]> Git Repo - linux.git/blame - fs/btrfs/volumes.c
btrfs: move definition of btrfs_raid_types to volumes.h
[linux.git] / fs / btrfs / volumes.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
0b86a832
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
0b86a832 4 */
c1d7c514 5
0b86a832 6#include <linux/sched.h>
fccc0007 7#include <linux/sched/mm.h>
0b86a832 8#include <linux/bio.h>
5a0e3ad6 9#include <linux/slab.h>
f2d8d74d 10#include <linux/blkdev.h>
442a4f63 11#include <linux/ratelimit.h>
59641015 12#include <linux/kthread.h>
53b381b3 13#include <linux/raid/pq.h>
803b2f54 14#include <linux/semaphore.h>
8da4b8c4 15#include <linux/uuid.h>
f8e10cd3 16#include <linux/list_sort.h>
54fde91f 17#include <linux/namei.h>
784352fe 18#include "misc.h"
0b86a832
CM
19#include "ctree.h"
20#include "extent_map.h"
21#include "disk-io.h"
22#include "transaction.h"
23#include "print-tree.h"
24#include "volumes.h"
53b381b3 25#include "raid56.h"
8b712842 26#include "async-thread.h"
21adbd5c 27#include "check-integrity.h"
606686ee 28#include "rcu-string.h"
8dabb742 29#include "dev-replace.h"
99994cde 30#include "sysfs.h"
82fc28fb 31#include "tree-checker.h"
8719aaae 32#include "space-info.h"
aac0023c 33#include "block-group.h"
b0643e59 34#include "discard.h"
5b316468 35#include "zoned.h"
0b86a832 36
bf08387f
QW
37#define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
38 BTRFS_BLOCK_GROUP_RAID10 | \
39 BTRFS_BLOCK_GROUP_RAID56_MASK)
40
af902047
ZL
41const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
42 [BTRFS_RAID_RAID10] = {
43 .sub_stripes = 2,
44 .dev_stripes = 1,
45 .devs_max = 0, /* 0 == as many as possible */
b2f78e88 46 .devs_min = 2,
8789f4fe 47 .tolerated_failures = 1,
af902047
ZL
48 .devs_increment = 2,
49 .ncopies = 2,
b50836ed 50 .nparity = 0,
ed23467b 51 .raid_name = "raid10",
41a6e891 52 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
f9fbcaa2 53 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
af902047
ZL
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
8789f4fe 60 .tolerated_failures = 1,
af902047
ZL
61 .devs_increment = 2,
62 .ncopies = 2,
b50836ed 63 .nparity = 0,
ed23467b 64 .raid_name = "raid1",
41a6e891 65 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
f9fbcaa2 66 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
af902047 67 },
47e6f742
DS
68 [BTRFS_RAID_RAID1C3] = {
69 .sub_stripes = 1,
70 .dev_stripes = 1,
cf93e15e 71 .devs_max = 3,
47e6f742
DS
72 .devs_min = 3,
73 .tolerated_failures = 2,
74 .devs_increment = 3,
75 .ncopies = 3,
db26a024 76 .nparity = 0,
47e6f742
DS
77 .raid_name = "raid1c3",
78 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
79 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
80 },
8d6fac00
DS
81 [BTRFS_RAID_RAID1C4] = {
82 .sub_stripes = 1,
83 .dev_stripes = 1,
cf93e15e 84 .devs_max = 4,
8d6fac00
DS
85 .devs_min = 4,
86 .tolerated_failures = 3,
87 .devs_increment = 4,
88 .ncopies = 4,
db26a024 89 .nparity = 0,
8d6fac00
DS
90 .raid_name = "raid1c4",
91 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
92 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
93 },
af902047
ZL
94 [BTRFS_RAID_DUP] = {
95 .sub_stripes = 1,
96 .dev_stripes = 2,
97 .devs_max = 1,
98 .devs_min = 1,
8789f4fe 99 .tolerated_failures = 0,
af902047
ZL
100 .devs_increment = 1,
101 .ncopies = 2,
b50836ed 102 .nparity = 0,
ed23467b 103 .raid_name = "dup",
41a6e891 104 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
f9fbcaa2 105 .mindev_error = 0,
af902047
ZL
106 },
107 [BTRFS_RAID_RAID0] = {
108 .sub_stripes = 1,
109 .dev_stripes = 1,
110 .devs_max = 0,
b2f78e88 111 .devs_min = 1,
8789f4fe 112 .tolerated_failures = 0,
af902047
ZL
113 .devs_increment = 1,
114 .ncopies = 1,
b50836ed 115 .nparity = 0,
ed23467b 116 .raid_name = "raid0",
41a6e891 117 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
f9fbcaa2 118 .mindev_error = 0,
af902047
ZL
119 },
120 [BTRFS_RAID_SINGLE] = {
121 .sub_stripes = 1,
122 .dev_stripes = 1,
123 .devs_max = 1,
124 .devs_min = 1,
8789f4fe 125 .tolerated_failures = 0,
af902047
ZL
126 .devs_increment = 1,
127 .ncopies = 1,
b50836ed 128 .nparity = 0,
ed23467b 129 .raid_name = "single",
41a6e891 130 .bg_flag = 0,
f9fbcaa2 131 .mindev_error = 0,
af902047
ZL
132 },
133 [BTRFS_RAID_RAID5] = {
134 .sub_stripes = 1,
135 .dev_stripes = 1,
136 .devs_max = 0,
137 .devs_min = 2,
8789f4fe 138 .tolerated_failures = 1,
af902047 139 .devs_increment = 1,
da612e31 140 .ncopies = 1,
b50836ed 141 .nparity = 1,
ed23467b 142 .raid_name = "raid5",
41a6e891 143 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
f9fbcaa2 144 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
af902047
ZL
145 },
146 [BTRFS_RAID_RAID6] = {
147 .sub_stripes = 1,
148 .dev_stripes = 1,
149 .devs_max = 0,
150 .devs_min = 3,
8789f4fe 151 .tolerated_failures = 2,
af902047 152 .devs_increment = 1,
da612e31 153 .ncopies = 1,
b50836ed 154 .nparity = 2,
ed23467b 155 .raid_name = "raid6",
41a6e891 156 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
f9fbcaa2 157 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
af902047
ZL
158 },
159};
160
500a44c9
DS
161/*
162 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
163 * can be used as index to access btrfs_raid_array[].
164 */
165enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
166{
167 if (flags & BTRFS_BLOCK_GROUP_RAID10)
168 return BTRFS_RAID_RAID10;
169 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
170 return BTRFS_RAID_RAID1;
171 else if (flags & BTRFS_BLOCK_GROUP_RAID1C3)
172 return BTRFS_RAID_RAID1C3;
173 else if (flags & BTRFS_BLOCK_GROUP_RAID1C4)
174 return BTRFS_RAID_RAID1C4;
175 else if (flags & BTRFS_BLOCK_GROUP_DUP)
176 return BTRFS_RAID_DUP;
177 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
178 return BTRFS_RAID_RAID0;
179 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
180 return BTRFS_RAID_RAID5;
181 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
182 return BTRFS_RAID_RAID6;
183
184 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
185}
186
158da513 187const char *btrfs_bg_type_to_raid_name(u64 flags)
ed23467b 188{
158da513
DS
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
ed23467b
AJ
192 return NULL;
193
158da513 194 return btrfs_raid_array[index].raid_name;
ed23467b
AJ
195}
196
f89e09cf
AJ
197/*
198 * Fill @buf with textual description of @bg_flags, no more than @size_buf
199 * bytes including terminating null byte.
200 */
201void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
202{
203 int i;
204 int ret;
205 char *bp = buf;
206 u64 flags = bg_flags;
207 u32 size_bp = size_buf;
208
209 if (!flags) {
210 strcpy(bp, "NONE");
211 return;
212 }
213
214#define DESCRIBE_FLAG(flag, desc) \
215 do { \
216 if (flags & (flag)) { \
217 ret = snprintf(bp, size_bp, "%s|", (desc)); \
218 if (ret < 0 || ret >= size_bp) \
219 goto out_overflow; \
220 size_bp -= ret; \
221 bp += ret; \
222 flags &= ~(flag); \
223 } \
224 } while (0)
225
226 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
227 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
228 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
229
230 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
231 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
232 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
233 btrfs_raid_array[i].raid_name);
234#undef DESCRIBE_FLAG
235
236 if (flags) {
237 ret = snprintf(bp, size_bp, "0x%llx|", flags);
238 size_bp -= ret;
239 }
240
241 if (size_bp < size_buf)
242 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
243
244 /*
245 * The text is trimmed, it's up to the caller to provide sufficiently
246 * large buffer
247 */
248out_overflow:;
249}
250
6f8e0fc7 251static int init_first_rw_device(struct btrfs_trans_handle *trans);
2ff7e61e 252static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
48a3b636 253static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
733f4fbb 254static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
5ab56090
LB
255static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
256 enum btrfs_map_op op,
257 u64 logical, u64 *length,
4c664611 258 struct btrfs_io_context **bioc_ret,
5ab56090 259 int mirror_num, int need_raid_map);
2b82032c 260
9c6b1c4d
DS
261/*
262 * Device locking
263 * ==============
264 *
265 * There are several mutexes that protect manipulation of devices and low-level
266 * structures like chunks but not block groups, extents or files
267 *
268 * uuid_mutex (global lock)
269 * ------------------------
270 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
271 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
272 * device) or requested by the device= mount option
273 *
274 * the mutex can be very coarse and can cover long-running operations
275 *
276 * protects: updates to fs_devices counters like missing devices, rw devices,
52042d8e 277 * seeding, structure cloning, opening/closing devices at mount/umount time
9c6b1c4d
DS
278 *
279 * global::fs_devs - add, remove, updates to the global list
280 *
18c850fd
JB
281 * does not protect: manipulation of the fs_devices::devices list in general
282 * but in mount context it could be used to exclude list modifications by eg.
283 * scan ioctl
9c6b1c4d
DS
284 *
285 * btrfs_device::name - renames (write side), read is RCU
286 *
287 * fs_devices::device_list_mutex (per-fs, with RCU)
288 * ------------------------------------------------
289 * protects updates to fs_devices::devices, ie. adding and deleting
290 *
291 * simple list traversal with read-only actions can be done with RCU protection
292 *
293 * may be used to exclude some operations from running concurrently without any
294 * modifications to the list (see write_all_supers)
295 *
18c850fd
JB
296 * Is not required at mount and close times, because our device list is
297 * protected by the uuid_mutex at that point.
298 *
9c6b1c4d
DS
299 * balance_mutex
300 * -------------
301 * protects balance structures (status, state) and context accessed from
302 * several places (internally, ioctl)
303 *
304 * chunk_mutex
305 * -----------
306 * protects chunks, adding or removing during allocation, trim or when a new
0b6f5d40
NB
307 * device is added/removed. Additionally it also protects post_commit_list of
308 * individual devices, since they can be added to the transaction's
309 * post_commit_list only with chunk_mutex held.
9c6b1c4d
DS
310 *
311 * cleaner_mutex
312 * -------------
313 * a big lock that is held by the cleaner thread and prevents running subvolume
314 * cleaning together with relocation or delayed iputs
315 *
316 *
317 * Lock nesting
318 * ============
319 *
320 * uuid_mutex
ae3e715f
AJ
321 * device_list_mutex
322 * chunk_mutex
323 * balance_mutex
89595e80
AJ
324 *
325 *
c3e1f96c
GR
326 * Exclusive operations
327 * ====================
89595e80
AJ
328 *
329 * Maintains the exclusivity of the following operations that apply to the
330 * whole filesystem and cannot run in parallel.
331 *
332 * - Balance (*)
333 * - Device add
334 * - Device remove
335 * - Device replace (*)
336 * - Resize
337 *
338 * The device operations (as above) can be in one of the following states:
339 *
340 * - Running state
341 * - Paused state
342 * - Completed state
343 *
344 * Only device operations marked with (*) can go into the Paused state for the
345 * following reasons:
346 *
347 * - ioctl (only Balance can be Paused through ioctl)
348 * - filesystem remounted as read-only
349 * - filesystem unmounted and mounted as read-only
350 * - system power-cycle and filesystem mounted as read-only
351 * - filesystem or device errors leading to forced read-only
352 *
c3e1f96c
GR
353 * The status of exclusive operation is set and cleared atomically.
354 * During the course of Paused state, fs_info::exclusive_operation remains set.
89595e80
AJ
355 * A device operation in Paused or Running state can be canceled or resumed
356 * either by ioctl (Balance only) or when remounted as read-write.
c3e1f96c 357 * The exclusive status is cleared when the device operation is canceled or
89595e80 358 * completed.
9c6b1c4d
DS
359 */
360
67a2c45e 361DEFINE_MUTEX(uuid_mutex);
8a4b83cc 362static LIST_HEAD(fs_uuids);
4143cb8b 363struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
c73eccf7
AJ
364{
365 return &fs_uuids;
366}
8a4b83cc 367
2dfeca9b
DS
368/*
369 * alloc_fs_devices - allocate struct btrfs_fs_devices
7239ff4b
NB
370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
371 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
2dfeca9b
DS
372 *
373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374 * The returned struct is not linked onto any lists and can be destroyed with
375 * kfree() right away.
376 */
7239ff4b
NB
377static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
378 const u8 *metadata_fsid)
2208a378
ID
379{
380 struct btrfs_fs_devices *fs_devs;
381
78f2c9e6 382 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
2208a378
ID
383 if (!fs_devs)
384 return ERR_PTR(-ENOMEM);
385
386 mutex_init(&fs_devs->device_list_mutex);
387
388 INIT_LIST_HEAD(&fs_devs->devices);
389 INIT_LIST_HEAD(&fs_devs->alloc_list);
c4babc5e 390 INIT_LIST_HEAD(&fs_devs->fs_list);
944d3f9f 391 INIT_LIST_HEAD(&fs_devs->seed_list);
2208a378
ID
392 if (fsid)
393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
2208a378 394
7239ff4b
NB
395 if (metadata_fsid)
396 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
397 else if (fsid)
398 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
399
2208a378
ID
400 return fs_devs;
401}
402
a425f9d4 403void btrfs_free_device(struct btrfs_device *device)
48dae9cf 404{
bbbf7243 405 WARN_ON(!list_empty(&device->post_commit_list));
48dae9cf 406 rcu_string_free(device->name);
1c11b63e 407 extent_io_tree_release(&device->alloc_state);
48dae9cf 408 bio_put(device->flush_bio);
5b316468 409 btrfs_destroy_dev_zone_info(device);
48dae9cf
DS
410 kfree(device);
411}
412
e4404d6e
YZ
413static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414{
415 struct btrfs_device *device;
416 WARN_ON(fs_devices->opened);
417 while (!list_empty(&fs_devices->devices)) {
418 device = list_entry(fs_devices->devices.next,
419 struct btrfs_device, dev_list);
420 list_del(&device->dev_list);
a425f9d4 421 btrfs_free_device(device);
e4404d6e
YZ
422 }
423 kfree(fs_devices);
424}
425
ffc5a379 426void __exit btrfs_cleanup_fs_uuids(void)
8a4b83cc
CM
427{
428 struct btrfs_fs_devices *fs_devices;
8a4b83cc 429
2b82032c
YZ
430 while (!list_empty(&fs_uuids)) {
431 fs_devices = list_entry(fs_uuids.next,
c4babc5e
AJ
432 struct btrfs_fs_devices, fs_list);
433 list_del(&fs_devices->fs_list);
e4404d6e 434 free_fs_devices(fs_devices);
8a4b83cc 435 }
8a4b83cc
CM
436}
437
7239ff4b
NB
438static noinline struct btrfs_fs_devices *find_fsid(
439 const u8 *fsid, const u8 *metadata_fsid)
8a4b83cc 440{
8a4b83cc
CM
441 struct btrfs_fs_devices *fs_devices;
442
7239ff4b
NB
443 ASSERT(fsid);
444
7a62d0f0 445 /* Handle non-split brain cases */
c4babc5e 446 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
7239ff4b
NB
447 if (metadata_fsid) {
448 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
449 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
450 BTRFS_FSID_SIZE) == 0)
451 return fs_devices;
452 } else {
453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
454 return fs_devices;
455 }
8a4b83cc
CM
456 }
457 return NULL;
458}
459
c6730a0e
SY
460static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
461 struct btrfs_super_block *disk_super)
462{
463
464 struct btrfs_fs_devices *fs_devices;
465
466 /*
467 * Handle scanned device having completed its fsid change but
468 * belonging to a fs_devices that was created by first scanning
469 * a device which didn't have its fsid/metadata_uuid changed
470 * at all and the CHANGING_FSID_V2 flag set.
471 */
472 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
473 if (fs_devices->fsid_change &&
474 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
475 BTRFS_FSID_SIZE) == 0 &&
476 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
477 BTRFS_FSID_SIZE) == 0) {
478 return fs_devices;
479 }
480 }
481 /*
482 * Handle scanned device having completed its fsid change but
483 * belonging to a fs_devices that was created by a device that
484 * has an outdated pair of fsid/metadata_uuid and
485 * CHANGING_FSID_V2 flag set.
486 */
487 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
488 if (fs_devices->fsid_change &&
489 memcmp(fs_devices->metadata_uuid,
490 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
491 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
492 BTRFS_FSID_SIZE) == 0) {
493 return fs_devices;
494 }
495 }
496
497 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
498}
499
500
beaf8ab3
SB
501static int
502btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
503 int flush, struct block_device **bdev,
8f32380d 504 struct btrfs_super_block **disk_super)
beaf8ab3
SB
505{
506 int ret;
507
508 *bdev = blkdev_get_by_path(device_path, flags, holder);
509
510 if (IS_ERR(*bdev)) {
511 ret = PTR_ERR(*bdev);
beaf8ab3
SB
512 goto error;
513 }
514
515 if (flush)
1226dfff 516 sync_blockdev(*bdev);
9f6d2510 517 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
beaf8ab3
SB
518 if (ret) {
519 blkdev_put(*bdev, flags);
520 goto error;
521 }
522 invalidate_bdev(*bdev);
8f32380d
JT
523 *disk_super = btrfs_read_dev_super(*bdev);
524 if (IS_ERR(*disk_super)) {
525 ret = PTR_ERR(*disk_super);
beaf8ab3
SB
526 blkdev_put(*bdev, flags);
527 goto error;
528 }
529
530 return 0;
531
532error:
533 *bdev = NULL;
beaf8ab3
SB
534 return ret;
535}
536
16cab91a
AJ
537/**
538 * Search and remove all stale devices (which are not mounted).
d8367db3 539 * When both inputs are NULL, it will search and release all stale devices.
16cab91a
AJ
540 *
541 * @devt: Optional. When provided will it release all unmounted devices
542 * matching this devt only.
543 * @skip_device: Optional. Will skip this device when searching for the stale
d8367db3 544 * devices.
16cab91a
AJ
545 *
546 * Return: 0 for success or if @devt is 0.
547 * -EBUSY if @devt is a mounted device.
548 * -ENOENT if @devt does not match any device in the list.
d8367db3 549 */
16cab91a 550static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
4fde46f0 551{
fa6d2ae5
AJ
552 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
553 struct btrfs_device *device, *tmp_device;
70bc7088
AJ
554 int ret = 0;
555
c1247069
AJ
556 lockdep_assert_held(&uuid_mutex);
557
16cab91a 558 if (devt)
70bc7088 559 ret = -ENOENT;
4fde46f0 560
fa6d2ae5 561 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
4fde46f0 562
70bc7088 563 mutex_lock(&fs_devices->device_list_mutex);
fa6d2ae5
AJ
564 list_for_each_entry_safe(device, tmp_device,
565 &fs_devices->devices, dev_list) {
fa6d2ae5 566 if (skip_device && skip_device == device)
d8367db3 567 continue;
330a5bf4 568 if (devt && devt != device->devt)
38cf665d 569 continue;
70bc7088
AJ
570 if (fs_devices->opened) {
571 /* for an already deleted device return 0 */
16cab91a 572 if (devt && ret != 0)
70bc7088
AJ
573 ret = -EBUSY;
574 break;
575 }
4fde46f0 576
4fde46f0 577 /* delete the stale device */
7bcb8164
AJ
578 fs_devices->num_devices--;
579 list_del(&device->dev_list);
580 btrfs_free_device(device);
581
70bc7088 582 ret = 0;
7bcb8164
AJ
583 }
584 mutex_unlock(&fs_devices->device_list_mutex);
70bc7088 585
7bcb8164
AJ
586 if (fs_devices->num_devices == 0) {
587 btrfs_sysfs_remove_fsid(fs_devices);
588 list_del(&fs_devices->fs_list);
589 free_fs_devices(fs_devices);
4fde46f0
AJ
590 }
591 }
70bc7088
AJ
592
593 return ret;
4fde46f0
AJ
594}
595
18c850fd
JB
596/*
597 * This is only used on mount, and we are protected from competing things
598 * messing with our fs_devices by the uuid_mutex, thus we do not need the
599 * fs_devices->device_list_mutex here.
600 */
0fb08bcc
AJ
601static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
602 struct btrfs_device *device, fmode_t flags,
603 void *holder)
604{
0fb08bcc 605 struct block_device *bdev;
0fb08bcc
AJ
606 struct btrfs_super_block *disk_super;
607 u64 devid;
608 int ret;
609
610 if (device->bdev)
611 return -EINVAL;
612 if (!device->name)
613 return -EINVAL;
614
615 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
8f32380d 616 &bdev, &disk_super);
0fb08bcc
AJ
617 if (ret)
618 return ret;
619
0fb08bcc
AJ
620 devid = btrfs_stack_device_id(&disk_super->dev_item);
621 if (devid != device->devid)
8f32380d 622 goto error_free_page;
0fb08bcc
AJ
623
624 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
8f32380d 625 goto error_free_page;
0fb08bcc
AJ
626
627 device->generation = btrfs_super_generation(disk_super);
628
629 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
7239ff4b
NB
630 if (btrfs_super_incompat_flags(disk_super) &
631 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
632 pr_err(
633 "BTRFS: Invalid seeding and uuid-changed device detected\n");
8f32380d 634 goto error_free_page;
7239ff4b
NB
635 }
636
ebbede42 637 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0395d84f 638 fs_devices->seeding = true;
0fb08bcc 639 } else {
ebbede42
AJ
640 if (bdev_read_only(bdev))
641 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
642 else
643 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
0fb08bcc
AJ
644 }
645
823f8e5c 646 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
7f0432d0 647 fs_devices->rotating = true;
0fb08bcc
AJ
648
649 device->bdev = bdev;
e12c9621 650 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
0fb08bcc
AJ
651 device->mode = flags;
652
653 fs_devices->open_devices++;
ebbede42
AJ
654 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
655 device->devid != BTRFS_DEV_REPLACE_DEVID) {
0fb08bcc 656 fs_devices->rw_devices++;
b1b8e386 657 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
0fb08bcc 658 }
8f32380d 659 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
660
661 return 0;
662
8f32380d
JT
663error_free_page:
664 btrfs_release_disk_super(disk_super);
0fb08bcc
AJ
665 blkdev_put(bdev, flags);
666
667 return -EINVAL;
668}
669
7a62d0f0
NB
670/*
671 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
c0d81c7c
SY
672 * being created with a disk that has already completed its fsid change. Such
673 * disk can belong to an fs which has its FSID changed or to one which doesn't.
674 * Handle both cases here.
7a62d0f0
NB
675 */
676static struct btrfs_fs_devices *find_fsid_inprogress(
677 struct btrfs_super_block *disk_super)
678{
679 struct btrfs_fs_devices *fs_devices;
680
681 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
682 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
683 BTRFS_FSID_SIZE) != 0 &&
684 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
685 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
686 return fs_devices;
687 }
688 }
689
c0d81c7c 690 return find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
691}
692
cc5de4e7
NB
693
694static struct btrfs_fs_devices *find_fsid_changed(
695 struct btrfs_super_block *disk_super)
696{
697 struct btrfs_fs_devices *fs_devices;
698
699 /*
700 * Handles the case where scanned device is part of an fs that had
1a9fd417 701 * multiple successful changes of FSID but currently device didn't
05840710
NB
702 * observe it. Meaning our fsid will be different than theirs. We need
703 * to handle two subcases :
704 * 1 - The fs still continues to have different METADATA/FSID uuids.
705 * 2 - The fs is switched back to its original FSID (METADATA/FSID
706 * are equal).
cc5de4e7
NB
707 */
708 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
05840710 709 /* Changed UUIDs */
cc5de4e7
NB
710 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
711 BTRFS_FSID_SIZE) != 0 &&
712 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
713 BTRFS_FSID_SIZE) == 0 &&
714 memcmp(fs_devices->fsid, disk_super->fsid,
05840710
NB
715 BTRFS_FSID_SIZE) != 0)
716 return fs_devices;
717
718 /* Unchanged UUIDs */
719 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
720 BTRFS_FSID_SIZE) == 0 &&
721 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
722 BTRFS_FSID_SIZE) == 0)
cc5de4e7 723 return fs_devices;
cc5de4e7
NB
724 }
725
726 return NULL;
727}
1362089d
NB
728
729static struct btrfs_fs_devices *find_fsid_reverted_metadata(
730 struct btrfs_super_block *disk_super)
731{
732 struct btrfs_fs_devices *fs_devices;
733
734 /*
735 * Handle the case where the scanned device is part of an fs whose last
736 * metadata UUID change reverted it to the original FSID. At the same
737 * time * fs_devices was first created by another constitutent device
738 * which didn't fully observe the operation. This results in an
739 * btrfs_fs_devices created with metadata/fsid different AND
740 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
741 * fs_devices equal to the FSID of the disk.
742 */
743 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
744 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
745 BTRFS_FSID_SIZE) != 0 &&
746 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
747 BTRFS_FSID_SIZE) == 0 &&
748 fs_devices->fsid_change)
749 return fs_devices;
750 }
751
752 return NULL;
753}
60999ca4
DS
754/*
755 * Add new device to list of registered devices
756 *
757 * Returns:
e124ece5
AJ
758 * device pointer which was just added or updated when successful
759 * error pointer when failed
60999ca4 760 */
e124ece5 761static noinline struct btrfs_device *device_list_add(const char *path,
4306a974
AJ
762 struct btrfs_super_block *disk_super,
763 bool *new_device_added)
8a4b83cc
CM
764{
765 struct btrfs_device *device;
7a62d0f0 766 struct btrfs_fs_devices *fs_devices = NULL;
606686ee 767 struct rcu_string *name;
8a4b83cc 768 u64 found_transid = btrfs_super_generation(disk_super);
3acbcbfc 769 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
4889bc05
AJ
770 dev_t path_devt;
771 int error;
7239ff4b
NB
772 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
773 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
d1a63002
NB
774 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
775 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
7239ff4b 776
4889bc05
AJ
777 error = lookup_bdev(path, &path_devt);
778 if (error)
779 return ERR_PTR(error);
780
cc5de4e7 781 if (fsid_change_in_progress) {
c0d81c7c 782 if (!has_metadata_uuid)
cc5de4e7 783 fs_devices = find_fsid_inprogress(disk_super);
c0d81c7c 784 else
cc5de4e7 785 fs_devices = find_fsid_changed(disk_super);
7a62d0f0 786 } else if (has_metadata_uuid) {
c6730a0e 787 fs_devices = find_fsid_with_metadata_uuid(disk_super);
7a62d0f0 788 } else {
1362089d
NB
789 fs_devices = find_fsid_reverted_metadata(disk_super);
790 if (!fs_devices)
791 fs_devices = find_fsid(disk_super->fsid, NULL);
7a62d0f0
NB
792 }
793
8a4b83cc 794
8a4b83cc 795 if (!fs_devices) {
7239ff4b
NB
796 if (has_metadata_uuid)
797 fs_devices = alloc_fs_devices(disk_super->fsid,
798 disk_super->metadata_uuid);
799 else
800 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
801
2208a378 802 if (IS_ERR(fs_devices))
e124ece5 803 return ERR_CAST(fs_devices);
2208a378 804
92900e51
AV
805 fs_devices->fsid_change = fsid_change_in_progress;
806
9c6d173e 807 mutex_lock(&fs_devices->device_list_mutex);
c4babc5e 808 list_add(&fs_devices->fs_list, &fs_uuids);
2208a378 809
8a4b83cc
CM
810 device = NULL;
811 } else {
562d7b15
JB
812 struct btrfs_dev_lookup_args args = {
813 .devid = devid,
814 .uuid = disk_super->dev_item.uuid,
815 };
816
9c6d173e 817 mutex_lock(&fs_devices->device_list_mutex);
562d7b15 818 device = btrfs_find_device(fs_devices, &args);
7a62d0f0
NB
819
820 /*
821 * If this disk has been pulled into an fs devices created by
822 * a device which had the CHANGING_FSID_V2 flag then replace the
823 * metadata_uuid/fsid values of the fs_devices.
824 */
1362089d 825 if (fs_devices->fsid_change &&
7a62d0f0
NB
826 found_transid > fs_devices->latest_generation) {
827 memcpy(fs_devices->fsid, disk_super->fsid,
828 BTRFS_FSID_SIZE);
1362089d
NB
829
830 if (has_metadata_uuid)
831 memcpy(fs_devices->metadata_uuid,
832 disk_super->metadata_uuid,
833 BTRFS_FSID_SIZE);
834 else
835 memcpy(fs_devices->metadata_uuid,
836 disk_super->fsid, BTRFS_FSID_SIZE);
7a62d0f0
NB
837
838 fs_devices->fsid_change = false;
839 }
8a4b83cc 840 }
443f24fe 841
8a4b83cc 842 if (!device) {
9c6d173e
AJ
843 if (fs_devices->opened) {
844 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 845 return ERR_PTR(-EBUSY);
9c6d173e 846 }
2b82032c 847
12bd2fc0
ID
848 device = btrfs_alloc_device(NULL, &devid,
849 disk_super->dev_item.uuid);
850 if (IS_ERR(device)) {
9c6d173e 851 mutex_unlock(&fs_devices->device_list_mutex);
8a4b83cc 852 /* we can safely leave the fs_devices entry around */
e124ece5 853 return device;
8a4b83cc 854 }
606686ee
JB
855
856 name = rcu_string_strdup(path, GFP_NOFS);
857 if (!name) {
a425f9d4 858 btrfs_free_device(device);
9c6d173e 859 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 860 return ERR_PTR(-ENOMEM);
8a4b83cc 861 }
606686ee 862 rcu_assign_pointer(device->name, name);
4889bc05 863 device->devt = path_devt;
90519d66 864
1f78160c 865 list_add_rcu(&device->dev_list, &fs_devices->devices);
f7171750 866 fs_devices->num_devices++;
e5e9a520 867
2b82032c 868 device->fs_devices = fs_devices;
4306a974 869 *new_device_added = true;
327f18cc
AJ
870
871 if (disk_super->label[0])
aa6c0df7
AJ
872 pr_info(
873 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
874 disk_super->label, devid, found_transid, path,
875 current->comm, task_pid_nr(current));
327f18cc 876 else
aa6c0df7
AJ
877 pr_info(
878 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
879 disk_super->fsid, devid, found_transid, path,
880 current->comm, task_pid_nr(current));
327f18cc 881
606686ee 882 } else if (!device->name || strcmp(device->name->str, path)) {
b96de000
AJ
883 /*
884 * When FS is already mounted.
885 * 1. If you are here and if the device->name is NULL that
886 * means this device was missing at time of FS mount.
887 * 2. If you are here and if the device->name is different
888 * from 'path' that means either
889 * a. The same device disappeared and reappeared with
890 * different name. or
891 * b. The missing-disk-which-was-replaced, has
892 * reappeared now.
893 *
894 * We must allow 1 and 2a above. But 2b would be a spurious
895 * and unintentional.
896 *
897 * Further in case of 1 and 2a above, the disk at 'path'
898 * would have missed some transaction when it was away and
899 * in case of 2a the stale bdev has to be updated as well.
900 * 2b must not be allowed at all time.
901 */
902
903 /*
0f23ae74
CM
904 * For now, we do allow update to btrfs_fs_device through the
905 * btrfs dev scan cli after FS has been mounted. We're still
906 * tracking a problem where systems fail mount by subvolume id
907 * when we reject replacement on a mounted FS.
b96de000 908 */
0f23ae74 909 if (!fs_devices->opened && found_transid < device->generation) {
77bdae4d
AJ
910 /*
911 * That is if the FS is _not_ mounted and if you
912 * are here, that means there is more than one
913 * disk with same uuid and devid.We keep the one
914 * with larger generation number or the last-in if
915 * generation are equal.
916 */
9c6d173e 917 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 918 return ERR_PTR(-EEXIST);
77bdae4d 919 }
b96de000 920
a9261d41
AJ
921 /*
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
79c9234b
DM
924 *
925 * NOTE: the device->fs_info may not be reliable here so pass
926 * in a NULL to message helpers instead. This avoids a possible
927 * use-after-free when the fs_info and fs_info->sb are already
928 * torn down.
a9261d41
AJ
929 */
930 if (device->bdev) {
4889bc05 931 if (device->devt != path_devt) {
a9261d41 932 mutex_unlock(&fs_devices->device_list_mutex);
0697d9a6 933 btrfs_warn_in_rcu(NULL,
79dae17d
AJ
934 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
935 path, devid, found_transid,
936 current->comm,
937 task_pid_nr(current));
a9261d41
AJ
938 return ERR_PTR(-EEXIST);
939 }
79c9234b 940 btrfs_info_in_rcu(NULL,
79dae17d
AJ
941 "devid %llu device path %s changed to %s scanned by %s (%d)",
942 devid, rcu_str_deref(device->name),
943 path, current->comm,
944 task_pid_nr(current));
a9261d41
AJ
945 }
946
606686ee 947 name = rcu_string_strdup(path, GFP_NOFS);
9c6d173e
AJ
948 if (!name) {
949 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 950 return ERR_PTR(-ENOMEM);
9c6d173e 951 }
606686ee
JB
952 rcu_string_free(device->name);
953 rcu_assign_pointer(device->name, name);
e6e674bd 954 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5 955 fs_devices->missing_devices--;
e6e674bd 956 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 957 }
4889bc05 958 device->devt = path_devt;
8a4b83cc
CM
959 }
960
77bdae4d
AJ
961 /*
962 * Unmount does not free the btrfs_device struct but would zero
963 * generation along with most of the other members. So just update
964 * it back. We need it to pick the disk with largest generation
965 * (as above).
966 */
d1a63002 967 if (!fs_devices->opened) {
77bdae4d 968 device->generation = found_transid;
d1a63002
NB
969 fs_devices->latest_generation = max_t(u64, found_transid,
970 fs_devices->latest_generation);
971 }
77bdae4d 972
f2788d2f
AJ
973 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
974
9c6d173e 975 mutex_unlock(&fs_devices->device_list_mutex);
e124ece5 976 return device;
8a4b83cc
CM
977}
978
e4404d6e
YZ
979static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
980{
981 struct btrfs_fs_devices *fs_devices;
982 struct btrfs_device *device;
983 struct btrfs_device *orig_dev;
d2979aa2 984 int ret = 0;
e4404d6e 985
c1247069
AJ
986 lockdep_assert_held(&uuid_mutex);
987
7239ff4b 988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
2208a378
ID
989 if (IS_ERR(fs_devices))
990 return fs_devices;
e4404d6e 991
02db0844 992 fs_devices->total_devices = orig->total_devices;
e4404d6e
YZ
993
994 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
606686ee
JB
995 struct rcu_string *name;
996
12bd2fc0
ID
997 device = btrfs_alloc_device(NULL, &orig_dev->devid,
998 orig_dev->uuid);
d2979aa2
AJ
999 if (IS_ERR(device)) {
1000 ret = PTR_ERR(device);
e4404d6e 1001 goto error;
d2979aa2 1002 }
e4404d6e 1003
606686ee
JB
1004 /*
1005 * This is ok to do without rcu read locked because we hold the
1006 * uuid mutex so nothing we touch in here is going to disappear.
1007 */
e755f780 1008 if (orig_dev->name) {
78f2c9e6
DS
1009 name = rcu_string_strdup(orig_dev->name->str,
1010 GFP_KERNEL);
e755f780 1011 if (!name) {
a425f9d4 1012 btrfs_free_device(device);
d2979aa2 1013 ret = -ENOMEM;
e755f780
AJ
1014 goto error;
1015 }
1016 rcu_assign_pointer(device->name, name);
fd2696f3 1017 }
e4404d6e 1018
e4404d6e
YZ
1019 list_add(&device->dev_list, &fs_devices->devices);
1020 device->fs_devices = fs_devices;
1021 fs_devices->num_devices++;
1022 }
1023 return fs_devices;
1024error:
1025 free_fs_devices(fs_devices);
d2979aa2 1026 return ERR_PTR(ret);
e4404d6e
YZ
1027}
1028
3712ccb7 1029static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
bacce86a 1030 struct btrfs_device **latest_dev)
dfe25020 1031{
c6e30871 1032 struct btrfs_device *device, *next;
a6b0d5c8 1033
46224705 1034 /* This is the initialized path, it is safe to release the devices. */
c6e30871 1035 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
3712ccb7 1036 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
401e29c1 1037 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
3712ccb7 1038 &device->dev_state) &&
998a0671
AJ
1039 !test_bit(BTRFS_DEV_STATE_MISSING,
1040 &device->dev_state) &&
3712ccb7
NB
1041 (!*latest_dev ||
1042 device->generation > (*latest_dev)->generation)) {
1043 *latest_dev = device;
a6b0d5c8 1044 }
2b82032c 1045 continue;
a6b0d5c8 1046 }
2b82032c 1047
cf89af14
AJ
1048 /*
1049 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1050 * in btrfs_init_dev_replace() so just continue.
1051 */
1052 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1053 continue;
1054
2b82032c 1055 if (device->bdev) {
d4d77629 1056 blkdev_put(device->bdev, device->mode);
2b82032c
YZ
1057 device->bdev = NULL;
1058 fs_devices->open_devices--;
1059 }
ebbede42 1060 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 1061 list_del_init(&device->dev_alloc_list);
ebbede42 1062 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
b2a61667 1063 fs_devices->rw_devices--;
2b82032c 1064 }
e4404d6e
YZ
1065 list_del_init(&device->dev_list);
1066 fs_devices->num_devices--;
a425f9d4 1067 btrfs_free_device(device);
dfe25020 1068 }
2b82032c 1069
3712ccb7
NB
1070}
1071
1072/*
1073 * After we have read the system tree and know devids belonging to this
1074 * filesystem, remove the device which does not belong there.
1075 */
bacce86a 1076void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
3712ccb7
NB
1077{
1078 struct btrfs_device *latest_dev = NULL;
944d3f9f 1079 struct btrfs_fs_devices *seed_dev;
3712ccb7
NB
1080
1081 mutex_lock(&uuid_mutex);
bacce86a 1082 __btrfs_free_extra_devids(fs_devices, &latest_dev);
944d3f9f
NB
1083
1084 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
bacce86a 1085 __btrfs_free_extra_devids(seed_dev, &latest_dev);
2b82032c 1086
d24fa5c1 1087 fs_devices->latest_dev = latest_dev;
a6b0d5c8 1088
dfe25020 1089 mutex_unlock(&uuid_mutex);
dfe25020 1090}
a0af469b 1091
14238819
AJ
1092static void btrfs_close_bdev(struct btrfs_device *device)
1093{
08ffcae8
DS
1094 if (!device->bdev)
1095 return;
1096
ebbede42 1097 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
14238819
AJ
1098 sync_blockdev(device->bdev);
1099 invalidate_bdev(device->bdev);
1100 }
1101
08ffcae8 1102 blkdev_put(device->bdev, device->mode);
14238819
AJ
1103}
1104
959b1c04 1105static void btrfs_close_one_device(struct btrfs_device *device)
f448341a
AJ
1106{
1107 struct btrfs_fs_devices *fs_devices = device->fs_devices;
f448341a 1108
ebbede42 1109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
f448341a
AJ
1110 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1111 list_del_init(&device->dev_alloc_list);
1112 fs_devices->rw_devices--;
1113 }
1114
0d977e0e
DCZX
1115 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1116 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1117
5d03dbeb
LZ
1118 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1119 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
f448341a 1120 fs_devices->missing_devices--;
5d03dbeb 1121 }
f448341a 1122
959b1c04 1123 btrfs_close_bdev(device);
321f69f8 1124 if (device->bdev) {
3fff3975 1125 fs_devices->open_devices--;
321f69f8 1126 device->bdev = NULL;
f448341a 1127 }
321f69f8 1128 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
5b316468 1129 btrfs_destroy_dev_zone_info(device);
f448341a 1130
321f69f8
JT
1131 device->fs_info = NULL;
1132 atomic_set(&device->dev_stats_ccnt, 0);
1133 extent_io_tree_release(&device->alloc_state);
959b1c04 1134
6b225baa
FM
1135 /*
1136 * Reset the flush error record. We might have a transient flush error
1137 * in this mount, and if so we aborted the current transaction and set
1138 * the fs to an error state, guaranteeing no super blocks can be further
1139 * committed. However that error might be transient and if we unmount the
1140 * filesystem and mount it again, we should allow the mount to succeed
1141 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1142 * filesystem again we still get flush errors, then we will again abort
1143 * any transaction and set the error state, guaranteeing no commits of
1144 * unsafe super blocks.
1145 */
1146 device->last_flush_error = 0;
1147
321f69f8
JT
1148 /* Verify the device is back in a pristine state */
1149 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1150 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1151 ASSERT(list_empty(&device->dev_alloc_list));
1152 ASSERT(list_empty(&device->post_commit_list));
f448341a
AJ
1153}
1154
54eed6ae 1155static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
8a4b83cc 1156{
2037a093 1157 struct btrfs_device *device, *tmp;
e4404d6e 1158
425c6ed6
JB
1159 lockdep_assert_held(&uuid_mutex);
1160
2b82032c 1161 if (--fs_devices->opened > 0)
54eed6ae 1162 return;
8a4b83cc 1163
425c6ed6 1164 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
959b1c04 1165 btrfs_close_one_device(device);
c9513edb 1166
e4404d6e
YZ
1167 WARN_ON(fs_devices->open_devices);
1168 WARN_ON(fs_devices->rw_devices);
2b82032c 1169 fs_devices->opened = 0;
0395d84f 1170 fs_devices->seeding = false;
c4989c2f 1171 fs_devices->fs_info = NULL;
8a4b83cc
CM
1172}
1173
54eed6ae 1174void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
2b82032c 1175{
944d3f9f
NB
1176 LIST_HEAD(list);
1177 struct btrfs_fs_devices *tmp;
2b82032c
YZ
1178
1179 mutex_lock(&uuid_mutex);
54eed6ae 1180 close_fs_devices(fs_devices);
944d3f9f
NB
1181 if (!fs_devices->opened)
1182 list_splice_init(&fs_devices->seed_list, &list);
e4404d6e 1183
944d3f9f 1184 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
0226e0eb 1185 close_fs_devices(fs_devices);
944d3f9f 1186 list_del(&fs_devices->seed_list);
e4404d6e
YZ
1187 free_fs_devices(fs_devices);
1188 }
425c6ed6 1189 mutex_unlock(&uuid_mutex);
2b82032c
YZ
1190}
1191
897fb573 1192static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
e4404d6e 1193 fmode_t flags, void *holder)
8a4b83cc 1194{
8a4b83cc 1195 struct btrfs_device *device;
443f24fe 1196 struct btrfs_device *latest_dev = NULL;
96c2e067 1197 struct btrfs_device *tmp_device;
8a4b83cc 1198
d4d77629
TH
1199 flags |= FMODE_EXCL;
1200
96c2e067
AJ
1201 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1202 dev_list) {
1203 int ret;
a0af469b 1204
96c2e067
AJ
1205 ret = btrfs_open_one_device(fs_devices, device, flags, holder);
1206 if (ret == 0 &&
1207 (!latest_dev || device->generation > latest_dev->generation)) {
9f050db4 1208 latest_dev = device;
96c2e067
AJ
1209 } else if (ret == -ENODATA) {
1210 fs_devices->num_devices--;
1211 list_del(&device->dev_list);
1212 btrfs_free_device(device);
1213 }
8a4b83cc 1214 }
1ed802c9
AJ
1215 if (fs_devices->open_devices == 0)
1216 return -EINVAL;
1217
2b82032c 1218 fs_devices->opened = 1;
d24fa5c1 1219 fs_devices->latest_dev = latest_dev;
2b82032c 1220 fs_devices->total_rw_bytes = 0;
c4a816c6 1221 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
33fd2f71 1222 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1ed802c9
AJ
1223
1224 return 0;
2b82032c
YZ
1225}
1226
4f0f586b
ST
1227static int devid_cmp(void *priv, const struct list_head *a,
1228 const struct list_head *b)
f8e10cd3 1229{
214cc184 1230 const struct btrfs_device *dev1, *dev2;
f8e10cd3
AJ
1231
1232 dev1 = list_entry(a, struct btrfs_device, dev_list);
1233 dev2 = list_entry(b, struct btrfs_device, dev_list);
1234
1235 if (dev1->devid < dev2->devid)
1236 return -1;
1237 else if (dev1->devid > dev2->devid)
1238 return 1;
1239 return 0;
1240}
1241
2b82032c 1242int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
97288f2c 1243 fmode_t flags, void *holder)
2b82032c
YZ
1244{
1245 int ret;
1246
f5194e34 1247 lockdep_assert_held(&uuid_mutex);
18c850fd
JB
1248 /*
1249 * The device_list_mutex cannot be taken here in case opening the
a8698707 1250 * underlying device takes further locks like open_mutex.
18c850fd
JB
1251 *
1252 * We also don't need the lock here as this is called during mount and
1253 * exclusion is provided by uuid_mutex
1254 */
f5194e34 1255
2b82032c 1256 if (fs_devices->opened) {
e4404d6e
YZ
1257 fs_devices->opened++;
1258 ret = 0;
2b82032c 1259 } else {
f8e10cd3 1260 list_sort(NULL, &fs_devices->devices, devid_cmp);
897fb573 1261 ret = open_fs_devices(fs_devices, flags, holder);
2b82032c 1262 }
542c5908 1263
8a4b83cc
CM
1264 return ret;
1265}
1266
8f32380d 1267void btrfs_release_disk_super(struct btrfs_super_block *super)
6cf86a00 1268{
8f32380d
JT
1269 struct page *page = virt_to_page(super);
1270
6cf86a00
AJ
1271 put_page(page);
1272}
1273
b335eab8 1274static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
12659251 1275 u64 bytenr, u64 bytenr_orig)
6cf86a00 1276{
b335eab8
NB
1277 struct btrfs_super_block *disk_super;
1278 struct page *page;
6cf86a00
AJ
1279 void *p;
1280 pgoff_t index;
1281
1282 /* make sure our super fits in the device */
cda00eba 1283 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev))
b335eab8 1284 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1285
1286 /* make sure our super fits in the page */
b335eab8
NB
1287 if (sizeof(*disk_super) > PAGE_SIZE)
1288 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1289
1290 /* make sure our super doesn't straddle pages on disk */
1291 index = bytenr >> PAGE_SHIFT;
b335eab8
NB
1292 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index)
1293 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1294
1295 /* pull in the page with our super */
b335eab8 1296 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL);
6cf86a00 1297
b335eab8
NB
1298 if (IS_ERR(page))
1299 return ERR_CAST(page);
6cf86a00 1300
b335eab8 1301 p = page_address(page);
6cf86a00
AJ
1302
1303 /* align our pointer to the offset of the super block */
b335eab8 1304 disk_super = p + offset_in_page(bytenr);
6cf86a00 1305
12659251 1306 if (btrfs_super_bytenr(disk_super) != bytenr_orig ||
b335eab8 1307 btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
8f32380d 1308 btrfs_release_disk_super(p);
b335eab8 1309 return ERR_PTR(-EINVAL);
6cf86a00
AJ
1310 }
1311
b335eab8
NB
1312 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1])
1313 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0;
6cf86a00 1314
b335eab8 1315 return disk_super;
6cf86a00
AJ
1316}
1317
16cab91a 1318int btrfs_forget_devices(dev_t devt)
228a73ab
AJ
1319{
1320 int ret;
1321
1322 mutex_lock(&uuid_mutex);
16cab91a 1323 ret = btrfs_free_stale_devices(devt, NULL);
228a73ab
AJ
1324 mutex_unlock(&uuid_mutex);
1325
1326 return ret;
1327}
1328
6f60cbd3
DS
1329/*
1330 * Look for a btrfs signature on a device. This may be called out of the mount path
1331 * and we are not allowed to call set_blocksize during the scan. The superblock
1332 * is read via pagecache
1333 */
36350e95
GJ
1334struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1335 void *holder)
8a4b83cc
CM
1336{
1337 struct btrfs_super_block *disk_super;
4306a974 1338 bool new_device_added = false;
36350e95 1339 struct btrfs_device *device = NULL;
8a4b83cc 1340 struct block_device *bdev;
12659251
NA
1341 u64 bytenr, bytenr_orig;
1342 int ret;
8a4b83cc 1343
899f9307
DS
1344 lockdep_assert_held(&uuid_mutex);
1345
6f60cbd3
DS
1346 /*
1347 * we would like to check all the supers, but that would make
1348 * a btrfs mount succeed after a mkfs from a different FS.
1349 * So, we need to add a special mount option to scan for
1350 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1351 */
d4d77629 1352 flags |= FMODE_EXCL;
6f60cbd3
DS
1353
1354 bdev = blkdev_get_by_path(path, flags, holder);
b6ed73bc 1355 if (IS_ERR(bdev))
36350e95 1356 return ERR_CAST(bdev);
6f60cbd3 1357
12659251
NA
1358 bytenr_orig = btrfs_sb_offset(0);
1359 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr);
4989d4a0
SK
1360 if (ret) {
1361 device = ERR_PTR(ret);
1362 goto error_bdev_put;
1363 }
12659251
NA
1364
1365 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig);
b335eab8
NB
1366 if (IS_ERR(disk_super)) {
1367 device = ERR_CAST(disk_super);
6f60cbd3 1368 goto error_bdev_put;
05a5c55d 1369 }
6f60cbd3 1370
4306a974 1371 device = device_list_add(path, disk_super, &new_device_added);
4889bc05
AJ
1372 if (!IS_ERR(device) && new_device_added)
1373 btrfs_free_stale_devices(device->devt, device);
6f60cbd3 1374
8f32380d 1375 btrfs_release_disk_super(disk_super);
6f60cbd3
DS
1376
1377error_bdev_put:
d4d77629 1378 blkdev_put(bdev, flags);
b6ed73bc 1379
36350e95 1380 return device;
8a4b83cc 1381}
0b86a832 1382
1c11b63e
JM
1383/*
1384 * Try to find a chunk that intersects [start, start + len] range and when one
1385 * such is found, record the end of it in *start
1386 */
1c11b63e
JM
1387static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1388 u64 len)
6df9a95e 1389{
1c11b63e 1390 u64 physical_start, physical_end;
6df9a95e 1391
1c11b63e 1392 lockdep_assert_held(&device->fs_info->chunk_mutex);
6df9a95e 1393
1c11b63e
JM
1394 if (!find_first_extent_bit(&device->alloc_state, *start,
1395 &physical_start, &physical_end,
1396 CHUNK_ALLOCATED, NULL)) {
c152b63e 1397
1c11b63e
JM
1398 if (in_range(physical_start, *start, len) ||
1399 in_range(*start, physical_start,
1400 physical_end - physical_start)) {
1401 *start = physical_end + 1;
1402 return true;
6df9a95e
JB
1403 }
1404 }
1c11b63e 1405 return false;
6df9a95e
JB
1406}
1407
3b4ffa40
NA
1408static u64 dev_extent_search_start(struct btrfs_device *device, u64 start)
1409{
1410 switch (device->fs_devices->chunk_alloc_policy) {
1411 case BTRFS_CHUNK_ALLOC_REGULAR:
1412 /*
1413 * We don't want to overwrite the superblock on the drive nor
1414 * any area used by the boot loader (grub for example), so we
1415 * make sure to start at an offset of at least 1MB.
1416 */
1417 return max_t(u64, start, SZ_1M);
1cd6121f
NA
1418 case BTRFS_CHUNK_ALLOC_ZONED:
1419 /*
1420 * We don't care about the starting region like regular
1421 * allocator, because we anyway use/reserve the first two zones
1422 * for superblock logging.
1423 */
1424 return ALIGN(start, device->zone_info->zone_size);
3b4ffa40
NA
1425 default:
1426 BUG();
1427 }
1428}
1429
1cd6121f
NA
1430static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1431 u64 *hole_start, u64 *hole_size,
1432 u64 num_bytes)
1433{
1434 u64 zone_size = device->zone_info->zone_size;
1435 u64 pos;
1436 int ret;
1437 bool changed = false;
1438
1439 ASSERT(IS_ALIGNED(*hole_start, zone_size));
1440
1441 while (*hole_size > 0) {
1442 pos = btrfs_find_allocatable_zones(device, *hole_start,
1443 *hole_start + *hole_size,
1444 num_bytes);
1445 if (pos != *hole_start) {
1446 *hole_size = *hole_start + *hole_size - pos;
1447 *hole_start = pos;
1448 changed = true;
1449 if (*hole_size < num_bytes)
1450 break;
1451 }
1452
1453 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1454
1455 /* Range is ensured to be empty */
1456 if (!ret)
1457 return changed;
1458
1459 /* Given hole range was invalid (outside of device) */
1460 if (ret == -ERANGE) {
1461 *hole_start += *hole_size;
d6f67afb 1462 *hole_size = 0;
7000babd 1463 return true;
1cd6121f
NA
1464 }
1465
1466 *hole_start += zone_size;
1467 *hole_size -= zone_size;
1468 changed = true;
1469 }
1470
1471 return changed;
1472}
1473
3b4ffa40
NA
1474/**
1475 * dev_extent_hole_check - check if specified hole is suitable for allocation
1476 * @device: the device which we have the hole
1477 * @hole_start: starting position of the hole
1478 * @hole_size: the size of the hole
1479 * @num_bytes: the size of the free space that we need
1480 *
1cd6121f 1481 * This function may modify @hole_start and @hole_size to reflect the suitable
3b4ffa40
NA
1482 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1483 */
1484static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1485 u64 *hole_size, u64 num_bytes)
1486{
1487 bool changed = false;
1488 u64 hole_end = *hole_start + *hole_size;
1489
1cd6121f
NA
1490 for (;;) {
1491 /*
1492 * Check before we set max_hole_start, otherwise we could end up
1493 * sending back this offset anyway.
1494 */
1495 if (contains_pending_extent(device, hole_start, *hole_size)) {
1496 if (hole_end >= *hole_start)
1497 *hole_size = hole_end - *hole_start;
1498 else
1499 *hole_size = 0;
1500 changed = true;
1501 }
1502
1503 switch (device->fs_devices->chunk_alloc_policy) {
1504 case BTRFS_CHUNK_ALLOC_REGULAR:
1505 /* No extra check */
1506 break;
1507 case BTRFS_CHUNK_ALLOC_ZONED:
1508 if (dev_extent_hole_check_zoned(device, hole_start,
1509 hole_size, num_bytes)) {
1510 changed = true;
1511 /*
1512 * The changed hole can contain pending extent.
1513 * Loop again to check that.
1514 */
1515 continue;
1516 }
1517 break;
1518 default:
1519 BUG();
1520 }
3b4ffa40 1521
3b4ffa40 1522 break;
3b4ffa40
NA
1523 }
1524
1525 return changed;
1526}
6df9a95e 1527
0b86a832 1528/*
499f377f
JM
1529 * find_free_dev_extent_start - find free space in the specified device
1530 * @device: the device which we search the free space in
1531 * @num_bytes: the size of the free space that we need
1532 * @search_start: the position from which to begin the search
1533 * @start: store the start of the free space.
1534 * @len: the size of the free space. that we find, or the size
1535 * of the max free space if we don't find suitable free space
7bfc837d 1536 *
0b86a832
CM
1537 * this uses a pretty simple search, the expectation is that it is
1538 * called very infrequently and that a given device has a small number
1539 * of extents
7bfc837d
MX
1540 *
1541 * @start is used to store the start of the free space if we find. But if we
1542 * don't find suitable free space, it will be used to store the start position
1543 * of the max free space.
1544 *
1545 * @len is used to store the size of the free space that we find.
1546 * But if we don't find suitable free space, it is used to store the size of
1547 * the max free space.
135da976
QW
1548 *
1549 * NOTE: This function will search *commit* root of device tree, and does extra
1550 * check to ensure dev extents are not double allocated.
1551 * This makes the function safe to allocate dev extents but may not report
1552 * correct usable device space, as device extent freed in current transaction
1a9fd417 1553 * is not reported as available.
0b86a832 1554 */
9e3246a5
QW
1555static int find_free_dev_extent_start(struct btrfs_device *device,
1556 u64 num_bytes, u64 search_start, u64 *start,
1557 u64 *len)
0b86a832 1558{
0b246afa
JM
1559 struct btrfs_fs_info *fs_info = device->fs_info;
1560 struct btrfs_root *root = fs_info->dev_root;
0b86a832 1561 struct btrfs_key key;
7bfc837d 1562 struct btrfs_dev_extent *dev_extent;
2b82032c 1563 struct btrfs_path *path;
7bfc837d
MX
1564 u64 hole_size;
1565 u64 max_hole_start;
1566 u64 max_hole_size;
1567 u64 extent_end;
0b86a832
CM
1568 u64 search_end = device->total_bytes;
1569 int ret;
7bfc837d 1570 int slot;
0b86a832 1571 struct extent_buffer *l;
8cdc7c5b 1572
3b4ffa40 1573 search_start = dev_extent_search_start(device, search_start);
0b86a832 1574
1cd6121f
NA
1575 WARN_ON(device->zone_info &&
1576 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1577
6df9a95e
JB
1578 path = btrfs_alloc_path();
1579 if (!path)
1580 return -ENOMEM;
f2ab7618 1581
7bfc837d
MX
1582 max_hole_start = search_start;
1583 max_hole_size = 0;
1584
f2ab7618 1585again:
401e29c1
AJ
1586 if (search_start >= search_end ||
1587 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7bfc837d 1588 ret = -ENOSPC;
6df9a95e 1589 goto out;
7bfc837d
MX
1590 }
1591
e4058b54 1592 path->reada = READA_FORWARD;
6df9a95e
JB
1593 path->search_commit_root = 1;
1594 path->skip_locking = 1;
7bfc837d 1595
0b86a832
CM
1596 key.objectid = device->devid;
1597 key.offset = search_start;
1598 key.type = BTRFS_DEV_EXTENT_KEY;
7bfc837d 1599
0ff40a91 1600 ret = btrfs_search_backwards(root, &key, path);
0b86a832 1601 if (ret < 0)
7bfc837d 1602 goto out;
7bfc837d 1603
0b86a832
CM
1604 while (1) {
1605 l = path->nodes[0];
1606 slot = path->slots[0];
1607 if (slot >= btrfs_header_nritems(l)) {
1608 ret = btrfs_next_leaf(root, path);
1609 if (ret == 0)
1610 continue;
1611 if (ret < 0)
7bfc837d
MX
1612 goto out;
1613
1614 break;
0b86a832
CM
1615 }
1616 btrfs_item_key_to_cpu(l, &key, slot);
1617
1618 if (key.objectid < device->devid)
1619 goto next;
1620
1621 if (key.objectid > device->devid)
7bfc837d 1622 break;
0b86a832 1623
962a298f 1624 if (key.type != BTRFS_DEV_EXTENT_KEY)
7bfc837d 1625 goto next;
9779b72f 1626
7bfc837d
MX
1627 if (key.offset > search_start) {
1628 hole_size = key.offset - search_start;
3b4ffa40
NA
1629 dev_extent_hole_check(device, &search_start, &hole_size,
1630 num_bytes);
6df9a95e 1631
7bfc837d
MX
1632 if (hole_size > max_hole_size) {
1633 max_hole_start = search_start;
1634 max_hole_size = hole_size;
1635 }
9779b72f 1636
7bfc837d
MX
1637 /*
1638 * If this free space is greater than which we need,
1639 * it must be the max free space that we have found
1640 * until now, so max_hole_start must point to the start
1641 * of this free space and the length of this free space
1642 * is stored in max_hole_size. Thus, we return
1643 * max_hole_start and max_hole_size and go back to the
1644 * caller.
1645 */
1646 if (hole_size >= num_bytes) {
1647 ret = 0;
1648 goto out;
0b86a832
CM
1649 }
1650 }
0b86a832 1651
0b86a832 1652 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
7bfc837d
MX
1653 extent_end = key.offset + btrfs_dev_extent_length(l,
1654 dev_extent);
1655 if (extent_end > search_start)
1656 search_start = extent_end;
0b86a832
CM
1657next:
1658 path->slots[0]++;
1659 cond_resched();
1660 }
0b86a832 1661
38c01b96 1662 /*
1663 * At this point, search_start should be the end of
1664 * allocated dev extents, and when shrinking the device,
1665 * search_end may be smaller than search_start.
1666 */
f2ab7618 1667 if (search_end > search_start) {
38c01b96 1668 hole_size = search_end - search_start;
3b4ffa40
NA
1669 if (dev_extent_hole_check(device, &search_start, &hole_size,
1670 num_bytes)) {
f2ab7618
ZL
1671 btrfs_release_path(path);
1672 goto again;
1673 }
0b86a832 1674
f2ab7618
ZL
1675 if (hole_size > max_hole_size) {
1676 max_hole_start = search_start;
1677 max_hole_size = hole_size;
1678 }
6df9a95e
JB
1679 }
1680
7bfc837d 1681 /* See above. */
f2ab7618 1682 if (max_hole_size < num_bytes)
7bfc837d
MX
1683 ret = -ENOSPC;
1684 else
1685 ret = 0;
1686
1687out:
2b82032c 1688 btrfs_free_path(path);
7bfc837d 1689 *start = max_hole_start;
b2117a39 1690 if (len)
7bfc837d 1691 *len = max_hole_size;
0b86a832
CM
1692 return ret;
1693}
1694
60dfdf25 1695int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
499f377f
JM
1696 u64 *start, u64 *len)
1697{
499f377f 1698 /* FIXME use last free of some kind */
60dfdf25 1699 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
499f377f
JM
1700}
1701
b2950863 1702static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
8f18cf13 1703 struct btrfs_device *device,
2196d6e8 1704 u64 start, u64 *dev_extent_len)
8f18cf13 1705{
0b246afa
JM
1706 struct btrfs_fs_info *fs_info = device->fs_info;
1707 struct btrfs_root *root = fs_info->dev_root;
8f18cf13
CM
1708 int ret;
1709 struct btrfs_path *path;
8f18cf13 1710 struct btrfs_key key;
a061fc8d
CM
1711 struct btrfs_key found_key;
1712 struct extent_buffer *leaf = NULL;
1713 struct btrfs_dev_extent *extent = NULL;
8f18cf13
CM
1714
1715 path = btrfs_alloc_path();
1716 if (!path)
1717 return -ENOMEM;
1718
1719 key.objectid = device->devid;
1720 key.offset = start;
1721 key.type = BTRFS_DEV_EXTENT_KEY;
924cd8fb 1722again:
8f18cf13 1723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
a061fc8d
CM
1724 if (ret > 0) {
1725 ret = btrfs_previous_item(root, path, key.objectid,
1726 BTRFS_DEV_EXTENT_KEY);
b0b802d7
TI
1727 if (ret)
1728 goto out;
a061fc8d
CM
1729 leaf = path->nodes[0];
1730 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1731 extent = btrfs_item_ptr(leaf, path->slots[0],
1732 struct btrfs_dev_extent);
1733 BUG_ON(found_key.offset > start || found_key.offset +
1734 btrfs_dev_extent_length(leaf, extent) < start);
924cd8fb
MX
1735 key = found_key;
1736 btrfs_release_path(path);
1737 goto again;
a061fc8d
CM
1738 } else if (ret == 0) {
1739 leaf = path->nodes[0];
1740 extent = btrfs_item_ptr(leaf, path->slots[0],
1741 struct btrfs_dev_extent);
79787eaa 1742 } else {
79787eaa 1743 goto out;
a061fc8d 1744 }
8f18cf13 1745
2196d6e8
MX
1746 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1747
8f18cf13 1748 ret = btrfs_del_item(trans, root, path);
79bd3712 1749 if (ret == 0)
3204d33c 1750 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
b0b802d7 1751out:
8f18cf13
CM
1752 btrfs_free_path(path);
1753 return ret;
1754}
1755
6df9a95e 1756static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
0b86a832 1757{
6df9a95e
JB
1758 struct extent_map_tree *em_tree;
1759 struct extent_map *em;
1760 struct rb_node *n;
1761 u64 ret = 0;
0b86a832 1762
c8bf1b67 1763 em_tree = &fs_info->mapping_tree;
6df9a95e 1764 read_lock(&em_tree->lock);
07e1ce09 1765 n = rb_last(&em_tree->map.rb_root);
6df9a95e
JB
1766 if (n) {
1767 em = rb_entry(n, struct extent_map, rb_node);
1768 ret = em->start + em->len;
0b86a832 1769 }
6df9a95e
JB
1770 read_unlock(&em_tree->lock);
1771
0b86a832
CM
1772 return ret;
1773}
1774
53f10659
ID
1775static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1776 u64 *devid_ret)
0b86a832
CM
1777{
1778 int ret;
1779 struct btrfs_key key;
1780 struct btrfs_key found_key;
2b82032c
YZ
1781 struct btrfs_path *path;
1782
2b82032c
YZ
1783 path = btrfs_alloc_path();
1784 if (!path)
1785 return -ENOMEM;
0b86a832
CM
1786
1787 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1788 key.type = BTRFS_DEV_ITEM_KEY;
1789 key.offset = (u64)-1;
1790
53f10659 1791 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
0b86a832
CM
1792 if (ret < 0)
1793 goto error;
1794
a06dee4d
AJ
1795 if (ret == 0) {
1796 /* Corruption */
1797 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1798 ret = -EUCLEAN;
1799 goto error;
1800 }
0b86a832 1801
53f10659
ID
1802 ret = btrfs_previous_item(fs_info->chunk_root, path,
1803 BTRFS_DEV_ITEMS_OBJECTID,
0b86a832
CM
1804 BTRFS_DEV_ITEM_KEY);
1805 if (ret) {
53f10659 1806 *devid_ret = 1;
0b86a832
CM
1807 } else {
1808 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1809 path->slots[0]);
53f10659 1810 *devid_ret = found_key.offset + 1;
0b86a832
CM
1811 }
1812 ret = 0;
1813error:
2b82032c 1814 btrfs_free_path(path);
0b86a832
CM
1815 return ret;
1816}
1817
1818/*
1819 * the device information is stored in the chunk root
1820 * the btrfs_device struct should be fully filled in
1821 */
c74a0b02 1822static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
48a3b636 1823 struct btrfs_device *device)
0b86a832
CM
1824{
1825 int ret;
1826 struct btrfs_path *path;
1827 struct btrfs_dev_item *dev_item;
1828 struct extent_buffer *leaf;
1829 struct btrfs_key key;
1830 unsigned long ptr;
0b86a832 1831
0b86a832
CM
1832 path = btrfs_alloc_path();
1833 if (!path)
1834 return -ENOMEM;
1835
0b86a832
CM
1836 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1837 key.type = BTRFS_DEV_ITEM_KEY;
2b82032c 1838 key.offset = device->devid;
0b86a832 1839
2bb2e00e 1840 btrfs_reserve_chunk_metadata(trans, true);
8e87e856
NB
1841 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1842 &key, sizeof(*dev_item));
2bb2e00e 1843 btrfs_trans_release_chunk_metadata(trans);
0b86a832
CM
1844 if (ret)
1845 goto out;
1846
1847 leaf = path->nodes[0];
1848 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1849
1850 btrfs_set_device_id(leaf, dev_item, device->devid);
2b82032c 1851 btrfs_set_device_generation(leaf, dev_item, 0);
0b86a832
CM
1852 btrfs_set_device_type(leaf, dev_item, device->type);
1853 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1854 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1855 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
1856 btrfs_set_device_total_bytes(leaf, dev_item,
1857 btrfs_device_get_disk_total_bytes(device));
1858 btrfs_set_device_bytes_used(leaf, dev_item,
1859 btrfs_device_get_bytes_used(device));
e17cade2
CM
1860 btrfs_set_device_group(leaf, dev_item, 0);
1861 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1862 btrfs_set_device_bandwidth(leaf, dev_item, 0);
c3027eb5 1863 btrfs_set_device_start_offset(leaf, dev_item, 0);
0b86a832 1864
410ba3a2 1865 ptr = btrfs_device_uuid(dev_item);
e17cade2 1866 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1473b24e 1867 ptr = btrfs_device_fsid(dev_item);
de37aa51
NB
1868 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1869 ptr, BTRFS_FSID_SIZE);
0b86a832 1870 btrfs_mark_buffer_dirty(leaf);
0b86a832 1871
2b82032c 1872 ret = 0;
0b86a832
CM
1873out:
1874 btrfs_free_path(path);
1875 return ret;
1876}
8f18cf13 1877
5a1972bd
QW
1878/*
1879 * Function to update ctime/mtime for a given device path.
1880 * Mainly used for ctime/mtime based probe like libblkid.
54fde91f
JB
1881 *
1882 * We don't care about errors here, this is just to be kind to userspace.
5a1972bd 1883 */
54fde91f 1884static void update_dev_time(const char *device_path)
5a1972bd 1885{
54fde91f 1886 struct path path;
8f96a5bf 1887 struct timespec64 now;
54fde91f 1888 int ret;
5a1972bd 1889
54fde91f
JB
1890 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
1891 if (ret)
5a1972bd 1892 return;
8f96a5bf 1893
54fde91f
JB
1894 now = current_time(d_inode(path.dentry));
1895 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME);
1896 path_put(&path);
5a1972bd
QW
1897}
1898
bbac5869
QW
1899static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
1900 struct btrfs_device *device)
a061fc8d 1901{
f331a952 1902 struct btrfs_root *root = device->fs_info->chunk_root;
a061fc8d
CM
1903 int ret;
1904 struct btrfs_path *path;
a061fc8d 1905 struct btrfs_key key;
a061fc8d 1906
a061fc8d
CM
1907 path = btrfs_alloc_path();
1908 if (!path)
1909 return -ENOMEM;
1910
a061fc8d
CM
1911 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1912 key.type = BTRFS_DEV_ITEM_KEY;
1913 key.offset = device->devid;
1914
2bb2e00e 1915 btrfs_reserve_chunk_metadata(trans, false);
a061fc8d 1916 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2bb2e00e 1917 btrfs_trans_release_chunk_metadata(trans);
5e9f2ad5
NB
1918 if (ret) {
1919 if (ret > 0)
1920 ret = -ENOENT;
a061fc8d
CM
1921 goto out;
1922 }
1923
1924 ret = btrfs_del_item(trans, root, path);
a061fc8d
CM
1925out:
1926 btrfs_free_path(path);
a061fc8d
CM
1927 return ret;
1928}
1929
3cc31a0d
DS
1930/*
1931 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1932 * filesystem. It's up to the caller to adjust that number regarding eg. device
1933 * replace.
1934 */
1935static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1936 u64 num_devices)
a061fc8d 1937{
a061fc8d 1938 u64 all_avail;
de98ced9 1939 unsigned seq;
418775a2 1940 int i;
a061fc8d 1941
de98ced9 1942 do {
bd45ffbc 1943 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9 1944
bd45ffbc
AJ
1945 all_avail = fs_info->avail_data_alloc_bits |
1946 fs_info->avail_system_alloc_bits |
1947 fs_info->avail_metadata_alloc_bits;
1948 } while (read_seqretry(&fs_info->profiles_lock, seq));
a061fc8d 1949
418775a2 1950 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
41a6e891 1951 if (!(all_avail & btrfs_raid_array[i].bg_flag))
418775a2 1952 continue;
a061fc8d 1953
efc222f8
AJ
1954 if (num_devices < btrfs_raid_array[i].devs_min)
1955 return btrfs_raid_array[i].mindev_error;
53b381b3
DW
1956 }
1957
bd45ffbc 1958 return 0;
f1fa7f26
AJ
1959}
1960
c9162bdf
OS
1961static struct btrfs_device * btrfs_find_next_active_device(
1962 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
a061fc8d 1963{
2b82032c 1964 struct btrfs_device *next_device;
88acff64
AJ
1965
1966 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1967 if (next_device != device &&
e6e674bd
AJ
1968 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1969 && next_device->bdev)
88acff64
AJ
1970 return next_device;
1971 }
1972
1973 return NULL;
1974}
1975
1976/*
d24fa5c1 1977 * Helper function to check if the given device is part of s_bdev / latest_dev
88acff64
AJ
1978 * and replace it with the provided or the next active device, in the context
1979 * where this function called, there should be always be another device (or
1980 * this_dev) which is active.
1981 */
b105e927 1982void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
e493e8f9 1983 struct btrfs_device *next_device)
88acff64 1984{
d6507cf1 1985 struct btrfs_fs_info *fs_info = device->fs_info;
88acff64 1986
e493e8f9 1987 if (!next_device)
88acff64 1988 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
e493e8f9 1989 device);
88acff64
AJ
1990 ASSERT(next_device);
1991
1992 if (fs_info->sb->s_bdev &&
1993 (fs_info->sb->s_bdev == device->bdev))
1994 fs_info->sb->s_bdev = next_device->bdev;
1995
d24fa5c1
AJ
1996 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
1997 fs_info->fs_devices->latest_dev = next_device;
88acff64
AJ
1998}
1999
1da73967
AJ
2000/*
2001 * Return btrfs_fs_devices::num_devices excluding the device that's being
2002 * currently replaced.
2003 */
2004static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2005{
2006 u64 num_devices = fs_info->fs_devices->num_devices;
2007
cb5583dd 2008 down_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2009 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2010 ASSERT(num_devices > 1);
2011 num_devices--;
2012 }
cb5583dd 2013 up_read(&fs_info->dev_replace.rwsem);
1da73967
AJ
2014
2015 return num_devices;
2016}
2017
313b0858
JB
2018void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info,
2019 struct block_device *bdev,
2020 const char *device_path)
6fbceb9f 2021{
6fbceb9f
JT
2022 struct btrfs_super_block *disk_super;
2023 int copy_num;
2024
2025 if (!bdev)
2026 return;
2027
2028 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
8f32380d
JT
2029 struct page *page;
2030 int ret;
6fbceb9f 2031
8f32380d
JT
2032 disk_super = btrfs_read_dev_one_super(bdev, copy_num);
2033 if (IS_ERR(disk_super))
2034 continue;
6fbceb9f 2035
12659251
NA
2036 if (bdev_is_zoned(bdev)) {
2037 btrfs_reset_sb_log_zones(bdev, copy_num);
2038 continue;
2039 }
2040
6fbceb9f 2041 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
8f32380d
JT
2042
2043 page = virt_to_page(disk_super);
2044 set_page_dirty(page);
2045 lock_page(page);
2046 /* write_on_page() unlocks the page */
2047 ret = write_one_page(page);
2048 if (ret)
2049 btrfs_warn(fs_info,
2050 "error clearing superblock number %d (%d)",
2051 copy_num, ret);
2052 btrfs_release_disk_super(disk_super);
2053
6fbceb9f
JT
2054 }
2055
2056 /* Notify udev that device has changed */
2057 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2058
2059 /* Update ctime/mtime for device path for libblkid */
54fde91f 2060 update_dev_time(device_path);
6fbceb9f
JT
2061}
2062
1a15eb72
JB
2063int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2064 struct btrfs_dev_lookup_args *args,
2065 struct block_device **bdev, fmode_t *mode)
f1fa7f26 2066{
bbac5869 2067 struct btrfs_trans_handle *trans;
f1fa7f26 2068 struct btrfs_device *device;
1f78160c 2069 struct btrfs_fs_devices *cur_devices;
b5185197 2070 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2071 u64 num_devices;
a061fc8d
CM
2072 int ret = 0;
2073
914a519b
JB
2074 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2075 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2076 return -EINVAL;
2077 }
2078
8ef9dc0f
JB
2079 /*
2080 * The device list in fs_devices is accessed without locks (neither
2081 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2082 * filesystem and another device rm cannot run.
2083 */
1da73967 2084 num_devices = btrfs_num_devices(fs_info);
8dabb742 2085
0b246afa 2086 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
f1fa7f26 2087 if (ret)
bbac5869 2088 return ret;
a061fc8d 2089
1a15eb72
JB
2090 device = btrfs_find_device(fs_info->fs_devices, args);
2091 if (!device) {
2092 if (args->missing)
a27a94c2
NB
2093 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2094 else
1a15eb72 2095 ret = -ENOENT;
bbac5869 2096 return ret;
a27a94c2 2097 }
dfe25020 2098
eede2bf3
OS
2099 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2100 btrfs_warn_in_rcu(fs_info,
2101 "cannot remove device %s (devid %llu) due to active swapfile",
2102 rcu_str_deref(device->name), device->devid);
bbac5869 2103 return -ETXTBSY;
eede2bf3
OS
2104 }
2105
bbac5869
QW
2106 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2107 return BTRFS_ERROR_DEV_TGT_REPLACE;
63a212ab 2108
ebbede42 2109 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
bbac5869
QW
2110 fs_info->fs_devices->rw_devices == 1)
2111 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2b82032c 2112
ebbede42 2113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2114 mutex_lock(&fs_info->chunk_mutex);
2b82032c 2115 list_del_init(&device->dev_alloc_list);
c3929c36 2116 device->fs_devices->rw_devices--;
34441361 2117 mutex_unlock(&fs_info->chunk_mutex);
dfe25020 2118 }
a061fc8d
CM
2119
2120 ret = btrfs_shrink_device(device, 0);
2121 if (ret)
9b3517e9 2122 goto error_undo;
a061fc8d 2123
bbac5869
QW
2124 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2125 if (IS_ERR(trans)) {
2126 ret = PTR_ERR(trans);
9b3517e9 2127 goto error_undo;
bbac5869
QW
2128 }
2129
2130 ret = btrfs_rm_dev_item(trans, device);
2131 if (ret) {
2132 /* Any error in dev item removal is critical */
2133 btrfs_crit(fs_info,
2134 "failed to remove device item for devid %llu: %d",
2135 device->devid, ret);
2136 btrfs_abort_transaction(trans, ret);
2137 btrfs_end_transaction(trans);
2138 return ret;
2139 }
a061fc8d 2140
e12c9621 2141 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
163e97ee 2142 btrfs_scrub_cancel_dev(device);
e5e9a520
CM
2143
2144 /*
2145 * the device list mutex makes sure that we don't change
2146 * the device list while someone else is writing out all
d7306801
FDBM
2147 * the device supers. Whoever is writing all supers, should
2148 * lock the device list mutex before getting the number of
2149 * devices in the super block (super_copy). Conversely,
2150 * whoever updates the number of devices in the super block
2151 * (super_copy) should hold the device list mutex.
e5e9a520 2152 */
1f78160c 2153
41a52a0f
AJ
2154 /*
2155 * In normal cases the cur_devices == fs_devices. But in case
2156 * of deleting a seed device, the cur_devices should point to
9675ea8c 2157 * its own fs_devices listed under the fs_devices->seed_list.
41a52a0f 2158 */
1f78160c 2159 cur_devices = device->fs_devices;
b5185197 2160 mutex_lock(&fs_devices->device_list_mutex);
1f78160c 2161 list_del_rcu(&device->dev_list);
e5e9a520 2162
41a52a0f
AJ
2163 cur_devices->num_devices--;
2164 cur_devices->total_devices--;
b4993e64
AJ
2165 /* Update total_devices of the parent fs_devices if it's seed */
2166 if (cur_devices != fs_devices)
2167 fs_devices->total_devices--;
2b82032c 2168
e6e674bd 2169 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
41a52a0f 2170 cur_devices->missing_devices--;
cd02dca5 2171
d6507cf1 2172 btrfs_assign_next_active_device(device, NULL);
2b82032c 2173
0bfaa9c5 2174 if (device->bdev) {
41a52a0f 2175 cur_devices->open_devices--;
0bfaa9c5 2176 /* remove sysfs entry */
53f8a74c 2177 btrfs_sysfs_remove_device(device);
0bfaa9c5 2178 }
99994cde 2179
0b246afa
JM
2180 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2181 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
b5185197 2182 mutex_unlock(&fs_devices->device_list_mutex);
2b82032c 2183
cea67ab9 2184 /*
3fa421de
JB
2185 * At this point, the device is zero sized and detached from the
2186 * devices list. All that's left is to zero out the old supers and
2187 * free the device.
2188 *
2189 * We cannot call btrfs_close_bdev() here because we're holding the sb
2190 * write lock, and blkdev_put() will pull in the ->open_mutex on the
2191 * block device and it's dependencies. Instead just flush the device
2192 * and let the caller do the final blkdev_put.
cea67ab9 2193 */
3fa421de 2194 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
8f32380d
JT
2195 btrfs_scratch_superblocks(fs_info, device->bdev,
2196 device->name->str);
3fa421de
JB
2197 if (device->bdev) {
2198 sync_blockdev(device->bdev);
2199 invalidate_bdev(device->bdev);
2200 }
2201 }
cea67ab9 2202
3fa421de
JB
2203 *bdev = device->bdev;
2204 *mode = device->mode;
8e75fd89
NB
2205 synchronize_rcu();
2206 btrfs_free_device(device);
cea67ab9 2207
8b41393f
JB
2208 /*
2209 * This can happen if cur_devices is the private seed devices list. We
2210 * cannot call close_fs_devices() here because it expects the uuid_mutex
2211 * to be held, but in fact we don't need that for the private
2212 * seed_devices, we can simply decrement cur_devices->opened and then
2213 * remove it from our list and free the fs_devices.
2214 */
8e906945 2215 if (cur_devices->num_devices == 0) {
944d3f9f 2216 list_del_init(&cur_devices->seed_list);
8b41393f
JB
2217 ASSERT(cur_devices->opened == 1);
2218 cur_devices->opened--;
1f78160c 2219 free_fs_devices(cur_devices);
2b82032c
YZ
2220 }
2221
bbac5869
QW
2222 ret = btrfs_commit_transaction(trans);
2223
a061fc8d 2224 return ret;
24fc572f 2225
9b3517e9 2226error_undo:
ebbede42 2227 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
34441361 2228 mutex_lock(&fs_info->chunk_mutex);
9b3517e9 2229 list_add(&device->dev_alloc_list,
b5185197 2230 &fs_devices->alloc_list);
c3929c36 2231 device->fs_devices->rw_devices++;
34441361 2232 mutex_unlock(&fs_info->chunk_mutex);
9b3517e9 2233 }
bbac5869 2234 return ret;
a061fc8d
CM
2235}
2236
68a9db5f 2237void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
e93c89c1 2238{
d51908ce
AJ
2239 struct btrfs_fs_devices *fs_devices;
2240
68a9db5f 2241 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
1357272f 2242
25e8e911
AJ
2243 /*
2244 * in case of fs with no seed, srcdev->fs_devices will point
2245 * to fs_devices of fs_info. However when the dev being replaced is
2246 * a seed dev it will point to the seed's local fs_devices. In short
2247 * srcdev will have its correct fs_devices in both the cases.
2248 */
2249 fs_devices = srcdev->fs_devices;
d51908ce 2250
e93c89c1 2251 list_del_rcu(&srcdev->dev_list);
619c47f3 2252 list_del(&srcdev->dev_alloc_list);
d51908ce 2253 fs_devices->num_devices--;
e6e674bd 2254 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
d51908ce 2255 fs_devices->missing_devices--;
e93c89c1 2256
ebbede42 2257 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
82372bc8 2258 fs_devices->rw_devices--;
1357272f 2259
82372bc8 2260 if (srcdev->bdev)
d51908ce 2261 fs_devices->open_devices--;
084b6e7c
QW
2262}
2263
65237ee3 2264void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
084b6e7c
QW
2265{
2266 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
e93c89c1 2267
a466c85e
JB
2268 mutex_lock(&uuid_mutex);
2269
14238819 2270 btrfs_close_bdev(srcdev);
8e75fd89
NB
2271 synchronize_rcu();
2272 btrfs_free_device(srcdev);
94d5f0c2 2273
94d5f0c2
AJ
2274 /* if this is no devs we rather delete the fs_devices */
2275 if (!fs_devices->num_devices) {
6dd38f81
AJ
2276 /*
2277 * On a mounted FS, num_devices can't be zero unless it's a
2278 * seed. In case of a seed device being replaced, the replace
2279 * target added to the sprout FS, so there will be no more
2280 * device left under the seed FS.
2281 */
2282 ASSERT(fs_devices->seeding);
2283
944d3f9f 2284 list_del_init(&fs_devices->seed_list);
0226e0eb 2285 close_fs_devices(fs_devices);
8bef8401 2286 free_fs_devices(fs_devices);
94d5f0c2 2287 }
a466c85e 2288 mutex_unlock(&uuid_mutex);
e93c89c1
SB
2289}
2290
4f5ad7bd 2291void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
e93c89c1 2292{
4f5ad7bd 2293 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
d9a071f0 2294
d9a071f0 2295 mutex_lock(&fs_devices->device_list_mutex);
d2ff1b20 2296
53f8a74c 2297 btrfs_sysfs_remove_device(tgtdev);
d2ff1b20 2298
779bf3fe 2299 if (tgtdev->bdev)
d9a071f0 2300 fs_devices->open_devices--;
779bf3fe 2301
d9a071f0 2302 fs_devices->num_devices--;
e93c89c1 2303
d6507cf1 2304 btrfs_assign_next_active_device(tgtdev, NULL);
e93c89c1 2305
e93c89c1 2306 list_del_rcu(&tgtdev->dev_list);
e93c89c1 2307
d9a071f0 2308 mutex_unlock(&fs_devices->device_list_mutex);
779bf3fe 2309
8f32380d
JT
2310 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev,
2311 tgtdev->name->str);
14238819
AJ
2312
2313 btrfs_close_bdev(tgtdev);
8e75fd89
NB
2314 synchronize_rcu();
2315 btrfs_free_device(tgtdev);
e93c89c1
SB
2316}
2317
faa775c4
JB
2318/**
2319 * Populate args from device at path
2320 *
2321 * @fs_info: the filesystem
2322 * @args: the args to populate
2323 * @path: the path to the device
2324 *
2325 * This will read the super block of the device at @path and populate @args with
2326 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2327 * lookup a device to operate on, but need to do it before we take any locks.
2328 * This properly handles the special case of "missing" that a user may pass in,
2329 * and does some basic sanity checks. The caller must make sure that @path is
2330 * properly NUL terminated before calling in, and must call
2331 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2332 * uuid buffers.
2333 *
2334 * Return: 0 for success, -errno for failure
2335 */
2336int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2337 struct btrfs_dev_lookup_args *args,
2338 const char *path)
7ba15b7d 2339{
7ba15b7d 2340 struct btrfs_super_block *disk_super;
7ba15b7d 2341 struct block_device *bdev;
faa775c4 2342 int ret;
7ba15b7d 2343
faa775c4
JB
2344 if (!path || !path[0])
2345 return -EINVAL;
2346 if (!strcmp(path, "missing")) {
2347 args->missing = true;
2348 return 0;
2349 }
8f32380d 2350
faa775c4
JB
2351 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2352 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2353 if (!args->uuid || !args->fsid) {
2354 btrfs_put_dev_args_from_path(args);
2355 return -ENOMEM;
2356 }
8f32380d 2357
faa775c4
JB
2358 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0,
2359 &bdev, &disk_super);
2360 if (ret)
2361 return ret;
2362 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2363 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
7239ff4b 2364 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
faa775c4 2365 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
7239ff4b 2366 else
faa775c4 2367 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
8f32380d 2368 btrfs_release_disk_super(disk_super);
7ba15b7d 2369 blkdev_put(bdev, FMODE_READ);
faa775c4 2370 return 0;
7ba15b7d
SB
2371}
2372
5c5c0df0 2373/*
faa775c4
JB
2374 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2375 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2376 * that don't need to be freed.
5c5c0df0 2377 */
faa775c4
JB
2378void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2379{
2380 kfree(args->uuid);
2381 kfree(args->fsid);
2382 args->uuid = NULL;
2383 args->fsid = NULL;
2384}
2385
a27a94c2 2386struct btrfs_device *btrfs_find_device_by_devspec(
6e927ceb
AJ
2387 struct btrfs_fs_info *fs_info, u64 devid,
2388 const char *device_path)
24e0474b 2389{
562d7b15 2390 BTRFS_DEV_LOOKUP_ARGS(args);
a27a94c2 2391 struct btrfs_device *device;
faa775c4 2392 int ret;
24e0474b 2393
5c5c0df0 2394 if (devid) {
562d7b15
JB
2395 args.devid = devid;
2396 device = btrfs_find_device(fs_info->fs_devices, &args);
a27a94c2
NB
2397 if (!device)
2398 return ERR_PTR(-ENOENT);
6e927ceb
AJ
2399 return device;
2400 }
2401
faa775c4
JB
2402 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2403 if (ret)
2404 return ERR_PTR(ret);
2405 device = btrfs_find_device(fs_info->fs_devices, &args);
2406 btrfs_put_dev_args_from_path(&args);
2407 if (!device)
6e927ceb 2408 return ERR_PTR(-ENOENT);
faa775c4 2409 return device;
24e0474b
AJ
2410}
2411
849eae5e 2412static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2b82032c 2413{
0b246afa 2414 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c 2415 struct btrfs_fs_devices *old_devices;
e4404d6e 2416 struct btrfs_fs_devices *seed_devices;
2b82032c 2417
a32bf9a3 2418 lockdep_assert_held(&uuid_mutex);
e4404d6e 2419 if (!fs_devices->seeding)
849eae5e 2420 return ERR_PTR(-EINVAL);
2b82032c 2421
427c8fdd
NB
2422 /*
2423 * Private copy of the seed devices, anchored at
2424 * fs_info->fs_devices->seed_list
2425 */
7239ff4b 2426 seed_devices = alloc_fs_devices(NULL, NULL);
2208a378 2427 if (IS_ERR(seed_devices))
849eae5e 2428 return seed_devices;
2b82032c 2429
427c8fdd
NB
2430 /*
2431 * It's necessary to retain a copy of the original seed fs_devices in
2432 * fs_uuids so that filesystems which have been seeded can successfully
2433 * reference the seed device from open_seed_devices. This also supports
2434 * multiple fs seed.
2435 */
e4404d6e
YZ
2436 old_devices = clone_fs_devices(fs_devices);
2437 if (IS_ERR(old_devices)) {
2438 kfree(seed_devices);
849eae5e 2439 return old_devices;
2b82032c 2440 }
e4404d6e 2441
c4babc5e 2442 list_add(&old_devices->fs_list, &fs_uuids);
2b82032c 2443
e4404d6e
YZ
2444 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2445 seed_devices->opened = 1;
2446 INIT_LIST_HEAD(&seed_devices->devices);
2447 INIT_LIST_HEAD(&seed_devices->alloc_list);
e5e9a520 2448 mutex_init(&seed_devices->device_list_mutex);
c9513edb 2449
849eae5e
AJ
2450 return seed_devices;
2451}
2452
2453/*
2454 * Splice seed devices into the sprout fs_devices.
2455 * Generate a new fsid for the sprouted read-write filesystem.
2456 */
2457static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2458 struct btrfs_fs_devices *seed_devices)
2459{
2460 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2461 struct btrfs_super_block *disk_super = fs_info->super_copy;
2462 struct btrfs_device *device;
2463 u64 super_flags;
2464
2465 /*
2466 * We are updating the fsid, the thread leading to device_list_add()
2467 * could race, so uuid_mutex is needed.
2468 */
2469 lockdep_assert_held(&uuid_mutex);
2470
2471 /*
2472 * The threads listed below may traverse dev_list but can do that without
2473 * device_list_mutex:
2474 * - All device ops and balance - as we are in btrfs_exclop_start.
2475 * - Various dev_list readers - are using RCU.
2476 * - btrfs_ioctl_fitrim() - is using RCU.
2477 *
2478 * For-read threads as below are using device_list_mutex:
2479 * - Readonly scrub btrfs_scrub_dev()
2480 * - Readonly scrub btrfs_scrub_progress()
2481 * - btrfs_get_dev_stats()
2482 */
2483 lockdep_assert_held(&fs_devices->device_list_mutex);
2484
1f78160c
XG
2485 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2486 synchronize_rcu);
2196d6e8
MX
2487 list_for_each_entry(device, &seed_devices->devices, dev_list)
2488 device->fs_devices = seed_devices;
c9513edb 2489
0395d84f 2490 fs_devices->seeding = false;
2b82032c
YZ
2491 fs_devices->num_devices = 0;
2492 fs_devices->open_devices = 0;
69611ac8 2493 fs_devices->missing_devices = 0;
7f0432d0 2494 fs_devices->rotating = false;
944d3f9f 2495 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2b82032c
YZ
2496
2497 generate_random_uuid(fs_devices->fsid);
7239ff4b 2498 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2b82032c 2499 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
f7171750 2500
2b82032c
YZ
2501 super_flags = btrfs_super_flags(disk_super) &
2502 ~BTRFS_SUPER_FLAG_SEEDING;
2503 btrfs_set_super_flags(disk_super, super_flags);
2b82032c
YZ
2504}
2505
2506/*
01327610 2507 * Store the expected generation for seed devices in device items.
2b82032c 2508 */
5c466629 2509static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2b82032c 2510{
562d7b15 2511 BTRFS_DEV_LOOKUP_ARGS(args);
5c466629 2512 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2513 struct btrfs_root *root = fs_info->chunk_root;
2b82032c
YZ
2514 struct btrfs_path *path;
2515 struct extent_buffer *leaf;
2516 struct btrfs_dev_item *dev_item;
2517 struct btrfs_device *device;
2518 struct btrfs_key key;
44880fdc 2519 u8 fs_uuid[BTRFS_FSID_SIZE];
2b82032c 2520 u8 dev_uuid[BTRFS_UUID_SIZE];
2b82032c
YZ
2521 int ret;
2522
2523 path = btrfs_alloc_path();
2524 if (!path)
2525 return -ENOMEM;
2526
2b82032c
YZ
2527 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2528 key.offset = 0;
2529 key.type = BTRFS_DEV_ITEM_KEY;
2530
2531 while (1) {
2bb2e00e 2532 btrfs_reserve_chunk_metadata(trans, false);
2b82032c 2533 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2bb2e00e 2534 btrfs_trans_release_chunk_metadata(trans);
2b82032c
YZ
2535 if (ret < 0)
2536 goto error;
2537
2538 leaf = path->nodes[0];
2539next_slot:
2540 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2541 ret = btrfs_next_leaf(root, path);
2542 if (ret > 0)
2543 break;
2544 if (ret < 0)
2545 goto error;
2546 leaf = path->nodes[0];
2547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2548 btrfs_release_path(path);
2b82032c
YZ
2549 continue;
2550 }
2551
2552 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2553 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2554 key.type != BTRFS_DEV_ITEM_KEY)
2555 break;
2556
2557 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2558 struct btrfs_dev_item);
562d7b15 2559 args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 2560 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2b82032c 2561 BTRFS_UUID_SIZE);
1473b24e 2562 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 2563 BTRFS_FSID_SIZE);
562d7b15
JB
2564 args.uuid = dev_uuid;
2565 args.fsid = fs_uuid;
2566 device = btrfs_find_device(fs_info->fs_devices, &args);
79787eaa 2567 BUG_ON(!device); /* Logic error */
2b82032c
YZ
2568
2569 if (device->fs_devices->seeding) {
2570 btrfs_set_device_generation(leaf, dev_item,
2571 device->generation);
2572 btrfs_mark_buffer_dirty(leaf);
2573 }
2574
2575 path->slots[0]++;
2576 goto next_slot;
2577 }
2578 ret = 0;
2579error:
2580 btrfs_free_path(path);
2581 return ret;
2582}
2583
da353f6b 2584int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
788f20eb 2585{
5112febb 2586 struct btrfs_root *root = fs_info->dev_root;
788f20eb
CM
2587 struct btrfs_trans_handle *trans;
2588 struct btrfs_device *device;
2589 struct block_device *bdev;
0b246afa 2590 struct super_block *sb = fs_info->sb;
606686ee 2591 struct rcu_string *name;
5da54bc1 2592 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
849eae5e 2593 struct btrfs_fs_devices *seed_devices;
39379faa
NA
2594 u64 orig_super_total_bytes;
2595 u64 orig_super_num_devices;
788f20eb 2596 int ret = 0;
fd880809 2597 bool seeding_dev = false;
44cab9ba 2598 bool locked = false;
788f20eb 2599
5da54bc1 2600 if (sb_rdonly(sb) && !fs_devices->seeding)
f8c5d0b4 2601 return -EROFS;
788f20eb 2602
a5d16333 2603 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
0b246afa 2604 fs_info->bdev_holder);
7f59203a
JB
2605 if (IS_ERR(bdev))
2606 return PTR_ERR(bdev);
a2135011 2607
b70f5097
NA
2608 if (!btrfs_check_device_zone_type(fs_info, bdev)) {
2609 ret = -EINVAL;
2610 goto error;
2611 }
2612
5da54bc1 2613 if (fs_devices->seeding) {
fd880809 2614 seeding_dev = true;
2b82032c
YZ
2615 down_write(&sb->s_umount);
2616 mutex_lock(&uuid_mutex);
44cab9ba 2617 locked = true;
2b82032c
YZ
2618 }
2619
b9ba017f 2620 sync_blockdev(bdev);
a2135011 2621
f4cfa9bd
NB
2622 rcu_read_lock();
2623 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
788f20eb
CM
2624 if (device->bdev == bdev) {
2625 ret = -EEXIST;
f4cfa9bd 2626 rcu_read_unlock();
2b82032c 2627 goto error;
788f20eb
CM
2628 }
2629 }
f4cfa9bd 2630 rcu_read_unlock();
788f20eb 2631
0b246afa 2632 device = btrfs_alloc_device(fs_info, NULL, NULL);
12bd2fc0 2633 if (IS_ERR(device)) {
788f20eb 2634 /* we can safely leave the fs_devices entry around */
12bd2fc0 2635 ret = PTR_ERR(device);
2b82032c 2636 goto error;
788f20eb
CM
2637 }
2638
78f2c9e6 2639 name = rcu_string_strdup(device_path, GFP_KERNEL);
606686ee 2640 if (!name) {
2b82032c 2641 ret = -ENOMEM;
5c4cf6c9 2642 goto error_free_device;
788f20eb 2643 }
606686ee 2644 rcu_assign_pointer(device->name, name);
2b82032c 2645
5b316468
NA
2646 device->fs_info = fs_info;
2647 device->bdev = bdev;
4889bc05
AJ
2648 ret = lookup_bdev(device_path, &device->devt);
2649 if (ret)
2650 goto error_free_device;
5b316468 2651
16beac87 2652 ret = btrfs_get_dev_zone_info(device, false);
5b316468
NA
2653 if (ret)
2654 goto error_free_device;
2655
a22285a6 2656 trans = btrfs_start_transaction(root, 0);
98d5dc13 2657 if (IS_ERR(trans)) {
98d5dc13 2658 ret = PTR_ERR(trans);
5b316468 2659 goto error_free_zone;
98d5dc13
TI
2660 }
2661
ebbede42 2662 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2b82032c 2663 device->generation = trans->transid;
0b246afa
JM
2664 device->io_width = fs_info->sectorsize;
2665 device->io_align = fs_info->sectorsize;
2666 device->sector_size = fs_info->sectorsize;
cda00eba
CH
2667 device->total_bytes =
2668 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize);
2cc3c559 2669 device->disk_total_bytes = device->total_bytes;
935e5cc9 2670 device->commit_total_bytes = device->total_bytes;
e12c9621 2671 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
401e29c1 2672 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
fb01aa85 2673 device->mode = FMODE_EXCL;
27087f37 2674 device->dev_stats_valid = 1;
9f6d2510 2675 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
788f20eb 2676
2b82032c 2677 if (seeding_dev) {
a0a1db70 2678 btrfs_clear_sb_rdonly(sb);
849eae5e
AJ
2679
2680 /* GFP_KERNEL allocation must not be under device_list_mutex */
2681 seed_devices = btrfs_init_sprout(fs_info);
2682 if (IS_ERR(seed_devices)) {
2683 ret = PTR_ERR(seed_devices);
d31c32f6
AJ
2684 btrfs_abort_transaction(trans, ret);
2685 goto error_trans;
2686 }
849eae5e
AJ
2687 }
2688
2689 mutex_lock(&fs_devices->device_list_mutex);
2690 if (seeding_dev) {
2691 btrfs_setup_sprout(fs_info, seed_devices);
b7cb29e6
AJ
2692 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2693 device);
2b82032c 2694 }
788f20eb 2695
5da54bc1 2696 device->fs_devices = fs_devices;
e5e9a520 2697
34441361 2698 mutex_lock(&fs_info->chunk_mutex);
5da54bc1
AJ
2699 list_add_rcu(&device->dev_list, &fs_devices->devices);
2700 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2701 fs_devices->num_devices++;
2702 fs_devices->open_devices++;
2703 fs_devices->rw_devices++;
2704 fs_devices->total_devices++;
2705 fs_devices->total_rw_bytes += device->total_bytes;
325cd4ba 2706
a5ed45f8 2707 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2bf64758 2708
823f8e5c 2709 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
7f0432d0 2710 fs_devices->rotating = true;
c289811c 2711
39379faa 2712 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
0b246afa 2713 btrfs_set_super_total_bytes(fs_info->super_copy,
39379faa
NA
2714 round_down(orig_super_total_bytes + device->total_bytes,
2715 fs_info->sectorsize));
788f20eb 2716
39379faa
NA
2717 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2718 btrfs_set_super_num_devices(fs_info->super_copy,
2719 orig_super_num_devices + 1);
0d39376a 2720
2196d6e8
MX
2721 /*
2722 * we've got more storage, clear any full flags on the space
2723 * infos
2724 */
0b246afa 2725 btrfs_clear_space_info_full(fs_info);
2196d6e8 2726
34441361 2727 mutex_unlock(&fs_info->chunk_mutex);
ca10845a
JB
2728
2729 /* Add sysfs device entry */
cd36da2e 2730 btrfs_sysfs_add_device(device);
ca10845a 2731
5da54bc1 2732 mutex_unlock(&fs_devices->device_list_mutex);
788f20eb 2733
2b82032c 2734 if (seeding_dev) {
34441361 2735 mutex_lock(&fs_info->chunk_mutex);
6f8e0fc7 2736 ret = init_first_rw_device(trans);
34441361 2737 mutex_unlock(&fs_info->chunk_mutex);
005d6427 2738 if (ret) {
66642832 2739 btrfs_abort_transaction(trans, ret);
d31c32f6 2740 goto error_sysfs;
005d6427 2741 }
2196d6e8
MX
2742 }
2743
8e87e856 2744 ret = btrfs_add_dev_item(trans, device);
2196d6e8 2745 if (ret) {
66642832 2746 btrfs_abort_transaction(trans, ret);
d31c32f6 2747 goto error_sysfs;
2196d6e8
MX
2748 }
2749
2750 if (seeding_dev) {
5c466629 2751 ret = btrfs_finish_sprout(trans);
005d6427 2752 if (ret) {
66642832 2753 btrfs_abort_transaction(trans, ret);
d31c32f6 2754 goto error_sysfs;
005d6427 2755 }
b2373f25 2756
8e560081
NB
2757 /*
2758 * fs_devices now represents the newly sprouted filesystem and
849eae5e 2759 * its fsid has been changed by btrfs_sprout_splice().
8e560081
NB
2760 */
2761 btrfs_sysfs_update_sprout_fsid(fs_devices);
2b82032c
YZ
2762 }
2763
3a45bb20 2764 ret = btrfs_commit_transaction(trans);
a2135011 2765
2b82032c
YZ
2766 if (seeding_dev) {
2767 mutex_unlock(&uuid_mutex);
2768 up_write(&sb->s_umount);
44cab9ba 2769 locked = false;
788f20eb 2770
79787eaa
JM
2771 if (ret) /* transaction commit */
2772 return ret;
2773
2ff7e61e 2774 ret = btrfs_relocate_sys_chunks(fs_info);
79787eaa 2775 if (ret < 0)
0b246afa 2776 btrfs_handle_fs_error(fs_info, ret,
5d163e0e 2777 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
671415b7
MX
2778 trans = btrfs_attach_transaction(root);
2779 if (IS_ERR(trans)) {
2780 if (PTR_ERR(trans) == -ENOENT)
2781 return 0;
7132a262
AJ
2782 ret = PTR_ERR(trans);
2783 trans = NULL;
2784 goto error_sysfs;
671415b7 2785 }
3a45bb20 2786 ret = btrfs_commit_transaction(trans);
2b82032c 2787 }
c9e9f97b 2788
7f551d96
AJ
2789 /*
2790 * Now that we have written a new super block to this device, check all
2791 * other fs_devices list if device_path alienates any other scanned
2792 * device.
2793 * We can ignore the return value as it typically returns -EINVAL and
2794 * only succeeds if the device was an alien.
2795 */
4889bc05 2796 btrfs_forget_devices(device->devt);
7f551d96
AJ
2797
2798 /* Update ctime/mtime for blkid or udev */
54fde91f 2799 update_dev_time(device_path);
7f551d96 2800
2b82032c 2801 return ret;
79787eaa 2802
d31c32f6 2803error_sysfs:
53f8a74c 2804 btrfs_sysfs_remove_device(device);
39379faa
NA
2805 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2806 mutex_lock(&fs_info->chunk_mutex);
2807 list_del_rcu(&device->dev_list);
2808 list_del(&device->dev_alloc_list);
2809 fs_info->fs_devices->num_devices--;
2810 fs_info->fs_devices->open_devices--;
2811 fs_info->fs_devices->rw_devices--;
2812 fs_info->fs_devices->total_devices--;
2813 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2814 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2815 btrfs_set_super_total_bytes(fs_info->super_copy,
2816 orig_super_total_bytes);
2817 btrfs_set_super_num_devices(fs_info->super_copy,
2818 orig_super_num_devices);
2819 mutex_unlock(&fs_info->chunk_mutex);
2820 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 2821error_trans:
0af2c4bf 2822 if (seeding_dev)
a0a1db70 2823 btrfs_set_sb_rdonly(sb);
7132a262
AJ
2824 if (trans)
2825 btrfs_end_transaction(trans);
5b316468
NA
2826error_free_zone:
2827 btrfs_destroy_dev_zone_info(device);
5c4cf6c9 2828error_free_device:
a425f9d4 2829 btrfs_free_device(device);
2b82032c 2830error:
e525fd89 2831 blkdev_put(bdev, FMODE_EXCL);
44cab9ba 2832 if (locked) {
2b82032c
YZ
2833 mutex_unlock(&uuid_mutex);
2834 up_write(&sb->s_umount);
2835 }
c9e9f97b 2836 return ret;
788f20eb
CM
2837}
2838
d397712b
CM
2839static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2840 struct btrfs_device *device)
0b86a832
CM
2841{
2842 int ret;
2843 struct btrfs_path *path;
0b246afa 2844 struct btrfs_root *root = device->fs_info->chunk_root;
0b86a832
CM
2845 struct btrfs_dev_item *dev_item;
2846 struct extent_buffer *leaf;
2847 struct btrfs_key key;
2848
0b86a832
CM
2849 path = btrfs_alloc_path();
2850 if (!path)
2851 return -ENOMEM;
2852
2853 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2854 key.type = BTRFS_DEV_ITEM_KEY;
2855 key.offset = device->devid;
2856
2857 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2858 if (ret < 0)
2859 goto out;
2860
2861 if (ret > 0) {
2862 ret = -ENOENT;
2863 goto out;
2864 }
2865
2866 leaf = path->nodes[0];
2867 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2868
2869 btrfs_set_device_id(leaf, dev_item, device->devid);
2870 btrfs_set_device_type(leaf, dev_item, device->type);
2871 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2872 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2873 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
7cc8e58d
MX
2874 btrfs_set_device_total_bytes(leaf, dev_item,
2875 btrfs_device_get_disk_total_bytes(device));
2876 btrfs_set_device_bytes_used(leaf, dev_item,
2877 btrfs_device_get_bytes_used(device));
0b86a832
CM
2878 btrfs_mark_buffer_dirty(leaf);
2879
2880out:
2881 btrfs_free_path(path);
2882 return ret;
2883}
2884
2196d6e8 2885int btrfs_grow_device(struct btrfs_trans_handle *trans,
8f18cf13
CM
2886 struct btrfs_device *device, u64 new_size)
2887{
0b246afa
JM
2888 struct btrfs_fs_info *fs_info = device->fs_info;
2889 struct btrfs_super_block *super_copy = fs_info->super_copy;
2196d6e8
MX
2890 u64 old_total;
2891 u64 diff;
2bb2e00e 2892 int ret;
8f18cf13 2893
ebbede42 2894 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2b82032c 2895 return -EACCES;
2196d6e8 2896
7dfb8be1
NB
2897 new_size = round_down(new_size, fs_info->sectorsize);
2898
34441361 2899 mutex_lock(&fs_info->chunk_mutex);
2196d6e8 2900 old_total = btrfs_super_total_bytes(super_copy);
0e4324a4 2901 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2196d6e8 2902
63a212ab 2903 if (new_size <= device->total_bytes ||
401e29c1 2904 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
34441361 2905 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2906 return -EINVAL;
2196d6e8 2907 }
2b82032c 2908
7dfb8be1
NB
2909 btrfs_set_super_total_bytes(super_copy,
2910 round_down(old_total + diff, fs_info->sectorsize));
2b82032c
YZ
2911 device->fs_devices->total_rw_bytes += diff;
2912
7cc8e58d
MX
2913 btrfs_device_set_total_bytes(device, new_size);
2914 btrfs_device_set_disk_total_bytes(device, new_size);
fb456252 2915 btrfs_clear_space_info_full(device->fs_info);
bbbf7243
NB
2916 if (list_empty(&device->post_commit_list))
2917 list_add_tail(&device->post_commit_list,
2918 &trans->transaction->dev_update_list);
34441361 2919 mutex_unlock(&fs_info->chunk_mutex);
4184ea7f 2920
2bb2e00e
FM
2921 btrfs_reserve_chunk_metadata(trans, false);
2922 ret = btrfs_update_device(trans, device);
2923 btrfs_trans_release_chunk_metadata(trans);
2924
2925 return ret;
8f18cf13
CM
2926}
2927
f4208794 2928static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 2929{
f4208794 2930 struct btrfs_fs_info *fs_info = trans->fs_info;
5b4aacef 2931 struct btrfs_root *root = fs_info->chunk_root;
8f18cf13
CM
2932 int ret;
2933 struct btrfs_path *path;
2934 struct btrfs_key key;
2935
8f18cf13
CM
2936 path = btrfs_alloc_path();
2937 if (!path)
2938 return -ENOMEM;
2939
408fbf19 2940 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
8f18cf13
CM
2941 key.offset = chunk_offset;
2942 key.type = BTRFS_CHUNK_ITEM_KEY;
2943
2944 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
79787eaa
JM
2945 if (ret < 0)
2946 goto out;
2947 else if (ret > 0) { /* Logic error or corruption */
0b246afa
JM
2948 btrfs_handle_fs_error(fs_info, -ENOENT,
2949 "Failed lookup while freeing chunk.");
79787eaa
JM
2950 ret = -ENOENT;
2951 goto out;
2952 }
8f18cf13
CM
2953
2954 ret = btrfs_del_item(trans, root, path);
79787eaa 2955 if (ret < 0)
0b246afa
JM
2956 btrfs_handle_fs_error(fs_info, ret,
2957 "Failed to delete chunk item.");
79787eaa 2958out:
8f18cf13 2959 btrfs_free_path(path);
65a246c5 2960 return ret;
8f18cf13
CM
2961}
2962
408fbf19 2963static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
8f18cf13 2964{
0b246afa 2965 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13
CM
2966 struct btrfs_disk_key *disk_key;
2967 struct btrfs_chunk *chunk;
2968 u8 *ptr;
2969 int ret = 0;
2970 u32 num_stripes;
2971 u32 array_size;
2972 u32 len = 0;
2973 u32 cur;
2974 struct btrfs_key key;
2975
79bd3712 2976 lockdep_assert_held(&fs_info->chunk_mutex);
8f18cf13
CM
2977 array_size = btrfs_super_sys_array_size(super_copy);
2978
2979 ptr = super_copy->sys_chunk_array;
2980 cur = 0;
2981
2982 while (cur < array_size) {
2983 disk_key = (struct btrfs_disk_key *)ptr;
2984 btrfs_disk_key_to_cpu(&key, disk_key);
2985
2986 len = sizeof(*disk_key);
2987
2988 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2989 chunk = (struct btrfs_chunk *)(ptr + len);
2990 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2991 len += btrfs_chunk_item_size(num_stripes);
2992 } else {
2993 ret = -EIO;
2994 break;
2995 }
408fbf19 2996 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
8f18cf13
CM
2997 key.offset == chunk_offset) {
2998 memmove(ptr, ptr + len, array_size - (cur + len));
2999 array_size -= len;
3000 btrfs_set_super_sys_array_size(super_copy, array_size);
3001 } else {
3002 ptr += len;
3003 cur += len;
3004 }
3005 }
3006 return ret;
3007}
3008
60ca842e
OS
3009/*
3010 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
3011 * @logical: Logical block offset in bytes.
3012 * @length: Length of extent in bytes.
3013 *
3014 * Return: Chunk mapping or ERR_PTR.
3015 */
3016struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3017 u64 logical, u64 length)
592d92ee
LB
3018{
3019 struct extent_map_tree *em_tree;
3020 struct extent_map *em;
3021
c8bf1b67 3022 em_tree = &fs_info->mapping_tree;
592d92ee
LB
3023 read_lock(&em_tree->lock);
3024 em = lookup_extent_mapping(em_tree, logical, length);
3025 read_unlock(&em_tree->lock);
3026
3027 if (!em) {
3028 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
3029 logical, length);
3030 return ERR_PTR(-EINVAL);
3031 }
3032
3033 if (em->start > logical || em->start + em->len < logical) {
3034 btrfs_crit(fs_info,
3035 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
3036 logical, length, em->start, em->start + em->len);
3037 free_extent_map(em);
3038 return ERR_PTR(-EINVAL);
3039 }
3040
3041 /* callers are responsible for dropping em's ref. */
3042 return em;
3043}
3044
79bd3712
FM
3045static int remove_chunk_item(struct btrfs_trans_handle *trans,
3046 struct map_lookup *map, u64 chunk_offset)
3047{
3048 int i;
3049
3050 /*
3051 * Removing chunk items and updating the device items in the chunks btree
3052 * requires holding the chunk_mutex.
3053 * See the comment at btrfs_chunk_alloc() for the details.
3054 */
3055 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3056
3057 for (i = 0; i < map->num_stripes; i++) {
3058 int ret;
3059
3060 ret = btrfs_update_device(trans, map->stripes[i].dev);
3061 if (ret)
3062 return ret;
3063 }
3064
3065 return btrfs_free_chunk(trans, chunk_offset);
3066}
3067
97aff912 3068int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
8f18cf13 3069{
97aff912 3070 struct btrfs_fs_info *fs_info = trans->fs_info;
8f18cf13
CM
3071 struct extent_map *em;
3072 struct map_lookup *map;
2196d6e8 3073 u64 dev_extent_len = 0;
47ab2a6c 3074 int i, ret = 0;
0b246afa 3075 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
8f18cf13 3076
60ca842e 3077 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 3078 if (IS_ERR(em)) {
47ab2a6c
JB
3079 /*
3080 * This is a logic error, but we don't want to just rely on the
bb7ab3b9 3081 * user having built with ASSERT enabled, so if ASSERT doesn't
47ab2a6c
JB
3082 * do anything we still error out.
3083 */
3084 ASSERT(0);
592d92ee 3085 return PTR_ERR(em);
47ab2a6c 3086 }
95617d69 3087 map = em->map_lookup;
8f18cf13 3088
57ba4cb8 3089 /*
79bd3712
FM
3090 * First delete the device extent items from the devices btree.
3091 * We take the device_list_mutex to avoid racing with the finishing phase
3092 * of a device replace operation. See the comment below before acquiring
3093 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3094 * because that can result in a deadlock when deleting the device extent
3095 * items from the devices btree - COWing an extent buffer from the btree
3096 * may result in allocating a new metadata chunk, which would attempt to
3097 * lock again fs_info->chunk_mutex.
57ba4cb8
FM
3098 */
3099 mutex_lock(&fs_devices->device_list_mutex);
8f18cf13 3100 for (i = 0; i < map->num_stripes; i++) {
47ab2a6c 3101 struct btrfs_device *device = map->stripes[i].dev;
2196d6e8
MX
3102 ret = btrfs_free_dev_extent(trans, device,
3103 map->stripes[i].physical,
3104 &dev_extent_len);
47ab2a6c 3105 if (ret) {
57ba4cb8 3106 mutex_unlock(&fs_devices->device_list_mutex);
66642832 3107 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3108 goto out;
3109 }
a061fc8d 3110
2196d6e8 3111 if (device->bytes_used > 0) {
34441361 3112 mutex_lock(&fs_info->chunk_mutex);
2196d6e8
MX
3113 btrfs_device_set_bytes_used(device,
3114 device->bytes_used - dev_extent_len);
a5ed45f8 3115 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
0b246afa 3116 btrfs_clear_space_info_full(fs_info);
34441361 3117 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 3118 }
79bd3712
FM
3119 }
3120 mutex_unlock(&fs_devices->device_list_mutex);
a061fc8d 3121
79bd3712
FM
3122 /*
3123 * We acquire fs_info->chunk_mutex for 2 reasons:
3124 *
3125 * 1) Just like with the first phase of the chunk allocation, we must
3126 * reserve system space, do all chunk btree updates and deletions, and
3127 * update the system chunk array in the superblock while holding this
3128 * mutex. This is for similar reasons as explained on the comment at
3129 * the top of btrfs_chunk_alloc();
3130 *
3131 * 2) Prevent races with the final phase of a device replace operation
3132 * that replaces the device object associated with the map's stripes,
3133 * because the device object's id can change at any time during that
3134 * final phase of the device replace operation
3135 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3136 * replaced device and then see it with an ID of
3137 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3138 * the device item, which does not exists on the chunk btree.
3139 * The finishing phase of device replace acquires both the
3140 * device_list_mutex and the chunk_mutex, in that order, so we are
3141 * safe by just acquiring the chunk_mutex.
3142 */
3143 trans->removing_chunk = true;
3144 mutex_lock(&fs_info->chunk_mutex);
3145
3146 check_system_chunk(trans, map->type);
3147
3148 ret = remove_chunk_item(trans, map, chunk_offset);
3149 /*
3150 * Normally we should not get -ENOSPC since we reserved space before
3151 * through the call to check_system_chunk().
3152 *
3153 * Despite our system space_info having enough free space, we may not
3154 * be able to allocate extents from its block groups, because all have
3155 * an incompatible profile, which will force us to allocate a new system
3156 * block group with the right profile, or right after we called
3157 * check_system_space() above, a scrub turned the only system block group
3158 * with enough free space into RO mode.
3159 * This is explained with more detail at do_chunk_alloc().
3160 *
3161 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3162 */
3163 if (ret == -ENOSPC) {
3164 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3165 struct btrfs_block_group *sys_bg;
3166
f6f39f7a 3167 sys_bg = btrfs_create_chunk(trans, sys_flags);
79bd3712
FM
3168 if (IS_ERR(sys_bg)) {
3169 ret = PTR_ERR(sys_bg);
3170 btrfs_abort_transaction(trans, ret);
3171 goto out;
3172 }
3173
3174 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
64bc6c2a 3175 if (ret) {
64bc6c2a
NB
3176 btrfs_abort_transaction(trans, ret);
3177 goto out;
dfe25020 3178 }
57ba4cb8 3179
79bd3712
FM
3180 ret = remove_chunk_item(trans, map, chunk_offset);
3181 if (ret) {
3182 btrfs_abort_transaction(trans, ret);
3183 goto out;
3184 }
3185 } else if (ret) {
66642832 3186 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3187 goto out;
3188 }
8f18cf13 3189
6bccf3ab 3190 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
1abe9b8a 3191
8f18cf13 3192 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
408fbf19 3193 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
47ab2a6c 3194 if (ret) {
66642832 3195 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3196 goto out;
3197 }
8f18cf13
CM
3198 }
3199
79bd3712
FM
3200 mutex_unlock(&fs_info->chunk_mutex);
3201 trans->removing_chunk = false;
3202
3203 /*
3204 * We are done with chunk btree updates and deletions, so release the
3205 * system space we previously reserved (with check_system_chunk()).
3206 */
3207 btrfs_trans_release_chunk_metadata(trans);
3208
5a98ec01 3209 ret = btrfs_remove_block_group(trans, chunk_offset, em);
47ab2a6c 3210 if (ret) {
66642832 3211 btrfs_abort_transaction(trans, ret);
47ab2a6c
JB
3212 goto out;
3213 }
2b82032c 3214
47ab2a6c 3215out:
79bd3712
FM
3216 if (trans->removing_chunk) {
3217 mutex_unlock(&fs_info->chunk_mutex);
3218 trans->removing_chunk = false;
3219 }
2b82032c
YZ
3220 /* once for us */
3221 free_extent_map(em);
47ab2a6c
JB
3222 return ret;
3223}
2b82032c 3224
18bb8bbf 3225int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
47ab2a6c 3226{
5b4aacef 3227 struct btrfs_root *root = fs_info->chunk_root;
19c4d2f9 3228 struct btrfs_trans_handle *trans;
b0643e59 3229 struct btrfs_block_group *block_group;
01e86008 3230 u64 length;
47ab2a6c 3231 int ret;
2b82032c 3232
4b349253
JB
3233 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234 btrfs_err(fs_info,
3235 "relocate: not supported on extent tree v2 yet");
3236 return -EINVAL;
3237 }
3238
67c5e7d4
FM
3239 /*
3240 * Prevent races with automatic removal of unused block groups.
3241 * After we relocate and before we remove the chunk with offset
3242 * chunk_offset, automatic removal of the block group can kick in,
3243 * resulting in a failure when calling btrfs_remove_chunk() below.
3244 *
3245 * Make sure to acquire this mutex before doing a tree search (dev
3246 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3247 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3248 * we release the path used to search the chunk/dev tree and before
3249 * the current task acquires this mutex and calls us.
3250 */
f3372065 3251 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
67c5e7d4 3252
47ab2a6c 3253 /* step one, relocate all the extents inside this chunk */
2ff7e61e 3254 btrfs_scrub_pause(fs_info);
0b246afa 3255 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2ff7e61e 3256 btrfs_scrub_continue(fs_info);
47ab2a6c
JB
3257 if (ret)
3258 return ret;
3259
b0643e59
DZ
3260 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3261 if (!block_group)
3262 return -ENOENT;
3263 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
01e86008 3264 length = block_group->length;
b0643e59
DZ
3265 btrfs_put_block_group(block_group);
3266
01e86008
JT
3267 /*
3268 * On a zoned file system, discard the whole block group, this will
3269 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3270 * resetting the zone fails, don't treat it as a fatal problem from the
3271 * filesystem's point of view.
3272 */
3273 if (btrfs_is_zoned(fs_info)) {
3274 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3275 if (ret)
3276 btrfs_info(fs_info,
3277 "failed to reset zone %llu after relocation",
3278 chunk_offset);
3279 }
3280
19c4d2f9
CM
3281 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3282 chunk_offset);
3283 if (IS_ERR(trans)) {
3284 ret = PTR_ERR(trans);
3285 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3286 return ret;
3287 }
3288
47ab2a6c 3289 /*
19c4d2f9
CM
3290 * step two, delete the device extents and the
3291 * chunk tree entries
47ab2a6c 3292 */
97aff912 3293 ret = btrfs_remove_chunk(trans, chunk_offset);
3a45bb20 3294 btrfs_end_transaction(trans);
19c4d2f9 3295 return ret;
2b82032c
YZ
3296}
3297
2ff7e61e 3298static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2b82032c 3299{
0b246afa 3300 struct btrfs_root *chunk_root = fs_info->chunk_root;
2b82032c
YZ
3301 struct btrfs_path *path;
3302 struct extent_buffer *leaf;
3303 struct btrfs_chunk *chunk;
3304 struct btrfs_key key;
3305 struct btrfs_key found_key;
2b82032c 3306 u64 chunk_type;
ba1bf481
JB
3307 bool retried = false;
3308 int failed = 0;
2b82032c
YZ
3309 int ret;
3310
3311 path = btrfs_alloc_path();
3312 if (!path)
3313 return -ENOMEM;
3314
ba1bf481 3315again:
2b82032c
YZ
3316 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3317 key.offset = (u64)-1;
3318 key.type = BTRFS_CHUNK_ITEM_KEY;
3319
3320 while (1) {
f3372065 3321 mutex_lock(&fs_info->reclaim_bgs_lock);
2b82032c 3322 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3323 if (ret < 0) {
f3372065 3324 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c 3325 goto error;
67c5e7d4 3326 }
79787eaa 3327 BUG_ON(ret == 0); /* Corruption */
2b82032c
YZ
3328
3329 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3330 key.type);
67c5e7d4 3331 if (ret)
f3372065 3332 mutex_unlock(&fs_info->reclaim_bgs_lock);
2b82032c
YZ
3333 if (ret < 0)
3334 goto error;
3335 if (ret > 0)
3336 break;
1a40e23b 3337
2b82032c
YZ
3338 leaf = path->nodes[0];
3339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1a40e23b 3340
2b82032c
YZ
3341 chunk = btrfs_item_ptr(leaf, path->slots[0],
3342 struct btrfs_chunk);
3343 chunk_type = btrfs_chunk_type(leaf, chunk);
b3b4aa74 3344 btrfs_release_path(path);
8f18cf13 3345
2b82032c 3346 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 3347 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
ba1bf481
JB
3348 if (ret == -ENOSPC)
3349 failed++;
14586651
HS
3350 else
3351 BUG_ON(ret);
2b82032c 3352 }
f3372065 3353 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 3354
2b82032c
YZ
3355 if (found_key.offset == 0)
3356 break;
3357 key.offset = found_key.offset - 1;
3358 }
3359 ret = 0;
ba1bf481
JB
3360 if (failed && !retried) {
3361 failed = 0;
3362 retried = true;
3363 goto again;
fae7f21c 3364 } else if (WARN_ON(failed && retried)) {
ba1bf481
JB
3365 ret = -ENOSPC;
3366 }
2b82032c
YZ
3367error:
3368 btrfs_free_path(path);
3369 return ret;
8f18cf13
CM
3370}
3371
a6f93c71
LB
3372/*
3373 * return 1 : allocate a data chunk successfully,
3374 * return <0: errors during allocating a data chunk,
3375 * return 0 : no need to allocate a data chunk.
3376 */
3377static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3378 u64 chunk_offset)
3379{
32da5386 3380 struct btrfs_block_group *cache;
a6f93c71
LB
3381 u64 bytes_used;
3382 u64 chunk_type;
3383
3384 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3385 ASSERT(cache);
3386 chunk_type = cache->flags;
3387 btrfs_put_block_group(cache);
3388
5ae21692
JT
3389 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3390 return 0;
3391
3392 spin_lock(&fs_info->data_sinfo->lock);
3393 bytes_used = fs_info->data_sinfo->bytes_used;
3394 spin_unlock(&fs_info->data_sinfo->lock);
3395
3396 if (!bytes_used) {
3397 struct btrfs_trans_handle *trans;
3398 int ret;
3399
3400 trans = btrfs_join_transaction(fs_info->tree_root);
3401 if (IS_ERR(trans))
3402 return PTR_ERR(trans);
3403
3404 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3405 btrfs_end_transaction(trans);
3406 if (ret < 0)
3407 return ret;
3408 return 1;
a6f93c71 3409 }
5ae21692 3410
a6f93c71
LB
3411 return 0;
3412}
3413
6bccf3ab 3414static int insert_balance_item(struct btrfs_fs_info *fs_info,
0940ebf6
ID
3415 struct btrfs_balance_control *bctl)
3416{
6bccf3ab 3417 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3418 struct btrfs_trans_handle *trans;
3419 struct btrfs_balance_item *item;
3420 struct btrfs_disk_balance_args disk_bargs;
3421 struct btrfs_path *path;
3422 struct extent_buffer *leaf;
3423 struct btrfs_key key;
3424 int ret, err;
3425
3426 path = btrfs_alloc_path();
3427 if (!path)
3428 return -ENOMEM;
3429
3430 trans = btrfs_start_transaction(root, 0);
3431 if (IS_ERR(trans)) {
3432 btrfs_free_path(path);
3433 return PTR_ERR(trans);
3434 }
3435
3436 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3437 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3438 key.offset = 0;
3439
3440 ret = btrfs_insert_empty_item(trans, root, path, &key,
3441 sizeof(*item));
3442 if (ret)
3443 goto out;
3444
3445 leaf = path->nodes[0];
3446 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3447
b159fa28 3448 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
0940ebf6
ID
3449
3450 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3451 btrfs_set_balance_data(leaf, item, &disk_bargs);
3452 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3453 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3454 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3455 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3456
3457 btrfs_set_balance_flags(leaf, item, bctl->flags);
3458
3459 btrfs_mark_buffer_dirty(leaf);
3460out:
3461 btrfs_free_path(path);
3a45bb20 3462 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3463 if (err && !ret)
3464 ret = err;
3465 return ret;
3466}
3467
6bccf3ab 3468static int del_balance_item(struct btrfs_fs_info *fs_info)
0940ebf6 3469{
6bccf3ab 3470 struct btrfs_root *root = fs_info->tree_root;
0940ebf6
ID
3471 struct btrfs_trans_handle *trans;
3472 struct btrfs_path *path;
3473 struct btrfs_key key;
3474 int ret, err;
3475
3476 path = btrfs_alloc_path();
3477 if (!path)
3478 return -ENOMEM;
3479
3502a8c0 3480 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
0940ebf6
ID
3481 if (IS_ERR(trans)) {
3482 btrfs_free_path(path);
3483 return PTR_ERR(trans);
3484 }
3485
3486 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 3487 key.type = BTRFS_TEMPORARY_ITEM_KEY;
0940ebf6
ID
3488 key.offset = 0;
3489
3490 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3491 if (ret < 0)
3492 goto out;
3493 if (ret > 0) {
3494 ret = -ENOENT;
3495 goto out;
3496 }
3497
3498 ret = btrfs_del_item(trans, root, path);
3499out:
3500 btrfs_free_path(path);
3a45bb20 3501 err = btrfs_commit_transaction(trans);
0940ebf6
ID
3502 if (err && !ret)
3503 ret = err;
3504 return ret;
3505}
3506
59641015
ID
3507/*
3508 * This is a heuristic used to reduce the number of chunks balanced on
3509 * resume after balance was interrupted.
3510 */
3511static void update_balance_args(struct btrfs_balance_control *bctl)
3512{
3513 /*
3514 * Turn on soft mode for chunk types that were being converted.
3515 */
3516 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3517 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3518 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3519 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3520 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3521 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3522
3523 /*
3524 * Turn on usage filter if is not already used. The idea is
3525 * that chunks that we have already balanced should be
3526 * reasonably full. Don't do it for chunks that are being
3527 * converted - that will keep us from relocating unconverted
3528 * (albeit full) chunks.
3529 */
3530 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3531 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3532 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3533 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3534 bctl->data.usage = 90;
3535 }
3536 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3537 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3538 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3539 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3540 bctl->sys.usage = 90;
3541 }
3542 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
bc309467 3543 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
59641015
ID
3544 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3545 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3546 bctl->meta.usage = 90;
3547 }
3548}
3549
149196a2
DS
3550/*
3551 * Clear the balance status in fs_info and delete the balance item from disk.
3552 */
3553static void reset_balance_state(struct btrfs_fs_info *fs_info)
c9e9f97b
ID
3554{
3555 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
149196a2 3556 int ret;
c9e9f97b
ID
3557
3558 BUG_ON(!fs_info->balance_ctl);
3559
3560 spin_lock(&fs_info->balance_lock);
3561 fs_info->balance_ctl = NULL;
3562 spin_unlock(&fs_info->balance_lock);
3563
3564 kfree(bctl);
149196a2
DS
3565 ret = del_balance_item(fs_info);
3566 if (ret)
3567 btrfs_handle_fs_error(fs_info, ret, NULL);
c9e9f97b
ID
3568}
3569
ed25e9b2
ID
3570/*
3571 * Balance filters. Return 1 if chunk should be filtered out
3572 * (should not be balanced).
3573 */
899c81ea 3574static int chunk_profiles_filter(u64 chunk_type,
ed25e9b2
ID
3575 struct btrfs_balance_args *bargs)
3576{
899c81ea
ID
3577 chunk_type = chunk_to_extended(chunk_type) &
3578 BTRFS_EXTENDED_PROFILE_MASK;
ed25e9b2 3579
899c81ea 3580 if (bargs->profiles & chunk_type)
ed25e9b2
ID
3581 return 0;
3582
3583 return 1;
3584}
3585
dba72cb3 3586static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
5ce5b3c0 3587 struct btrfs_balance_args *bargs)
bc309467 3588{
32da5386 3589 struct btrfs_block_group *cache;
bc309467
DS
3590 u64 chunk_used;
3591 u64 user_thresh_min;
3592 u64 user_thresh_max;
3593 int ret = 1;
3594
3595 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3596 chunk_used = cache->used;
bc309467
DS
3597
3598 if (bargs->usage_min == 0)
3599 user_thresh_min = 0;
3600 else
b3470b5d
DS
3601 user_thresh_min = div_factor_fine(cache->length,
3602 bargs->usage_min);
bc309467
DS
3603
3604 if (bargs->usage_max == 0)
3605 user_thresh_max = 1;
3606 else if (bargs->usage_max > 100)
b3470b5d 3607 user_thresh_max = cache->length;
bc309467 3608 else
b3470b5d
DS
3609 user_thresh_max = div_factor_fine(cache->length,
3610 bargs->usage_max);
bc309467
DS
3611
3612 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3613 ret = 0;
3614
3615 btrfs_put_block_group(cache);
3616 return ret;
3617}
3618
dba72cb3 3619static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
bc309467 3620 u64 chunk_offset, struct btrfs_balance_args *bargs)
5ce5b3c0 3621{
32da5386 3622 struct btrfs_block_group *cache;
5ce5b3c0
ID
3623 u64 chunk_used, user_thresh;
3624 int ret = 1;
3625
3626 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
bf38be65 3627 chunk_used = cache->used;
5ce5b3c0 3628
bc309467 3629 if (bargs->usage_min == 0)
3e39cea6 3630 user_thresh = 1;
a105bb88 3631 else if (bargs->usage > 100)
b3470b5d 3632 user_thresh = cache->length;
a105bb88 3633 else
b3470b5d 3634 user_thresh = div_factor_fine(cache->length, bargs->usage);
a105bb88 3635
5ce5b3c0
ID
3636 if (chunk_used < user_thresh)
3637 ret = 0;
3638
3639 btrfs_put_block_group(cache);
3640 return ret;
3641}
3642
409d404b
ID
3643static int chunk_devid_filter(struct extent_buffer *leaf,
3644 struct btrfs_chunk *chunk,
3645 struct btrfs_balance_args *bargs)
3646{
3647 struct btrfs_stripe *stripe;
3648 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3649 int i;
3650
3651 for (i = 0; i < num_stripes; i++) {
3652 stripe = btrfs_stripe_nr(chunk, i);
3653 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3654 return 0;
3655 }
3656
3657 return 1;
3658}
3659
946c9256
DS
3660static u64 calc_data_stripes(u64 type, int num_stripes)
3661{
3662 const int index = btrfs_bg_flags_to_raid_index(type);
3663 const int ncopies = btrfs_raid_array[index].ncopies;
3664 const int nparity = btrfs_raid_array[index].nparity;
3665
d58ede8d 3666 return (num_stripes - nparity) / ncopies;
946c9256
DS
3667}
3668
94e60d5a
ID
3669/* [pstart, pend) */
3670static int chunk_drange_filter(struct extent_buffer *leaf,
3671 struct btrfs_chunk *chunk,
94e60d5a
ID
3672 struct btrfs_balance_args *bargs)
3673{
3674 struct btrfs_stripe *stripe;
3675 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3676 u64 stripe_offset;
3677 u64 stripe_length;
946c9256 3678 u64 type;
94e60d5a
ID
3679 int factor;
3680 int i;
3681
3682 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3683 return 0;
3684
946c9256
DS
3685 type = btrfs_chunk_type(leaf, chunk);
3686 factor = calc_data_stripes(type, num_stripes);
94e60d5a
ID
3687
3688 for (i = 0; i < num_stripes; i++) {
3689 stripe = btrfs_stripe_nr(chunk, i);
3690 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3691 continue;
3692
3693 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3694 stripe_length = btrfs_chunk_length(leaf, chunk);
b8b93add 3695 stripe_length = div_u64(stripe_length, factor);
94e60d5a
ID
3696
3697 if (stripe_offset < bargs->pend &&
3698 stripe_offset + stripe_length > bargs->pstart)
3699 return 0;
3700 }
3701
3702 return 1;
3703}
3704
ea67176a
ID
3705/* [vstart, vend) */
3706static int chunk_vrange_filter(struct extent_buffer *leaf,
3707 struct btrfs_chunk *chunk,
3708 u64 chunk_offset,
3709 struct btrfs_balance_args *bargs)
3710{
3711 if (chunk_offset < bargs->vend &&
3712 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3713 /* at least part of the chunk is inside this vrange */
3714 return 0;
3715
3716 return 1;
3717}
3718
dee32d0a
GAP
3719static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3720 struct btrfs_chunk *chunk,
3721 struct btrfs_balance_args *bargs)
3722{
3723 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3724
3725 if (bargs->stripes_min <= num_stripes
3726 && num_stripes <= bargs->stripes_max)
3727 return 0;
3728
3729 return 1;
3730}
3731
899c81ea 3732static int chunk_soft_convert_filter(u64 chunk_type,
cfa4c961
ID
3733 struct btrfs_balance_args *bargs)
3734{
3735 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3736 return 0;
3737
899c81ea
ID
3738 chunk_type = chunk_to_extended(chunk_type) &
3739 BTRFS_EXTENDED_PROFILE_MASK;
cfa4c961 3740
899c81ea 3741 if (bargs->target == chunk_type)
cfa4c961
ID
3742 return 1;
3743
3744 return 0;
3745}
3746
6ec0896c 3747static int should_balance_chunk(struct extent_buffer *leaf,
f43ffb60
ID
3748 struct btrfs_chunk *chunk, u64 chunk_offset)
3749{
6ec0896c 3750 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 3751 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
f43ffb60
ID
3752 struct btrfs_balance_args *bargs = NULL;
3753 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3754
3755 /* type filter */
3756 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3757 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3758 return 0;
3759 }
3760
3761 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3762 bargs = &bctl->data;
3763 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3764 bargs = &bctl->sys;
3765 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3766 bargs = &bctl->meta;
3767
ed25e9b2
ID
3768 /* profiles filter */
3769 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3770 chunk_profiles_filter(chunk_type, bargs)) {
3771 return 0;
5ce5b3c0
ID
3772 }
3773
3774 /* usage filter */
3775 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
0b246afa 3776 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
5ce5b3c0 3777 return 0;
bc309467 3778 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
0b246afa 3779 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
bc309467 3780 return 0;
409d404b
ID
3781 }
3782
3783 /* devid filter */
3784 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3785 chunk_devid_filter(leaf, chunk, bargs)) {
3786 return 0;
94e60d5a
ID
3787 }
3788
3789 /* drange filter, makes sense only with devid filter */
3790 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
e4ff5fb5 3791 chunk_drange_filter(leaf, chunk, bargs)) {
94e60d5a 3792 return 0;
ea67176a
ID
3793 }
3794
3795 /* vrange filter */
3796 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3797 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3798 return 0;
ed25e9b2
ID
3799 }
3800
dee32d0a
GAP
3801 /* stripes filter */
3802 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3803 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3804 return 0;
3805 }
3806
cfa4c961
ID
3807 /* soft profile changing mode */
3808 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3809 chunk_soft_convert_filter(chunk_type, bargs)) {
3810 return 0;
3811 }
3812
7d824b6f
DS
3813 /*
3814 * limited by count, must be the last filter
3815 */
3816 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3817 if (bargs->limit == 0)
3818 return 0;
3819 else
3820 bargs->limit--;
12907fc7
DS
3821 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3822 /*
3823 * Same logic as the 'limit' filter; the minimum cannot be
01327610 3824 * determined here because we do not have the global information
12907fc7
DS
3825 * about the count of all chunks that satisfy the filters.
3826 */
3827 if (bargs->limit_max == 0)
3828 return 0;
3829 else
3830 bargs->limit_max--;
7d824b6f
DS
3831 }
3832
f43ffb60
ID
3833 return 1;
3834}
3835
c9e9f97b 3836static int __btrfs_balance(struct btrfs_fs_info *fs_info)
ec44a35c 3837{
19a39dce 3838 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
c9e9f97b 3839 struct btrfs_root *chunk_root = fs_info->chunk_root;
12907fc7 3840 u64 chunk_type;
f43ffb60 3841 struct btrfs_chunk *chunk;
5a488b9d 3842 struct btrfs_path *path = NULL;
ec44a35c 3843 struct btrfs_key key;
ec44a35c 3844 struct btrfs_key found_key;
f43ffb60
ID
3845 struct extent_buffer *leaf;
3846 int slot;
c9e9f97b
ID
3847 int ret;
3848 int enospc_errors = 0;
19a39dce 3849 bool counting = true;
12907fc7 3850 /* The single value limit and min/max limits use the same bytes in the */
7d824b6f
DS
3851 u64 limit_data = bctl->data.limit;
3852 u64 limit_meta = bctl->meta.limit;
3853 u64 limit_sys = bctl->sys.limit;
12907fc7
DS
3854 u32 count_data = 0;
3855 u32 count_meta = 0;
3856 u32 count_sys = 0;
2c9fe835 3857 int chunk_reserved = 0;
ec44a35c 3858
ec44a35c 3859 path = btrfs_alloc_path();
17e9f796
MF
3860 if (!path) {
3861 ret = -ENOMEM;
3862 goto error;
3863 }
19a39dce
ID
3864
3865 /* zero out stat counters */
3866 spin_lock(&fs_info->balance_lock);
3867 memset(&bctl->stat, 0, sizeof(bctl->stat));
3868 spin_unlock(&fs_info->balance_lock);
3869again:
7d824b6f 3870 if (!counting) {
12907fc7
DS
3871 /*
3872 * The single value limit and min/max limits use the same bytes
3873 * in the
3874 */
7d824b6f
DS
3875 bctl->data.limit = limit_data;
3876 bctl->meta.limit = limit_meta;
3877 bctl->sys.limit = limit_sys;
3878 }
ec44a35c
CM
3879 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3880 key.offset = (u64)-1;
3881 key.type = BTRFS_CHUNK_ITEM_KEY;
3882
d397712b 3883 while (1) {
19a39dce 3884 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
a7e99c69 3885 atomic_read(&fs_info->balance_cancel_req)) {
837d5b6e
ID
3886 ret = -ECANCELED;
3887 goto error;
3888 }
3889
f3372065 3890 mutex_lock(&fs_info->reclaim_bgs_lock);
ec44a35c 3891 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
67c5e7d4 3892 if (ret < 0) {
f3372065 3893 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3894 goto error;
67c5e7d4 3895 }
ec44a35c
CM
3896
3897 /*
3898 * this shouldn't happen, it means the last relocate
3899 * failed
3900 */
3901 if (ret == 0)
c9e9f97b 3902 BUG(); /* FIXME break ? */
ec44a35c
CM
3903
3904 ret = btrfs_previous_item(chunk_root, path, 0,
3905 BTRFS_CHUNK_ITEM_KEY);
c9e9f97b 3906 if (ret) {
f3372065 3907 mutex_unlock(&fs_info->reclaim_bgs_lock);
c9e9f97b 3908 ret = 0;
ec44a35c 3909 break;
c9e9f97b 3910 }
7d9eb12c 3911
f43ffb60
ID
3912 leaf = path->nodes[0];
3913 slot = path->slots[0];
3914 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7d9eb12c 3915
67c5e7d4 3916 if (found_key.objectid != key.objectid) {
f3372065 3917 mutex_unlock(&fs_info->reclaim_bgs_lock);
ec44a35c 3918 break;
67c5e7d4 3919 }
7d9eb12c 3920
f43ffb60 3921 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
12907fc7 3922 chunk_type = btrfs_chunk_type(leaf, chunk);
f43ffb60 3923
19a39dce
ID
3924 if (!counting) {
3925 spin_lock(&fs_info->balance_lock);
3926 bctl->stat.considered++;
3927 spin_unlock(&fs_info->balance_lock);
3928 }
3929
6ec0896c 3930 ret = should_balance_chunk(leaf, chunk, found_key.offset);
2c9fe835 3931
b3b4aa74 3932 btrfs_release_path(path);
67c5e7d4 3933 if (!ret) {
f3372065 3934 mutex_unlock(&fs_info->reclaim_bgs_lock);
f43ffb60 3935 goto loop;
67c5e7d4 3936 }
f43ffb60 3937
19a39dce 3938 if (counting) {
f3372065 3939 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3940 spin_lock(&fs_info->balance_lock);
3941 bctl->stat.expected++;
3942 spin_unlock(&fs_info->balance_lock);
12907fc7
DS
3943
3944 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3945 count_data++;
3946 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3947 count_sys++;
3948 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3949 count_meta++;
3950
3951 goto loop;
3952 }
3953
3954 /*
3955 * Apply limit_min filter, no need to check if the LIMITS
3956 * filter is used, limit_min is 0 by default
3957 */
3958 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3959 count_data < bctl->data.limit_min)
3960 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3961 count_meta < bctl->meta.limit_min)
3962 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3963 count_sys < bctl->sys.limit_min)) {
f3372065 3964 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce
ID
3965 goto loop;
3966 }
3967
a6f93c71
LB
3968 if (!chunk_reserved) {
3969 /*
3970 * We may be relocating the only data chunk we have,
3971 * which could potentially end up with losing data's
3972 * raid profile, so lets allocate an empty one in
3973 * advance.
3974 */
3975 ret = btrfs_may_alloc_data_chunk(fs_info,
3976 found_key.offset);
2c9fe835 3977 if (ret < 0) {
f3372065 3978 mutex_unlock(&fs_info->reclaim_bgs_lock);
2c9fe835 3979 goto error;
a6f93c71
LB
3980 } else if (ret == 1) {
3981 chunk_reserved = 1;
2c9fe835 3982 }
2c9fe835
ZL
3983 }
3984
5b4aacef 3985 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
f3372065 3986 mutex_unlock(&fs_info->reclaim_bgs_lock);
19a39dce 3987 if (ret == -ENOSPC) {
c9e9f97b 3988 enospc_errors++;
eede2bf3
OS
3989 } else if (ret == -ETXTBSY) {
3990 btrfs_info(fs_info,
3991 "skipping relocation of block group %llu due to active swapfile",
3992 found_key.offset);
3993 ret = 0;
3994 } else if (ret) {
3995 goto error;
19a39dce
ID
3996 } else {
3997 spin_lock(&fs_info->balance_lock);
3998 bctl->stat.completed++;
3999 spin_unlock(&fs_info->balance_lock);
4000 }
f43ffb60 4001loop:
795a3321
ID
4002 if (found_key.offset == 0)
4003 break;
ba1bf481 4004 key.offset = found_key.offset - 1;
ec44a35c 4005 }
c9e9f97b 4006
19a39dce
ID
4007 if (counting) {
4008 btrfs_release_path(path);
4009 counting = false;
4010 goto again;
4011 }
ec44a35c
CM
4012error:
4013 btrfs_free_path(path);
c9e9f97b 4014 if (enospc_errors) {
efe120a0 4015 btrfs_info(fs_info, "%d enospc errors during balance",
5d163e0e 4016 enospc_errors);
c9e9f97b
ID
4017 if (!ret)
4018 ret = -ENOSPC;
4019 }
4020
ec44a35c
CM
4021 return ret;
4022}
4023
0c460c0d
ID
4024/**
4025 * alloc_profile_is_valid - see if a given profile is valid and reduced
4026 * @flags: profile to validate
4027 * @extended: if true @flags is treated as an extended profile
4028 */
4029static int alloc_profile_is_valid(u64 flags, int extended)
4030{
4031 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4032 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4033
4034 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4035
4036 /* 1) check that all other bits are zeroed */
4037 if (flags & ~mask)
4038 return 0;
4039
4040 /* 2) see if profile is reduced */
4041 if (flags == 0)
4042 return !extended; /* "0" is valid for usual profiles */
4043
c1499166 4044 return has_single_bit_set(flags);
0c460c0d
ID
4045}
4046
837d5b6e
ID
4047static inline int balance_need_close(struct btrfs_fs_info *fs_info)
4048{
a7e99c69
ID
4049 /* cancel requested || normal exit path */
4050 return atomic_read(&fs_info->balance_cancel_req) ||
4051 (atomic_read(&fs_info->balance_pause_req) == 0 &&
4052 atomic_read(&fs_info->balance_cancel_req) == 0);
837d5b6e
ID
4053}
4054
5ba366c3
DS
4055/*
4056 * Validate target profile against allowed profiles and return true if it's OK.
4057 * Otherwise print the error message and return false.
4058 */
4059static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4060 const struct btrfs_balance_args *bargs,
4061 u64 allowed, const char *type)
bdcd3c97 4062{
5ba366c3
DS
4063 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4064 return true;
4065
4066 /* Profile is valid and does not have bits outside of the allowed set */
4067 if (alloc_profile_is_valid(bargs->target, 1) &&
4068 (bargs->target & ~allowed) == 0)
4069 return true;
4070
4071 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4072 type, btrfs_bg_type_to_raid_name(bargs->target));
4073 return false;
bdcd3c97
AM
4074}
4075
56fc37d9
AJ
4076/*
4077 * Fill @buf with textual description of balance filter flags @bargs, up to
4078 * @size_buf including the terminating null. The output may be trimmed if it
4079 * does not fit into the provided buffer.
4080 */
4081static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4082 u32 size_buf)
4083{
4084 int ret;
4085 u32 size_bp = size_buf;
4086 char *bp = buf;
4087 u64 flags = bargs->flags;
4088 char tmp_buf[128] = {'\0'};
4089
4090 if (!flags)
4091 return;
4092
4093#define CHECK_APPEND_NOARG(a) \
4094 do { \
4095 ret = snprintf(bp, size_bp, (a)); \
4096 if (ret < 0 || ret >= size_bp) \
4097 goto out_overflow; \
4098 size_bp -= ret; \
4099 bp += ret; \
4100 } while (0)
4101
4102#define CHECK_APPEND_1ARG(a, v1) \
4103 do { \
4104 ret = snprintf(bp, size_bp, (a), (v1)); \
4105 if (ret < 0 || ret >= size_bp) \
4106 goto out_overflow; \
4107 size_bp -= ret; \
4108 bp += ret; \
4109 } while (0)
4110
4111#define CHECK_APPEND_2ARG(a, v1, v2) \
4112 do { \
4113 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4114 if (ret < 0 || ret >= size_bp) \
4115 goto out_overflow; \
4116 size_bp -= ret; \
4117 bp += ret; \
4118 } while (0)
4119
158da513
DS
4120 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4121 CHECK_APPEND_1ARG("convert=%s,",
4122 btrfs_bg_type_to_raid_name(bargs->target));
56fc37d9
AJ
4123
4124 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4125 CHECK_APPEND_NOARG("soft,");
4126
4127 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4128 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4129 sizeof(tmp_buf));
4130 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4131 }
4132
4133 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4134 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4135
4136 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4137 CHECK_APPEND_2ARG("usage=%u..%u,",
4138 bargs->usage_min, bargs->usage_max);
4139
4140 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4141 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4142
4143 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4144 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4145 bargs->pstart, bargs->pend);
4146
4147 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4148 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4149 bargs->vstart, bargs->vend);
4150
4151 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4152 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4153
4154 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4155 CHECK_APPEND_2ARG("limit=%u..%u,",
4156 bargs->limit_min, bargs->limit_max);
4157
4158 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4159 CHECK_APPEND_2ARG("stripes=%u..%u,",
4160 bargs->stripes_min, bargs->stripes_max);
4161
4162#undef CHECK_APPEND_2ARG
4163#undef CHECK_APPEND_1ARG
4164#undef CHECK_APPEND_NOARG
4165
4166out_overflow:
4167
4168 if (size_bp < size_buf)
4169 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4170 else
4171 buf[0] = '\0';
4172}
4173
4174static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4175{
4176 u32 size_buf = 1024;
4177 char tmp_buf[192] = {'\0'};
4178 char *buf;
4179 char *bp;
4180 u32 size_bp = size_buf;
4181 int ret;
4182 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4183
4184 buf = kzalloc(size_buf, GFP_KERNEL);
4185 if (!buf)
4186 return;
4187
4188 bp = buf;
4189
4190#define CHECK_APPEND_1ARG(a, v1) \
4191 do { \
4192 ret = snprintf(bp, size_bp, (a), (v1)); \
4193 if (ret < 0 || ret >= size_bp) \
4194 goto out_overflow; \
4195 size_bp -= ret; \
4196 bp += ret; \
4197 } while (0)
4198
4199 if (bctl->flags & BTRFS_BALANCE_FORCE)
4200 CHECK_APPEND_1ARG("%s", "-f ");
4201
4202 if (bctl->flags & BTRFS_BALANCE_DATA) {
4203 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4204 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4205 }
4206
4207 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4208 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4209 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4210 }
4211
4212 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4213 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4214 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4215 }
4216
4217#undef CHECK_APPEND_1ARG
4218
4219out_overflow:
4220
4221 if (size_bp < size_buf)
4222 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4223 btrfs_info(fs_info, "balance: %s %s",
4224 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4225 "resume" : "start", buf);
4226
4227 kfree(buf);
4228}
4229
c9e9f97b 4230/*
dccdb07b 4231 * Should be called with balance mutexe held
c9e9f97b 4232 */
6fcf6e2b
DS
4233int btrfs_balance(struct btrfs_fs_info *fs_info,
4234 struct btrfs_balance_control *bctl,
c9e9f97b
ID
4235 struct btrfs_ioctl_balance_args *bargs)
4236{
14506127 4237 u64 meta_target, data_target;
f43ffb60 4238 u64 allowed;
e4837f8f 4239 int mixed = 0;
c9e9f97b 4240 int ret;
8dabb742 4241 u64 num_devices;
de98ced9 4242 unsigned seq;
e62869be 4243 bool reducing_redundancy;
081db89b 4244 int i;
c9e9f97b 4245
837d5b6e 4246 if (btrfs_fs_closing(fs_info) ||
a7e99c69 4247 atomic_read(&fs_info->balance_pause_req) ||
726a3421 4248 btrfs_should_cancel_balance(fs_info)) {
c9e9f97b
ID
4249 ret = -EINVAL;
4250 goto out;
4251 }
4252
e4837f8f
ID
4253 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4254 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4255 mixed = 1;
4256
f43ffb60
ID
4257 /*
4258 * In case of mixed groups both data and meta should be picked,
4259 * and identical options should be given for both of them.
4260 */
e4837f8f
ID
4261 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4262 if (mixed && (bctl->flags & allowed)) {
f43ffb60
ID
4263 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4264 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4265 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
5d163e0e 4266 btrfs_err(fs_info,
6dac13f8 4267 "balance: mixed groups data and metadata options must be the same");
f43ffb60
ID
4268 ret = -EINVAL;
4269 goto out;
4270 }
4271 }
4272
b35cf1f0
JB
4273 /*
4274 * rw_devices will not change at the moment, device add/delete/replace
c3e1f96c 4275 * are exclusive
b35cf1f0
JB
4276 */
4277 num_devices = fs_info->fs_devices->rw_devices;
fab27359
QW
4278
4279 /*
4280 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4281 * special bit for it, to make it easier to distinguish. Thus we need
4282 * to set it manually, or balance would refuse the profile.
4283 */
4284 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
081db89b
DS
4285 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4286 if (num_devices >= btrfs_raid_array[i].devs_min)
4287 allowed |= btrfs_raid_array[i].bg_flag;
1da73967 4288
5ba366c3
DS
4289 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4290 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4291 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
e4d8ec0f
ID
4292 ret = -EINVAL;
4293 goto out;
4294 }
4295
6079e12c
DS
4296 /*
4297 * Allow to reduce metadata or system integrity only if force set for
4298 * profiles with redundancy (copies, parity)
4299 */
4300 allowed = 0;
4301 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4302 if (btrfs_raid_array[i].ncopies >= 2 ||
4303 btrfs_raid_array[i].tolerated_failures >= 1)
4304 allowed |= btrfs_raid_array[i].bg_flag;
4305 }
de98ced9
MX
4306 do {
4307 seq = read_seqbegin(&fs_info->profiles_lock);
4308
4309 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4310 (fs_info->avail_system_alloc_bits & allowed) &&
4311 !(bctl->sys.target & allowed)) ||
4312 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4313 (fs_info->avail_metadata_alloc_bits & allowed) &&
5a8067c0 4314 !(bctl->meta.target & allowed)))
e62869be 4315 reducing_redundancy = true;
5a8067c0 4316 else
e62869be 4317 reducing_redundancy = false;
5a8067c0
FM
4318
4319 /* if we're not converting, the target field is uninitialized */
4320 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4321 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4322 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4323 bctl->data.target : fs_info->avail_data_alloc_bits;
de98ced9 4324 } while (read_seqretry(&fs_info->profiles_lock, seq));
e4d8ec0f 4325
e62869be 4326 if (reducing_redundancy) {
5a8067c0
FM
4327 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4328 btrfs_info(fs_info,
e62869be 4329 "balance: force reducing metadata redundancy");
5a8067c0
FM
4330 } else {
4331 btrfs_err(fs_info,
e62869be 4332 "balance: reduces metadata redundancy, use --force if you want this");
5a8067c0
FM
4333 ret = -EINVAL;
4334 goto out;
4335 }
4336 }
4337
14506127
AB
4338 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4339 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
ee592d07 4340 btrfs_warn(fs_info,
6dac13f8 4341 "balance: metadata profile %s has lower redundancy than data profile %s",
158da513
DS
4342 btrfs_bg_type_to_raid_name(meta_target),
4343 btrfs_bg_type_to_raid_name(data_target));
ee592d07
ST
4344 }
4345
6bccf3ab 4346 ret = insert_balance_item(fs_info, bctl);
59641015 4347 if (ret && ret != -EEXIST)
0940ebf6
ID
4348 goto out;
4349
59641015
ID
4350 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4351 BUG_ON(ret == -EEXIST);
833aae18
DS
4352 BUG_ON(fs_info->balance_ctl);
4353 spin_lock(&fs_info->balance_lock);
4354 fs_info->balance_ctl = bctl;
4355 spin_unlock(&fs_info->balance_lock);
59641015
ID
4356 } else {
4357 BUG_ON(ret != -EEXIST);
4358 spin_lock(&fs_info->balance_lock);
4359 update_balance_args(bctl);
4360 spin_unlock(&fs_info->balance_lock);
4361 }
c9e9f97b 4362
3009a62f
DS
4363 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4364 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
56fc37d9 4365 describe_balance_start_or_resume(fs_info);
c9e9f97b
ID
4366 mutex_unlock(&fs_info->balance_mutex);
4367
4368 ret = __btrfs_balance(fs_info);
4369
4370 mutex_lock(&fs_info->balance_mutex);
efc0e69c 4371 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
7333bd02 4372 btrfs_info(fs_info, "balance: paused");
efc0e69c
NB
4373 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4374 }
44d354ab
QW
4375 /*
4376 * Balance can be canceled by:
4377 *
4378 * - Regular cancel request
4379 * Then ret == -ECANCELED and balance_cancel_req > 0
4380 *
4381 * - Fatal signal to "btrfs" process
4382 * Either the signal caught by wait_reserve_ticket() and callers
4383 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4384 * got -ECANCELED.
4385 * Either way, in this case balance_cancel_req = 0, and
4386 * ret == -EINTR or ret == -ECANCELED.
4387 *
4388 * So here we only check the return value to catch canceled balance.
4389 */
4390 else if (ret == -ECANCELED || ret == -EINTR)
7333bd02
AJ
4391 btrfs_info(fs_info, "balance: canceled");
4392 else
4393 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4394
3009a62f 4395 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
c9e9f97b
ID
4396
4397 if (bargs) {
4398 memset(bargs, 0, sizeof(*bargs));
008ef096 4399 btrfs_update_ioctl_balance_args(fs_info, bargs);
c9e9f97b
ID
4400 }
4401
3a01aa7a
ID
4402 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4403 balance_need_close(fs_info)) {
149196a2 4404 reset_balance_state(fs_info);
c3e1f96c 4405 btrfs_exclop_finish(fs_info);
3a01aa7a
ID
4406 }
4407
837d5b6e 4408 wake_up(&fs_info->balance_wait_q);
c9e9f97b
ID
4409
4410 return ret;
4411out:
59641015 4412 if (bctl->flags & BTRFS_BALANCE_RESUME)
149196a2 4413 reset_balance_state(fs_info);
a17c95df 4414 else
59641015 4415 kfree(bctl);
c3e1f96c 4416 btrfs_exclop_finish(fs_info);
a17c95df 4417
59641015
ID
4418 return ret;
4419}
4420
4421static int balance_kthread(void *data)
4422{
2b6ba629 4423 struct btrfs_fs_info *fs_info = data;
9555c6c1 4424 int ret = 0;
59641015 4425
a690e5f2 4426 sb_start_write(fs_info->sb);
59641015 4427 mutex_lock(&fs_info->balance_mutex);
56fc37d9 4428 if (fs_info->balance_ctl)
6fcf6e2b 4429 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
59641015 4430 mutex_unlock(&fs_info->balance_mutex);
a690e5f2 4431 sb_end_write(fs_info->sb);
2b6ba629 4432
59641015
ID
4433 return ret;
4434}
4435
2b6ba629
ID
4436int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4437{
4438 struct task_struct *tsk;
4439
1354e1a1 4440 mutex_lock(&fs_info->balance_mutex);
2b6ba629 4441 if (!fs_info->balance_ctl) {
1354e1a1 4442 mutex_unlock(&fs_info->balance_mutex);
2b6ba629
ID
4443 return 0;
4444 }
1354e1a1 4445 mutex_unlock(&fs_info->balance_mutex);
2b6ba629 4446
3cdde224 4447 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
6dac13f8 4448 btrfs_info(fs_info, "balance: resume skipped");
2b6ba629
ID
4449 return 0;
4450 }
4451
efc0e69c
NB
4452 spin_lock(&fs_info->super_lock);
4453 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
4454 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4455 spin_unlock(&fs_info->super_lock);
02ee654d
AJ
4456 /*
4457 * A ro->rw remount sequence should continue with the paused balance
4458 * regardless of who pauses it, system or the user as of now, so set
4459 * the resume flag.
4460 */
4461 spin_lock(&fs_info->balance_lock);
4462 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4463 spin_unlock(&fs_info->balance_lock);
4464
2b6ba629 4465 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
cd633972 4466 return PTR_ERR_OR_ZERO(tsk);
2b6ba629
ID
4467}
4468
68310a5e 4469int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
59641015 4470{
59641015
ID
4471 struct btrfs_balance_control *bctl;
4472 struct btrfs_balance_item *item;
4473 struct btrfs_disk_balance_args disk_bargs;
4474 struct btrfs_path *path;
4475 struct extent_buffer *leaf;
4476 struct btrfs_key key;
4477 int ret;
4478
4479 path = btrfs_alloc_path();
4480 if (!path)
4481 return -ENOMEM;
4482
59641015 4483 key.objectid = BTRFS_BALANCE_OBJECTID;
c479cb4f 4484 key.type = BTRFS_TEMPORARY_ITEM_KEY;
59641015
ID
4485 key.offset = 0;
4486
68310a5e 4487 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
59641015 4488 if (ret < 0)
68310a5e 4489 goto out;
59641015
ID
4490 if (ret > 0) { /* ret = -ENOENT; */
4491 ret = 0;
68310a5e
ID
4492 goto out;
4493 }
4494
4495 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4496 if (!bctl) {
4497 ret = -ENOMEM;
4498 goto out;
59641015
ID
4499 }
4500
4501 leaf = path->nodes[0];
4502 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4503
68310a5e
ID
4504 bctl->flags = btrfs_balance_flags(leaf, item);
4505 bctl->flags |= BTRFS_BALANCE_RESUME;
59641015
ID
4506
4507 btrfs_balance_data(leaf, item, &disk_bargs);
4508 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4509 btrfs_balance_meta(leaf, item, &disk_bargs);
4510 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4511 btrfs_balance_sys(leaf, item, &disk_bargs);
4512 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4513
eee95e3f
DS
4514 /*
4515 * This should never happen, as the paused balance state is recovered
4516 * during mount without any chance of other exclusive ops to collide.
4517 *
4518 * This gives the exclusive op status to balance and keeps in paused
4519 * state until user intervention (cancel or umount). If the ownership
4520 * cannot be assigned, show a message but do not fail. The balance
4521 * is in a paused state and must have fs_info::balance_ctl properly
4522 * set up.
4523 */
efc0e69c 4524 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
eee95e3f 4525 btrfs_warn(fs_info,
6dac13f8 4526 "balance: cannot set exclusive op status, resume manually");
ed0fb78f 4527
fb286100
JB
4528 btrfs_release_path(path);
4529
68310a5e 4530 mutex_lock(&fs_info->balance_mutex);
833aae18
DS
4531 BUG_ON(fs_info->balance_ctl);
4532 spin_lock(&fs_info->balance_lock);
4533 fs_info->balance_ctl = bctl;
4534 spin_unlock(&fs_info->balance_lock);
68310a5e 4535 mutex_unlock(&fs_info->balance_mutex);
59641015
ID
4536out:
4537 btrfs_free_path(path);
ec44a35c
CM
4538 return ret;
4539}
4540
837d5b6e
ID
4541int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4542{
4543 int ret = 0;
4544
4545 mutex_lock(&fs_info->balance_mutex);
4546 if (!fs_info->balance_ctl) {
4547 mutex_unlock(&fs_info->balance_mutex);
4548 return -ENOTCONN;
4549 }
4550
3009a62f 4551 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
837d5b6e
ID
4552 atomic_inc(&fs_info->balance_pause_req);
4553 mutex_unlock(&fs_info->balance_mutex);
4554
4555 wait_event(fs_info->balance_wait_q,
3009a62f 4556 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4557
4558 mutex_lock(&fs_info->balance_mutex);
4559 /* we are good with balance_ctl ripped off from under us */
3009a62f 4560 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
837d5b6e
ID
4561 atomic_dec(&fs_info->balance_pause_req);
4562 } else {
4563 ret = -ENOTCONN;
4564 }
4565
4566 mutex_unlock(&fs_info->balance_mutex);
4567 return ret;
4568}
4569
a7e99c69
ID
4570int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4571{
4572 mutex_lock(&fs_info->balance_mutex);
4573 if (!fs_info->balance_ctl) {
4574 mutex_unlock(&fs_info->balance_mutex);
4575 return -ENOTCONN;
4576 }
4577
cf7d20f4
DS
4578 /*
4579 * A paused balance with the item stored on disk can be resumed at
4580 * mount time if the mount is read-write. Otherwise it's still paused
4581 * and we must not allow cancelling as it deletes the item.
4582 */
4583 if (sb_rdonly(fs_info->sb)) {
4584 mutex_unlock(&fs_info->balance_mutex);
4585 return -EROFS;
4586 }
4587
a7e99c69
ID
4588 atomic_inc(&fs_info->balance_cancel_req);
4589 /*
4590 * if we are running just wait and return, balance item is
4591 * deleted in btrfs_balance in this case
4592 */
3009a62f 4593 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
a7e99c69
ID
4594 mutex_unlock(&fs_info->balance_mutex);
4595 wait_event(fs_info->balance_wait_q,
3009a62f 4596 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4597 mutex_lock(&fs_info->balance_mutex);
4598 } else {
a7e99c69 4599 mutex_unlock(&fs_info->balance_mutex);
dccdb07b
DS
4600 /*
4601 * Lock released to allow other waiters to continue, we'll
4602 * reexamine the status again.
4603 */
a7e99c69
ID
4604 mutex_lock(&fs_info->balance_mutex);
4605
a17c95df 4606 if (fs_info->balance_ctl) {
149196a2 4607 reset_balance_state(fs_info);
c3e1f96c 4608 btrfs_exclop_finish(fs_info);
6dac13f8 4609 btrfs_info(fs_info, "balance: canceled");
a17c95df 4610 }
a7e99c69
ID
4611 }
4612
3009a62f
DS
4613 BUG_ON(fs_info->balance_ctl ||
4614 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
a7e99c69
ID
4615 atomic_dec(&fs_info->balance_cancel_req);
4616 mutex_unlock(&fs_info->balance_mutex);
4617 return 0;
4618}
4619
97f4dd09 4620int btrfs_uuid_scan_kthread(void *data)
803b2f54
SB
4621{
4622 struct btrfs_fs_info *fs_info = data;
4623 struct btrfs_root *root = fs_info->tree_root;
4624 struct btrfs_key key;
803b2f54
SB
4625 struct btrfs_path *path = NULL;
4626 int ret = 0;
4627 struct extent_buffer *eb;
4628 int slot;
4629 struct btrfs_root_item root_item;
4630 u32 item_size;
f45388f3 4631 struct btrfs_trans_handle *trans = NULL;
c94bec2c 4632 bool closing = false;
803b2f54
SB
4633
4634 path = btrfs_alloc_path();
4635 if (!path) {
4636 ret = -ENOMEM;
4637 goto out;
4638 }
4639
4640 key.objectid = 0;
4641 key.type = BTRFS_ROOT_ITEM_KEY;
4642 key.offset = 0;
4643
803b2f54 4644 while (1) {
c94bec2c
JB
4645 if (btrfs_fs_closing(fs_info)) {
4646 closing = true;
4647 break;
4648 }
7c829b72
AJ
4649 ret = btrfs_search_forward(root, &key, path,
4650 BTRFS_OLDEST_GENERATION);
803b2f54
SB
4651 if (ret) {
4652 if (ret > 0)
4653 ret = 0;
4654 break;
4655 }
4656
4657 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4658 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4659 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4660 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4661 goto skip;
4662
4663 eb = path->nodes[0];
4664 slot = path->slots[0];
3212fa14 4665 item_size = btrfs_item_size(eb, slot);
803b2f54
SB
4666 if (item_size < sizeof(root_item))
4667 goto skip;
4668
803b2f54
SB
4669 read_extent_buffer(eb, &root_item,
4670 btrfs_item_ptr_offset(eb, slot),
4671 (int)sizeof(root_item));
4672 if (btrfs_root_refs(&root_item) == 0)
4673 goto skip;
f45388f3
FDBM
4674
4675 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4676 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4677 if (trans)
4678 goto update_tree;
4679
4680 btrfs_release_path(path);
803b2f54
SB
4681 /*
4682 * 1 - subvol uuid item
4683 * 1 - received_subvol uuid item
4684 */
4685 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4686 if (IS_ERR(trans)) {
4687 ret = PTR_ERR(trans);
4688 break;
4689 }
f45388f3
FDBM
4690 continue;
4691 } else {
4692 goto skip;
4693 }
4694update_tree:
9771a5cf 4695 btrfs_release_path(path);
f45388f3 4696 if (!btrfs_is_empty_uuid(root_item.uuid)) {
cdb345a8 4697 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
803b2f54
SB
4698 BTRFS_UUID_KEY_SUBVOL,
4699 key.objectid);
4700 if (ret < 0) {
efe120a0 4701 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4702 ret);
803b2f54
SB
4703 break;
4704 }
4705 }
4706
4707 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
cdb345a8 4708 ret = btrfs_uuid_tree_add(trans,
803b2f54
SB
4709 root_item.received_uuid,
4710 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4711 key.objectid);
4712 if (ret < 0) {
efe120a0 4713 btrfs_warn(fs_info, "uuid_tree_add failed %d",
803b2f54 4714 ret);
803b2f54
SB
4715 break;
4716 }
4717 }
4718
f45388f3 4719skip:
9771a5cf 4720 btrfs_release_path(path);
803b2f54 4721 if (trans) {
3a45bb20 4722 ret = btrfs_end_transaction(trans);
f45388f3 4723 trans = NULL;
803b2f54
SB
4724 if (ret)
4725 break;
4726 }
4727
803b2f54
SB
4728 if (key.offset < (u64)-1) {
4729 key.offset++;
4730 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4731 key.offset = 0;
4732 key.type = BTRFS_ROOT_ITEM_KEY;
4733 } else if (key.objectid < (u64)-1) {
4734 key.offset = 0;
4735 key.type = BTRFS_ROOT_ITEM_KEY;
4736 key.objectid++;
4737 } else {
4738 break;
4739 }
4740 cond_resched();
4741 }
4742
4743out:
4744 btrfs_free_path(path);
f45388f3 4745 if (trans && !IS_ERR(trans))
3a45bb20 4746 btrfs_end_transaction(trans);
803b2f54 4747 if (ret)
efe120a0 4748 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
c94bec2c 4749 else if (!closing)
afcdd129 4750 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
803b2f54
SB
4751 up(&fs_info->uuid_tree_rescan_sem);
4752 return 0;
4753}
4754
f7a81ea4
SB
4755int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4756{
4757 struct btrfs_trans_handle *trans;
4758 struct btrfs_root *tree_root = fs_info->tree_root;
4759 struct btrfs_root *uuid_root;
803b2f54
SB
4760 struct task_struct *task;
4761 int ret;
f7a81ea4
SB
4762
4763 /*
4764 * 1 - root node
4765 * 1 - root item
4766 */
4767 trans = btrfs_start_transaction(tree_root, 2);
4768 if (IS_ERR(trans))
4769 return PTR_ERR(trans);
4770
9b7a2440 4771 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
f7a81ea4 4772 if (IS_ERR(uuid_root)) {
6d13f549 4773 ret = PTR_ERR(uuid_root);
66642832 4774 btrfs_abort_transaction(trans, ret);
3a45bb20 4775 btrfs_end_transaction(trans);
6d13f549 4776 return ret;
f7a81ea4
SB
4777 }
4778
4779 fs_info->uuid_root = uuid_root;
4780
3a45bb20 4781 ret = btrfs_commit_transaction(trans);
803b2f54
SB
4782 if (ret)
4783 return ret;
4784
4785 down(&fs_info->uuid_tree_rescan_sem);
4786 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4787 if (IS_ERR(task)) {
70f80175 4788 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
efe120a0 4789 btrfs_warn(fs_info, "failed to start uuid_scan task");
803b2f54
SB
4790 up(&fs_info->uuid_tree_rescan_sem);
4791 return PTR_ERR(task);
4792 }
4793
4794 return 0;
f7a81ea4 4795}
803b2f54 4796
8f18cf13
CM
4797/*
4798 * shrinking a device means finding all of the device extents past
4799 * the new size, and then following the back refs to the chunks.
4800 * The chunk relocation code actually frees the device extent
4801 */
4802int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4803{
0b246afa
JM
4804 struct btrfs_fs_info *fs_info = device->fs_info;
4805 struct btrfs_root *root = fs_info->dev_root;
8f18cf13 4806 struct btrfs_trans_handle *trans;
8f18cf13
CM
4807 struct btrfs_dev_extent *dev_extent = NULL;
4808 struct btrfs_path *path;
4809 u64 length;
8f18cf13
CM
4810 u64 chunk_offset;
4811 int ret;
4812 int slot;
ba1bf481
JB
4813 int failed = 0;
4814 bool retried = false;
8f18cf13
CM
4815 struct extent_buffer *l;
4816 struct btrfs_key key;
0b246afa 4817 struct btrfs_super_block *super_copy = fs_info->super_copy;
8f18cf13 4818 u64 old_total = btrfs_super_total_bytes(super_copy);
7cc8e58d 4819 u64 old_size = btrfs_device_get_total_bytes(device);
7dfb8be1 4820 u64 diff;
61d0d0d2 4821 u64 start;
7dfb8be1
NB
4822
4823 new_size = round_down(new_size, fs_info->sectorsize);
61d0d0d2 4824 start = new_size;
0e4324a4 4825 diff = round_down(old_size - new_size, fs_info->sectorsize);
8f18cf13 4826
401e29c1 4827 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
63a212ab
SB
4828 return -EINVAL;
4829
8f18cf13
CM
4830 path = btrfs_alloc_path();
4831 if (!path)
4832 return -ENOMEM;
4833
0338dff6 4834 path->reada = READA_BACK;
8f18cf13 4835
61d0d0d2
NB
4836 trans = btrfs_start_transaction(root, 0);
4837 if (IS_ERR(trans)) {
4838 btrfs_free_path(path);
4839 return PTR_ERR(trans);
4840 }
4841
34441361 4842 mutex_lock(&fs_info->chunk_mutex);
7d9eb12c 4843
7cc8e58d 4844 btrfs_device_set_total_bytes(device, new_size);
ebbede42 4845 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2b82032c 4846 device->fs_devices->total_rw_bytes -= diff;
a5ed45f8 4847 atomic64_sub(diff, &fs_info->free_chunk_space);
2bf64758 4848 }
61d0d0d2
NB
4849
4850 /*
4851 * Once the device's size has been set to the new size, ensure all
4852 * in-memory chunks are synced to disk so that the loop below sees them
4853 * and relocates them accordingly.
4854 */
1c11b63e 4855 if (contains_pending_extent(device, &start, diff)) {
61d0d0d2
NB
4856 mutex_unlock(&fs_info->chunk_mutex);
4857 ret = btrfs_commit_transaction(trans);
4858 if (ret)
4859 goto done;
4860 } else {
4861 mutex_unlock(&fs_info->chunk_mutex);
4862 btrfs_end_transaction(trans);
4863 }
8f18cf13 4864
ba1bf481 4865again:
8f18cf13
CM
4866 key.objectid = device->devid;
4867 key.offset = (u64)-1;
4868 key.type = BTRFS_DEV_EXTENT_KEY;
4869
213e64da 4870 do {
f3372065 4871 mutex_lock(&fs_info->reclaim_bgs_lock);
8f18cf13 4872 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67c5e7d4 4873 if (ret < 0) {
f3372065 4874 mutex_unlock(&fs_info->reclaim_bgs_lock);
8f18cf13 4875 goto done;
67c5e7d4 4876 }
8f18cf13
CM
4877
4878 ret = btrfs_previous_item(root, path, 0, key.type);
8f18cf13 4879 if (ret) {
f3372065 4880 mutex_unlock(&fs_info->reclaim_bgs_lock);
7056bf69
NB
4881 if (ret < 0)
4882 goto done;
8f18cf13 4883 ret = 0;
b3b4aa74 4884 btrfs_release_path(path);
bf1fb512 4885 break;
8f18cf13
CM
4886 }
4887
4888 l = path->nodes[0];
4889 slot = path->slots[0];
4890 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4891
ba1bf481 4892 if (key.objectid != device->devid) {
f3372065 4893 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4894 btrfs_release_path(path);
bf1fb512 4895 break;
ba1bf481 4896 }
8f18cf13
CM
4897
4898 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4899 length = btrfs_dev_extent_length(l, dev_extent);
4900
ba1bf481 4901 if (key.offset + length <= new_size) {
f3372065 4902 mutex_unlock(&fs_info->reclaim_bgs_lock);
b3b4aa74 4903 btrfs_release_path(path);
d6397bae 4904 break;
ba1bf481 4905 }
8f18cf13 4906
8f18cf13 4907 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
b3b4aa74 4908 btrfs_release_path(path);
8f18cf13 4909
a6f93c71
LB
4910 /*
4911 * We may be relocating the only data chunk we have,
4912 * which could potentially end up with losing data's
4913 * raid profile, so lets allocate an empty one in
4914 * advance.
4915 */
4916 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4917 if (ret < 0) {
f3372065 4918 mutex_unlock(&fs_info->reclaim_bgs_lock);
a6f93c71
LB
4919 goto done;
4920 }
4921
0b246afa 4922 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
f3372065 4923 mutex_unlock(&fs_info->reclaim_bgs_lock);
eede2bf3 4924 if (ret == -ENOSPC) {
ba1bf481 4925 failed++;
eede2bf3
OS
4926 } else if (ret) {
4927 if (ret == -ETXTBSY) {
4928 btrfs_warn(fs_info,
4929 "could not shrink block group %llu due to active swapfile",
4930 chunk_offset);
4931 }
4932 goto done;
4933 }
213e64da 4934 } while (key.offset-- > 0);
ba1bf481
JB
4935
4936 if (failed && !retried) {
4937 failed = 0;
4938 retried = true;
4939 goto again;
4940 } else if (failed && retried) {
4941 ret = -ENOSPC;
ba1bf481 4942 goto done;
8f18cf13
CM
4943 }
4944
d6397bae 4945 /* Shrinking succeeded, else we would be at "done". */
a22285a6 4946 trans = btrfs_start_transaction(root, 0);
98d5dc13
TI
4947 if (IS_ERR(trans)) {
4948 ret = PTR_ERR(trans);
4949 goto done;
4950 }
4951
34441361 4952 mutex_lock(&fs_info->chunk_mutex);
c57dd1f2
QW
4953 /* Clear all state bits beyond the shrunk device size */
4954 clear_extent_bits(&device->alloc_state, new_size, (u64)-1,
4955 CHUNK_STATE_MASK);
4956
7cc8e58d 4957 btrfs_device_set_disk_total_bytes(device, new_size);
bbbf7243
NB
4958 if (list_empty(&device->post_commit_list))
4959 list_add_tail(&device->post_commit_list,
4960 &trans->transaction->dev_update_list);
d6397bae 4961
d6397bae 4962 WARN_ON(diff > old_total);
7dfb8be1
NB
4963 btrfs_set_super_total_bytes(super_copy,
4964 round_down(old_total - diff, fs_info->sectorsize));
34441361 4965 mutex_unlock(&fs_info->chunk_mutex);
2196d6e8 4966
2bb2e00e 4967 btrfs_reserve_chunk_metadata(trans, false);
2196d6e8
MX
4968 /* Now btrfs_update_device() will change the on-disk size. */
4969 ret = btrfs_update_device(trans, device);
2bb2e00e 4970 btrfs_trans_release_chunk_metadata(trans);
801660b0
AJ
4971 if (ret < 0) {
4972 btrfs_abort_transaction(trans, ret);
4973 btrfs_end_transaction(trans);
4974 } else {
4975 ret = btrfs_commit_transaction(trans);
4976 }
8f18cf13
CM
4977done:
4978 btrfs_free_path(path);
53e489bc 4979 if (ret) {
34441361 4980 mutex_lock(&fs_info->chunk_mutex);
53e489bc 4981 btrfs_device_set_total_bytes(device, old_size);
ebbede42 4982 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
53e489bc 4983 device->fs_devices->total_rw_bytes += diff;
a5ed45f8 4984 atomic64_add(diff, &fs_info->free_chunk_space);
34441361 4985 mutex_unlock(&fs_info->chunk_mutex);
53e489bc 4986 }
8f18cf13
CM
4987 return ret;
4988}
4989
2ff7e61e 4990static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
0b86a832
CM
4991 struct btrfs_key *key,
4992 struct btrfs_chunk *chunk, int item_size)
4993{
0b246afa 4994 struct btrfs_super_block *super_copy = fs_info->super_copy;
0b86a832
CM
4995 struct btrfs_disk_key disk_key;
4996 u32 array_size;
4997 u8 *ptr;
4998
79bd3712
FM
4999 lockdep_assert_held(&fs_info->chunk_mutex);
5000
0b86a832 5001 array_size = btrfs_super_sys_array_size(super_copy);
5f43f86e 5002 if (array_size + item_size + sizeof(disk_key)
79bd3712 5003 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
0b86a832
CM
5004 return -EFBIG;
5005
5006 ptr = super_copy->sys_chunk_array + array_size;
5007 btrfs_cpu_key_to_disk(&disk_key, key);
5008 memcpy(ptr, &disk_key, sizeof(disk_key));
5009 ptr += sizeof(disk_key);
5010 memcpy(ptr, chunk, item_size);
5011 item_size += sizeof(disk_key);
5012 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
fe48a5c0 5013
0b86a832
CM
5014 return 0;
5015}
5016
73c5de00
AJ
5017/*
5018 * sort the devices in descending order by max_avail, total_avail
5019 */
5020static int btrfs_cmp_device_info(const void *a, const void *b)
9b3f68b9 5021{
73c5de00
AJ
5022 const struct btrfs_device_info *di_a = a;
5023 const struct btrfs_device_info *di_b = b;
9b3f68b9 5024
73c5de00 5025 if (di_a->max_avail > di_b->max_avail)
b2117a39 5026 return -1;
73c5de00 5027 if (di_a->max_avail < di_b->max_avail)
b2117a39 5028 return 1;
73c5de00
AJ
5029 if (di_a->total_avail > di_b->total_avail)
5030 return -1;
5031 if (di_a->total_avail < di_b->total_avail)
5032 return 1;
5033 return 0;
b2117a39 5034}
0b86a832 5035
53b381b3
DW
5036static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5037{
ffe2d203 5038 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
53b381b3
DW
5039 return;
5040
ceda0864 5041 btrfs_set_fs_incompat(info, RAID56);
53b381b3
DW
5042}
5043
cfbb825c
DS
5044static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5045{
5046 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5047 return;
5048
5049 btrfs_set_fs_incompat(info, RAID1C34);
5050}
5051
4f2bafe8 5052/*
f6f39f7a 5053 * Structure used internally for btrfs_create_chunk() function.
4f2bafe8
NA
5054 * Wraps needed parameters.
5055 */
5056struct alloc_chunk_ctl {
5057 u64 start;
5058 u64 type;
5059 /* Total number of stripes to allocate */
5060 int num_stripes;
5061 /* sub_stripes info for map */
5062 int sub_stripes;
5063 /* Stripes per device */
5064 int dev_stripes;
5065 /* Maximum number of devices to use */
5066 int devs_max;
5067 /* Minimum number of devices to use */
5068 int devs_min;
5069 /* ndevs has to be a multiple of this */
5070 int devs_increment;
5071 /* Number of copies */
5072 int ncopies;
5073 /* Number of stripes worth of bytes to store parity information */
5074 int nparity;
5075 u64 max_stripe_size;
5076 u64 max_chunk_size;
6aafb303 5077 u64 dev_extent_min;
4f2bafe8
NA
5078 u64 stripe_size;
5079 u64 chunk_size;
5080 int ndevs;
5081};
5082
27c314d5
NA
5083static void init_alloc_chunk_ctl_policy_regular(
5084 struct btrfs_fs_devices *fs_devices,
5085 struct alloc_chunk_ctl *ctl)
5086{
5087 u64 type = ctl->type;
5088
5089 if (type & BTRFS_BLOCK_GROUP_DATA) {
5090 ctl->max_stripe_size = SZ_1G;
5091 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
5092 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5093 /* For larger filesystems, use larger metadata chunks */
5094 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
5095 ctl->max_stripe_size = SZ_1G;
5096 else
5097 ctl->max_stripe_size = SZ_256M;
5098 ctl->max_chunk_size = ctl->max_stripe_size;
5099 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5100 ctl->max_stripe_size = SZ_32M;
5101 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5102 ctl->devs_max = min_t(int, ctl->devs_max,
5103 BTRFS_MAX_DEVS_SYS_CHUNK);
5104 } else {
5105 BUG();
5106 }
5107
5108 /* We don't want a chunk larger than 10% of writable space */
5109 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
5110 ctl->max_chunk_size);
6aafb303 5111 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes;
27c314d5
NA
5112}
5113
1cd6121f
NA
5114static void init_alloc_chunk_ctl_policy_zoned(
5115 struct btrfs_fs_devices *fs_devices,
5116 struct alloc_chunk_ctl *ctl)
5117{
5118 u64 zone_size = fs_devices->fs_info->zone_size;
5119 u64 limit;
5120 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5121 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5122 u64 min_chunk_size = min_data_stripes * zone_size;
5123 u64 type = ctl->type;
5124
5125 ctl->max_stripe_size = zone_size;
5126 if (type & BTRFS_BLOCK_GROUP_DATA) {
5127 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5128 zone_size);
5129 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5130 ctl->max_chunk_size = ctl->max_stripe_size;
5131 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5132 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5133 ctl->devs_max = min_t(int, ctl->devs_max,
5134 BTRFS_MAX_DEVS_SYS_CHUNK);
bb05b298
AB
5135 } else {
5136 BUG();
1cd6121f
NA
5137 }
5138
5139 /* We don't want a chunk larger than 10% of writable space */
5140 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1),
5141 zone_size),
5142 min_chunk_size);
5143 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5144 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5145}
5146
27c314d5
NA
5147static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5148 struct alloc_chunk_ctl *ctl)
5149{
5150 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5151
5152 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5153 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5154 ctl->devs_max = btrfs_raid_array[index].devs_max;
5155 if (!ctl->devs_max)
5156 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5157 ctl->devs_min = btrfs_raid_array[index].devs_min;
5158 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5159 ctl->ncopies = btrfs_raid_array[index].ncopies;
5160 ctl->nparity = btrfs_raid_array[index].nparity;
5161 ctl->ndevs = 0;
5162
5163 switch (fs_devices->chunk_alloc_policy) {
5164 case BTRFS_CHUNK_ALLOC_REGULAR:
5165 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5166 break;
1cd6121f
NA
5167 case BTRFS_CHUNK_ALLOC_ZONED:
5168 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5169 break;
27c314d5
NA
5170 default:
5171 BUG();
5172 }
5173}
5174
560156cb
NA
5175static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5176 struct alloc_chunk_ctl *ctl,
5177 struct btrfs_device_info *devices_info)
b2117a39 5178{
560156cb 5179 struct btrfs_fs_info *info = fs_devices->fs_info;
ebcc9301 5180 struct btrfs_device *device;
73c5de00 5181 u64 total_avail;
560156cb 5182 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
73c5de00 5183 int ret;
560156cb
NA
5184 int ndevs = 0;
5185 u64 max_avail;
5186 u64 dev_offset;
0cad8a11 5187
9f680ce0 5188 /*
73c5de00
AJ
5189 * in the first pass through the devices list, we gather information
5190 * about the available holes on each device.
9f680ce0 5191 */
ebcc9301 5192 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
ebbede42 5193 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
31b1a2bd 5194 WARN(1, KERN_ERR
efe120a0 5195 "BTRFS: read-only device in alloc_list\n");
73c5de00
AJ
5196 continue;
5197 }
b2117a39 5198
e12c9621
AJ
5199 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5200 &device->dev_state) ||
401e29c1 5201 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
73c5de00 5202 continue;
b2117a39 5203
73c5de00
AJ
5204 if (device->total_bytes > device->bytes_used)
5205 total_avail = device->total_bytes - device->bytes_used;
5206 else
5207 total_avail = 0;
38c01b96 5208
5209 /* If there is no space on this device, skip it. */
6aafb303 5210 if (total_avail < ctl->dev_extent_min)
38c01b96 5211 continue;
b2117a39 5212
560156cb
NA
5213 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5214 &max_avail);
73c5de00 5215 if (ret && ret != -ENOSPC)
560156cb 5216 return ret;
b2117a39 5217
73c5de00 5218 if (ret == 0)
560156cb 5219 max_avail = dev_extent_want;
b2117a39 5220
6aafb303 5221 if (max_avail < ctl->dev_extent_min) {
4117f207
QW
5222 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5223 btrfs_debug(info,
560156cb 5224 "%s: devid %llu has no free space, have=%llu want=%llu",
4117f207 5225 __func__, device->devid, max_avail,
6aafb303 5226 ctl->dev_extent_min);
73c5de00 5227 continue;
4117f207 5228 }
b2117a39 5229
063d006f
ES
5230 if (ndevs == fs_devices->rw_devices) {
5231 WARN(1, "%s: found more than %llu devices\n",
5232 __func__, fs_devices->rw_devices);
5233 break;
5234 }
73c5de00
AJ
5235 devices_info[ndevs].dev_offset = dev_offset;
5236 devices_info[ndevs].max_avail = max_avail;
5237 devices_info[ndevs].total_avail = total_avail;
5238 devices_info[ndevs].dev = device;
5239 ++ndevs;
5240 }
560156cb 5241 ctl->ndevs = ndevs;
b2117a39 5242
73c5de00
AJ
5243 /*
5244 * now sort the devices by hole size / available space
5245 */
560156cb 5246 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
73c5de00 5247 btrfs_cmp_device_info, NULL);
b2117a39 5248
560156cb
NA
5249 return 0;
5250}
5251
5badf512
NA
5252static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5253 struct btrfs_device_info *devices_info)
5254{
5255 /* Number of stripes that count for block group size */
5256 int data_stripes;
5257
5258 /*
5259 * The primary goal is to maximize the number of stripes, so use as
5260 * many devices as possible, even if the stripes are not maximum sized.
5261 *
5262 * The DUP profile stores more than one stripe per device, the
5263 * max_avail is the total size so we have to adjust.
5264 */
5265 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5266 ctl->dev_stripes);
5267 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5268
5269 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5270 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5271
5272 /*
5273 * Use the number of data stripes to figure out how big this chunk is
5274 * really going to be in terms of logical address space, and compare
5275 * that answer with the max chunk size. If it's higher, we try to
5276 * reduce stripe_size.
5277 */
5278 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5279 /*
5280 * Reduce stripe_size, round it up to a 16MB boundary again and
5281 * then use it, unless it ends up being even bigger than the
5282 * previous value we had already.
5283 */
5284 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5285 data_stripes), SZ_16M),
5286 ctl->stripe_size);
5287 }
5288
5289 /* Align to BTRFS_STRIPE_LEN */
5290 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5291 ctl->chunk_size = ctl->stripe_size * data_stripes;
5292
5293 return 0;
5294}
5295
1cd6121f
NA
5296static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5297 struct btrfs_device_info *devices_info)
5298{
5299 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5300 /* Number of stripes that count for block group size */
5301 int data_stripes;
5302
5303 /*
5304 * It should hold because:
5305 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5306 */
5307 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min);
5308
5309 ctl->stripe_size = zone_size;
5310 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5311 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5312
5313 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */
5314 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5315 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5316 ctl->stripe_size) + ctl->nparity,
5317 ctl->dev_stripes);
5318 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5319 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5320 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size);
5321 }
5322
5323 ctl->chunk_size = ctl->stripe_size * data_stripes;
5324
5325 return 0;
5326}
5327
5badf512
NA
5328static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5329 struct alloc_chunk_ctl *ctl,
5330 struct btrfs_device_info *devices_info)
5331{
5332 struct btrfs_fs_info *info = fs_devices->fs_info;
5333
5334 /*
5335 * Round down to number of usable stripes, devs_increment can be any
5336 * number so we can't use round_down() that requires power of 2, while
5337 * rounddown is safe.
5338 */
5339 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5340
5341 if (ctl->ndevs < ctl->devs_min) {
5342 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5343 btrfs_debug(info,
5344 "%s: not enough devices with free space: have=%d minimum required=%d",
5345 __func__, ctl->ndevs, ctl->devs_min);
5346 }
5347 return -ENOSPC;
5348 }
5349
5350 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5351
5352 switch (fs_devices->chunk_alloc_policy) {
5353 case BTRFS_CHUNK_ALLOC_REGULAR:
5354 return decide_stripe_size_regular(ctl, devices_info);
1cd6121f
NA
5355 case BTRFS_CHUNK_ALLOC_ZONED:
5356 return decide_stripe_size_zoned(ctl, devices_info);
5badf512
NA
5357 default:
5358 BUG();
5359 }
5360}
5361
79bd3712 5362static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
dce580ca
NA
5363 struct alloc_chunk_ctl *ctl,
5364 struct btrfs_device_info *devices_info)
560156cb
NA
5365{
5366 struct btrfs_fs_info *info = trans->fs_info;
560156cb
NA
5367 struct map_lookup *map = NULL;
5368 struct extent_map_tree *em_tree;
79bd3712 5369 struct btrfs_block_group *block_group;
560156cb 5370 struct extent_map *em;
dce580ca
NA
5371 u64 start = ctl->start;
5372 u64 type = ctl->type;
560156cb
NA
5373 int ret;
5374 int i;
5375 int j;
5376
dce580ca
NA
5377 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS);
5378 if (!map)
79bd3712 5379 return ERR_PTR(-ENOMEM);
dce580ca 5380 map->num_stripes = ctl->num_stripes;
560156cb 5381
dce580ca
NA
5382 for (i = 0; i < ctl->ndevs; ++i) {
5383 for (j = 0; j < ctl->dev_stripes; ++j) {
5384 int s = i * ctl->dev_stripes + j;
73c5de00
AJ
5385 map->stripes[s].dev = devices_info[i].dev;
5386 map->stripes[s].physical = devices_info[i].dev_offset +
dce580ca 5387 j * ctl->stripe_size;
6324fbf3 5388 }
6324fbf3 5389 }
500ceed8
NB
5390 map->stripe_len = BTRFS_STRIPE_LEN;
5391 map->io_align = BTRFS_STRIPE_LEN;
5392 map->io_width = BTRFS_STRIPE_LEN;
2b82032c 5393 map->type = type;
dce580ca 5394 map->sub_stripes = ctl->sub_stripes;
0b86a832 5395
dce580ca 5396 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
1abe9b8a 5397
172ddd60 5398 em = alloc_extent_map();
2b82032c 5399 if (!em) {
298a8f9c 5400 kfree(map);
79bd3712 5401 return ERR_PTR(-ENOMEM);
593060d7 5402 }
298a8f9c 5403 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 5404 em->map_lookup = map;
2b82032c 5405 em->start = start;
dce580ca 5406 em->len = ctl->chunk_size;
2b82032c
YZ
5407 em->block_start = 0;
5408 em->block_len = em->len;
dce580ca 5409 em->orig_block_len = ctl->stripe_size;
593060d7 5410
c8bf1b67 5411 em_tree = &info->mapping_tree;
890871be 5412 write_lock(&em_tree->lock);
09a2a8f9 5413 ret = add_extent_mapping(em_tree, em, 0);
0f5d42b2 5414 if (ret) {
1efb72a3 5415 write_unlock(&em_tree->lock);
0f5d42b2 5416 free_extent_map(em);
79bd3712 5417 return ERR_PTR(ret);
0f5d42b2 5418 }
1efb72a3
NB
5419 write_unlock(&em_tree->lock);
5420
79bd3712
FM
5421 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size);
5422 if (IS_ERR(block_group))
6df9a95e 5423 goto error_del_extent;
2b82032c 5424
bbbf7243
NB
5425 for (i = 0; i < map->num_stripes; i++) {
5426 struct btrfs_device *dev = map->stripes[i].dev;
5427
4f2bafe8 5428 btrfs_device_set_bytes_used(dev,
dce580ca 5429 dev->bytes_used + ctl->stripe_size);
bbbf7243
NB
5430 if (list_empty(&dev->post_commit_list))
5431 list_add_tail(&dev->post_commit_list,
5432 &trans->transaction->dev_update_list);
5433 }
43530c46 5434
dce580ca 5435 atomic64_sub(ctl->stripe_size * map->num_stripes,
4f2bafe8 5436 &info->free_chunk_space);
1c116187 5437
0f5d42b2 5438 free_extent_map(em);
0b246afa 5439 check_raid56_incompat_flag(info, type);
cfbb825c 5440 check_raid1c34_incompat_flag(info, type);
53b381b3 5441
79bd3712 5442 return block_group;
b2117a39 5443
6df9a95e 5444error_del_extent:
0f5d42b2
JB
5445 write_lock(&em_tree->lock);
5446 remove_extent_mapping(em_tree, em);
5447 write_unlock(&em_tree->lock);
5448
5449 /* One for our allocation */
5450 free_extent_map(em);
5451 /* One for the tree reference */
5452 free_extent_map(em);
dce580ca 5453
79bd3712 5454 return block_group;
dce580ca
NA
5455}
5456
f6f39f7a 5457struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
79bd3712 5458 u64 type)
dce580ca
NA
5459{
5460 struct btrfs_fs_info *info = trans->fs_info;
5461 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5462 struct btrfs_device_info *devices_info = NULL;
5463 struct alloc_chunk_ctl ctl;
79bd3712 5464 struct btrfs_block_group *block_group;
dce580ca
NA
5465 int ret;
5466
11c67b1a
NB
5467 lockdep_assert_held(&info->chunk_mutex);
5468
dce580ca
NA
5469 if (!alloc_profile_is_valid(type, 0)) {
5470 ASSERT(0);
79bd3712 5471 return ERR_PTR(-EINVAL);
dce580ca
NA
5472 }
5473
5474 if (list_empty(&fs_devices->alloc_list)) {
5475 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5476 btrfs_debug(info, "%s: no writable device", __func__);
79bd3712 5477 return ERR_PTR(-ENOSPC);
dce580ca
NA
5478 }
5479
5480 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5481 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5482 ASSERT(0);
79bd3712 5483 return ERR_PTR(-EINVAL);
dce580ca
NA
5484 }
5485
11c67b1a 5486 ctl.start = find_next_chunk(info);
dce580ca
NA
5487 ctl.type = type;
5488 init_alloc_chunk_ctl(fs_devices, &ctl);
5489
5490 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5491 GFP_NOFS);
5492 if (!devices_info)
79bd3712 5493 return ERR_PTR(-ENOMEM);
dce580ca
NA
5494
5495 ret = gather_device_info(fs_devices, &ctl, devices_info);
79bd3712
FM
5496 if (ret < 0) {
5497 block_group = ERR_PTR(ret);
dce580ca 5498 goto out;
79bd3712 5499 }
dce580ca
NA
5500
5501 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
79bd3712
FM
5502 if (ret < 0) {
5503 block_group = ERR_PTR(ret);
dce580ca 5504 goto out;
79bd3712 5505 }
dce580ca 5506
79bd3712 5507 block_group = create_chunk(trans, &ctl, devices_info);
dce580ca
NA
5508
5509out:
b2117a39 5510 kfree(devices_info);
79bd3712 5511 return block_group;
2b82032c
YZ
5512}
5513
79bd3712
FM
5514/*
5515 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5516 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5517 * chunks.
5518 *
5519 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5520 * phases.
5521 */
5522int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5523 struct btrfs_block_group *bg)
5524{
5525 struct btrfs_fs_info *fs_info = trans->fs_info;
79bd3712
FM
5526 struct btrfs_root *chunk_root = fs_info->chunk_root;
5527 struct btrfs_key key;
5528 struct btrfs_chunk *chunk;
5529 struct btrfs_stripe *stripe;
5530 struct extent_map *em;
5531 struct map_lookup *map;
5532 size_t item_size;
5533 int i;
5534 int ret;
5535
5536 /*
5537 * We take the chunk_mutex for 2 reasons:
5538 *
5539 * 1) Updates and insertions in the chunk btree must be done while holding
5540 * the chunk_mutex, as well as updating the system chunk array in the
5541 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5542 * details;
5543 *
5544 * 2) To prevent races with the final phase of a device replace operation
5545 * that replaces the device object associated with the map's stripes,
5546 * because the device object's id can change at any time during that
5547 * final phase of the device replace operation
5548 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5549 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5550 * which would cause a failure when updating the device item, which does
5551 * not exists, or persisting a stripe of the chunk item with such ID.
5552 * Here we can't use the device_list_mutex because our caller already
5553 * has locked the chunk_mutex, and the final phase of device replace
5554 * acquires both mutexes - first the device_list_mutex and then the
5555 * chunk_mutex. Using any of those two mutexes protects us from a
5556 * concurrent device replace.
5557 */
5558 lockdep_assert_held(&fs_info->chunk_mutex);
5559
5560 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5561 if (IS_ERR(em)) {
5562 ret = PTR_ERR(em);
5563 btrfs_abort_transaction(trans, ret);
5564 return ret;
5565 }
5566
5567 map = em->map_lookup;
5568 item_size = btrfs_chunk_item_size(map->num_stripes);
5569
5570 chunk = kzalloc(item_size, GFP_NOFS);
5571 if (!chunk) {
5572 ret = -ENOMEM;
5573 btrfs_abort_transaction(trans, ret);
50460e37 5574 goto out;
2b82032c
YZ
5575 }
5576
79bd3712
FM
5577 for (i = 0; i < map->num_stripes; i++) {
5578 struct btrfs_device *device = map->stripes[i].dev;
5579
5580 ret = btrfs_update_device(trans, device);
5581 if (ret)
5582 goto out;
5583 }
5584
2b82032c 5585 stripe = &chunk->stripe;
6df9a95e 5586 for (i = 0; i < map->num_stripes; i++) {
79bd3712
FM
5587 struct btrfs_device *device = map->stripes[i].dev;
5588 const u64 dev_offset = map->stripes[i].physical;
0b86a832 5589
e17cade2
CM
5590 btrfs_set_stack_stripe_devid(stripe, device->devid);
5591 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5592 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2b82032c 5593 stripe++;
0b86a832
CM
5594 }
5595
79bd3712 5596 btrfs_set_stack_chunk_length(chunk, bg->length);
fd51eb2f 5597 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
2b82032c
YZ
5598 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5599 btrfs_set_stack_chunk_type(chunk, map->type);
5600 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5601 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5602 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
0b246afa 5603 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
2b82032c 5604 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
0b86a832 5605
2b82032c
YZ
5606 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5607 key.type = BTRFS_CHUNK_ITEM_KEY;
79bd3712 5608 key.offset = bg->start;
0b86a832 5609
2b82032c 5610 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
79bd3712
FM
5611 if (ret)
5612 goto out;
5613
5614 bg->chunk_item_inserted = 1;
5615
5616 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2ff7e61e 5617 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
79bd3712
FM
5618 if (ret)
5619 goto out;
8f18cf13 5620 }
1abe9b8a 5621
6df9a95e 5622out:
0b86a832 5623 kfree(chunk);
6df9a95e 5624 free_extent_map(em);
4ed1d16e 5625 return ret;
2b82032c 5626}
0b86a832 5627
6f8e0fc7 5628static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
2b82032c 5629{
6f8e0fc7 5630 struct btrfs_fs_info *fs_info = trans->fs_info;
2b82032c 5631 u64 alloc_profile;
79bd3712
FM
5632 struct btrfs_block_group *meta_bg;
5633 struct btrfs_block_group *sys_bg;
5634
5635 /*
5636 * When adding a new device for sprouting, the seed device is read-only
5637 * so we must first allocate a metadata and a system chunk. But before
5638 * adding the block group items to the extent, device and chunk btrees,
5639 * we must first:
5640 *
5641 * 1) Create both chunks without doing any changes to the btrees, as
5642 * otherwise we would get -ENOSPC since the block groups from the
5643 * seed device are read-only;
5644 *
5645 * 2) Add the device item for the new sprout device - finishing the setup
5646 * of a new block group requires updating the device item in the chunk
5647 * btree, so it must exist when we attempt to do it. The previous step
5648 * ensures this does not fail with -ENOSPC.
5649 *
5650 * After that we can add the block group items to their btrees:
5651 * update existing device item in the chunk btree, add a new block group
5652 * item to the extent btree, add a new chunk item to the chunk btree and
5653 * finally add the new device extent items to the devices btree.
5654 */
2b82032c 5655
1b86826d 5656 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
f6f39f7a 5657 meta_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5658 if (IS_ERR(meta_bg))
5659 return PTR_ERR(meta_bg);
2b82032c 5660
1b86826d 5661 alloc_profile = btrfs_system_alloc_profile(fs_info);
f6f39f7a 5662 sys_bg = btrfs_create_chunk(trans, alloc_profile);
79bd3712
FM
5663 if (IS_ERR(sys_bg))
5664 return PTR_ERR(sys_bg);
5665
5666 return 0;
2b82032c
YZ
5667}
5668
d20983b4
MX
5669static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5670{
fc9a2ac7 5671 const int index = btrfs_bg_flags_to_raid_index(map->type);
2b82032c 5672
fc9a2ac7 5673 return btrfs_raid_array[index].tolerated_failures;
2b82032c
YZ
5674}
5675
a09f23c3 5676bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2b82032c
YZ
5677{
5678 struct extent_map *em;
5679 struct map_lookup *map;
d20983b4 5680 int miss_ndevs = 0;
2b82032c 5681 int i;
a09f23c3 5682 bool ret = true;
2b82032c 5683
60ca842e 5684 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
592d92ee 5685 if (IS_ERR(em))
a09f23c3 5686 return false;
2b82032c 5687
95617d69 5688 map = em->map_lookup;
2b82032c 5689 for (i = 0; i < map->num_stripes; i++) {
e6e674bd
AJ
5690 if (test_bit(BTRFS_DEV_STATE_MISSING,
5691 &map->stripes[i].dev->dev_state)) {
d20983b4
MX
5692 miss_ndevs++;
5693 continue;
5694 }
ebbede42
AJ
5695 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5696 &map->stripes[i].dev->dev_state)) {
a09f23c3 5697 ret = false;
d20983b4 5698 goto end;
2b82032c
YZ
5699 }
5700 }
d20983b4
MX
5701
5702 /*
a09f23c3
AJ
5703 * If the number of missing devices is larger than max errors, we can
5704 * not write the data into that chunk successfully.
d20983b4
MX
5705 */
5706 if (miss_ndevs > btrfs_chunk_max_errors(map))
a09f23c3 5707 ret = false;
d20983b4 5708end:
0b86a832 5709 free_extent_map(em);
a09f23c3 5710 return ret;
0b86a832
CM
5711}
5712
c8bf1b67 5713void btrfs_mapping_tree_free(struct extent_map_tree *tree)
0b86a832
CM
5714{
5715 struct extent_map *em;
5716
d397712b 5717 while (1) {
c8bf1b67
DS
5718 write_lock(&tree->lock);
5719 em = lookup_extent_mapping(tree, 0, (u64)-1);
0b86a832 5720 if (em)
c8bf1b67
DS
5721 remove_extent_mapping(tree, em);
5722 write_unlock(&tree->lock);
0b86a832
CM
5723 if (!em)
5724 break;
0b86a832
CM
5725 /* once for us */
5726 free_extent_map(em);
5727 /* once for the tree */
5728 free_extent_map(em);
5729 }
5730}
5731
5d964051 5732int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
f188591e
CM
5733{
5734 struct extent_map *em;
5735 struct map_lookup *map;
f188591e
CM
5736 int ret;
5737
60ca842e 5738 em = btrfs_get_chunk_map(fs_info, logical, len);
592d92ee
LB
5739 if (IS_ERR(em))
5740 /*
5741 * We could return errors for these cases, but that could get
5742 * ugly and we'd probably do the same thing which is just not do
5743 * anything else and exit, so return 1 so the callers don't try
5744 * to use other copies.
5745 */
fb7669b5 5746 return 1;
fb7669b5 5747
95617d69 5748 map = em->map_lookup;
c7369b3f 5749 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
f188591e 5750 ret = map->num_stripes;
321aecc6
CM
5751 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5752 ret = map->sub_stripes;
53b381b3
DW
5753 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5754 ret = 2;
5755 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
8810f751
LB
5756 /*
5757 * There could be two corrupted data stripes, we need
5758 * to loop retry in order to rebuild the correct data.
e7e02096 5759 *
8810f751
LB
5760 * Fail a stripe at a time on every retry except the
5761 * stripe under reconstruction.
5762 */
5763 ret = map->num_stripes;
f188591e
CM
5764 else
5765 ret = 1;
5766 free_extent_map(em);
ad6d620e 5767
cb5583dd 5768 down_read(&fs_info->dev_replace.rwsem);
6fad823f
LB
5769 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5770 fs_info->dev_replace.tgtdev)
ad6d620e 5771 ret++;
cb5583dd 5772 up_read(&fs_info->dev_replace.rwsem);
ad6d620e 5773
f188591e
CM
5774 return ret;
5775}
5776
2ff7e61e 5777unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
53b381b3
DW
5778 u64 logical)
5779{
5780 struct extent_map *em;
5781 struct map_lookup *map;
0b246afa 5782 unsigned long len = fs_info->sectorsize;
53b381b3 5783
60ca842e 5784 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5785
69f03f13
NB
5786 if (!WARN_ON(IS_ERR(em))) {
5787 map = em->map_lookup;
5788 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5789 len = map->stripe_len * nr_data_stripes(map);
5790 free_extent_map(em);
5791 }
53b381b3
DW
5792 return len;
5793}
5794
e4ff5fb5 5795int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
53b381b3
DW
5796{
5797 struct extent_map *em;
5798 struct map_lookup *map;
53b381b3
DW
5799 int ret = 0;
5800
60ca842e 5801 em = btrfs_get_chunk_map(fs_info, logical, len);
53b381b3 5802
69f03f13
NB
5803 if(!WARN_ON(IS_ERR(em))) {
5804 map = em->map_lookup;
5805 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5806 ret = 1;
5807 free_extent_map(em);
5808 }
53b381b3
DW
5809 return ret;
5810}
5811
30d9861f 5812static int find_live_mirror(struct btrfs_fs_info *fs_info,
99f92a7c 5813 struct map_lookup *map, int first,
8ba0ae78 5814 int dev_replace_is_ongoing)
dfe25020
CM
5815{
5816 int i;
99f92a7c 5817 int num_stripes;
8ba0ae78 5818 int preferred_mirror;
30d9861f
SB
5819 int tolerance;
5820 struct btrfs_device *srcdev;
5821
99f92a7c 5822 ASSERT((map->type &
c7369b3f 5823 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
99f92a7c
AJ
5824
5825 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5826 num_stripes = map->sub_stripes;
5827 else
5828 num_stripes = map->num_stripes;
5829
33fd2f71
AJ
5830 switch (fs_info->fs_devices->read_policy) {
5831 default:
5832 /* Shouldn't happen, just warn and use pid instead of failing */
5833 btrfs_warn_rl(fs_info,
5834 "unknown read_policy type %u, reset to pid",
5835 fs_info->fs_devices->read_policy);
5836 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID;
5837 fallthrough;
5838 case BTRFS_READ_POLICY_PID:
5839 preferred_mirror = first + (current->pid % num_stripes);
5840 break;
5841 }
8ba0ae78 5842
30d9861f
SB
5843 if (dev_replace_is_ongoing &&
5844 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5845 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5846 srcdev = fs_info->dev_replace.srcdev;
5847 else
5848 srcdev = NULL;
5849
5850 /*
5851 * try to avoid the drive that is the source drive for a
5852 * dev-replace procedure, only choose it if no other non-missing
5853 * mirror is available
5854 */
5855 for (tolerance = 0; tolerance < 2; tolerance++) {
8ba0ae78
AJ
5856 if (map->stripes[preferred_mirror].dev->bdev &&
5857 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5858 return preferred_mirror;
99f92a7c 5859 for (i = first; i < first + num_stripes; i++) {
30d9861f
SB
5860 if (map->stripes[i].dev->bdev &&
5861 (tolerance || map->stripes[i].dev != srcdev))
5862 return i;
5863 }
dfe25020 5864 }
30d9861f 5865
dfe25020
CM
5866 /* we couldn't find one that doesn't fail. Just return something
5867 * and the io error handling code will clean up eventually
5868 */
8ba0ae78 5869 return preferred_mirror;
dfe25020
CM
5870}
5871
53b381b3 5872/* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4c664611 5873static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes)
53b381b3 5874{
53b381b3 5875 int i;
53b381b3
DW
5876 int again = 1;
5877
5878 while (again) {
5879 again = 0;
cc7539ed 5880 for (i = 0; i < num_stripes - 1; i++) {
eeb6f172 5881 /* Swap if parity is on a smaller index */
4c664611
QW
5882 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) {
5883 swap(bioc->stripes[i], bioc->stripes[i + 1]);
5884 swap(bioc->raid_map[i], bioc->raid_map[i + 1]);
53b381b3
DW
5885 again = 1;
5886 }
5887 }
5888 }
5889}
5890
731ccf15
QW
5891static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
5892 int total_stripes,
4c664611 5893 int real_stripes)
6e9606d2 5894{
4c664611
QW
5895 struct btrfs_io_context *bioc = kzalloc(
5896 /* The size of btrfs_io_context */
5897 sizeof(struct btrfs_io_context) +
5898 /* Plus the variable array for the stripes */
5899 sizeof(struct btrfs_io_stripe) * (total_stripes) +
5900 /* Plus the variable array for the tgt dev */
6e9606d2 5901 sizeof(int) * (real_stripes) +
e57cf21e 5902 /*
4c664611
QW
5903 * Plus the raid_map, which includes both the tgt dev
5904 * and the stripes.
e57cf21e
CM
5905 */
5906 sizeof(u64) * (total_stripes),
277fb5fc 5907 GFP_NOFS|__GFP_NOFAIL);
6e9606d2 5908
4c664611
QW
5909 atomic_set(&bioc->error, 0);
5910 refcount_set(&bioc->refs, 1);
6e9606d2 5911
731ccf15 5912 bioc->fs_info = fs_info;
4c664611
QW
5913 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes);
5914 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes);
608769a4 5915
4c664611 5916 return bioc;
6e9606d2
ZL
5917}
5918
4c664611 5919void btrfs_get_bioc(struct btrfs_io_context *bioc)
6e9606d2 5920{
4c664611
QW
5921 WARN_ON(!refcount_read(&bioc->refs));
5922 refcount_inc(&bioc->refs);
6e9606d2
ZL
5923}
5924
4c664611 5925void btrfs_put_bioc(struct btrfs_io_context *bioc)
6e9606d2 5926{
4c664611 5927 if (!bioc)
6e9606d2 5928 return;
4c664611
QW
5929 if (refcount_dec_and_test(&bioc->refs))
5930 kfree(bioc);
6e9606d2
ZL
5931}
5932
0b3d4cd3
LB
5933/* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5934/*
5935 * Please note that, discard won't be sent to target device of device
5936 * replace.
5937 */
5938static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
6b7faadd 5939 u64 logical, u64 *length_ret,
4c664611 5940 struct btrfs_io_context **bioc_ret)
0b3d4cd3
LB
5941{
5942 struct extent_map *em;
5943 struct map_lookup *map;
4c664611 5944 struct btrfs_io_context *bioc;
6b7faadd 5945 u64 length = *length_ret;
0b3d4cd3
LB
5946 u64 offset;
5947 u64 stripe_nr;
5948 u64 stripe_nr_end;
5949 u64 stripe_end_offset;
5950 u64 stripe_cnt;
5951 u64 stripe_len;
5952 u64 stripe_offset;
5953 u64 num_stripes;
5954 u32 stripe_index;
5955 u32 factor = 0;
5956 u32 sub_stripes = 0;
5957 u64 stripes_per_dev = 0;
5958 u32 remaining_stripes = 0;
5959 u32 last_stripe = 0;
5960 int ret = 0;
5961 int i;
5962
4c664611
QW
5963 /* Discard always returns a bioc. */
5964 ASSERT(bioc_ret);
0b3d4cd3 5965
60ca842e 5966 em = btrfs_get_chunk_map(fs_info, logical, length);
0b3d4cd3
LB
5967 if (IS_ERR(em))
5968 return PTR_ERR(em);
5969
5970 map = em->map_lookup;
5971 /* we don't discard raid56 yet */
5972 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5973 ret = -EOPNOTSUPP;
5974 goto out;
5975 }
5976
5977 offset = logical - em->start;
2d974619 5978 length = min_t(u64, em->start + em->len - logical, length);
6b7faadd 5979 *length_ret = length;
0b3d4cd3
LB
5980
5981 stripe_len = map->stripe_len;
5982 /*
5983 * stripe_nr counts the total number of stripes we have to stride
5984 * to get to this block
5985 */
5986 stripe_nr = div64_u64(offset, stripe_len);
5987
5988 /* stripe_offset is the offset of this block in its stripe */
5989 stripe_offset = offset - stripe_nr * stripe_len;
5990
5991 stripe_nr_end = round_up(offset + length, map->stripe_len);
42c61ab6 5992 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
0b3d4cd3
LB
5993 stripe_cnt = stripe_nr_end - stripe_nr;
5994 stripe_end_offset = stripe_nr_end * map->stripe_len -
5995 (offset + length);
5996 /*
5997 * after this, stripe_nr is the number of stripes on this
5998 * device we have to walk to find the data, and stripe_index is
5999 * the number of our device in the stripe array
6000 */
6001 num_stripes = 1;
6002 stripe_index = 0;
6003 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6004 BTRFS_BLOCK_GROUP_RAID10)) {
6005 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6006 sub_stripes = 1;
6007 else
6008 sub_stripes = map->sub_stripes;
6009
6010 factor = map->num_stripes / sub_stripes;
6011 num_stripes = min_t(u64, map->num_stripes,
6012 sub_stripes * stripe_cnt);
6013 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6014 stripe_index *= sub_stripes;
6015 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
6016 &remaining_stripes);
6017 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
6018 last_stripe *= sub_stripes;
c7369b3f 6019 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
0b3d4cd3
LB
6020 BTRFS_BLOCK_GROUP_DUP)) {
6021 num_stripes = map->num_stripes;
6022 } else {
6023 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6024 &stripe_index);
6025 }
6026
731ccf15 6027 bioc = alloc_btrfs_io_context(fs_info, num_stripes, 0);
4c664611 6028 if (!bioc) {
0b3d4cd3
LB
6029 ret = -ENOMEM;
6030 goto out;
6031 }
6032
6033 for (i = 0; i < num_stripes; i++) {
4c664611 6034 bioc->stripes[i].physical =
0b3d4cd3
LB
6035 map->stripes[stripe_index].physical +
6036 stripe_offset + stripe_nr * map->stripe_len;
4c664611 6037 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
0b3d4cd3
LB
6038
6039 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6040 BTRFS_BLOCK_GROUP_RAID10)) {
4c664611 6041 bioc->stripes[i].length = stripes_per_dev *
0b3d4cd3
LB
6042 map->stripe_len;
6043
6044 if (i / sub_stripes < remaining_stripes)
4c664611 6045 bioc->stripes[i].length += map->stripe_len;
0b3d4cd3
LB
6046
6047 /*
6048 * Special for the first stripe and
6049 * the last stripe:
6050 *
6051 * |-------|...|-------|
6052 * |----------|
6053 * off end_off
6054 */
6055 if (i < sub_stripes)
4c664611 6056 bioc->stripes[i].length -= stripe_offset;
0b3d4cd3
LB
6057
6058 if (stripe_index >= last_stripe &&
6059 stripe_index <= (last_stripe +
6060 sub_stripes - 1))
4c664611 6061 bioc->stripes[i].length -= stripe_end_offset;
0b3d4cd3
LB
6062
6063 if (i == sub_stripes - 1)
6064 stripe_offset = 0;
6065 } else {
4c664611 6066 bioc->stripes[i].length = length;
0b3d4cd3
LB
6067 }
6068
6069 stripe_index++;
6070 if (stripe_index == map->num_stripes) {
6071 stripe_index = 0;
6072 stripe_nr++;
6073 }
6074 }
6075
4c664611
QW
6076 *bioc_ret = bioc;
6077 bioc->map_type = map->type;
6078 bioc->num_stripes = num_stripes;
0b3d4cd3
LB
6079out:
6080 free_extent_map(em);
6081 return ret;
6082}
6083
5ab56090
LB
6084/*
6085 * In dev-replace case, for repair case (that's the only case where the mirror
6086 * is selected explicitly when calling btrfs_map_block), blocks left of the
6087 * left cursor can also be read from the target drive.
6088 *
6089 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
6090 * array of stripes.
6091 * For READ, it also needs to be supported using the same mirror number.
6092 *
6093 * If the requested block is not left of the left cursor, EIO is returned. This
6094 * can happen because btrfs_num_copies() returns one more in the dev-replace
6095 * case.
6096 */
6097static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
6098 u64 logical, u64 length,
6099 u64 srcdev_devid, int *mirror_num,
6100 u64 *physical)
6101{
4c664611 6102 struct btrfs_io_context *bioc = NULL;
5ab56090
LB
6103 int num_stripes;
6104 int index_srcdev = 0;
6105 int found = 0;
6106 u64 physical_of_found = 0;
6107 int i;
6108 int ret = 0;
6109
6110 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
4c664611 6111 logical, &length, &bioc, 0, 0);
5ab56090 6112 if (ret) {
4c664611 6113 ASSERT(bioc == NULL);
5ab56090
LB
6114 return ret;
6115 }
6116
4c664611 6117 num_stripes = bioc->num_stripes;
5ab56090
LB
6118 if (*mirror_num > num_stripes) {
6119 /*
6120 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
6121 * that means that the requested area is not left of the left
6122 * cursor
6123 */
4c664611 6124 btrfs_put_bioc(bioc);
5ab56090
LB
6125 return -EIO;
6126 }
6127
6128 /*
6129 * process the rest of the function using the mirror_num of the source
6130 * drive. Therefore look it up first. At the end, patch the device
6131 * pointer to the one of the target drive.
6132 */
6133 for (i = 0; i < num_stripes; i++) {
4c664611 6134 if (bioc->stripes[i].dev->devid != srcdev_devid)
5ab56090
LB
6135 continue;
6136
6137 /*
6138 * In case of DUP, in order to keep it simple, only add the
6139 * mirror with the lowest physical address
6140 */
6141 if (found &&
4c664611 6142 physical_of_found <= bioc->stripes[i].physical)
5ab56090
LB
6143 continue;
6144
6145 index_srcdev = i;
6146 found = 1;
4c664611 6147 physical_of_found = bioc->stripes[i].physical;
5ab56090
LB
6148 }
6149
4c664611 6150 btrfs_put_bioc(bioc);
5ab56090
LB
6151
6152 ASSERT(found);
6153 if (!found)
6154 return -EIO;
6155
6156 *mirror_num = index_srcdev + 1;
6157 *physical = physical_of_found;
6158 return ret;
6159}
6160
6143c23c
NA
6161static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6162{
6163 struct btrfs_block_group *cache;
6164 bool ret;
6165
de17addc 6166 /* Non zoned filesystem does not use "to_copy" flag */
6143c23c
NA
6167 if (!btrfs_is_zoned(fs_info))
6168 return false;
6169
6170 cache = btrfs_lookup_block_group(fs_info, logical);
6171
6172 spin_lock(&cache->lock);
6173 ret = cache->to_copy;
6174 spin_unlock(&cache->lock);
6175
6176 btrfs_put_block_group(cache);
6177 return ret;
6178}
6179
73c0f228 6180static void handle_ops_on_dev_replace(enum btrfs_map_op op,
4c664611 6181 struct btrfs_io_context **bioc_ret,
73c0f228 6182 struct btrfs_dev_replace *dev_replace,
6143c23c 6183 u64 logical,
73c0f228
LB
6184 int *num_stripes_ret, int *max_errors_ret)
6185{
4c664611 6186 struct btrfs_io_context *bioc = *bioc_ret;
73c0f228
LB
6187 u64 srcdev_devid = dev_replace->srcdev->devid;
6188 int tgtdev_indexes = 0;
6189 int num_stripes = *num_stripes_ret;
6190 int max_errors = *max_errors_ret;
6191 int i;
6192
6193 if (op == BTRFS_MAP_WRITE) {
6194 int index_where_to_add;
6195
6143c23c
NA
6196 /*
6197 * A block group which have "to_copy" set will eventually
6198 * copied by dev-replace process. We can avoid cloning IO here.
6199 */
6200 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6201 return;
6202
73c0f228
LB
6203 /*
6204 * duplicate the write operations while the dev replace
6205 * procedure is running. Since the copying of the old disk to
6206 * the new disk takes place at run time while the filesystem is
6207 * mounted writable, the regular write operations to the old
6208 * disk have to be duplicated to go to the new disk as well.
6209 *
6210 * Note that device->missing is handled by the caller, and that
6211 * the write to the old disk is already set up in the stripes
6212 * array.
6213 */
6214 index_where_to_add = num_stripes;
6215 for (i = 0; i < num_stripes; i++) {
4c664611 6216 if (bioc->stripes[i].dev->devid == srcdev_devid) {
73c0f228 6217 /* write to new disk, too */
4c664611
QW
6218 struct btrfs_io_stripe *new =
6219 bioc->stripes + index_where_to_add;
6220 struct btrfs_io_stripe *old =
6221 bioc->stripes + i;
73c0f228
LB
6222
6223 new->physical = old->physical;
6224 new->length = old->length;
6225 new->dev = dev_replace->tgtdev;
4c664611 6226 bioc->tgtdev_map[i] = index_where_to_add;
73c0f228
LB
6227 index_where_to_add++;
6228 max_errors++;
6229 tgtdev_indexes++;
6230 }
6231 }
6232 num_stripes = index_where_to_add;
6233 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
6234 int index_srcdev = 0;
6235 int found = 0;
6236 u64 physical_of_found = 0;
6237
6238 /*
6239 * During the dev-replace procedure, the target drive can also
6240 * be used to read data in case it is needed to repair a corrupt
6241 * block elsewhere. This is possible if the requested area is
6242 * left of the left cursor. In this area, the target drive is a
6243 * full copy of the source drive.
6244 */
6245 for (i = 0; i < num_stripes; i++) {
4c664611 6246 if (bioc->stripes[i].dev->devid == srcdev_devid) {
73c0f228
LB
6247 /*
6248 * In case of DUP, in order to keep it simple,
6249 * only add the mirror with the lowest physical
6250 * address
6251 */
6252 if (found &&
4c664611 6253 physical_of_found <= bioc->stripes[i].physical)
73c0f228
LB
6254 continue;
6255 index_srcdev = i;
6256 found = 1;
4c664611 6257 physical_of_found = bioc->stripes[i].physical;
73c0f228
LB
6258 }
6259 }
6260 if (found) {
4c664611
QW
6261 struct btrfs_io_stripe *tgtdev_stripe =
6262 bioc->stripes + num_stripes;
73c0f228
LB
6263
6264 tgtdev_stripe->physical = physical_of_found;
6265 tgtdev_stripe->length =
4c664611 6266 bioc->stripes[index_srcdev].length;
73c0f228 6267 tgtdev_stripe->dev = dev_replace->tgtdev;
4c664611 6268 bioc->tgtdev_map[index_srcdev] = num_stripes;
73c0f228
LB
6269
6270 tgtdev_indexes++;
6271 num_stripes++;
6272 }
6273 }
6274
6275 *num_stripes_ret = num_stripes;
6276 *max_errors_ret = max_errors;
4c664611
QW
6277 bioc->num_tgtdevs = tgtdev_indexes;
6278 *bioc_ret = bioc;
73c0f228
LB
6279}
6280
2b19a1fe
LB
6281static bool need_full_stripe(enum btrfs_map_op op)
6282{
6283 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
6284}
6285
5f141126 6286/*
42034313
MR
6287 * Calculate the geometry of a particular (address, len) tuple. This
6288 * information is used to calculate how big a particular bio can get before it
6289 * straddles a stripe.
5f141126 6290 *
42034313
MR
6291 * @fs_info: the filesystem
6292 * @em: mapping containing the logical extent
6293 * @op: type of operation - write or read
6294 * @logical: address that we want to figure out the geometry of
42034313 6295 * @io_geom: pointer used to return values
5f141126
NB
6296 *
6297 * Returns < 0 in case a chunk for the given logical address cannot be found,
6298 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
6299 */
42034313 6300int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em,
43c0d1a5 6301 enum btrfs_map_op op, u64 logical,
42034313 6302 struct btrfs_io_geometry *io_geom)
5f141126 6303{
5f141126 6304 struct map_lookup *map;
43c0d1a5 6305 u64 len;
5f141126
NB
6306 u64 offset;
6307 u64 stripe_offset;
6308 u64 stripe_nr;
cc353a8b 6309 u32 stripe_len;
5f141126
NB
6310 u64 raid56_full_stripe_start = (u64)-1;
6311 int data_stripes;
6312
6313 ASSERT(op != BTRFS_MAP_DISCARD);
6314
5f141126
NB
6315 map = em->map_lookup;
6316 /* Offset of this logical address in the chunk */
6317 offset = logical - em->start;
6318 /* Len of a stripe in a chunk */
6319 stripe_len = map->stripe_len;
cc353a8b
QW
6320 /*
6321 * Stripe_nr is where this block falls in
6322 * stripe_offset is the offset of this block in its stripe.
6323 */
6324 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset);
6325 ASSERT(stripe_offset < U32_MAX);
5f141126 6326
5f141126
NB
6327 data_stripes = nr_data_stripes(map);
6328
bf08387f
QW
6329 /* Only stripe based profiles needs to check against stripe length. */
6330 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) {
5f141126
NB
6331 u64 max_len = stripe_len - stripe_offset;
6332
6333 /*
6334 * In case of raid56, we need to know the stripe aligned start
6335 */
6336 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6337 unsigned long full_stripe_len = stripe_len * data_stripes;
6338 raid56_full_stripe_start = offset;
6339
6340 /*
6341 * Allow a write of a full stripe, but make sure we
6342 * don't allow straddling of stripes
6343 */
6344 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
6345 full_stripe_len);
6346 raid56_full_stripe_start *= full_stripe_len;
6347
6348 /*
6349 * For writes to RAID[56], allow a full stripeset across
6350 * all disks. For other RAID types and for RAID[56]
6351 * reads, just allow a single stripe (on a single disk).
6352 */
6353 if (op == BTRFS_MAP_WRITE) {
6354 max_len = stripe_len * data_stripes -
6355 (offset - raid56_full_stripe_start);
6356 }
6357 }
6358 len = min_t(u64, em->len - offset, max_len);
6359 } else {
6360 len = em->len - offset;
6361 }
6362
6363 io_geom->len = len;
6364 io_geom->offset = offset;
6365 io_geom->stripe_len = stripe_len;
6366 io_geom->stripe_nr = stripe_nr;
6367 io_geom->stripe_offset = stripe_offset;
6368 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6369
42034313 6370 return 0;
5f141126
NB
6371}
6372
cf8cddd3
CH
6373static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6374 enum btrfs_map_op op,
f2d8d74d 6375 u64 logical, u64 *length,
4c664611 6376 struct btrfs_io_context **bioc_ret,
8e5cfb55 6377 int mirror_num, int need_raid_map)
0b86a832
CM
6378{
6379 struct extent_map *em;
6380 struct map_lookup *map;
593060d7
CM
6381 u64 stripe_offset;
6382 u64 stripe_nr;
53b381b3 6383 u64 stripe_len;
9d644a62 6384 u32 stripe_index;
cff82672 6385 int data_stripes;
cea9e445 6386 int i;
de11cc12 6387 int ret = 0;
f2d8d74d 6388 int num_stripes;
a236aed1 6389 int max_errors = 0;
2c8cdd6e 6390 int tgtdev_indexes = 0;
4c664611 6391 struct btrfs_io_context *bioc = NULL;
472262f3
SB
6392 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6393 int dev_replace_is_ongoing = 0;
6394 int num_alloc_stripes;
ad6d620e
SB
6395 int patch_the_first_stripe_for_dev_replace = 0;
6396 u64 physical_to_patch_in_first_stripe = 0;
53b381b3 6397 u64 raid56_full_stripe_start = (u64)-1;
89b798ad
NB
6398 struct btrfs_io_geometry geom;
6399
4c664611 6400 ASSERT(bioc_ret);
75fb2e9e 6401 ASSERT(op != BTRFS_MAP_DISCARD);
0b3d4cd3 6402
42034313
MR
6403 em = btrfs_get_chunk_map(fs_info, logical, *length);
6404 ASSERT(!IS_ERR(em));
6405
43c0d1a5 6406 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom);
89b798ad
NB
6407 if (ret < 0)
6408 return ret;
0b86a832 6409
95617d69 6410 map = em->map_lookup;
593060d7 6411
89b798ad 6412 *length = geom.len;
89b798ad
NB
6413 stripe_len = geom.stripe_len;
6414 stripe_nr = geom.stripe_nr;
6415 stripe_offset = geom.stripe_offset;
6416 raid56_full_stripe_start = geom.raid56_stripe_offset;
cff82672 6417 data_stripes = nr_data_stripes(map);
593060d7 6418
cb5583dd 6419 down_read(&dev_replace->rwsem);
472262f3 6420 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
53176dde
DS
6421 /*
6422 * Hold the semaphore for read during the whole operation, write is
6423 * requested at commit time but must wait.
6424 */
472262f3 6425 if (!dev_replace_is_ongoing)
cb5583dd 6426 up_read(&dev_replace->rwsem);
472262f3 6427
ad6d620e 6428 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
2b19a1fe 6429 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5ab56090
LB
6430 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6431 dev_replace->srcdev->devid,
6432 &mirror_num,
6433 &physical_to_patch_in_first_stripe);
6434 if (ret)
ad6d620e 6435 goto out;
5ab56090
LB
6436 else
6437 patch_the_first_stripe_for_dev_replace = 1;
ad6d620e
SB
6438 } else if (mirror_num > map->num_stripes) {
6439 mirror_num = 0;
6440 }
6441
f2d8d74d 6442 num_stripes = 1;
cea9e445 6443 stripe_index = 0;
fce3bb9a 6444 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
47c5713f
DS
6445 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6446 &stripe_index);
de483734 6447 if (!need_full_stripe(op))
28e1cc7d 6448 mirror_num = 1;
c7369b3f 6449 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
de483734 6450 if (need_full_stripe(op))
f2d8d74d 6451 num_stripes = map->num_stripes;
2fff734f 6452 else if (mirror_num)
f188591e 6453 stripe_index = mirror_num - 1;
dfe25020 6454 else {
30d9861f 6455 stripe_index = find_live_mirror(fs_info, map, 0,
30d9861f 6456 dev_replace_is_ongoing);
a1d3c478 6457 mirror_num = stripe_index + 1;
dfe25020 6458 }
2fff734f 6459
611f0e00 6460 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
de483734 6461 if (need_full_stripe(op)) {
f2d8d74d 6462 num_stripes = map->num_stripes;
a1d3c478 6463 } else if (mirror_num) {
f188591e 6464 stripe_index = mirror_num - 1;
a1d3c478
JS
6465 } else {
6466 mirror_num = 1;
6467 }
2fff734f 6468
321aecc6 6469 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
9d644a62 6470 u32 factor = map->num_stripes / map->sub_stripes;
321aecc6 6471
47c5713f 6472 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
321aecc6
CM
6473 stripe_index *= map->sub_stripes;
6474
de483734 6475 if (need_full_stripe(op))
f2d8d74d 6476 num_stripes = map->sub_stripes;
321aecc6
CM
6477 else if (mirror_num)
6478 stripe_index += mirror_num - 1;
dfe25020 6479 else {
3e74317a 6480 int old_stripe_index = stripe_index;
30d9861f
SB
6481 stripe_index = find_live_mirror(fs_info, map,
6482 stripe_index,
30d9861f 6483 dev_replace_is_ongoing);
3e74317a 6484 mirror_num = stripe_index - old_stripe_index + 1;
dfe25020 6485 }
53b381b3 6486
ffe2d203 6487 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
de483734 6488 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
53b381b3 6489 /* push stripe_nr back to the start of the full stripe */
42c61ab6 6490 stripe_nr = div64_u64(raid56_full_stripe_start,
cff82672 6491 stripe_len * data_stripes);
53b381b3
DW
6492
6493 /* RAID[56] write or recovery. Return all stripes */
6494 num_stripes = map->num_stripes;
6495 max_errors = nr_parity_stripes(map);
6496
53b381b3
DW
6497 *length = map->stripe_len;
6498 stripe_index = 0;
6499 stripe_offset = 0;
6500 } else {
6501 /*
6502 * Mirror #0 or #1 means the original data block.
6503 * Mirror #2 is RAID5 parity block.
6504 * Mirror #3 is RAID6 Q block.
6505 */
47c5713f 6506 stripe_nr = div_u64_rem(stripe_nr,
cff82672 6507 data_stripes, &stripe_index);
53b381b3 6508 if (mirror_num > 1)
cff82672 6509 stripe_index = data_stripes + mirror_num - 2;
53b381b3
DW
6510
6511 /* We distribute the parity blocks across stripes */
47c5713f
DS
6512 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6513 &stripe_index);
de483734 6514 if (!need_full_stripe(op) && mirror_num <= 1)
28e1cc7d 6515 mirror_num = 1;
53b381b3 6516 }
8790d502
CM
6517 } else {
6518 /*
47c5713f
DS
6519 * after this, stripe_nr is the number of stripes on this
6520 * device we have to walk to find the data, and stripe_index is
6521 * the number of our device in the stripe array
8790d502 6522 */
47c5713f
DS
6523 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6524 &stripe_index);
a1d3c478 6525 mirror_num = stripe_index + 1;
8790d502 6526 }
e042d1ec 6527 if (stripe_index >= map->num_stripes) {
5d163e0e
JM
6528 btrfs_crit(fs_info,
6529 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
e042d1ec
JB
6530 stripe_index, map->num_stripes);
6531 ret = -EINVAL;
6532 goto out;
6533 }
cea9e445 6534
472262f3 6535 num_alloc_stripes = num_stripes;
6fad823f 6536 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
0b3d4cd3 6537 if (op == BTRFS_MAP_WRITE)
ad6d620e 6538 num_alloc_stripes <<= 1;
cf8cddd3 6539 if (op == BTRFS_MAP_GET_READ_MIRRORS)
ad6d620e 6540 num_alloc_stripes++;
2c8cdd6e 6541 tgtdev_indexes = num_stripes;
ad6d620e 6542 }
2c8cdd6e 6543
731ccf15 6544 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes);
4c664611 6545 if (!bioc) {
de11cc12
LZ
6546 ret = -ENOMEM;
6547 goto out;
6548 }
608769a4
NB
6549
6550 for (i = 0; i < num_stripes; i++) {
4c664611 6551 bioc->stripes[i].physical = map->stripes[stripe_index].physical +
608769a4 6552 stripe_offset + stripe_nr * map->stripe_len;
4c664611 6553 bioc->stripes[i].dev = map->stripes[stripe_index].dev;
608769a4
NB
6554 stripe_index++;
6555 }
de11cc12 6556
4c664611 6557 /* Build raid_map */
2b19a1fe
LB
6558 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6559 (need_full_stripe(op) || mirror_num > 1)) {
8e5cfb55 6560 u64 tmp;
9d644a62 6561 unsigned rot;
8e5cfb55 6562
8e5cfb55 6563 /* Work out the disk rotation on this stripe-set */
47c5713f 6564 div_u64_rem(stripe_nr, num_stripes, &rot);
8e5cfb55
ZL
6565
6566 /* Fill in the logical address of each stripe */
cff82672
DS
6567 tmp = stripe_nr * data_stripes;
6568 for (i = 0; i < data_stripes; i++)
4c664611 6569 bioc->raid_map[(i + rot) % num_stripes] =
8e5cfb55
ZL
6570 em->start + (tmp + i) * map->stripe_len;
6571
4c664611 6572 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE;
8e5cfb55 6573 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4c664611 6574 bioc->raid_map[(i + rot + 1) % num_stripes] =
8e5cfb55 6575 RAID6_Q_STRIPE;
8e5cfb55 6576
4c664611 6577 sort_parity_stripes(bioc, num_stripes);
593060d7 6578 }
de11cc12 6579
2b19a1fe 6580 if (need_full_stripe(op))
d20983b4 6581 max_errors = btrfs_chunk_max_errors(map);
de11cc12 6582
73c0f228 6583 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
2b19a1fe 6584 need_full_stripe(op)) {
4c664611 6585 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical,
6143c23c 6586 &num_stripes, &max_errors);
472262f3
SB
6587 }
6588
4c664611
QW
6589 *bioc_ret = bioc;
6590 bioc->map_type = map->type;
6591 bioc->num_stripes = num_stripes;
6592 bioc->max_errors = max_errors;
6593 bioc->mirror_num = mirror_num;
ad6d620e
SB
6594
6595 /*
6596 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6597 * mirror_num == num_stripes + 1 && dev_replace target drive is
6598 * available as a mirror
6599 */
6600 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6601 WARN_ON(num_stripes > 1);
4c664611
QW
6602 bioc->stripes[0].dev = dev_replace->tgtdev;
6603 bioc->stripes[0].physical = physical_to_patch_in_first_stripe;
6604 bioc->mirror_num = map->num_stripes + 1;
ad6d620e 6605 }
cea9e445 6606out:
73beece9 6607 if (dev_replace_is_ongoing) {
53176dde
DS
6608 lockdep_assert_held(&dev_replace->rwsem);
6609 /* Unlock and let waiting writers proceed */
cb5583dd 6610 up_read(&dev_replace->rwsem);
73beece9 6611 }
0b86a832 6612 free_extent_map(em);
de11cc12 6613 return ret;
0b86a832
CM
6614}
6615
cf8cddd3 6616int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
f2d8d74d 6617 u64 logical, u64 *length,
4c664611 6618 struct btrfs_io_context **bioc_ret, int mirror_num)
f2d8d74d 6619{
75fb2e9e
DS
6620 if (op == BTRFS_MAP_DISCARD)
6621 return __btrfs_map_block_for_discard(fs_info, logical,
4c664611 6622 length, bioc_ret);
75fb2e9e 6623
4c664611 6624 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret,
8e5cfb55 6625 mirror_num, 0);
f2d8d74d
CM
6626}
6627
af8e2d1d 6628/* For Scrub/replace */
cf8cddd3 6629int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
af8e2d1d 6630 u64 logical, u64 *length,
4c664611 6631 struct btrfs_io_context **bioc_ret)
af8e2d1d 6632{
4c664611 6633 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 0, 1);
af8e2d1d
MX
6634}
6635
4c664611 6636static inline void btrfs_end_bioc(struct btrfs_io_context *bioc, struct bio *bio)
8408c716 6637{
4c664611
QW
6638 bio->bi_private = bioc->private;
6639 bio->bi_end_io = bioc->end_io;
4246a0b6 6640 bio_endio(bio);
326e1dbb 6641
4c664611 6642 btrfs_put_bioc(bioc);
8408c716
MX
6643}
6644
4246a0b6 6645static void btrfs_end_bio(struct bio *bio)
8790d502 6646{
4c664611 6647 struct btrfs_io_context *bioc = bio->bi_private;
7d2b4daa 6648 int is_orig_bio = 0;
8790d502 6649
4e4cbee9 6650 if (bio->bi_status) {
4c664611 6651 atomic_inc(&bioc->error);
4e4cbee9
CH
6652 if (bio->bi_status == BLK_STS_IOERR ||
6653 bio->bi_status == BLK_STS_TARGET) {
c3a3b19b 6654 struct btrfs_device *dev = btrfs_bio(bio)->device;
442a4f63 6655
3eee86c8 6656 ASSERT(dev->bdev);
cfe94440 6657 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
3eee86c8 6658 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6659 BTRFS_DEV_STAT_WRITE_ERRS);
3eee86c8
NB
6660 else if (!(bio->bi_opf & REQ_RAHEAD))
6661 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6662 BTRFS_DEV_STAT_READ_ERRS);
3eee86c8
NB
6663 if (bio->bi_opf & REQ_PREFLUSH)
6664 btrfs_dev_stat_inc_and_print(dev,
597a60fa 6665 BTRFS_DEV_STAT_FLUSH_ERRS);
442a4f63
SB
6666 }
6667 }
8790d502 6668
4c664611 6669 if (bio == bioc->orig_bio)
7d2b4daa
CM
6670 is_orig_bio = 1;
6671
4c664611 6672 btrfs_bio_counter_dec(bioc->fs_info);
c404e0dc 6673
4c664611 6674 if (atomic_dec_and_test(&bioc->stripes_pending)) {
7d2b4daa
CM
6675 if (!is_orig_bio) {
6676 bio_put(bio);
4c664611 6677 bio = bioc->orig_bio;
7d2b4daa 6678 }
c7b22bb1 6679
c3a3b19b 6680 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
a236aed1 6681 /* only send an error to the higher layers if it is
53b381b3 6682 * beyond the tolerance of the btrfs bio
a236aed1 6683 */
4c664611 6684 if (atomic_read(&bioc->error) > bioc->max_errors) {
4e4cbee9 6685 bio->bi_status = BLK_STS_IOERR;
5dbc8fca 6686 } else {
1259ab75
CM
6687 /*
6688 * this bio is actually up to date, we didn't
6689 * go over the max number of errors
6690 */
2dbe0c77 6691 bio->bi_status = BLK_STS_OK;
1259ab75 6692 }
c55f1396 6693
4c664611 6694 btrfs_end_bioc(bioc, bio);
7d2b4daa 6695 } else if (!is_orig_bio) {
8790d502
CM
6696 bio_put(bio);
6697 }
8790d502
CM
6698}
6699
4c664611 6700static void submit_stripe_bio(struct btrfs_io_context *bioc, struct bio *bio,
c31efbdf 6701 u64 physical, struct btrfs_device *dev)
de1ee92a 6702{
4c664611 6703 struct btrfs_fs_info *fs_info = bioc->fs_info;
de1ee92a 6704
4c664611 6705 bio->bi_private = bioc;
c3a3b19b 6706 btrfs_bio(bio)->device = dev;
de1ee92a 6707 bio->bi_end_io = btrfs_end_bio;
4f024f37 6708 bio->bi_iter.bi_sector = physical >> 9;
d8e3fb10
NA
6709 /*
6710 * For zone append writing, bi_sector must point the beginning of the
6711 * zone
6712 */
6713 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
6714 if (btrfs_dev_is_sequential(dev, physical)) {
6715 u64 zone_start = round_down(physical, fs_info->zone_size);
6716
6717 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
6718 } else {
6719 bio->bi_opf &= ~REQ_OP_ZONE_APPEND;
6720 bio->bi_opf |= REQ_OP_WRITE;
6721 }
6722 }
672d5990
MT
6723 btrfs_debug_in_rcu(fs_info,
6724 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
1201b58b 6725 bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
1db45a35
DS
6726 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name),
6727 dev->devid, bio->bi_iter.bi_size);
c404e0dc 6728
2ff7e61e 6729 btrfs_bio_counter_inc_noblocked(fs_info);
c404e0dc 6730
58ff51f1
CH
6731 btrfsic_check_bio(bio);
6732 submit_bio(bio);
de1ee92a
JB
6733}
6734
4c664611 6735static void bioc_error(struct btrfs_io_context *bioc, struct bio *bio, u64 logical)
de1ee92a 6736{
4c664611
QW
6737 atomic_inc(&bioc->error);
6738 if (atomic_dec_and_test(&bioc->stripes_pending)) {
01327610 6739 /* Should be the original bio. */
4c664611 6740 WARN_ON(bio != bioc->orig_bio);
8408c716 6741
c3a3b19b 6742 btrfs_bio(bio)->mirror_num = bioc->mirror_num;
4f024f37 6743 bio->bi_iter.bi_sector = logical >> 9;
4c664611 6744 if (atomic_read(&bioc->error) > bioc->max_errors)
102ed2c5
AJ
6745 bio->bi_status = BLK_STS_IOERR;
6746 else
6747 bio->bi_status = BLK_STS_OK;
4c664611 6748 btrfs_end_bioc(bioc, bio);
de1ee92a
JB
6749 }
6750}
6751
58efbc9f 6752blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
08635bae 6753 int mirror_num)
0b86a832 6754{
0b86a832 6755 struct btrfs_device *dev;
8790d502 6756 struct bio *first_bio = bio;
1201b58b 6757 u64 logical = bio->bi_iter.bi_sector << 9;
0b86a832
CM
6758 u64 length = 0;
6759 u64 map_length;
0b86a832 6760 int ret;
08da757d
ZL
6761 int dev_nr;
6762 int total_devs;
4c664611 6763 struct btrfs_io_context *bioc = NULL;
0b86a832 6764
4f024f37 6765 length = bio->bi_iter.bi_size;
0b86a832 6766 map_length = length;
cea9e445 6767
0b246afa 6768 btrfs_bio_counter_inc_blocked(fs_info);
bd7d63c2 6769 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
4c664611 6770 &map_length, &bioc, mirror_num, 1);
c404e0dc 6771 if (ret) {
0b246afa 6772 btrfs_bio_counter_dec(fs_info);
58efbc9f 6773 return errno_to_blk_status(ret);
c404e0dc 6774 }
cea9e445 6775
4c664611
QW
6776 total_devs = bioc->num_stripes;
6777 bioc->orig_bio = first_bio;
6778 bioc->private = first_bio->bi_private;
6779 bioc->end_io = first_bio->bi_end_io;
4c664611 6780 atomic_set(&bioc->stripes_pending, bioc->num_stripes);
53b381b3 6781
4c664611 6782 if ((bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
cfe94440 6783 ((btrfs_op(bio) == BTRFS_MAP_WRITE) || (mirror_num > 1))) {
53b381b3
DW
6784 /* In this case, map_length has been set to the length of
6785 a single stripe; not the whole write */
cfe94440 6786 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
6a258d72 6787 ret = raid56_parity_write(bio, bioc, map_length);
53b381b3 6788 } else {
6a258d72
QW
6789 ret = raid56_parity_recover(bio, bioc, map_length,
6790 mirror_num, 1);
53b381b3 6791 }
4245215d 6792
0b246afa 6793 btrfs_bio_counter_dec(fs_info);
58efbc9f 6794 return errno_to_blk_status(ret);
53b381b3
DW
6795 }
6796
cea9e445 6797 if (map_length < length) {
0b246afa 6798 btrfs_crit(fs_info,
5d163e0e
JM
6799 "mapping failed logical %llu bio len %llu len %llu",
6800 logical, length, map_length);
cea9e445
CM
6801 BUG();
6802 }
a1d3c478 6803
08da757d 6804 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
4c664611 6805 dev = bioc->stripes[dev_nr].dev;
fc8a168a
NB
6806 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6807 &dev->dev_state) ||
cfe94440 6808 (btrfs_op(first_bio) == BTRFS_MAP_WRITE &&
ebbede42 6809 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
4c664611 6810 bioc_error(bioc, first_bio, logical);
de1ee92a
JB
6811 continue;
6812 }
6813
110ac0e5
CH
6814 if (dev_nr < total_devs - 1) {
6815 bio = btrfs_bio_clone(dev->bdev, first_bio);
6816 } else {
a1d3c478 6817 bio = first_bio;
110ac0e5
CH
6818 bio_set_dev(bio, dev->bdev);
6819 }
de1ee92a 6820
4c664611 6821 submit_stripe_bio(bioc, bio, bioc->stripes[dev_nr].physical, dev);
8790d502 6822 }
0b246afa 6823 btrfs_bio_counter_dec(fs_info);
58efbc9f 6824 return BLK_STS_OK;
0b86a832
CM
6825}
6826
562d7b15
JB
6827static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6828 const struct btrfs_fs_devices *fs_devices)
6829{
6830 if (args->fsid == NULL)
6831 return true;
6832 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6833 return true;
6834 return false;
6835}
6836
6837static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6838 const struct btrfs_device *device)
6839{
6840 ASSERT((args->devid != (u64)-1) || args->missing);
6841
6842 if ((args->devid != (u64)-1) && device->devid != args->devid)
6843 return false;
6844 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6845 return false;
6846 if (!args->missing)
6847 return true;
6848 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6849 !device->bdev)
6850 return true;
6851 return false;
6852}
6853
09ba3bc9
AJ
6854/*
6855 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6856 * return NULL.
6857 *
6858 * If devid and uuid are both specified, the match must be exact, otherwise
6859 * only devid is used.
09ba3bc9 6860 */
562d7b15
JB
6861struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6862 const struct btrfs_dev_lookup_args *args)
0b86a832 6863{
2b82032c 6864 struct btrfs_device *device;
944d3f9f
NB
6865 struct btrfs_fs_devices *seed_devs;
6866
562d7b15 6867 if (dev_args_match_fs_devices(args, fs_devices)) {
944d3f9f 6868 list_for_each_entry(device, &fs_devices->devices, dev_list) {
562d7b15 6869 if (dev_args_match_device(args, device))
944d3f9f
NB
6870 return device;
6871 }
6872 }
2b82032c 6873
944d3f9f 6874 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
562d7b15
JB
6875 if (!dev_args_match_fs_devices(args, seed_devs))
6876 continue;
6877 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6878 if (dev_args_match_device(args, device))
6879 return device;
2b82032c 6880 }
2b82032c 6881 }
944d3f9f 6882
2b82032c 6883 return NULL;
0b86a832
CM
6884}
6885
2ff7e61e 6886static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
dfe25020
CM
6887 u64 devid, u8 *dev_uuid)
6888{
6889 struct btrfs_device *device;
fccc0007 6890 unsigned int nofs_flag;
dfe25020 6891
fccc0007
JB
6892 /*
6893 * We call this under the chunk_mutex, so we want to use NOFS for this
6894 * allocation, however we don't want to change btrfs_alloc_device() to
6895 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6896 * places.
6897 */
6898 nofs_flag = memalloc_nofs_save();
12bd2fc0 6899 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
fccc0007 6900 memalloc_nofs_restore(nofs_flag);
12bd2fc0 6901 if (IS_ERR(device))
adfb69af 6902 return device;
12bd2fc0
ID
6903
6904 list_add(&device->dev_list, &fs_devices->devices);
e4404d6e 6905 device->fs_devices = fs_devices;
dfe25020 6906 fs_devices->num_devices++;
12bd2fc0 6907
e6e674bd 6908 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
cd02dca5 6909 fs_devices->missing_devices++;
12bd2fc0 6910
dfe25020
CM
6911 return device;
6912}
6913
12bd2fc0
ID
6914/**
6915 * btrfs_alloc_device - allocate struct btrfs_device
6916 * @fs_info: used only for generating a new devid, can be NULL if
6917 * devid is provided (i.e. @devid != NULL).
6918 * @devid: a pointer to devid for this device. If NULL a new devid
6919 * is generated.
6920 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6921 * is generated.
6922 *
6923 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
48dae9cf 6924 * on error. Returned struct is not linked onto any lists and must be
a425f9d4 6925 * destroyed with btrfs_free_device.
12bd2fc0
ID
6926 */
6927struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6928 const u64 *devid,
6929 const u8 *uuid)
6930{
6931 struct btrfs_device *dev;
6932 u64 tmp;
6933
fae7f21c 6934 if (WARN_ON(!devid && !fs_info))
12bd2fc0 6935 return ERR_PTR(-EINVAL);
12bd2fc0 6936
fe4f46d4
DS
6937 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6938 if (!dev)
6939 return ERR_PTR(-ENOMEM);
6940
6941 /*
6942 * Preallocate a bio that's always going to be used for flushing device
6943 * barriers and matches the device lifespan
6944 */
6945 dev->flush_bio = bio_kmalloc(GFP_KERNEL, 0);
6946 if (!dev->flush_bio) {
6947 kfree(dev);
6948 return ERR_PTR(-ENOMEM);
6949 }
6950
6951 INIT_LIST_HEAD(&dev->dev_list);
6952 INIT_LIST_HEAD(&dev->dev_alloc_list);
6953 INIT_LIST_HEAD(&dev->post_commit_list);
6954
fe4f46d4
DS
6955 atomic_set(&dev->dev_stats_ccnt, 0);
6956 btrfs_device_data_ordered_init(dev);
fe4f46d4
DS
6957 extent_io_tree_init(fs_info, &dev->alloc_state,
6958 IO_TREE_DEVICE_ALLOC_STATE, NULL);
12bd2fc0
ID
6959
6960 if (devid)
6961 tmp = *devid;
6962 else {
6963 int ret;
6964
6965 ret = find_next_devid(fs_info, &tmp);
6966 if (ret) {
a425f9d4 6967 btrfs_free_device(dev);
12bd2fc0
ID
6968 return ERR_PTR(ret);
6969 }
6970 }
6971 dev->devid = tmp;
6972
6973 if (uuid)
6974 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6975 else
6976 generate_random_uuid(dev->uuid);
6977
12bd2fc0
ID
6978 return dev;
6979}
6980
5a2b8e60 6981static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
2b902dfc 6982 u64 devid, u8 *uuid, bool error)
5a2b8e60 6983{
2b902dfc
AJ
6984 if (error)
6985 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6986 devid, uuid);
6987 else
6988 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6989 devid, uuid);
5a2b8e60
AJ
6990}
6991
39e264a4
NB
6992static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6993{
d58ede8d 6994 const int data_stripes = calc_data_stripes(type, num_stripes);
e4f6c6be 6995
39e264a4
NB
6996 return div_u64(chunk_len, data_stripes);
6997}
6998
e9306ad4
QW
6999#if BITS_PER_LONG == 32
7000/*
7001 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
7002 * can't be accessed on 32bit systems.
7003 *
7004 * This function do mount time check to reject the fs if it already has
7005 * metadata chunk beyond that limit.
7006 */
7007static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7008 u64 logical, u64 length, u64 type)
7009{
7010 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7011 return 0;
7012
7013 if (logical + length < MAX_LFS_FILESIZE)
7014 return 0;
7015
7016 btrfs_err_32bit_limit(fs_info);
7017 return -EOVERFLOW;
7018}
7019
7020/*
7021 * This is to give early warning for any metadata chunk reaching
7022 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
7023 * Although we can still access the metadata, it's not going to be possible
7024 * once the limit is reached.
7025 */
7026static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
7027 u64 logical, u64 length, u64 type)
7028{
7029 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
7030 return;
7031
7032 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7033 return;
7034
7035 btrfs_warn_32bit_limit(fs_info);
7036}
7037#endif
7038
ff37c89f
NB
7039static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7040 u64 devid, u8 *uuid)
7041{
7042 struct btrfs_device *dev;
7043
7044 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7045 btrfs_report_missing_device(fs_info, devid, uuid, true);
7046 return ERR_PTR(-ENOENT);
7047 }
7048
7049 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7050 if (IS_ERR(dev)) {
7051 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7052 devid, PTR_ERR(dev));
7053 return dev;
7054 }
7055 btrfs_report_missing_device(fs_info, devid, uuid, false);
7056
7057 return dev;
7058}
7059
9690ac09 7060static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
e06cd3dd
LB
7061 struct btrfs_chunk *chunk)
7062{
562d7b15 7063 BTRFS_DEV_LOOKUP_ARGS(args);
9690ac09 7064 struct btrfs_fs_info *fs_info = leaf->fs_info;
c8bf1b67 7065 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
e06cd3dd
LB
7066 struct map_lookup *map;
7067 struct extent_map *em;
7068 u64 logical;
7069 u64 length;
e06cd3dd 7070 u64 devid;
e9306ad4 7071 u64 type;
e06cd3dd
LB
7072 u8 uuid[BTRFS_UUID_SIZE];
7073 int num_stripes;
7074 int ret;
7075 int i;
7076
7077 logical = key->offset;
7078 length = btrfs_chunk_length(leaf, chunk);
e9306ad4 7079 type = btrfs_chunk_type(leaf, chunk);
e06cd3dd
LB
7080 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7081
e9306ad4
QW
7082#if BITS_PER_LONG == 32
7083 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7084 if (ret < 0)
7085 return ret;
7086 warn_32bit_meta_chunk(fs_info, logical, length, type);
7087#endif
7088
075cb3c7
QW
7089 /*
7090 * Only need to verify chunk item if we're reading from sys chunk array,
7091 * as chunk item in tree block is already verified by tree-checker.
7092 */
7093 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
ddaf1d5a 7094 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
075cb3c7
QW
7095 if (ret)
7096 return ret;
7097 }
a061fc8d 7098
c8bf1b67
DS
7099 read_lock(&map_tree->lock);
7100 em = lookup_extent_mapping(map_tree, logical, 1);
7101 read_unlock(&map_tree->lock);
0b86a832
CM
7102
7103 /* already mapped? */
7104 if (em && em->start <= logical && em->start + em->len > logical) {
7105 free_extent_map(em);
0b86a832
CM
7106 return 0;
7107 } else if (em) {
7108 free_extent_map(em);
7109 }
0b86a832 7110
172ddd60 7111 em = alloc_extent_map();
0b86a832
CM
7112 if (!em)
7113 return -ENOMEM;
593060d7 7114 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
0b86a832
CM
7115 if (!map) {
7116 free_extent_map(em);
7117 return -ENOMEM;
7118 }
7119
298a8f9c 7120 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
95617d69 7121 em->map_lookup = map;
0b86a832
CM
7122 em->start = logical;
7123 em->len = length;
70c8a91c 7124 em->orig_start = 0;
0b86a832 7125 em->block_start = 0;
c8b97818 7126 em->block_len = em->len;
0b86a832 7127
593060d7
CM
7128 map->num_stripes = num_stripes;
7129 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7130 map->io_align = btrfs_chunk_io_align(leaf, chunk);
593060d7 7131 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
e9306ad4 7132 map->type = type;
321aecc6 7133 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
cf90d884 7134 map->verified_stripes = 0;
e9306ad4 7135 em->orig_block_len = calc_stripe_length(type, em->len,
39e264a4 7136 map->num_stripes);
593060d7
CM
7137 for (i = 0; i < num_stripes; i++) {
7138 map->stripes[i].physical =
7139 btrfs_stripe_offset_nr(leaf, chunk, i);
7140 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
562d7b15 7141 args.devid = devid;
a443755f
CM
7142 read_extent_buffer(leaf, uuid, (unsigned long)
7143 btrfs_stripe_dev_uuid_nr(chunk, i),
7144 BTRFS_UUID_SIZE);
562d7b15
JB
7145 args.uuid = uuid;
7146 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
dfe25020 7147 if (!map->stripes[i].dev) {
ff37c89f
NB
7148 map->stripes[i].dev = handle_missing_device(fs_info,
7149 devid, uuid);
adfb69af 7150 if (IS_ERR(map->stripes[i].dev)) {
dfe25020 7151 free_extent_map(em);
adfb69af 7152 return PTR_ERR(map->stripes[i].dev);
dfe25020
CM
7153 }
7154 }
ff37c89f 7155
e12c9621
AJ
7156 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7157 &(map->stripes[i].dev->dev_state));
0b86a832
CM
7158 }
7159
c8bf1b67
DS
7160 write_lock(&map_tree->lock);
7161 ret = add_extent_mapping(map_tree, em, 0);
7162 write_unlock(&map_tree->lock);
64f64f43
QW
7163 if (ret < 0) {
7164 btrfs_err(fs_info,
7165 "failed to add chunk map, start=%llu len=%llu: %d",
7166 em->start, em->len, ret);
7167 }
0b86a832
CM
7168 free_extent_map(em);
7169
64f64f43 7170 return ret;
0b86a832
CM
7171}
7172
143bede5 7173static void fill_device_from_item(struct extent_buffer *leaf,
0b86a832
CM
7174 struct btrfs_dev_item *dev_item,
7175 struct btrfs_device *device)
7176{
7177 unsigned long ptr;
0b86a832
CM
7178
7179 device->devid = btrfs_device_id(leaf, dev_item);
d6397bae
CB
7180 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7181 device->total_bytes = device->disk_total_bytes;
935e5cc9 7182 device->commit_total_bytes = device->disk_total_bytes;
0b86a832 7183 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
ce7213c7 7184 device->commit_bytes_used = device->bytes_used;
0b86a832
CM
7185 device->type = btrfs_device_type(leaf, dev_item);
7186 device->io_align = btrfs_device_io_align(leaf, dev_item);
7187 device->io_width = btrfs_device_io_width(leaf, dev_item);
7188 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
8dabb742 7189 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
401e29c1 7190 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
0b86a832 7191
410ba3a2 7192 ptr = btrfs_device_uuid(dev_item);
e17cade2 7193 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
0b86a832
CM
7194}
7195
2ff7e61e 7196static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
5f375835 7197 u8 *fsid)
2b82032c
YZ
7198{
7199 struct btrfs_fs_devices *fs_devices;
7200 int ret;
7201
a32bf9a3 7202 lockdep_assert_held(&uuid_mutex);
2dfeca9b 7203 ASSERT(fsid);
2b82032c 7204
427c8fdd 7205 /* This will match only for multi-device seed fs */
944d3f9f 7206 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
44880fdc 7207 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
5f375835
MX
7208 return fs_devices;
7209
2b82032c 7210
7239ff4b 7211 fs_devices = find_fsid(fsid, NULL);
2b82032c 7212 if (!fs_devices) {
0b246afa 7213 if (!btrfs_test_opt(fs_info, DEGRADED))
5f375835
MX
7214 return ERR_PTR(-ENOENT);
7215
7239ff4b 7216 fs_devices = alloc_fs_devices(fsid, NULL);
5f375835
MX
7217 if (IS_ERR(fs_devices))
7218 return fs_devices;
7219
0395d84f 7220 fs_devices->seeding = true;
5f375835
MX
7221 fs_devices->opened = 1;
7222 return fs_devices;
2b82032c 7223 }
e4404d6e 7224
427c8fdd
NB
7225 /*
7226 * Upon first call for a seed fs fsid, just create a private copy of the
7227 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7228 */
e4404d6e 7229 fs_devices = clone_fs_devices(fs_devices);
5f375835
MX
7230 if (IS_ERR(fs_devices))
7231 return fs_devices;
2b82032c 7232
897fb573 7233 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
48d28232
JL
7234 if (ret) {
7235 free_fs_devices(fs_devices);
c83b60c0 7236 return ERR_PTR(ret);
48d28232 7237 }
2b82032c
YZ
7238
7239 if (!fs_devices->seeding) {
0226e0eb 7240 close_fs_devices(fs_devices);
e4404d6e 7241 free_fs_devices(fs_devices);
c83b60c0 7242 return ERR_PTR(-EINVAL);
2b82032c
YZ
7243 }
7244
944d3f9f 7245 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
c83b60c0 7246
5f375835 7247 return fs_devices;
2b82032c
YZ
7248}
7249
17850759 7250static int read_one_dev(struct extent_buffer *leaf,
0b86a832
CM
7251 struct btrfs_dev_item *dev_item)
7252{
562d7b15 7253 BTRFS_DEV_LOOKUP_ARGS(args);
17850759 7254 struct btrfs_fs_info *fs_info = leaf->fs_info;
0b246afa 7255 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
0b86a832
CM
7256 struct btrfs_device *device;
7257 u64 devid;
7258 int ret;
44880fdc 7259 u8 fs_uuid[BTRFS_FSID_SIZE];
a443755f
CM
7260 u8 dev_uuid[BTRFS_UUID_SIZE];
7261
562d7b15 7262 devid = args.devid = btrfs_device_id(leaf, dev_item);
410ba3a2 7263 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
a443755f 7264 BTRFS_UUID_SIZE);
1473b24e 7265 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
44880fdc 7266 BTRFS_FSID_SIZE);
562d7b15
JB
7267 args.uuid = dev_uuid;
7268 args.fsid = fs_uuid;
2b82032c 7269
de37aa51 7270 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
2ff7e61e 7271 fs_devices = open_seed_devices(fs_info, fs_uuid);
5f375835
MX
7272 if (IS_ERR(fs_devices))
7273 return PTR_ERR(fs_devices);
2b82032c
YZ
7274 }
7275
562d7b15 7276 device = btrfs_find_device(fs_info->fs_devices, &args);
5f375835 7277 if (!device) {
c5502451 7278 if (!btrfs_test_opt(fs_info, DEGRADED)) {
2b902dfc
AJ
7279 btrfs_report_missing_device(fs_info, devid,
7280 dev_uuid, true);
45dbdbc9 7281 return -ENOENT;
c5502451 7282 }
2b82032c 7283
2ff7e61e 7284 device = add_missing_dev(fs_devices, devid, dev_uuid);
adfb69af
AJ
7285 if (IS_ERR(device)) {
7286 btrfs_err(fs_info,
7287 "failed to add missing dev %llu: %ld",
7288 devid, PTR_ERR(device));
7289 return PTR_ERR(device);
7290 }
2b902dfc 7291 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
5f375835 7292 } else {
c5502451 7293 if (!device->bdev) {
2b902dfc
AJ
7294 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7295 btrfs_report_missing_device(fs_info,
7296 devid, dev_uuid, true);
45dbdbc9 7297 return -ENOENT;
2b902dfc
AJ
7298 }
7299 btrfs_report_missing_device(fs_info, devid,
7300 dev_uuid, false);
c5502451 7301 }
5f375835 7302
e6e674bd
AJ
7303 if (!device->bdev &&
7304 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
cd02dca5
CM
7305 /*
7306 * this happens when a device that was properly setup
7307 * in the device info lists suddenly goes bad.
7308 * device->bdev is NULL, and so we have to set
7309 * device->missing to one here
7310 */
5f375835 7311 device->fs_devices->missing_devices++;
e6e674bd 7312 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
2b82032c 7313 }
5f375835
MX
7314
7315 /* Move the device to its own fs_devices */
7316 if (device->fs_devices != fs_devices) {
e6e674bd
AJ
7317 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7318 &device->dev_state));
5f375835
MX
7319
7320 list_move(&device->dev_list, &fs_devices->devices);
7321 device->fs_devices->num_devices--;
7322 fs_devices->num_devices++;
7323
7324 device->fs_devices->missing_devices--;
7325 fs_devices->missing_devices++;
7326
7327 device->fs_devices = fs_devices;
7328 }
2b82032c
YZ
7329 }
7330
0b246afa 7331 if (device->fs_devices != fs_info->fs_devices) {
ebbede42 7332 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
2b82032c
YZ
7333 if (device->generation !=
7334 btrfs_device_generation(leaf, dev_item))
7335 return -EINVAL;
6324fbf3 7336 }
0b86a832
CM
7337
7338 fill_device_from_item(leaf, dev_item, device);
3a160a93 7339 if (device->bdev) {
cda00eba 7340 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
3a160a93
AJ
7341
7342 if (device->total_bytes > max_total_bytes) {
7343 btrfs_err(fs_info,
7344 "device total_bytes should be at most %llu but found %llu",
7345 max_total_bytes, device->total_bytes);
7346 return -EINVAL;
7347 }
7348 }
e12c9621 7349 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
ebbede42 7350 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
401e29c1 7351 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2b82032c 7352 device->fs_devices->total_rw_bytes += device->total_bytes;
a5ed45f8
NB
7353 atomic64_add(device->total_bytes - device->bytes_used,
7354 &fs_info->free_chunk_space);
2bf64758 7355 }
0b86a832 7356 ret = 0;
0b86a832
CM
7357 return ret;
7358}
7359
6bccf3ab 7360int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
0b86a832 7361{
ab8d0fc4 7362 struct btrfs_super_block *super_copy = fs_info->super_copy;
a061fc8d 7363 struct extent_buffer *sb;
0b86a832 7364 struct btrfs_disk_key *disk_key;
0b86a832 7365 struct btrfs_chunk *chunk;
1ffb22cf
DS
7366 u8 *array_ptr;
7367 unsigned long sb_array_offset;
84eed90f 7368 int ret = 0;
0b86a832
CM
7369 u32 num_stripes;
7370 u32 array_size;
7371 u32 len = 0;
1ffb22cf 7372 u32 cur_offset;
e06cd3dd 7373 u64 type;
84eed90f 7374 struct btrfs_key key;
0b86a832 7375
0b246afa 7376 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
e959d3c1 7377
a83fffb7 7378 /*
e959d3c1
QW
7379 * We allocated a dummy extent, just to use extent buffer accessors.
7380 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7381 * that's fine, we will not go beyond system chunk array anyway.
a83fffb7 7382 */
e959d3c1
QW
7383 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7384 if (!sb)
7385 return -ENOMEM;
4db8c528 7386 set_extent_buffer_uptodate(sb);
4008c04a 7387
a061fc8d 7388 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
0b86a832
CM
7389 array_size = btrfs_super_sys_array_size(super_copy);
7390
1ffb22cf
DS
7391 array_ptr = super_copy->sys_chunk_array;
7392 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7393 cur_offset = 0;
0b86a832 7394
1ffb22cf
DS
7395 while (cur_offset < array_size) {
7396 disk_key = (struct btrfs_disk_key *)array_ptr;
e3540eab
DS
7397 len = sizeof(*disk_key);
7398 if (cur_offset + len > array_size)
7399 goto out_short_read;
7400
0b86a832
CM
7401 btrfs_disk_key_to_cpu(&key, disk_key);
7402
1ffb22cf
DS
7403 array_ptr += len;
7404 sb_array_offset += len;
7405 cur_offset += len;
0b86a832 7406
32ab3d1b
JT
7407 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
7408 btrfs_err(fs_info,
7409 "unexpected item type %u in sys_array at offset %u",
7410 (u32)key.type, cur_offset);
7411 ret = -EIO;
7412 break;
7413 }
f5cdedd7 7414
32ab3d1b
JT
7415 chunk = (struct btrfs_chunk *)sb_array_offset;
7416 /*
7417 * At least one btrfs_chunk with one stripe must be present,
7418 * exact stripe count check comes afterwards
7419 */
7420 len = btrfs_chunk_item_size(1);
7421 if (cur_offset + len > array_size)
7422 goto out_short_read;
e06cd3dd 7423
32ab3d1b
JT
7424 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7425 if (!num_stripes) {
7426 btrfs_err(fs_info,
7427 "invalid number of stripes %u in sys_array at offset %u",
7428 num_stripes, cur_offset);
7429 ret = -EIO;
7430 break;
7431 }
e3540eab 7432
32ab3d1b
JT
7433 type = btrfs_chunk_type(sb, chunk);
7434 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
ab8d0fc4 7435 btrfs_err(fs_info,
32ab3d1b
JT
7436 "invalid chunk type %llu in sys_array at offset %u",
7437 type, cur_offset);
84eed90f
CM
7438 ret = -EIO;
7439 break;
0b86a832 7440 }
32ab3d1b
JT
7441
7442 len = btrfs_chunk_item_size(num_stripes);
7443 if (cur_offset + len > array_size)
7444 goto out_short_read;
7445
7446 ret = read_one_chunk(&key, sb, chunk);
7447 if (ret)
7448 break;
7449
1ffb22cf
DS
7450 array_ptr += len;
7451 sb_array_offset += len;
7452 cur_offset += len;
0b86a832 7453 }
d865177a 7454 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7455 free_extent_buffer_stale(sb);
84eed90f 7456 return ret;
e3540eab
DS
7457
7458out_short_read:
ab8d0fc4 7459 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
e3540eab 7460 len, cur_offset);
d865177a 7461 clear_extent_buffer_uptodate(sb);
1c8b5b6e 7462 free_extent_buffer_stale(sb);
e3540eab 7463 return -EIO;
0b86a832
CM
7464}
7465
21634a19
QW
7466/*
7467 * Check if all chunks in the fs are OK for read-write degraded mount
7468 *
6528b99d
AJ
7469 * If the @failing_dev is specified, it's accounted as missing.
7470 *
21634a19
QW
7471 * Return true if all chunks meet the minimal RW mount requirements.
7472 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7473 */
6528b99d
AJ
7474bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7475 struct btrfs_device *failing_dev)
21634a19 7476{
c8bf1b67 7477 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
21634a19
QW
7478 struct extent_map *em;
7479 u64 next_start = 0;
7480 bool ret = true;
7481
c8bf1b67
DS
7482 read_lock(&map_tree->lock);
7483 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7484 read_unlock(&map_tree->lock);
21634a19
QW
7485 /* No chunk at all? Return false anyway */
7486 if (!em) {
7487 ret = false;
7488 goto out;
7489 }
7490 while (em) {
7491 struct map_lookup *map;
7492 int missing = 0;
7493 int max_tolerated;
7494 int i;
7495
7496 map = em->map_lookup;
7497 max_tolerated =
7498 btrfs_get_num_tolerated_disk_barrier_failures(
7499 map->type);
7500 for (i = 0; i < map->num_stripes; i++) {
7501 struct btrfs_device *dev = map->stripes[i].dev;
7502
e6e674bd
AJ
7503 if (!dev || !dev->bdev ||
7504 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
21634a19
QW
7505 dev->last_flush_error)
7506 missing++;
6528b99d
AJ
7507 else if (failing_dev && failing_dev == dev)
7508 missing++;
21634a19
QW
7509 }
7510 if (missing > max_tolerated) {
6528b99d
AJ
7511 if (!failing_dev)
7512 btrfs_warn(fs_info,
52042d8e 7513 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
21634a19
QW
7514 em->start, missing, max_tolerated);
7515 free_extent_map(em);
7516 ret = false;
7517 goto out;
7518 }
7519 next_start = extent_map_end(em);
7520 free_extent_map(em);
7521
c8bf1b67
DS
7522 read_lock(&map_tree->lock);
7523 em = lookup_extent_mapping(map_tree, next_start,
21634a19 7524 (u64)(-1) - next_start);
c8bf1b67 7525 read_unlock(&map_tree->lock);
21634a19
QW
7526 }
7527out:
7528 return ret;
7529}
7530
d85327b1
DS
7531static void readahead_tree_node_children(struct extent_buffer *node)
7532{
7533 int i;
7534 const int nr_items = btrfs_header_nritems(node);
7535
bfb484d9
JB
7536 for (i = 0; i < nr_items; i++)
7537 btrfs_readahead_node_child(node, i);
d85327b1
DS
7538}
7539
5b4aacef 7540int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
0b86a832 7541{
5b4aacef 7542 struct btrfs_root *root = fs_info->chunk_root;
0b86a832
CM
7543 struct btrfs_path *path;
7544 struct extent_buffer *leaf;
7545 struct btrfs_key key;
7546 struct btrfs_key found_key;
7547 int ret;
7548 int slot;
43cb1478 7549 int iter_ret = 0;
99e3ecfc 7550 u64 total_dev = 0;
d85327b1 7551 u64 last_ra_node = 0;
0b86a832 7552
0b86a832
CM
7553 path = btrfs_alloc_path();
7554 if (!path)
7555 return -ENOMEM;
7556
3dd0f7a3
AJ
7557 /*
7558 * uuid_mutex is needed only if we are mounting a sprout FS
7559 * otherwise we don't need it.
7560 */
b367e47f 7561 mutex_lock(&uuid_mutex);
b367e47f 7562
48cfa61b
BB
7563 /*
7564 * It is possible for mount and umount to race in such a way that
7565 * we execute this code path, but open_fs_devices failed to clear
7566 * total_rw_bytes. We certainly want it cleared before reading the
7567 * device items, so clear it here.
7568 */
7569 fs_info->fs_devices->total_rw_bytes = 0;
7570
4d9380e0
FM
7571 /*
7572 * Lockdep complains about possible circular locking dependency between
7573 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7574 * used for freeze procection of a fs (struct super_block.s_writers),
7575 * which we take when starting a transaction, and extent buffers of the
7576 * chunk tree if we call read_one_dev() while holding a lock on an
7577 * extent buffer of the chunk tree. Since we are mounting the filesystem
7578 * and at this point there can't be any concurrent task modifying the
7579 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7580 */
7581 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7582 path->skip_locking = 1;
7583
395927a9
FDBM
7584 /*
7585 * Read all device items, and then all the chunk items. All
7586 * device items are found before any chunk item (their object id
7587 * is smaller than the lowest possible object id for a chunk
7588 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
0b86a832
CM
7589 */
7590 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7591 key.offset = 0;
7592 key.type = 0;
43cb1478
GN
7593 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7594 struct extent_buffer *node = path->nodes[1];
d85327b1 7595
0b86a832
CM
7596 leaf = path->nodes[0];
7597 slot = path->slots[0];
43cb1478 7598
d85327b1
DS
7599 if (node) {
7600 if (last_ra_node != node->start) {
7601 readahead_tree_node_children(node);
7602 last_ra_node = node->start;
7603 }
7604 }
395927a9
FDBM
7605 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7606 struct btrfs_dev_item *dev_item;
7607 dev_item = btrfs_item_ptr(leaf, slot,
0b86a832 7608 struct btrfs_dev_item);
17850759 7609 ret = read_one_dev(leaf, dev_item);
395927a9
FDBM
7610 if (ret)
7611 goto error;
99e3ecfc 7612 total_dev++;
0b86a832
CM
7613 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7614 struct btrfs_chunk *chunk;
79bd3712
FM
7615
7616 /*
7617 * We are only called at mount time, so no need to take
7618 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7619 * we always lock first fs_info->chunk_mutex before
7620 * acquiring any locks on the chunk tree. This is a
7621 * requirement for chunk allocation, see the comment on
7622 * top of btrfs_chunk_alloc() for details.
7623 */
0b86a832 7624 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
9690ac09 7625 ret = read_one_chunk(&found_key, leaf, chunk);
2b82032c
YZ
7626 if (ret)
7627 goto error;
0b86a832 7628 }
43cb1478
GN
7629 }
7630 /* Catch error found during iteration */
7631 if (iter_ret < 0) {
7632 ret = iter_ret;
7633 goto error;
0b86a832 7634 }
99e3ecfc
LB
7635
7636 /*
7637 * After loading chunk tree, we've got all device information,
7638 * do another round of validation checks.
7639 */
0b246afa 7640 if (total_dev != fs_info->fs_devices->total_devices) {
d201238c
QW
7641 btrfs_warn(fs_info,
7642"super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
0b246afa 7643 btrfs_super_num_devices(fs_info->super_copy),
99e3ecfc 7644 total_dev);
d201238c
QW
7645 fs_info->fs_devices->total_devices = total_dev;
7646 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
99e3ecfc 7647 }
0b246afa
JM
7648 if (btrfs_super_total_bytes(fs_info->super_copy) <
7649 fs_info->fs_devices->total_rw_bytes) {
7650 btrfs_err(fs_info,
99e3ecfc 7651 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
0b246afa
JM
7652 btrfs_super_total_bytes(fs_info->super_copy),
7653 fs_info->fs_devices->total_rw_bytes);
99e3ecfc
LB
7654 ret = -EINVAL;
7655 goto error;
7656 }
0b86a832
CM
7657 ret = 0;
7658error:
b367e47f
LZ
7659 mutex_unlock(&uuid_mutex);
7660
2b82032c 7661 btrfs_free_path(path);
0b86a832
CM
7662 return ret;
7663}
442a4f63 7664
cb517eab
MX
7665void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7666{
944d3f9f 7667 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
cb517eab
MX
7668 struct btrfs_device *device;
7669
944d3f9f
NB
7670 fs_devices->fs_info = fs_info;
7671
7672 mutex_lock(&fs_devices->device_list_mutex);
7673 list_for_each_entry(device, &fs_devices->devices, dev_list)
7674 device->fs_info = fs_info;
944d3f9f
NB
7675
7676 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
944d3f9f 7677 list_for_each_entry(device, &seed_devs->devices, dev_list)
fb456252 7678 device->fs_info = fs_info;
29cc83f6 7679
944d3f9f 7680 seed_devs->fs_info = fs_info;
29cc83f6 7681 }
e17125b5 7682 mutex_unlock(&fs_devices->device_list_mutex);
cb517eab
MX
7683}
7684
1dc990df
DS
7685static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7686 const struct btrfs_dev_stats_item *ptr,
7687 int index)
7688{
7689 u64 val;
7690
7691 read_extent_buffer(eb, &val,
7692 offsetof(struct btrfs_dev_stats_item, values) +
7693 ((unsigned long)ptr) + (index * sizeof(u64)),
7694 sizeof(val));
7695 return val;
7696}
7697
7698static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7699 struct btrfs_dev_stats_item *ptr,
7700 int index, u64 val)
7701{
7702 write_extent_buffer(eb, &val,
7703 offsetof(struct btrfs_dev_stats_item, values) +
7704 ((unsigned long)ptr) + (index * sizeof(u64)),
7705 sizeof(val));
7706}
7707
92e26df4
JB
7708static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7709 struct btrfs_path *path)
733f4fbb 7710{
124604eb 7711 struct btrfs_dev_stats_item *ptr;
733f4fbb 7712 struct extent_buffer *eb;
124604eb
JB
7713 struct btrfs_key key;
7714 int item_size;
7715 int i, ret, slot;
7716
82d62d06
JB
7717 if (!device->fs_info->dev_root)
7718 return 0;
7719
124604eb
JB
7720 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7721 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7722 key.offset = device->devid;
7723 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7724 if (ret) {
7725 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7726 btrfs_dev_stat_set(device, i, 0);
7727 device->dev_stats_valid = 1;
7728 btrfs_release_path(path);
92e26df4 7729 return ret < 0 ? ret : 0;
124604eb
JB
7730 }
7731 slot = path->slots[0];
7732 eb = path->nodes[0];
3212fa14 7733 item_size = btrfs_item_size(eb, slot);
124604eb
JB
7734
7735 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7736
7737 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7738 if (item_size >= (1 + i) * sizeof(__le64))
7739 btrfs_dev_stat_set(device, i,
7740 btrfs_dev_stats_value(eb, ptr, i));
7741 else
7742 btrfs_dev_stat_set(device, i, 0);
7743 }
7744
7745 device->dev_stats_valid = 1;
7746 btrfs_dev_stat_print_on_load(device);
7747 btrfs_release_path(path);
92e26df4
JB
7748
7749 return 0;
124604eb
JB
7750}
7751
7752int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7753{
7754 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
733f4fbb
SB
7755 struct btrfs_device *device;
7756 struct btrfs_path *path = NULL;
92e26df4 7757 int ret = 0;
733f4fbb
SB
7758
7759 path = btrfs_alloc_path();
3b80a984
AJ
7760 if (!path)
7761 return -ENOMEM;
733f4fbb
SB
7762
7763 mutex_lock(&fs_devices->device_list_mutex);
92e26df4
JB
7764 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7765 ret = btrfs_device_init_dev_stats(device, path);
7766 if (ret)
7767 goto out;
7768 }
124604eb 7769 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
92e26df4
JB
7770 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7771 ret = btrfs_device_init_dev_stats(device, path);
7772 if (ret)
7773 goto out;
7774 }
733f4fbb 7775 }
92e26df4 7776out:
733f4fbb
SB
7777 mutex_unlock(&fs_devices->device_list_mutex);
7778
733f4fbb 7779 btrfs_free_path(path);
92e26df4 7780 return ret;
733f4fbb
SB
7781}
7782
7783static int update_dev_stat_item(struct btrfs_trans_handle *trans,
733f4fbb
SB
7784 struct btrfs_device *device)
7785{
5495f195 7786 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 7787 struct btrfs_root *dev_root = fs_info->dev_root;
733f4fbb
SB
7788 struct btrfs_path *path;
7789 struct btrfs_key key;
7790 struct extent_buffer *eb;
7791 struct btrfs_dev_stats_item *ptr;
7792 int ret;
7793 int i;
7794
242e2956
DS
7795 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7796 key.type = BTRFS_PERSISTENT_ITEM_KEY;
733f4fbb
SB
7797 key.offset = device->devid;
7798
7799 path = btrfs_alloc_path();
fa252992
DS
7800 if (!path)
7801 return -ENOMEM;
733f4fbb
SB
7802 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7803 if (ret < 0) {
0b246afa 7804 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7805 "error %d while searching for dev_stats item for device %s",
606686ee 7806 ret, rcu_str_deref(device->name));
733f4fbb
SB
7807 goto out;
7808 }
7809
7810 if (ret == 0 &&
3212fa14 7811 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
733f4fbb
SB
7812 /* need to delete old one and insert a new one */
7813 ret = btrfs_del_item(trans, dev_root, path);
7814 if (ret != 0) {
0b246afa 7815 btrfs_warn_in_rcu(fs_info,
ecaeb14b 7816 "delete too small dev_stats item for device %s failed %d",
606686ee 7817 rcu_str_deref(device->name), ret);
733f4fbb
SB
7818 goto out;
7819 }
7820 ret = 1;
7821 }
7822
7823 if (ret == 1) {
7824 /* need to insert a new item */
7825 btrfs_release_path(path);
7826 ret = btrfs_insert_empty_item(trans, dev_root, path,
7827 &key, sizeof(*ptr));
7828 if (ret < 0) {
0b246afa 7829 btrfs_warn_in_rcu(fs_info,
ecaeb14b
DS
7830 "insert dev_stats item for device %s failed %d",
7831 rcu_str_deref(device->name), ret);
733f4fbb
SB
7832 goto out;
7833 }
7834 }
7835
7836 eb = path->nodes[0];
7837 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7838 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7839 btrfs_set_dev_stats_value(eb, ptr, i,
7840 btrfs_dev_stat_read(device, i));
7841 btrfs_mark_buffer_dirty(eb);
7842
7843out:
7844 btrfs_free_path(path);
7845 return ret;
7846}
7847
7848/*
7849 * called from commit_transaction. Writes all changed device stats to disk.
7850 */
196c9d8d 7851int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
733f4fbb 7852{
196c9d8d 7853 struct btrfs_fs_info *fs_info = trans->fs_info;
733f4fbb
SB
7854 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7855 struct btrfs_device *device;
addc3fa7 7856 int stats_cnt;
733f4fbb
SB
7857 int ret = 0;
7858
7859 mutex_lock(&fs_devices->device_list_mutex);
7860 list_for_each_entry(device, &fs_devices->devices, dev_list) {
9deae968
NB
7861 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7862 if (!device->dev_stats_valid || stats_cnt == 0)
733f4fbb
SB
7863 continue;
7864
9deae968
NB
7865
7866 /*
7867 * There is a LOAD-LOAD control dependency between the value of
7868 * dev_stats_ccnt and updating the on-disk values which requires
7869 * reading the in-memory counters. Such control dependencies
7870 * require explicit read memory barriers.
7871 *
7872 * This memory barriers pairs with smp_mb__before_atomic in
7873 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7874 * barrier implied by atomic_xchg in
7875 * btrfs_dev_stats_read_and_reset
7876 */
7877 smp_rmb();
7878
5495f195 7879 ret = update_dev_stat_item(trans, device);
733f4fbb 7880 if (!ret)
addc3fa7 7881 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
733f4fbb
SB
7882 }
7883 mutex_unlock(&fs_devices->device_list_mutex);
7884
7885 return ret;
7886}
7887
442a4f63
SB
7888void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7889{
7890 btrfs_dev_stat_inc(dev, index);
7891 btrfs_dev_stat_print_on_error(dev);
7892}
7893
48a3b636 7894static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
442a4f63 7895{
733f4fbb
SB
7896 if (!dev->dev_stats_valid)
7897 return;
fb456252 7898 btrfs_err_rl_in_rcu(dev->fs_info,
b14af3b4 7899 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7900 rcu_str_deref(dev->name),
442a4f63
SB
7901 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7902 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7903 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
efe120a0
FH
7904 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7905 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
442a4f63 7906}
c11d2c23 7907
733f4fbb
SB
7908static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7909{
a98cdb85
SB
7910 int i;
7911
7912 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7913 if (btrfs_dev_stat_read(dev, i) != 0)
7914 break;
7915 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7916 return; /* all values == 0, suppress message */
7917
fb456252 7918 btrfs_info_in_rcu(dev->fs_info,
ecaeb14b 7919 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
606686ee 7920 rcu_str_deref(dev->name),
733f4fbb
SB
7921 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7922 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7923 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7924 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7925 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7926}
7927
2ff7e61e 7928int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
b27f7c0c 7929 struct btrfs_ioctl_get_dev_stats *stats)
c11d2c23 7930{
562d7b15 7931 BTRFS_DEV_LOOKUP_ARGS(args);
c11d2c23 7932 struct btrfs_device *dev;
0b246afa 7933 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
c11d2c23
SB
7934 int i;
7935
7936 mutex_lock(&fs_devices->device_list_mutex);
562d7b15
JB
7937 args.devid = stats->devid;
7938 dev = btrfs_find_device(fs_info->fs_devices, &args);
c11d2c23
SB
7939 mutex_unlock(&fs_devices->device_list_mutex);
7940
7941 if (!dev) {
0b246afa 7942 btrfs_warn(fs_info, "get dev_stats failed, device not found");
c11d2c23 7943 return -ENODEV;
733f4fbb 7944 } else if (!dev->dev_stats_valid) {
0b246afa 7945 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
733f4fbb 7946 return -ENODEV;
b27f7c0c 7947 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
c11d2c23
SB
7948 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7949 if (stats->nr_items > i)
7950 stats->values[i] =
7951 btrfs_dev_stat_read_and_reset(dev, i);
7952 else
4e411a7d 7953 btrfs_dev_stat_set(dev, i, 0);
c11d2c23 7954 }
a69976bc
AJ
7955 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7956 current->comm, task_pid_nr(current));
c11d2c23
SB
7957 } else {
7958 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7959 if (stats->nr_items > i)
7960 stats->values[i] = btrfs_dev_stat_read(dev, i);
7961 }
7962 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7963 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7964 return 0;
7965}
a8a6dab7 7966
935e5cc9 7967/*
bbbf7243
NB
7968 * Update the size and bytes used for each device where it changed. This is
7969 * delayed since we would otherwise get errors while writing out the
7970 * superblocks.
7971 *
7972 * Must be invoked during transaction commit.
935e5cc9 7973 */
bbbf7243 7974void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
935e5cc9 7975{
935e5cc9
MX
7976 struct btrfs_device *curr, *next;
7977
bbbf7243 7978 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
ce7213c7 7979
bbbf7243 7980 if (list_empty(&trans->dev_update_list))
ce7213c7
MX
7981 return;
7982
bbbf7243
NB
7983 /*
7984 * We don't need the device_list_mutex here. This list is owned by the
7985 * transaction and the transaction must complete before the device is
7986 * released.
7987 */
7988 mutex_lock(&trans->fs_info->chunk_mutex);
7989 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7990 post_commit_list) {
7991 list_del_init(&curr->post_commit_list);
7992 curr->commit_total_bytes = curr->disk_total_bytes;
7993 curr->commit_bytes_used = curr->bytes_used;
ce7213c7 7994 }
bbbf7243 7995 mutex_unlock(&trans->fs_info->chunk_mutex);
ce7213c7 7996}
5a13f430 7997
46df06b8
DS
7998/*
7999 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
8000 */
8001int btrfs_bg_type_to_factor(u64 flags)
8002{
44b28ada
DS
8003 const int index = btrfs_bg_flags_to_raid_index(flags);
8004
8005 return btrfs_raid_array[index].ncopies;
46df06b8 8006}
cf90d884
QW
8007
8008
cf90d884
QW
8009
8010static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
8011 u64 chunk_offset, u64 devid,
8012 u64 physical_offset, u64 physical_len)
8013{
562d7b15 8014 struct btrfs_dev_lookup_args args = { .devid = devid };
c8bf1b67 8015 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
8016 struct extent_map *em;
8017 struct map_lookup *map;
05a37c48 8018 struct btrfs_device *dev;
cf90d884
QW
8019 u64 stripe_len;
8020 bool found = false;
8021 int ret = 0;
8022 int i;
8023
8024 read_lock(&em_tree->lock);
8025 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
8026 read_unlock(&em_tree->lock);
8027
8028 if (!em) {
8029 btrfs_err(fs_info,
8030"dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
8031 physical_offset, devid);
8032 ret = -EUCLEAN;
8033 goto out;
8034 }
8035
8036 map = em->map_lookup;
8037 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
8038 if (physical_len != stripe_len) {
8039 btrfs_err(fs_info,
8040"dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
8041 physical_offset, devid, em->start, physical_len,
8042 stripe_len);
8043 ret = -EUCLEAN;
8044 goto out;
8045 }
8046
8047 for (i = 0; i < map->num_stripes; i++) {
8048 if (map->stripes[i].dev->devid == devid &&
8049 map->stripes[i].physical == physical_offset) {
8050 found = true;
8051 if (map->verified_stripes >= map->num_stripes) {
8052 btrfs_err(fs_info,
8053 "too many dev extents for chunk %llu found",
8054 em->start);
8055 ret = -EUCLEAN;
8056 goto out;
8057 }
8058 map->verified_stripes++;
8059 break;
8060 }
8061 }
8062 if (!found) {
8063 btrfs_err(fs_info,
8064 "dev extent physical offset %llu devid %llu has no corresponding chunk",
8065 physical_offset, devid);
8066 ret = -EUCLEAN;
8067 }
05a37c48 8068
1a9fd417 8069 /* Make sure no dev extent is beyond device boundary */
562d7b15 8070 dev = btrfs_find_device(fs_info->fs_devices, &args);
05a37c48
QW
8071 if (!dev) {
8072 btrfs_err(fs_info, "failed to find devid %llu", devid);
8073 ret = -EUCLEAN;
8074 goto out;
8075 }
1b3922a8 8076
05a37c48
QW
8077 if (physical_offset + physical_len > dev->disk_total_bytes) {
8078 btrfs_err(fs_info,
8079"dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
8080 devid, physical_offset, physical_len,
8081 dev->disk_total_bytes);
8082 ret = -EUCLEAN;
8083 goto out;
8084 }
381a696e
NA
8085
8086 if (dev->zone_info) {
8087 u64 zone_size = dev->zone_info->zone_size;
8088
8089 if (!IS_ALIGNED(physical_offset, zone_size) ||
8090 !IS_ALIGNED(physical_len, zone_size)) {
8091 btrfs_err(fs_info,
8092"zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8093 devid, physical_offset, physical_len);
8094 ret = -EUCLEAN;
8095 goto out;
8096 }
8097 }
8098
cf90d884
QW
8099out:
8100 free_extent_map(em);
8101 return ret;
8102}
8103
8104static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8105{
c8bf1b67 8106 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
cf90d884
QW
8107 struct extent_map *em;
8108 struct rb_node *node;
8109 int ret = 0;
8110
8111 read_lock(&em_tree->lock);
07e1ce09 8112 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
cf90d884
QW
8113 em = rb_entry(node, struct extent_map, rb_node);
8114 if (em->map_lookup->num_stripes !=
8115 em->map_lookup->verified_stripes) {
8116 btrfs_err(fs_info,
8117 "chunk %llu has missing dev extent, have %d expect %d",
8118 em->start, em->map_lookup->verified_stripes,
8119 em->map_lookup->num_stripes);
8120 ret = -EUCLEAN;
8121 goto out;
8122 }
8123 }
8124out:
8125 read_unlock(&em_tree->lock);
8126 return ret;
8127}
8128
8129/*
8130 * Ensure that all dev extents are mapped to correct chunk, otherwise
8131 * later chunk allocation/free would cause unexpected behavior.
8132 *
8133 * NOTE: This will iterate through the whole device tree, which should be of
8134 * the same size level as the chunk tree. This slightly increases mount time.
8135 */
8136int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8137{
8138 struct btrfs_path *path;
8139 struct btrfs_root *root = fs_info->dev_root;
8140 struct btrfs_key key;
5eb19381
QW
8141 u64 prev_devid = 0;
8142 u64 prev_dev_ext_end = 0;
cf90d884
QW
8143 int ret = 0;
8144
42437a63
JB
8145 /*
8146 * We don't have a dev_root because we mounted with ignorebadroots and
8147 * failed to load the root, so we want to skip the verification in this
8148 * case for sure.
8149 *
8150 * However if the dev root is fine, but the tree itself is corrupted
8151 * we'd still fail to mount. This verification is only to make sure
8152 * writes can happen safely, so instead just bypass this check
8153 * completely in the case of IGNOREBADROOTS.
8154 */
8155 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8156 return 0;
8157
cf90d884
QW
8158 key.objectid = 1;
8159 key.type = BTRFS_DEV_EXTENT_KEY;
8160 key.offset = 0;
8161
8162 path = btrfs_alloc_path();
8163 if (!path)
8164 return -ENOMEM;
8165
8166 path->reada = READA_FORWARD;
8167 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8168 if (ret < 0)
8169 goto out;
8170
8171 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ad9a9378 8172 ret = btrfs_next_leaf(root, path);
cf90d884
QW
8173 if (ret < 0)
8174 goto out;
8175 /* No dev extents at all? Not good */
8176 if (ret > 0) {
8177 ret = -EUCLEAN;
8178 goto out;
8179 }
8180 }
8181 while (1) {
8182 struct extent_buffer *leaf = path->nodes[0];
8183 struct btrfs_dev_extent *dext;
8184 int slot = path->slots[0];
8185 u64 chunk_offset;
8186 u64 physical_offset;
8187 u64 physical_len;
8188 u64 devid;
8189
8190 btrfs_item_key_to_cpu(leaf, &key, slot);
8191 if (key.type != BTRFS_DEV_EXTENT_KEY)
8192 break;
8193 devid = key.objectid;
8194 physical_offset = key.offset;
8195
8196 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8197 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8198 physical_len = btrfs_dev_extent_length(leaf, dext);
8199
5eb19381
QW
8200 /* Check if this dev extent overlaps with the previous one */
8201 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8202 btrfs_err(fs_info,
8203"dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8204 devid, physical_offset, prev_dev_ext_end);
8205 ret = -EUCLEAN;
8206 goto out;
8207 }
8208
cf90d884
QW
8209 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8210 physical_offset, physical_len);
8211 if (ret < 0)
8212 goto out;
5eb19381
QW
8213 prev_devid = devid;
8214 prev_dev_ext_end = physical_offset + physical_len;
8215
cf90d884
QW
8216 ret = btrfs_next_item(root, path);
8217 if (ret < 0)
8218 goto out;
8219 if (ret > 0) {
8220 ret = 0;
8221 break;
8222 }
8223 }
8224
8225 /* Ensure all chunks have corresponding dev extents */
8226 ret = verify_chunk_dev_extent_mapping(fs_info);
8227out:
8228 btrfs_free_path(path);
8229 return ret;
8230}
eede2bf3
OS
8231
8232/*
8233 * Check whether the given block group or device is pinned by any inode being
8234 * used as a swapfile.
8235 */
8236bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8237{
8238 struct btrfs_swapfile_pin *sp;
8239 struct rb_node *node;
8240
8241 spin_lock(&fs_info->swapfile_pins_lock);
8242 node = fs_info->swapfile_pins.rb_node;
8243 while (node) {
8244 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8245 if (ptr < sp->ptr)
8246 node = node->rb_left;
8247 else if (ptr > sp->ptr)
8248 node = node->rb_right;
8249 else
8250 break;
8251 }
8252 spin_unlock(&fs_info->swapfile_pins_lock);
8253 return node != NULL;
8254}
f7ef5287
NA
8255
8256static int relocating_repair_kthread(void *data)
8257{
0d031dc4 8258 struct btrfs_block_group *cache = data;
f7ef5287
NA
8259 struct btrfs_fs_info *fs_info = cache->fs_info;
8260 u64 target;
8261 int ret = 0;
8262
8263 target = cache->start;
8264 btrfs_put_block_group(cache);
8265
ca5e4ea0 8266 sb_start_write(fs_info->sb);
f7ef5287
NA
8267 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8268 btrfs_info(fs_info,
8269 "zoned: skip relocating block group %llu to repair: EBUSY",
8270 target);
ca5e4ea0 8271 sb_end_write(fs_info->sb);
f7ef5287
NA
8272 return -EBUSY;
8273 }
8274
f3372065 8275 mutex_lock(&fs_info->reclaim_bgs_lock);
f7ef5287
NA
8276
8277 /* Ensure block group still exists */
8278 cache = btrfs_lookup_block_group(fs_info, target);
8279 if (!cache)
8280 goto out;
8281
8282 if (!cache->relocating_repair)
8283 goto out;
8284
8285 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8286 if (ret < 0)
8287 goto out;
8288
8289 btrfs_info(fs_info,
8290 "zoned: relocating block group %llu to repair IO failure",
8291 target);
8292 ret = btrfs_relocate_chunk(fs_info, target);
8293
8294out:
8295 if (cache)
8296 btrfs_put_block_group(cache);
f3372065 8297 mutex_unlock(&fs_info->reclaim_bgs_lock);
f7ef5287 8298 btrfs_exclop_finish(fs_info);
ca5e4ea0 8299 sb_end_write(fs_info->sb);
f7ef5287
NA
8300
8301 return ret;
8302}
8303
554aed7d 8304bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
f7ef5287
NA
8305{
8306 struct btrfs_block_group *cache;
8307
554aed7d
JT
8308 if (!btrfs_is_zoned(fs_info))
8309 return false;
8310
f7ef5287
NA
8311 /* Do not attempt to repair in degraded state */
8312 if (btrfs_test_opt(fs_info, DEGRADED))
554aed7d 8313 return true;
f7ef5287
NA
8314
8315 cache = btrfs_lookup_block_group(fs_info, logical);
8316 if (!cache)
554aed7d 8317 return true;
f7ef5287
NA
8318
8319 spin_lock(&cache->lock);
8320 if (cache->relocating_repair) {
8321 spin_unlock(&cache->lock);
8322 btrfs_put_block_group(cache);
554aed7d 8323 return true;
f7ef5287
NA
8324 }
8325 cache->relocating_repair = 1;
8326 spin_unlock(&cache->lock);
8327
8328 kthread_run(relocating_repair_kthread, cache,
8329 "btrfs-relocating-repair");
8330
554aed7d 8331 return true;
f7ef5287 8332}
This page took 2.958815 seconds and 4 git commands to generate.