]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/filemap.c | |
3 | * | |
4 | * Copyright (C) 1994-1999 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * This file handles the generic file mmap semantics used by | |
9 | * most "normal" filesystems (but you don't /have/ to use this: | |
10 | * the NFS filesystem used to do this differently, for example) | |
11 | */ | |
1da177e4 LT |
12 | #include <linux/module.h> |
13 | #include <linux/slab.h> | |
14 | #include <linux/compiler.h> | |
15 | #include <linux/fs.h> | |
c22ce143 | 16 | #include <linux/uaccess.h> |
1da177e4 | 17 | #include <linux/aio.h> |
c59ede7b | 18 | #include <linux/capability.h> |
1da177e4 LT |
19 | #include <linux/kernel_stat.h> |
20 | #include <linux/mm.h> | |
21 | #include <linux/swap.h> | |
22 | #include <linux/mman.h> | |
23 | #include <linux/pagemap.h> | |
24 | #include <linux/file.h> | |
25 | #include <linux/uio.h> | |
26 | #include <linux/hash.h> | |
27 | #include <linux/writeback.h> | |
53253383 | 28 | #include <linux/backing-dev.h> |
1da177e4 LT |
29 | #include <linux/pagevec.h> |
30 | #include <linux/blkdev.h> | |
31 | #include <linux/security.h> | |
32 | #include <linux/syscalls.h> | |
44110fe3 | 33 | #include <linux/cpuset.h> |
2f718ffc | 34 | #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ |
8a9f3ccd | 35 | #include <linux/memcontrol.h> |
4f98a2fe | 36 | #include <linux/mm_inline.h> /* for page_is_file_cache() */ |
0f8053a5 NP |
37 | #include "internal.h" |
38 | ||
1da177e4 | 39 | /* |
1da177e4 LT |
40 | * FIXME: remove all knowledge of the buffer layer from the core VM |
41 | */ | |
42 | #include <linux/buffer_head.h> /* for generic_osync_inode */ | |
43 | ||
1da177e4 LT |
44 | #include <asm/mman.h> |
45 | ||
5ce7852c | 46 | |
1da177e4 LT |
47 | /* |
48 | * Shared mappings implemented 30.11.1994. It's not fully working yet, | |
49 | * though. | |
50 | * | |
51 | * Shared mappings now work. 15.8.1995 Bruno. | |
52 | * | |
53 | * finished 'unifying' the page and buffer cache and SMP-threaded the | |
54 | * page-cache, 21.05.1999, Ingo Molnar <[email protected]> | |
55 | * | |
56 | * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]> | |
57 | */ | |
58 | ||
59 | /* | |
60 | * Lock ordering: | |
61 | * | |
62 | * ->i_mmap_lock (vmtruncate) | |
63 | * ->private_lock (__free_pte->__set_page_dirty_buffers) | |
5d337b91 HD |
64 | * ->swap_lock (exclusive_swap_page, others) |
65 | * ->mapping->tree_lock | |
1da177e4 | 66 | * |
1b1dcc1b | 67 | * ->i_mutex |
1da177e4 LT |
68 | * ->i_mmap_lock (truncate->unmap_mapping_range) |
69 | * | |
70 | * ->mmap_sem | |
71 | * ->i_mmap_lock | |
b8072f09 | 72 | * ->page_table_lock or pte_lock (various, mainly in memory.c) |
1da177e4 LT |
73 | * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) |
74 | * | |
75 | * ->mmap_sem | |
76 | * ->lock_page (access_process_vm) | |
77 | * | |
82591e6e NP |
78 | * ->i_mutex (generic_file_buffered_write) |
79 | * ->mmap_sem (fault_in_pages_readable->do_page_fault) | |
1da177e4 | 80 | * |
1b1dcc1b | 81 | * ->i_mutex |
1da177e4 LT |
82 | * ->i_alloc_sem (various) |
83 | * | |
84 | * ->inode_lock | |
85 | * ->sb_lock (fs/fs-writeback.c) | |
86 | * ->mapping->tree_lock (__sync_single_inode) | |
87 | * | |
88 | * ->i_mmap_lock | |
89 | * ->anon_vma.lock (vma_adjust) | |
90 | * | |
91 | * ->anon_vma.lock | |
b8072f09 | 92 | * ->page_table_lock or pte_lock (anon_vma_prepare and various) |
1da177e4 | 93 | * |
b8072f09 | 94 | * ->page_table_lock or pte_lock |
5d337b91 | 95 | * ->swap_lock (try_to_unmap_one) |
1da177e4 LT |
96 | * ->private_lock (try_to_unmap_one) |
97 | * ->tree_lock (try_to_unmap_one) | |
98 | * ->zone.lru_lock (follow_page->mark_page_accessed) | |
053837fc | 99 | * ->zone.lru_lock (check_pte_range->isolate_lru_page) |
1da177e4 LT |
100 | * ->private_lock (page_remove_rmap->set_page_dirty) |
101 | * ->tree_lock (page_remove_rmap->set_page_dirty) | |
102 | * ->inode_lock (page_remove_rmap->set_page_dirty) | |
103 | * ->inode_lock (zap_pte_range->set_page_dirty) | |
104 | * ->private_lock (zap_pte_range->__set_page_dirty_buffers) | |
105 | * | |
106 | * ->task->proc_lock | |
107 | * ->dcache_lock (proc_pid_lookup) | |
108 | */ | |
109 | ||
110 | /* | |
111 | * Remove a page from the page cache and free it. Caller has to make | |
112 | * sure the page is locked and that nobody else uses it - or that usage | |
19fd6231 | 113 | * is safe. The caller must hold the mapping's tree_lock. |
1da177e4 LT |
114 | */ |
115 | void __remove_from_page_cache(struct page *page) | |
116 | { | |
117 | struct address_space *mapping = page->mapping; | |
118 | ||
69029cd5 | 119 | mem_cgroup_uncharge_cache_page(page); |
1da177e4 LT |
120 | radix_tree_delete(&mapping->page_tree, page->index); |
121 | page->mapping = NULL; | |
122 | mapping->nrpages--; | |
347ce434 | 123 | __dec_zone_page_state(page, NR_FILE_PAGES); |
45426812 | 124 | BUG_ON(page_mapped(page)); |
3a692790 LT |
125 | |
126 | /* | |
127 | * Some filesystems seem to re-dirty the page even after | |
128 | * the VM has canceled the dirty bit (eg ext3 journaling). | |
129 | * | |
130 | * Fix it up by doing a final dirty accounting check after | |
131 | * having removed the page entirely. | |
132 | */ | |
133 | if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { | |
134 | dec_zone_page_state(page, NR_FILE_DIRTY); | |
135 | dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); | |
136 | } | |
1da177e4 LT |
137 | } |
138 | ||
139 | void remove_from_page_cache(struct page *page) | |
140 | { | |
141 | struct address_space *mapping = page->mapping; | |
142 | ||
cd7619d6 | 143 | BUG_ON(!PageLocked(page)); |
1da177e4 | 144 | |
19fd6231 | 145 | spin_lock_irq(&mapping->tree_lock); |
1da177e4 | 146 | __remove_from_page_cache(page); |
19fd6231 | 147 | spin_unlock_irq(&mapping->tree_lock); |
1da177e4 LT |
148 | } |
149 | ||
150 | static int sync_page(void *word) | |
151 | { | |
152 | struct address_space *mapping; | |
153 | struct page *page; | |
154 | ||
07808b74 | 155 | page = container_of((unsigned long *)word, struct page, flags); |
1da177e4 LT |
156 | |
157 | /* | |
dd1d5afc NYC |
158 | * page_mapping() is being called without PG_locked held. |
159 | * Some knowledge of the state and use of the page is used to | |
160 | * reduce the requirements down to a memory barrier. | |
161 | * The danger here is of a stale page_mapping() return value | |
162 | * indicating a struct address_space different from the one it's | |
163 | * associated with when it is associated with one. | |
164 | * After smp_mb(), it's either the correct page_mapping() for | |
165 | * the page, or an old page_mapping() and the page's own | |
166 | * page_mapping() has gone NULL. | |
167 | * The ->sync_page() address_space operation must tolerate | |
168 | * page_mapping() going NULL. By an amazing coincidence, | |
169 | * this comes about because none of the users of the page | |
170 | * in the ->sync_page() methods make essential use of the | |
171 | * page_mapping(), merely passing the page down to the backing | |
172 | * device's unplug functions when it's non-NULL, which in turn | |
4c21e2f2 | 173 | * ignore it for all cases but swap, where only page_private(page) is |
dd1d5afc NYC |
174 | * of interest. When page_mapping() does go NULL, the entire |
175 | * call stack gracefully ignores the page and returns. | |
176 | * -- wli | |
1da177e4 LT |
177 | */ |
178 | smp_mb(); | |
179 | mapping = page_mapping(page); | |
180 | if (mapping && mapping->a_ops && mapping->a_ops->sync_page) | |
181 | mapping->a_ops->sync_page(page); | |
182 | io_schedule(); | |
183 | return 0; | |
184 | } | |
185 | ||
2687a356 MW |
186 | static int sync_page_killable(void *word) |
187 | { | |
188 | sync_page(word); | |
189 | return fatal_signal_pending(current) ? -EINTR : 0; | |
190 | } | |
191 | ||
1da177e4 | 192 | /** |
485bb99b | 193 | * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range |
67be2dd1 MW |
194 | * @mapping: address space structure to write |
195 | * @start: offset in bytes where the range starts | |
469eb4d0 | 196 | * @end: offset in bytes where the range ends (inclusive) |
67be2dd1 | 197 | * @sync_mode: enable synchronous operation |
1da177e4 | 198 | * |
485bb99b RD |
199 | * Start writeback against all of a mapping's dirty pages that lie |
200 | * within the byte offsets <start, end> inclusive. | |
201 | * | |
1da177e4 | 202 | * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as |
485bb99b | 203 | * opposed to a regular memory cleansing writeback. The difference between |
1da177e4 LT |
204 | * these two operations is that if a dirty page/buffer is encountered, it must |
205 | * be waited upon, and not just skipped over. | |
206 | */ | |
ebcf28e1 AM |
207 | int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
208 | loff_t end, int sync_mode) | |
1da177e4 LT |
209 | { |
210 | int ret; | |
211 | struct writeback_control wbc = { | |
212 | .sync_mode = sync_mode, | |
213 | .nr_to_write = mapping->nrpages * 2, | |
111ebb6e OH |
214 | .range_start = start, |
215 | .range_end = end, | |
1da177e4 LT |
216 | }; |
217 | ||
218 | if (!mapping_cap_writeback_dirty(mapping)) | |
219 | return 0; | |
220 | ||
221 | ret = do_writepages(mapping, &wbc); | |
222 | return ret; | |
223 | } | |
224 | ||
225 | static inline int __filemap_fdatawrite(struct address_space *mapping, | |
226 | int sync_mode) | |
227 | { | |
111ebb6e | 228 | return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); |
1da177e4 LT |
229 | } |
230 | ||
231 | int filemap_fdatawrite(struct address_space *mapping) | |
232 | { | |
233 | return __filemap_fdatawrite(mapping, WB_SYNC_ALL); | |
234 | } | |
235 | EXPORT_SYMBOL(filemap_fdatawrite); | |
236 | ||
f4c0a0fd | 237 | int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, |
ebcf28e1 | 238 | loff_t end) |
1da177e4 LT |
239 | { |
240 | return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); | |
241 | } | |
f4c0a0fd | 242 | EXPORT_SYMBOL(filemap_fdatawrite_range); |
1da177e4 | 243 | |
485bb99b RD |
244 | /** |
245 | * filemap_flush - mostly a non-blocking flush | |
246 | * @mapping: target address_space | |
247 | * | |
1da177e4 LT |
248 | * This is a mostly non-blocking flush. Not suitable for data-integrity |
249 | * purposes - I/O may not be started against all dirty pages. | |
250 | */ | |
251 | int filemap_flush(struct address_space *mapping) | |
252 | { | |
253 | return __filemap_fdatawrite(mapping, WB_SYNC_NONE); | |
254 | } | |
255 | EXPORT_SYMBOL(filemap_flush); | |
256 | ||
485bb99b RD |
257 | /** |
258 | * wait_on_page_writeback_range - wait for writeback to complete | |
259 | * @mapping: target address_space | |
260 | * @start: beginning page index | |
261 | * @end: ending page index | |
262 | * | |
1da177e4 LT |
263 | * Wait for writeback to complete against pages indexed by start->end |
264 | * inclusive | |
265 | */ | |
ebcf28e1 | 266 | int wait_on_page_writeback_range(struct address_space *mapping, |
1da177e4 LT |
267 | pgoff_t start, pgoff_t end) |
268 | { | |
269 | struct pagevec pvec; | |
270 | int nr_pages; | |
271 | int ret = 0; | |
272 | pgoff_t index; | |
273 | ||
274 | if (end < start) | |
275 | return 0; | |
276 | ||
277 | pagevec_init(&pvec, 0); | |
278 | index = start; | |
279 | while ((index <= end) && | |
280 | (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | |
281 | PAGECACHE_TAG_WRITEBACK, | |
282 | min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | |
283 | unsigned i; | |
284 | ||
285 | for (i = 0; i < nr_pages; i++) { | |
286 | struct page *page = pvec.pages[i]; | |
287 | ||
288 | /* until radix tree lookup accepts end_index */ | |
289 | if (page->index > end) | |
290 | continue; | |
291 | ||
292 | wait_on_page_writeback(page); | |
293 | if (PageError(page)) | |
294 | ret = -EIO; | |
295 | } | |
296 | pagevec_release(&pvec); | |
297 | cond_resched(); | |
298 | } | |
299 | ||
300 | /* Check for outstanding write errors */ | |
301 | if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | |
302 | ret = -ENOSPC; | |
303 | if (test_and_clear_bit(AS_EIO, &mapping->flags)) | |
304 | ret = -EIO; | |
305 | ||
306 | return ret; | |
307 | } | |
308 | ||
485bb99b RD |
309 | /** |
310 | * sync_page_range - write and wait on all pages in the passed range | |
311 | * @inode: target inode | |
312 | * @mapping: target address_space | |
313 | * @pos: beginning offset in pages to write | |
314 | * @count: number of bytes to write | |
315 | * | |
1da177e4 LT |
316 | * Write and wait upon all the pages in the passed range. This is a "data |
317 | * integrity" operation. It waits upon in-flight writeout before starting and | |
318 | * waiting upon new writeout. If there was an IO error, return it. | |
319 | * | |
1b1dcc1b | 320 | * We need to re-take i_mutex during the generic_osync_inode list walk because |
1da177e4 LT |
321 | * it is otherwise livelockable. |
322 | */ | |
323 | int sync_page_range(struct inode *inode, struct address_space *mapping, | |
268fc16e | 324 | loff_t pos, loff_t count) |
1da177e4 LT |
325 | { |
326 | pgoff_t start = pos >> PAGE_CACHE_SHIFT; | |
327 | pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; | |
328 | int ret; | |
329 | ||
330 | if (!mapping_cap_writeback_dirty(mapping) || !count) | |
331 | return 0; | |
332 | ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); | |
333 | if (ret == 0) { | |
1b1dcc1b | 334 | mutex_lock(&inode->i_mutex); |
1da177e4 | 335 | ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); |
1b1dcc1b | 336 | mutex_unlock(&inode->i_mutex); |
1da177e4 LT |
337 | } |
338 | if (ret == 0) | |
339 | ret = wait_on_page_writeback_range(mapping, start, end); | |
340 | return ret; | |
341 | } | |
342 | EXPORT_SYMBOL(sync_page_range); | |
343 | ||
485bb99b | 344 | /** |
7682486b | 345 | * sync_page_range_nolock - write & wait on all pages in the passed range without locking |
485bb99b RD |
346 | * @inode: target inode |
347 | * @mapping: target address_space | |
348 | * @pos: beginning offset in pages to write | |
349 | * @count: number of bytes to write | |
350 | * | |
72fd4a35 | 351 | * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea |
1da177e4 LT |
352 | * as it forces O_SYNC writers to different parts of the same file |
353 | * to be serialised right until io completion. | |
354 | */ | |
268fc16e OH |
355 | int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, |
356 | loff_t pos, loff_t count) | |
1da177e4 LT |
357 | { |
358 | pgoff_t start = pos >> PAGE_CACHE_SHIFT; | |
359 | pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; | |
360 | int ret; | |
361 | ||
362 | if (!mapping_cap_writeback_dirty(mapping) || !count) | |
363 | return 0; | |
364 | ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); | |
365 | if (ret == 0) | |
366 | ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); | |
367 | if (ret == 0) | |
368 | ret = wait_on_page_writeback_range(mapping, start, end); | |
369 | return ret; | |
370 | } | |
268fc16e | 371 | EXPORT_SYMBOL(sync_page_range_nolock); |
1da177e4 LT |
372 | |
373 | /** | |
485bb99b | 374 | * filemap_fdatawait - wait for all under-writeback pages to complete |
1da177e4 | 375 | * @mapping: address space structure to wait for |
485bb99b RD |
376 | * |
377 | * Walk the list of under-writeback pages of the given address space | |
378 | * and wait for all of them. | |
1da177e4 LT |
379 | */ |
380 | int filemap_fdatawait(struct address_space *mapping) | |
381 | { | |
382 | loff_t i_size = i_size_read(mapping->host); | |
383 | ||
384 | if (i_size == 0) | |
385 | return 0; | |
386 | ||
387 | return wait_on_page_writeback_range(mapping, 0, | |
388 | (i_size - 1) >> PAGE_CACHE_SHIFT); | |
389 | } | |
390 | EXPORT_SYMBOL(filemap_fdatawait); | |
391 | ||
392 | int filemap_write_and_wait(struct address_space *mapping) | |
393 | { | |
28fd1298 | 394 | int err = 0; |
1da177e4 LT |
395 | |
396 | if (mapping->nrpages) { | |
28fd1298 OH |
397 | err = filemap_fdatawrite(mapping); |
398 | /* | |
399 | * Even if the above returned error, the pages may be | |
400 | * written partially (e.g. -ENOSPC), so we wait for it. | |
401 | * But the -EIO is special case, it may indicate the worst | |
402 | * thing (e.g. bug) happened, so we avoid waiting for it. | |
403 | */ | |
404 | if (err != -EIO) { | |
405 | int err2 = filemap_fdatawait(mapping); | |
406 | if (!err) | |
407 | err = err2; | |
408 | } | |
1da177e4 | 409 | } |
28fd1298 | 410 | return err; |
1da177e4 | 411 | } |
28fd1298 | 412 | EXPORT_SYMBOL(filemap_write_and_wait); |
1da177e4 | 413 | |
485bb99b RD |
414 | /** |
415 | * filemap_write_and_wait_range - write out & wait on a file range | |
416 | * @mapping: the address_space for the pages | |
417 | * @lstart: offset in bytes where the range starts | |
418 | * @lend: offset in bytes where the range ends (inclusive) | |
419 | * | |
469eb4d0 AM |
420 | * Write out and wait upon file offsets lstart->lend, inclusive. |
421 | * | |
422 | * Note that `lend' is inclusive (describes the last byte to be written) so | |
423 | * that this function can be used to write to the very end-of-file (end = -1). | |
424 | */ | |
1da177e4 LT |
425 | int filemap_write_and_wait_range(struct address_space *mapping, |
426 | loff_t lstart, loff_t lend) | |
427 | { | |
28fd1298 | 428 | int err = 0; |
1da177e4 LT |
429 | |
430 | if (mapping->nrpages) { | |
28fd1298 OH |
431 | err = __filemap_fdatawrite_range(mapping, lstart, lend, |
432 | WB_SYNC_ALL); | |
433 | /* See comment of filemap_write_and_wait() */ | |
434 | if (err != -EIO) { | |
435 | int err2 = wait_on_page_writeback_range(mapping, | |
436 | lstart >> PAGE_CACHE_SHIFT, | |
437 | lend >> PAGE_CACHE_SHIFT); | |
438 | if (!err) | |
439 | err = err2; | |
440 | } | |
1da177e4 | 441 | } |
28fd1298 | 442 | return err; |
1da177e4 LT |
443 | } |
444 | ||
485bb99b | 445 | /** |
e286781d | 446 | * add_to_page_cache_locked - add a locked page to the pagecache |
485bb99b RD |
447 | * @page: page to add |
448 | * @mapping: the page's address_space | |
449 | * @offset: page index | |
450 | * @gfp_mask: page allocation mode | |
451 | * | |
e286781d | 452 | * This function is used to add a page to the pagecache. It must be locked. |
1da177e4 LT |
453 | * This function does not add the page to the LRU. The caller must do that. |
454 | */ | |
e286781d | 455 | int add_to_page_cache_locked(struct page *page, struct address_space *mapping, |
6daa0e28 | 456 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 457 | { |
e286781d NP |
458 | int error; |
459 | ||
460 | VM_BUG_ON(!PageLocked(page)); | |
461 | ||
462 | error = mem_cgroup_cache_charge(page, current->mm, | |
4c6bc8dd | 463 | gfp_mask & ~__GFP_HIGHMEM); |
35c754d7 BS |
464 | if (error) |
465 | goto out; | |
1da177e4 | 466 | |
35c754d7 | 467 | error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); |
1da177e4 | 468 | if (error == 0) { |
e286781d NP |
469 | page_cache_get(page); |
470 | page->mapping = mapping; | |
471 | page->index = offset; | |
472 | ||
19fd6231 | 473 | spin_lock_irq(&mapping->tree_lock); |
1da177e4 | 474 | error = radix_tree_insert(&mapping->page_tree, offset, page); |
e286781d | 475 | if (likely(!error)) { |
1da177e4 | 476 | mapping->nrpages++; |
347ce434 | 477 | __inc_zone_page_state(page, NR_FILE_PAGES); |
e286781d NP |
478 | } else { |
479 | page->mapping = NULL; | |
69029cd5 | 480 | mem_cgroup_uncharge_cache_page(page); |
e286781d NP |
481 | page_cache_release(page); |
482 | } | |
8a9f3ccd | 483 | |
19fd6231 | 484 | spin_unlock_irq(&mapping->tree_lock); |
1da177e4 | 485 | radix_tree_preload_end(); |
35c754d7 | 486 | } else |
69029cd5 | 487 | mem_cgroup_uncharge_cache_page(page); |
8a9f3ccd | 488 | out: |
1da177e4 LT |
489 | return error; |
490 | } | |
e286781d | 491 | EXPORT_SYMBOL(add_to_page_cache_locked); |
1da177e4 LT |
492 | |
493 | int add_to_page_cache_lru(struct page *page, struct address_space *mapping, | |
6daa0e28 | 494 | pgoff_t offset, gfp_t gfp_mask) |
1da177e4 | 495 | { |
4f98a2fe RR |
496 | int ret; |
497 | ||
498 | /* | |
499 | * Splice_read and readahead add shmem/tmpfs pages into the page cache | |
500 | * before shmem_readpage has a chance to mark them as SwapBacked: they | |
501 | * need to go on the active_anon lru below, and mem_cgroup_cache_charge | |
502 | * (called in add_to_page_cache) needs to know where they're going too. | |
503 | */ | |
504 | if (mapping_cap_swap_backed(mapping)) | |
505 | SetPageSwapBacked(page); | |
506 | ||
507 | ret = add_to_page_cache(page, mapping, offset, gfp_mask); | |
508 | if (ret == 0) { | |
509 | if (page_is_file_cache(page)) | |
510 | lru_cache_add_file(page); | |
511 | else | |
512 | lru_cache_add_active_anon(page); | |
513 | } | |
1da177e4 LT |
514 | return ret; |
515 | } | |
516 | ||
44110fe3 | 517 | #ifdef CONFIG_NUMA |
2ae88149 | 518 | struct page *__page_cache_alloc(gfp_t gfp) |
44110fe3 PJ |
519 | { |
520 | if (cpuset_do_page_mem_spread()) { | |
521 | int n = cpuset_mem_spread_node(); | |
2ae88149 | 522 | return alloc_pages_node(n, gfp, 0); |
44110fe3 | 523 | } |
2ae88149 | 524 | return alloc_pages(gfp, 0); |
44110fe3 | 525 | } |
2ae88149 | 526 | EXPORT_SYMBOL(__page_cache_alloc); |
44110fe3 PJ |
527 | #endif |
528 | ||
db37648c NP |
529 | static int __sleep_on_page_lock(void *word) |
530 | { | |
531 | io_schedule(); | |
532 | return 0; | |
533 | } | |
534 | ||
1da177e4 LT |
535 | /* |
536 | * In order to wait for pages to become available there must be | |
537 | * waitqueues associated with pages. By using a hash table of | |
538 | * waitqueues where the bucket discipline is to maintain all | |
539 | * waiters on the same queue and wake all when any of the pages | |
540 | * become available, and for the woken contexts to check to be | |
541 | * sure the appropriate page became available, this saves space | |
542 | * at a cost of "thundering herd" phenomena during rare hash | |
543 | * collisions. | |
544 | */ | |
545 | static wait_queue_head_t *page_waitqueue(struct page *page) | |
546 | { | |
547 | const struct zone *zone = page_zone(page); | |
548 | ||
549 | return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; | |
550 | } | |
551 | ||
552 | static inline void wake_up_page(struct page *page, int bit) | |
553 | { | |
554 | __wake_up_bit(page_waitqueue(page), &page->flags, bit); | |
555 | } | |
556 | ||
920c7a5d | 557 | void wait_on_page_bit(struct page *page, int bit_nr) |
1da177e4 LT |
558 | { |
559 | DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); | |
560 | ||
561 | if (test_bit(bit_nr, &page->flags)) | |
562 | __wait_on_bit(page_waitqueue(page), &wait, sync_page, | |
563 | TASK_UNINTERRUPTIBLE); | |
564 | } | |
565 | EXPORT_SYMBOL(wait_on_page_bit); | |
566 | ||
567 | /** | |
485bb99b | 568 | * unlock_page - unlock a locked page |
1da177e4 LT |
569 | * @page: the page |
570 | * | |
571 | * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). | |
572 | * Also wakes sleepers in wait_on_page_writeback() because the wakeup | |
573 | * mechananism between PageLocked pages and PageWriteback pages is shared. | |
574 | * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. | |
575 | * | |
576 | * The first mb is necessary to safely close the critical section opened by the | |
529ae9aa NP |
577 | * test_and_set_bit() to lock the page; the second mb is necessary to enforce |
578 | * ordering between the clear_bit and the read of the waitqueue (to avoid SMP | |
579 | * races with a parallel wait_on_page_locked()). | |
1da177e4 | 580 | */ |
920c7a5d | 581 | void unlock_page(struct page *page) |
1da177e4 LT |
582 | { |
583 | smp_mb__before_clear_bit(); | |
529ae9aa | 584 | if (!test_and_clear_bit(PG_locked, &page->flags)) |
1da177e4 LT |
585 | BUG(); |
586 | smp_mb__after_clear_bit(); | |
587 | wake_up_page(page, PG_locked); | |
588 | } | |
589 | EXPORT_SYMBOL(unlock_page); | |
590 | ||
485bb99b RD |
591 | /** |
592 | * end_page_writeback - end writeback against a page | |
593 | * @page: the page | |
1da177e4 LT |
594 | */ |
595 | void end_page_writeback(struct page *page) | |
596 | { | |
ac6aadb2 MS |
597 | if (TestClearPageReclaim(page)) |
598 | rotate_reclaimable_page(page); | |
599 | ||
600 | if (!test_clear_page_writeback(page)) | |
601 | BUG(); | |
602 | ||
1da177e4 LT |
603 | smp_mb__after_clear_bit(); |
604 | wake_up_page(page, PG_writeback); | |
605 | } | |
606 | EXPORT_SYMBOL(end_page_writeback); | |
607 | ||
485bb99b RD |
608 | /** |
609 | * __lock_page - get a lock on the page, assuming we need to sleep to get it | |
610 | * @page: the page to lock | |
1da177e4 | 611 | * |
485bb99b | 612 | * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some |
1da177e4 LT |
613 | * random driver's requestfn sets TASK_RUNNING, we could busywait. However |
614 | * chances are that on the second loop, the block layer's plug list is empty, | |
615 | * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. | |
616 | */ | |
920c7a5d | 617 | void __lock_page(struct page *page) |
1da177e4 LT |
618 | { |
619 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | |
620 | ||
621 | __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, | |
622 | TASK_UNINTERRUPTIBLE); | |
623 | } | |
624 | EXPORT_SYMBOL(__lock_page); | |
625 | ||
b5606c2d | 626 | int __lock_page_killable(struct page *page) |
2687a356 MW |
627 | { |
628 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | |
629 | ||
630 | return __wait_on_bit_lock(page_waitqueue(page), &wait, | |
631 | sync_page_killable, TASK_KILLABLE); | |
632 | } | |
633 | ||
7682486b RD |
634 | /** |
635 | * __lock_page_nosync - get a lock on the page, without calling sync_page() | |
636 | * @page: the page to lock | |
637 | * | |
db37648c NP |
638 | * Variant of lock_page that does not require the caller to hold a reference |
639 | * on the page's mapping. | |
640 | */ | |
920c7a5d | 641 | void __lock_page_nosync(struct page *page) |
db37648c NP |
642 | { |
643 | DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); | |
644 | __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, | |
645 | TASK_UNINTERRUPTIBLE); | |
646 | } | |
647 | ||
485bb99b RD |
648 | /** |
649 | * find_get_page - find and get a page reference | |
650 | * @mapping: the address_space to search | |
651 | * @offset: the page index | |
652 | * | |
da6052f7 NP |
653 | * Is there a pagecache struct page at the given (mapping, offset) tuple? |
654 | * If yes, increment its refcount and return it; if no, return NULL. | |
1da177e4 | 655 | */ |
a60637c8 | 656 | struct page *find_get_page(struct address_space *mapping, pgoff_t offset) |
1da177e4 | 657 | { |
a60637c8 | 658 | void **pagep; |
1da177e4 LT |
659 | struct page *page; |
660 | ||
a60637c8 NP |
661 | rcu_read_lock(); |
662 | repeat: | |
663 | page = NULL; | |
664 | pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); | |
665 | if (pagep) { | |
666 | page = radix_tree_deref_slot(pagep); | |
667 | if (unlikely(!page || page == RADIX_TREE_RETRY)) | |
668 | goto repeat; | |
669 | ||
670 | if (!page_cache_get_speculative(page)) | |
671 | goto repeat; | |
672 | ||
673 | /* | |
674 | * Has the page moved? | |
675 | * This is part of the lockless pagecache protocol. See | |
676 | * include/linux/pagemap.h for details. | |
677 | */ | |
678 | if (unlikely(page != *pagep)) { | |
679 | page_cache_release(page); | |
680 | goto repeat; | |
681 | } | |
682 | } | |
683 | rcu_read_unlock(); | |
684 | ||
1da177e4 LT |
685 | return page; |
686 | } | |
1da177e4 LT |
687 | EXPORT_SYMBOL(find_get_page); |
688 | ||
1da177e4 LT |
689 | /** |
690 | * find_lock_page - locate, pin and lock a pagecache page | |
67be2dd1 MW |
691 | * @mapping: the address_space to search |
692 | * @offset: the page index | |
1da177e4 LT |
693 | * |
694 | * Locates the desired pagecache page, locks it, increments its reference | |
695 | * count and returns its address. | |
696 | * | |
697 | * Returns zero if the page was not present. find_lock_page() may sleep. | |
698 | */ | |
a60637c8 | 699 | struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) |
1da177e4 LT |
700 | { |
701 | struct page *page; | |
702 | ||
1da177e4 | 703 | repeat: |
a60637c8 | 704 | page = find_get_page(mapping, offset); |
1da177e4 | 705 | if (page) { |
a60637c8 NP |
706 | lock_page(page); |
707 | /* Has the page been truncated? */ | |
708 | if (unlikely(page->mapping != mapping)) { | |
709 | unlock_page(page); | |
710 | page_cache_release(page); | |
711 | goto repeat; | |
1da177e4 | 712 | } |
a60637c8 | 713 | VM_BUG_ON(page->index != offset); |
1da177e4 | 714 | } |
1da177e4 LT |
715 | return page; |
716 | } | |
1da177e4 LT |
717 | EXPORT_SYMBOL(find_lock_page); |
718 | ||
719 | /** | |
720 | * find_or_create_page - locate or add a pagecache page | |
67be2dd1 MW |
721 | * @mapping: the page's address_space |
722 | * @index: the page's index into the mapping | |
723 | * @gfp_mask: page allocation mode | |
1da177e4 LT |
724 | * |
725 | * Locates a page in the pagecache. If the page is not present, a new page | |
726 | * is allocated using @gfp_mask and is added to the pagecache and to the VM's | |
727 | * LRU list. The returned page is locked and has its reference count | |
728 | * incremented. | |
729 | * | |
730 | * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic | |
731 | * allocation! | |
732 | * | |
733 | * find_or_create_page() returns the desired page's address, or zero on | |
734 | * memory exhaustion. | |
735 | */ | |
736 | struct page *find_or_create_page(struct address_space *mapping, | |
57f6b96c | 737 | pgoff_t index, gfp_t gfp_mask) |
1da177e4 | 738 | { |
eb2be189 | 739 | struct page *page; |
1da177e4 LT |
740 | int err; |
741 | repeat: | |
742 | page = find_lock_page(mapping, index); | |
743 | if (!page) { | |
eb2be189 NP |
744 | page = __page_cache_alloc(gfp_mask); |
745 | if (!page) | |
746 | return NULL; | |
747 | err = add_to_page_cache_lru(page, mapping, index, gfp_mask); | |
748 | if (unlikely(err)) { | |
749 | page_cache_release(page); | |
750 | page = NULL; | |
751 | if (err == -EEXIST) | |
752 | goto repeat; | |
1da177e4 | 753 | } |
1da177e4 | 754 | } |
1da177e4 LT |
755 | return page; |
756 | } | |
1da177e4 LT |
757 | EXPORT_SYMBOL(find_or_create_page); |
758 | ||
759 | /** | |
760 | * find_get_pages - gang pagecache lookup | |
761 | * @mapping: The address_space to search | |
762 | * @start: The starting page index | |
763 | * @nr_pages: The maximum number of pages | |
764 | * @pages: Where the resulting pages are placed | |
765 | * | |
766 | * find_get_pages() will search for and return a group of up to | |
767 | * @nr_pages pages in the mapping. The pages are placed at @pages. | |
768 | * find_get_pages() takes a reference against the returned pages. | |
769 | * | |
770 | * The search returns a group of mapping-contiguous pages with ascending | |
771 | * indexes. There may be holes in the indices due to not-present pages. | |
772 | * | |
773 | * find_get_pages() returns the number of pages which were found. | |
774 | */ | |
775 | unsigned find_get_pages(struct address_space *mapping, pgoff_t start, | |
776 | unsigned int nr_pages, struct page **pages) | |
777 | { | |
778 | unsigned int i; | |
779 | unsigned int ret; | |
a60637c8 NP |
780 | unsigned int nr_found; |
781 | ||
782 | rcu_read_lock(); | |
783 | restart: | |
784 | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | |
785 | (void ***)pages, start, nr_pages); | |
786 | ret = 0; | |
787 | for (i = 0; i < nr_found; i++) { | |
788 | struct page *page; | |
789 | repeat: | |
790 | page = radix_tree_deref_slot((void **)pages[i]); | |
791 | if (unlikely(!page)) | |
792 | continue; | |
793 | /* | |
794 | * this can only trigger if nr_found == 1, making livelock | |
795 | * a non issue. | |
796 | */ | |
797 | if (unlikely(page == RADIX_TREE_RETRY)) | |
798 | goto restart; | |
799 | ||
800 | if (!page_cache_get_speculative(page)) | |
801 | goto repeat; | |
802 | ||
803 | /* Has the page moved? */ | |
804 | if (unlikely(page != *((void **)pages[i]))) { | |
805 | page_cache_release(page); | |
806 | goto repeat; | |
807 | } | |
1da177e4 | 808 | |
a60637c8 NP |
809 | pages[ret] = page; |
810 | ret++; | |
811 | } | |
812 | rcu_read_unlock(); | |
1da177e4 LT |
813 | return ret; |
814 | } | |
815 | ||
ebf43500 JA |
816 | /** |
817 | * find_get_pages_contig - gang contiguous pagecache lookup | |
818 | * @mapping: The address_space to search | |
819 | * @index: The starting page index | |
820 | * @nr_pages: The maximum number of pages | |
821 | * @pages: Where the resulting pages are placed | |
822 | * | |
823 | * find_get_pages_contig() works exactly like find_get_pages(), except | |
824 | * that the returned number of pages are guaranteed to be contiguous. | |
825 | * | |
826 | * find_get_pages_contig() returns the number of pages which were found. | |
827 | */ | |
828 | unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, | |
829 | unsigned int nr_pages, struct page **pages) | |
830 | { | |
831 | unsigned int i; | |
832 | unsigned int ret; | |
a60637c8 NP |
833 | unsigned int nr_found; |
834 | ||
835 | rcu_read_lock(); | |
836 | restart: | |
837 | nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, | |
838 | (void ***)pages, index, nr_pages); | |
839 | ret = 0; | |
840 | for (i = 0; i < nr_found; i++) { | |
841 | struct page *page; | |
842 | repeat: | |
843 | page = radix_tree_deref_slot((void **)pages[i]); | |
844 | if (unlikely(!page)) | |
845 | continue; | |
846 | /* | |
847 | * this can only trigger if nr_found == 1, making livelock | |
848 | * a non issue. | |
849 | */ | |
850 | if (unlikely(page == RADIX_TREE_RETRY)) | |
851 | goto restart; | |
ebf43500 | 852 | |
a60637c8 | 853 | if (page->mapping == NULL || page->index != index) |
ebf43500 JA |
854 | break; |
855 | ||
a60637c8 NP |
856 | if (!page_cache_get_speculative(page)) |
857 | goto repeat; | |
858 | ||
859 | /* Has the page moved? */ | |
860 | if (unlikely(page != *((void **)pages[i]))) { | |
861 | page_cache_release(page); | |
862 | goto repeat; | |
863 | } | |
864 | ||
865 | pages[ret] = page; | |
866 | ret++; | |
ebf43500 JA |
867 | index++; |
868 | } | |
a60637c8 NP |
869 | rcu_read_unlock(); |
870 | return ret; | |
ebf43500 | 871 | } |
ef71c15c | 872 | EXPORT_SYMBOL(find_get_pages_contig); |
ebf43500 | 873 | |
485bb99b RD |
874 | /** |
875 | * find_get_pages_tag - find and return pages that match @tag | |
876 | * @mapping: the address_space to search | |
877 | * @index: the starting page index | |
878 | * @tag: the tag index | |
879 | * @nr_pages: the maximum number of pages | |
880 | * @pages: where the resulting pages are placed | |
881 | * | |
1da177e4 | 882 | * Like find_get_pages, except we only return pages which are tagged with |
485bb99b | 883 | * @tag. We update @index to index the next page for the traversal. |
1da177e4 LT |
884 | */ |
885 | unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, | |
886 | int tag, unsigned int nr_pages, struct page **pages) | |
887 | { | |
888 | unsigned int i; | |
889 | unsigned int ret; | |
a60637c8 NP |
890 | unsigned int nr_found; |
891 | ||
892 | rcu_read_lock(); | |
893 | restart: | |
894 | nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, | |
895 | (void ***)pages, *index, nr_pages, tag); | |
896 | ret = 0; | |
897 | for (i = 0; i < nr_found; i++) { | |
898 | struct page *page; | |
899 | repeat: | |
900 | page = radix_tree_deref_slot((void **)pages[i]); | |
901 | if (unlikely(!page)) | |
902 | continue; | |
903 | /* | |
904 | * this can only trigger if nr_found == 1, making livelock | |
905 | * a non issue. | |
906 | */ | |
907 | if (unlikely(page == RADIX_TREE_RETRY)) | |
908 | goto restart; | |
909 | ||
910 | if (!page_cache_get_speculative(page)) | |
911 | goto repeat; | |
912 | ||
913 | /* Has the page moved? */ | |
914 | if (unlikely(page != *((void **)pages[i]))) { | |
915 | page_cache_release(page); | |
916 | goto repeat; | |
917 | } | |
918 | ||
919 | pages[ret] = page; | |
920 | ret++; | |
921 | } | |
922 | rcu_read_unlock(); | |
1da177e4 | 923 | |
1da177e4 LT |
924 | if (ret) |
925 | *index = pages[ret - 1]->index + 1; | |
a60637c8 | 926 | |
1da177e4 LT |
927 | return ret; |
928 | } | |
ef71c15c | 929 | EXPORT_SYMBOL(find_get_pages_tag); |
1da177e4 | 930 | |
485bb99b RD |
931 | /** |
932 | * grab_cache_page_nowait - returns locked page at given index in given cache | |
933 | * @mapping: target address_space | |
934 | * @index: the page index | |
935 | * | |
72fd4a35 | 936 | * Same as grab_cache_page(), but do not wait if the page is unavailable. |
1da177e4 LT |
937 | * This is intended for speculative data generators, where the data can |
938 | * be regenerated if the page couldn't be grabbed. This routine should | |
939 | * be safe to call while holding the lock for another page. | |
940 | * | |
941 | * Clear __GFP_FS when allocating the page to avoid recursion into the fs | |
942 | * and deadlock against the caller's locked page. | |
943 | */ | |
944 | struct page * | |
57f6b96c | 945 | grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) |
1da177e4 LT |
946 | { |
947 | struct page *page = find_get_page(mapping, index); | |
1da177e4 LT |
948 | |
949 | if (page) { | |
529ae9aa | 950 | if (trylock_page(page)) |
1da177e4 LT |
951 | return page; |
952 | page_cache_release(page); | |
953 | return NULL; | |
954 | } | |
2ae88149 NP |
955 | page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); |
956 | if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { | |
1da177e4 LT |
957 | page_cache_release(page); |
958 | page = NULL; | |
959 | } | |
960 | return page; | |
961 | } | |
1da177e4 LT |
962 | EXPORT_SYMBOL(grab_cache_page_nowait); |
963 | ||
76d42bd9 WF |
964 | /* |
965 | * CD/DVDs are error prone. When a medium error occurs, the driver may fail | |
966 | * a _large_ part of the i/o request. Imagine the worst scenario: | |
967 | * | |
968 | * ---R__________________________________________B__________ | |
969 | * ^ reading here ^ bad block(assume 4k) | |
970 | * | |
971 | * read(R) => miss => readahead(R...B) => media error => frustrating retries | |
972 | * => failing the whole request => read(R) => read(R+1) => | |
973 | * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => | |
974 | * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => | |
975 | * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... | |
976 | * | |
977 | * It is going insane. Fix it by quickly scaling down the readahead size. | |
978 | */ | |
979 | static void shrink_readahead_size_eio(struct file *filp, | |
980 | struct file_ra_state *ra) | |
981 | { | |
982 | if (!ra->ra_pages) | |
983 | return; | |
984 | ||
985 | ra->ra_pages /= 4; | |
76d42bd9 WF |
986 | } |
987 | ||
485bb99b | 988 | /** |
36e78914 | 989 | * do_generic_file_read - generic file read routine |
485bb99b RD |
990 | * @filp: the file to read |
991 | * @ppos: current file position | |
992 | * @desc: read_descriptor | |
993 | * @actor: read method | |
994 | * | |
1da177e4 | 995 | * This is a generic file read routine, and uses the |
485bb99b | 996 | * mapping->a_ops->readpage() function for the actual low-level stuff. |
1da177e4 LT |
997 | * |
998 | * This is really ugly. But the goto's actually try to clarify some | |
999 | * of the logic when it comes to error handling etc. | |
1da177e4 | 1000 | */ |
36e78914 CH |
1001 | static void do_generic_file_read(struct file *filp, loff_t *ppos, |
1002 | read_descriptor_t *desc, read_actor_t actor) | |
1da177e4 | 1003 | { |
36e78914 | 1004 | struct address_space *mapping = filp->f_mapping; |
1da177e4 | 1005 | struct inode *inode = mapping->host; |
36e78914 | 1006 | struct file_ra_state *ra = &filp->f_ra; |
57f6b96c FW |
1007 | pgoff_t index; |
1008 | pgoff_t last_index; | |
1009 | pgoff_t prev_index; | |
1010 | unsigned long offset; /* offset into pagecache page */ | |
ec0f1637 | 1011 | unsigned int prev_offset; |
1da177e4 | 1012 | int error; |
1da177e4 | 1013 | |
1da177e4 | 1014 | index = *ppos >> PAGE_CACHE_SHIFT; |
7ff81078 FW |
1015 | prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; |
1016 | prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); | |
1da177e4 LT |
1017 | last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; |
1018 | offset = *ppos & ~PAGE_CACHE_MASK; | |
1019 | ||
1da177e4 LT |
1020 | for (;;) { |
1021 | struct page *page; | |
57f6b96c | 1022 | pgoff_t end_index; |
a32ea1e1 | 1023 | loff_t isize; |
1da177e4 LT |
1024 | unsigned long nr, ret; |
1025 | ||
1da177e4 | 1026 | cond_resched(); |
1da177e4 LT |
1027 | find_page: |
1028 | page = find_get_page(mapping, index); | |
3ea89ee8 | 1029 | if (!page) { |
cf914a7d | 1030 | page_cache_sync_readahead(mapping, |
7ff81078 | 1031 | ra, filp, |
3ea89ee8 FW |
1032 | index, last_index - index); |
1033 | page = find_get_page(mapping, index); | |
1034 | if (unlikely(page == NULL)) | |
1035 | goto no_cached_page; | |
1036 | } | |
1037 | if (PageReadahead(page)) { | |
cf914a7d | 1038 | page_cache_async_readahead(mapping, |
7ff81078 | 1039 | ra, filp, page, |
3ea89ee8 | 1040 | index, last_index - index); |
1da177e4 | 1041 | } |
8ab22b9a HH |
1042 | if (!PageUptodate(page)) { |
1043 | if (inode->i_blkbits == PAGE_CACHE_SHIFT || | |
1044 | !mapping->a_ops->is_partially_uptodate) | |
1045 | goto page_not_up_to_date; | |
529ae9aa | 1046 | if (!trylock_page(page)) |
8ab22b9a HH |
1047 | goto page_not_up_to_date; |
1048 | if (!mapping->a_ops->is_partially_uptodate(page, | |
1049 | desc, offset)) | |
1050 | goto page_not_up_to_date_locked; | |
1051 | unlock_page(page); | |
1052 | } | |
1da177e4 | 1053 | page_ok: |
a32ea1e1 N |
1054 | /* |
1055 | * i_size must be checked after we know the page is Uptodate. | |
1056 | * | |
1057 | * Checking i_size after the check allows us to calculate | |
1058 | * the correct value for "nr", which means the zero-filled | |
1059 | * part of the page is not copied back to userspace (unless | |
1060 | * another truncate extends the file - this is desired though). | |
1061 | */ | |
1062 | ||
1063 | isize = i_size_read(inode); | |
1064 | end_index = (isize - 1) >> PAGE_CACHE_SHIFT; | |
1065 | if (unlikely(!isize || index > end_index)) { | |
1066 | page_cache_release(page); | |
1067 | goto out; | |
1068 | } | |
1069 | ||
1070 | /* nr is the maximum number of bytes to copy from this page */ | |
1071 | nr = PAGE_CACHE_SIZE; | |
1072 | if (index == end_index) { | |
1073 | nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; | |
1074 | if (nr <= offset) { | |
1075 | page_cache_release(page); | |
1076 | goto out; | |
1077 | } | |
1078 | } | |
1079 | nr = nr - offset; | |
1da177e4 LT |
1080 | |
1081 | /* If users can be writing to this page using arbitrary | |
1082 | * virtual addresses, take care about potential aliasing | |
1083 | * before reading the page on the kernel side. | |
1084 | */ | |
1085 | if (mapping_writably_mapped(mapping)) | |
1086 | flush_dcache_page(page); | |
1087 | ||
1088 | /* | |
ec0f1637 JK |
1089 | * When a sequential read accesses a page several times, |
1090 | * only mark it as accessed the first time. | |
1da177e4 | 1091 | */ |
ec0f1637 | 1092 | if (prev_index != index || offset != prev_offset) |
1da177e4 LT |
1093 | mark_page_accessed(page); |
1094 | prev_index = index; | |
1095 | ||
1096 | /* | |
1097 | * Ok, we have the page, and it's up-to-date, so | |
1098 | * now we can copy it to user space... | |
1099 | * | |
1100 | * The actor routine returns how many bytes were actually used.. | |
1101 | * NOTE! This may not be the same as how much of a user buffer | |
1102 | * we filled up (we may be padding etc), so we can only update | |
1103 | * "pos" here (the actor routine has to update the user buffer | |
1104 | * pointers and the remaining count). | |
1105 | */ | |
1106 | ret = actor(desc, page, offset, nr); | |
1107 | offset += ret; | |
1108 | index += offset >> PAGE_CACHE_SHIFT; | |
1109 | offset &= ~PAGE_CACHE_MASK; | |
6ce745ed | 1110 | prev_offset = offset; |
1da177e4 LT |
1111 | |
1112 | page_cache_release(page); | |
1113 | if (ret == nr && desc->count) | |
1114 | continue; | |
1115 | goto out; | |
1116 | ||
1117 | page_not_up_to_date: | |
1118 | /* Get exclusive access to the page ... */ | |
85462323 ON |
1119 | error = lock_page_killable(page); |
1120 | if (unlikely(error)) | |
1121 | goto readpage_error; | |
1da177e4 | 1122 | |
8ab22b9a | 1123 | page_not_up_to_date_locked: |
da6052f7 | 1124 | /* Did it get truncated before we got the lock? */ |
1da177e4 LT |
1125 | if (!page->mapping) { |
1126 | unlock_page(page); | |
1127 | page_cache_release(page); | |
1128 | continue; | |
1129 | } | |
1130 | ||
1131 | /* Did somebody else fill it already? */ | |
1132 | if (PageUptodate(page)) { | |
1133 | unlock_page(page); | |
1134 | goto page_ok; | |
1135 | } | |
1136 | ||
1137 | readpage: | |
1138 | /* Start the actual read. The read will unlock the page. */ | |
1139 | error = mapping->a_ops->readpage(filp, page); | |
1140 | ||
994fc28c ZB |
1141 | if (unlikely(error)) { |
1142 | if (error == AOP_TRUNCATED_PAGE) { | |
1143 | page_cache_release(page); | |
1144 | goto find_page; | |
1145 | } | |
1da177e4 | 1146 | goto readpage_error; |
994fc28c | 1147 | } |
1da177e4 LT |
1148 | |
1149 | if (!PageUptodate(page)) { | |
85462323 ON |
1150 | error = lock_page_killable(page); |
1151 | if (unlikely(error)) | |
1152 | goto readpage_error; | |
1da177e4 LT |
1153 | if (!PageUptodate(page)) { |
1154 | if (page->mapping == NULL) { | |
1155 | /* | |
1156 | * invalidate_inode_pages got it | |
1157 | */ | |
1158 | unlock_page(page); | |
1159 | page_cache_release(page); | |
1160 | goto find_page; | |
1161 | } | |
1162 | unlock_page(page); | |
7ff81078 | 1163 | shrink_readahead_size_eio(filp, ra); |
85462323 ON |
1164 | error = -EIO; |
1165 | goto readpage_error; | |
1da177e4 LT |
1166 | } |
1167 | unlock_page(page); | |
1168 | } | |
1169 | ||
1da177e4 LT |
1170 | goto page_ok; |
1171 | ||
1172 | readpage_error: | |
1173 | /* UHHUH! A synchronous read error occurred. Report it */ | |
1174 | desc->error = error; | |
1175 | page_cache_release(page); | |
1176 | goto out; | |
1177 | ||
1178 | no_cached_page: | |
1179 | /* | |
1180 | * Ok, it wasn't cached, so we need to create a new | |
1181 | * page.. | |
1182 | */ | |
eb2be189 NP |
1183 | page = page_cache_alloc_cold(mapping); |
1184 | if (!page) { | |
1185 | desc->error = -ENOMEM; | |
1186 | goto out; | |
1da177e4 | 1187 | } |
eb2be189 | 1188 | error = add_to_page_cache_lru(page, mapping, |
1da177e4 LT |
1189 | index, GFP_KERNEL); |
1190 | if (error) { | |
eb2be189 | 1191 | page_cache_release(page); |
1da177e4 LT |
1192 | if (error == -EEXIST) |
1193 | goto find_page; | |
1194 | desc->error = error; | |
1195 | goto out; | |
1196 | } | |
1da177e4 LT |
1197 | goto readpage; |
1198 | } | |
1199 | ||
1200 | out: | |
7ff81078 FW |
1201 | ra->prev_pos = prev_index; |
1202 | ra->prev_pos <<= PAGE_CACHE_SHIFT; | |
1203 | ra->prev_pos |= prev_offset; | |
1da177e4 | 1204 | |
f4e6b498 | 1205 | *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; |
0c6aa263 | 1206 | file_accessed(filp); |
1da177e4 | 1207 | } |
1da177e4 LT |
1208 | |
1209 | int file_read_actor(read_descriptor_t *desc, struct page *page, | |
1210 | unsigned long offset, unsigned long size) | |
1211 | { | |
1212 | char *kaddr; | |
1213 | unsigned long left, count = desc->count; | |
1214 | ||
1215 | if (size > count) | |
1216 | size = count; | |
1217 | ||
1218 | /* | |
1219 | * Faults on the destination of a read are common, so do it before | |
1220 | * taking the kmap. | |
1221 | */ | |
1222 | if (!fault_in_pages_writeable(desc->arg.buf, size)) { | |
1223 | kaddr = kmap_atomic(page, KM_USER0); | |
1224 | left = __copy_to_user_inatomic(desc->arg.buf, | |
1225 | kaddr + offset, size); | |
1226 | kunmap_atomic(kaddr, KM_USER0); | |
1227 | if (left == 0) | |
1228 | goto success; | |
1229 | } | |
1230 | ||
1231 | /* Do it the slow way */ | |
1232 | kaddr = kmap(page); | |
1233 | left = __copy_to_user(desc->arg.buf, kaddr + offset, size); | |
1234 | kunmap(page); | |
1235 | ||
1236 | if (left) { | |
1237 | size -= left; | |
1238 | desc->error = -EFAULT; | |
1239 | } | |
1240 | success: | |
1241 | desc->count = count - size; | |
1242 | desc->written += size; | |
1243 | desc->arg.buf += size; | |
1244 | return size; | |
1245 | } | |
1246 | ||
0ceb3314 DM |
1247 | /* |
1248 | * Performs necessary checks before doing a write | |
1249 | * @iov: io vector request | |
1250 | * @nr_segs: number of segments in the iovec | |
1251 | * @count: number of bytes to write | |
1252 | * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE | |
1253 | * | |
1254 | * Adjust number of segments and amount of bytes to write (nr_segs should be | |
1255 | * properly initialized first). Returns appropriate error code that caller | |
1256 | * should return or zero in case that write should be allowed. | |
1257 | */ | |
1258 | int generic_segment_checks(const struct iovec *iov, | |
1259 | unsigned long *nr_segs, size_t *count, int access_flags) | |
1260 | { | |
1261 | unsigned long seg; | |
1262 | size_t cnt = 0; | |
1263 | for (seg = 0; seg < *nr_segs; seg++) { | |
1264 | const struct iovec *iv = &iov[seg]; | |
1265 | ||
1266 | /* | |
1267 | * If any segment has a negative length, or the cumulative | |
1268 | * length ever wraps negative then return -EINVAL. | |
1269 | */ | |
1270 | cnt += iv->iov_len; | |
1271 | if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) | |
1272 | return -EINVAL; | |
1273 | if (access_ok(access_flags, iv->iov_base, iv->iov_len)) | |
1274 | continue; | |
1275 | if (seg == 0) | |
1276 | return -EFAULT; | |
1277 | *nr_segs = seg; | |
1278 | cnt -= iv->iov_len; /* This segment is no good */ | |
1279 | break; | |
1280 | } | |
1281 | *count = cnt; | |
1282 | return 0; | |
1283 | } | |
1284 | EXPORT_SYMBOL(generic_segment_checks); | |
1285 | ||
485bb99b | 1286 | /** |
b2abacf3 | 1287 | * generic_file_aio_read - generic filesystem read routine |
485bb99b RD |
1288 | * @iocb: kernel I/O control block |
1289 | * @iov: io vector request | |
1290 | * @nr_segs: number of segments in the iovec | |
b2abacf3 | 1291 | * @pos: current file position |
485bb99b | 1292 | * |
1da177e4 LT |
1293 | * This is the "read()" routine for all filesystems |
1294 | * that can use the page cache directly. | |
1295 | */ | |
1296 | ssize_t | |
543ade1f BP |
1297 | generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, |
1298 | unsigned long nr_segs, loff_t pos) | |
1da177e4 LT |
1299 | { |
1300 | struct file *filp = iocb->ki_filp; | |
1301 | ssize_t retval; | |
1302 | unsigned long seg; | |
1303 | size_t count; | |
543ade1f | 1304 | loff_t *ppos = &iocb->ki_pos; |
1da177e4 LT |
1305 | |
1306 | count = 0; | |
0ceb3314 DM |
1307 | retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); |
1308 | if (retval) | |
1309 | return retval; | |
1da177e4 LT |
1310 | |
1311 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | |
1312 | if (filp->f_flags & O_DIRECT) { | |
543ade1f | 1313 | loff_t size; |
1da177e4 LT |
1314 | struct address_space *mapping; |
1315 | struct inode *inode; | |
1316 | ||
1317 | mapping = filp->f_mapping; | |
1318 | inode = mapping->host; | |
1da177e4 LT |
1319 | if (!count) |
1320 | goto out; /* skip atime */ | |
1321 | size = i_size_read(inode); | |
1322 | if (pos < size) { | |
a969e903 CH |
1323 | retval = filemap_write_and_wait(mapping); |
1324 | if (!retval) { | |
1325 | retval = mapping->a_ops->direct_IO(READ, iocb, | |
1326 | iov, pos, nr_segs); | |
1327 | } | |
1da177e4 LT |
1328 | if (retval > 0) |
1329 | *ppos = pos + retval; | |
11fa977e HD |
1330 | if (retval) { |
1331 | file_accessed(filp); | |
1332 | goto out; | |
1333 | } | |
0e0bcae3 | 1334 | } |
1da177e4 LT |
1335 | } |
1336 | ||
11fa977e HD |
1337 | for (seg = 0; seg < nr_segs; seg++) { |
1338 | read_descriptor_t desc; | |
1da177e4 | 1339 | |
11fa977e HD |
1340 | desc.written = 0; |
1341 | desc.arg.buf = iov[seg].iov_base; | |
1342 | desc.count = iov[seg].iov_len; | |
1343 | if (desc.count == 0) | |
1344 | continue; | |
1345 | desc.error = 0; | |
1346 | do_generic_file_read(filp, ppos, &desc, file_read_actor); | |
1347 | retval += desc.written; | |
1348 | if (desc.error) { | |
1349 | retval = retval ?: desc.error; | |
1350 | break; | |
1da177e4 | 1351 | } |
11fa977e HD |
1352 | if (desc.count > 0) |
1353 | break; | |
1da177e4 LT |
1354 | } |
1355 | out: | |
1356 | return retval; | |
1357 | } | |
1da177e4 LT |
1358 | EXPORT_SYMBOL(generic_file_aio_read); |
1359 | ||
1da177e4 LT |
1360 | static ssize_t |
1361 | do_readahead(struct address_space *mapping, struct file *filp, | |
57f6b96c | 1362 | pgoff_t index, unsigned long nr) |
1da177e4 LT |
1363 | { |
1364 | if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) | |
1365 | return -EINVAL; | |
1366 | ||
1367 | force_page_cache_readahead(mapping, filp, index, | |
1368 | max_sane_readahead(nr)); | |
1369 | return 0; | |
1370 | } | |
1371 | ||
1372 | asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) | |
1373 | { | |
1374 | ssize_t ret; | |
1375 | struct file *file; | |
1376 | ||
1377 | ret = -EBADF; | |
1378 | file = fget(fd); | |
1379 | if (file) { | |
1380 | if (file->f_mode & FMODE_READ) { | |
1381 | struct address_space *mapping = file->f_mapping; | |
57f6b96c FW |
1382 | pgoff_t start = offset >> PAGE_CACHE_SHIFT; |
1383 | pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; | |
1da177e4 LT |
1384 | unsigned long len = end - start + 1; |
1385 | ret = do_readahead(mapping, file, start, len); | |
1386 | } | |
1387 | fput(file); | |
1388 | } | |
1389 | return ret; | |
1390 | } | |
1391 | ||
1392 | #ifdef CONFIG_MMU | |
485bb99b RD |
1393 | /** |
1394 | * page_cache_read - adds requested page to the page cache if not already there | |
1395 | * @file: file to read | |
1396 | * @offset: page index | |
1397 | * | |
1da177e4 LT |
1398 | * This adds the requested page to the page cache if it isn't already there, |
1399 | * and schedules an I/O to read in its contents from disk. | |
1400 | */ | |
920c7a5d | 1401 | static int page_cache_read(struct file *file, pgoff_t offset) |
1da177e4 LT |
1402 | { |
1403 | struct address_space *mapping = file->f_mapping; | |
1404 | struct page *page; | |
994fc28c | 1405 | int ret; |
1da177e4 | 1406 | |
994fc28c ZB |
1407 | do { |
1408 | page = page_cache_alloc_cold(mapping); | |
1409 | if (!page) | |
1410 | return -ENOMEM; | |
1411 | ||
1412 | ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); | |
1413 | if (ret == 0) | |
1414 | ret = mapping->a_ops->readpage(file, page); | |
1415 | else if (ret == -EEXIST) | |
1416 | ret = 0; /* losing race to add is OK */ | |
1da177e4 | 1417 | |
1da177e4 | 1418 | page_cache_release(page); |
1da177e4 | 1419 | |
994fc28c ZB |
1420 | } while (ret == AOP_TRUNCATED_PAGE); |
1421 | ||
1422 | return ret; | |
1da177e4 LT |
1423 | } |
1424 | ||
1425 | #define MMAP_LOTSAMISS (100) | |
1426 | ||
485bb99b | 1427 | /** |
54cb8821 | 1428 | * filemap_fault - read in file data for page fault handling |
d0217ac0 NP |
1429 | * @vma: vma in which the fault was taken |
1430 | * @vmf: struct vm_fault containing details of the fault | |
485bb99b | 1431 | * |
54cb8821 | 1432 | * filemap_fault() is invoked via the vma operations vector for a |
1da177e4 LT |
1433 | * mapped memory region to read in file data during a page fault. |
1434 | * | |
1435 | * The goto's are kind of ugly, but this streamlines the normal case of having | |
1436 | * it in the page cache, and handles the special cases reasonably without | |
1437 | * having a lot of duplicated code. | |
1438 | */ | |
d0217ac0 | 1439 | int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
1da177e4 LT |
1440 | { |
1441 | int error; | |
54cb8821 | 1442 | struct file *file = vma->vm_file; |
1da177e4 LT |
1443 | struct address_space *mapping = file->f_mapping; |
1444 | struct file_ra_state *ra = &file->f_ra; | |
1445 | struct inode *inode = mapping->host; | |
1446 | struct page *page; | |
2004dc8e | 1447 | pgoff_t size; |
54cb8821 | 1448 | int did_readaround = 0; |
83c54070 | 1449 | int ret = 0; |
1da177e4 | 1450 | |
1da177e4 | 1451 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; |
d0217ac0 | 1452 | if (vmf->pgoff >= size) |
5307cc1a | 1453 | return VM_FAULT_SIGBUS; |
1da177e4 LT |
1454 | |
1455 | /* If we don't want any read-ahead, don't bother */ | |
54cb8821 | 1456 | if (VM_RandomReadHint(vma)) |
1da177e4 LT |
1457 | goto no_cached_page; |
1458 | ||
1da177e4 LT |
1459 | /* |
1460 | * Do we have something in the page cache already? | |
1461 | */ | |
1462 | retry_find: | |
d0217ac0 | 1463 | page = find_lock_page(mapping, vmf->pgoff); |
3ea89ee8 FW |
1464 | /* |
1465 | * For sequential accesses, we use the generic readahead logic. | |
1466 | */ | |
1467 | if (VM_SequentialReadHint(vma)) { | |
1468 | if (!page) { | |
cf914a7d | 1469 | page_cache_sync_readahead(mapping, ra, file, |
3ea89ee8 FW |
1470 | vmf->pgoff, 1); |
1471 | page = find_lock_page(mapping, vmf->pgoff); | |
1472 | if (!page) | |
1473 | goto no_cached_page; | |
1474 | } | |
1475 | if (PageReadahead(page)) { | |
cf914a7d | 1476 | page_cache_async_readahead(mapping, ra, file, page, |
3ea89ee8 FW |
1477 | vmf->pgoff, 1); |
1478 | } | |
1479 | } | |
1480 | ||
1da177e4 LT |
1481 | if (!page) { |
1482 | unsigned long ra_pages; | |
1483 | ||
1da177e4 LT |
1484 | ra->mmap_miss++; |
1485 | ||
1486 | /* | |
1487 | * Do we miss much more than hit in this file? If so, | |
1488 | * stop bothering with read-ahead. It will only hurt. | |
1489 | */ | |
0bb7ba6b | 1490 | if (ra->mmap_miss > MMAP_LOTSAMISS) |
1da177e4 LT |
1491 | goto no_cached_page; |
1492 | ||
1493 | /* | |
1494 | * To keep the pgmajfault counter straight, we need to | |
1495 | * check did_readaround, as this is an inner loop. | |
1496 | */ | |
1497 | if (!did_readaround) { | |
d0217ac0 | 1498 | ret = VM_FAULT_MAJOR; |
f8891e5e | 1499 | count_vm_event(PGMAJFAULT); |
1da177e4 LT |
1500 | } |
1501 | did_readaround = 1; | |
1502 | ra_pages = max_sane_readahead(file->f_ra.ra_pages); | |
1503 | if (ra_pages) { | |
1504 | pgoff_t start = 0; | |
1505 | ||
d0217ac0 NP |
1506 | if (vmf->pgoff > ra_pages / 2) |
1507 | start = vmf->pgoff - ra_pages / 2; | |
1da177e4 LT |
1508 | do_page_cache_readahead(mapping, file, start, ra_pages); |
1509 | } | |
d0217ac0 | 1510 | page = find_lock_page(mapping, vmf->pgoff); |
1da177e4 LT |
1511 | if (!page) |
1512 | goto no_cached_page; | |
1513 | } | |
1514 | ||
1515 | if (!did_readaround) | |
0bb7ba6b | 1516 | ra->mmap_miss--; |
1da177e4 LT |
1517 | |
1518 | /* | |
d00806b1 NP |
1519 | * We have a locked page in the page cache, now we need to check |
1520 | * that it's up-to-date. If not, it is going to be due to an error. | |
1da177e4 | 1521 | */ |
d00806b1 | 1522 | if (unlikely(!PageUptodate(page))) |
1da177e4 LT |
1523 | goto page_not_uptodate; |
1524 | ||
d00806b1 NP |
1525 | /* Must recheck i_size under page lock */ |
1526 | size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | |
d0217ac0 | 1527 | if (unlikely(vmf->pgoff >= size)) { |
d00806b1 | 1528 | unlock_page(page); |
745ad48e | 1529 | page_cache_release(page); |
5307cc1a | 1530 | return VM_FAULT_SIGBUS; |
d00806b1 NP |
1531 | } |
1532 | ||
1da177e4 LT |
1533 | /* |
1534 | * Found the page and have a reference on it. | |
1535 | */ | |
1536 | mark_page_accessed(page); | |
f4e6b498 | 1537 | ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; |
d0217ac0 | 1538 | vmf->page = page; |
83c54070 | 1539 | return ret | VM_FAULT_LOCKED; |
1da177e4 | 1540 | |
1da177e4 LT |
1541 | no_cached_page: |
1542 | /* | |
1543 | * We're only likely to ever get here if MADV_RANDOM is in | |
1544 | * effect. | |
1545 | */ | |
d0217ac0 | 1546 | error = page_cache_read(file, vmf->pgoff); |
1da177e4 LT |
1547 | |
1548 | /* | |
1549 | * The page we want has now been added to the page cache. | |
1550 | * In the unlikely event that someone removed it in the | |
1551 | * meantime, we'll just come back here and read it again. | |
1552 | */ | |
1553 | if (error >= 0) | |
1554 | goto retry_find; | |
1555 | ||
1556 | /* | |
1557 | * An error return from page_cache_read can result if the | |
1558 | * system is low on memory, or a problem occurs while trying | |
1559 | * to schedule I/O. | |
1560 | */ | |
1561 | if (error == -ENOMEM) | |
d0217ac0 NP |
1562 | return VM_FAULT_OOM; |
1563 | return VM_FAULT_SIGBUS; | |
1da177e4 LT |
1564 | |
1565 | page_not_uptodate: | |
d00806b1 | 1566 | /* IO error path */ |
1da177e4 | 1567 | if (!did_readaround) { |
d0217ac0 | 1568 | ret = VM_FAULT_MAJOR; |
f8891e5e | 1569 | count_vm_event(PGMAJFAULT); |
1da177e4 | 1570 | } |
1da177e4 LT |
1571 | |
1572 | /* | |
1573 | * Umm, take care of errors if the page isn't up-to-date. | |
1574 | * Try to re-read it _once_. We do this synchronously, | |
1575 | * because there really aren't any performance issues here | |
1576 | * and we need to check for errors. | |
1577 | */ | |
1da177e4 | 1578 | ClearPageError(page); |
994fc28c | 1579 | error = mapping->a_ops->readpage(file, page); |
3ef0f720 MS |
1580 | if (!error) { |
1581 | wait_on_page_locked(page); | |
1582 | if (!PageUptodate(page)) | |
1583 | error = -EIO; | |
1584 | } | |
d00806b1 NP |
1585 | page_cache_release(page); |
1586 | ||
1587 | if (!error || error == AOP_TRUNCATED_PAGE) | |
994fc28c | 1588 | goto retry_find; |
1da177e4 | 1589 | |
d00806b1 | 1590 | /* Things didn't work out. Return zero to tell the mm layer so. */ |
76d42bd9 | 1591 | shrink_readahead_size_eio(file, ra); |
d0217ac0 | 1592 | return VM_FAULT_SIGBUS; |
54cb8821 NP |
1593 | } |
1594 | EXPORT_SYMBOL(filemap_fault); | |
1595 | ||
1da177e4 | 1596 | struct vm_operations_struct generic_file_vm_ops = { |
54cb8821 | 1597 | .fault = filemap_fault, |
1da177e4 LT |
1598 | }; |
1599 | ||
1600 | /* This is used for a general mmap of a disk file */ | |
1601 | ||
1602 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
1603 | { | |
1604 | struct address_space *mapping = file->f_mapping; | |
1605 | ||
1606 | if (!mapping->a_ops->readpage) | |
1607 | return -ENOEXEC; | |
1608 | file_accessed(file); | |
1609 | vma->vm_ops = &generic_file_vm_ops; | |
d0217ac0 | 1610 | vma->vm_flags |= VM_CAN_NONLINEAR; |
1da177e4 LT |
1611 | return 0; |
1612 | } | |
1da177e4 LT |
1613 | |
1614 | /* | |
1615 | * This is for filesystems which do not implement ->writepage. | |
1616 | */ | |
1617 | int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) | |
1618 | { | |
1619 | if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) | |
1620 | return -EINVAL; | |
1621 | return generic_file_mmap(file, vma); | |
1622 | } | |
1623 | #else | |
1624 | int generic_file_mmap(struct file * file, struct vm_area_struct * vma) | |
1625 | { | |
1626 | return -ENOSYS; | |
1627 | } | |
1628 | int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) | |
1629 | { | |
1630 | return -ENOSYS; | |
1631 | } | |
1632 | #endif /* CONFIG_MMU */ | |
1633 | ||
1634 | EXPORT_SYMBOL(generic_file_mmap); | |
1635 | EXPORT_SYMBOL(generic_file_readonly_mmap); | |
1636 | ||
6fe6900e | 1637 | static struct page *__read_cache_page(struct address_space *mapping, |
57f6b96c | 1638 | pgoff_t index, |
1da177e4 LT |
1639 | int (*filler)(void *,struct page*), |
1640 | void *data) | |
1641 | { | |
eb2be189 | 1642 | struct page *page; |
1da177e4 LT |
1643 | int err; |
1644 | repeat: | |
1645 | page = find_get_page(mapping, index); | |
1646 | if (!page) { | |
eb2be189 NP |
1647 | page = page_cache_alloc_cold(mapping); |
1648 | if (!page) | |
1649 | return ERR_PTR(-ENOMEM); | |
1650 | err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); | |
1651 | if (unlikely(err)) { | |
1652 | page_cache_release(page); | |
1653 | if (err == -EEXIST) | |
1654 | goto repeat; | |
1da177e4 | 1655 | /* Presumably ENOMEM for radix tree node */ |
1da177e4 LT |
1656 | return ERR_PTR(err); |
1657 | } | |
1da177e4 LT |
1658 | err = filler(data, page); |
1659 | if (err < 0) { | |
1660 | page_cache_release(page); | |
1661 | page = ERR_PTR(err); | |
1662 | } | |
1663 | } | |
1da177e4 LT |
1664 | return page; |
1665 | } | |
1666 | ||
7682486b RD |
1667 | /** |
1668 | * read_cache_page_async - read into page cache, fill it if needed | |
1669 | * @mapping: the page's address_space | |
1670 | * @index: the page index | |
1671 | * @filler: function to perform the read | |
1672 | * @data: destination for read data | |
1673 | * | |
6fe6900e NP |
1674 | * Same as read_cache_page, but don't wait for page to become unlocked |
1675 | * after submitting it to the filler. | |
7682486b RD |
1676 | * |
1677 | * Read into the page cache. If a page already exists, and PageUptodate() is | |
1678 | * not set, try to fill the page but don't wait for it to become unlocked. | |
1679 | * | |
1680 | * If the page does not get brought uptodate, return -EIO. | |
1da177e4 | 1681 | */ |
6fe6900e | 1682 | struct page *read_cache_page_async(struct address_space *mapping, |
57f6b96c | 1683 | pgoff_t index, |
1da177e4 LT |
1684 | int (*filler)(void *,struct page*), |
1685 | void *data) | |
1686 | { | |
1687 | struct page *page; | |
1688 | int err; | |
1689 | ||
1690 | retry: | |
1691 | page = __read_cache_page(mapping, index, filler, data); | |
1692 | if (IS_ERR(page)) | |
c855ff37 | 1693 | return page; |
1da177e4 LT |
1694 | if (PageUptodate(page)) |
1695 | goto out; | |
1696 | ||
1697 | lock_page(page); | |
1698 | if (!page->mapping) { | |
1699 | unlock_page(page); | |
1700 | page_cache_release(page); | |
1701 | goto retry; | |
1702 | } | |
1703 | if (PageUptodate(page)) { | |
1704 | unlock_page(page); | |
1705 | goto out; | |
1706 | } | |
1707 | err = filler(data, page); | |
1708 | if (err < 0) { | |
1709 | page_cache_release(page); | |
c855ff37 | 1710 | return ERR_PTR(err); |
1da177e4 | 1711 | } |
c855ff37 | 1712 | out: |
6fe6900e NP |
1713 | mark_page_accessed(page); |
1714 | return page; | |
1715 | } | |
1716 | EXPORT_SYMBOL(read_cache_page_async); | |
1717 | ||
1718 | /** | |
1719 | * read_cache_page - read into page cache, fill it if needed | |
1720 | * @mapping: the page's address_space | |
1721 | * @index: the page index | |
1722 | * @filler: function to perform the read | |
1723 | * @data: destination for read data | |
1724 | * | |
1725 | * Read into the page cache. If a page already exists, and PageUptodate() is | |
1726 | * not set, try to fill the page then wait for it to become unlocked. | |
1727 | * | |
1728 | * If the page does not get brought uptodate, return -EIO. | |
1729 | */ | |
1730 | struct page *read_cache_page(struct address_space *mapping, | |
57f6b96c | 1731 | pgoff_t index, |
6fe6900e NP |
1732 | int (*filler)(void *,struct page*), |
1733 | void *data) | |
1734 | { | |
1735 | struct page *page; | |
1736 | ||
1737 | page = read_cache_page_async(mapping, index, filler, data); | |
1738 | if (IS_ERR(page)) | |
1739 | goto out; | |
1740 | wait_on_page_locked(page); | |
1741 | if (!PageUptodate(page)) { | |
1742 | page_cache_release(page); | |
1743 | page = ERR_PTR(-EIO); | |
1744 | } | |
1da177e4 LT |
1745 | out: |
1746 | return page; | |
1747 | } | |
1da177e4 LT |
1748 | EXPORT_SYMBOL(read_cache_page); |
1749 | ||
1da177e4 LT |
1750 | /* |
1751 | * The logic we want is | |
1752 | * | |
1753 | * if suid or (sgid and xgrp) | |
1754 | * remove privs | |
1755 | */ | |
01de85e0 | 1756 | int should_remove_suid(struct dentry *dentry) |
1da177e4 LT |
1757 | { |
1758 | mode_t mode = dentry->d_inode->i_mode; | |
1759 | int kill = 0; | |
1da177e4 LT |
1760 | |
1761 | /* suid always must be killed */ | |
1762 | if (unlikely(mode & S_ISUID)) | |
1763 | kill = ATTR_KILL_SUID; | |
1764 | ||
1765 | /* | |
1766 | * sgid without any exec bits is just a mandatory locking mark; leave | |
1767 | * it alone. If some exec bits are set, it's a real sgid; kill it. | |
1768 | */ | |
1769 | if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) | |
1770 | kill |= ATTR_KILL_SGID; | |
1771 | ||
01de85e0 JA |
1772 | if (unlikely(kill && !capable(CAP_FSETID))) |
1773 | return kill; | |
1da177e4 | 1774 | |
01de85e0 JA |
1775 | return 0; |
1776 | } | |
d23a147b | 1777 | EXPORT_SYMBOL(should_remove_suid); |
01de85e0 | 1778 | |
7f3d4ee1 | 1779 | static int __remove_suid(struct dentry *dentry, int kill) |
01de85e0 JA |
1780 | { |
1781 | struct iattr newattrs; | |
1782 | ||
1783 | newattrs.ia_valid = ATTR_FORCE | kill; | |
1784 | return notify_change(dentry, &newattrs); | |
1785 | } | |
1786 | ||
2f1936b8 | 1787 | int file_remove_suid(struct file *file) |
01de85e0 | 1788 | { |
2f1936b8 | 1789 | struct dentry *dentry = file->f_path.dentry; |
b5376771 SH |
1790 | int killsuid = should_remove_suid(dentry); |
1791 | int killpriv = security_inode_need_killpriv(dentry); | |
1792 | int error = 0; | |
01de85e0 | 1793 | |
b5376771 SH |
1794 | if (killpriv < 0) |
1795 | return killpriv; | |
1796 | if (killpriv) | |
1797 | error = security_inode_killpriv(dentry); | |
1798 | if (!error && killsuid) | |
1799 | error = __remove_suid(dentry, killsuid); | |
01de85e0 | 1800 | |
b5376771 | 1801 | return error; |
1da177e4 | 1802 | } |
2f1936b8 | 1803 | EXPORT_SYMBOL(file_remove_suid); |
1da177e4 | 1804 | |
2f718ffc | 1805 | static size_t __iovec_copy_from_user_inatomic(char *vaddr, |
1da177e4 LT |
1806 | const struct iovec *iov, size_t base, size_t bytes) |
1807 | { | |
1808 | size_t copied = 0, left = 0; | |
1809 | ||
1810 | while (bytes) { | |
1811 | char __user *buf = iov->iov_base + base; | |
1812 | int copy = min(bytes, iov->iov_len - base); | |
1813 | ||
1814 | base = 0; | |
c22ce143 | 1815 | left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); |
1da177e4 LT |
1816 | copied += copy; |
1817 | bytes -= copy; | |
1818 | vaddr += copy; | |
1819 | iov++; | |
1820 | ||
01408c49 | 1821 | if (unlikely(left)) |
1da177e4 | 1822 | break; |
1da177e4 LT |
1823 | } |
1824 | return copied - left; | |
1825 | } | |
1826 | ||
2f718ffc NP |
1827 | /* |
1828 | * Copy as much as we can into the page and return the number of bytes which | |
1829 | * were sucessfully copied. If a fault is encountered then return the number of | |
1830 | * bytes which were copied. | |
1831 | */ | |
1832 | size_t iov_iter_copy_from_user_atomic(struct page *page, | |
1833 | struct iov_iter *i, unsigned long offset, size_t bytes) | |
1834 | { | |
1835 | char *kaddr; | |
1836 | size_t copied; | |
1837 | ||
1838 | BUG_ON(!in_atomic()); | |
1839 | kaddr = kmap_atomic(page, KM_USER0); | |
1840 | if (likely(i->nr_segs == 1)) { | |
1841 | int left; | |
1842 | char __user *buf = i->iov->iov_base + i->iov_offset; | |
1843 | left = __copy_from_user_inatomic_nocache(kaddr + offset, | |
1844 | buf, bytes); | |
1845 | copied = bytes - left; | |
1846 | } else { | |
1847 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | |
1848 | i->iov, i->iov_offset, bytes); | |
1849 | } | |
1850 | kunmap_atomic(kaddr, KM_USER0); | |
1851 | ||
1852 | return copied; | |
1853 | } | |
89e10787 | 1854 | EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); |
2f718ffc NP |
1855 | |
1856 | /* | |
1857 | * This has the same sideeffects and return value as | |
1858 | * iov_iter_copy_from_user_atomic(). | |
1859 | * The difference is that it attempts to resolve faults. | |
1860 | * Page must not be locked. | |
1861 | */ | |
1862 | size_t iov_iter_copy_from_user(struct page *page, | |
1863 | struct iov_iter *i, unsigned long offset, size_t bytes) | |
1864 | { | |
1865 | char *kaddr; | |
1866 | size_t copied; | |
1867 | ||
1868 | kaddr = kmap(page); | |
1869 | if (likely(i->nr_segs == 1)) { | |
1870 | int left; | |
1871 | char __user *buf = i->iov->iov_base + i->iov_offset; | |
1872 | left = __copy_from_user_nocache(kaddr + offset, buf, bytes); | |
1873 | copied = bytes - left; | |
1874 | } else { | |
1875 | copied = __iovec_copy_from_user_inatomic(kaddr + offset, | |
1876 | i->iov, i->iov_offset, bytes); | |
1877 | } | |
1878 | kunmap(page); | |
1879 | return copied; | |
1880 | } | |
89e10787 | 1881 | EXPORT_SYMBOL(iov_iter_copy_from_user); |
2f718ffc | 1882 | |
f7009264 | 1883 | void iov_iter_advance(struct iov_iter *i, size_t bytes) |
2f718ffc | 1884 | { |
f7009264 NP |
1885 | BUG_ON(i->count < bytes); |
1886 | ||
2f718ffc NP |
1887 | if (likely(i->nr_segs == 1)) { |
1888 | i->iov_offset += bytes; | |
f7009264 | 1889 | i->count -= bytes; |
2f718ffc NP |
1890 | } else { |
1891 | const struct iovec *iov = i->iov; | |
1892 | size_t base = i->iov_offset; | |
1893 | ||
124d3b70 NP |
1894 | /* |
1895 | * The !iov->iov_len check ensures we skip over unlikely | |
f7009264 | 1896 | * zero-length segments (without overruning the iovec). |
124d3b70 | 1897 | */ |
94ad374a | 1898 | while (bytes || unlikely(i->count && !iov->iov_len)) { |
f7009264 | 1899 | int copy; |
2f718ffc | 1900 | |
f7009264 NP |
1901 | copy = min(bytes, iov->iov_len - base); |
1902 | BUG_ON(!i->count || i->count < copy); | |
1903 | i->count -= copy; | |
2f718ffc NP |
1904 | bytes -= copy; |
1905 | base += copy; | |
1906 | if (iov->iov_len == base) { | |
1907 | iov++; | |
1908 | base = 0; | |
1909 | } | |
1910 | } | |
1911 | i->iov = iov; | |
1912 | i->iov_offset = base; | |
1913 | } | |
1914 | } | |
89e10787 | 1915 | EXPORT_SYMBOL(iov_iter_advance); |
2f718ffc | 1916 | |
afddba49 NP |
1917 | /* |
1918 | * Fault in the first iovec of the given iov_iter, to a maximum length | |
1919 | * of bytes. Returns 0 on success, or non-zero if the memory could not be | |
1920 | * accessed (ie. because it is an invalid address). | |
1921 | * | |
1922 | * writev-intensive code may want this to prefault several iovecs -- that | |
1923 | * would be possible (callers must not rely on the fact that _only_ the | |
1924 | * first iovec will be faulted with the current implementation). | |
1925 | */ | |
1926 | int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) | |
2f718ffc | 1927 | { |
2f718ffc | 1928 | char __user *buf = i->iov->iov_base + i->iov_offset; |
afddba49 NP |
1929 | bytes = min(bytes, i->iov->iov_len - i->iov_offset); |
1930 | return fault_in_pages_readable(buf, bytes); | |
2f718ffc | 1931 | } |
89e10787 | 1932 | EXPORT_SYMBOL(iov_iter_fault_in_readable); |
2f718ffc NP |
1933 | |
1934 | /* | |
1935 | * Return the count of just the current iov_iter segment. | |
1936 | */ | |
1937 | size_t iov_iter_single_seg_count(struct iov_iter *i) | |
1938 | { | |
1939 | const struct iovec *iov = i->iov; | |
1940 | if (i->nr_segs == 1) | |
1941 | return i->count; | |
1942 | else | |
1943 | return min(i->count, iov->iov_len - i->iov_offset); | |
1944 | } | |
89e10787 | 1945 | EXPORT_SYMBOL(iov_iter_single_seg_count); |
2f718ffc | 1946 | |
1da177e4 LT |
1947 | /* |
1948 | * Performs necessary checks before doing a write | |
1949 | * | |
485bb99b | 1950 | * Can adjust writing position or amount of bytes to write. |
1da177e4 LT |
1951 | * Returns appropriate error code that caller should return or |
1952 | * zero in case that write should be allowed. | |
1953 | */ | |
1954 | inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) | |
1955 | { | |
1956 | struct inode *inode = file->f_mapping->host; | |
1957 | unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
1958 | ||
1959 | if (unlikely(*pos < 0)) | |
1960 | return -EINVAL; | |
1961 | ||
1da177e4 LT |
1962 | if (!isblk) { |
1963 | /* FIXME: this is for backwards compatibility with 2.4 */ | |
1964 | if (file->f_flags & O_APPEND) | |
1965 | *pos = i_size_read(inode); | |
1966 | ||
1967 | if (limit != RLIM_INFINITY) { | |
1968 | if (*pos >= limit) { | |
1969 | send_sig(SIGXFSZ, current, 0); | |
1970 | return -EFBIG; | |
1971 | } | |
1972 | if (*count > limit - (typeof(limit))*pos) { | |
1973 | *count = limit - (typeof(limit))*pos; | |
1974 | } | |
1975 | } | |
1976 | } | |
1977 | ||
1978 | /* | |
1979 | * LFS rule | |
1980 | */ | |
1981 | if (unlikely(*pos + *count > MAX_NON_LFS && | |
1982 | !(file->f_flags & O_LARGEFILE))) { | |
1983 | if (*pos >= MAX_NON_LFS) { | |
1da177e4 LT |
1984 | return -EFBIG; |
1985 | } | |
1986 | if (*count > MAX_NON_LFS - (unsigned long)*pos) { | |
1987 | *count = MAX_NON_LFS - (unsigned long)*pos; | |
1988 | } | |
1989 | } | |
1990 | ||
1991 | /* | |
1992 | * Are we about to exceed the fs block limit ? | |
1993 | * | |
1994 | * If we have written data it becomes a short write. If we have | |
1995 | * exceeded without writing data we send a signal and return EFBIG. | |
1996 | * Linus frestrict idea will clean these up nicely.. | |
1997 | */ | |
1998 | if (likely(!isblk)) { | |
1999 | if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { | |
2000 | if (*count || *pos > inode->i_sb->s_maxbytes) { | |
1da177e4 LT |
2001 | return -EFBIG; |
2002 | } | |
2003 | /* zero-length writes at ->s_maxbytes are OK */ | |
2004 | } | |
2005 | ||
2006 | if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) | |
2007 | *count = inode->i_sb->s_maxbytes - *pos; | |
2008 | } else { | |
9361401e | 2009 | #ifdef CONFIG_BLOCK |
1da177e4 LT |
2010 | loff_t isize; |
2011 | if (bdev_read_only(I_BDEV(inode))) | |
2012 | return -EPERM; | |
2013 | isize = i_size_read(inode); | |
2014 | if (*pos >= isize) { | |
2015 | if (*count || *pos > isize) | |
2016 | return -ENOSPC; | |
2017 | } | |
2018 | ||
2019 | if (*pos + *count > isize) | |
2020 | *count = isize - *pos; | |
9361401e DH |
2021 | #else |
2022 | return -EPERM; | |
2023 | #endif | |
1da177e4 LT |
2024 | } |
2025 | return 0; | |
2026 | } | |
2027 | EXPORT_SYMBOL(generic_write_checks); | |
2028 | ||
afddba49 NP |
2029 | int pagecache_write_begin(struct file *file, struct address_space *mapping, |
2030 | loff_t pos, unsigned len, unsigned flags, | |
2031 | struct page **pagep, void **fsdata) | |
2032 | { | |
2033 | const struct address_space_operations *aops = mapping->a_ops; | |
2034 | ||
2035 | if (aops->write_begin) { | |
2036 | return aops->write_begin(file, mapping, pos, len, flags, | |
2037 | pagep, fsdata); | |
2038 | } else { | |
2039 | int ret; | |
2040 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; | |
2041 | unsigned offset = pos & (PAGE_CACHE_SIZE - 1); | |
2042 | struct inode *inode = mapping->host; | |
2043 | struct page *page; | |
2044 | again: | |
2045 | page = __grab_cache_page(mapping, index); | |
2046 | *pagep = page; | |
2047 | if (!page) | |
2048 | return -ENOMEM; | |
2049 | ||
2050 | if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) { | |
2051 | /* | |
2052 | * There is no way to resolve a short write situation | |
2053 | * for a !Uptodate page (except by double copying in | |
2054 | * the caller done by generic_perform_write_2copy). | |
2055 | * | |
2056 | * Instead, we have to bring it uptodate here. | |
2057 | */ | |
2058 | ret = aops->readpage(file, page); | |
2059 | page_cache_release(page); | |
2060 | if (ret) { | |
2061 | if (ret == AOP_TRUNCATED_PAGE) | |
2062 | goto again; | |
2063 | return ret; | |
2064 | } | |
2065 | goto again; | |
2066 | } | |
2067 | ||
2068 | ret = aops->prepare_write(file, page, offset, offset+len); | |
2069 | if (ret) { | |
55144768 | 2070 | unlock_page(page); |
afddba49 NP |
2071 | page_cache_release(page); |
2072 | if (pos + len > inode->i_size) | |
2073 | vmtruncate(inode, inode->i_size); | |
afddba49 NP |
2074 | } |
2075 | return ret; | |
2076 | } | |
2077 | } | |
2078 | EXPORT_SYMBOL(pagecache_write_begin); | |
2079 | ||
2080 | int pagecache_write_end(struct file *file, struct address_space *mapping, | |
2081 | loff_t pos, unsigned len, unsigned copied, | |
2082 | struct page *page, void *fsdata) | |
2083 | { | |
2084 | const struct address_space_operations *aops = mapping->a_ops; | |
2085 | int ret; | |
2086 | ||
2087 | if (aops->write_end) { | |
2088 | mark_page_accessed(page); | |
2089 | ret = aops->write_end(file, mapping, pos, len, copied, | |
2090 | page, fsdata); | |
2091 | } else { | |
2092 | unsigned offset = pos & (PAGE_CACHE_SIZE - 1); | |
2093 | struct inode *inode = mapping->host; | |
2094 | ||
2095 | flush_dcache_page(page); | |
2096 | ret = aops->commit_write(file, page, offset, offset+len); | |
2097 | unlock_page(page); | |
2098 | mark_page_accessed(page); | |
2099 | page_cache_release(page); | |
afddba49 NP |
2100 | |
2101 | if (ret < 0) { | |
2102 | if (pos + len > inode->i_size) | |
2103 | vmtruncate(inode, inode->i_size); | |
2104 | } else if (ret > 0) | |
2105 | ret = min_t(size_t, copied, ret); | |
2106 | else | |
2107 | ret = copied; | |
2108 | } | |
2109 | ||
2110 | return ret; | |
2111 | } | |
2112 | EXPORT_SYMBOL(pagecache_write_end); | |
2113 | ||
1da177e4 LT |
2114 | ssize_t |
2115 | generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, | |
2116 | unsigned long *nr_segs, loff_t pos, loff_t *ppos, | |
2117 | size_t count, size_t ocount) | |
2118 | { | |
2119 | struct file *file = iocb->ki_filp; | |
2120 | struct address_space *mapping = file->f_mapping; | |
2121 | struct inode *inode = mapping->host; | |
2122 | ssize_t written; | |
a969e903 CH |
2123 | size_t write_len; |
2124 | pgoff_t end; | |
1da177e4 LT |
2125 | |
2126 | if (count != ocount) | |
2127 | *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); | |
2128 | ||
a969e903 CH |
2129 | /* |
2130 | * Unmap all mmappings of the file up-front. | |
2131 | * | |
2132 | * This will cause any pte dirty bits to be propagated into the | |
2133 | * pageframes for the subsequent filemap_write_and_wait(). | |
2134 | */ | |
2135 | write_len = iov_length(iov, *nr_segs); | |
2136 | end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; | |
2137 | if (mapping_mapped(mapping)) | |
2138 | unmap_mapping_range(mapping, pos, write_len, 0); | |
2139 | ||
2140 | written = filemap_write_and_wait(mapping); | |
2141 | if (written) | |
2142 | goto out; | |
2143 | ||
2144 | /* | |
2145 | * After a write we want buffered reads to be sure to go to disk to get | |
2146 | * the new data. We invalidate clean cached page from the region we're | |
2147 | * about to write. We do this *before* the write so that we can return | |
6ccfa806 | 2148 | * without clobbering -EIOCBQUEUED from ->direct_IO(). |
a969e903 CH |
2149 | */ |
2150 | if (mapping->nrpages) { | |
2151 | written = invalidate_inode_pages2_range(mapping, | |
2152 | pos >> PAGE_CACHE_SHIFT, end); | |
6ccfa806 HH |
2153 | /* |
2154 | * If a page can not be invalidated, return 0 to fall back | |
2155 | * to buffered write. | |
2156 | */ | |
2157 | if (written) { | |
2158 | if (written == -EBUSY) | |
2159 | return 0; | |
a969e903 | 2160 | goto out; |
6ccfa806 | 2161 | } |
a969e903 CH |
2162 | } |
2163 | ||
2164 | written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); | |
2165 | ||
2166 | /* | |
2167 | * Finally, try again to invalidate clean pages which might have been | |
2168 | * cached by non-direct readahead, or faulted in by get_user_pages() | |
2169 | * if the source of the write was an mmap'ed region of the file | |
2170 | * we're writing. Either one is a pretty crazy thing to do, | |
2171 | * so we don't support it 100%. If this invalidation | |
2172 | * fails, tough, the write still worked... | |
2173 | */ | |
2174 | if (mapping->nrpages) { | |
2175 | invalidate_inode_pages2_range(mapping, | |
2176 | pos >> PAGE_CACHE_SHIFT, end); | |
2177 | } | |
2178 | ||
1da177e4 LT |
2179 | if (written > 0) { |
2180 | loff_t end = pos + written; | |
2181 | if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { | |
2182 | i_size_write(inode, end); | |
2183 | mark_inode_dirty(inode); | |
2184 | } | |
2185 | *ppos = end; | |
2186 | } | |
2187 | ||
2188 | /* | |
2189 | * Sync the fs metadata but not the minor inode changes and | |
2190 | * of course not the data as we did direct DMA for the IO. | |
1b1dcc1b | 2191 | * i_mutex is held, which protects generic_osync_inode() from |
8459d86a | 2192 | * livelocking. AIO O_DIRECT ops attempt to sync metadata here. |
1da177e4 | 2193 | */ |
a969e903 | 2194 | out: |
8459d86a ZB |
2195 | if ((written >= 0 || written == -EIOCBQUEUED) && |
2196 | ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
1e8a81c5 HH |
2197 | int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); |
2198 | if (err < 0) | |
2199 | written = err; | |
2200 | } | |
1da177e4 LT |
2201 | return written; |
2202 | } | |
2203 | EXPORT_SYMBOL(generic_file_direct_write); | |
2204 | ||
eb2be189 NP |
2205 | /* |
2206 | * Find or create a page at the given pagecache position. Return the locked | |
2207 | * page. This function is specifically for buffered writes. | |
2208 | */ | |
afddba49 | 2209 | struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index) |
eb2be189 NP |
2210 | { |
2211 | int status; | |
2212 | struct page *page; | |
2213 | repeat: | |
2214 | page = find_lock_page(mapping, index); | |
2215 | if (likely(page)) | |
2216 | return page; | |
2217 | ||
2218 | page = page_cache_alloc(mapping); | |
2219 | if (!page) | |
2220 | return NULL; | |
2221 | status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); | |
2222 | if (unlikely(status)) { | |
2223 | page_cache_release(page); | |
2224 | if (status == -EEXIST) | |
2225 | goto repeat; | |
2226 | return NULL; | |
2227 | } | |
2228 | return page; | |
2229 | } | |
afddba49 | 2230 | EXPORT_SYMBOL(__grab_cache_page); |
eb2be189 | 2231 | |
afddba49 NP |
2232 | static ssize_t generic_perform_write_2copy(struct file *file, |
2233 | struct iov_iter *i, loff_t pos) | |
1da177e4 | 2234 | { |
ae37461c | 2235 | struct address_space *mapping = file->f_mapping; |
f5e54d6e | 2236 | const struct address_space_operations *a_ops = mapping->a_ops; |
afddba49 NP |
2237 | struct inode *inode = mapping->host; |
2238 | long status = 0; | |
2239 | ssize_t written = 0; | |
1da177e4 LT |
2240 | |
2241 | do { | |
08291429 | 2242 | struct page *src_page; |
eb2be189 | 2243 | struct page *page; |
ae37461c AM |
2244 | pgoff_t index; /* Pagecache index for current page */ |
2245 | unsigned long offset; /* Offset into pagecache page */ | |
08291429 | 2246 | unsigned long bytes; /* Bytes to write to page */ |
ae37461c | 2247 | size_t copied; /* Bytes copied from user */ |
1da177e4 | 2248 | |
ae37461c | 2249 | offset = (pos & (PAGE_CACHE_SIZE - 1)); |
1da177e4 | 2250 | index = pos >> PAGE_CACHE_SHIFT; |
2f718ffc | 2251 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, |
afddba49 | 2252 | iov_iter_count(i)); |
41cb8ac0 | 2253 | |
08291429 NP |
2254 | /* |
2255 | * a non-NULL src_page indicates that we're doing the | |
2256 | * copy via get_user_pages and kmap. | |
2257 | */ | |
2258 | src_page = NULL; | |
2259 | ||
41cb8ac0 NP |
2260 | /* |
2261 | * Bring in the user page that we will copy from _first_. | |
2262 | * Otherwise there's a nasty deadlock on copying from the | |
2263 | * same page as we're writing to, without it being marked | |
2264 | * up-to-date. | |
08291429 NP |
2265 | * |
2266 | * Not only is this an optimisation, but it is also required | |
2267 | * to check that the address is actually valid, when atomic | |
2268 | * usercopies are used, below. | |
41cb8ac0 | 2269 | */ |
afddba49 | 2270 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { |
08291429 NP |
2271 | status = -EFAULT; |
2272 | break; | |
2273 | } | |
eb2be189 NP |
2274 | |
2275 | page = __grab_cache_page(mapping, index); | |
1da177e4 LT |
2276 | if (!page) { |
2277 | status = -ENOMEM; | |
2278 | break; | |
2279 | } | |
2280 | ||
08291429 NP |
2281 | /* |
2282 | * non-uptodate pages cannot cope with short copies, and we | |
2283 | * cannot take a pagefault with the destination page locked. | |
2284 | * So pin the source page to copy it. | |
2285 | */ | |
674b892e | 2286 | if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) { |
08291429 NP |
2287 | unlock_page(page); |
2288 | ||
2289 | src_page = alloc_page(GFP_KERNEL); | |
2290 | if (!src_page) { | |
2291 | page_cache_release(page); | |
2292 | status = -ENOMEM; | |
2293 | break; | |
2294 | } | |
2295 | ||
2296 | /* | |
2297 | * Cannot get_user_pages with a page locked for the | |
2298 | * same reason as we can't take a page fault with a | |
2299 | * page locked (as explained below). | |
2300 | */ | |
afddba49 | 2301 | copied = iov_iter_copy_from_user(src_page, i, |
2f718ffc | 2302 | offset, bytes); |
08291429 NP |
2303 | if (unlikely(copied == 0)) { |
2304 | status = -EFAULT; | |
2305 | page_cache_release(page); | |
2306 | page_cache_release(src_page); | |
2307 | break; | |
2308 | } | |
2309 | bytes = copied; | |
2310 | ||
2311 | lock_page(page); | |
2312 | /* | |
2313 | * Can't handle the page going uptodate here, because | |
2314 | * that means we would use non-atomic usercopies, which | |
2315 | * zero out the tail of the page, which can cause | |
2316 | * zeroes to become transiently visible. We could just | |
2317 | * use a non-zeroing copy, but the APIs aren't too | |
2318 | * consistent. | |
2319 | */ | |
2320 | if (unlikely(!page->mapping || PageUptodate(page))) { | |
2321 | unlock_page(page); | |
2322 | page_cache_release(page); | |
2323 | page_cache_release(src_page); | |
2324 | continue; | |
2325 | } | |
08291429 NP |
2326 | } |
2327 | ||
1da177e4 | 2328 | status = a_ops->prepare_write(file, page, offset, offset+bytes); |
64649a58 NP |
2329 | if (unlikely(status)) |
2330 | goto fs_write_aop_error; | |
994fc28c | 2331 | |
08291429 NP |
2332 | if (!src_page) { |
2333 | /* | |
2334 | * Must not enter the pagefault handler here, because | |
2335 | * we hold the page lock, so we might recursively | |
2336 | * deadlock on the same lock, or get an ABBA deadlock | |
2337 | * against a different lock, or against the mmap_sem | |
2338 | * (which nests outside the page lock). So increment | |
2339 | * preempt count, and use _atomic usercopies. | |
2340 | * | |
2341 | * The page is uptodate so we are OK to encounter a | |
2342 | * short copy: if unmodified parts of the page are | |
2343 | * marked dirty and written out to disk, it doesn't | |
2344 | * really matter. | |
2345 | */ | |
2346 | pagefault_disable(); | |
afddba49 | 2347 | copied = iov_iter_copy_from_user_atomic(page, i, |
2f718ffc | 2348 | offset, bytes); |
08291429 NP |
2349 | pagefault_enable(); |
2350 | } else { | |
2351 | void *src, *dst; | |
2352 | src = kmap_atomic(src_page, KM_USER0); | |
2353 | dst = kmap_atomic(page, KM_USER1); | |
2354 | memcpy(dst + offset, src + offset, bytes); | |
2355 | kunmap_atomic(dst, KM_USER1); | |
2356 | kunmap_atomic(src, KM_USER0); | |
2357 | copied = bytes; | |
2358 | } | |
1da177e4 | 2359 | flush_dcache_page(page); |
4a9e5ef1 | 2360 | |
1da177e4 | 2361 | status = a_ops->commit_write(file, page, offset, offset+bytes); |
55144768 | 2362 | if (unlikely(status < 0)) |
64649a58 | 2363 | goto fs_write_aop_error; |
64649a58 | 2364 | if (unlikely(status > 0)) /* filesystem did partial write */ |
08291429 NP |
2365 | copied = min_t(size_t, copied, status); |
2366 | ||
2367 | unlock_page(page); | |
2368 | mark_page_accessed(page); | |
2369 | page_cache_release(page); | |
2370 | if (src_page) | |
2371 | page_cache_release(src_page); | |
64649a58 | 2372 | |
afddba49 | 2373 | iov_iter_advance(i, copied); |
4a9e5ef1 | 2374 | pos += copied; |
afddba49 | 2375 | written += copied; |
4a9e5ef1 | 2376 | |
1da177e4 LT |
2377 | balance_dirty_pages_ratelimited(mapping); |
2378 | cond_resched(); | |
64649a58 NP |
2379 | continue; |
2380 | ||
2381 | fs_write_aop_error: | |
55144768 | 2382 | unlock_page(page); |
64649a58 | 2383 | page_cache_release(page); |
08291429 NP |
2384 | if (src_page) |
2385 | page_cache_release(src_page); | |
64649a58 NP |
2386 | |
2387 | /* | |
2388 | * prepare_write() may have instantiated a few blocks | |
2389 | * outside i_size. Trim these off again. Don't need | |
2390 | * i_size_read because we hold i_mutex. | |
2391 | */ | |
2392 | if (pos + bytes > inode->i_size) | |
2393 | vmtruncate(inode, inode->i_size); | |
55144768 | 2394 | break; |
afddba49 NP |
2395 | } while (iov_iter_count(i)); |
2396 | ||
2397 | return written ? written : status; | |
2398 | } | |
2399 | ||
2400 | static ssize_t generic_perform_write(struct file *file, | |
2401 | struct iov_iter *i, loff_t pos) | |
2402 | { | |
2403 | struct address_space *mapping = file->f_mapping; | |
2404 | const struct address_space_operations *a_ops = mapping->a_ops; | |
2405 | long status = 0; | |
2406 | ssize_t written = 0; | |
674b892e NP |
2407 | unsigned int flags = 0; |
2408 | ||
2409 | /* | |
2410 | * Copies from kernel address space cannot fail (NFSD is a big user). | |
2411 | */ | |
2412 | if (segment_eq(get_fs(), KERNEL_DS)) | |
2413 | flags |= AOP_FLAG_UNINTERRUPTIBLE; | |
afddba49 NP |
2414 | |
2415 | do { | |
2416 | struct page *page; | |
2417 | pgoff_t index; /* Pagecache index for current page */ | |
2418 | unsigned long offset; /* Offset into pagecache page */ | |
2419 | unsigned long bytes; /* Bytes to write to page */ | |
2420 | size_t copied; /* Bytes copied from user */ | |
2421 | void *fsdata; | |
2422 | ||
2423 | offset = (pos & (PAGE_CACHE_SIZE - 1)); | |
2424 | index = pos >> PAGE_CACHE_SHIFT; | |
2425 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, | |
2426 | iov_iter_count(i)); | |
2427 | ||
2428 | again: | |
2429 | ||
2430 | /* | |
2431 | * Bring in the user page that we will copy from _first_. | |
2432 | * Otherwise there's a nasty deadlock on copying from the | |
2433 | * same page as we're writing to, without it being marked | |
2434 | * up-to-date. | |
2435 | * | |
2436 | * Not only is this an optimisation, but it is also required | |
2437 | * to check that the address is actually valid, when atomic | |
2438 | * usercopies are used, below. | |
2439 | */ | |
2440 | if (unlikely(iov_iter_fault_in_readable(i, bytes))) { | |
2441 | status = -EFAULT; | |
2442 | break; | |
2443 | } | |
2444 | ||
674b892e | 2445 | status = a_ops->write_begin(file, mapping, pos, bytes, flags, |
afddba49 NP |
2446 | &page, &fsdata); |
2447 | if (unlikely(status)) | |
2448 | break; | |
2449 | ||
2450 | pagefault_disable(); | |
2451 | copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); | |
2452 | pagefault_enable(); | |
2453 | flush_dcache_page(page); | |
2454 | ||
2455 | status = a_ops->write_end(file, mapping, pos, bytes, copied, | |
2456 | page, fsdata); | |
2457 | if (unlikely(status < 0)) | |
2458 | break; | |
2459 | copied = status; | |
2460 | ||
2461 | cond_resched(); | |
2462 | ||
124d3b70 | 2463 | iov_iter_advance(i, copied); |
afddba49 NP |
2464 | if (unlikely(copied == 0)) { |
2465 | /* | |
2466 | * If we were unable to copy any data at all, we must | |
2467 | * fall back to a single segment length write. | |
2468 | * | |
2469 | * If we didn't fallback here, we could livelock | |
2470 | * because not all segments in the iov can be copied at | |
2471 | * once without a pagefault. | |
2472 | */ | |
2473 | bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, | |
2474 | iov_iter_single_seg_count(i)); | |
2475 | goto again; | |
2476 | } | |
afddba49 NP |
2477 | pos += copied; |
2478 | written += copied; | |
2479 | ||
2480 | balance_dirty_pages_ratelimited(mapping); | |
2481 | ||
2482 | } while (iov_iter_count(i)); | |
2483 | ||
2484 | return written ? written : status; | |
2485 | } | |
2486 | ||
2487 | ssize_t | |
2488 | generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, | |
2489 | unsigned long nr_segs, loff_t pos, loff_t *ppos, | |
2490 | size_t count, ssize_t written) | |
2491 | { | |
2492 | struct file *file = iocb->ki_filp; | |
2493 | struct address_space *mapping = file->f_mapping; | |
2494 | const struct address_space_operations *a_ops = mapping->a_ops; | |
2495 | struct inode *inode = mapping->host; | |
2496 | ssize_t status; | |
2497 | struct iov_iter i; | |
2498 | ||
2499 | iov_iter_init(&i, iov, nr_segs, count, written); | |
2500 | if (a_ops->write_begin) | |
2501 | status = generic_perform_write(file, &i, pos); | |
2502 | else | |
2503 | status = generic_perform_write_2copy(file, &i, pos); | |
1da177e4 | 2504 | |
1da177e4 | 2505 | if (likely(status >= 0)) { |
afddba49 NP |
2506 | written += status; |
2507 | *ppos = pos + status; | |
2508 | ||
2509 | /* | |
2510 | * For now, when the user asks for O_SYNC, we'll actually give | |
2511 | * O_DSYNC | |
2512 | */ | |
1da177e4 LT |
2513 | if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { |
2514 | if (!a_ops->writepage || !is_sync_kiocb(iocb)) | |
2515 | status = generic_osync_inode(inode, mapping, | |
2516 | OSYNC_METADATA|OSYNC_DATA); | |
2517 | } | |
2518 | } | |
2519 | ||
2520 | /* | |
2521 | * If we get here for O_DIRECT writes then we must have fallen through | |
2522 | * to buffered writes (block instantiation inside i_size). So we sync | |
2523 | * the file data here, to try to honour O_DIRECT expectations. | |
2524 | */ | |
2525 | if (unlikely(file->f_flags & O_DIRECT) && written) | |
2526 | status = filemap_write_and_wait(mapping); | |
2527 | ||
1da177e4 LT |
2528 | return written ? written : status; |
2529 | } | |
2530 | EXPORT_SYMBOL(generic_file_buffered_write); | |
2531 | ||
5ce7852c | 2532 | static ssize_t |
1da177e4 LT |
2533 | __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, |
2534 | unsigned long nr_segs, loff_t *ppos) | |
2535 | { | |
2536 | struct file *file = iocb->ki_filp; | |
fb5527e6 | 2537 | struct address_space * mapping = file->f_mapping; |
1da177e4 LT |
2538 | size_t ocount; /* original count */ |
2539 | size_t count; /* after file limit checks */ | |
2540 | struct inode *inode = mapping->host; | |
1da177e4 LT |
2541 | loff_t pos; |
2542 | ssize_t written; | |
2543 | ssize_t err; | |
2544 | ||
2545 | ocount = 0; | |
0ceb3314 DM |
2546 | err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); |
2547 | if (err) | |
2548 | return err; | |
1da177e4 LT |
2549 | |
2550 | count = ocount; | |
2551 | pos = *ppos; | |
2552 | ||
2553 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | |
2554 | ||
2555 | /* We can write back this queue in page reclaim */ | |
2556 | current->backing_dev_info = mapping->backing_dev_info; | |
2557 | written = 0; | |
2558 | ||
2559 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | |
2560 | if (err) | |
2561 | goto out; | |
2562 | ||
2563 | if (count == 0) | |
2564 | goto out; | |
2565 | ||
2f1936b8 | 2566 | err = file_remove_suid(file); |
1da177e4 LT |
2567 | if (err) |
2568 | goto out; | |
2569 | ||
870f4817 | 2570 | file_update_time(file); |
1da177e4 LT |
2571 | |
2572 | /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ | |
2573 | if (unlikely(file->f_flags & O_DIRECT)) { | |
fb5527e6 JM |
2574 | loff_t endbyte; |
2575 | ssize_t written_buffered; | |
2576 | ||
2577 | written = generic_file_direct_write(iocb, iov, &nr_segs, pos, | |
2578 | ppos, count, ocount); | |
1da177e4 LT |
2579 | if (written < 0 || written == count) |
2580 | goto out; | |
2581 | /* | |
2582 | * direct-io write to a hole: fall through to buffered I/O | |
2583 | * for completing the rest of the request. | |
2584 | */ | |
2585 | pos += written; | |
2586 | count -= written; | |
fb5527e6 JM |
2587 | written_buffered = generic_file_buffered_write(iocb, iov, |
2588 | nr_segs, pos, ppos, count, | |
2589 | written); | |
2590 | /* | |
2591 | * If generic_file_buffered_write() retuned a synchronous error | |
2592 | * then we want to return the number of bytes which were | |
2593 | * direct-written, or the error code if that was zero. Note | |
2594 | * that this differs from normal direct-io semantics, which | |
2595 | * will return -EFOO even if some bytes were written. | |
2596 | */ | |
2597 | if (written_buffered < 0) { | |
2598 | err = written_buffered; | |
2599 | goto out; | |
2600 | } | |
1da177e4 | 2601 | |
fb5527e6 JM |
2602 | /* |
2603 | * We need to ensure that the page cache pages are written to | |
2604 | * disk and invalidated to preserve the expected O_DIRECT | |
2605 | * semantics. | |
2606 | */ | |
2607 | endbyte = pos + written_buffered - written - 1; | |
ef51c976 MF |
2608 | err = do_sync_mapping_range(file->f_mapping, pos, endbyte, |
2609 | SYNC_FILE_RANGE_WAIT_BEFORE| | |
2610 | SYNC_FILE_RANGE_WRITE| | |
2611 | SYNC_FILE_RANGE_WAIT_AFTER); | |
fb5527e6 JM |
2612 | if (err == 0) { |
2613 | written = written_buffered; | |
2614 | invalidate_mapping_pages(mapping, | |
2615 | pos >> PAGE_CACHE_SHIFT, | |
2616 | endbyte >> PAGE_CACHE_SHIFT); | |
2617 | } else { | |
2618 | /* | |
2619 | * We don't know how much we wrote, so just return | |
2620 | * the number of bytes which were direct-written | |
2621 | */ | |
2622 | } | |
2623 | } else { | |
2624 | written = generic_file_buffered_write(iocb, iov, nr_segs, | |
2625 | pos, ppos, count, written); | |
2626 | } | |
1da177e4 LT |
2627 | out: |
2628 | current->backing_dev_info = NULL; | |
2629 | return written ? written : err; | |
2630 | } | |
1da177e4 | 2631 | |
027445c3 BP |
2632 | ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, |
2633 | const struct iovec *iov, unsigned long nr_segs, loff_t pos) | |
1da177e4 LT |
2634 | { |
2635 | struct file *file = iocb->ki_filp; | |
2636 | struct address_space *mapping = file->f_mapping; | |
2637 | struct inode *inode = mapping->host; | |
2638 | ssize_t ret; | |
1da177e4 | 2639 | |
027445c3 BP |
2640 | BUG_ON(iocb->ki_pos != pos); |
2641 | ||
2642 | ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, | |
2643 | &iocb->ki_pos); | |
1da177e4 LT |
2644 | |
2645 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
027445c3 | 2646 | ssize_t err; |
1da177e4 LT |
2647 | |
2648 | err = sync_page_range_nolock(inode, mapping, pos, ret); | |
2649 | if (err < 0) | |
2650 | ret = err; | |
2651 | } | |
2652 | return ret; | |
2653 | } | |
027445c3 | 2654 | EXPORT_SYMBOL(generic_file_aio_write_nolock); |
1da177e4 | 2655 | |
027445c3 BP |
2656 | ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, |
2657 | unsigned long nr_segs, loff_t pos) | |
1da177e4 LT |
2658 | { |
2659 | struct file *file = iocb->ki_filp; | |
2660 | struct address_space *mapping = file->f_mapping; | |
2661 | struct inode *inode = mapping->host; | |
2662 | ssize_t ret; | |
1da177e4 LT |
2663 | |
2664 | BUG_ON(iocb->ki_pos != pos); | |
2665 | ||
1b1dcc1b | 2666 | mutex_lock(&inode->i_mutex); |
027445c3 BP |
2667 | ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, |
2668 | &iocb->ki_pos); | |
1b1dcc1b | 2669 | mutex_unlock(&inode->i_mutex); |
1da177e4 LT |
2670 | |
2671 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | |
2672 | ssize_t err; | |
2673 | ||
2674 | err = sync_page_range(inode, mapping, pos, ret); | |
2675 | if (err < 0) | |
2676 | ret = err; | |
2677 | } | |
2678 | return ret; | |
2679 | } | |
2680 | EXPORT_SYMBOL(generic_file_aio_write); | |
2681 | ||
cf9a2ae8 DH |
2682 | /** |
2683 | * try_to_release_page() - release old fs-specific metadata on a page | |
2684 | * | |
2685 | * @page: the page which the kernel is trying to free | |
2686 | * @gfp_mask: memory allocation flags (and I/O mode) | |
2687 | * | |
2688 | * The address_space is to try to release any data against the page | |
2689 | * (presumably at page->private). If the release was successful, return `1'. | |
2690 | * Otherwise return zero. | |
2691 | * | |
2692 | * The @gfp_mask argument specifies whether I/O may be performed to release | |
3f31fddf | 2693 | * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). |
cf9a2ae8 | 2694 | * |
cf9a2ae8 DH |
2695 | */ |
2696 | int try_to_release_page(struct page *page, gfp_t gfp_mask) | |
2697 | { | |
2698 | struct address_space * const mapping = page->mapping; | |
2699 | ||
2700 | BUG_ON(!PageLocked(page)); | |
2701 | if (PageWriteback(page)) | |
2702 | return 0; | |
2703 | ||
2704 | if (mapping && mapping->a_ops->releasepage) | |
2705 | return mapping->a_ops->releasepage(page, gfp_mask); | |
2706 | return try_to_free_buffers(page); | |
2707 | } | |
2708 | ||
2709 | EXPORT_SYMBOL(try_to_release_page); |