stripes++;
7779 break;
7780 }
7781 }
7782 if (!found) {
7783 btrfs_err(fs_info,
7784 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7785 physical_offset, devid);
7786 ret = -EUCLEAN;
7787 }
05a37c48 7788
1a9fd417 7789 /* Make sure no dev extent is beyond device boundary */
562d7b15 7790 dev = btrfs_find_device(fs_info->fs_devices, &args);
05a37c48
QW
7791 if (!dev) {
7792 btrfs_err(fs_info, "failed to find devid %llu", devid);
7793 ret = -EUCLEAN;
7794 goto out;
7795 }
1b3922a8 7796
05a37c48
QW
7797 if (physical_offset + physical_len > dev->disk_total_bytes) {
7798 btrfs_err(fs_info,
7799"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7800 devid, physical_offset, physical_len,
7801 dev->disk_total_bytes);
7802 ret = -EUCLEAN;
7803 goto out;
7804 }
381a696e
NA
7805
7806 if (dev->zone_info) {
7807 u64 zone_size = dev->zone_info->zone_size;
7808
7809 if (!IS_ALIGNED(physical_offset, zone_size) ||
7810 !IS_ALIGNED(physical_len, zone_size)) {
7811 btrfs_err(fs_info,
7812"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
7813 devid, physical_offset, physical_len);
7814 ret = -EUCLEAN;
7815 goto out;
7816 }
7817 }
7818
cf90d884
QW
7819out:
7820 free_extent_map(em);
7821 return ret;
7822}
7823
7824static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7825{
c8bf1b67 7826 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
7827 struct extent_map *em;
7828 struct rb_node *node;
7829 int ret = 0;
7830
7831 read_lock(&em_tree->lock);
07e1ce09 7832 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
7833 em = rb_entry(node, struct extent_map, rb_node);
7834 if (em->map_lookup->num_stripes !=
7835 em->map_lookup->verified_stripes) {
7836 btrfs_err(fs_info,
7837 "chunk %llu has missing dev extent, have %d expect %d",
7838 em->start, em->map_lookup->verified_stripes,
7839 em->map_lookup->num_stripes);
7840 ret = -EUCLEAN;
7841 goto out;
7842 }
7843 }
7844out:
7845 read_unlock(&em_tree->lock);
7846 return ret;
7847}
7848
7849/*
7850 * Ensure that all dev extents are mapped to correct chunk, otherwise
7851 * later chunk allocation/free would cause unexpected behavior.
7852 *
7853 * NOTE: This will iterate through the whole device tree, which should be of
7854 * the same size level as the chunk tree. This slightly increases mount time.
7855 */
7856int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7857{
7858 struct btrfs_path *path;
7859 struct btrfs_root *root = fs_info->dev_root;
7860 struct btrfs_key key;
5eb19381
QW
7861 u64 prev_devid = 0;
7862 u64 prev_dev_ext_end = 0;
cf90d884
QW
7863 int ret = 0;
7864
42437a63
JB
7865 /*
7866 * We don't have a dev_root because we mounted with ignorebadroots and
7867 * failed to load the root, so we want to skip the verification in this
7868 * case for sure.
7869 *
7870 * However if the dev root is fine, but the tree itself is corrupted
7871 * we'd still fail to mount. This verification is only to make sure
7872 * writes can happen safely, so instead just bypass this check
7873 * completely in the case of IGNOREBADROOTS.
7874 */
7875 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
7876 return 0;
7877
cf90d884
QW
7878 key.objectid = 1;
7879 key.type = BTRFS_DEV_EXTENT_KEY;
7880 key.offset = 0;
7881
7882 path = btrfs_alloc_path();
7883 if (!path)
7884 return -ENOMEM;
7885
7886 path->reada = READA_FORWARD;
7887 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7888 if (ret < 0)
7889 goto out;
7890
7891 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 7892 ret = btrfs_next_leaf(root, path);
cf90d884
QW
7893 if (ret < 0)
7894 goto out;
7895 /* No dev extents at all? Not good */
7896 if (ret > 0) {
7897 ret = -EUCLEAN;
7898 goto out;
7899 }
7900 }
7901 while (1) {
7902 struct extent_buffer *leaf = path->nodes[0];
7903 struct btrfs_dev_extent *dext;
7904 int slot = path->slots[0];
7905 u64 chunk_offset;
7906 u64 physical_offset;
7907 u64 physical_len;
7908 u64 devid;
7909
7910 btrfs_item_key_to_cpu(leaf, &key, slot);
7911 if (key.type != BTRFS_DEV_EXTENT_KEY)
7912 break;
7913 devid = key.objectid;
7914 physical_offset = key.offset;
7915
7916 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7917 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7918 physical_len = btrfs_dev_extent_length(leaf, dext);
7919
5eb19381
QW
7920 /* Check if this dev extent overlaps with the previous one */
7921 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7922 btrfs_err(fs_info,
7923"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7924 devid, physical_offset, prev_dev_ext_end);
7925 ret = -EUCLEAN;
7926 goto out;
7927 }
7928
cf90d884
QW
7929 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7930 physical_offset, physical_len);
7931 if (ret < 0)
7932 goto out;
5eb19381
QW
7933 prev_devid = devid;
7934 prev_dev_ext_end = physical_offset + physical_len;
7935
cf90d884
QW
7936 ret = btrfs_next_item(root, path);
7937 if (ret < 0)
7938 goto out;
7939 if (ret > 0) {
7940 ret = 0;
7941 break;
7942 }
7943 }
7944
7945 /* Ensure all chunks have corresponding dev extents */
7946 ret = verify_chunk_dev_extent_mapping(fs_info);
7947out:
7948 btrfs_free_path(path);
7949 return ret;
7950}
eede2bf3
OS
7951
7952/*
7953 * Check whether the given block group or device is pinned by any inode being
7954 * used as a swapfile.
7955 */
7956bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7957{
7958 struct btrfs_swapfile_pin *sp;
7959 struct rb_node *node;
7960
7961 spin_lock(&fs_info->swapfile_pins_lock);
7962 node = fs_info->swapfile_pins.rb_node;
7963 while (node) {
7964 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7965 if (ptr < sp->ptr)
7966 node = node->rb_left;
7967 else if (ptr > sp->ptr)
7968 node = node->rb_right;
7969 else
7970 break;
7971 }
7972 spin_unlock(&fs_info->swapfile_pins_lock);
7973 return node != NULL;
7974}
f7ef5287
NA
7975
7976static int relocating_repair_kthread(void *data)
7977{
0d031dc4 7978 struct btrfs_block_group *cache = data;
f7ef5287
NA
7979 struct btrfs_fs_info *fs_info = cache->fs_info;
7980 u64 target;
7981 int ret = 0;
7982
7983 target = cache->start;
7984 btrfs_put_block_group(cache);
7985
ca5e4ea0 7986 sb_start_write(fs_info->sb);
f7ef5287
NA
7987 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
7988 btrfs_info(fs_info,
7989 "zoned: skip relocating block group %llu to repair: EBUSY",
7990 target);
ca5e4ea0 7991 sb_end_write(fs_info->sb);
f7ef5287
NA
7992 return -EBUSY;
7993 }
7994
f3372065 7995 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
7996
7997 /* Ensure block group still exists */
7998 cache = btrfs_lookup_block_group(fs_info, target);
7999 if (!cache)
8000 goto out;
8001
3349b57f 8002 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
f7ef5287
NA
8003 goto out;
8004
8005 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8006 if (ret < 0)
8007 goto out;
8008
8009 btrfs_info(fs_info,
8010 "zoned: relocating block group %llu to repair IO failure",
8011 target);
8012 ret = btrfs_relocate_chunk(fs_info, target);
8013
8014out:
8015 if (cache)
8016 btrfs_put_block_group(cache);
f3372065 8017 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287 8018 btrfs_exclop_finish(fs_info);
ca5e4ea0 8019 sb_end_write(fs_info->sb);
f7ef5287
NA
8020
8021 return ret;
8022}
8023
554aed7d 8024bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
f7ef5287
NA
8025{
8026 struct btrfs_block_group *cache;
8027
554aed7d
JT
8028 if (!btrfs_is_zoned(fs_info))
8029 return false;
8030
f7ef5287
NA
8031 /* Do not attempt to repair in degraded state */
8032 if (btrfs_test_opt(fs_info, DEGRADED))
554aed7d 8033 return true;
f7ef5287
NA
8034
8035 cache = btrfs_lookup_block_group(fs_info, logical);
8036 if (!cache)
554aed7d 8037 return true;
f7ef5287 8038
3349b57f 8039 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
f7ef5287 8040 btrfs_put_block_group(cache);
554aed7d 8041 return true;
f7ef5287 8042 }
f7ef5287
NA
8043
8044 kthread_run(relocating_repair_kthread, cache,
8045 "btrfs-relocating-repair");
8046
554aed7d 8047 return true;
f7ef5287 8048}
4886ff7b
QW
8049
8050static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8051 struct btrfs_io_stripe *smap,
8052 u64 logical)
8053{
8054 int data_stripes = nr_bioc_data_stripes(bioc);
8055 int i;
8056
8057 for (i = 0; i < data_stripes; i++) {
8058 u64 stripe_start = bioc->full_stripe_logical +
cb091225 8059 btrfs_stripe_nr_to_offset(i);
4886ff7b
QW
8060
8061 if (logical >= stripe_start &&
8062 logical < stripe_start + BTRFS_STRIPE_LEN)
8063 break;
8064 }
8065 ASSERT(i < data_stripes);
8066 smap->dev = bioc->stripes[i].dev;
8067 smap->physical = bioc->stripes[i].physical +
8068 ((logical - bioc->full_stripe_logical) &
8069 BTRFS_STRIPE_LEN_MASK);
8070}
8071
8072/*
8073 * Map a repair write into a single device.
8074 *
8075 * A repair write is triggered by read time repair or scrub, which would only
8076 * update the contents of a single device.
8077 * Not update any other mirrors nor go through RMW path.
8078 *
8079 * Callers should ensure:
8080 *
8081 * - Call btrfs_bio_counter_inc_blocked() first
8082 * - The range does not cross stripe boundary
8083 * - Has a valid @mirror_num passed in.
8084 */
8085int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8086 struct btrfs_io_stripe *smap, u64 logical,
8087 u32 length, int mirror_num)
8088{
8089 struct btrfs_io_context *bioc = NULL;
8090 u64 map_length = length;
8091 int mirror_ret = mirror_num;
8092 int ret;
8093
8094 ASSERT(mirror_num > 0);
8095
cd4efd21 8096 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
9fb2acc2 8097 &bioc, smap, &mirror_ret);
4886ff7b
QW
8098 if (ret < 0)
8099 return ret;
8100
8101 /* The map range should not cross stripe boundary. */
8102 ASSERT(map_length >= length);
8103
8104 /* Already mapped to single stripe. */
8105 if (!bioc)
8106 goto out;
8107
8108 /* Map the RAID56 multi-stripe writes to a single one. */
8109 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8110 map_raid56_repair_block(bioc, smap, logical);
8111 goto out;
8112 }
8113
8114 ASSERT(mirror_num <= bioc->num_stripes);
8115 smap->dev = bioc->stripes[mirror_num - 1].dev;
8116 smap->physical = bioc->stripes[mirror_num - 1].physical;
8117out:
8118 btrfs_put_bioc(bioc);
8119 ASSERT(smap->dev);
8120 return 0;
8121}
This page took 3.031454 seconds and 4 git commands to generate.