]>
Commit | Line | Data |
---|---|---|
dc009d92 EB |
1 | /* |
2 | * kexec.c - kexec system call | |
3 | * Copyright (C) 2002-2004 Eric Biederman <[email protected]> | |
4 | * | |
5 | * This source code is licensed under the GNU General Public License, | |
6 | * Version 2. See the file COPYING for more details. | |
7 | */ | |
8 | ||
c59ede7b | 9 | #include <linux/capability.h> |
dc009d92 EB |
10 | #include <linux/mm.h> |
11 | #include <linux/file.h> | |
12 | #include <linux/slab.h> | |
13 | #include <linux/fs.h> | |
14 | #include <linux/kexec.h> | |
8c5a1cf0 | 15 | #include <linux/mutex.h> |
dc009d92 EB |
16 | #include <linux/list.h> |
17 | #include <linux/highmem.h> | |
18 | #include <linux/syscalls.h> | |
19 | #include <linux/reboot.h> | |
dc009d92 | 20 | #include <linux/ioport.h> |
6e274d14 | 21 | #include <linux/hardirq.h> |
85916f81 MD |
22 | #include <linux/elf.h> |
23 | #include <linux/elfcore.h> | |
273b281f | 24 | #include <generated/utsrelease.h> |
fd59d231 KO |
25 | #include <linux/utsname.h> |
26 | #include <linux/numa.h> | |
3ab83521 YH |
27 | #include <linux/suspend.h> |
28 | #include <linux/device.h> | |
89081d17 YH |
29 | #include <linux/freezer.h> |
30 | #include <linux/pm.h> | |
31 | #include <linux/cpu.h> | |
32 | #include <linux/console.h> | |
5f41b8cd | 33 | #include <linux/vmalloc.h> |
06a7f711 | 34 | #include <linux/swap.h> |
19234c08 | 35 | #include <linux/syscore_ops.h> |
6e274d14 | 36 | |
dc009d92 EB |
37 | #include <asm/page.h> |
38 | #include <asm/uaccess.h> | |
39 | #include <asm/io.h> | |
fd59d231 | 40 | #include <asm/sections.h> |
dc009d92 | 41 | |
cc571658 | 42 | /* Per cpu memory for storing cpu states in case of system crash. */ |
43cf38eb | 43 | note_buf_t __percpu *crash_notes; |
cc571658 | 44 | |
fd59d231 | 45 | /* vmcoreinfo stuff */ |
edb79a21 | 46 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; |
fd59d231 | 47 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; |
d768281e KO |
48 | size_t vmcoreinfo_size; |
49 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | |
fd59d231 | 50 | |
dc009d92 EB |
51 | /* Location of the reserved area for the crash kernel */ |
52 | struct resource crashk_res = { | |
53 | .name = "Crash kernel", | |
54 | .start = 0, | |
55 | .end = 0, | |
56 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM | |
57 | }; | |
58 | ||
6e274d14 AN |
59 | int kexec_should_crash(struct task_struct *p) |
60 | { | |
b460cbc5 | 61 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) |
6e274d14 AN |
62 | return 1; |
63 | return 0; | |
64 | } | |
65 | ||
dc009d92 EB |
66 | /* |
67 | * When kexec transitions to the new kernel there is a one-to-one | |
68 | * mapping between physical and virtual addresses. On processors | |
69 | * where you can disable the MMU this is trivial, and easy. For | |
70 | * others it is still a simple predictable page table to setup. | |
71 | * | |
72 | * In that environment kexec copies the new kernel to its final | |
73 | * resting place. This means I can only support memory whose | |
74 | * physical address can fit in an unsigned long. In particular | |
75 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
76 | * If the assembly stub has more restrictive requirements | |
77 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
78 | * defined more restrictively in <asm/kexec.h>. | |
79 | * | |
80 | * The code for the transition from the current kernel to the | |
81 | * the new kernel is placed in the control_code_buffer, whose size | |
163f6876 | 82 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single |
dc009d92 EB |
83 | * page of memory is necessary, but some architectures require more. |
84 | * Because this memory must be identity mapped in the transition from | |
85 | * virtual to physical addresses it must live in the range | |
86 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
87 | * modifiable. | |
88 | * | |
89 | * The assembly stub in the control code buffer is passed a linked list | |
90 | * of descriptor pages detailing the source pages of the new kernel, | |
91 | * and the destination addresses of those source pages. As this data | |
92 | * structure is not used in the context of the current OS, it must | |
93 | * be self-contained. | |
94 | * | |
95 | * The code has been made to work with highmem pages and will use a | |
96 | * destination page in its final resting place (if it happens | |
97 | * to allocate it). The end product of this is that most of the | |
98 | * physical address space, and most of RAM can be used. | |
99 | * | |
100 | * Future directions include: | |
101 | * - allocating a page table with the control code buffer identity | |
102 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
103 | * reliable. | |
104 | */ | |
105 | ||
106 | /* | |
107 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
108 | * allocating pages whose destination address we do not care about. | |
109 | */ | |
110 | #define KIMAGE_NO_DEST (-1UL) | |
111 | ||
72414d3f MS |
112 | static int kimage_is_destination_range(struct kimage *image, |
113 | unsigned long start, unsigned long end); | |
114 | static struct page *kimage_alloc_page(struct kimage *image, | |
9796fdd8 | 115 | gfp_t gfp_mask, |
72414d3f | 116 | unsigned long dest); |
dc009d92 EB |
117 | |
118 | static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
119 | unsigned long nr_segments, |
120 | struct kexec_segment __user *segments) | |
dc009d92 EB |
121 | { |
122 | size_t segment_bytes; | |
123 | struct kimage *image; | |
124 | unsigned long i; | |
125 | int result; | |
126 | ||
127 | /* Allocate a controlling structure */ | |
128 | result = -ENOMEM; | |
4668edc3 | 129 | image = kzalloc(sizeof(*image), GFP_KERNEL); |
72414d3f | 130 | if (!image) |
dc009d92 | 131 | goto out; |
72414d3f | 132 | |
dc009d92 EB |
133 | image->head = 0; |
134 | image->entry = &image->head; | |
135 | image->last_entry = &image->head; | |
136 | image->control_page = ~0; /* By default this does not apply */ | |
137 | image->start = entry; | |
138 | image->type = KEXEC_TYPE_DEFAULT; | |
139 | ||
140 | /* Initialize the list of control pages */ | |
141 | INIT_LIST_HEAD(&image->control_pages); | |
142 | ||
143 | /* Initialize the list of destination pages */ | |
144 | INIT_LIST_HEAD(&image->dest_pages); | |
145 | ||
25985edc | 146 | /* Initialize the list of unusable pages */ |
dc009d92 EB |
147 | INIT_LIST_HEAD(&image->unuseable_pages); |
148 | ||
149 | /* Read in the segments */ | |
150 | image->nr_segments = nr_segments; | |
151 | segment_bytes = nr_segments * sizeof(*segments); | |
152 | result = copy_from_user(image->segment, segments, segment_bytes); | |
f65a03f6 DC |
153 | if (result) { |
154 | result = -EFAULT; | |
dc009d92 | 155 | goto out; |
f65a03f6 | 156 | } |
dc009d92 EB |
157 | |
158 | /* | |
159 | * Verify we have good destination addresses. The caller is | |
160 | * responsible for making certain we don't attempt to load | |
161 | * the new image into invalid or reserved areas of RAM. This | |
162 | * just verifies it is an address we can use. | |
163 | * | |
164 | * Since the kernel does everything in page size chunks ensure | |
b595076a | 165 | * the destination addresses are page aligned. Too many |
dc009d92 EB |
166 | * special cases crop of when we don't do this. The most |
167 | * insidious is getting overlapping destination addresses | |
168 | * simply because addresses are changed to page size | |
169 | * granularity. | |
170 | */ | |
171 | result = -EADDRNOTAVAIL; | |
172 | for (i = 0; i < nr_segments; i++) { | |
173 | unsigned long mstart, mend; | |
72414d3f | 174 | |
dc009d92 EB |
175 | mstart = image->segment[i].mem; |
176 | mend = mstart + image->segment[i].memsz; | |
177 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) | |
178 | goto out; | |
179 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) | |
180 | goto out; | |
181 | } | |
182 | ||
183 | /* Verify our destination addresses do not overlap. | |
184 | * If we alloed overlapping destination addresses | |
185 | * through very weird things can happen with no | |
186 | * easy explanation as one segment stops on another. | |
187 | */ | |
188 | result = -EINVAL; | |
72414d3f | 189 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
190 | unsigned long mstart, mend; |
191 | unsigned long j; | |
72414d3f | 192 | |
dc009d92 EB |
193 | mstart = image->segment[i].mem; |
194 | mend = mstart + image->segment[i].memsz; | |
72414d3f | 195 | for (j = 0; j < i; j++) { |
dc009d92 EB |
196 | unsigned long pstart, pend; |
197 | pstart = image->segment[j].mem; | |
198 | pend = pstart + image->segment[j].memsz; | |
199 | /* Do the segments overlap ? */ | |
200 | if ((mend > pstart) && (mstart < pend)) | |
201 | goto out; | |
202 | } | |
203 | } | |
204 | ||
205 | /* Ensure our buffer sizes are strictly less than | |
206 | * our memory sizes. This should always be the case, | |
207 | * and it is easier to check up front than to be surprised | |
208 | * later on. | |
209 | */ | |
210 | result = -EINVAL; | |
72414d3f | 211 | for (i = 0; i < nr_segments; i++) { |
dc009d92 EB |
212 | if (image->segment[i].bufsz > image->segment[i].memsz) |
213 | goto out; | |
214 | } | |
215 | ||
dc009d92 | 216 | result = 0; |
72414d3f MS |
217 | out: |
218 | if (result == 0) | |
dc009d92 | 219 | *rimage = image; |
72414d3f | 220 | else |
dc009d92 | 221 | kfree(image); |
72414d3f | 222 | |
dc009d92 EB |
223 | return result; |
224 | ||
225 | } | |
226 | ||
227 | static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f MS |
228 | unsigned long nr_segments, |
229 | struct kexec_segment __user *segments) | |
dc009d92 EB |
230 | { |
231 | int result; | |
232 | struct kimage *image; | |
233 | ||
234 | /* Allocate and initialize a controlling structure */ | |
235 | image = NULL; | |
236 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 237 | if (result) |
dc009d92 | 238 | goto out; |
72414d3f | 239 | |
dc009d92 EB |
240 | *rimage = image; |
241 | ||
242 | /* | |
243 | * Find a location for the control code buffer, and add it | |
244 | * the vector of segments so that it's pages will also be | |
245 | * counted as destination pages. | |
246 | */ | |
247 | result = -ENOMEM; | |
248 | image->control_code_page = kimage_alloc_control_pages(image, | |
163f6876 | 249 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
dc009d92 EB |
250 | if (!image->control_code_page) { |
251 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
252 | goto out; | |
253 | } | |
254 | ||
3ab83521 YH |
255 | image->swap_page = kimage_alloc_control_pages(image, 0); |
256 | if (!image->swap_page) { | |
257 | printk(KERN_ERR "Could not allocate swap buffer\n"); | |
258 | goto out; | |
259 | } | |
260 | ||
dc009d92 EB |
261 | result = 0; |
262 | out: | |
72414d3f | 263 | if (result == 0) |
dc009d92 | 264 | *rimage = image; |
72414d3f | 265 | else |
dc009d92 | 266 | kfree(image); |
72414d3f | 267 | |
dc009d92 EB |
268 | return result; |
269 | } | |
270 | ||
271 | static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, | |
72414d3f | 272 | unsigned long nr_segments, |
314b6a4d | 273 | struct kexec_segment __user *segments) |
dc009d92 EB |
274 | { |
275 | int result; | |
276 | struct kimage *image; | |
277 | unsigned long i; | |
278 | ||
279 | image = NULL; | |
280 | /* Verify we have a valid entry point */ | |
281 | if ((entry < crashk_res.start) || (entry > crashk_res.end)) { | |
282 | result = -EADDRNOTAVAIL; | |
283 | goto out; | |
284 | } | |
285 | ||
286 | /* Allocate and initialize a controlling structure */ | |
287 | result = do_kimage_alloc(&image, entry, nr_segments, segments); | |
72414d3f | 288 | if (result) |
dc009d92 | 289 | goto out; |
dc009d92 EB |
290 | |
291 | /* Enable the special crash kernel control page | |
292 | * allocation policy. | |
293 | */ | |
294 | image->control_page = crashk_res.start; | |
295 | image->type = KEXEC_TYPE_CRASH; | |
296 | ||
297 | /* | |
298 | * Verify we have good destination addresses. Normally | |
299 | * the caller is responsible for making certain we don't | |
300 | * attempt to load the new image into invalid or reserved | |
301 | * areas of RAM. But crash kernels are preloaded into a | |
302 | * reserved area of ram. We must ensure the addresses | |
303 | * are in the reserved area otherwise preloading the | |
304 | * kernel could corrupt things. | |
305 | */ | |
306 | result = -EADDRNOTAVAIL; | |
307 | for (i = 0; i < nr_segments; i++) { | |
308 | unsigned long mstart, mend; | |
72414d3f | 309 | |
dc009d92 | 310 | mstart = image->segment[i].mem; |
50cccc69 | 311 | mend = mstart + image->segment[i].memsz - 1; |
dc009d92 EB |
312 | /* Ensure we are within the crash kernel limits */ |
313 | if ((mstart < crashk_res.start) || (mend > crashk_res.end)) | |
314 | goto out; | |
315 | } | |
316 | ||
dc009d92 EB |
317 | /* |
318 | * Find a location for the control code buffer, and add | |
319 | * the vector of segments so that it's pages will also be | |
320 | * counted as destination pages. | |
321 | */ | |
322 | result = -ENOMEM; | |
323 | image->control_code_page = kimage_alloc_control_pages(image, | |
163f6876 | 324 | get_order(KEXEC_CONTROL_PAGE_SIZE)); |
dc009d92 EB |
325 | if (!image->control_code_page) { |
326 | printk(KERN_ERR "Could not allocate control_code_buffer\n"); | |
327 | goto out; | |
328 | } | |
329 | ||
330 | result = 0; | |
72414d3f MS |
331 | out: |
332 | if (result == 0) | |
dc009d92 | 333 | *rimage = image; |
72414d3f | 334 | else |
dc009d92 | 335 | kfree(image); |
72414d3f | 336 | |
dc009d92 EB |
337 | return result; |
338 | } | |
339 | ||
72414d3f MS |
340 | static int kimage_is_destination_range(struct kimage *image, |
341 | unsigned long start, | |
342 | unsigned long end) | |
dc009d92 EB |
343 | { |
344 | unsigned long i; | |
345 | ||
346 | for (i = 0; i < image->nr_segments; i++) { | |
347 | unsigned long mstart, mend; | |
72414d3f | 348 | |
dc009d92 | 349 | mstart = image->segment[i].mem; |
72414d3f MS |
350 | mend = mstart + image->segment[i].memsz; |
351 | if ((end > mstart) && (start < mend)) | |
dc009d92 | 352 | return 1; |
dc009d92 | 353 | } |
72414d3f | 354 | |
dc009d92 EB |
355 | return 0; |
356 | } | |
357 | ||
9796fdd8 | 358 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) |
dc009d92 EB |
359 | { |
360 | struct page *pages; | |
72414d3f | 361 | |
dc009d92 EB |
362 | pages = alloc_pages(gfp_mask, order); |
363 | if (pages) { | |
364 | unsigned int count, i; | |
365 | pages->mapping = NULL; | |
4c21e2f2 | 366 | set_page_private(pages, order); |
dc009d92 | 367 | count = 1 << order; |
72414d3f | 368 | for (i = 0; i < count; i++) |
dc009d92 | 369 | SetPageReserved(pages + i); |
dc009d92 | 370 | } |
72414d3f | 371 | |
dc009d92 EB |
372 | return pages; |
373 | } | |
374 | ||
375 | static void kimage_free_pages(struct page *page) | |
376 | { | |
377 | unsigned int order, count, i; | |
72414d3f | 378 | |
4c21e2f2 | 379 | order = page_private(page); |
dc009d92 | 380 | count = 1 << order; |
72414d3f | 381 | for (i = 0; i < count; i++) |
dc009d92 | 382 | ClearPageReserved(page + i); |
dc009d92 EB |
383 | __free_pages(page, order); |
384 | } | |
385 | ||
386 | static void kimage_free_page_list(struct list_head *list) | |
387 | { | |
388 | struct list_head *pos, *next; | |
72414d3f | 389 | |
dc009d92 EB |
390 | list_for_each_safe(pos, next, list) { |
391 | struct page *page; | |
392 | ||
393 | page = list_entry(pos, struct page, lru); | |
394 | list_del(&page->lru); | |
dc009d92 EB |
395 | kimage_free_pages(page); |
396 | } | |
397 | } | |
398 | ||
72414d3f MS |
399 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, |
400 | unsigned int order) | |
dc009d92 EB |
401 | { |
402 | /* Control pages are special, they are the intermediaries | |
403 | * that are needed while we copy the rest of the pages | |
404 | * to their final resting place. As such they must | |
405 | * not conflict with either the destination addresses | |
406 | * or memory the kernel is already using. | |
407 | * | |
408 | * The only case where we really need more than one of | |
409 | * these are for architectures where we cannot disable | |
410 | * the MMU and must instead generate an identity mapped | |
411 | * page table for all of the memory. | |
412 | * | |
413 | * At worst this runs in O(N) of the image size. | |
414 | */ | |
415 | struct list_head extra_pages; | |
416 | struct page *pages; | |
417 | unsigned int count; | |
418 | ||
419 | count = 1 << order; | |
420 | INIT_LIST_HEAD(&extra_pages); | |
421 | ||
422 | /* Loop while I can allocate a page and the page allocated | |
423 | * is a destination page. | |
424 | */ | |
425 | do { | |
426 | unsigned long pfn, epfn, addr, eaddr; | |
72414d3f | 427 | |
dc009d92 EB |
428 | pages = kimage_alloc_pages(GFP_KERNEL, order); |
429 | if (!pages) | |
430 | break; | |
431 | pfn = page_to_pfn(pages); | |
432 | epfn = pfn + count; | |
433 | addr = pfn << PAGE_SHIFT; | |
434 | eaddr = epfn << PAGE_SHIFT; | |
435 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
72414d3f | 436 | kimage_is_destination_range(image, addr, eaddr)) { |
dc009d92 EB |
437 | list_add(&pages->lru, &extra_pages); |
438 | pages = NULL; | |
439 | } | |
72414d3f MS |
440 | } while (!pages); |
441 | ||
dc009d92 EB |
442 | if (pages) { |
443 | /* Remember the allocated page... */ | |
444 | list_add(&pages->lru, &image->control_pages); | |
445 | ||
446 | /* Because the page is already in it's destination | |
447 | * location we will never allocate another page at | |
448 | * that address. Therefore kimage_alloc_pages | |
449 | * will not return it (again) and we don't need | |
450 | * to give it an entry in image->segment[]. | |
451 | */ | |
452 | } | |
453 | /* Deal with the destination pages I have inadvertently allocated. | |
454 | * | |
455 | * Ideally I would convert multi-page allocations into single | |
25985edc | 456 | * page allocations, and add everything to image->dest_pages. |
dc009d92 EB |
457 | * |
458 | * For now it is simpler to just free the pages. | |
459 | */ | |
460 | kimage_free_page_list(&extra_pages); | |
dc009d92 | 461 | |
72414d3f | 462 | return pages; |
dc009d92 EB |
463 | } |
464 | ||
72414d3f MS |
465 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, |
466 | unsigned int order) | |
dc009d92 EB |
467 | { |
468 | /* Control pages are special, they are the intermediaries | |
469 | * that are needed while we copy the rest of the pages | |
470 | * to their final resting place. As such they must | |
471 | * not conflict with either the destination addresses | |
472 | * or memory the kernel is already using. | |
473 | * | |
474 | * Control pages are also the only pags we must allocate | |
475 | * when loading a crash kernel. All of the other pages | |
476 | * are specified by the segments and we just memcpy | |
477 | * into them directly. | |
478 | * | |
479 | * The only case where we really need more than one of | |
480 | * these are for architectures where we cannot disable | |
481 | * the MMU and must instead generate an identity mapped | |
482 | * page table for all of the memory. | |
483 | * | |
484 | * Given the low demand this implements a very simple | |
485 | * allocator that finds the first hole of the appropriate | |
486 | * size in the reserved memory region, and allocates all | |
487 | * of the memory up to and including the hole. | |
488 | */ | |
489 | unsigned long hole_start, hole_end, size; | |
490 | struct page *pages; | |
72414d3f | 491 | |
dc009d92 EB |
492 | pages = NULL; |
493 | size = (1 << order) << PAGE_SHIFT; | |
494 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
495 | hole_end = hole_start + size - 1; | |
72414d3f | 496 | while (hole_end <= crashk_res.end) { |
dc009d92 | 497 | unsigned long i; |
72414d3f | 498 | |
3d214fae | 499 | if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) |
dc009d92 | 500 | break; |
72414d3f | 501 | if (hole_end > crashk_res.end) |
dc009d92 | 502 | break; |
dc009d92 | 503 | /* See if I overlap any of the segments */ |
72414d3f | 504 | for (i = 0; i < image->nr_segments; i++) { |
dc009d92 | 505 | unsigned long mstart, mend; |
72414d3f | 506 | |
dc009d92 EB |
507 | mstart = image->segment[i].mem; |
508 | mend = mstart + image->segment[i].memsz - 1; | |
509 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
510 | /* Advance the hole to the end of the segment */ | |
511 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
512 | hole_end = hole_start + size - 1; | |
513 | break; | |
514 | } | |
515 | } | |
516 | /* If I don't overlap any segments I have found my hole! */ | |
517 | if (i == image->nr_segments) { | |
518 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
519 | break; | |
520 | } | |
521 | } | |
72414d3f | 522 | if (pages) |
dc009d92 | 523 | image->control_page = hole_end; |
72414d3f | 524 | |
dc009d92 EB |
525 | return pages; |
526 | } | |
527 | ||
528 | ||
72414d3f MS |
529 | struct page *kimage_alloc_control_pages(struct kimage *image, |
530 | unsigned int order) | |
dc009d92 EB |
531 | { |
532 | struct page *pages = NULL; | |
72414d3f MS |
533 | |
534 | switch (image->type) { | |
dc009d92 EB |
535 | case KEXEC_TYPE_DEFAULT: |
536 | pages = kimage_alloc_normal_control_pages(image, order); | |
537 | break; | |
538 | case KEXEC_TYPE_CRASH: | |
539 | pages = kimage_alloc_crash_control_pages(image, order); | |
540 | break; | |
541 | } | |
72414d3f | 542 | |
dc009d92 EB |
543 | return pages; |
544 | } | |
545 | ||
546 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | |
547 | { | |
72414d3f | 548 | if (*image->entry != 0) |
dc009d92 | 549 | image->entry++; |
72414d3f | 550 | |
dc009d92 EB |
551 | if (image->entry == image->last_entry) { |
552 | kimage_entry_t *ind_page; | |
553 | struct page *page; | |
72414d3f | 554 | |
dc009d92 | 555 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); |
72414d3f | 556 | if (!page) |
dc009d92 | 557 | return -ENOMEM; |
72414d3f | 558 | |
dc009d92 EB |
559 | ind_page = page_address(page); |
560 | *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; | |
561 | image->entry = ind_page; | |
72414d3f MS |
562 | image->last_entry = ind_page + |
563 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
dc009d92 EB |
564 | } |
565 | *image->entry = entry; | |
566 | image->entry++; | |
567 | *image->entry = 0; | |
72414d3f | 568 | |
dc009d92 EB |
569 | return 0; |
570 | } | |
571 | ||
72414d3f MS |
572 | static int kimage_set_destination(struct kimage *image, |
573 | unsigned long destination) | |
dc009d92 EB |
574 | { |
575 | int result; | |
576 | ||
577 | destination &= PAGE_MASK; | |
578 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
72414d3f | 579 | if (result == 0) |
dc009d92 | 580 | image->destination = destination; |
72414d3f | 581 | |
dc009d92 EB |
582 | return result; |
583 | } | |
584 | ||
585 | ||
586 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
587 | { | |
588 | int result; | |
589 | ||
590 | page &= PAGE_MASK; | |
591 | result = kimage_add_entry(image, page | IND_SOURCE); | |
72414d3f | 592 | if (result == 0) |
dc009d92 | 593 | image->destination += PAGE_SIZE; |
72414d3f | 594 | |
dc009d92 EB |
595 | return result; |
596 | } | |
597 | ||
598 | ||
599 | static void kimage_free_extra_pages(struct kimage *image) | |
600 | { | |
601 | /* Walk through and free any extra destination pages I may have */ | |
602 | kimage_free_page_list(&image->dest_pages); | |
603 | ||
25985edc | 604 | /* Walk through and free any unusable pages I have cached */ |
dc009d92 EB |
605 | kimage_free_page_list(&image->unuseable_pages); |
606 | ||
607 | } | |
7fccf032 | 608 | static void kimage_terminate(struct kimage *image) |
dc009d92 | 609 | { |
72414d3f | 610 | if (*image->entry != 0) |
dc009d92 | 611 | image->entry++; |
72414d3f | 612 | |
dc009d92 | 613 | *image->entry = IND_DONE; |
dc009d92 EB |
614 | } |
615 | ||
616 | #define for_each_kimage_entry(image, ptr, entry) \ | |
617 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
618 | ptr = (entry & IND_INDIRECTION)? \ | |
619 | phys_to_virt((entry & PAGE_MASK)): ptr +1) | |
620 | ||
621 | static void kimage_free_entry(kimage_entry_t entry) | |
622 | { | |
623 | struct page *page; | |
624 | ||
625 | page = pfn_to_page(entry >> PAGE_SHIFT); | |
626 | kimage_free_pages(page); | |
627 | } | |
628 | ||
629 | static void kimage_free(struct kimage *image) | |
630 | { | |
631 | kimage_entry_t *ptr, entry; | |
632 | kimage_entry_t ind = 0; | |
633 | ||
634 | if (!image) | |
635 | return; | |
72414d3f | 636 | |
dc009d92 EB |
637 | kimage_free_extra_pages(image); |
638 | for_each_kimage_entry(image, ptr, entry) { | |
639 | if (entry & IND_INDIRECTION) { | |
640 | /* Free the previous indirection page */ | |
72414d3f | 641 | if (ind & IND_INDIRECTION) |
dc009d92 | 642 | kimage_free_entry(ind); |
dc009d92 EB |
643 | /* Save this indirection page until we are |
644 | * done with it. | |
645 | */ | |
646 | ind = entry; | |
647 | } | |
72414d3f | 648 | else if (entry & IND_SOURCE) |
dc009d92 | 649 | kimage_free_entry(entry); |
dc009d92 EB |
650 | } |
651 | /* Free the final indirection page */ | |
72414d3f | 652 | if (ind & IND_INDIRECTION) |
dc009d92 | 653 | kimage_free_entry(ind); |
dc009d92 EB |
654 | |
655 | /* Handle any machine specific cleanup */ | |
656 | machine_kexec_cleanup(image); | |
657 | ||
658 | /* Free the kexec control pages... */ | |
659 | kimage_free_page_list(&image->control_pages); | |
660 | kfree(image); | |
661 | } | |
662 | ||
72414d3f MS |
663 | static kimage_entry_t *kimage_dst_used(struct kimage *image, |
664 | unsigned long page) | |
dc009d92 EB |
665 | { |
666 | kimage_entry_t *ptr, entry; | |
667 | unsigned long destination = 0; | |
668 | ||
669 | for_each_kimage_entry(image, ptr, entry) { | |
72414d3f | 670 | if (entry & IND_DESTINATION) |
dc009d92 | 671 | destination = entry & PAGE_MASK; |
dc009d92 | 672 | else if (entry & IND_SOURCE) { |
72414d3f | 673 | if (page == destination) |
dc009d92 | 674 | return ptr; |
dc009d92 EB |
675 | destination += PAGE_SIZE; |
676 | } | |
677 | } | |
72414d3f | 678 | |
314b6a4d | 679 | return NULL; |
dc009d92 EB |
680 | } |
681 | ||
72414d3f | 682 | static struct page *kimage_alloc_page(struct kimage *image, |
9796fdd8 | 683 | gfp_t gfp_mask, |
72414d3f | 684 | unsigned long destination) |
dc009d92 EB |
685 | { |
686 | /* | |
687 | * Here we implement safeguards to ensure that a source page | |
688 | * is not copied to its destination page before the data on | |
689 | * the destination page is no longer useful. | |
690 | * | |
691 | * To do this we maintain the invariant that a source page is | |
692 | * either its own destination page, or it is not a | |
693 | * destination page at all. | |
694 | * | |
695 | * That is slightly stronger than required, but the proof | |
696 | * that no problems will not occur is trivial, and the | |
697 | * implementation is simply to verify. | |
698 | * | |
699 | * When allocating all pages normally this algorithm will run | |
700 | * in O(N) time, but in the worst case it will run in O(N^2) | |
701 | * time. If the runtime is a problem the data structures can | |
702 | * be fixed. | |
703 | */ | |
704 | struct page *page; | |
705 | unsigned long addr; | |
706 | ||
707 | /* | |
708 | * Walk through the list of destination pages, and see if I | |
709 | * have a match. | |
710 | */ | |
711 | list_for_each_entry(page, &image->dest_pages, lru) { | |
712 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
713 | if (addr == destination) { | |
714 | list_del(&page->lru); | |
715 | return page; | |
716 | } | |
717 | } | |
718 | page = NULL; | |
719 | while (1) { | |
720 | kimage_entry_t *old; | |
721 | ||
722 | /* Allocate a page, if we run out of memory give up */ | |
723 | page = kimage_alloc_pages(gfp_mask, 0); | |
72414d3f | 724 | if (!page) |
314b6a4d | 725 | return NULL; |
dc009d92 | 726 | /* If the page cannot be used file it away */ |
72414d3f MS |
727 | if (page_to_pfn(page) > |
728 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { | |
dc009d92 EB |
729 | list_add(&page->lru, &image->unuseable_pages); |
730 | continue; | |
731 | } | |
732 | addr = page_to_pfn(page) << PAGE_SHIFT; | |
733 | ||
734 | /* If it is the destination page we want use it */ | |
735 | if (addr == destination) | |
736 | break; | |
737 | ||
738 | /* If the page is not a destination page use it */ | |
72414d3f MS |
739 | if (!kimage_is_destination_range(image, addr, |
740 | addr + PAGE_SIZE)) | |
dc009d92 EB |
741 | break; |
742 | ||
743 | /* | |
744 | * I know that the page is someones destination page. | |
745 | * See if there is already a source page for this | |
746 | * destination page. And if so swap the source pages. | |
747 | */ | |
748 | old = kimage_dst_used(image, addr); | |
749 | if (old) { | |
750 | /* If so move it */ | |
751 | unsigned long old_addr; | |
752 | struct page *old_page; | |
753 | ||
754 | old_addr = *old & PAGE_MASK; | |
755 | old_page = pfn_to_page(old_addr >> PAGE_SHIFT); | |
756 | copy_highpage(page, old_page); | |
757 | *old = addr | (*old & ~PAGE_MASK); | |
758 | ||
759 | /* The old page I have found cannot be a | |
f9092f35 JS |
760 | * destination page, so return it if it's |
761 | * gfp_flags honor the ones passed in. | |
dc009d92 | 762 | */ |
f9092f35 JS |
763 | if (!(gfp_mask & __GFP_HIGHMEM) && |
764 | PageHighMem(old_page)) { | |
765 | kimage_free_pages(old_page); | |
766 | continue; | |
767 | } | |
dc009d92 EB |
768 | addr = old_addr; |
769 | page = old_page; | |
770 | break; | |
771 | } | |
772 | else { | |
773 | /* Place the page on the destination list I | |
774 | * will use it later. | |
775 | */ | |
776 | list_add(&page->lru, &image->dest_pages); | |
777 | } | |
778 | } | |
72414d3f | 779 | |
dc009d92 EB |
780 | return page; |
781 | } | |
782 | ||
783 | static int kimage_load_normal_segment(struct kimage *image, | |
72414d3f | 784 | struct kexec_segment *segment) |
dc009d92 EB |
785 | { |
786 | unsigned long maddr; | |
787 | unsigned long ubytes, mbytes; | |
788 | int result; | |
314b6a4d | 789 | unsigned char __user *buf; |
dc009d92 EB |
790 | |
791 | result = 0; | |
792 | buf = segment->buf; | |
793 | ubytes = segment->bufsz; | |
794 | mbytes = segment->memsz; | |
795 | maddr = segment->mem; | |
796 | ||
797 | result = kimage_set_destination(image, maddr); | |
72414d3f | 798 | if (result < 0) |
dc009d92 | 799 | goto out; |
72414d3f MS |
800 | |
801 | while (mbytes) { | |
dc009d92 EB |
802 | struct page *page; |
803 | char *ptr; | |
804 | size_t uchunk, mchunk; | |
72414d3f | 805 | |
dc009d92 | 806 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); |
c80544dc | 807 | if (!page) { |
dc009d92 EB |
808 | result = -ENOMEM; |
809 | goto out; | |
810 | } | |
72414d3f MS |
811 | result = kimage_add_page(image, page_to_pfn(page) |
812 | << PAGE_SHIFT); | |
813 | if (result < 0) | |
dc009d92 | 814 | goto out; |
72414d3f | 815 | |
dc009d92 EB |
816 | ptr = kmap(page); |
817 | /* Start with a clear page */ | |
3ecb01df | 818 | clear_page(ptr); |
dc009d92 EB |
819 | ptr += maddr & ~PAGE_MASK; |
820 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 821 | if (mchunk > mbytes) |
dc009d92 | 822 | mchunk = mbytes; |
72414d3f | 823 | |
dc009d92 | 824 | uchunk = mchunk; |
72414d3f | 825 | if (uchunk > ubytes) |
dc009d92 | 826 | uchunk = ubytes; |
72414d3f | 827 | |
dc009d92 EB |
828 | result = copy_from_user(ptr, buf, uchunk); |
829 | kunmap(page); | |
830 | if (result) { | |
f65a03f6 | 831 | result = -EFAULT; |
dc009d92 EB |
832 | goto out; |
833 | } | |
834 | ubytes -= uchunk; | |
835 | maddr += mchunk; | |
836 | buf += mchunk; | |
837 | mbytes -= mchunk; | |
838 | } | |
72414d3f | 839 | out: |
dc009d92 EB |
840 | return result; |
841 | } | |
842 | ||
843 | static int kimage_load_crash_segment(struct kimage *image, | |
72414d3f | 844 | struct kexec_segment *segment) |
dc009d92 EB |
845 | { |
846 | /* For crash dumps kernels we simply copy the data from | |
847 | * user space to it's destination. | |
848 | * We do things a page at a time for the sake of kmap. | |
849 | */ | |
850 | unsigned long maddr; | |
851 | unsigned long ubytes, mbytes; | |
852 | int result; | |
314b6a4d | 853 | unsigned char __user *buf; |
dc009d92 EB |
854 | |
855 | result = 0; | |
856 | buf = segment->buf; | |
857 | ubytes = segment->bufsz; | |
858 | mbytes = segment->memsz; | |
859 | maddr = segment->mem; | |
72414d3f | 860 | while (mbytes) { |
dc009d92 EB |
861 | struct page *page; |
862 | char *ptr; | |
863 | size_t uchunk, mchunk; | |
72414d3f | 864 | |
dc009d92 | 865 | page = pfn_to_page(maddr >> PAGE_SHIFT); |
c80544dc | 866 | if (!page) { |
dc009d92 EB |
867 | result = -ENOMEM; |
868 | goto out; | |
869 | } | |
870 | ptr = kmap(page); | |
871 | ptr += maddr & ~PAGE_MASK; | |
872 | mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); | |
72414d3f | 873 | if (mchunk > mbytes) |
dc009d92 | 874 | mchunk = mbytes; |
72414d3f | 875 | |
dc009d92 EB |
876 | uchunk = mchunk; |
877 | if (uchunk > ubytes) { | |
878 | uchunk = ubytes; | |
879 | /* Zero the trailing part of the page */ | |
880 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
881 | } | |
882 | result = copy_from_user(ptr, buf, uchunk); | |
a7956113 | 883 | kexec_flush_icache_page(page); |
dc009d92 EB |
884 | kunmap(page); |
885 | if (result) { | |
f65a03f6 | 886 | result = -EFAULT; |
dc009d92 EB |
887 | goto out; |
888 | } | |
889 | ubytes -= uchunk; | |
890 | maddr += mchunk; | |
891 | buf += mchunk; | |
892 | mbytes -= mchunk; | |
893 | } | |
72414d3f | 894 | out: |
dc009d92 EB |
895 | return result; |
896 | } | |
897 | ||
898 | static int kimage_load_segment(struct kimage *image, | |
72414d3f | 899 | struct kexec_segment *segment) |
dc009d92 EB |
900 | { |
901 | int result = -ENOMEM; | |
72414d3f MS |
902 | |
903 | switch (image->type) { | |
dc009d92 EB |
904 | case KEXEC_TYPE_DEFAULT: |
905 | result = kimage_load_normal_segment(image, segment); | |
906 | break; | |
907 | case KEXEC_TYPE_CRASH: | |
908 | result = kimage_load_crash_segment(image, segment); | |
909 | break; | |
910 | } | |
72414d3f | 911 | |
dc009d92 EB |
912 | return result; |
913 | } | |
914 | ||
915 | /* | |
916 | * Exec Kernel system call: for obvious reasons only root may call it. | |
917 | * | |
918 | * This call breaks up into three pieces. | |
919 | * - A generic part which loads the new kernel from the current | |
920 | * address space, and very carefully places the data in the | |
921 | * allocated pages. | |
922 | * | |
923 | * - A generic part that interacts with the kernel and tells all of | |
924 | * the devices to shut down. Preventing on-going dmas, and placing | |
925 | * the devices in a consistent state so a later kernel can | |
926 | * reinitialize them. | |
927 | * | |
928 | * - A machine specific part that includes the syscall number | |
929 | * and the copies the image to it's final destination. And | |
930 | * jumps into the image at entry. | |
931 | * | |
932 | * kexec does not sync, or unmount filesystems so if you need | |
933 | * that to happen you need to do that yourself. | |
934 | */ | |
c330dda9 JM |
935 | struct kimage *kexec_image; |
936 | struct kimage *kexec_crash_image; | |
8c5a1cf0 AM |
937 | |
938 | static DEFINE_MUTEX(kexec_mutex); | |
dc009d92 | 939 | |
754fe8d2 HC |
940 | SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, |
941 | struct kexec_segment __user *, segments, unsigned long, flags) | |
dc009d92 EB |
942 | { |
943 | struct kimage **dest_image, *image; | |
dc009d92 EB |
944 | int result; |
945 | ||
946 | /* We only trust the superuser with rebooting the system. */ | |
947 | if (!capable(CAP_SYS_BOOT)) | |
948 | return -EPERM; | |
949 | ||
950 | /* | |
951 | * Verify we have a legal set of flags | |
952 | * This leaves us room for future extensions. | |
953 | */ | |
954 | if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) | |
955 | return -EINVAL; | |
956 | ||
957 | /* Verify we are on the appropriate architecture */ | |
958 | if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && | |
959 | ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) | |
dc009d92 | 960 | return -EINVAL; |
dc009d92 EB |
961 | |
962 | /* Put an artificial cap on the number | |
963 | * of segments passed to kexec_load. | |
964 | */ | |
965 | if (nr_segments > KEXEC_SEGMENT_MAX) | |
966 | return -EINVAL; | |
967 | ||
968 | image = NULL; | |
969 | result = 0; | |
970 | ||
971 | /* Because we write directly to the reserved memory | |
972 | * region when loading crash kernels we need a mutex here to | |
973 | * prevent multiple crash kernels from attempting to load | |
974 | * simultaneously, and to prevent a crash kernel from loading | |
975 | * over the top of a in use crash kernel. | |
976 | * | |
977 | * KISS: always take the mutex. | |
978 | */ | |
8c5a1cf0 | 979 | if (!mutex_trylock(&kexec_mutex)) |
dc009d92 | 980 | return -EBUSY; |
72414d3f | 981 | |
dc009d92 | 982 | dest_image = &kexec_image; |
72414d3f | 983 | if (flags & KEXEC_ON_CRASH) |
dc009d92 | 984 | dest_image = &kexec_crash_image; |
dc009d92 EB |
985 | if (nr_segments > 0) { |
986 | unsigned long i; | |
72414d3f | 987 | |
dc009d92 | 988 | /* Loading another kernel to reboot into */ |
72414d3f MS |
989 | if ((flags & KEXEC_ON_CRASH) == 0) |
990 | result = kimage_normal_alloc(&image, entry, | |
991 | nr_segments, segments); | |
dc009d92 EB |
992 | /* Loading another kernel to switch to if this one crashes */ |
993 | else if (flags & KEXEC_ON_CRASH) { | |
994 | /* Free any current crash dump kernel before | |
995 | * we corrupt it. | |
996 | */ | |
997 | kimage_free(xchg(&kexec_crash_image, NULL)); | |
72414d3f MS |
998 | result = kimage_crash_alloc(&image, entry, |
999 | nr_segments, segments); | |
558df720 | 1000 | crash_map_reserved_pages(); |
dc009d92 | 1001 | } |
72414d3f | 1002 | if (result) |
dc009d92 | 1003 | goto out; |
72414d3f | 1004 | |
3ab83521 YH |
1005 | if (flags & KEXEC_PRESERVE_CONTEXT) |
1006 | image->preserve_context = 1; | |
dc009d92 | 1007 | result = machine_kexec_prepare(image); |
72414d3f | 1008 | if (result) |
dc009d92 | 1009 | goto out; |
72414d3f MS |
1010 | |
1011 | for (i = 0; i < nr_segments; i++) { | |
dc009d92 | 1012 | result = kimage_load_segment(image, &image->segment[i]); |
72414d3f | 1013 | if (result) |
dc009d92 | 1014 | goto out; |
dc009d92 | 1015 | } |
7fccf032 | 1016 | kimage_terminate(image); |
558df720 MH |
1017 | if (flags & KEXEC_ON_CRASH) |
1018 | crash_unmap_reserved_pages(); | |
dc009d92 EB |
1019 | } |
1020 | /* Install the new kernel, and Uninstall the old */ | |
1021 | image = xchg(dest_image, image); | |
1022 | ||
72414d3f | 1023 | out: |
8c5a1cf0 | 1024 | mutex_unlock(&kexec_mutex); |
dc009d92 | 1025 | kimage_free(image); |
72414d3f | 1026 | |
dc009d92 EB |
1027 | return result; |
1028 | } | |
1029 | ||
558df720 MH |
1030 | /* |
1031 | * Add and remove page tables for crashkernel memory | |
1032 | * | |
1033 | * Provide an empty default implementation here -- architecture | |
1034 | * code may override this | |
1035 | */ | |
1036 | void __weak crash_map_reserved_pages(void) | |
1037 | {} | |
1038 | ||
1039 | void __weak crash_unmap_reserved_pages(void) | |
1040 | {} | |
1041 | ||
dc009d92 EB |
1042 | #ifdef CONFIG_COMPAT |
1043 | asmlinkage long compat_sys_kexec_load(unsigned long entry, | |
72414d3f MS |
1044 | unsigned long nr_segments, |
1045 | struct compat_kexec_segment __user *segments, | |
1046 | unsigned long flags) | |
dc009d92 EB |
1047 | { |
1048 | struct compat_kexec_segment in; | |
1049 | struct kexec_segment out, __user *ksegments; | |
1050 | unsigned long i, result; | |
1051 | ||
1052 | /* Don't allow clients that don't understand the native | |
1053 | * architecture to do anything. | |
1054 | */ | |
72414d3f | 1055 | if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) |
dc009d92 | 1056 | return -EINVAL; |
dc009d92 | 1057 | |
72414d3f | 1058 | if (nr_segments > KEXEC_SEGMENT_MAX) |
dc009d92 | 1059 | return -EINVAL; |
dc009d92 EB |
1060 | |
1061 | ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); | |
1062 | for (i=0; i < nr_segments; i++) { | |
1063 | result = copy_from_user(&in, &segments[i], sizeof(in)); | |
72414d3f | 1064 | if (result) |
dc009d92 | 1065 | return -EFAULT; |
dc009d92 EB |
1066 | |
1067 | out.buf = compat_ptr(in.buf); | |
1068 | out.bufsz = in.bufsz; | |
1069 | out.mem = in.mem; | |
1070 | out.memsz = in.memsz; | |
1071 | ||
1072 | result = copy_to_user(&ksegments[i], &out, sizeof(out)); | |
72414d3f | 1073 | if (result) |
dc009d92 | 1074 | return -EFAULT; |
dc009d92 EB |
1075 | } |
1076 | ||
1077 | return sys_kexec_load(entry, nr_segments, ksegments, flags); | |
1078 | } | |
1079 | #endif | |
1080 | ||
6e274d14 | 1081 | void crash_kexec(struct pt_regs *regs) |
dc009d92 | 1082 | { |
8c5a1cf0 | 1083 | /* Take the kexec_mutex here to prevent sys_kexec_load |
dc009d92 EB |
1084 | * running on one cpu from replacing the crash kernel |
1085 | * we are using after a panic on a different cpu. | |
1086 | * | |
1087 | * If the crash kernel was not located in a fixed area | |
1088 | * of memory the xchg(&kexec_crash_image) would be | |
1089 | * sufficient. But since I reuse the memory... | |
1090 | */ | |
8c5a1cf0 | 1091 | if (mutex_trylock(&kexec_mutex)) { |
c0ce7d08 | 1092 | if (kexec_crash_image) { |
e996e581 | 1093 | struct pt_regs fixed_regs; |
0f4bd46e | 1094 | |
e996e581 | 1095 | crash_setup_regs(&fixed_regs, regs); |
fd59d231 | 1096 | crash_save_vmcoreinfo(); |
e996e581 | 1097 | machine_crash_shutdown(&fixed_regs); |
c0ce7d08 | 1098 | machine_kexec(kexec_crash_image); |
dc009d92 | 1099 | } |
8c5a1cf0 | 1100 | mutex_unlock(&kexec_mutex); |
dc009d92 EB |
1101 | } |
1102 | } | |
cc571658 | 1103 | |
06a7f711 AW |
1104 | size_t crash_get_memory_size(void) |
1105 | { | |
e05bd336 | 1106 | size_t size = 0; |
06a7f711 | 1107 | mutex_lock(&kexec_mutex); |
e05bd336 | 1108 | if (crashk_res.end != crashk_res.start) |
28f65c11 | 1109 | size = resource_size(&crashk_res); |
06a7f711 AW |
1110 | mutex_unlock(&kexec_mutex); |
1111 | return size; | |
1112 | } | |
1113 | ||
c0bb9e45 AB |
1114 | void __weak crash_free_reserved_phys_range(unsigned long begin, |
1115 | unsigned long end) | |
06a7f711 AW |
1116 | { |
1117 | unsigned long addr; | |
1118 | ||
1119 | for (addr = begin; addr < end; addr += PAGE_SIZE) { | |
1120 | ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT)); | |
1121 | init_page_count(pfn_to_page(addr >> PAGE_SHIFT)); | |
1122 | free_page((unsigned long)__va(addr)); | |
1123 | totalram_pages++; | |
1124 | } | |
1125 | } | |
1126 | ||
1127 | int crash_shrink_memory(unsigned long new_size) | |
1128 | { | |
1129 | int ret = 0; | |
1130 | unsigned long start, end; | |
bec013c4 | 1131 | unsigned long old_size; |
6480e5a0 | 1132 | struct resource *ram_res; |
06a7f711 AW |
1133 | |
1134 | mutex_lock(&kexec_mutex); | |
1135 | ||
1136 | if (kexec_crash_image) { | |
1137 | ret = -ENOENT; | |
1138 | goto unlock; | |
1139 | } | |
1140 | start = crashk_res.start; | |
1141 | end = crashk_res.end; | |
bec013c4 MH |
1142 | old_size = (end == 0) ? 0 : end - start + 1; |
1143 | if (new_size >= old_size) { | |
1144 | ret = (new_size == old_size) ? 0 : -EINVAL; | |
06a7f711 AW |
1145 | goto unlock; |
1146 | } | |
1147 | ||
6480e5a0 MH |
1148 | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); |
1149 | if (!ram_res) { | |
1150 | ret = -ENOMEM; | |
1151 | goto unlock; | |
1152 | } | |
1153 | ||
558df720 MH |
1154 | start = roundup(start, KEXEC_CRASH_MEM_ALIGN); |
1155 | end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); | |
06a7f711 | 1156 | |
558df720 | 1157 | crash_map_reserved_pages(); |
c0bb9e45 | 1158 | crash_free_reserved_phys_range(end, crashk_res.end); |
06a7f711 | 1159 | |
e05bd336 | 1160 | if ((start == end) && (crashk_res.parent != NULL)) |
06a7f711 | 1161 | release_resource(&crashk_res); |
6480e5a0 MH |
1162 | |
1163 | ram_res->start = end; | |
1164 | ram_res->end = crashk_res.end; | |
1165 | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; | |
1166 | ram_res->name = "System RAM"; | |
1167 | ||
475f9aa6 | 1168 | crashk_res.end = end - 1; |
6480e5a0 MH |
1169 | |
1170 | insert_resource(&iomem_resource, ram_res); | |
558df720 | 1171 | crash_unmap_reserved_pages(); |
06a7f711 AW |
1172 | |
1173 | unlock: | |
1174 | mutex_unlock(&kexec_mutex); | |
1175 | return ret; | |
1176 | } | |
1177 | ||
85916f81 MD |
1178 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, |
1179 | size_t data_len) | |
1180 | { | |
1181 | struct elf_note note; | |
1182 | ||
1183 | note.n_namesz = strlen(name) + 1; | |
1184 | note.n_descsz = data_len; | |
1185 | note.n_type = type; | |
1186 | memcpy(buf, ¬e, sizeof(note)); | |
1187 | buf += (sizeof(note) + 3)/4; | |
1188 | memcpy(buf, name, note.n_namesz); | |
1189 | buf += (note.n_namesz + 3)/4; | |
1190 | memcpy(buf, data, note.n_descsz); | |
1191 | buf += (note.n_descsz + 3)/4; | |
1192 | ||
1193 | return buf; | |
1194 | } | |
1195 | ||
1196 | static void final_note(u32 *buf) | |
1197 | { | |
1198 | struct elf_note note; | |
1199 | ||
1200 | note.n_namesz = 0; | |
1201 | note.n_descsz = 0; | |
1202 | note.n_type = 0; | |
1203 | memcpy(buf, ¬e, sizeof(note)); | |
1204 | } | |
1205 | ||
1206 | void crash_save_cpu(struct pt_regs *regs, int cpu) | |
1207 | { | |
1208 | struct elf_prstatus prstatus; | |
1209 | u32 *buf; | |
1210 | ||
4f4b6c1a | 1211 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) |
85916f81 MD |
1212 | return; |
1213 | ||
1214 | /* Using ELF notes here is opportunistic. | |
1215 | * I need a well defined structure format | |
1216 | * for the data I pass, and I need tags | |
1217 | * on the data to indicate what information I have | |
1218 | * squirrelled away. ELF notes happen to provide | |
1219 | * all of that, so there is no need to invent something new. | |
1220 | */ | |
1221 | buf = (u32*)per_cpu_ptr(crash_notes, cpu); | |
1222 | if (!buf) | |
1223 | return; | |
1224 | memset(&prstatus, 0, sizeof(prstatus)); | |
1225 | prstatus.pr_pid = current->pid; | |
6cd61c0b | 1226 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); |
6672f76a SH |
1227 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, |
1228 | &prstatus, sizeof(prstatus)); | |
85916f81 MD |
1229 | final_note(buf); |
1230 | } | |
1231 | ||
cc571658 VG |
1232 | static int __init crash_notes_memory_init(void) |
1233 | { | |
1234 | /* Allocate memory for saving cpu registers. */ | |
1235 | crash_notes = alloc_percpu(note_buf_t); | |
1236 | if (!crash_notes) { | |
1237 | printk("Kexec: Memory allocation for saving cpu register" | |
1238 | " states failed\n"); | |
1239 | return -ENOMEM; | |
1240 | } | |
1241 | return 0; | |
1242 | } | |
1243 | module_init(crash_notes_memory_init) | |
fd59d231 | 1244 | |
cba63c30 BW |
1245 | |
1246 | /* | |
1247 | * parsing the "crashkernel" commandline | |
1248 | * | |
1249 | * this code is intended to be called from architecture specific code | |
1250 | */ | |
1251 | ||
1252 | ||
1253 | /* | |
1254 | * This function parses command lines in the format | |
1255 | * | |
1256 | * crashkernel=ramsize-range:size[,...][@offset] | |
1257 | * | |
1258 | * The function returns 0 on success and -EINVAL on failure. | |
1259 | */ | |
1260 | static int __init parse_crashkernel_mem(char *cmdline, | |
1261 | unsigned long long system_ram, | |
1262 | unsigned long long *crash_size, | |
1263 | unsigned long long *crash_base) | |
1264 | { | |
1265 | char *cur = cmdline, *tmp; | |
1266 | ||
1267 | /* for each entry of the comma-separated list */ | |
1268 | do { | |
1269 | unsigned long long start, end = ULLONG_MAX, size; | |
1270 | ||
1271 | /* get the start of the range */ | |
1272 | start = memparse(cur, &tmp); | |
1273 | if (cur == tmp) { | |
1274 | pr_warning("crashkernel: Memory value expected\n"); | |
1275 | return -EINVAL; | |
1276 | } | |
1277 | cur = tmp; | |
1278 | if (*cur != '-') { | |
1279 | pr_warning("crashkernel: '-' expected\n"); | |
1280 | return -EINVAL; | |
1281 | } | |
1282 | cur++; | |
1283 | ||
1284 | /* if no ':' is here, than we read the end */ | |
1285 | if (*cur != ':') { | |
1286 | end = memparse(cur, &tmp); | |
1287 | if (cur == tmp) { | |
1288 | pr_warning("crashkernel: Memory " | |
1289 | "value expected\n"); | |
1290 | return -EINVAL; | |
1291 | } | |
1292 | cur = tmp; | |
1293 | if (end <= start) { | |
1294 | pr_warning("crashkernel: end <= start\n"); | |
1295 | return -EINVAL; | |
1296 | } | |
1297 | } | |
1298 | ||
1299 | if (*cur != ':') { | |
1300 | pr_warning("crashkernel: ':' expected\n"); | |
1301 | return -EINVAL; | |
1302 | } | |
1303 | cur++; | |
1304 | ||
1305 | size = memparse(cur, &tmp); | |
1306 | if (cur == tmp) { | |
1307 | pr_warning("Memory value expected\n"); | |
1308 | return -EINVAL; | |
1309 | } | |
1310 | cur = tmp; | |
1311 | if (size >= system_ram) { | |
1312 | pr_warning("crashkernel: invalid size\n"); | |
1313 | return -EINVAL; | |
1314 | } | |
1315 | ||
1316 | /* match ? */ | |
be089d79 | 1317 | if (system_ram >= start && system_ram < end) { |
cba63c30 BW |
1318 | *crash_size = size; |
1319 | break; | |
1320 | } | |
1321 | } while (*cur++ == ','); | |
1322 | ||
1323 | if (*crash_size > 0) { | |
11c7da4b | 1324 | while (*cur && *cur != ' ' && *cur != '@') |
cba63c30 BW |
1325 | cur++; |
1326 | if (*cur == '@') { | |
1327 | cur++; | |
1328 | *crash_base = memparse(cur, &tmp); | |
1329 | if (cur == tmp) { | |
1330 | pr_warning("Memory value expected " | |
1331 | "after '@'\n"); | |
1332 | return -EINVAL; | |
1333 | } | |
1334 | } | |
1335 | } | |
1336 | ||
1337 | return 0; | |
1338 | } | |
1339 | ||
1340 | /* | |
1341 | * That function parses "simple" (old) crashkernel command lines like | |
1342 | * | |
1343 | * crashkernel=size[@offset] | |
1344 | * | |
1345 | * It returns 0 on success and -EINVAL on failure. | |
1346 | */ | |
1347 | static int __init parse_crashkernel_simple(char *cmdline, | |
1348 | unsigned long long *crash_size, | |
1349 | unsigned long long *crash_base) | |
1350 | { | |
1351 | char *cur = cmdline; | |
1352 | ||
1353 | *crash_size = memparse(cmdline, &cur); | |
1354 | if (cmdline == cur) { | |
1355 | pr_warning("crashkernel: memory value expected\n"); | |
1356 | return -EINVAL; | |
1357 | } | |
1358 | ||
1359 | if (*cur == '@') | |
1360 | *crash_base = memparse(cur+1, &cur); | |
eaa3be6a ZD |
1361 | else if (*cur != ' ' && *cur != '\0') { |
1362 | pr_warning("crashkernel: unrecognized char\n"); | |
1363 | return -EINVAL; | |
1364 | } | |
cba63c30 BW |
1365 | |
1366 | return 0; | |
1367 | } | |
1368 | ||
1369 | /* | |
1370 | * That function is the entry point for command line parsing and should be | |
1371 | * called from the arch-specific code. | |
1372 | */ | |
1373 | int __init parse_crashkernel(char *cmdline, | |
1374 | unsigned long long system_ram, | |
1375 | unsigned long long *crash_size, | |
1376 | unsigned long long *crash_base) | |
1377 | { | |
1378 | char *p = cmdline, *ck_cmdline = NULL; | |
1379 | char *first_colon, *first_space; | |
1380 | ||
1381 | BUG_ON(!crash_size || !crash_base); | |
1382 | *crash_size = 0; | |
1383 | *crash_base = 0; | |
1384 | ||
1385 | /* find crashkernel and use the last one if there are more */ | |
1386 | p = strstr(p, "crashkernel="); | |
1387 | while (p) { | |
1388 | ck_cmdline = p; | |
1389 | p = strstr(p+1, "crashkernel="); | |
1390 | } | |
1391 | ||
1392 | if (!ck_cmdline) | |
1393 | return -EINVAL; | |
1394 | ||
1395 | ck_cmdline += 12; /* strlen("crashkernel=") */ | |
1396 | ||
1397 | /* | |
1398 | * if the commandline contains a ':', then that's the extended | |
1399 | * syntax -- if not, it must be the classic syntax | |
1400 | */ | |
1401 | first_colon = strchr(ck_cmdline, ':'); | |
1402 | first_space = strchr(ck_cmdline, ' '); | |
1403 | if (first_colon && (!first_space || first_colon < first_space)) | |
1404 | return parse_crashkernel_mem(ck_cmdline, system_ram, | |
1405 | crash_size, crash_base); | |
1406 | else | |
1407 | return parse_crashkernel_simple(ck_cmdline, crash_size, | |
1408 | crash_base); | |
1409 | ||
1410 | return 0; | |
1411 | } | |
1412 | ||
1413 | ||
fa8ff292 | 1414 | static void update_vmcoreinfo_note(void) |
fd59d231 | 1415 | { |
fa8ff292 | 1416 | u32 *buf = vmcoreinfo_note; |
fd59d231 KO |
1417 | |
1418 | if (!vmcoreinfo_size) | |
1419 | return; | |
fd59d231 KO |
1420 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, |
1421 | vmcoreinfo_size); | |
fd59d231 KO |
1422 | final_note(buf); |
1423 | } | |
1424 | ||
fa8ff292 MH |
1425 | void crash_save_vmcoreinfo(void) |
1426 | { | |
1427 | vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds()); | |
1428 | update_vmcoreinfo_note(); | |
1429 | } | |
1430 | ||
fd59d231 KO |
1431 | void vmcoreinfo_append_str(const char *fmt, ...) |
1432 | { | |
1433 | va_list args; | |
1434 | char buf[0x50]; | |
1435 | int r; | |
1436 | ||
1437 | va_start(args, fmt); | |
1438 | r = vsnprintf(buf, sizeof(buf), fmt, args); | |
1439 | va_end(args); | |
1440 | ||
1441 | if (r + vmcoreinfo_size > vmcoreinfo_max_size) | |
1442 | r = vmcoreinfo_max_size - vmcoreinfo_size; | |
1443 | ||
1444 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | |
1445 | ||
1446 | vmcoreinfo_size += r; | |
1447 | } | |
1448 | ||
1449 | /* | |
1450 | * provide an empty default implementation here -- architecture | |
1451 | * code may override this | |
1452 | */ | |
1453 | void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) | |
1454 | {} | |
1455 | ||
1456 | unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) | |
1457 | { | |
1458 | return __pa((unsigned long)(char *)&vmcoreinfo_note); | |
1459 | } | |
1460 | ||
1461 | static int __init crash_save_vmcoreinfo_init(void) | |
1462 | { | |
bba1f603 KO |
1463 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); |
1464 | VMCOREINFO_PAGESIZE(PAGE_SIZE); | |
fd59d231 | 1465 | |
bcbba6c1 KO |
1466 | VMCOREINFO_SYMBOL(init_uts_ns); |
1467 | VMCOREINFO_SYMBOL(node_online_map); | |
d034cfab | 1468 | #ifdef CONFIG_MMU |
bcbba6c1 | 1469 | VMCOREINFO_SYMBOL(swapper_pg_dir); |
d034cfab | 1470 | #endif |
bcbba6c1 | 1471 | VMCOREINFO_SYMBOL(_stext); |
acd99dbf | 1472 | VMCOREINFO_SYMBOL(vmlist); |
fd59d231 KO |
1473 | |
1474 | #ifndef CONFIG_NEED_MULTIPLE_NODES | |
bcbba6c1 KO |
1475 | VMCOREINFO_SYMBOL(mem_map); |
1476 | VMCOREINFO_SYMBOL(contig_page_data); | |
fd59d231 KO |
1477 | #endif |
1478 | #ifdef CONFIG_SPARSEMEM | |
bcbba6c1 KO |
1479 | VMCOREINFO_SYMBOL(mem_section); |
1480 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | |
c76f860c | 1481 | VMCOREINFO_STRUCT_SIZE(mem_section); |
bcbba6c1 | 1482 | VMCOREINFO_OFFSET(mem_section, section_mem_map); |
fd59d231 | 1483 | #endif |
c76f860c KO |
1484 | VMCOREINFO_STRUCT_SIZE(page); |
1485 | VMCOREINFO_STRUCT_SIZE(pglist_data); | |
1486 | VMCOREINFO_STRUCT_SIZE(zone); | |
1487 | VMCOREINFO_STRUCT_SIZE(free_area); | |
1488 | VMCOREINFO_STRUCT_SIZE(list_head); | |
1489 | VMCOREINFO_SIZE(nodemask_t); | |
bcbba6c1 KO |
1490 | VMCOREINFO_OFFSET(page, flags); |
1491 | VMCOREINFO_OFFSET(page, _count); | |
1492 | VMCOREINFO_OFFSET(page, mapping); | |
1493 | VMCOREINFO_OFFSET(page, lru); | |
1494 | VMCOREINFO_OFFSET(pglist_data, node_zones); | |
1495 | VMCOREINFO_OFFSET(pglist_data, nr_zones); | |
fd59d231 | 1496 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
bcbba6c1 | 1497 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); |
fd59d231 | 1498 | #endif |
bcbba6c1 KO |
1499 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); |
1500 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | |
1501 | VMCOREINFO_OFFSET(pglist_data, node_id); | |
1502 | VMCOREINFO_OFFSET(zone, free_area); | |
1503 | VMCOREINFO_OFFSET(zone, vm_stat); | |
1504 | VMCOREINFO_OFFSET(zone, spanned_pages); | |
1505 | VMCOREINFO_OFFSET(free_area, free_list); | |
1506 | VMCOREINFO_OFFSET(list_head, next); | |
1507 | VMCOREINFO_OFFSET(list_head, prev); | |
acd99dbf | 1508 | VMCOREINFO_OFFSET(vm_struct, addr); |
bcbba6c1 | 1509 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); |
04d491ab | 1510 | log_buf_kexec_setup(); |
83a08e7c | 1511 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); |
bcbba6c1 | 1512 | VMCOREINFO_NUMBER(NR_FREE_PAGES); |
122c7a59 KO |
1513 | VMCOREINFO_NUMBER(PG_lru); |
1514 | VMCOREINFO_NUMBER(PG_private); | |
1515 | VMCOREINFO_NUMBER(PG_swapcache); | |
fd59d231 KO |
1516 | |
1517 | arch_crash_save_vmcoreinfo(); | |
fa8ff292 | 1518 | update_vmcoreinfo_note(); |
fd59d231 KO |
1519 | |
1520 | return 0; | |
1521 | } | |
1522 | ||
1523 | module_init(crash_save_vmcoreinfo_init) | |
3ab83521 | 1524 | |
7ade3fcc YH |
1525 | /* |
1526 | * Move into place and start executing a preloaded standalone | |
1527 | * executable. If nothing was preloaded return an error. | |
3ab83521 YH |
1528 | */ |
1529 | int kernel_kexec(void) | |
1530 | { | |
1531 | int error = 0; | |
1532 | ||
8c5a1cf0 | 1533 | if (!mutex_trylock(&kexec_mutex)) |
3ab83521 YH |
1534 | return -EBUSY; |
1535 | if (!kexec_image) { | |
1536 | error = -EINVAL; | |
1537 | goto Unlock; | |
1538 | } | |
1539 | ||
3ab83521 | 1540 | #ifdef CONFIG_KEXEC_JUMP |
7ade3fcc | 1541 | if (kexec_image->preserve_context) { |
bcda53fa | 1542 | lock_system_sleep(); |
89081d17 YH |
1543 | pm_prepare_console(); |
1544 | error = freeze_processes(); | |
1545 | if (error) { | |
1546 | error = -EBUSY; | |
1547 | goto Restore_console; | |
1548 | } | |
1549 | suspend_console(); | |
d1616302 | 1550 | error = dpm_suspend_start(PMSG_FREEZE); |
89081d17 YH |
1551 | if (error) |
1552 | goto Resume_console; | |
d1616302 | 1553 | /* At this point, dpm_suspend_start() has been called, |
cf579dfb RW |
1554 | * but *not* dpm_suspend_end(). We *must* call |
1555 | * dpm_suspend_end() now. Otherwise, drivers for | |
89081d17 YH |
1556 | * some devices (e.g. interrupt controllers) become |
1557 | * desynchronized with the actual state of the | |
1558 | * hardware at resume time, and evil weirdness ensues. | |
1559 | */ | |
cf579dfb | 1560 | error = dpm_suspend_end(PMSG_FREEZE); |
89081d17 | 1561 | if (error) |
749b0afc RW |
1562 | goto Resume_devices; |
1563 | error = disable_nonboot_cpus(); | |
1564 | if (error) | |
1565 | goto Enable_cpus; | |
2ed8d2b3 | 1566 | local_irq_disable(); |
2e711c04 | 1567 | error = syscore_suspend(); |
770824bd | 1568 | if (error) |
749b0afc | 1569 | goto Enable_irqs; |
7ade3fcc | 1570 | } else |
3ab83521 | 1571 | #endif |
7ade3fcc | 1572 | { |
ca195b7f | 1573 | kernel_restart_prepare(NULL); |
3ab83521 YH |
1574 | printk(KERN_EMERG "Starting new kernel\n"); |
1575 | machine_shutdown(); | |
1576 | } | |
1577 | ||
1578 | machine_kexec(kexec_image); | |
1579 | ||
3ab83521 | 1580 | #ifdef CONFIG_KEXEC_JUMP |
7ade3fcc | 1581 | if (kexec_image->preserve_context) { |
19234c08 | 1582 | syscore_resume(); |
749b0afc | 1583 | Enable_irqs: |
3ab83521 | 1584 | local_irq_enable(); |
749b0afc | 1585 | Enable_cpus: |
89081d17 | 1586 | enable_nonboot_cpus(); |
cf579dfb | 1587 | dpm_resume_start(PMSG_RESTORE); |
89081d17 | 1588 | Resume_devices: |
d1616302 | 1589 | dpm_resume_end(PMSG_RESTORE); |
89081d17 YH |
1590 | Resume_console: |
1591 | resume_console(); | |
1592 | thaw_processes(); | |
1593 | Restore_console: | |
1594 | pm_restore_console(); | |
bcda53fa | 1595 | unlock_system_sleep(); |
3ab83521 | 1596 | } |
7ade3fcc | 1597 | #endif |
3ab83521 YH |
1598 | |
1599 | Unlock: | |
8c5a1cf0 | 1600 | mutex_unlock(&kexec_mutex); |
3ab83521 YH |
1601 | return error; |
1602 | } |