]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * inode->i_alloc_sem (vmtruncate_range) |
25 | * mm->mmap_sem | |
26 | * page->flags PG_locked (lock_page) | |
27 | * mapping->i_mmap_lock | |
28 | * anon_vma->lock | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * inode_lock (in set_page_dirty's __mark_inode_dirty) | |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
38 | * within inode_lock in __sync_single_inode) | |
1da177e4 LT |
39 | */ |
40 | ||
41 | #include <linux/mm.h> | |
42 | #include <linux/pagemap.h> | |
43 | #include <linux/swap.h> | |
44 | #include <linux/swapops.h> | |
45 | #include <linux/slab.h> | |
46 | #include <linux/init.h> | |
47 | #include <linux/rmap.h> | |
48 | #include <linux/rcupdate.h> | |
a48d07af | 49 | #include <linux/module.h> |
8a9f3ccd | 50 | #include <linux/memcontrol.h> |
cddb8a5c | 51 | #include <linux/mmu_notifier.h> |
64cdd548 | 52 | #include <linux/migrate.h> |
1da177e4 LT |
53 | |
54 | #include <asm/tlbflush.h> | |
55 | ||
b291f000 NP |
56 | #include "internal.h" |
57 | ||
fdd2e5f8 AB |
58 | static struct kmem_cache *anon_vma_cachep; |
59 | ||
60 | static inline struct anon_vma *anon_vma_alloc(void) | |
61 | { | |
62 | return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
63 | } | |
64 | ||
65 | static inline void anon_vma_free(struct anon_vma *anon_vma) | |
66 | { | |
67 | kmem_cache_free(anon_vma_cachep, anon_vma); | |
68 | } | |
1da177e4 | 69 | |
d9d332e0 LT |
70 | /** |
71 | * anon_vma_prepare - attach an anon_vma to a memory region | |
72 | * @vma: the memory region in question | |
73 | * | |
74 | * This makes sure the memory mapping described by 'vma' has | |
75 | * an 'anon_vma' attached to it, so that we can associate the | |
76 | * anonymous pages mapped into it with that anon_vma. | |
77 | * | |
78 | * The common case will be that we already have one, but if | |
79 | * if not we either need to find an adjacent mapping that we | |
80 | * can re-use the anon_vma from (very common when the only | |
81 | * reason for splitting a vma has been mprotect()), or we | |
82 | * allocate a new one. | |
83 | * | |
84 | * Anon-vma allocations are very subtle, because we may have | |
85 | * optimistically looked up an anon_vma in page_lock_anon_vma() | |
86 | * and that may actually touch the spinlock even in the newly | |
87 | * allocated vma (it depends on RCU to make sure that the | |
88 | * anon_vma isn't actually destroyed). | |
89 | * | |
90 | * As a result, we need to do proper anon_vma locking even | |
91 | * for the new allocation. At the same time, we do not want | |
92 | * to do any locking for the common case of already having | |
93 | * an anon_vma. | |
94 | * | |
95 | * This must be called with the mmap_sem held for reading. | |
96 | */ | |
1da177e4 LT |
97 | int anon_vma_prepare(struct vm_area_struct *vma) |
98 | { | |
99 | struct anon_vma *anon_vma = vma->anon_vma; | |
100 | ||
101 | might_sleep(); | |
102 | if (unlikely(!anon_vma)) { | |
103 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 104 | struct anon_vma *allocated; |
1da177e4 LT |
105 | |
106 | anon_vma = find_mergeable_anon_vma(vma); | |
d9d332e0 LT |
107 | allocated = NULL; |
108 | if (!anon_vma) { | |
1da177e4 LT |
109 | anon_vma = anon_vma_alloc(); |
110 | if (unlikely(!anon_vma)) | |
111 | return -ENOMEM; | |
112 | allocated = anon_vma; | |
1da177e4 | 113 | } |
d9d332e0 | 114 | spin_lock(&anon_vma->lock); |
1da177e4 LT |
115 | |
116 | /* page_table_lock to protect against threads */ | |
117 | spin_lock(&mm->page_table_lock); | |
118 | if (likely(!vma->anon_vma)) { | |
119 | vma->anon_vma = anon_vma; | |
0697212a | 120 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
121 | allocated = NULL; |
122 | } | |
123 | spin_unlock(&mm->page_table_lock); | |
124 | ||
d9d332e0 | 125 | spin_unlock(&anon_vma->lock); |
1da177e4 LT |
126 | if (unlikely(allocated)) |
127 | anon_vma_free(allocated); | |
128 | } | |
129 | return 0; | |
130 | } | |
131 | ||
132 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) | |
133 | { | |
134 | BUG_ON(vma->anon_vma != next->anon_vma); | |
135 | list_del(&next->anon_vma_node); | |
136 | } | |
137 | ||
138 | void __anon_vma_link(struct vm_area_struct *vma) | |
139 | { | |
140 | struct anon_vma *anon_vma = vma->anon_vma; | |
141 | ||
30acbaba | 142 | if (anon_vma) |
0697212a | 143 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
144 | } |
145 | ||
146 | void anon_vma_link(struct vm_area_struct *vma) | |
147 | { | |
148 | struct anon_vma *anon_vma = vma->anon_vma; | |
149 | ||
150 | if (anon_vma) { | |
151 | spin_lock(&anon_vma->lock); | |
0697212a | 152 | list_add_tail(&vma->anon_vma_node, &anon_vma->head); |
1da177e4 LT |
153 | spin_unlock(&anon_vma->lock); |
154 | } | |
155 | } | |
156 | ||
157 | void anon_vma_unlink(struct vm_area_struct *vma) | |
158 | { | |
159 | struct anon_vma *anon_vma = vma->anon_vma; | |
160 | int empty; | |
161 | ||
162 | if (!anon_vma) | |
163 | return; | |
164 | ||
165 | spin_lock(&anon_vma->lock); | |
1da177e4 LT |
166 | list_del(&vma->anon_vma_node); |
167 | ||
168 | /* We must garbage collect the anon_vma if it's empty */ | |
169 | empty = list_empty(&anon_vma->head); | |
170 | spin_unlock(&anon_vma->lock); | |
171 | ||
172 | if (empty) | |
173 | anon_vma_free(anon_vma); | |
174 | } | |
175 | ||
51cc5068 | 176 | static void anon_vma_ctor(void *data) |
1da177e4 | 177 | { |
a35afb83 | 178 | struct anon_vma *anon_vma = data; |
1da177e4 | 179 | |
a35afb83 CL |
180 | spin_lock_init(&anon_vma->lock); |
181 | INIT_LIST_HEAD(&anon_vma->head); | |
1da177e4 LT |
182 | } |
183 | ||
184 | void __init anon_vma_init(void) | |
185 | { | |
186 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 187 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
1da177e4 LT |
188 | } |
189 | ||
190 | /* | |
191 | * Getting a lock on a stable anon_vma from a page off the LRU is | |
192 | * tricky: page_lock_anon_vma rely on RCU to guard against the races. | |
193 | */ | |
2afd1c92 | 194 | static struct anon_vma *page_lock_anon_vma(struct page *page) |
1da177e4 | 195 | { |
34bbd704 | 196 | struct anon_vma *anon_vma; |
1da177e4 LT |
197 | unsigned long anon_mapping; |
198 | ||
199 | rcu_read_lock(); | |
200 | anon_mapping = (unsigned long) page->mapping; | |
201 | if (!(anon_mapping & PAGE_MAPPING_ANON)) | |
202 | goto out; | |
203 | if (!page_mapped(page)) | |
204 | goto out; | |
205 | ||
206 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
207 | spin_lock(&anon_vma->lock); | |
34bbd704 | 208 | return anon_vma; |
1da177e4 LT |
209 | out: |
210 | rcu_read_unlock(); | |
34bbd704 ON |
211 | return NULL; |
212 | } | |
213 | ||
2afd1c92 | 214 | static void page_unlock_anon_vma(struct anon_vma *anon_vma) |
34bbd704 ON |
215 | { |
216 | spin_unlock(&anon_vma->lock); | |
217 | rcu_read_unlock(); | |
1da177e4 LT |
218 | } |
219 | ||
220 | /* | |
3ad33b24 LS |
221 | * At what user virtual address is page expected in @vma? |
222 | * Returns virtual address or -EFAULT if page's index/offset is not | |
223 | * within the range mapped the @vma. | |
1da177e4 LT |
224 | */ |
225 | static inline unsigned long | |
226 | vma_address(struct page *page, struct vm_area_struct *vma) | |
227 | { | |
228 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
229 | unsigned long address; | |
230 | ||
231 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | |
232 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
3ad33b24 | 233 | /* page should be within @vma mapping range */ |
1da177e4 LT |
234 | return -EFAULT; |
235 | } | |
236 | return address; | |
237 | } | |
238 | ||
239 | /* | |
240 | * At what user virtual address is page expected in vma? checking that the | |
ee498ed7 | 241 | * page matches the vma: currently only used on anon pages, by unuse_vma; |
1da177e4 LT |
242 | */ |
243 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
244 | { | |
245 | if (PageAnon(page)) { | |
246 | if ((void *)vma->anon_vma != | |
247 | (void *)page->mapping - PAGE_MAPPING_ANON) | |
248 | return -EFAULT; | |
249 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
250 | if (!vma->vm_file || |
251 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
252 | return -EFAULT; |
253 | } else | |
254 | return -EFAULT; | |
255 | return vma_address(page, vma); | |
256 | } | |
257 | ||
81b4082d ND |
258 | /* |
259 | * Check that @page is mapped at @address into @mm. | |
260 | * | |
479db0bf NP |
261 | * If @sync is false, page_check_address may perform a racy check to avoid |
262 | * the page table lock when the pte is not present (helpful when reclaiming | |
263 | * highly shared pages). | |
264 | * | |
b8072f09 | 265 | * On success returns with pte mapped and locked. |
81b4082d | 266 | */ |
ceffc078 | 267 | pte_t *page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 268 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d ND |
269 | { |
270 | pgd_t *pgd; | |
271 | pud_t *pud; | |
272 | pmd_t *pmd; | |
273 | pte_t *pte; | |
c0718806 | 274 | spinlock_t *ptl; |
81b4082d | 275 | |
81b4082d | 276 | pgd = pgd_offset(mm, address); |
c0718806 HD |
277 | if (!pgd_present(*pgd)) |
278 | return NULL; | |
279 | ||
280 | pud = pud_offset(pgd, address); | |
281 | if (!pud_present(*pud)) | |
282 | return NULL; | |
283 | ||
284 | pmd = pmd_offset(pud, address); | |
285 | if (!pmd_present(*pmd)) | |
286 | return NULL; | |
287 | ||
288 | pte = pte_offset_map(pmd, address); | |
289 | /* Make a quick check before getting the lock */ | |
479db0bf | 290 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
291 | pte_unmap(pte); |
292 | return NULL; | |
293 | } | |
294 | ||
4c21e2f2 | 295 | ptl = pte_lockptr(mm, pmd); |
c0718806 HD |
296 | spin_lock(ptl); |
297 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
298 | *ptlp = ptl; | |
299 | return pte; | |
81b4082d | 300 | } |
c0718806 HD |
301 | pte_unmap_unlock(pte, ptl); |
302 | return NULL; | |
81b4082d ND |
303 | } |
304 | ||
b291f000 NP |
305 | /** |
306 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
307 | * @page: the page to test | |
308 | * @vma: the VMA to test | |
309 | * | |
310 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
311 | * if the page is not mapped into the page tables of this VMA. Only | |
312 | * valid for normal file or anonymous VMAs. | |
313 | */ | |
314 | static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) | |
315 | { | |
316 | unsigned long address; | |
317 | pte_t *pte; | |
318 | spinlock_t *ptl; | |
319 | ||
320 | address = vma_address(page, vma); | |
321 | if (address == -EFAULT) /* out of vma range */ | |
322 | return 0; | |
323 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
324 | if (!pte) /* the page is not in this mm */ | |
325 | return 0; | |
326 | pte_unmap_unlock(pte, ptl); | |
327 | ||
328 | return 1; | |
329 | } | |
330 | ||
1da177e4 LT |
331 | /* |
332 | * Subfunctions of page_referenced: page_referenced_one called | |
333 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
334 | */ | |
335 | static int page_referenced_one(struct page *page, | |
6fe6b7e3 WF |
336 | struct vm_area_struct *vma, |
337 | unsigned int *mapcount, | |
338 | unsigned long *vm_flags) | |
1da177e4 LT |
339 | { |
340 | struct mm_struct *mm = vma->vm_mm; | |
341 | unsigned long address; | |
1da177e4 | 342 | pte_t *pte; |
c0718806 | 343 | spinlock_t *ptl; |
1da177e4 LT |
344 | int referenced = 0; |
345 | ||
1da177e4 LT |
346 | address = vma_address(page, vma); |
347 | if (address == -EFAULT) | |
348 | goto out; | |
349 | ||
479db0bf | 350 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 HD |
351 | if (!pte) |
352 | goto out; | |
1da177e4 | 353 | |
b291f000 NP |
354 | /* |
355 | * Don't want to elevate referenced for mlocked page that gets this far, | |
356 | * in order that it progresses to try_to_unmap and is moved to the | |
357 | * unevictable list. | |
358 | */ | |
5a9bbdcd | 359 | if (vma->vm_flags & VM_LOCKED) { |
5a9bbdcd | 360 | *mapcount = 1; /* break early from loop */ |
b291f000 NP |
361 | goto out_unmap; |
362 | } | |
363 | ||
4917e5d0 JW |
364 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
365 | /* | |
366 | * Don't treat a reference through a sequentially read | |
367 | * mapping as such. If the page has been used in | |
368 | * another mapping, we will catch it; if this other | |
369 | * mapping is already gone, the unmap path will have | |
370 | * set PG_referenced or activated the page. | |
371 | */ | |
372 | if (likely(!VM_SequentialReadHint(vma))) | |
373 | referenced++; | |
374 | } | |
1da177e4 | 375 | |
c0718806 HD |
376 | /* Pretend the page is referenced if the task has the |
377 | swap token and is in the middle of a page fault. */ | |
f7b7fd8f | 378 | if (mm != current->mm && has_swap_token(mm) && |
c0718806 HD |
379 | rwsem_is_locked(&mm->mmap_sem)) |
380 | referenced++; | |
381 | ||
b291f000 | 382 | out_unmap: |
c0718806 HD |
383 | (*mapcount)--; |
384 | pte_unmap_unlock(pte, ptl); | |
1da177e4 | 385 | out: |
6fe6b7e3 WF |
386 | if (referenced) |
387 | *vm_flags |= vma->vm_flags; | |
1da177e4 LT |
388 | return referenced; |
389 | } | |
390 | ||
bed7161a | 391 | static int page_referenced_anon(struct page *page, |
6fe6b7e3 WF |
392 | struct mem_cgroup *mem_cont, |
393 | unsigned long *vm_flags) | |
1da177e4 LT |
394 | { |
395 | unsigned int mapcount; | |
396 | struct anon_vma *anon_vma; | |
397 | struct vm_area_struct *vma; | |
398 | int referenced = 0; | |
399 | ||
400 | anon_vma = page_lock_anon_vma(page); | |
401 | if (!anon_vma) | |
402 | return referenced; | |
403 | ||
404 | mapcount = page_mapcount(page); | |
405 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
bed7161a BS |
406 | /* |
407 | * If we are reclaiming on behalf of a cgroup, skip | |
408 | * counting on behalf of references from different | |
409 | * cgroups | |
410 | */ | |
bd845e38 | 411 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 412 | continue; |
6fe6b7e3 WF |
413 | referenced += page_referenced_one(page, vma, |
414 | &mapcount, vm_flags); | |
1da177e4 LT |
415 | if (!mapcount) |
416 | break; | |
417 | } | |
34bbd704 ON |
418 | |
419 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
420 | return referenced; |
421 | } | |
422 | ||
423 | /** | |
424 | * page_referenced_file - referenced check for object-based rmap | |
425 | * @page: the page we're checking references on. | |
43d8eac4 | 426 | * @mem_cont: target memory controller |
6fe6b7e3 | 427 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
428 | * |
429 | * For an object-based mapped page, find all the places it is mapped and | |
430 | * check/clear the referenced flag. This is done by following the page->mapping | |
431 | * pointer, then walking the chain of vmas it holds. It returns the number | |
432 | * of references it found. | |
433 | * | |
434 | * This function is only called from page_referenced for object-based pages. | |
435 | */ | |
bed7161a | 436 | static int page_referenced_file(struct page *page, |
6fe6b7e3 WF |
437 | struct mem_cgroup *mem_cont, |
438 | unsigned long *vm_flags) | |
1da177e4 LT |
439 | { |
440 | unsigned int mapcount; | |
441 | struct address_space *mapping = page->mapping; | |
442 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
443 | struct vm_area_struct *vma; | |
444 | struct prio_tree_iter iter; | |
445 | int referenced = 0; | |
446 | ||
447 | /* | |
448 | * The caller's checks on page->mapping and !PageAnon have made | |
449 | * sure that this is a file page: the check for page->mapping | |
450 | * excludes the case just before it gets set on an anon page. | |
451 | */ | |
452 | BUG_ON(PageAnon(page)); | |
453 | ||
454 | /* | |
455 | * The page lock not only makes sure that page->mapping cannot | |
456 | * suddenly be NULLified by truncation, it makes sure that the | |
457 | * structure at mapping cannot be freed and reused yet, | |
458 | * so we can safely take mapping->i_mmap_lock. | |
459 | */ | |
460 | BUG_ON(!PageLocked(page)); | |
461 | ||
462 | spin_lock(&mapping->i_mmap_lock); | |
463 | ||
464 | /* | |
465 | * i_mmap_lock does not stabilize mapcount at all, but mapcount | |
466 | * is more likely to be accurate if we note it after spinning. | |
467 | */ | |
468 | mapcount = page_mapcount(page); | |
469 | ||
470 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
bed7161a BS |
471 | /* |
472 | * If we are reclaiming on behalf of a cgroup, skip | |
473 | * counting on behalf of references from different | |
474 | * cgroups | |
475 | */ | |
bd845e38 | 476 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 477 | continue; |
6fe6b7e3 WF |
478 | referenced += page_referenced_one(page, vma, |
479 | &mapcount, vm_flags); | |
1da177e4 LT |
480 | if (!mapcount) |
481 | break; | |
482 | } | |
483 | ||
484 | spin_unlock(&mapping->i_mmap_lock); | |
485 | return referenced; | |
486 | } | |
487 | ||
488 | /** | |
489 | * page_referenced - test if the page was referenced | |
490 | * @page: the page to test | |
491 | * @is_locked: caller holds lock on the page | |
43d8eac4 | 492 | * @mem_cont: target memory controller |
6fe6b7e3 | 493 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
494 | * |
495 | * Quick test_and_clear_referenced for all mappings to a page, | |
496 | * returns the number of ptes which referenced the page. | |
497 | */ | |
6fe6b7e3 WF |
498 | int page_referenced(struct page *page, |
499 | int is_locked, | |
500 | struct mem_cgroup *mem_cont, | |
501 | unsigned long *vm_flags) | |
1da177e4 LT |
502 | { |
503 | int referenced = 0; | |
504 | ||
1da177e4 LT |
505 | if (TestClearPageReferenced(page)) |
506 | referenced++; | |
507 | ||
6fe6b7e3 | 508 | *vm_flags = 0; |
1da177e4 LT |
509 | if (page_mapped(page) && page->mapping) { |
510 | if (PageAnon(page)) | |
6fe6b7e3 WF |
511 | referenced += page_referenced_anon(page, mem_cont, |
512 | vm_flags); | |
1da177e4 | 513 | else if (is_locked) |
6fe6b7e3 WF |
514 | referenced += page_referenced_file(page, mem_cont, |
515 | vm_flags); | |
529ae9aa | 516 | else if (!trylock_page(page)) |
1da177e4 LT |
517 | referenced++; |
518 | else { | |
519 | if (page->mapping) | |
6fe6b7e3 WF |
520 | referenced += page_referenced_file(page, |
521 | mem_cont, vm_flags); | |
1da177e4 LT |
522 | unlock_page(page); |
523 | } | |
524 | } | |
5b7baf05 CB |
525 | |
526 | if (page_test_and_clear_young(page)) | |
527 | referenced++; | |
528 | ||
1da177e4 LT |
529 | return referenced; |
530 | } | |
531 | ||
d08b3851 PZ |
532 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma) |
533 | { | |
534 | struct mm_struct *mm = vma->vm_mm; | |
535 | unsigned long address; | |
c2fda5fe | 536 | pte_t *pte; |
d08b3851 PZ |
537 | spinlock_t *ptl; |
538 | int ret = 0; | |
539 | ||
540 | address = vma_address(page, vma); | |
541 | if (address == -EFAULT) | |
542 | goto out; | |
543 | ||
479db0bf | 544 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
545 | if (!pte) |
546 | goto out; | |
547 | ||
c2fda5fe PZ |
548 | if (pte_dirty(*pte) || pte_write(*pte)) { |
549 | pte_t entry; | |
d08b3851 | 550 | |
c2fda5fe | 551 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 552 | entry = ptep_clear_flush_notify(vma, address, pte); |
c2fda5fe PZ |
553 | entry = pte_wrprotect(entry); |
554 | entry = pte_mkclean(entry); | |
d6e88e67 | 555 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
556 | ret = 1; |
557 | } | |
d08b3851 | 558 | |
d08b3851 PZ |
559 | pte_unmap_unlock(pte, ptl); |
560 | out: | |
561 | return ret; | |
562 | } | |
563 | ||
564 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
565 | { | |
566 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
567 | struct vm_area_struct *vma; | |
568 | struct prio_tree_iter iter; | |
569 | int ret = 0; | |
570 | ||
571 | BUG_ON(PageAnon(page)); | |
572 | ||
573 | spin_lock(&mapping->i_mmap_lock); | |
574 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
575 | if (vma->vm_flags & VM_SHARED) | |
576 | ret += page_mkclean_one(page, vma); | |
577 | } | |
578 | spin_unlock(&mapping->i_mmap_lock); | |
579 | return ret; | |
580 | } | |
581 | ||
582 | int page_mkclean(struct page *page) | |
583 | { | |
584 | int ret = 0; | |
585 | ||
586 | BUG_ON(!PageLocked(page)); | |
587 | ||
588 | if (page_mapped(page)) { | |
589 | struct address_space *mapping = page_mapping(page); | |
ce7e9fae | 590 | if (mapping) { |
d08b3851 | 591 | ret = page_mkclean_file(mapping, page); |
ce7e9fae CB |
592 | if (page_test_dirty(page)) { |
593 | page_clear_dirty(page); | |
594 | ret = 1; | |
595 | } | |
6c210482 | 596 | } |
d08b3851 PZ |
597 | } |
598 | ||
599 | return ret; | |
600 | } | |
60b59bea | 601 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 602 | |
9617d95e | 603 | /** |
43d8eac4 | 604 | * __page_set_anon_rmap - setup new anonymous rmap |
9617d95e NP |
605 | * @page: the page to add the mapping to |
606 | * @vma: the vm area in which the mapping is added | |
607 | * @address: the user virtual address mapped | |
608 | */ | |
609 | static void __page_set_anon_rmap(struct page *page, | |
610 | struct vm_area_struct *vma, unsigned long address) | |
611 | { | |
612 | struct anon_vma *anon_vma = vma->anon_vma; | |
613 | ||
614 | BUG_ON(!anon_vma); | |
615 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
616 | page->mapping = (struct address_space *) anon_vma; | |
617 | ||
618 | page->index = linear_page_index(vma, address); | |
619 | ||
a74609fa NP |
620 | /* |
621 | * nr_mapped state can be updated without turning off | |
622 | * interrupts because it is not modified via interrupt. | |
623 | */ | |
f3dbd344 | 624 | __inc_zone_page_state(page, NR_ANON_PAGES); |
9617d95e NP |
625 | } |
626 | ||
c97a9e10 | 627 | /** |
43d8eac4 | 628 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
629 | * @page: the page to add the mapping to |
630 | * @vma: the vm area in which the mapping is added | |
631 | * @address: the user virtual address mapped | |
632 | */ | |
633 | static void __page_check_anon_rmap(struct page *page, | |
634 | struct vm_area_struct *vma, unsigned long address) | |
635 | { | |
636 | #ifdef CONFIG_DEBUG_VM | |
637 | /* | |
638 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
639 | * be set up correctly at this point. | |
640 | * | |
641 | * We have exclusion against page_add_anon_rmap because the caller | |
642 | * always holds the page locked, except if called from page_dup_rmap, | |
643 | * in which case the page is already known to be setup. | |
644 | * | |
645 | * We have exclusion against page_add_new_anon_rmap because those pages | |
646 | * are initially only visible via the pagetables, and the pte is locked | |
647 | * over the call to page_add_new_anon_rmap. | |
648 | */ | |
649 | struct anon_vma *anon_vma = vma->anon_vma; | |
650 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
651 | BUG_ON(page->mapping != (struct address_space *)anon_vma); | |
652 | BUG_ON(page->index != linear_page_index(vma, address)); | |
653 | #endif | |
654 | } | |
655 | ||
1da177e4 LT |
656 | /** |
657 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
658 | * @page: the page to add the mapping to | |
659 | * @vma: the vm area in which the mapping is added | |
660 | * @address: the user virtual address mapped | |
661 | * | |
c97a9e10 | 662 | * The caller needs to hold the pte lock and the page must be locked. |
1da177e4 LT |
663 | */ |
664 | void page_add_anon_rmap(struct page *page, | |
665 | struct vm_area_struct *vma, unsigned long address) | |
666 | { | |
c97a9e10 NP |
667 | VM_BUG_ON(!PageLocked(page)); |
668 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
9617d95e NP |
669 | if (atomic_inc_and_test(&page->_mapcount)) |
670 | __page_set_anon_rmap(page, vma, address); | |
69029cd5 | 671 | else |
c97a9e10 | 672 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
673 | } |
674 | ||
43d8eac4 | 675 | /** |
9617d95e NP |
676 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
677 | * @page: the page to add the mapping to | |
678 | * @vma: the vm area in which the mapping is added | |
679 | * @address: the user virtual address mapped | |
680 | * | |
681 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
682 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 683 | * Page does not have to be locked. |
9617d95e NP |
684 | */ |
685 | void page_add_new_anon_rmap(struct page *page, | |
686 | struct vm_area_struct *vma, unsigned long address) | |
687 | { | |
b5934c53 | 688 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
cbf84b7a HD |
689 | SetPageSwapBacked(page); |
690 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
9617d95e | 691 | __page_set_anon_rmap(page, vma, address); |
b5934c53 | 692 | if (page_evictable(page, vma)) |
cbf84b7a | 693 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); |
b5934c53 HD |
694 | else |
695 | add_page_to_unevictable_list(page); | |
9617d95e NP |
696 | } |
697 | ||
1da177e4 LT |
698 | /** |
699 | * page_add_file_rmap - add pte mapping to a file page | |
700 | * @page: the page to add the mapping to | |
701 | * | |
b8072f09 | 702 | * The caller needs to hold the pte lock. |
1da177e4 LT |
703 | */ |
704 | void page_add_file_rmap(struct page *page) | |
705 | { | |
1da177e4 | 706 | if (atomic_inc_and_test(&page->_mapcount)) |
65ba55f5 | 707 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
1da177e4 LT |
708 | } |
709 | ||
c97a9e10 NP |
710 | #ifdef CONFIG_DEBUG_VM |
711 | /** | |
712 | * page_dup_rmap - duplicate pte mapping to a page | |
713 | * @page: the page to add the mapping to | |
43d8eac4 RD |
714 | * @vma: the vm area being duplicated |
715 | * @address: the user virtual address mapped | |
c97a9e10 NP |
716 | * |
717 | * For copy_page_range only: minimal extract from page_add_file_rmap / | |
718 | * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's | |
719 | * quicker. | |
720 | * | |
721 | * The caller needs to hold the pte lock. | |
722 | */ | |
723 | void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address) | |
724 | { | |
c97a9e10 NP |
725 | if (PageAnon(page)) |
726 | __page_check_anon_rmap(page, vma, address); | |
727 | atomic_inc(&page->_mapcount); | |
728 | } | |
729 | #endif | |
730 | ||
1da177e4 LT |
731 | /** |
732 | * page_remove_rmap - take down pte mapping from a page | |
733 | * @page: page to remove mapping from | |
734 | * | |
b8072f09 | 735 | * The caller needs to hold the pte lock. |
1da177e4 | 736 | */ |
edc315fd | 737 | void page_remove_rmap(struct page *page) |
1da177e4 | 738 | { |
1da177e4 | 739 | if (atomic_add_negative(-1, &page->_mapcount)) { |
1da177e4 | 740 | /* |
16f8c5b2 HD |
741 | * Now that the last pte has gone, s390 must transfer dirty |
742 | * flag from storage key to struct page. We can usually skip | |
743 | * this if the page is anon, so about to be freed; but perhaps | |
744 | * not if it's in swapcache - there might be another pte slot | |
745 | * containing the swap entry, but page not yet written to swap. | |
1da177e4 | 746 | */ |
a4b526b3 MS |
747 | if ((!PageAnon(page) || PageSwapCache(page)) && |
748 | page_test_dirty(page)) { | |
6c210482 | 749 | page_clear_dirty(page); |
1da177e4 | 750 | set_page_dirty(page); |
6c210482 | 751 | } |
5b4e655e KH |
752 | if (PageAnon(page)) |
753 | mem_cgroup_uncharge_page(page); | |
f3dbd344 | 754 | __dec_zone_page_state(page, |
16f8c5b2 HD |
755 | PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED); |
756 | /* | |
757 | * It would be tidy to reset the PageAnon mapping here, | |
758 | * but that might overwrite a racing page_add_anon_rmap | |
759 | * which increments mapcount after us but sets mapping | |
760 | * before us: so leave the reset to free_hot_cold_page, | |
761 | * and remember that it's only reliable while mapped. | |
762 | * Leaving it set also helps swapoff to reinstate ptes | |
763 | * faster for those pages still in swapcache. | |
764 | */ | |
1da177e4 LT |
765 | } |
766 | } | |
767 | ||
768 | /* | |
769 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
770 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
771 | */ | |
a48d07af | 772 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
7352349a | 773 | int migration) |
1da177e4 LT |
774 | { |
775 | struct mm_struct *mm = vma->vm_mm; | |
776 | unsigned long address; | |
1da177e4 LT |
777 | pte_t *pte; |
778 | pte_t pteval; | |
c0718806 | 779 | spinlock_t *ptl; |
1da177e4 LT |
780 | int ret = SWAP_AGAIN; |
781 | ||
1da177e4 LT |
782 | address = vma_address(page, vma); |
783 | if (address == -EFAULT) | |
784 | goto out; | |
785 | ||
479db0bf | 786 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 787 | if (!pte) |
81b4082d | 788 | goto out; |
1da177e4 LT |
789 | |
790 | /* | |
791 | * If the page is mlock()d, we cannot swap it out. | |
792 | * If it's recently referenced (perhaps page_referenced | |
793 | * skipped over this mm) then we should reactivate it. | |
794 | */ | |
b291f000 NP |
795 | if (!migration) { |
796 | if (vma->vm_flags & VM_LOCKED) { | |
797 | ret = SWAP_MLOCK; | |
798 | goto out_unmap; | |
799 | } | |
800 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | |
801 | ret = SWAP_FAIL; | |
802 | goto out_unmap; | |
803 | } | |
804 | } | |
1da177e4 | 805 | |
1da177e4 LT |
806 | /* Nuke the page table entry. */ |
807 | flush_cache_page(vma, address, page_to_pfn(page)); | |
cddb8a5c | 808 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
809 | |
810 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
811 | if (pte_dirty(pteval)) | |
812 | set_page_dirty(page); | |
813 | ||
365e9c87 HD |
814 | /* Update high watermark before we lower rss */ |
815 | update_hiwater_rss(mm); | |
816 | ||
1da177e4 | 817 | if (PageAnon(page)) { |
4c21e2f2 | 818 | swp_entry_t entry = { .val = page_private(page) }; |
0697212a CL |
819 | |
820 | if (PageSwapCache(page)) { | |
821 | /* | |
822 | * Store the swap location in the pte. | |
823 | * See handle_pte_fault() ... | |
824 | */ | |
825 | swap_duplicate(entry); | |
826 | if (list_empty(&mm->mmlist)) { | |
827 | spin_lock(&mmlist_lock); | |
828 | if (list_empty(&mm->mmlist)) | |
829 | list_add(&mm->mmlist, &init_mm.mmlist); | |
830 | spin_unlock(&mmlist_lock); | |
831 | } | |
442c9137 | 832 | dec_mm_counter(mm, anon_rss); |
64cdd548 | 833 | } else if (PAGE_MIGRATION) { |
0697212a CL |
834 | /* |
835 | * Store the pfn of the page in a special migration | |
836 | * pte. do_swap_page() will wait until the migration | |
837 | * pte is removed and then restart fault handling. | |
838 | */ | |
839 | BUG_ON(!migration); | |
840 | entry = make_migration_entry(page, pte_write(pteval)); | |
1da177e4 LT |
841 | } |
842 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
843 | BUG_ON(pte_file(*pte)); | |
64cdd548 | 844 | } else if (PAGE_MIGRATION && migration) { |
04e62a29 CL |
845 | /* Establish migration entry for a file page */ |
846 | swp_entry_t entry; | |
847 | entry = make_migration_entry(page, pte_write(pteval)); | |
848 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
849 | } else | |
4294621f | 850 | dec_mm_counter(mm, file_rss); |
1da177e4 | 851 | |
04e62a29 | 852 | |
edc315fd | 853 | page_remove_rmap(page); |
1da177e4 LT |
854 | page_cache_release(page); |
855 | ||
856 | out_unmap: | |
c0718806 | 857 | pte_unmap_unlock(pte, ptl); |
1da177e4 LT |
858 | out: |
859 | return ret; | |
860 | } | |
861 | ||
862 | /* | |
863 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
864 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
865 | * Consequently, given a particular page and its ->index, we cannot locate the | |
866 | * ptes which are mapping that page without an exhaustive linear search. | |
867 | * | |
868 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
869 | * maps the file to which the target page belongs. The ->vm_private_data field | |
870 | * holds the current cursor into that scan. Successive searches will circulate | |
871 | * around the vma's virtual address space. | |
872 | * | |
873 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
874 | * more scanning pressure is placed against them as well. Eventually pages | |
875 | * will become fully unmapped and are eligible for eviction. | |
876 | * | |
877 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
878 | * there there won't be many ptes located within the scan cluster. In this case | |
879 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
880 | * |
881 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
882 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
883 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
884 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
885 | */ |
886 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
887 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
888 | ||
b291f000 NP |
889 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
890 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
891 | { |
892 | struct mm_struct *mm = vma->vm_mm; | |
893 | pgd_t *pgd; | |
894 | pud_t *pud; | |
895 | pmd_t *pmd; | |
c0718806 | 896 | pte_t *pte; |
1da177e4 | 897 | pte_t pteval; |
c0718806 | 898 | spinlock_t *ptl; |
1da177e4 LT |
899 | struct page *page; |
900 | unsigned long address; | |
901 | unsigned long end; | |
b291f000 NP |
902 | int ret = SWAP_AGAIN; |
903 | int locked_vma = 0; | |
1da177e4 | 904 | |
1da177e4 LT |
905 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
906 | end = address + CLUSTER_SIZE; | |
907 | if (address < vma->vm_start) | |
908 | address = vma->vm_start; | |
909 | if (end > vma->vm_end) | |
910 | end = vma->vm_end; | |
911 | ||
912 | pgd = pgd_offset(mm, address); | |
913 | if (!pgd_present(*pgd)) | |
b291f000 | 914 | return ret; |
1da177e4 LT |
915 | |
916 | pud = pud_offset(pgd, address); | |
917 | if (!pud_present(*pud)) | |
b291f000 | 918 | return ret; |
1da177e4 LT |
919 | |
920 | pmd = pmd_offset(pud, address); | |
921 | if (!pmd_present(*pmd)) | |
b291f000 NP |
922 | return ret; |
923 | ||
924 | /* | |
925 | * MLOCK_PAGES => feature is configured. | |
926 | * if we can acquire the mmap_sem for read, and vma is VM_LOCKED, | |
927 | * keep the sem while scanning the cluster for mlocking pages. | |
928 | */ | |
929 | if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
930 | locked_vma = (vma->vm_flags & VM_LOCKED); | |
931 | if (!locked_vma) | |
932 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
933 | } | |
c0718806 HD |
934 | |
935 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 936 | |
365e9c87 HD |
937 | /* Update high watermark before we lower rss */ |
938 | update_hiwater_rss(mm); | |
939 | ||
c0718806 | 940 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
941 | if (!pte_present(*pte)) |
942 | continue; | |
6aab341e LT |
943 | page = vm_normal_page(vma, address, *pte); |
944 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 945 | |
b291f000 NP |
946 | if (locked_vma) { |
947 | mlock_vma_page(page); /* no-op if already mlocked */ | |
948 | if (page == check_page) | |
949 | ret = SWAP_MLOCK; | |
950 | continue; /* don't unmap */ | |
951 | } | |
952 | ||
cddb8a5c | 953 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1da177e4 LT |
954 | continue; |
955 | ||
956 | /* Nuke the page table entry. */ | |
eca35133 | 957 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 958 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
959 | |
960 | /* If nonlinear, store the file page offset in the pte. */ | |
961 | if (page->index != linear_page_index(vma, address)) | |
962 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
963 | ||
964 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
965 | if (pte_dirty(pteval)) | |
966 | set_page_dirty(page); | |
967 | ||
edc315fd | 968 | page_remove_rmap(page); |
1da177e4 | 969 | page_cache_release(page); |
4294621f | 970 | dec_mm_counter(mm, file_rss); |
1da177e4 LT |
971 | (*mapcount)--; |
972 | } | |
c0718806 | 973 | pte_unmap_unlock(pte - 1, ptl); |
b291f000 NP |
974 | if (locked_vma) |
975 | up_read(&vma->vm_mm->mmap_sem); | |
976 | return ret; | |
1da177e4 LT |
977 | } |
978 | ||
b291f000 NP |
979 | /* |
980 | * common handling for pages mapped in VM_LOCKED vmas | |
981 | */ | |
982 | static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma) | |
983 | { | |
984 | int mlocked = 0; | |
985 | ||
986 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
987 | if (vma->vm_flags & VM_LOCKED) { | |
988 | mlock_vma_page(page); | |
989 | mlocked++; /* really mlocked the page */ | |
990 | } | |
991 | up_read(&vma->vm_mm->mmap_sem); | |
992 | } | |
993 | return mlocked; | |
994 | } | |
995 | ||
996 | /** | |
997 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | |
998 | * rmap method | |
999 | * @page: the page to unmap/unlock | |
1000 | * @unlock: request for unlock rather than unmap [unlikely] | |
1001 | * @migration: unmapping for migration - ignored if @unlock | |
1002 | * | |
1003 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1004 | * contained in the anon_vma struct it points to. | |
1005 | * | |
1006 | * This function is only called from try_to_unmap/try_to_munlock for | |
1007 | * anonymous pages. | |
1008 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1009 | * where the page was found will be held for write. So, we won't recheck | |
1010 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1011 | * 'LOCKED. | |
1012 | */ | |
1013 | static int try_to_unmap_anon(struct page *page, int unlock, int migration) | |
1da177e4 LT |
1014 | { |
1015 | struct anon_vma *anon_vma; | |
1016 | struct vm_area_struct *vma; | |
b291f000 | 1017 | unsigned int mlocked = 0; |
1da177e4 LT |
1018 | int ret = SWAP_AGAIN; |
1019 | ||
b291f000 NP |
1020 | if (MLOCK_PAGES && unlikely(unlock)) |
1021 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | |
1022 | ||
1da177e4 LT |
1023 | anon_vma = page_lock_anon_vma(page); |
1024 | if (!anon_vma) | |
1025 | return ret; | |
1026 | ||
1027 | list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | |
b291f000 NP |
1028 | if (MLOCK_PAGES && unlikely(unlock)) { |
1029 | if (!((vma->vm_flags & VM_LOCKED) && | |
1030 | page_mapped_in_vma(page, vma))) | |
1031 | continue; /* must visit all unlocked vmas */ | |
1032 | ret = SWAP_MLOCK; /* saw at least one mlocked vma */ | |
1033 | } else { | |
1034 | ret = try_to_unmap_one(page, vma, migration); | |
1035 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
1036 | break; | |
1037 | } | |
1038 | if (ret == SWAP_MLOCK) { | |
1039 | mlocked = try_to_mlock_page(page, vma); | |
1040 | if (mlocked) | |
1041 | break; /* stop if actually mlocked page */ | |
1042 | } | |
1da177e4 | 1043 | } |
34bbd704 ON |
1044 | |
1045 | page_unlock_anon_vma(anon_vma); | |
b291f000 NP |
1046 | |
1047 | if (mlocked) | |
1048 | ret = SWAP_MLOCK; /* actually mlocked the page */ | |
1049 | else if (ret == SWAP_MLOCK) | |
1050 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | |
1051 | ||
1da177e4 LT |
1052 | return ret; |
1053 | } | |
1054 | ||
1055 | /** | |
b291f000 NP |
1056 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1057 | * @page: the page to unmap/unlock | |
1058 | * @unlock: request for unlock rather than unmap [unlikely] | |
1059 | * @migration: unmapping for migration - ignored if @unlock | |
1da177e4 LT |
1060 | * |
1061 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1062 | * contained in the address_space struct it points to. | |
1063 | * | |
b291f000 NP |
1064 | * This function is only called from try_to_unmap/try_to_munlock for |
1065 | * object-based pages. | |
1066 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1067 | * where the page was found will be held for write. So, we won't recheck | |
1068 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1069 | * 'LOCKED. | |
1da177e4 | 1070 | */ |
b291f000 | 1071 | static int try_to_unmap_file(struct page *page, int unlock, int migration) |
1da177e4 LT |
1072 | { |
1073 | struct address_space *mapping = page->mapping; | |
1074 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1075 | struct vm_area_struct *vma; | |
1076 | struct prio_tree_iter iter; | |
1077 | int ret = SWAP_AGAIN; | |
1078 | unsigned long cursor; | |
1079 | unsigned long max_nl_cursor = 0; | |
1080 | unsigned long max_nl_size = 0; | |
1081 | unsigned int mapcount; | |
b291f000 NP |
1082 | unsigned int mlocked = 0; |
1083 | ||
1084 | if (MLOCK_PAGES && unlikely(unlock)) | |
1085 | ret = SWAP_SUCCESS; /* default for try_to_munlock() */ | |
1da177e4 LT |
1086 | |
1087 | spin_lock(&mapping->i_mmap_lock); | |
1088 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
b291f000 | 1089 | if (MLOCK_PAGES && unlikely(unlock)) { |
508b9f8e MK |
1090 | if (!((vma->vm_flags & VM_LOCKED) && |
1091 | page_mapped_in_vma(page, vma))) | |
b291f000 NP |
1092 | continue; /* must visit all vmas */ |
1093 | ret = SWAP_MLOCK; | |
1094 | } else { | |
1095 | ret = try_to_unmap_one(page, vma, migration); | |
1096 | if (ret == SWAP_FAIL || !page_mapped(page)) | |
1097 | goto out; | |
1098 | } | |
1099 | if (ret == SWAP_MLOCK) { | |
1100 | mlocked = try_to_mlock_page(page, vma); | |
1101 | if (mlocked) | |
1102 | break; /* stop if actually mlocked page */ | |
1103 | } | |
1da177e4 LT |
1104 | } |
1105 | ||
b291f000 NP |
1106 | if (mlocked) |
1107 | goto out; | |
1108 | ||
1da177e4 LT |
1109 | if (list_empty(&mapping->i_mmap_nonlinear)) |
1110 | goto out; | |
1111 | ||
1112 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1113 | shared.vm_set.list) { | |
b291f000 NP |
1114 | if (MLOCK_PAGES && unlikely(unlock)) { |
1115 | if (!(vma->vm_flags & VM_LOCKED)) | |
1116 | continue; /* must visit all vmas */ | |
1117 | ret = SWAP_MLOCK; /* leave mlocked == 0 */ | |
1118 | goto out; /* no need to look further */ | |
1119 | } | |
1120 | if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED)) | |
1da177e4 LT |
1121 | continue; |
1122 | cursor = (unsigned long) vma->vm_private_data; | |
1123 | if (cursor > max_nl_cursor) | |
1124 | max_nl_cursor = cursor; | |
1125 | cursor = vma->vm_end - vma->vm_start; | |
1126 | if (cursor > max_nl_size) | |
1127 | max_nl_size = cursor; | |
1128 | } | |
1129 | ||
b291f000 | 1130 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1da177e4 LT |
1131 | ret = SWAP_FAIL; |
1132 | goto out; | |
1133 | } | |
1134 | ||
1135 | /* | |
1136 | * We don't try to search for this page in the nonlinear vmas, | |
1137 | * and page_referenced wouldn't have found it anyway. Instead | |
1138 | * just walk the nonlinear vmas trying to age and unmap some. | |
1139 | * The mapcount of the page we came in with is irrelevant, | |
1140 | * but even so use it as a guide to how hard we should try? | |
1141 | */ | |
1142 | mapcount = page_mapcount(page); | |
1143 | if (!mapcount) | |
1144 | goto out; | |
1145 | cond_resched_lock(&mapping->i_mmap_lock); | |
1146 | ||
1147 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1148 | if (max_nl_cursor == 0) | |
1149 | max_nl_cursor = CLUSTER_SIZE; | |
1150 | ||
1151 | do { | |
1152 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1153 | shared.vm_set.list) { | |
b291f000 NP |
1154 | if (!MLOCK_PAGES && !migration && |
1155 | (vma->vm_flags & VM_LOCKED)) | |
1da177e4 LT |
1156 | continue; |
1157 | cursor = (unsigned long) vma->vm_private_data; | |
839b9685 | 1158 | while ( cursor < max_nl_cursor && |
1da177e4 | 1159 | cursor < vma->vm_end - vma->vm_start) { |
b291f000 NP |
1160 | ret = try_to_unmap_cluster(cursor, &mapcount, |
1161 | vma, page); | |
1162 | if (ret == SWAP_MLOCK) | |
1163 | mlocked = 2; /* to return below */ | |
1da177e4 LT |
1164 | cursor += CLUSTER_SIZE; |
1165 | vma->vm_private_data = (void *) cursor; | |
1166 | if ((int)mapcount <= 0) | |
1167 | goto out; | |
1168 | } | |
1169 | vma->vm_private_data = (void *) max_nl_cursor; | |
1170 | } | |
1171 | cond_resched_lock(&mapping->i_mmap_lock); | |
1172 | max_nl_cursor += CLUSTER_SIZE; | |
1173 | } while (max_nl_cursor <= max_nl_size); | |
1174 | ||
1175 | /* | |
1176 | * Don't loop forever (perhaps all the remaining pages are | |
1177 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1178 | * vmas, now forgetting on which ones it had fallen behind. | |
1179 | */ | |
101d2be7 HD |
1180 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1181 | vma->vm_private_data = NULL; | |
1da177e4 LT |
1182 | out: |
1183 | spin_unlock(&mapping->i_mmap_lock); | |
b291f000 NP |
1184 | if (mlocked) |
1185 | ret = SWAP_MLOCK; /* actually mlocked the page */ | |
1186 | else if (ret == SWAP_MLOCK) | |
1187 | ret = SWAP_AGAIN; /* saw VM_LOCKED vma */ | |
1da177e4 LT |
1188 | return ret; |
1189 | } | |
1190 | ||
1191 | /** | |
1192 | * try_to_unmap - try to remove all page table mappings to a page | |
1193 | * @page: the page to get unmapped | |
43d8eac4 | 1194 | * @migration: migration flag |
1da177e4 LT |
1195 | * |
1196 | * Tries to remove all the page table entries which are mapping this | |
1197 | * page, used in the pageout path. Caller must hold the page lock. | |
1198 | * Return values are: | |
1199 | * | |
1200 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1201 | * SWAP_AGAIN - we missed a mapping, try again later | |
1202 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1203 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1204 | */ |
7352349a | 1205 | int try_to_unmap(struct page *page, int migration) |
1da177e4 LT |
1206 | { |
1207 | int ret; | |
1208 | ||
1da177e4 LT |
1209 | BUG_ON(!PageLocked(page)); |
1210 | ||
1211 | if (PageAnon(page)) | |
b291f000 | 1212 | ret = try_to_unmap_anon(page, 0, migration); |
1da177e4 | 1213 | else |
b291f000 NP |
1214 | ret = try_to_unmap_file(page, 0, migration); |
1215 | if (ret != SWAP_MLOCK && !page_mapped(page)) | |
1da177e4 LT |
1216 | ret = SWAP_SUCCESS; |
1217 | return ret; | |
1218 | } | |
81b4082d | 1219 | |
b291f000 NP |
1220 | /** |
1221 | * try_to_munlock - try to munlock a page | |
1222 | * @page: the page to be munlocked | |
1223 | * | |
1224 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1225 | * to make sure nobody else has this page mlocked. The page will be | |
1226 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1227 | * | |
1228 | * Return values are: | |
1229 | * | |
1230 | * SWAP_SUCCESS - no vma's holding page mlocked. | |
1231 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem | |
1232 | * SWAP_MLOCK - page is now mlocked. | |
1233 | */ | |
1234 | int try_to_munlock(struct page *page) | |
1235 | { | |
1236 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | |
1237 | ||
1238 | if (PageAnon(page)) | |
1239 | return try_to_unmap_anon(page, 1, 0); | |
1240 | else | |
1241 | return try_to_unmap_file(page, 1, 0); | |
1242 | } | |
68377659 | 1243 |