]>
Commit | Line | Data |
---|---|---|
45051539 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
3c7b4e6b CM |
2 | /* |
3 | * mm/kmemleak.c | |
4 | * | |
5 | * Copyright (C) 2008 ARM Limited | |
6 | * Written by Catalin Marinas <[email protected]> | |
7 | * | |
3c7b4e6b | 8 | * For more information on the algorithm and kmemleak usage, please see |
22901c6c | 9 | * Documentation/dev-tools/kmemleak.rst. |
3c7b4e6b CM |
10 | * |
11 | * Notes on locking | |
12 | * ---------------- | |
13 | * | |
14 | * The following locks and mutexes are used by kmemleak: | |
15 | * | |
8c96f1bc | 16 | * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and |
3c7b4e6b CM |
17 | * accesses to the object_tree_root. The object_list is the main list |
18 | * holding the metadata (struct kmemleak_object) for the allocated memory | |
85d3a316 | 19 | * blocks. The object_tree_root is a red black tree used to look-up |
3c7b4e6b CM |
20 | * metadata based on a pointer to the corresponding memory block. The |
21 | * kmemleak_object structures are added to the object_list and | |
22 | * object_tree_root in the create_object() function called from the | |
23 | * kmemleak_alloc() callback and removed in delete_object() called from the | |
24 | * kmemleak_free() callback | |
8c96f1bc HZ |
25 | * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object. |
26 | * Accesses to the metadata (e.g. count) are protected by this lock. Note | |
27 | * that some members of this structure may be protected by other means | |
28 | * (atomic or kmemleak_lock). This lock is also held when scanning the | |
29 | * corresponding memory block to avoid the kernel freeing it via the | |
30 | * kmemleak_free() callback. This is less heavyweight than holding a global | |
31 | * lock like kmemleak_lock during scanning. | |
3c7b4e6b CM |
32 | * - scan_mutex (mutex): ensures that only one thread may scan the memory for |
33 | * unreferenced objects at a time. The gray_list contains the objects which | |
34 | * are already referenced or marked as false positives and need to be | |
35 | * scanned. This list is only modified during a scanning episode when the | |
36 | * scan_mutex is held. At the end of a scan, the gray_list is always empty. | |
37 | * Note that the kmemleak_object.use_count is incremented when an object is | |
4698c1f2 CM |
38 | * added to the gray_list and therefore cannot be freed. This mutex also |
39 | * prevents multiple users of the "kmemleak" debugfs file together with | |
40 | * modifications to the memory scanning parameters including the scan_thread | |
41 | * pointer | |
3c7b4e6b | 42 | * |
93ada579 | 43 | * Locks and mutexes are acquired/nested in the following order: |
9d5a4c73 | 44 | * |
93ada579 CM |
45 | * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) |
46 | * | |
47 | * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex | |
48 | * regions. | |
9d5a4c73 | 49 | * |
3c7b4e6b CM |
50 | * The kmemleak_object structures have a use_count incremented or decremented |
51 | * using the get_object()/put_object() functions. When the use_count becomes | |
52 | * 0, this count can no longer be incremented and put_object() schedules the | |
53 | * kmemleak_object freeing via an RCU callback. All calls to the get_object() | |
54 | * function must be protected by rcu_read_lock() to avoid accessing a freed | |
55 | * structure. | |
56 | */ | |
57 | ||
ae281064 JP |
58 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
59 | ||
3c7b4e6b CM |
60 | #include <linux/init.h> |
61 | #include <linux/kernel.h> | |
62 | #include <linux/list.h> | |
3f07c014 | 63 | #include <linux/sched/signal.h> |
29930025 | 64 | #include <linux/sched/task.h> |
68db0cf1 | 65 | #include <linux/sched/task_stack.h> |
3c7b4e6b CM |
66 | #include <linux/jiffies.h> |
67 | #include <linux/delay.h> | |
b95f1b31 | 68 | #include <linux/export.h> |
3c7b4e6b | 69 | #include <linux/kthread.h> |
85d3a316 | 70 | #include <linux/rbtree.h> |
3c7b4e6b CM |
71 | #include <linux/fs.h> |
72 | #include <linux/debugfs.h> | |
73 | #include <linux/seq_file.h> | |
74 | #include <linux/cpumask.h> | |
75 | #include <linux/spinlock.h> | |
154221c3 | 76 | #include <linux/module.h> |
3c7b4e6b CM |
77 | #include <linux/mutex.h> |
78 | #include <linux/rcupdate.h> | |
79 | #include <linux/stacktrace.h> | |
80 | #include <linux/cache.h> | |
81 | #include <linux/percpu.h> | |
57c8a661 | 82 | #include <linux/memblock.h> |
9099daed | 83 | #include <linux/pfn.h> |
3c7b4e6b CM |
84 | #include <linux/mmzone.h> |
85 | #include <linux/slab.h> | |
86 | #include <linux/thread_info.h> | |
87 | #include <linux/err.h> | |
88 | #include <linux/uaccess.h> | |
89 | #include <linux/string.h> | |
90 | #include <linux/nodemask.h> | |
91 | #include <linux/mm.h> | |
179a8100 | 92 | #include <linux/workqueue.h> |
04609ccc | 93 | #include <linux/crc32.h> |
3c7b4e6b CM |
94 | |
95 | #include <asm/sections.h> | |
96 | #include <asm/processor.h> | |
60063497 | 97 | #include <linux/atomic.h> |
3c7b4e6b | 98 | |
e79ed2f1 | 99 | #include <linux/kasan.h> |
95511580 | 100 | #include <linux/kfence.h> |
3c7b4e6b | 101 | #include <linux/kmemleak.h> |
029aeff5 | 102 | #include <linux/memory_hotplug.h> |
3c7b4e6b CM |
103 | |
104 | /* | |
105 | * Kmemleak configuration and common defines. | |
106 | */ | |
107 | #define MAX_TRACE 16 /* stack trace length */ | |
3c7b4e6b | 108 | #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ |
3c7b4e6b CM |
109 | #define SECS_FIRST_SCAN 60 /* delay before the first scan */ |
110 | #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ | |
af98603d | 111 | #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ |
3c7b4e6b CM |
112 | |
113 | #define BYTES_PER_POINTER sizeof(void *) | |
114 | ||
216c04b0 | 115 | /* GFP bitmask for kmemleak internal allocations */ |
79d37050 NA |
116 | #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ |
117 | __GFP_NOLOCKDEP)) | \ | |
6ae4bd1f | 118 | __GFP_NORETRY | __GFP_NOMEMALLOC | \ |
df9576de | 119 | __GFP_NOWARN) |
216c04b0 | 120 | |
3c7b4e6b CM |
121 | /* scanning area inside a memory block */ |
122 | struct kmemleak_scan_area { | |
123 | struct hlist_node node; | |
c017b4be CM |
124 | unsigned long start; |
125 | size_t size; | |
3c7b4e6b CM |
126 | }; |
127 | ||
a1084c87 LR |
128 | #define KMEMLEAK_GREY 0 |
129 | #define KMEMLEAK_BLACK -1 | |
130 | ||
3c7b4e6b CM |
131 | /* |
132 | * Structure holding the metadata for each allocated memory block. | |
133 | * Modifications to such objects should be made while holding the | |
134 | * object->lock. Insertions or deletions from object_list, gray_list or | |
85d3a316 | 135 | * rb_node are already protected by the corresponding locks or mutex (see |
3c7b4e6b CM |
136 | * the notes on locking above). These objects are reference-counted |
137 | * (use_count) and freed using the RCU mechanism. | |
138 | */ | |
139 | struct kmemleak_object { | |
8c96f1bc | 140 | raw_spinlock_t lock; |
f66abf09 | 141 | unsigned int flags; /* object status flags */ |
3c7b4e6b CM |
142 | struct list_head object_list; |
143 | struct list_head gray_list; | |
85d3a316 | 144 | struct rb_node rb_node; |
3c7b4e6b CM |
145 | struct rcu_head rcu; /* object_list lockless traversal */ |
146 | /* object usage count; object freed when use_count == 0 */ | |
147 | atomic_t use_count; | |
148 | unsigned long pointer; | |
149 | size_t size; | |
94f4a161 CM |
150 | /* pass surplus references to this pointer */ |
151 | unsigned long excess_ref; | |
3c7b4e6b CM |
152 | /* minimum number of a pointers found before it is considered leak */ |
153 | int min_count; | |
154 | /* the total number of pointers found pointing to this object */ | |
155 | int count; | |
04609ccc CM |
156 | /* checksum for detecting modified objects */ |
157 | u32 checksum; | |
3c7b4e6b CM |
158 | /* memory ranges to be scanned inside an object (empty for all) */ |
159 | struct hlist_head area_list; | |
160 | unsigned long trace[MAX_TRACE]; | |
161 | unsigned int trace_len; | |
162 | unsigned long jiffies; /* creation timestamp */ | |
163 | pid_t pid; /* pid of the current task */ | |
164 | char comm[TASK_COMM_LEN]; /* executable name */ | |
165 | }; | |
166 | ||
167 | /* flag representing the memory block allocation status */ | |
168 | #define OBJECT_ALLOCATED (1 << 0) | |
169 | /* flag set after the first reporting of an unreference object */ | |
170 | #define OBJECT_REPORTED (1 << 1) | |
171 | /* flag set to not scan the object */ | |
172 | #define OBJECT_NO_SCAN (1 << 2) | |
dba82d94 CM |
173 | /* flag set to fully scan the object when scan_area allocation failed */ |
174 | #define OBJECT_FULL_SCAN (1 << 3) | |
3c7b4e6b | 175 | |
154221c3 | 176 | #define HEX_PREFIX " " |
0494e082 SS |
177 | /* number of bytes to print per line; must be 16 or 32 */ |
178 | #define HEX_ROW_SIZE 16 | |
179 | /* number of bytes to print at a time (1, 2, 4, 8) */ | |
180 | #define HEX_GROUP_SIZE 1 | |
181 | /* include ASCII after the hex output */ | |
182 | #define HEX_ASCII 1 | |
183 | /* max number of lines to be printed */ | |
184 | #define HEX_MAX_LINES 2 | |
185 | ||
3c7b4e6b CM |
186 | /* the list of all allocated objects */ |
187 | static LIST_HEAD(object_list); | |
188 | /* the list of gray-colored objects (see color_gray comment below) */ | |
189 | static LIST_HEAD(gray_list); | |
0647398a | 190 | /* memory pool allocation */ |
c5665868 | 191 | static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE]; |
0647398a CM |
192 | static int mem_pool_free_count = ARRAY_SIZE(mem_pool); |
193 | static LIST_HEAD(mem_pool_free_list); | |
85d3a316 ML |
194 | /* search tree for object boundaries */ |
195 | static struct rb_root object_tree_root = RB_ROOT; | |
8c96f1bc HZ |
196 | /* protecting the access to object_list and object_tree_root */ |
197 | static DEFINE_RAW_SPINLOCK(kmemleak_lock); | |
3c7b4e6b CM |
198 | |
199 | /* allocation caches for kmemleak internal data */ | |
200 | static struct kmem_cache *object_cache; | |
201 | static struct kmem_cache *scan_area_cache; | |
202 | ||
203 | /* set if tracing memory operations is enabled */ | |
c5665868 | 204 | static int kmemleak_enabled = 1; |
c5f3b1a5 | 205 | /* same as above but only for the kmemleak_free() callback */ |
c5665868 | 206 | static int kmemleak_free_enabled = 1; |
3c7b4e6b | 207 | /* set in the late_initcall if there were no errors */ |
8910ae89 | 208 | static int kmemleak_initialized; |
5f79020c | 209 | /* set if a kmemleak warning was issued */ |
8910ae89 | 210 | static int kmemleak_warning; |
5f79020c | 211 | /* set if a fatal kmemleak error has occurred */ |
8910ae89 | 212 | static int kmemleak_error; |
3c7b4e6b CM |
213 | |
214 | /* minimum and maximum address that may be valid pointers */ | |
215 | static unsigned long min_addr = ULONG_MAX; | |
216 | static unsigned long max_addr; | |
217 | ||
3c7b4e6b | 218 | static struct task_struct *scan_thread; |
acf4968e | 219 | /* used to avoid reporting of recently allocated objects */ |
3c7b4e6b | 220 | static unsigned long jiffies_min_age; |
acf4968e | 221 | static unsigned long jiffies_last_scan; |
3c7b4e6b | 222 | /* delay between automatic memory scannings */ |
54dd200c | 223 | static unsigned long jiffies_scan_wait; |
3c7b4e6b | 224 | /* enables or disables the task stacks scanning */ |
e0a2a160 | 225 | static int kmemleak_stack_scan = 1; |
4698c1f2 | 226 | /* protects the memory scanning, parameters and debug/kmemleak file access */ |
3c7b4e6b | 227 | static DEFINE_MUTEX(scan_mutex); |
ab0155a2 JB |
228 | /* setting kmemleak=on, will set this var, skipping the disable */ |
229 | static int kmemleak_skip_disable; | |
dc9b3f42 LZ |
230 | /* If there are leaks that can be reported */ |
231 | static bool kmemleak_found_leaks; | |
3c7b4e6b | 232 | |
154221c3 VW |
233 | static bool kmemleak_verbose; |
234 | module_param_named(verbose, kmemleak_verbose, bool, 0600); | |
235 | ||
3c7b4e6b CM |
236 | static void kmemleak_disable(void); |
237 | ||
238 | /* | |
239 | * Print a warning and dump the stack trace. | |
240 | */ | |
5f79020c | 241 | #define kmemleak_warn(x...) do { \ |
598d8091 | 242 | pr_warn(x); \ |
5f79020c | 243 | dump_stack(); \ |
8910ae89 | 244 | kmemleak_warning = 1; \ |
3c7b4e6b CM |
245 | } while (0) |
246 | ||
247 | /* | |
25985edc | 248 | * Macro invoked when a serious kmemleak condition occurred and cannot be |
2030117d | 249 | * recovered from. Kmemleak will be disabled and further allocation/freeing |
3c7b4e6b CM |
250 | * tracing no longer available. |
251 | */ | |
000814f4 | 252 | #define kmemleak_stop(x...) do { \ |
3c7b4e6b CM |
253 | kmemleak_warn(x); \ |
254 | kmemleak_disable(); \ | |
255 | } while (0) | |
256 | ||
154221c3 VW |
257 | #define warn_or_seq_printf(seq, fmt, ...) do { \ |
258 | if (seq) \ | |
259 | seq_printf(seq, fmt, ##__VA_ARGS__); \ | |
260 | else \ | |
261 | pr_warn(fmt, ##__VA_ARGS__); \ | |
262 | } while (0) | |
263 | ||
264 | static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type, | |
265 | int rowsize, int groupsize, const void *buf, | |
266 | size_t len, bool ascii) | |
267 | { | |
268 | if (seq) | |
269 | seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize, | |
270 | buf, len, ascii); | |
271 | else | |
272 | print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type, | |
273 | rowsize, groupsize, buf, len, ascii); | |
274 | } | |
275 | ||
0494e082 SS |
276 | /* |
277 | * Printing of the objects hex dump to the seq file. The number of lines to be | |
278 | * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The | |
279 | * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called | |
280 | * with the object->lock held. | |
281 | */ | |
282 | static void hex_dump_object(struct seq_file *seq, | |
283 | struct kmemleak_object *object) | |
284 | { | |
285 | const u8 *ptr = (const u8 *)object->pointer; | |
6fc37c49 | 286 | size_t len; |
0494e082 SS |
287 | |
288 | /* limit the number of lines to HEX_MAX_LINES */ | |
6fc37c49 | 289 | len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE); |
0494e082 | 290 | |
154221c3 | 291 | warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len); |
5c335fe0 | 292 | kasan_disable_current(); |
154221c3 | 293 | warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE, |
6c7a00b8 | 294 | HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII); |
5c335fe0 | 295 | kasan_enable_current(); |
0494e082 SS |
296 | } |
297 | ||
3c7b4e6b CM |
298 | /* |
299 | * Object colors, encoded with count and min_count: | |
300 | * - white - orphan object, not enough references to it (count < min_count) | |
301 | * - gray - not orphan, not marked as false positive (min_count == 0) or | |
302 | * sufficient references to it (count >= min_count) | |
303 | * - black - ignore, it doesn't contain references (e.g. text section) | |
304 | * (min_count == -1). No function defined for this color. | |
305 | * Newly created objects don't have any color assigned (object->count == -1) | |
306 | * before the next memory scan when they become white. | |
307 | */ | |
4a558dd6 | 308 | static bool color_white(const struct kmemleak_object *object) |
3c7b4e6b | 309 | { |
a1084c87 LR |
310 | return object->count != KMEMLEAK_BLACK && |
311 | object->count < object->min_count; | |
3c7b4e6b CM |
312 | } |
313 | ||
4a558dd6 | 314 | static bool color_gray(const struct kmemleak_object *object) |
3c7b4e6b | 315 | { |
a1084c87 LR |
316 | return object->min_count != KMEMLEAK_BLACK && |
317 | object->count >= object->min_count; | |
3c7b4e6b CM |
318 | } |
319 | ||
3c7b4e6b CM |
320 | /* |
321 | * Objects are considered unreferenced only if their color is white, they have | |
322 | * not be deleted and have a minimum age to avoid false positives caused by | |
323 | * pointers temporarily stored in CPU registers. | |
324 | */ | |
4a558dd6 | 325 | static bool unreferenced_object(struct kmemleak_object *object) |
3c7b4e6b | 326 | { |
04609ccc | 327 | return (color_white(object) && object->flags & OBJECT_ALLOCATED) && |
acf4968e CM |
328 | time_before_eq(object->jiffies + jiffies_min_age, |
329 | jiffies_last_scan); | |
3c7b4e6b CM |
330 | } |
331 | ||
332 | /* | |
bab4a34a CM |
333 | * Printing of the unreferenced objects information to the seq file. The |
334 | * print_unreferenced function must be called with the object->lock held. | |
3c7b4e6b | 335 | */ |
3c7b4e6b CM |
336 | static void print_unreferenced(struct seq_file *seq, |
337 | struct kmemleak_object *object) | |
338 | { | |
339 | int i; | |
fefdd336 | 340 | unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); |
3c7b4e6b | 341 | |
154221c3 | 342 | warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", |
bab4a34a | 343 | object->pointer, object->size); |
154221c3 | 344 | warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", |
fefdd336 CM |
345 | object->comm, object->pid, object->jiffies, |
346 | msecs_age / 1000, msecs_age % 1000); | |
0494e082 | 347 | hex_dump_object(seq, object); |
154221c3 | 348 | warn_or_seq_printf(seq, " backtrace:\n"); |
3c7b4e6b CM |
349 | |
350 | for (i = 0; i < object->trace_len; i++) { | |
351 | void *ptr = (void *)object->trace[i]; | |
154221c3 | 352 | warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); |
3c7b4e6b CM |
353 | } |
354 | } | |
355 | ||
356 | /* | |
357 | * Print the kmemleak_object information. This function is used mainly for | |
358 | * debugging special cases when kmemleak operations. It must be called with | |
359 | * the object->lock held. | |
360 | */ | |
361 | static void dump_object_info(struct kmemleak_object *object) | |
362 | { | |
ae281064 | 363 | pr_notice("Object 0x%08lx (size %zu):\n", |
85d3a316 | 364 | object->pointer, object->size); |
3c7b4e6b CM |
365 | pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", |
366 | object->comm, object->pid, object->jiffies); | |
367 | pr_notice(" min_count = %d\n", object->min_count); | |
368 | pr_notice(" count = %d\n", object->count); | |
f66abf09 | 369 | pr_notice(" flags = 0x%x\n", object->flags); |
aae0ad7a | 370 | pr_notice(" checksum = %u\n", object->checksum); |
3c7b4e6b | 371 | pr_notice(" backtrace:\n"); |
07984aad | 372 | stack_trace_print(object->trace, object->trace_len, 4); |
3c7b4e6b CM |
373 | } |
374 | ||
375 | /* | |
85d3a316 | 376 | * Look-up a memory block metadata (kmemleak_object) in the object search |
3c7b4e6b CM |
377 | * tree based on a pointer value. If alias is 0, only values pointing to the |
378 | * beginning of the memory block are allowed. The kmemleak_lock must be held | |
379 | * when calling this function. | |
380 | */ | |
381 | static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) | |
382 | { | |
85d3a316 | 383 | struct rb_node *rb = object_tree_root.rb_node; |
ad1a3e15 | 384 | unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
85d3a316 ML |
385 | |
386 | while (rb) { | |
ad1a3e15 KYL |
387 | struct kmemleak_object *object; |
388 | unsigned long untagged_objp; | |
389 | ||
390 | object = rb_entry(rb, struct kmemleak_object, rb_node); | |
391 | untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); | |
392 | ||
393 | if (untagged_ptr < untagged_objp) | |
85d3a316 | 394 | rb = object->rb_node.rb_left; |
ad1a3e15 | 395 | else if (untagged_objp + object->size <= untagged_ptr) |
85d3a316 | 396 | rb = object->rb_node.rb_right; |
ad1a3e15 | 397 | else if (untagged_objp == untagged_ptr || alias) |
85d3a316 ML |
398 | return object; |
399 | else { | |
5f79020c CM |
400 | kmemleak_warn("Found object by alias at 0x%08lx\n", |
401 | ptr); | |
a7686a45 | 402 | dump_object_info(object); |
85d3a316 | 403 | break; |
3c7b4e6b | 404 | } |
85d3a316 ML |
405 | } |
406 | return NULL; | |
3c7b4e6b CM |
407 | } |
408 | ||
409 | /* | |
410 | * Increment the object use_count. Return 1 if successful or 0 otherwise. Note | |
411 | * that once an object's use_count reached 0, the RCU freeing was already | |
412 | * registered and the object should no longer be used. This function must be | |
413 | * called under the protection of rcu_read_lock(). | |
414 | */ | |
415 | static int get_object(struct kmemleak_object *object) | |
416 | { | |
417 | return atomic_inc_not_zero(&object->use_count); | |
418 | } | |
419 | ||
0647398a CM |
420 | /* |
421 | * Memory pool allocation and freeing. kmemleak_lock must not be held. | |
422 | */ | |
423 | static struct kmemleak_object *mem_pool_alloc(gfp_t gfp) | |
424 | { | |
425 | unsigned long flags; | |
426 | struct kmemleak_object *object; | |
427 | ||
428 | /* try the slab allocator first */ | |
c5665868 CM |
429 | if (object_cache) { |
430 | object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); | |
431 | if (object) | |
432 | return object; | |
433 | } | |
0647398a CM |
434 | |
435 | /* slab allocation failed, try the memory pool */ | |
8c96f1bc | 436 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0647398a CM |
437 | object = list_first_entry_or_null(&mem_pool_free_list, |
438 | typeof(*object), object_list); | |
439 | if (object) | |
440 | list_del(&object->object_list); | |
441 | else if (mem_pool_free_count) | |
442 | object = &mem_pool[--mem_pool_free_count]; | |
c5665868 CM |
443 | else |
444 | pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n"); | |
8c96f1bc | 445 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
0647398a CM |
446 | |
447 | return object; | |
448 | } | |
449 | ||
450 | /* | |
451 | * Return the object to either the slab allocator or the memory pool. | |
452 | */ | |
453 | static void mem_pool_free(struct kmemleak_object *object) | |
454 | { | |
455 | unsigned long flags; | |
456 | ||
457 | if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) { | |
458 | kmem_cache_free(object_cache, object); | |
459 | return; | |
460 | } | |
461 | ||
462 | /* add the object to the memory pool free list */ | |
8c96f1bc | 463 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0647398a | 464 | list_add(&object->object_list, &mem_pool_free_list); |
8c96f1bc | 465 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
0647398a CM |
466 | } |
467 | ||
3c7b4e6b CM |
468 | /* |
469 | * RCU callback to free a kmemleak_object. | |
470 | */ | |
471 | static void free_object_rcu(struct rcu_head *rcu) | |
472 | { | |
b67bfe0d | 473 | struct hlist_node *tmp; |
3c7b4e6b CM |
474 | struct kmemleak_scan_area *area; |
475 | struct kmemleak_object *object = | |
476 | container_of(rcu, struct kmemleak_object, rcu); | |
477 | ||
478 | /* | |
479 | * Once use_count is 0 (guaranteed by put_object), there is no other | |
480 | * code accessing this object, hence no need for locking. | |
481 | */ | |
b67bfe0d SL |
482 | hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { |
483 | hlist_del(&area->node); | |
3c7b4e6b CM |
484 | kmem_cache_free(scan_area_cache, area); |
485 | } | |
0647398a | 486 | mem_pool_free(object); |
3c7b4e6b CM |
487 | } |
488 | ||
489 | /* | |
490 | * Decrement the object use_count. Once the count is 0, free the object using | |
491 | * an RCU callback. Since put_object() may be called via the kmemleak_free() -> | |
492 | * delete_object() path, the delayed RCU freeing ensures that there is no | |
493 | * recursive call to the kernel allocator. Lock-less RCU object_list traversal | |
494 | * is also possible. | |
495 | */ | |
496 | static void put_object(struct kmemleak_object *object) | |
497 | { | |
498 | if (!atomic_dec_and_test(&object->use_count)) | |
499 | return; | |
500 | ||
501 | /* should only get here after delete_object was called */ | |
502 | WARN_ON(object->flags & OBJECT_ALLOCATED); | |
503 | ||
c5665868 CM |
504 | /* |
505 | * It may be too early for the RCU callbacks, however, there is no | |
506 | * concurrent object_list traversal when !object_cache and all objects | |
507 | * came from the memory pool. Free the object directly. | |
508 | */ | |
509 | if (object_cache) | |
510 | call_rcu(&object->rcu, free_object_rcu); | |
511 | else | |
512 | free_object_rcu(&object->rcu); | |
3c7b4e6b CM |
513 | } |
514 | ||
515 | /* | |
85d3a316 | 516 | * Look up an object in the object search tree and increase its use_count. |
3c7b4e6b CM |
517 | */ |
518 | static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) | |
519 | { | |
520 | unsigned long flags; | |
9fbed254 | 521 | struct kmemleak_object *object; |
3c7b4e6b CM |
522 | |
523 | rcu_read_lock(); | |
8c96f1bc | 524 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
93ada579 | 525 | object = lookup_object(ptr, alias); |
8c96f1bc | 526 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
3c7b4e6b CM |
527 | |
528 | /* check whether the object is still available */ | |
529 | if (object && !get_object(object)) | |
530 | object = NULL; | |
531 | rcu_read_unlock(); | |
532 | ||
533 | return object; | |
534 | } | |
535 | ||
2abd839a CM |
536 | /* |
537 | * Remove an object from the object_tree_root and object_list. Must be called | |
538 | * with the kmemleak_lock held _if_ kmemleak is still enabled. | |
539 | */ | |
540 | static void __remove_object(struct kmemleak_object *object) | |
541 | { | |
542 | rb_erase(&object->rb_node, &object_tree_root); | |
543 | list_del_rcu(&object->object_list); | |
544 | } | |
545 | ||
e781a9ab CM |
546 | /* |
547 | * Look up an object in the object search tree and remove it from both | |
548 | * object_tree_root and object_list. The returned object's use_count should be | |
549 | * at least 1, as initially set by create_object(). | |
550 | */ | |
551 | static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) | |
552 | { | |
553 | unsigned long flags; | |
554 | struct kmemleak_object *object; | |
555 | ||
8c96f1bc | 556 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
e781a9ab | 557 | object = lookup_object(ptr, alias); |
2abd839a CM |
558 | if (object) |
559 | __remove_object(object); | |
8c96f1bc | 560 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
e781a9ab CM |
561 | |
562 | return object; | |
563 | } | |
564 | ||
fd678967 CM |
565 | /* |
566 | * Save stack trace to the given array of MAX_TRACE size. | |
567 | */ | |
568 | static int __save_stack_trace(unsigned long *trace) | |
569 | { | |
07984aad | 570 | return stack_trace_save(trace, MAX_TRACE, 2); |
fd678967 CM |
571 | } |
572 | ||
3c7b4e6b CM |
573 | /* |
574 | * Create the metadata (struct kmemleak_object) corresponding to an allocated | |
575 | * memory block and add it to the object_list and object_tree_root. | |
576 | */ | |
fd678967 CM |
577 | static struct kmemleak_object *create_object(unsigned long ptr, size_t size, |
578 | int min_count, gfp_t gfp) | |
3c7b4e6b CM |
579 | { |
580 | unsigned long flags; | |
85d3a316 ML |
581 | struct kmemleak_object *object, *parent; |
582 | struct rb_node **link, *rb_parent; | |
a2f77575 | 583 | unsigned long untagged_ptr; |
ad1a3e15 | 584 | unsigned long untagged_objp; |
3c7b4e6b | 585 | |
0647398a | 586 | object = mem_pool_alloc(gfp); |
3c7b4e6b | 587 | if (!object) { |
598d8091 | 588 | pr_warn("Cannot allocate a kmemleak_object structure\n"); |
6ae4bd1f | 589 | kmemleak_disable(); |
fd678967 | 590 | return NULL; |
3c7b4e6b CM |
591 | } |
592 | ||
593 | INIT_LIST_HEAD(&object->object_list); | |
594 | INIT_LIST_HEAD(&object->gray_list); | |
595 | INIT_HLIST_HEAD(&object->area_list); | |
8c96f1bc | 596 | raw_spin_lock_init(&object->lock); |
3c7b4e6b | 597 | atomic_set(&object->use_count, 1); |
04609ccc | 598 | object->flags = OBJECT_ALLOCATED; |
3c7b4e6b | 599 | object->pointer = ptr; |
95511580 | 600 | object->size = kfence_ksize((void *)ptr) ?: size; |
94f4a161 | 601 | object->excess_ref = 0; |
3c7b4e6b | 602 | object->min_count = min_count; |
04609ccc | 603 | object->count = 0; /* white color initially */ |
3c7b4e6b | 604 | object->jiffies = jiffies; |
04609ccc | 605 | object->checksum = 0; |
3c7b4e6b CM |
606 | |
607 | /* task information */ | |
ea0eafea | 608 | if (in_hardirq()) { |
3c7b4e6b CM |
609 | object->pid = 0; |
610 | strncpy(object->comm, "hardirq", sizeof(object->comm)); | |
6ef90569 | 611 | } else if (in_serving_softirq()) { |
3c7b4e6b CM |
612 | object->pid = 0; |
613 | strncpy(object->comm, "softirq", sizeof(object->comm)); | |
614 | } else { | |
615 | object->pid = current->pid; | |
616 | /* | |
617 | * There is a small chance of a race with set_task_comm(), | |
618 | * however using get_task_comm() here may cause locking | |
619 | * dependency issues with current->alloc_lock. In the worst | |
620 | * case, the command line is not correct. | |
621 | */ | |
622 | strncpy(object->comm, current->comm, sizeof(object->comm)); | |
623 | } | |
624 | ||
625 | /* kernel backtrace */ | |
fd678967 | 626 | object->trace_len = __save_stack_trace(object->trace); |
3c7b4e6b | 627 | |
8c96f1bc | 628 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
0580a181 | 629 | |
a2f77575 AK |
630 | untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
631 | min_addr = min(min_addr, untagged_ptr); | |
632 | max_addr = max(max_addr, untagged_ptr + size); | |
85d3a316 ML |
633 | link = &object_tree_root.rb_node; |
634 | rb_parent = NULL; | |
635 | while (*link) { | |
636 | rb_parent = *link; | |
637 | parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); | |
ad1a3e15 KYL |
638 | untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer); |
639 | if (untagged_ptr + size <= untagged_objp) | |
85d3a316 | 640 | link = &parent->rb_node.rb_left; |
ad1a3e15 | 641 | else if (untagged_objp + parent->size <= untagged_ptr) |
85d3a316 ML |
642 | link = &parent->rb_node.rb_right; |
643 | else { | |
756a025f | 644 | kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n", |
85d3a316 | 645 | ptr); |
9d5a4c73 CM |
646 | /* |
647 | * No need for parent->lock here since "parent" cannot | |
648 | * be freed while the kmemleak_lock is held. | |
649 | */ | |
650 | dump_object_info(parent); | |
85d3a316 | 651 | kmem_cache_free(object_cache, object); |
9d5a4c73 | 652 | object = NULL; |
85d3a316 ML |
653 | goto out; |
654 | } | |
3c7b4e6b | 655 | } |
85d3a316 ML |
656 | rb_link_node(&object->rb_node, rb_parent, link); |
657 | rb_insert_color(&object->rb_node, &object_tree_root); | |
658 | ||
3c7b4e6b CM |
659 | list_add_tail_rcu(&object->object_list, &object_list); |
660 | out: | |
8c96f1bc | 661 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
fd678967 | 662 | return object; |
3c7b4e6b CM |
663 | } |
664 | ||
665 | /* | |
e781a9ab | 666 | * Mark the object as not allocated and schedule RCU freeing via put_object(). |
3c7b4e6b | 667 | */ |
53238a60 | 668 | static void __delete_object(struct kmemleak_object *object) |
3c7b4e6b CM |
669 | { |
670 | unsigned long flags; | |
3c7b4e6b | 671 | |
3c7b4e6b | 672 | WARN_ON(!(object->flags & OBJECT_ALLOCATED)); |
e781a9ab | 673 | WARN_ON(atomic_read(&object->use_count) < 1); |
3c7b4e6b CM |
674 | |
675 | /* | |
676 | * Locking here also ensures that the corresponding memory block | |
677 | * cannot be freed when it is being scanned. | |
678 | */ | |
8c96f1bc | 679 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b | 680 | object->flags &= ~OBJECT_ALLOCATED; |
8c96f1bc | 681 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
682 | put_object(object); |
683 | } | |
684 | ||
53238a60 CM |
685 | /* |
686 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
687 | * delete it. | |
688 | */ | |
689 | static void delete_object_full(unsigned long ptr) | |
690 | { | |
691 | struct kmemleak_object *object; | |
692 | ||
e781a9ab | 693 | object = find_and_remove_object(ptr, 0); |
53238a60 CM |
694 | if (!object) { |
695 | #ifdef DEBUG | |
696 | kmemleak_warn("Freeing unknown object at 0x%08lx\n", | |
697 | ptr); | |
698 | #endif | |
699 | return; | |
700 | } | |
701 | __delete_object(object); | |
53238a60 CM |
702 | } |
703 | ||
704 | /* | |
705 | * Look up the metadata (struct kmemleak_object) corresponding to ptr and | |
706 | * delete it. If the memory block is partially freed, the function may create | |
707 | * additional metadata for the remaining parts of the block. | |
708 | */ | |
709 | static void delete_object_part(unsigned long ptr, size_t size) | |
710 | { | |
711 | struct kmemleak_object *object; | |
712 | unsigned long start, end; | |
713 | ||
e781a9ab | 714 | object = find_and_remove_object(ptr, 1); |
53238a60 CM |
715 | if (!object) { |
716 | #ifdef DEBUG | |
756a025f JP |
717 | kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n", |
718 | ptr, size); | |
53238a60 CM |
719 | #endif |
720 | return; | |
721 | } | |
53238a60 CM |
722 | |
723 | /* | |
724 | * Create one or two objects that may result from the memory block | |
725 | * split. Note that partial freeing is only done by free_bootmem() and | |
c5665868 | 726 | * this happens before kmemleak_init() is called. |
53238a60 CM |
727 | */ |
728 | start = object->pointer; | |
729 | end = object->pointer + object->size; | |
730 | if (ptr > start) | |
731 | create_object(start, ptr - start, object->min_count, | |
732 | GFP_KERNEL); | |
733 | if (ptr + size < end) | |
734 | create_object(ptr + size, end - ptr - size, object->min_count, | |
735 | GFP_KERNEL); | |
736 | ||
e781a9ab | 737 | __delete_object(object); |
53238a60 | 738 | } |
a1084c87 LR |
739 | |
740 | static void __paint_it(struct kmemleak_object *object, int color) | |
741 | { | |
742 | object->min_count = color; | |
743 | if (color == KMEMLEAK_BLACK) | |
744 | object->flags |= OBJECT_NO_SCAN; | |
745 | } | |
746 | ||
747 | static void paint_it(struct kmemleak_object *object, int color) | |
3c7b4e6b CM |
748 | { |
749 | unsigned long flags; | |
a1084c87 | 750 | |
8c96f1bc | 751 | raw_spin_lock_irqsave(&object->lock, flags); |
a1084c87 | 752 | __paint_it(object, color); |
8c96f1bc | 753 | raw_spin_unlock_irqrestore(&object->lock, flags); |
a1084c87 LR |
754 | } |
755 | ||
756 | static void paint_ptr(unsigned long ptr, int color) | |
757 | { | |
3c7b4e6b CM |
758 | struct kmemleak_object *object; |
759 | ||
760 | object = find_and_get_object(ptr, 0); | |
761 | if (!object) { | |
756a025f JP |
762 | kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n", |
763 | ptr, | |
a1084c87 LR |
764 | (color == KMEMLEAK_GREY) ? "Grey" : |
765 | (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); | |
3c7b4e6b CM |
766 | return; |
767 | } | |
a1084c87 | 768 | paint_it(object, color); |
3c7b4e6b CM |
769 | put_object(object); |
770 | } | |
771 | ||
a1084c87 | 772 | /* |
145b64b9 | 773 | * Mark an object permanently as gray-colored so that it can no longer be |
a1084c87 LR |
774 | * reported as a leak. This is used in general to mark a false positive. |
775 | */ | |
776 | static void make_gray_object(unsigned long ptr) | |
777 | { | |
778 | paint_ptr(ptr, KMEMLEAK_GREY); | |
779 | } | |
780 | ||
3c7b4e6b CM |
781 | /* |
782 | * Mark the object as black-colored so that it is ignored from scans and | |
783 | * reporting. | |
784 | */ | |
785 | static void make_black_object(unsigned long ptr) | |
786 | { | |
a1084c87 | 787 | paint_ptr(ptr, KMEMLEAK_BLACK); |
3c7b4e6b CM |
788 | } |
789 | ||
790 | /* | |
791 | * Add a scanning area to the object. If at least one such area is added, | |
792 | * kmemleak will only scan these ranges rather than the whole memory block. | |
793 | */ | |
c017b4be | 794 | static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
795 | { |
796 | unsigned long flags; | |
797 | struct kmemleak_object *object; | |
c5665868 | 798 | struct kmemleak_scan_area *area = NULL; |
bfc8089f KYL |
799 | unsigned long untagged_ptr; |
800 | unsigned long untagged_objp; | |
3c7b4e6b | 801 | |
c017b4be | 802 | object = find_and_get_object(ptr, 1); |
3c7b4e6b | 803 | if (!object) { |
ae281064 JP |
804 | kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", |
805 | ptr); | |
3c7b4e6b CM |
806 | return; |
807 | } | |
808 | ||
bfc8089f KYL |
809 | untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr); |
810 | untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer); | |
811 | ||
c5665868 CM |
812 | if (scan_area_cache) |
813 | area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); | |
3c7b4e6b | 814 | |
8c96f1bc | 815 | raw_spin_lock_irqsave(&object->lock, flags); |
dba82d94 CM |
816 | if (!area) { |
817 | pr_warn_once("Cannot allocate a scan area, scanning the full object\n"); | |
818 | /* mark the object for full scan to avoid false positives */ | |
819 | object->flags |= OBJECT_FULL_SCAN; | |
820 | goto out_unlock; | |
821 | } | |
7f88f88f | 822 | if (size == SIZE_MAX) { |
bfc8089f KYL |
823 | size = untagged_objp + object->size - untagged_ptr; |
824 | } else if (untagged_ptr + size > untagged_objp + object->size) { | |
ae281064 | 825 | kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); |
3c7b4e6b CM |
826 | dump_object_info(object); |
827 | kmem_cache_free(scan_area_cache, area); | |
828 | goto out_unlock; | |
829 | } | |
830 | ||
831 | INIT_HLIST_NODE(&area->node); | |
c017b4be CM |
832 | area->start = ptr; |
833 | area->size = size; | |
3c7b4e6b CM |
834 | |
835 | hlist_add_head(&area->node, &object->area_list); | |
836 | out_unlock: | |
8c96f1bc | 837 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
838 | put_object(object); |
839 | } | |
840 | ||
94f4a161 CM |
841 | /* |
842 | * Any surplus references (object already gray) to 'ptr' are passed to | |
843 | * 'excess_ref'. This is used in the vmalloc() case where a pointer to | |
844 | * vm_struct may be used as an alternative reference to the vmalloc'ed object | |
845 | * (see free_thread_stack()). | |
846 | */ | |
847 | static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref) | |
848 | { | |
849 | unsigned long flags; | |
850 | struct kmemleak_object *object; | |
851 | ||
852 | object = find_and_get_object(ptr, 0); | |
853 | if (!object) { | |
854 | kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n", | |
855 | ptr); | |
856 | return; | |
857 | } | |
858 | ||
8c96f1bc | 859 | raw_spin_lock_irqsave(&object->lock, flags); |
94f4a161 | 860 | object->excess_ref = excess_ref; |
8c96f1bc | 861 | raw_spin_unlock_irqrestore(&object->lock, flags); |
94f4a161 CM |
862 | put_object(object); |
863 | } | |
864 | ||
3c7b4e6b CM |
865 | /* |
866 | * Set the OBJECT_NO_SCAN flag for the object corresponding to the give | |
867 | * pointer. Such object will not be scanned by kmemleak but references to it | |
868 | * are searched. | |
869 | */ | |
870 | static void object_no_scan(unsigned long ptr) | |
871 | { | |
872 | unsigned long flags; | |
873 | struct kmemleak_object *object; | |
874 | ||
875 | object = find_and_get_object(ptr, 0); | |
876 | if (!object) { | |
ae281064 | 877 | kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); |
3c7b4e6b CM |
878 | return; |
879 | } | |
880 | ||
8c96f1bc | 881 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b | 882 | object->flags |= OBJECT_NO_SCAN; |
8c96f1bc | 883 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
884 | put_object(object); |
885 | } | |
886 | ||
a2b6bf63 CM |
887 | /** |
888 | * kmemleak_alloc - register a newly allocated object | |
889 | * @ptr: pointer to beginning of the object | |
890 | * @size: size of the object | |
891 | * @min_count: minimum number of references to this object. If during memory | |
892 | * scanning a number of references less than @min_count is found, | |
893 | * the object is reported as a memory leak. If @min_count is 0, | |
894 | * the object is never reported as a leak. If @min_count is -1, | |
895 | * the object is ignored (not scanned and not reported as a leak) | |
896 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
897 | * | |
898 | * This function is called from the kernel allocators when a new object | |
94f4a161 | 899 | * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.). |
3c7b4e6b | 900 | */ |
a6186d89 CM |
901 | void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, |
902 | gfp_t gfp) | |
3c7b4e6b CM |
903 | { |
904 | pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); | |
905 | ||
8910ae89 | 906 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 907 | create_object((unsigned long)ptr, size, min_count, gfp); |
3c7b4e6b CM |
908 | } |
909 | EXPORT_SYMBOL_GPL(kmemleak_alloc); | |
910 | ||
f528f0b8 CM |
911 | /** |
912 | * kmemleak_alloc_percpu - register a newly allocated __percpu object | |
913 | * @ptr: __percpu pointer to beginning of the object | |
914 | * @size: size of the object | |
8a8c35fa | 915 | * @gfp: flags used for kmemleak internal memory allocations |
f528f0b8 CM |
916 | * |
917 | * This function is called from the kernel percpu allocator when a new object | |
8a8c35fa | 918 | * (memory block) is allocated (alloc_percpu). |
f528f0b8 | 919 | */ |
8a8c35fa LF |
920 | void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, |
921 | gfp_t gfp) | |
f528f0b8 CM |
922 | { |
923 | unsigned int cpu; | |
924 | ||
925 | pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); | |
926 | ||
927 | /* | |
928 | * Percpu allocations are only scanned and not reported as leaks | |
929 | * (min_count is set to 0). | |
930 | */ | |
8910ae89 | 931 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
932 | for_each_possible_cpu(cpu) |
933 | create_object((unsigned long)per_cpu_ptr(ptr, cpu), | |
8a8c35fa | 934 | size, 0, gfp); |
f528f0b8 CM |
935 | } |
936 | EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); | |
937 | ||
94f4a161 CM |
938 | /** |
939 | * kmemleak_vmalloc - register a newly vmalloc'ed object | |
940 | * @area: pointer to vm_struct | |
941 | * @size: size of the object | |
942 | * @gfp: __vmalloc() flags used for kmemleak internal memory allocations | |
943 | * | |
944 | * This function is called from the vmalloc() kernel allocator when a new | |
945 | * object (memory block) is allocated. | |
946 | */ | |
947 | void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp) | |
948 | { | |
949 | pr_debug("%s(0x%p, %zu)\n", __func__, area, size); | |
950 | ||
951 | /* | |
952 | * A min_count = 2 is needed because vm_struct contains a reference to | |
953 | * the virtual address of the vmalloc'ed block. | |
954 | */ | |
955 | if (kmemleak_enabled) { | |
956 | create_object((unsigned long)area->addr, size, 2, gfp); | |
957 | object_set_excess_ref((unsigned long)area, | |
958 | (unsigned long)area->addr); | |
94f4a161 CM |
959 | } |
960 | } | |
961 | EXPORT_SYMBOL_GPL(kmemleak_vmalloc); | |
962 | ||
a2b6bf63 CM |
963 | /** |
964 | * kmemleak_free - unregister a previously registered object | |
965 | * @ptr: pointer to beginning of the object | |
966 | * | |
967 | * This function is called from the kernel allocators when an object (memory | |
968 | * block) is freed (kmem_cache_free, kfree, vfree etc.). | |
3c7b4e6b | 969 | */ |
a6186d89 | 970 | void __ref kmemleak_free(const void *ptr) |
3c7b4e6b CM |
971 | { |
972 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
973 | ||
c5f3b1a5 | 974 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 975 | delete_object_full((unsigned long)ptr); |
3c7b4e6b CM |
976 | } |
977 | EXPORT_SYMBOL_GPL(kmemleak_free); | |
978 | ||
a2b6bf63 CM |
979 | /** |
980 | * kmemleak_free_part - partially unregister a previously registered object | |
981 | * @ptr: pointer to the beginning or inside the object. This also | |
982 | * represents the start of the range to be freed | |
983 | * @size: size to be unregistered | |
984 | * | |
985 | * This function is called when only a part of a memory block is freed | |
986 | * (usually from the bootmem allocator). | |
53238a60 | 987 | */ |
a6186d89 | 988 | void __ref kmemleak_free_part(const void *ptr, size_t size) |
53238a60 CM |
989 | { |
990 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
991 | ||
8910ae89 | 992 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
53238a60 | 993 | delete_object_part((unsigned long)ptr, size); |
53238a60 CM |
994 | } |
995 | EXPORT_SYMBOL_GPL(kmemleak_free_part); | |
996 | ||
f528f0b8 CM |
997 | /** |
998 | * kmemleak_free_percpu - unregister a previously registered __percpu object | |
999 | * @ptr: __percpu pointer to beginning of the object | |
1000 | * | |
1001 | * This function is called from the kernel percpu allocator when an object | |
1002 | * (memory block) is freed (free_percpu). | |
1003 | */ | |
1004 | void __ref kmemleak_free_percpu(const void __percpu *ptr) | |
1005 | { | |
1006 | unsigned int cpu; | |
1007 | ||
1008 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1009 | ||
c5f3b1a5 | 1010 | if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) |
f528f0b8 CM |
1011 | for_each_possible_cpu(cpu) |
1012 | delete_object_full((unsigned long)per_cpu_ptr(ptr, | |
1013 | cpu)); | |
f528f0b8 CM |
1014 | } |
1015 | EXPORT_SYMBOL_GPL(kmemleak_free_percpu); | |
1016 | ||
ffe2c748 CM |
1017 | /** |
1018 | * kmemleak_update_trace - update object allocation stack trace | |
1019 | * @ptr: pointer to beginning of the object | |
1020 | * | |
1021 | * Override the object allocation stack trace for cases where the actual | |
1022 | * allocation place is not always useful. | |
1023 | */ | |
1024 | void __ref kmemleak_update_trace(const void *ptr) | |
1025 | { | |
1026 | struct kmemleak_object *object; | |
1027 | unsigned long flags; | |
1028 | ||
1029 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1030 | ||
1031 | if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) | |
1032 | return; | |
1033 | ||
1034 | object = find_and_get_object((unsigned long)ptr, 1); | |
1035 | if (!object) { | |
1036 | #ifdef DEBUG | |
1037 | kmemleak_warn("Updating stack trace for unknown object at %p\n", | |
1038 | ptr); | |
1039 | #endif | |
1040 | return; | |
1041 | } | |
1042 | ||
8c96f1bc | 1043 | raw_spin_lock_irqsave(&object->lock, flags); |
ffe2c748 | 1044 | object->trace_len = __save_stack_trace(object->trace); |
8c96f1bc | 1045 | raw_spin_unlock_irqrestore(&object->lock, flags); |
ffe2c748 CM |
1046 | |
1047 | put_object(object); | |
1048 | } | |
1049 | EXPORT_SYMBOL(kmemleak_update_trace); | |
1050 | ||
a2b6bf63 CM |
1051 | /** |
1052 | * kmemleak_not_leak - mark an allocated object as false positive | |
1053 | * @ptr: pointer to beginning of the object | |
1054 | * | |
1055 | * Calling this function on an object will cause the memory block to no longer | |
1056 | * be reported as leak and always be scanned. | |
3c7b4e6b | 1057 | */ |
a6186d89 | 1058 | void __ref kmemleak_not_leak(const void *ptr) |
3c7b4e6b CM |
1059 | { |
1060 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1061 | ||
8910ae89 | 1062 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1063 | make_gray_object((unsigned long)ptr); |
3c7b4e6b CM |
1064 | } |
1065 | EXPORT_SYMBOL(kmemleak_not_leak); | |
1066 | ||
a2b6bf63 CM |
1067 | /** |
1068 | * kmemleak_ignore - ignore an allocated object | |
1069 | * @ptr: pointer to beginning of the object | |
1070 | * | |
1071 | * Calling this function on an object will cause the memory block to be | |
1072 | * ignored (not scanned and not reported as a leak). This is usually done when | |
1073 | * it is known that the corresponding block is not a leak and does not contain | |
1074 | * any references to other allocated memory blocks. | |
3c7b4e6b | 1075 | */ |
a6186d89 | 1076 | void __ref kmemleak_ignore(const void *ptr) |
3c7b4e6b CM |
1077 | { |
1078 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1079 | ||
8910ae89 | 1080 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1081 | make_black_object((unsigned long)ptr); |
3c7b4e6b CM |
1082 | } |
1083 | EXPORT_SYMBOL(kmemleak_ignore); | |
1084 | ||
a2b6bf63 CM |
1085 | /** |
1086 | * kmemleak_scan_area - limit the range to be scanned in an allocated object | |
1087 | * @ptr: pointer to beginning or inside the object. This also | |
1088 | * represents the start of the scan area | |
1089 | * @size: size of the scan area | |
1090 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
1091 | * | |
1092 | * This function is used when it is known that only certain parts of an object | |
1093 | * contain references to other objects. Kmemleak will only scan these areas | |
1094 | * reducing the number false negatives. | |
3c7b4e6b | 1095 | */ |
c017b4be | 1096 | void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) |
3c7b4e6b CM |
1097 | { |
1098 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1099 | ||
8910ae89 | 1100 | if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) |
c017b4be | 1101 | add_scan_area((unsigned long)ptr, size, gfp); |
3c7b4e6b CM |
1102 | } |
1103 | EXPORT_SYMBOL(kmemleak_scan_area); | |
1104 | ||
a2b6bf63 CM |
1105 | /** |
1106 | * kmemleak_no_scan - do not scan an allocated object | |
1107 | * @ptr: pointer to beginning of the object | |
1108 | * | |
1109 | * This function notifies kmemleak not to scan the given memory block. Useful | |
1110 | * in situations where it is known that the given object does not contain any | |
1111 | * references to other objects. Kmemleak will not scan such objects reducing | |
1112 | * the number of false negatives. | |
3c7b4e6b | 1113 | */ |
a6186d89 | 1114 | void __ref kmemleak_no_scan(const void *ptr) |
3c7b4e6b CM |
1115 | { |
1116 | pr_debug("%s(0x%p)\n", __func__, ptr); | |
1117 | ||
8910ae89 | 1118 | if (kmemleak_enabled && ptr && !IS_ERR(ptr)) |
3c7b4e6b | 1119 | object_no_scan((unsigned long)ptr); |
3c7b4e6b CM |
1120 | } |
1121 | EXPORT_SYMBOL(kmemleak_no_scan); | |
1122 | ||
9099daed CM |
1123 | /** |
1124 | * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical | |
1125 | * address argument | |
e8b098fc MR |
1126 | * @phys: physical address of the object |
1127 | * @size: size of the object | |
1128 | * @min_count: minimum number of references to this object. | |
1129 | * See kmemleak_alloc() | |
1130 | * @gfp: kmalloc() flags used for kmemleak internal memory allocations | |
9099daed CM |
1131 | */ |
1132 | void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count, | |
1133 | gfp_t gfp) | |
1134 | { | |
23c2d497 | 1135 | if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) |
9099daed CM |
1136 | kmemleak_alloc(__va(phys), size, min_count, gfp); |
1137 | } | |
1138 | EXPORT_SYMBOL(kmemleak_alloc_phys); | |
1139 | ||
1140 | /** | |
1141 | * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a | |
1142 | * physical address argument | |
e8b098fc MR |
1143 | * @phys: physical address if the beginning or inside an object. This |
1144 | * also represents the start of the range to be freed | |
1145 | * @size: size to be unregistered | |
9099daed CM |
1146 | */ |
1147 | void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size) | |
1148 | { | |
23c2d497 | 1149 | if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) |
9099daed CM |
1150 | kmemleak_free_part(__va(phys), size); |
1151 | } | |
1152 | EXPORT_SYMBOL(kmemleak_free_part_phys); | |
1153 | ||
1154 | /** | |
1155 | * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical | |
1156 | * address argument | |
e8b098fc | 1157 | * @phys: physical address of the object |
9099daed CM |
1158 | */ |
1159 | void __ref kmemleak_not_leak_phys(phys_addr_t phys) | |
1160 | { | |
23c2d497 | 1161 | if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) |
9099daed CM |
1162 | kmemleak_not_leak(__va(phys)); |
1163 | } | |
1164 | EXPORT_SYMBOL(kmemleak_not_leak_phys); | |
1165 | ||
1166 | /** | |
1167 | * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical | |
1168 | * address argument | |
e8b098fc | 1169 | * @phys: physical address of the object |
9099daed CM |
1170 | */ |
1171 | void __ref kmemleak_ignore_phys(phys_addr_t phys) | |
1172 | { | |
23c2d497 | 1173 | if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn) |
9099daed CM |
1174 | kmemleak_ignore(__va(phys)); |
1175 | } | |
1176 | EXPORT_SYMBOL(kmemleak_ignore_phys); | |
1177 | ||
04609ccc CM |
1178 | /* |
1179 | * Update an object's checksum and return true if it was modified. | |
1180 | */ | |
1181 | static bool update_checksum(struct kmemleak_object *object) | |
1182 | { | |
1183 | u32 old_csum = object->checksum; | |
1184 | ||
e79ed2f1 | 1185 | kasan_disable_current(); |
69d0b54d | 1186 | kcsan_disable_current(); |
6c7a00b8 | 1187 | object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size); |
e79ed2f1 | 1188 | kasan_enable_current(); |
69d0b54d | 1189 | kcsan_enable_current(); |
e79ed2f1 | 1190 | |
04609ccc CM |
1191 | return object->checksum != old_csum; |
1192 | } | |
1193 | ||
04f70d13 CM |
1194 | /* |
1195 | * Update an object's references. object->lock must be held by the caller. | |
1196 | */ | |
1197 | static void update_refs(struct kmemleak_object *object) | |
1198 | { | |
1199 | if (!color_white(object)) { | |
1200 | /* non-orphan, ignored or new */ | |
1201 | return; | |
1202 | } | |
1203 | ||
1204 | /* | |
1205 | * Increase the object's reference count (number of pointers to the | |
1206 | * memory block). If this count reaches the required minimum, the | |
1207 | * object's color will become gray and it will be added to the | |
1208 | * gray_list. | |
1209 | */ | |
1210 | object->count++; | |
1211 | if (color_gray(object)) { | |
1212 | /* put_object() called when removing from gray_list */ | |
1213 | WARN_ON(!get_object(object)); | |
1214 | list_add_tail(&object->gray_list, &gray_list); | |
1215 | } | |
1216 | } | |
1217 | ||
3c7b4e6b | 1218 | /* |
0b5121ef | 1219 | * Memory scanning is a long process and it needs to be interruptible. This |
25985edc | 1220 | * function checks whether such interrupt condition occurred. |
3c7b4e6b CM |
1221 | */ |
1222 | static int scan_should_stop(void) | |
1223 | { | |
8910ae89 | 1224 | if (!kmemleak_enabled) |
3c7b4e6b CM |
1225 | return 1; |
1226 | ||
1227 | /* | |
1228 | * This function may be called from either process or kthread context, | |
1229 | * hence the need to check for both stop conditions. | |
1230 | */ | |
1231 | if (current->mm) | |
1232 | return signal_pending(current); | |
1233 | else | |
1234 | return kthread_should_stop(); | |
1235 | ||
1236 | return 0; | |
1237 | } | |
1238 | ||
1239 | /* | |
1240 | * Scan a memory block (exclusive range) for valid pointers and add those | |
1241 | * found to the gray list. | |
1242 | */ | |
1243 | static void scan_block(void *_start, void *_end, | |
93ada579 | 1244 | struct kmemleak_object *scanned) |
3c7b4e6b CM |
1245 | { |
1246 | unsigned long *ptr; | |
1247 | unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); | |
1248 | unsigned long *end = _end - (BYTES_PER_POINTER - 1); | |
93ada579 | 1249 | unsigned long flags; |
a2f77575 | 1250 | unsigned long untagged_ptr; |
3c7b4e6b | 1251 | |
8c96f1bc | 1252 | raw_spin_lock_irqsave(&kmemleak_lock, flags); |
3c7b4e6b | 1253 | for (ptr = start; ptr < end; ptr++) { |
3c7b4e6b | 1254 | struct kmemleak_object *object; |
8e019366 | 1255 | unsigned long pointer; |
94f4a161 | 1256 | unsigned long excess_ref; |
3c7b4e6b CM |
1257 | |
1258 | if (scan_should_stop()) | |
1259 | break; | |
1260 | ||
e79ed2f1 | 1261 | kasan_disable_current(); |
6c7a00b8 | 1262 | pointer = *(unsigned long *)kasan_reset_tag((void *)ptr); |
e79ed2f1 | 1263 | kasan_enable_current(); |
8e019366 | 1264 | |
a2f77575 AK |
1265 | untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer); |
1266 | if (untagged_ptr < min_addr || untagged_ptr >= max_addr) | |
93ada579 CM |
1267 | continue; |
1268 | ||
1269 | /* | |
1270 | * No need for get_object() here since we hold kmemleak_lock. | |
1271 | * object->use_count cannot be dropped to 0 while the object | |
1272 | * is still present in object_tree_root and object_list | |
1273 | * (with updates protected by kmemleak_lock). | |
1274 | */ | |
1275 | object = lookup_object(pointer, 1); | |
3c7b4e6b CM |
1276 | if (!object) |
1277 | continue; | |
93ada579 | 1278 | if (object == scanned) |
3c7b4e6b | 1279 | /* self referenced, ignore */ |
3c7b4e6b | 1280 | continue; |
3c7b4e6b CM |
1281 | |
1282 | /* | |
1283 | * Avoid the lockdep recursive warning on object->lock being | |
1284 | * previously acquired in scan_object(). These locks are | |
1285 | * enclosed by scan_mutex. | |
1286 | */ | |
8c96f1bc | 1287 | raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
94f4a161 CM |
1288 | /* only pass surplus references (object already gray) */ |
1289 | if (color_gray(object)) { | |
1290 | excess_ref = object->excess_ref; | |
1291 | /* no need for update_refs() if object already gray */ | |
1292 | } else { | |
1293 | excess_ref = 0; | |
1294 | update_refs(object); | |
1295 | } | |
8c96f1bc | 1296 | raw_spin_unlock(&object->lock); |
94f4a161 CM |
1297 | |
1298 | if (excess_ref) { | |
1299 | object = lookup_object(excess_ref, 0); | |
1300 | if (!object) | |
1301 | continue; | |
1302 | if (object == scanned) | |
1303 | /* circular reference, ignore */ | |
1304 | continue; | |
8c96f1bc | 1305 | raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); |
94f4a161 | 1306 | update_refs(object); |
8c96f1bc | 1307 | raw_spin_unlock(&object->lock); |
94f4a161 | 1308 | } |
93ada579 | 1309 | } |
8c96f1bc | 1310 | raw_spin_unlock_irqrestore(&kmemleak_lock, flags); |
93ada579 | 1311 | } |
0587da40 | 1312 | |
93ada579 CM |
1313 | /* |
1314 | * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. | |
1315 | */ | |
dce5b0bd | 1316 | #ifdef CONFIG_SMP |
93ada579 CM |
1317 | static void scan_large_block(void *start, void *end) |
1318 | { | |
1319 | void *next; | |
1320 | ||
1321 | while (start < end) { | |
1322 | next = min(start + MAX_SCAN_SIZE, end); | |
1323 | scan_block(start, next, NULL); | |
1324 | start = next; | |
1325 | cond_resched(); | |
3c7b4e6b CM |
1326 | } |
1327 | } | |
dce5b0bd | 1328 | #endif |
3c7b4e6b CM |
1329 | |
1330 | /* | |
1331 | * Scan a memory block corresponding to a kmemleak_object. A condition is | |
1332 | * that object->use_count >= 1. | |
1333 | */ | |
1334 | static void scan_object(struct kmemleak_object *object) | |
1335 | { | |
1336 | struct kmemleak_scan_area *area; | |
3c7b4e6b CM |
1337 | unsigned long flags; |
1338 | ||
1339 | /* | |
21ae2956 UKK |
1340 | * Once the object->lock is acquired, the corresponding memory block |
1341 | * cannot be freed (the same lock is acquired in delete_object). | |
3c7b4e6b | 1342 | */ |
8c96f1bc | 1343 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b CM |
1344 | if (object->flags & OBJECT_NO_SCAN) |
1345 | goto out; | |
1346 | if (!(object->flags & OBJECT_ALLOCATED)) | |
1347 | /* already freed object */ | |
1348 | goto out; | |
dba82d94 CM |
1349 | if (hlist_empty(&object->area_list) || |
1350 | object->flags & OBJECT_FULL_SCAN) { | |
af98603d CM |
1351 | void *start = (void *)object->pointer; |
1352 | void *end = (void *)(object->pointer + object->size); | |
93ada579 CM |
1353 | void *next; |
1354 | ||
1355 | do { | |
1356 | next = min(start + MAX_SCAN_SIZE, end); | |
1357 | scan_block(start, next, object); | |
af98603d | 1358 | |
93ada579 CM |
1359 | start = next; |
1360 | if (start >= end) | |
1361 | break; | |
af98603d | 1362 | |
8c96f1bc | 1363 | raw_spin_unlock_irqrestore(&object->lock, flags); |
af98603d | 1364 | cond_resched(); |
8c96f1bc | 1365 | raw_spin_lock_irqsave(&object->lock, flags); |
93ada579 | 1366 | } while (object->flags & OBJECT_ALLOCATED); |
af98603d | 1367 | } else |
b67bfe0d | 1368 | hlist_for_each_entry(area, &object->area_list, node) |
c017b4be CM |
1369 | scan_block((void *)area->start, |
1370 | (void *)(area->start + area->size), | |
93ada579 | 1371 | object); |
3c7b4e6b | 1372 | out: |
8c96f1bc | 1373 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1374 | } |
1375 | ||
04609ccc CM |
1376 | /* |
1377 | * Scan the objects already referenced (gray objects). More objects will be | |
1378 | * referenced and, if there are no memory leaks, all the objects are scanned. | |
1379 | */ | |
1380 | static void scan_gray_list(void) | |
1381 | { | |
1382 | struct kmemleak_object *object, *tmp; | |
1383 | ||
1384 | /* | |
1385 | * The list traversal is safe for both tail additions and removals | |
1386 | * from inside the loop. The kmemleak objects cannot be freed from | |
1387 | * outside the loop because their use_count was incremented. | |
1388 | */ | |
1389 | object = list_entry(gray_list.next, typeof(*object), gray_list); | |
1390 | while (&object->gray_list != &gray_list) { | |
1391 | cond_resched(); | |
1392 | ||
1393 | /* may add new objects to the list */ | |
1394 | if (!scan_should_stop()) | |
1395 | scan_object(object); | |
1396 | ||
1397 | tmp = list_entry(object->gray_list.next, typeof(*object), | |
1398 | gray_list); | |
1399 | ||
1400 | /* remove the object from the list and release it */ | |
1401 | list_del(&object->gray_list); | |
1402 | put_object(object); | |
1403 | ||
1404 | object = tmp; | |
1405 | } | |
1406 | WARN_ON(!list_empty(&gray_list)); | |
1407 | } | |
1408 | ||
3c7b4e6b CM |
1409 | /* |
1410 | * Scan data sections and all the referenced memory blocks allocated via the | |
1411 | * kernel's standard allocators. This function must be called with the | |
1412 | * scan_mutex held. | |
1413 | */ | |
1414 | static void kmemleak_scan(void) | |
1415 | { | |
1416 | unsigned long flags; | |
04609ccc | 1417 | struct kmemleak_object *object; |
c10a0f87 LY |
1418 | struct zone *zone; |
1419 | int __maybe_unused i; | |
4698c1f2 | 1420 | int new_leaks = 0; |
3c7b4e6b | 1421 | |
acf4968e CM |
1422 | jiffies_last_scan = jiffies; |
1423 | ||
3c7b4e6b CM |
1424 | /* prepare the kmemleak_object's */ |
1425 | rcu_read_lock(); | |
1426 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1427 | raw_spin_lock_irqsave(&object->lock, flags); |
3c7b4e6b CM |
1428 | #ifdef DEBUG |
1429 | /* | |
1430 | * With a few exceptions there should be a maximum of | |
1431 | * 1 reference to any object at this point. | |
1432 | */ | |
1433 | if (atomic_read(&object->use_count) > 1) { | |
ae281064 | 1434 | pr_debug("object->use_count = %d\n", |
3c7b4e6b CM |
1435 | atomic_read(&object->use_count)); |
1436 | dump_object_info(object); | |
1437 | } | |
1438 | #endif | |
1439 | /* reset the reference count (whiten the object) */ | |
1440 | object->count = 0; | |
1441 | if (color_gray(object) && get_object(object)) | |
1442 | list_add_tail(&object->gray_list, &gray_list); | |
1443 | ||
8c96f1bc | 1444 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1445 | } |
1446 | rcu_read_unlock(); | |
1447 | ||
3c7b4e6b CM |
1448 | #ifdef CONFIG_SMP |
1449 | /* per-cpu sections scanning */ | |
1450 | for_each_possible_cpu(i) | |
93ada579 CM |
1451 | scan_large_block(__per_cpu_start + per_cpu_offset(i), |
1452 | __per_cpu_end + per_cpu_offset(i)); | |
3c7b4e6b CM |
1453 | #endif |
1454 | ||
1455 | /* | |
029aeff5 | 1456 | * Struct page scanning for each node. |
3c7b4e6b | 1457 | */ |
bfc8c901 | 1458 | get_online_mems(); |
c10a0f87 LY |
1459 | for_each_populated_zone(zone) { |
1460 | unsigned long start_pfn = zone->zone_start_pfn; | |
1461 | unsigned long end_pfn = zone_end_pfn(zone); | |
3c7b4e6b CM |
1462 | unsigned long pfn; |
1463 | ||
1464 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { | |
9f1eb38e | 1465 | struct page *page = pfn_to_online_page(pfn); |
3c7b4e6b | 1466 | |
9f1eb38e OS |
1467 | if (!page) |
1468 | continue; | |
1469 | ||
c10a0f87 LY |
1470 | /* only scan pages belonging to this zone */ |
1471 | if (page_zone(page) != zone) | |
3c7b4e6b | 1472 | continue; |
3c7b4e6b CM |
1473 | /* only scan if page is in use */ |
1474 | if (page_count(page) == 0) | |
1475 | continue; | |
93ada579 | 1476 | scan_block(page, page + 1, NULL); |
13ab183d | 1477 | if (!(pfn & 63)) |
bde5f6bc | 1478 | cond_resched(); |
3c7b4e6b CM |
1479 | } |
1480 | } | |
bfc8c901 | 1481 | put_online_mems(); |
3c7b4e6b CM |
1482 | |
1483 | /* | |
43ed5d6e | 1484 | * Scanning the task stacks (may introduce false negatives). |
3c7b4e6b CM |
1485 | */ |
1486 | if (kmemleak_stack_scan) { | |
43ed5d6e CM |
1487 | struct task_struct *p, *g; |
1488 | ||
c4b28963 DB |
1489 | rcu_read_lock(); |
1490 | for_each_process_thread(g, p) { | |
37df49f4 CM |
1491 | void *stack = try_get_task_stack(p); |
1492 | if (stack) { | |
1493 | scan_block(stack, stack + THREAD_SIZE, NULL); | |
1494 | put_task_stack(p); | |
1495 | } | |
c4b28963 DB |
1496 | } |
1497 | rcu_read_unlock(); | |
3c7b4e6b CM |
1498 | } |
1499 | ||
1500 | /* | |
1501 | * Scan the objects already referenced from the sections scanned | |
04609ccc | 1502 | * above. |
3c7b4e6b | 1503 | */ |
04609ccc | 1504 | scan_gray_list(); |
2587362e CM |
1505 | |
1506 | /* | |
04609ccc CM |
1507 | * Check for new or unreferenced objects modified since the previous |
1508 | * scan and color them gray until the next scan. | |
2587362e CM |
1509 | */ |
1510 | rcu_read_lock(); | |
1511 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1512 | raw_spin_lock_irqsave(&object->lock, flags); |
04609ccc CM |
1513 | if (color_white(object) && (object->flags & OBJECT_ALLOCATED) |
1514 | && update_checksum(object) && get_object(object)) { | |
1515 | /* color it gray temporarily */ | |
1516 | object->count = object->min_count; | |
2587362e CM |
1517 | list_add_tail(&object->gray_list, &gray_list); |
1518 | } | |
8c96f1bc | 1519 | raw_spin_unlock_irqrestore(&object->lock, flags); |
2587362e CM |
1520 | } |
1521 | rcu_read_unlock(); | |
1522 | ||
04609ccc CM |
1523 | /* |
1524 | * Re-scan the gray list for modified unreferenced objects. | |
1525 | */ | |
1526 | scan_gray_list(); | |
4698c1f2 | 1527 | |
17bb9e0d | 1528 | /* |
04609ccc | 1529 | * If scanning was stopped do not report any new unreferenced objects. |
17bb9e0d | 1530 | */ |
04609ccc | 1531 | if (scan_should_stop()) |
17bb9e0d CM |
1532 | return; |
1533 | ||
4698c1f2 CM |
1534 | /* |
1535 | * Scanning result reporting. | |
1536 | */ | |
1537 | rcu_read_lock(); | |
1538 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1539 | raw_spin_lock_irqsave(&object->lock, flags); |
4698c1f2 CM |
1540 | if (unreferenced_object(object) && |
1541 | !(object->flags & OBJECT_REPORTED)) { | |
1542 | object->flags |= OBJECT_REPORTED; | |
154221c3 VW |
1543 | |
1544 | if (kmemleak_verbose) | |
1545 | print_unreferenced(NULL, object); | |
1546 | ||
4698c1f2 CM |
1547 | new_leaks++; |
1548 | } | |
8c96f1bc | 1549 | raw_spin_unlock_irqrestore(&object->lock, flags); |
4698c1f2 CM |
1550 | } |
1551 | rcu_read_unlock(); | |
1552 | ||
dc9b3f42 LZ |
1553 | if (new_leaks) { |
1554 | kmemleak_found_leaks = true; | |
1555 | ||
756a025f JP |
1556 | pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n", |
1557 | new_leaks); | |
dc9b3f42 | 1558 | } |
4698c1f2 | 1559 | |
3c7b4e6b CM |
1560 | } |
1561 | ||
1562 | /* | |
1563 | * Thread function performing automatic memory scanning. Unreferenced objects | |
1564 | * at the end of a memory scan are reported but only the first time. | |
1565 | */ | |
1566 | static int kmemleak_scan_thread(void *arg) | |
1567 | { | |
d53ce042 | 1568 | static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN); |
3c7b4e6b | 1569 | |
ae281064 | 1570 | pr_info("Automatic memory scanning thread started\n"); |
bf2a76b3 | 1571 | set_user_nice(current, 10); |
3c7b4e6b CM |
1572 | |
1573 | /* | |
1574 | * Wait before the first scan to allow the system to fully initialize. | |
1575 | */ | |
1576 | if (first_run) { | |
98c42d94 | 1577 | signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000); |
3c7b4e6b | 1578 | first_run = 0; |
98c42d94 VN |
1579 | while (timeout && !kthread_should_stop()) |
1580 | timeout = schedule_timeout_interruptible(timeout); | |
3c7b4e6b CM |
1581 | } |
1582 | ||
1583 | while (!kthread_should_stop()) { | |
54dd200c | 1584 | signed long timeout = READ_ONCE(jiffies_scan_wait); |
3c7b4e6b CM |
1585 | |
1586 | mutex_lock(&scan_mutex); | |
3c7b4e6b | 1587 | kmemleak_scan(); |
3c7b4e6b | 1588 | mutex_unlock(&scan_mutex); |
4698c1f2 | 1589 | |
3c7b4e6b CM |
1590 | /* wait before the next scan */ |
1591 | while (timeout && !kthread_should_stop()) | |
1592 | timeout = schedule_timeout_interruptible(timeout); | |
1593 | } | |
1594 | ||
ae281064 | 1595 | pr_info("Automatic memory scanning thread ended\n"); |
3c7b4e6b CM |
1596 | |
1597 | return 0; | |
1598 | } | |
1599 | ||
1600 | /* | |
1601 | * Start the automatic memory scanning thread. This function must be called | |
4698c1f2 | 1602 | * with the scan_mutex held. |
3c7b4e6b | 1603 | */ |
7eb0d5e5 | 1604 | static void start_scan_thread(void) |
3c7b4e6b CM |
1605 | { |
1606 | if (scan_thread) | |
1607 | return; | |
1608 | scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); | |
1609 | if (IS_ERR(scan_thread)) { | |
598d8091 | 1610 | pr_warn("Failed to create the scan thread\n"); |
3c7b4e6b CM |
1611 | scan_thread = NULL; |
1612 | } | |
1613 | } | |
1614 | ||
1615 | /* | |
914b6dff | 1616 | * Stop the automatic memory scanning thread. |
3c7b4e6b | 1617 | */ |
7eb0d5e5 | 1618 | static void stop_scan_thread(void) |
3c7b4e6b CM |
1619 | { |
1620 | if (scan_thread) { | |
1621 | kthread_stop(scan_thread); | |
1622 | scan_thread = NULL; | |
1623 | } | |
1624 | } | |
1625 | ||
1626 | /* | |
1627 | * Iterate over the object_list and return the first valid object at or after | |
1628 | * the required position with its use_count incremented. The function triggers | |
1629 | * a memory scanning when the pos argument points to the first position. | |
1630 | */ | |
1631 | static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) | |
1632 | { | |
1633 | struct kmemleak_object *object; | |
1634 | loff_t n = *pos; | |
b87324d0 CM |
1635 | int err; |
1636 | ||
1637 | err = mutex_lock_interruptible(&scan_mutex); | |
1638 | if (err < 0) | |
1639 | return ERR_PTR(err); | |
3c7b4e6b | 1640 | |
3c7b4e6b CM |
1641 | rcu_read_lock(); |
1642 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
1643 | if (n-- > 0) | |
1644 | continue; | |
1645 | if (get_object(object)) | |
1646 | goto out; | |
1647 | } | |
1648 | object = NULL; | |
1649 | out: | |
3c7b4e6b CM |
1650 | return object; |
1651 | } | |
1652 | ||
1653 | /* | |
1654 | * Return the next object in the object_list. The function decrements the | |
1655 | * use_count of the previous object and increases that of the next one. | |
1656 | */ | |
1657 | static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) | |
1658 | { | |
1659 | struct kmemleak_object *prev_obj = v; | |
1660 | struct kmemleak_object *next_obj = NULL; | |
58fac095 | 1661 | struct kmemleak_object *obj = prev_obj; |
3c7b4e6b CM |
1662 | |
1663 | ++(*pos); | |
3c7b4e6b | 1664 | |
58fac095 | 1665 | list_for_each_entry_continue_rcu(obj, &object_list, object_list) { |
52c3ce4e CM |
1666 | if (get_object(obj)) { |
1667 | next_obj = obj; | |
3c7b4e6b | 1668 | break; |
52c3ce4e | 1669 | } |
3c7b4e6b | 1670 | } |
288c857d | 1671 | |
3c7b4e6b CM |
1672 | put_object(prev_obj); |
1673 | return next_obj; | |
1674 | } | |
1675 | ||
1676 | /* | |
1677 | * Decrement the use_count of the last object required, if any. | |
1678 | */ | |
1679 | static void kmemleak_seq_stop(struct seq_file *seq, void *v) | |
1680 | { | |
b87324d0 CM |
1681 | if (!IS_ERR(v)) { |
1682 | /* | |
1683 | * kmemleak_seq_start may return ERR_PTR if the scan_mutex | |
1684 | * waiting was interrupted, so only release it if !IS_ERR. | |
1685 | */ | |
f5886c7f | 1686 | rcu_read_unlock(); |
b87324d0 CM |
1687 | mutex_unlock(&scan_mutex); |
1688 | if (v) | |
1689 | put_object(v); | |
1690 | } | |
3c7b4e6b CM |
1691 | } |
1692 | ||
1693 | /* | |
1694 | * Print the information for an unreferenced object to the seq file. | |
1695 | */ | |
1696 | static int kmemleak_seq_show(struct seq_file *seq, void *v) | |
1697 | { | |
1698 | struct kmemleak_object *object = v; | |
1699 | unsigned long flags; | |
1700 | ||
8c96f1bc | 1701 | raw_spin_lock_irqsave(&object->lock, flags); |
288c857d | 1702 | if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) |
17bb9e0d | 1703 | print_unreferenced(seq, object); |
8c96f1bc | 1704 | raw_spin_unlock_irqrestore(&object->lock, flags); |
3c7b4e6b CM |
1705 | return 0; |
1706 | } | |
1707 | ||
1708 | static const struct seq_operations kmemleak_seq_ops = { | |
1709 | .start = kmemleak_seq_start, | |
1710 | .next = kmemleak_seq_next, | |
1711 | .stop = kmemleak_seq_stop, | |
1712 | .show = kmemleak_seq_show, | |
1713 | }; | |
1714 | ||
1715 | static int kmemleak_open(struct inode *inode, struct file *file) | |
1716 | { | |
b87324d0 | 1717 | return seq_open(file, &kmemleak_seq_ops); |
3c7b4e6b CM |
1718 | } |
1719 | ||
189d84ed CM |
1720 | static int dump_str_object_info(const char *str) |
1721 | { | |
1722 | unsigned long flags; | |
1723 | struct kmemleak_object *object; | |
1724 | unsigned long addr; | |
1725 | ||
dc053733 AP |
1726 | if (kstrtoul(str, 0, &addr)) |
1727 | return -EINVAL; | |
189d84ed CM |
1728 | object = find_and_get_object(addr, 0); |
1729 | if (!object) { | |
1730 | pr_info("Unknown object at 0x%08lx\n", addr); | |
1731 | return -EINVAL; | |
1732 | } | |
1733 | ||
8c96f1bc | 1734 | raw_spin_lock_irqsave(&object->lock, flags); |
189d84ed | 1735 | dump_object_info(object); |
8c96f1bc | 1736 | raw_spin_unlock_irqrestore(&object->lock, flags); |
189d84ed CM |
1737 | |
1738 | put_object(object); | |
1739 | return 0; | |
1740 | } | |
1741 | ||
30b37101 LR |
1742 | /* |
1743 | * We use grey instead of black to ensure we can do future scans on the same | |
1744 | * objects. If we did not do future scans these black objects could | |
1745 | * potentially contain references to newly allocated objects in the future and | |
1746 | * we'd end up with false positives. | |
1747 | */ | |
1748 | static void kmemleak_clear(void) | |
1749 | { | |
1750 | struct kmemleak_object *object; | |
1751 | unsigned long flags; | |
1752 | ||
1753 | rcu_read_lock(); | |
1754 | list_for_each_entry_rcu(object, &object_list, object_list) { | |
8c96f1bc | 1755 | raw_spin_lock_irqsave(&object->lock, flags); |
30b37101 LR |
1756 | if ((object->flags & OBJECT_REPORTED) && |
1757 | unreferenced_object(object)) | |
a1084c87 | 1758 | __paint_it(object, KMEMLEAK_GREY); |
8c96f1bc | 1759 | raw_spin_unlock_irqrestore(&object->lock, flags); |
30b37101 LR |
1760 | } |
1761 | rcu_read_unlock(); | |
dc9b3f42 LZ |
1762 | |
1763 | kmemleak_found_leaks = false; | |
30b37101 LR |
1764 | } |
1765 | ||
c89da70c LZ |
1766 | static void __kmemleak_do_cleanup(void); |
1767 | ||
3c7b4e6b CM |
1768 | /* |
1769 | * File write operation to configure kmemleak at run-time. The following | |
1770 | * commands can be written to the /sys/kernel/debug/kmemleak file: | |
1771 | * off - disable kmemleak (irreversible) | |
1772 | * stack=on - enable the task stacks scanning | |
1773 | * stack=off - disable the tasks stacks scanning | |
1774 | * scan=on - start the automatic memory scanning thread | |
1775 | * scan=off - stop the automatic memory scanning thread | |
1776 | * scan=... - set the automatic memory scanning period in seconds (0 to | |
1777 | * disable it) | |
4698c1f2 | 1778 | * scan - trigger a memory scan |
30b37101 | 1779 | * clear - mark all current reported unreferenced kmemleak objects as |
c89da70c LZ |
1780 | * grey to ignore printing them, or free all kmemleak objects |
1781 | * if kmemleak has been disabled. | |
189d84ed | 1782 | * dump=... - dump information about the object found at the given address |
3c7b4e6b CM |
1783 | */ |
1784 | static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, | |
1785 | size_t size, loff_t *ppos) | |
1786 | { | |
1787 | char buf[64]; | |
1788 | int buf_size; | |
b87324d0 | 1789 | int ret; |
3c7b4e6b CM |
1790 | |
1791 | buf_size = min(size, (sizeof(buf) - 1)); | |
1792 | if (strncpy_from_user(buf, user_buf, buf_size) < 0) | |
1793 | return -EFAULT; | |
1794 | buf[buf_size] = 0; | |
1795 | ||
b87324d0 CM |
1796 | ret = mutex_lock_interruptible(&scan_mutex); |
1797 | if (ret < 0) | |
1798 | return ret; | |
1799 | ||
c89da70c | 1800 | if (strncmp(buf, "clear", 5) == 0) { |
8910ae89 | 1801 | if (kmemleak_enabled) |
c89da70c LZ |
1802 | kmemleak_clear(); |
1803 | else | |
1804 | __kmemleak_do_cleanup(); | |
1805 | goto out; | |
1806 | } | |
1807 | ||
8910ae89 | 1808 | if (!kmemleak_enabled) { |
4e4dfce2 | 1809 | ret = -EPERM; |
c89da70c LZ |
1810 | goto out; |
1811 | } | |
1812 | ||
3c7b4e6b CM |
1813 | if (strncmp(buf, "off", 3) == 0) |
1814 | kmemleak_disable(); | |
1815 | else if (strncmp(buf, "stack=on", 8) == 0) | |
1816 | kmemleak_stack_scan = 1; | |
1817 | else if (strncmp(buf, "stack=off", 9) == 0) | |
1818 | kmemleak_stack_scan = 0; | |
1819 | else if (strncmp(buf, "scan=on", 7) == 0) | |
1820 | start_scan_thread(); | |
1821 | else if (strncmp(buf, "scan=off", 8) == 0) | |
1822 | stop_scan_thread(); | |
1823 | else if (strncmp(buf, "scan=", 5) == 0) { | |
54dd200c YX |
1824 | unsigned secs; |
1825 | unsigned long msecs; | |
3c7b4e6b | 1826 | |
54dd200c | 1827 | ret = kstrtouint(buf + 5, 0, &secs); |
b87324d0 CM |
1828 | if (ret < 0) |
1829 | goto out; | |
54dd200c YX |
1830 | |
1831 | msecs = secs * MSEC_PER_SEC; | |
1832 | if (msecs > UINT_MAX) | |
1833 | msecs = UINT_MAX; | |
1834 | ||
3c7b4e6b | 1835 | stop_scan_thread(); |
54dd200c YX |
1836 | if (msecs) { |
1837 | WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs)); | |
3c7b4e6b CM |
1838 | start_scan_thread(); |
1839 | } | |
4698c1f2 CM |
1840 | } else if (strncmp(buf, "scan", 4) == 0) |
1841 | kmemleak_scan(); | |
189d84ed CM |
1842 | else if (strncmp(buf, "dump=", 5) == 0) |
1843 | ret = dump_str_object_info(buf + 5); | |
4698c1f2 | 1844 | else |
b87324d0 CM |
1845 | ret = -EINVAL; |
1846 | ||
1847 | out: | |
1848 | mutex_unlock(&scan_mutex); | |
1849 | if (ret < 0) | |
1850 | return ret; | |
3c7b4e6b CM |
1851 | |
1852 | /* ignore the rest of the buffer, only one command at a time */ | |
1853 | *ppos += size; | |
1854 | return size; | |
1855 | } | |
1856 | ||
1857 | static const struct file_operations kmemleak_fops = { | |
1858 | .owner = THIS_MODULE, | |
1859 | .open = kmemleak_open, | |
1860 | .read = seq_read, | |
1861 | .write = kmemleak_write, | |
1862 | .llseek = seq_lseek, | |
5f3bf19a | 1863 | .release = seq_release, |
3c7b4e6b CM |
1864 | }; |
1865 | ||
c89da70c LZ |
1866 | static void __kmemleak_do_cleanup(void) |
1867 | { | |
2abd839a | 1868 | struct kmemleak_object *object, *tmp; |
c89da70c | 1869 | |
2abd839a CM |
1870 | /* |
1871 | * Kmemleak has already been disabled, no need for RCU list traversal | |
1872 | * or kmemleak_lock held. | |
1873 | */ | |
1874 | list_for_each_entry_safe(object, tmp, &object_list, object_list) { | |
1875 | __remove_object(object); | |
1876 | __delete_object(object); | |
1877 | } | |
c89da70c LZ |
1878 | } |
1879 | ||
3c7b4e6b | 1880 | /* |
74341703 CM |
1881 | * Stop the memory scanning thread and free the kmemleak internal objects if |
1882 | * no previous scan thread (otherwise, kmemleak may still have some useful | |
1883 | * information on memory leaks). | |
3c7b4e6b | 1884 | */ |
179a8100 | 1885 | static void kmemleak_do_cleanup(struct work_struct *work) |
3c7b4e6b | 1886 | { |
3c7b4e6b | 1887 | stop_scan_thread(); |
3c7b4e6b | 1888 | |
914b6dff | 1889 | mutex_lock(&scan_mutex); |
c5f3b1a5 | 1890 | /* |
914b6dff VM |
1891 | * Once it is made sure that kmemleak_scan has stopped, it is safe to no |
1892 | * longer track object freeing. Ordering of the scan thread stopping and | |
1893 | * the memory accesses below is guaranteed by the kthread_stop() | |
1894 | * function. | |
c5f3b1a5 CM |
1895 | */ |
1896 | kmemleak_free_enabled = 0; | |
914b6dff | 1897 | mutex_unlock(&scan_mutex); |
c5f3b1a5 | 1898 | |
c89da70c LZ |
1899 | if (!kmemleak_found_leaks) |
1900 | __kmemleak_do_cleanup(); | |
1901 | else | |
756a025f | 1902 | pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n"); |
3c7b4e6b CM |
1903 | } |
1904 | ||
179a8100 | 1905 | static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); |
3c7b4e6b CM |
1906 | |
1907 | /* | |
1908 | * Disable kmemleak. No memory allocation/freeing will be traced once this | |
1909 | * function is called. Disabling kmemleak is an irreversible operation. | |
1910 | */ | |
1911 | static void kmemleak_disable(void) | |
1912 | { | |
1913 | /* atomically check whether it was already invoked */ | |
8910ae89 | 1914 | if (cmpxchg(&kmemleak_error, 0, 1)) |
3c7b4e6b CM |
1915 | return; |
1916 | ||
1917 | /* stop any memory operation tracing */ | |
8910ae89 | 1918 | kmemleak_enabled = 0; |
3c7b4e6b CM |
1919 | |
1920 | /* check whether it is too early for a kernel thread */ | |
8910ae89 | 1921 | if (kmemleak_initialized) |
179a8100 | 1922 | schedule_work(&cleanup_work); |
c5f3b1a5 CM |
1923 | else |
1924 | kmemleak_free_enabled = 0; | |
3c7b4e6b CM |
1925 | |
1926 | pr_info("Kernel memory leak detector disabled\n"); | |
1927 | } | |
1928 | ||
1929 | /* | |
1930 | * Allow boot-time kmemleak disabling (enabled by default). | |
1931 | */ | |
8bd30c10 | 1932 | static int __init kmemleak_boot_config(char *str) |
3c7b4e6b CM |
1933 | { |
1934 | if (!str) | |
1935 | return -EINVAL; | |
1936 | if (strcmp(str, "off") == 0) | |
1937 | kmemleak_disable(); | |
ab0155a2 JB |
1938 | else if (strcmp(str, "on") == 0) |
1939 | kmemleak_skip_disable = 1; | |
1940 | else | |
3c7b4e6b CM |
1941 | return -EINVAL; |
1942 | return 0; | |
1943 | } | |
1944 | early_param("kmemleak", kmemleak_boot_config); | |
1945 | ||
1946 | /* | |
2030117d | 1947 | * Kmemleak initialization. |
3c7b4e6b CM |
1948 | */ |
1949 | void __init kmemleak_init(void) | |
1950 | { | |
ab0155a2 JB |
1951 | #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF |
1952 | if (!kmemleak_skip_disable) { | |
1953 | kmemleak_disable(); | |
1954 | return; | |
1955 | } | |
1956 | #endif | |
1957 | ||
c5665868 CM |
1958 | if (kmemleak_error) |
1959 | return; | |
1960 | ||
3c7b4e6b CM |
1961 | jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); |
1962 | jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); | |
1963 | ||
1964 | object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); | |
1965 | scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); | |
3c7b4e6b | 1966 | |
298a32b1 CM |
1967 | /* register the data/bss sections */ |
1968 | create_object((unsigned long)_sdata, _edata - _sdata, | |
1969 | KMEMLEAK_GREY, GFP_ATOMIC); | |
1970 | create_object((unsigned long)__bss_start, __bss_stop - __bss_start, | |
1971 | KMEMLEAK_GREY, GFP_ATOMIC); | |
1972 | /* only register .data..ro_after_init if not within .data */ | |
b0d14fc4 | 1973 | if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata) |
298a32b1 CM |
1974 | create_object((unsigned long)__start_ro_after_init, |
1975 | __end_ro_after_init - __start_ro_after_init, | |
1976 | KMEMLEAK_GREY, GFP_ATOMIC); | |
3c7b4e6b CM |
1977 | } |
1978 | ||
1979 | /* | |
1980 | * Late initialization function. | |
1981 | */ | |
1982 | static int __init kmemleak_late_init(void) | |
1983 | { | |
8910ae89 | 1984 | kmemleak_initialized = 1; |
3c7b4e6b | 1985 | |
282401df | 1986 | debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops); |
b353756b | 1987 | |
8910ae89 | 1988 | if (kmemleak_error) { |
3c7b4e6b | 1989 | /* |
25985edc | 1990 | * Some error occurred and kmemleak was disabled. There is a |
3c7b4e6b CM |
1991 | * small chance that kmemleak_disable() was called immediately |
1992 | * after setting kmemleak_initialized and we may end up with | |
1993 | * two clean-up threads but serialized by scan_mutex. | |
1994 | */ | |
179a8100 | 1995 | schedule_work(&cleanup_work); |
3c7b4e6b CM |
1996 | return -ENOMEM; |
1997 | } | |
1998 | ||
d53ce042 SK |
1999 | if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) { |
2000 | mutex_lock(&scan_mutex); | |
2001 | start_scan_thread(); | |
2002 | mutex_unlock(&scan_mutex); | |
2003 | } | |
3c7b4e6b | 2004 | |
0e965a6b QC |
2005 | pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n", |
2006 | mem_pool_free_count); | |
3c7b4e6b CM |
2007 | |
2008 | return 0; | |
2009 | } | |
2010 | late_initcall(kmemleak_late_init); |