]>
Commit | Line | Data |
---|---|---|
c1d7c514 | 1 | // SPDX-License-Identifier: GPL-2.0 |
53b381b3 DW |
2 | /* |
3 | * Copyright (C) 2012 Fusion-io All rights reserved. | |
4 | * Copyright (C) 2012 Intel Corp. All rights reserved. | |
53b381b3 | 5 | */ |
c1d7c514 | 6 | |
53b381b3 | 7 | #include <linux/sched.h> |
53b381b3 DW |
8 | #include <linux/bio.h> |
9 | #include <linux/slab.h> | |
53b381b3 | 10 | #include <linux/blkdev.h> |
53b381b3 DW |
11 | #include <linux/raid/pq.h> |
12 | #include <linux/hash.h> | |
13 | #include <linux/list_sort.h> | |
14 | #include <linux/raid/xor.h> | |
818e010b | 15 | #include <linux/mm.h> |
9b569ea0 | 16 | #include "messages.h" |
cea62800 | 17 | #include "misc.h" |
53b381b3 | 18 | #include "ctree.h" |
53b381b3 | 19 | #include "disk-io.h" |
53b381b3 DW |
20 | #include "volumes.h" |
21 | #include "raid56.h" | |
22 | #include "async-thread.h" | |
c5a41562 | 23 | #include "file-item.h" |
7a315072 | 24 | #include "btrfs_inode.h" |
53b381b3 DW |
25 | |
26 | /* set when additional merges to this rbio are not allowed */ | |
27 | #define RBIO_RMW_LOCKED_BIT 1 | |
28 | ||
4ae10b3a CM |
29 | /* |
30 | * set when this rbio is sitting in the hash, but it is just a cache | |
31 | * of past RMW | |
32 | */ | |
33 | #define RBIO_CACHE_BIT 2 | |
34 | ||
35 | /* | |
36 | * set when it is safe to trust the stripe_pages for caching | |
37 | */ | |
38 | #define RBIO_CACHE_READY_BIT 3 | |
39 | ||
4ae10b3a CM |
40 | #define RBIO_CACHE_SIZE 1024 |
41 | ||
8a953348 DS |
42 | #define BTRFS_STRIPE_HASH_TABLE_BITS 11 |
43 | ||
44 | /* Used by the raid56 code to lock stripes for read/modify/write */ | |
45 | struct btrfs_stripe_hash { | |
46 | struct list_head hash_list; | |
47 | spinlock_t lock; | |
48 | }; | |
49 | ||
50 | /* Used by the raid56 code to lock stripes for read/modify/write */ | |
51 | struct btrfs_stripe_hash_table { | |
52 | struct list_head stripe_cache; | |
53 | spinlock_t cache_lock; | |
54 | int cache_size; | |
55 | struct btrfs_stripe_hash table[]; | |
56 | }; | |
57 | ||
eb357060 QW |
58 | /* |
59 | * A bvec like structure to present a sector inside a page. | |
60 | * | |
61 | * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. | |
62 | */ | |
63 | struct sector_ptr { | |
64 | struct page *page; | |
00425dd9 QW |
65 | unsigned int pgoff:24; |
66 | unsigned int uptodate:8; | |
eb357060 QW |
67 | }; |
68 | ||
93723095 QW |
69 | static void rmw_rbio_work(struct work_struct *work); |
70 | static void rmw_rbio_work_locked(struct work_struct *work); | |
53b381b3 DW |
71 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); |
72 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | |
73 | ||
486c737f | 74 | static int finish_parity_scrub(struct btrfs_raid_bio *rbio); |
6bfd0133 | 75 | static void scrub_rbio_work_locked(struct work_struct *work); |
5a6ac9ea | 76 | |
797d74b7 QW |
77 | static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) |
78 | { | |
2942a50d | 79 | bitmap_free(rbio->error_bitmap); |
797d74b7 QW |
80 | kfree(rbio->stripe_pages); |
81 | kfree(rbio->bio_sectors); | |
82 | kfree(rbio->stripe_sectors); | |
83 | kfree(rbio->finish_pointers); | |
84 | } | |
85 | ||
ff2b64a2 QW |
86 | static void free_raid_bio(struct btrfs_raid_bio *rbio) |
87 | { | |
88 | int i; | |
89 | ||
90 | if (!refcount_dec_and_test(&rbio->refs)) | |
91 | return; | |
92 | ||
93 | WARN_ON(!list_empty(&rbio->stripe_cache)); | |
94 | WARN_ON(!list_empty(&rbio->hash_list)); | |
95 | WARN_ON(!bio_list_empty(&rbio->bio_list)); | |
96 | ||
97 | for (i = 0; i < rbio->nr_pages; i++) { | |
98 | if (rbio->stripe_pages[i]) { | |
99 | __free_page(rbio->stripe_pages[i]); | |
100 | rbio->stripe_pages[i] = NULL; | |
101 | } | |
102 | } | |
103 | ||
104 | btrfs_put_bioc(rbio->bioc); | |
797d74b7 | 105 | free_raid_bio_pointers(rbio); |
ff2b64a2 QW |
106 | kfree(rbio); |
107 | } | |
108 | ||
385de0ef | 109 | static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) |
ac638859 | 110 | { |
385de0ef CH |
111 | INIT_WORK(&rbio->work, work_func); |
112 | queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); | |
ac638859 DS |
113 | } |
114 | ||
53b381b3 DW |
115 | /* |
116 | * the stripe hash table is used for locking, and to collect | |
117 | * bios in hopes of making a full stripe | |
118 | */ | |
119 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | |
120 | { | |
121 | struct btrfs_stripe_hash_table *table; | |
122 | struct btrfs_stripe_hash_table *x; | |
123 | struct btrfs_stripe_hash *cur; | |
124 | struct btrfs_stripe_hash *h; | |
125 | int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | |
126 | int i; | |
127 | ||
128 | if (info->stripe_hash_table) | |
129 | return 0; | |
130 | ||
83c8266a DS |
131 | /* |
132 | * The table is large, starting with order 4 and can go as high as | |
133 | * order 7 in case lock debugging is turned on. | |
134 | * | |
135 | * Try harder to allocate and fallback to vmalloc to lower the chance | |
136 | * of a failing mount. | |
137 | */ | |
ee787f95 | 138 | table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); |
818e010b DS |
139 | if (!table) |
140 | return -ENOMEM; | |
53b381b3 | 141 | |
4ae10b3a CM |
142 | spin_lock_init(&table->cache_lock); |
143 | INIT_LIST_HEAD(&table->stripe_cache); | |
144 | ||
53b381b3 DW |
145 | h = table->table; |
146 | ||
147 | for (i = 0; i < num_entries; i++) { | |
148 | cur = h + i; | |
149 | INIT_LIST_HEAD(&cur->hash_list); | |
150 | spin_lock_init(&cur->lock); | |
53b381b3 DW |
151 | } |
152 | ||
153 | x = cmpxchg(&info->stripe_hash_table, NULL, table); | |
fe3b7bb0 | 154 | kvfree(x); |
53b381b3 DW |
155 | return 0; |
156 | } | |
157 | ||
4ae10b3a CM |
158 | /* |
159 | * caching an rbio means to copy anything from the | |
ac26df8b | 160 | * bio_sectors array into the stripe_pages array. We |
4ae10b3a CM |
161 | * use the page uptodate bit in the stripe cache array |
162 | * to indicate if it has valid data | |
163 | * | |
164 | * once the caching is done, we set the cache ready | |
165 | * bit. | |
166 | */ | |
167 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | |
168 | { | |
169 | int i; | |
4ae10b3a CM |
170 | int ret; |
171 | ||
172 | ret = alloc_rbio_pages(rbio); | |
173 | if (ret) | |
174 | return; | |
175 | ||
00425dd9 QW |
176 | for (i = 0; i < rbio->nr_sectors; i++) { |
177 | /* Some range not covered by bio (partial write), skip it */ | |
88074c8b QW |
178 | if (!rbio->bio_sectors[i].page) { |
179 | /* | |
180 | * Even if the sector is not covered by bio, if it is | |
181 | * a data sector it should still be uptodate as it is | |
182 | * read from disk. | |
183 | */ | |
184 | if (i < rbio->nr_data * rbio->stripe_nsectors) | |
185 | ASSERT(rbio->stripe_sectors[i].uptodate); | |
00425dd9 | 186 | continue; |
88074c8b | 187 | } |
00425dd9 QW |
188 | |
189 | ASSERT(rbio->stripe_sectors[i].page); | |
190 | memcpy_page(rbio->stripe_sectors[i].page, | |
191 | rbio->stripe_sectors[i].pgoff, | |
192 | rbio->bio_sectors[i].page, | |
193 | rbio->bio_sectors[i].pgoff, | |
194 | rbio->bioc->fs_info->sectorsize); | |
195 | rbio->stripe_sectors[i].uptodate = 1; | |
196 | } | |
4ae10b3a CM |
197 | set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); |
198 | } | |
199 | ||
53b381b3 DW |
200 | /* |
201 | * we hash on the first logical address of the stripe | |
202 | */ | |
203 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | |
204 | { | |
18d758a2 | 205 | u64 num = rbio->bioc->full_stripe_logical; |
53b381b3 DW |
206 | |
207 | /* | |
208 | * we shift down quite a bit. We're using byte | |
209 | * addressing, and most of the lower bits are zeros. | |
210 | * This tends to upset hash_64, and it consistently | |
211 | * returns just one or two different values. | |
212 | * | |
213 | * shifting off the lower bits fixes things. | |
214 | */ | |
215 | return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | |
216 | } | |
217 | ||
d4e28d9b QW |
218 | static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, |
219 | unsigned int page_nr) | |
220 | { | |
221 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | |
222 | const u32 sectors_per_page = PAGE_SIZE / sectorsize; | |
223 | int i; | |
224 | ||
225 | ASSERT(page_nr < rbio->nr_pages); | |
226 | ||
227 | for (i = sectors_per_page * page_nr; | |
228 | i < sectors_per_page * page_nr + sectors_per_page; | |
229 | i++) { | |
230 | if (!rbio->stripe_sectors[i].uptodate) | |
231 | return false; | |
232 | } | |
233 | return true; | |
234 | } | |
235 | ||
eb357060 QW |
236 | /* |
237 | * Update the stripe_sectors[] array to use correct page and pgoff | |
238 | * | |
239 | * Should be called every time any page pointer in stripes_pages[] got modified. | |
240 | */ | |
241 | static void index_stripe_sectors(struct btrfs_raid_bio *rbio) | |
242 | { | |
243 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | |
244 | u32 offset; | |
245 | int i; | |
246 | ||
247 | for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { | |
248 | int page_index = offset >> PAGE_SHIFT; | |
249 | ||
250 | ASSERT(page_index < rbio->nr_pages); | |
251 | rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; | |
252 | rbio->stripe_sectors[i].pgoff = offset_in_page(offset); | |
253 | } | |
254 | } | |
255 | ||
4d100466 QW |
256 | static void steal_rbio_page(struct btrfs_raid_bio *src, |
257 | struct btrfs_raid_bio *dest, int page_nr) | |
258 | { | |
259 | const u32 sectorsize = src->bioc->fs_info->sectorsize; | |
260 | const u32 sectors_per_page = PAGE_SIZE / sectorsize; | |
261 | int i; | |
262 | ||
263 | if (dest->stripe_pages[page_nr]) | |
264 | __free_page(dest->stripe_pages[page_nr]); | |
265 | dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; | |
266 | src->stripe_pages[page_nr] = NULL; | |
267 | ||
268 | /* Also update the sector->uptodate bits. */ | |
269 | for (i = sectors_per_page * page_nr; | |
270 | i < sectors_per_page * page_nr + sectors_per_page; i++) | |
271 | dest->stripe_sectors[i].uptodate = true; | |
272 | } | |
273 | ||
88074c8b QW |
274 | static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) |
275 | { | |
276 | const int sector_nr = (page_nr << PAGE_SHIFT) >> | |
277 | rbio->bioc->fs_info->sectorsize_bits; | |
278 | ||
279 | /* | |
280 | * We have ensured PAGE_SIZE is aligned with sectorsize, thus | |
281 | * we won't have a page which is half data half parity. | |
282 | * | |
283 | * Thus if the first sector of the page belongs to data stripes, then | |
284 | * the full page belongs to data stripes. | |
285 | */ | |
286 | return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); | |
287 | } | |
288 | ||
4ae10b3a | 289 | /* |
d4e28d9b QW |
290 | * Stealing an rbio means taking all the uptodate pages from the stripe array |
291 | * in the source rbio and putting them into the destination rbio. | |
292 | * | |
293 | * This will also update the involved stripe_sectors[] which are referring to | |
294 | * the old pages. | |
4ae10b3a CM |
295 | */ |
296 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | |
297 | { | |
298 | int i; | |
4ae10b3a CM |
299 | |
300 | if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | |
301 | return; | |
302 | ||
303 | for (i = 0; i < dest->nr_pages; i++) { | |
88074c8b QW |
304 | struct page *p = src->stripe_pages[i]; |
305 | ||
306 | /* | |
307 | * We don't need to steal P/Q pages as they will always be | |
308 | * regenerated for RMW or full write anyway. | |
309 | */ | |
310 | if (!is_data_stripe_page(src, i)) | |
4ae10b3a | 311 | continue; |
4ae10b3a | 312 | |
88074c8b QW |
313 | /* |
314 | * If @src already has RBIO_CACHE_READY_BIT, it should have | |
315 | * all data stripe pages present and uptodate. | |
316 | */ | |
317 | ASSERT(p); | |
318 | ASSERT(full_page_sectors_uptodate(src, i)); | |
4d100466 | 319 | steal_rbio_page(src, dest, i); |
4ae10b3a | 320 | } |
eb357060 QW |
321 | index_stripe_sectors(dest); |
322 | index_stripe_sectors(src); | |
4ae10b3a CM |
323 | } |
324 | ||
53b381b3 DW |
325 | /* |
326 | * merging means we take the bio_list from the victim and | |
327 | * splice it into the destination. The victim should | |
328 | * be discarded afterwards. | |
329 | * | |
330 | * must be called with dest->rbio_list_lock held | |
331 | */ | |
332 | static void merge_rbio(struct btrfs_raid_bio *dest, | |
333 | struct btrfs_raid_bio *victim) | |
334 | { | |
335 | bio_list_merge(&dest->bio_list, &victim->bio_list); | |
336 | dest->bio_list_bytes += victim->bio_list_bytes; | |
bd8f7e62 QW |
337 | /* Also inherit the bitmaps from @victim. */ |
338 | bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, | |
339 | dest->stripe_nsectors); | |
53b381b3 DW |
340 | bio_list_init(&victim->bio_list); |
341 | } | |
342 | ||
343 | /* | |
4ae10b3a CM |
344 | * used to prune items that are in the cache. The caller |
345 | * must hold the hash table lock. | |
346 | */ | |
347 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
348 | { | |
349 | int bucket = rbio_bucket(rbio); | |
350 | struct btrfs_stripe_hash_table *table; | |
351 | struct btrfs_stripe_hash *h; | |
352 | int freeit = 0; | |
353 | ||
354 | /* | |
355 | * check the bit again under the hash table lock. | |
356 | */ | |
357 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
358 | return; | |
359 | ||
6a258d72 | 360 | table = rbio->bioc->fs_info->stripe_hash_table; |
4ae10b3a CM |
361 | h = table->table + bucket; |
362 | ||
363 | /* hold the lock for the bucket because we may be | |
364 | * removing it from the hash table | |
365 | */ | |
366 | spin_lock(&h->lock); | |
367 | ||
368 | /* | |
369 | * hold the lock for the bio list because we need | |
370 | * to make sure the bio list is empty | |
371 | */ | |
372 | spin_lock(&rbio->bio_list_lock); | |
373 | ||
374 | if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
375 | list_del_init(&rbio->stripe_cache); | |
376 | table->cache_size -= 1; | |
377 | freeit = 1; | |
378 | ||
379 | /* if the bio list isn't empty, this rbio is | |
380 | * still involved in an IO. We take it out | |
381 | * of the cache list, and drop the ref that | |
382 | * was held for the list. | |
383 | * | |
384 | * If the bio_list was empty, we also remove | |
385 | * the rbio from the hash_table, and drop | |
386 | * the corresponding ref | |
387 | */ | |
388 | if (bio_list_empty(&rbio->bio_list)) { | |
389 | if (!list_empty(&rbio->hash_list)) { | |
390 | list_del_init(&rbio->hash_list); | |
dec95574 | 391 | refcount_dec(&rbio->refs); |
4ae10b3a CM |
392 | BUG_ON(!list_empty(&rbio->plug_list)); |
393 | } | |
394 | } | |
395 | } | |
396 | ||
397 | spin_unlock(&rbio->bio_list_lock); | |
398 | spin_unlock(&h->lock); | |
399 | ||
400 | if (freeit) | |
ff2b64a2 | 401 | free_raid_bio(rbio); |
4ae10b3a CM |
402 | } |
403 | ||
404 | /* | |
405 | * prune a given rbio from the cache | |
406 | */ | |
407 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | |
408 | { | |
409 | struct btrfs_stripe_hash_table *table; | |
4ae10b3a CM |
410 | |
411 | if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
412 | return; | |
413 | ||
6a258d72 | 414 | table = rbio->bioc->fs_info->stripe_hash_table; |
4ae10b3a | 415 | |
74cc3600 | 416 | spin_lock(&table->cache_lock); |
4ae10b3a | 417 | __remove_rbio_from_cache(rbio); |
74cc3600 | 418 | spin_unlock(&table->cache_lock); |
4ae10b3a CM |
419 | } |
420 | ||
421 | /* | |
422 | * remove everything in the cache | |
423 | */ | |
48a3b636 | 424 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) |
4ae10b3a CM |
425 | { |
426 | struct btrfs_stripe_hash_table *table; | |
4ae10b3a CM |
427 | struct btrfs_raid_bio *rbio; |
428 | ||
429 | table = info->stripe_hash_table; | |
430 | ||
74cc3600 | 431 | spin_lock(&table->cache_lock); |
4ae10b3a CM |
432 | while (!list_empty(&table->stripe_cache)) { |
433 | rbio = list_entry(table->stripe_cache.next, | |
434 | struct btrfs_raid_bio, | |
435 | stripe_cache); | |
436 | __remove_rbio_from_cache(rbio); | |
437 | } | |
74cc3600 | 438 | spin_unlock(&table->cache_lock); |
4ae10b3a CM |
439 | } |
440 | ||
441 | /* | |
442 | * remove all cached entries and free the hash table | |
443 | * used by unmount | |
53b381b3 DW |
444 | */ |
445 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | |
446 | { | |
447 | if (!info->stripe_hash_table) | |
448 | return; | |
4ae10b3a | 449 | btrfs_clear_rbio_cache(info); |
f749303b | 450 | kvfree(info->stripe_hash_table); |
53b381b3 DW |
451 | info->stripe_hash_table = NULL; |
452 | } | |
453 | ||
4ae10b3a CM |
454 | /* |
455 | * insert an rbio into the stripe cache. It | |
456 | * must have already been prepared by calling | |
457 | * cache_rbio_pages | |
458 | * | |
459 | * If this rbio was already cached, it gets | |
460 | * moved to the front of the lru. | |
461 | * | |
462 | * If the size of the rbio cache is too big, we | |
463 | * prune an item. | |
464 | */ | |
465 | static void cache_rbio(struct btrfs_raid_bio *rbio) | |
466 | { | |
467 | struct btrfs_stripe_hash_table *table; | |
4ae10b3a CM |
468 | |
469 | if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | |
470 | return; | |
471 | ||
6a258d72 | 472 | table = rbio->bioc->fs_info->stripe_hash_table; |
4ae10b3a | 473 | |
74cc3600 | 474 | spin_lock(&table->cache_lock); |
4ae10b3a CM |
475 | spin_lock(&rbio->bio_list_lock); |
476 | ||
477 | /* bump our ref if we were not in the list before */ | |
478 | if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | |
dec95574 | 479 | refcount_inc(&rbio->refs); |
4ae10b3a CM |
480 | |
481 | if (!list_empty(&rbio->stripe_cache)){ | |
482 | list_move(&rbio->stripe_cache, &table->stripe_cache); | |
483 | } else { | |
484 | list_add(&rbio->stripe_cache, &table->stripe_cache); | |
485 | table->cache_size += 1; | |
486 | } | |
487 | ||
488 | spin_unlock(&rbio->bio_list_lock); | |
489 | ||
490 | if (table->cache_size > RBIO_CACHE_SIZE) { | |
491 | struct btrfs_raid_bio *found; | |
492 | ||
493 | found = list_entry(table->stripe_cache.prev, | |
494 | struct btrfs_raid_bio, | |
495 | stripe_cache); | |
496 | ||
497 | if (found != rbio) | |
498 | __remove_rbio_from_cache(found); | |
499 | } | |
500 | ||
74cc3600 | 501 | spin_unlock(&table->cache_lock); |
4ae10b3a CM |
502 | } |
503 | ||
53b381b3 DW |
504 | /* |
505 | * helper function to run the xor_blocks api. It is only | |
506 | * able to do MAX_XOR_BLOCKS at a time, so we need to | |
507 | * loop through. | |
508 | */ | |
509 | static void run_xor(void **pages, int src_cnt, ssize_t len) | |
510 | { | |
511 | int src_off = 0; | |
512 | int xor_src_cnt = 0; | |
513 | void *dest = pages[src_cnt]; | |
514 | ||
515 | while(src_cnt > 0) { | |
516 | xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | |
517 | xor_blocks(xor_src_cnt, len, dest, pages + src_off); | |
518 | ||
519 | src_cnt -= xor_src_cnt; | |
520 | src_off += xor_src_cnt; | |
521 | } | |
522 | } | |
523 | ||
524 | /* | |
176571a1 DS |
525 | * Returns true if the bio list inside this rbio covers an entire stripe (no |
526 | * rmw required). | |
53b381b3 | 527 | */ |
176571a1 | 528 | static int rbio_is_full(struct btrfs_raid_bio *rbio) |
53b381b3 DW |
529 | { |
530 | unsigned long size = rbio->bio_list_bytes; | |
531 | int ret = 1; | |
532 | ||
74cc3600 | 533 | spin_lock(&rbio->bio_list_lock); |
ff18a4af | 534 | if (size != rbio->nr_data * BTRFS_STRIPE_LEN) |
53b381b3 | 535 | ret = 0; |
ff18a4af | 536 | BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); |
74cc3600 | 537 | spin_unlock(&rbio->bio_list_lock); |
176571a1 | 538 | |
53b381b3 DW |
539 | return ret; |
540 | } | |
541 | ||
542 | /* | |
543 | * returns 1 if it is safe to merge two rbios together. | |
544 | * The merging is safe if the two rbios correspond to | |
545 | * the same stripe and if they are both going in the same | |
546 | * direction (read vs write), and if neither one is | |
547 | * locked for final IO | |
548 | * | |
549 | * The caller is responsible for locking such that | |
550 | * rmw_locked is safe to test | |
551 | */ | |
552 | static int rbio_can_merge(struct btrfs_raid_bio *last, | |
553 | struct btrfs_raid_bio *cur) | |
554 | { | |
555 | if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | |
556 | test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | |
557 | return 0; | |
558 | ||
4ae10b3a CM |
559 | /* |
560 | * we can't merge with cached rbios, since the | |
561 | * idea is that when we merge the destination | |
562 | * rbio is going to run our IO for us. We can | |
01327610 | 563 | * steal from cached rbios though, other functions |
4ae10b3a CM |
564 | * handle that. |
565 | */ | |
566 | if (test_bit(RBIO_CACHE_BIT, &last->flags) || | |
567 | test_bit(RBIO_CACHE_BIT, &cur->flags)) | |
568 | return 0; | |
569 | ||
18d758a2 | 570 | if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) |
53b381b3 DW |
571 | return 0; |
572 | ||
5a6ac9ea MX |
573 | /* we can't merge with different operations */ |
574 | if (last->operation != cur->operation) | |
575 | return 0; | |
576 | /* | |
577 | * We've need read the full stripe from the drive. | |
578 | * check and repair the parity and write the new results. | |
579 | * | |
580 | * We're not allowed to add any new bios to the | |
581 | * bio list here, anyone else that wants to | |
582 | * change this stripe needs to do their own rmw. | |
583 | */ | |
db34be19 | 584 | if (last->operation == BTRFS_RBIO_PARITY_SCRUB) |
53b381b3 | 585 | return 0; |
53b381b3 | 586 | |
3a3c7a7f | 587 | if (last->operation == BTRFS_RBIO_READ_REBUILD) |
b4ee1782 OS |
588 | return 0; |
589 | ||
53b381b3 DW |
590 | return 1; |
591 | } | |
592 | ||
3e77605d QW |
593 | static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, |
594 | unsigned int stripe_nr, | |
595 | unsigned int sector_nr) | |
596 | { | |
597 | ASSERT(stripe_nr < rbio->real_stripes); | |
598 | ASSERT(sector_nr < rbio->stripe_nsectors); | |
599 | ||
600 | return stripe_nr * rbio->stripe_nsectors + sector_nr; | |
601 | } | |
602 | ||
603 | /* Return a sector from rbio->stripe_sectors, not from the bio list */ | |
604 | static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, | |
605 | unsigned int stripe_nr, | |
606 | unsigned int sector_nr) | |
607 | { | |
608 | return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, | |
609 | sector_nr)]; | |
610 | } | |
611 | ||
1145059a QW |
612 | /* Grab a sector inside P stripe */ |
613 | static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, | |
614 | unsigned int sector_nr) | |
b7178a5f | 615 | { |
1145059a | 616 | return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); |
b7178a5f ZL |
617 | } |
618 | ||
1145059a QW |
619 | /* Grab a sector inside Q stripe, return NULL if not RAID6 */ |
620 | static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, | |
621 | unsigned int sector_nr) | |
53b381b3 | 622 | { |
1145059a QW |
623 | if (rbio->nr_data + 1 == rbio->real_stripes) |
624 | return NULL; | |
625 | return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); | |
53b381b3 DW |
626 | } |
627 | ||
53b381b3 DW |
628 | /* |
629 | * The first stripe in the table for a logical address | |
630 | * has the lock. rbios are added in one of three ways: | |
631 | * | |
632 | * 1) Nobody has the stripe locked yet. The rbio is given | |
633 | * the lock and 0 is returned. The caller must start the IO | |
634 | * themselves. | |
635 | * | |
636 | * 2) Someone has the stripe locked, but we're able to merge | |
637 | * with the lock owner. The rbio is freed and the IO will | |
638 | * start automatically along with the existing rbio. 1 is returned. | |
639 | * | |
640 | * 3) Someone has the stripe locked, but we're not able to merge. | |
641 | * The rbio is added to the lock owner's plug list, or merged into | |
642 | * an rbio already on the plug list. When the lock owner unlocks, | |
643 | * the next rbio on the list is run and the IO is started automatically. | |
644 | * 1 is returned | |
645 | * | |
646 | * If we return 0, the caller still owns the rbio and must continue with | |
647 | * IO submission. If we return 1, the caller must assume the rbio has | |
648 | * already been freed. | |
649 | */ | |
650 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | |
651 | { | |
721860d5 | 652 | struct btrfs_stripe_hash *h; |
53b381b3 DW |
653 | struct btrfs_raid_bio *cur; |
654 | struct btrfs_raid_bio *pending; | |
53b381b3 | 655 | struct btrfs_raid_bio *freeit = NULL; |
4ae10b3a | 656 | struct btrfs_raid_bio *cache_drop = NULL; |
53b381b3 | 657 | int ret = 0; |
53b381b3 | 658 | |
6a258d72 | 659 | h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); |
721860d5 | 660 | |
74cc3600 | 661 | spin_lock(&h->lock); |
53b381b3 | 662 | list_for_each_entry(cur, &h->hash_list, hash_list) { |
18d758a2 | 663 | if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) |
9d6cb1b0 | 664 | continue; |
4ae10b3a | 665 | |
9d6cb1b0 | 666 | spin_lock(&cur->bio_list_lock); |
4ae10b3a | 667 | |
9d6cb1b0 JT |
668 | /* Can we steal this cached rbio's pages? */ |
669 | if (bio_list_empty(&cur->bio_list) && | |
670 | list_empty(&cur->plug_list) && | |
671 | test_bit(RBIO_CACHE_BIT, &cur->flags) && | |
672 | !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | |
673 | list_del_init(&cur->hash_list); | |
674 | refcount_dec(&cur->refs); | |
53b381b3 | 675 | |
9d6cb1b0 JT |
676 | steal_rbio(cur, rbio); |
677 | cache_drop = cur; | |
678 | spin_unlock(&cur->bio_list_lock); | |
4ae10b3a | 679 | |
9d6cb1b0 JT |
680 | goto lockit; |
681 | } | |
53b381b3 | 682 | |
9d6cb1b0 JT |
683 | /* Can we merge into the lock owner? */ |
684 | if (rbio_can_merge(cur, rbio)) { | |
685 | merge_rbio(cur, rbio); | |
53b381b3 | 686 | spin_unlock(&cur->bio_list_lock); |
9d6cb1b0 | 687 | freeit = rbio; |
53b381b3 DW |
688 | ret = 1; |
689 | goto out; | |
690 | } | |
9d6cb1b0 JT |
691 | |
692 | ||
693 | /* | |
694 | * We couldn't merge with the running rbio, see if we can merge | |
695 | * with the pending ones. We don't have to check for rmw_locked | |
696 | * because there is no way they are inside finish_rmw right now | |
697 | */ | |
698 | list_for_each_entry(pending, &cur->plug_list, plug_list) { | |
699 | if (rbio_can_merge(pending, rbio)) { | |
700 | merge_rbio(pending, rbio); | |
701 | spin_unlock(&cur->bio_list_lock); | |
702 | freeit = rbio; | |
703 | ret = 1; | |
704 | goto out; | |
705 | } | |
706 | } | |
707 | ||
708 | /* | |
709 | * No merging, put us on the tail of the plug list, our rbio | |
710 | * will be started with the currently running rbio unlocks | |
711 | */ | |
712 | list_add_tail(&rbio->plug_list, &cur->plug_list); | |
713 | spin_unlock(&cur->bio_list_lock); | |
714 | ret = 1; | |
715 | goto out; | |
53b381b3 | 716 | } |
4ae10b3a | 717 | lockit: |
dec95574 | 718 | refcount_inc(&rbio->refs); |
53b381b3 DW |
719 | list_add(&rbio->hash_list, &h->hash_list); |
720 | out: | |
74cc3600 | 721 | spin_unlock(&h->lock); |
4ae10b3a CM |
722 | if (cache_drop) |
723 | remove_rbio_from_cache(cache_drop); | |
53b381b3 | 724 | if (freeit) |
ff2b64a2 | 725 | free_raid_bio(freeit); |
53b381b3 DW |
726 | return ret; |
727 | } | |
728 | ||
d817ce35 QW |
729 | static void recover_rbio_work_locked(struct work_struct *work); |
730 | ||
53b381b3 DW |
731 | /* |
732 | * called as rmw or parity rebuild is completed. If the plug list has more | |
733 | * rbios waiting for this stripe, the next one on the list will be started | |
734 | */ | |
735 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | |
736 | { | |
737 | int bucket; | |
738 | struct btrfs_stripe_hash *h; | |
4ae10b3a | 739 | int keep_cache = 0; |
53b381b3 DW |
740 | |
741 | bucket = rbio_bucket(rbio); | |
6a258d72 | 742 | h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; |
53b381b3 | 743 | |
4ae10b3a CM |
744 | if (list_empty(&rbio->plug_list)) |
745 | cache_rbio(rbio); | |
746 | ||
74cc3600 | 747 | spin_lock(&h->lock); |
53b381b3 DW |
748 | spin_lock(&rbio->bio_list_lock); |
749 | ||
750 | if (!list_empty(&rbio->hash_list)) { | |
4ae10b3a CM |
751 | /* |
752 | * if we're still cached and there is no other IO | |
753 | * to perform, just leave this rbio here for others | |
754 | * to steal from later | |
755 | */ | |
756 | if (list_empty(&rbio->plug_list) && | |
757 | test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | |
758 | keep_cache = 1; | |
759 | clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | |
760 | BUG_ON(!bio_list_empty(&rbio->bio_list)); | |
761 | goto done; | |
762 | } | |
53b381b3 DW |
763 | |
764 | list_del_init(&rbio->hash_list); | |
dec95574 | 765 | refcount_dec(&rbio->refs); |
53b381b3 DW |
766 | |
767 | /* | |
768 | * we use the plug list to hold all the rbios | |
769 | * waiting for the chance to lock this stripe. | |
770 | * hand the lock over to one of them. | |
771 | */ | |
772 | if (!list_empty(&rbio->plug_list)) { | |
773 | struct btrfs_raid_bio *next; | |
774 | struct list_head *head = rbio->plug_list.next; | |
775 | ||
776 | next = list_entry(head, struct btrfs_raid_bio, | |
777 | plug_list); | |
778 | ||
779 | list_del_init(&rbio->plug_list); | |
780 | ||
781 | list_add(&next->hash_list, &h->hash_list); | |
dec95574 | 782 | refcount_inc(&next->refs); |
53b381b3 | 783 | spin_unlock(&rbio->bio_list_lock); |
74cc3600 | 784 | spin_unlock(&h->lock); |
53b381b3 | 785 | |
3a3c7a7f | 786 | if (next->operation == BTRFS_RBIO_READ_REBUILD) { |
d817ce35 | 787 | start_async_work(next, recover_rbio_work_locked); |
b4ee1782 | 788 | } else if (next->operation == BTRFS_RBIO_WRITE) { |
4ae10b3a | 789 | steal_rbio(rbio, next); |
93723095 | 790 | start_async_work(next, rmw_rbio_work_locked); |
5a6ac9ea MX |
791 | } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { |
792 | steal_rbio(rbio, next); | |
6bfd0133 | 793 | start_async_work(next, scrub_rbio_work_locked); |
4ae10b3a | 794 | } |
53b381b3 DW |
795 | |
796 | goto done_nolock; | |
53b381b3 DW |
797 | } |
798 | } | |
4ae10b3a | 799 | done: |
53b381b3 | 800 | spin_unlock(&rbio->bio_list_lock); |
74cc3600 | 801 | spin_unlock(&h->lock); |
53b381b3 DW |
802 | |
803 | done_nolock: | |
4ae10b3a CM |
804 | if (!keep_cache) |
805 | remove_rbio_from_cache(rbio); | |
53b381b3 DW |
806 | } |
807 | ||
7583d8d0 | 808 | static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) |
53b381b3 | 809 | { |
7583d8d0 LB |
810 | struct bio *next; |
811 | ||
812 | while (cur) { | |
813 | next = cur->bi_next; | |
814 | cur->bi_next = NULL; | |
815 | cur->bi_status = err; | |
816 | bio_endio(cur); | |
817 | cur = next; | |
818 | } | |
53b381b3 DW |
819 | } |
820 | ||
821 | /* | |
822 | * this frees the rbio and runs through all the bios in the | |
823 | * bio_list and calls end_io on them | |
824 | */ | |
4e4cbee9 | 825 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) |
53b381b3 DW |
826 | { |
827 | struct bio *cur = bio_list_get(&rbio->bio_list); | |
7583d8d0 | 828 | struct bio *extra; |
4245215d | 829 | |
c5a41562 QW |
830 | kfree(rbio->csum_buf); |
831 | bitmap_free(rbio->csum_bitmap); | |
832 | rbio->csum_buf = NULL; | |
833 | rbio->csum_bitmap = NULL; | |
834 | ||
bd8f7e62 QW |
835 | /* |
836 | * Clear the data bitmap, as the rbio may be cached for later usage. | |
837 | * do this before before unlock_stripe() so there will be no new bio | |
838 | * for this bio. | |
839 | */ | |
840 | bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); | |
4245215d | 841 | |
7583d8d0 LB |
842 | /* |
843 | * At this moment, rbio->bio_list is empty, however since rbio does not | |
844 | * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the | |
845 | * hash list, rbio may be merged with others so that rbio->bio_list | |
846 | * becomes non-empty. | |
847 | * Once unlock_stripe() is done, rbio->bio_list will not be updated any | |
848 | * more and we can call bio_endio() on all queued bios. | |
849 | */ | |
850 | unlock_stripe(rbio); | |
851 | extra = bio_list_get(&rbio->bio_list); | |
ff2b64a2 | 852 | free_raid_bio(rbio); |
53b381b3 | 853 | |
7583d8d0 LB |
854 | rbio_endio_bio_list(cur, err); |
855 | if (extra) | |
856 | rbio_endio_bio_list(extra, err); | |
53b381b3 DW |
857 | } |
858 | ||
43dd529a DS |
859 | /* |
860 | * Get a sector pointer specified by its @stripe_nr and @sector_nr. | |
3e77605d QW |
861 | * |
862 | * @rbio: The raid bio | |
863 | * @stripe_nr: Stripe number, valid range [0, real_stripe) | |
864 | * @sector_nr: Sector number inside the stripe, | |
865 | * valid range [0, stripe_nsectors) | |
866 | * @bio_list_only: Whether to use sectors inside the bio list only. | |
867 | * | |
868 | * The read/modify/write code wants to reuse the original bio page as much | |
869 | * as possible, and only use stripe_sectors as fallback. | |
870 | */ | |
871 | static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, | |
872 | int stripe_nr, int sector_nr, | |
873 | bool bio_list_only) | |
874 | { | |
875 | struct sector_ptr *sector; | |
876 | int index; | |
877 | ||
878 | ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); | |
879 | ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); | |
880 | ||
881 | index = stripe_nr * rbio->stripe_nsectors + sector_nr; | |
882 | ASSERT(index >= 0 && index < rbio->nr_sectors); | |
883 | ||
74cc3600 | 884 | spin_lock(&rbio->bio_list_lock); |
3e77605d QW |
885 | sector = &rbio->bio_sectors[index]; |
886 | if (sector->page || bio_list_only) { | |
887 | /* Don't return sector without a valid page pointer */ | |
888 | if (!sector->page) | |
889 | sector = NULL; | |
74cc3600 | 890 | spin_unlock(&rbio->bio_list_lock); |
3e77605d QW |
891 | return sector; |
892 | } | |
74cc3600 | 893 | spin_unlock(&rbio->bio_list_lock); |
3e77605d QW |
894 | |
895 | return &rbio->stripe_sectors[index]; | |
896 | } | |
897 | ||
53b381b3 DW |
898 | /* |
899 | * allocation and initial setup for the btrfs_raid_bio. Not | |
900 | * this does not allocate any pages for rbio->pages. | |
901 | */ | |
2ff7e61e | 902 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, |
ff18a4af | 903 | struct btrfs_io_context *bioc) |
53b381b3 | 904 | { |
1faf3885 | 905 | const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; |
ff18a4af | 906 | const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; |
843de58b | 907 | const unsigned int num_pages = stripe_npages * real_stripes; |
ff18a4af CH |
908 | const unsigned int stripe_nsectors = |
909 | BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; | |
94efbe19 | 910 | const unsigned int num_sectors = stripe_nsectors * real_stripes; |
53b381b3 | 911 | struct btrfs_raid_bio *rbio; |
53b381b3 | 912 | |
94efbe19 QW |
913 | /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ |
914 | ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); | |
c67c68eb QW |
915 | /* |
916 | * Our current stripe len should be fixed to 64k thus stripe_nsectors | |
917 | * (at most 16) should be no larger than BITS_PER_LONG. | |
918 | */ | |
919 | ASSERT(stripe_nsectors <= BITS_PER_LONG); | |
843de58b | 920 | |
797d74b7 | 921 | rbio = kzalloc(sizeof(*rbio), GFP_NOFS); |
af8e2d1d | 922 | if (!rbio) |
53b381b3 | 923 | return ERR_PTR(-ENOMEM); |
797d74b7 QW |
924 | rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), |
925 | GFP_NOFS); | |
926 | rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), | |
927 | GFP_NOFS); | |
928 | rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), | |
929 | GFP_NOFS); | |
930 | rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); | |
2942a50d | 931 | rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); |
797d74b7 QW |
932 | |
933 | if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || | |
2942a50d | 934 | !rbio->finish_pointers || !rbio->error_bitmap) { |
797d74b7 QW |
935 | free_raid_bio_pointers(rbio); |
936 | kfree(rbio); | |
937 | return ERR_PTR(-ENOMEM); | |
938 | } | |
53b381b3 DW |
939 | |
940 | bio_list_init(&rbio->bio_list); | |
d817ce35 | 941 | init_waitqueue_head(&rbio->io_wait); |
53b381b3 DW |
942 | INIT_LIST_HEAD(&rbio->plug_list); |
943 | spin_lock_init(&rbio->bio_list_lock); | |
4ae10b3a | 944 | INIT_LIST_HEAD(&rbio->stripe_cache); |
53b381b3 | 945 | INIT_LIST_HEAD(&rbio->hash_list); |
f1c29379 | 946 | btrfs_get_bioc(bioc); |
4c664611 | 947 | rbio->bioc = bioc; |
53b381b3 | 948 | rbio->nr_pages = num_pages; |
94efbe19 | 949 | rbio->nr_sectors = num_sectors; |
2c8cdd6e | 950 | rbio->real_stripes = real_stripes; |
5a6ac9ea | 951 | rbio->stripe_npages = stripe_npages; |
94efbe19 | 952 | rbio->stripe_nsectors = stripe_nsectors; |
dec95574 | 953 | refcount_set(&rbio->refs, 1); |
b89e1b01 | 954 | atomic_set(&rbio->stripes_pending, 0); |
53b381b3 | 955 | |
0b30f719 QW |
956 | ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); |
957 | rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); | |
53b381b3 | 958 | |
53b381b3 DW |
959 | return rbio; |
960 | } | |
961 | ||
962 | /* allocate pages for all the stripes in the bio, including parity */ | |
963 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | |
964 | { | |
eb357060 QW |
965 | int ret; |
966 | ||
09e6cef1 | 967 | ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0); |
eb357060 QW |
968 | if (ret < 0) |
969 | return ret; | |
970 | /* Mapping all sectors */ | |
971 | index_stripe_sectors(rbio); | |
972 | return 0; | |
53b381b3 DW |
973 | } |
974 | ||
b7178a5f | 975 | /* only allocate pages for p/q stripes */ |
53b381b3 DW |
976 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) |
977 | { | |
f77183dc | 978 | const int data_pages = rbio->nr_data * rbio->stripe_npages; |
eb357060 | 979 | int ret; |
53b381b3 | 980 | |
eb357060 | 981 | ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, |
09e6cef1 | 982 | rbio->stripe_pages + data_pages, 0); |
eb357060 QW |
983 | if (ret < 0) |
984 | return ret; | |
985 | ||
986 | index_stripe_sectors(rbio); | |
987 | return 0; | |
53b381b3 DW |
988 | } |
989 | ||
75b47033 | 990 | /* |
67da05b3 | 991 | * Return the total number of errors found in the vertical stripe of @sector_nr. |
75b47033 QW |
992 | * |
993 | * @faila and @failb will also be updated to the first and second stripe | |
994 | * number of the errors. | |
995 | */ | |
996 | static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, | |
997 | int *faila, int *failb) | |
998 | { | |
999 | int stripe_nr; | |
1000 | int found_errors = 0; | |
1001 | ||
ad3daf1c QW |
1002 | if (faila || failb) { |
1003 | /* | |
1004 | * Both @faila and @failb should be valid pointers if any of | |
1005 | * them is specified. | |
1006 | */ | |
1007 | ASSERT(faila && failb); | |
1008 | *faila = -1; | |
1009 | *failb = -1; | |
1010 | } | |
75b47033 QW |
1011 | |
1012 | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | |
1013 | int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; | |
1014 | ||
1015 | if (test_bit(total_sector_nr, rbio->error_bitmap)) { | |
1016 | found_errors++; | |
ad3daf1c QW |
1017 | if (faila) { |
1018 | /* Update faila and failb. */ | |
1019 | if (*faila < 0) | |
1020 | *faila = stripe_nr; | |
1021 | else if (*failb < 0) | |
1022 | *failb = stripe_nr; | |
1023 | } | |
75b47033 QW |
1024 | } |
1025 | } | |
1026 | return found_errors; | |
1027 | } | |
1028 | ||
53b381b3 | 1029 | /* |
3e77605d QW |
1030 | * Add a single sector @sector into our list of bios for IO. |
1031 | * | |
1032 | * Return 0 if everything went well. | |
1033 | * Return <0 for error. | |
53b381b3 | 1034 | */ |
3e77605d QW |
1035 | static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, |
1036 | struct bio_list *bio_list, | |
1037 | struct sector_ptr *sector, | |
1038 | unsigned int stripe_nr, | |
1039 | unsigned int sector_nr, | |
bf9486d6 | 1040 | enum req_op op) |
53b381b3 | 1041 | { |
3e77605d | 1042 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
53b381b3 | 1043 | struct bio *last = bio_list->tail; |
53b381b3 DW |
1044 | int ret; |
1045 | struct bio *bio; | |
4c664611 | 1046 | struct btrfs_io_stripe *stripe; |
53b381b3 DW |
1047 | u64 disk_start; |
1048 | ||
3e77605d QW |
1049 | /* |
1050 | * Note: here stripe_nr has taken device replace into consideration, | |
1051 | * thus it can be larger than rbio->real_stripe. | |
1052 | * So here we check against bioc->num_stripes, not rbio->real_stripes. | |
1053 | */ | |
1054 | ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); | |
1055 | ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); | |
1056 | ASSERT(sector->page); | |
1057 | ||
4c664611 | 1058 | stripe = &rbio->bioc->stripes[stripe_nr]; |
3e77605d | 1059 | disk_start = stripe->physical + sector_nr * sectorsize; |
53b381b3 DW |
1060 | |
1061 | /* if the device is missing, just fail this stripe */ | |
2942a50d | 1062 | if (!stripe->dev->bdev) { |
ad3daf1c QW |
1063 | int found_errors; |
1064 | ||
2942a50d QW |
1065 | set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, |
1066 | rbio->error_bitmap); | |
ad3daf1c QW |
1067 | |
1068 | /* Check if we have reached tolerance early. */ | |
1069 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, | |
1070 | NULL, NULL); | |
1071 | if (found_errors > rbio->bioc->max_errors) | |
1072 | return -EIO; | |
1073 | return 0; | |
2942a50d | 1074 | } |
53b381b3 DW |
1075 | |
1076 | /* see if we can add this page onto our existing bio */ | |
1077 | if (last) { | |
adbe7e38 | 1078 | u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; |
4f024f37 | 1079 | last_end += last->bi_iter.bi_size; |
53b381b3 DW |
1080 | |
1081 | /* | |
1082 | * we can't merge these if they are from different | |
1083 | * devices or if they are not contiguous | |
1084 | */ | |
f90ae76a | 1085 | if (last_end == disk_start && !last->bi_status && |
309dca30 | 1086 | last->bi_bdev == stripe->dev->bdev) { |
3e77605d QW |
1087 | ret = bio_add_page(last, sector->page, sectorsize, |
1088 | sector->pgoff); | |
1089 | if (ret == sectorsize) | |
53b381b3 DW |
1090 | return 0; |
1091 | } | |
1092 | } | |
1093 | ||
1094 | /* put a new bio on the list */ | |
ff18a4af CH |
1095 | bio = bio_alloc(stripe->dev->bdev, |
1096 | max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), | |
bf9486d6 | 1097 | op, GFP_NOFS); |
29e70be2 | 1098 | bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; |
e01bf588 | 1099 | bio->bi_private = rbio; |
53b381b3 | 1100 | |
cf32e41f | 1101 | __bio_add_page(bio, sector->page, sectorsize, sector->pgoff); |
53b381b3 DW |
1102 | bio_list_add(bio_list, bio); |
1103 | return 0; | |
1104 | } | |
1105 | ||
00425dd9 QW |
1106 | static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) |
1107 | { | |
1108 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | |
1109 | struct bio_vec bvec; | |
1110 | struct bvec_iter iter; | |
1111 | u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | |
18d758a2 | 1112 | rbio->bioc->full_stripe_logical; |
00425dd9 | 1113 | |
00425dd9 QW |
1114 | bio_for_each_segment(bvec, bio, iter) { |
1115 | u32 bvec_offset; | |
1116 | ||
1117 | for (bvec_offset = 0; bvec_offset < bvec.bv_len; | |
1118 | bvec_offset += sectorsize, offset += sectorsize) { | |
1119 | int index = offset / sectorsize; | |
1120 | struct sector_ptr *sector = &rbio->bio_sectors[index]; | |
1121 | ||
1122 | sector->page = bvec.bv_page; | |
1123 | sector->pgoff = bvec.bv_offset + bvec_offset; | |
1124 | ASSERT(sector->pgoff < PAGE_SIZE); | |
1125 | } | |
1126 | } | |
1127 | } | |
1128 | ||
53b381b3 DW |
1129 | /* |
1130 | * helper function to walk our bio list and populate the bio_pages array with | |
1131 | * the result. This seems expensive, but it is faster than constantly | |
1132 | * searching through the bio list as we setup the IO in finish_rmw or stripe | |
1133 | * reconstruction. | |
1134 | * | |
1135 | * This must be called before you trust the answers from page_in_rbio | |
1136 | */ | |
1137 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | |
1138 | { | |
1139 | struct bio *bio; | |
53b381b3 | 1140 | |
74cc3600 | 1141 | spin_lock(&rbio->bio_list_lock); |
00425dd9 QW |
1142 | bio_list_for_each(bio, &rbio->bio_list) |
1143 | index_one_bio(rbio, bio); | |
1144 | ||
74cc3600 | 1145 | spin_unlock(&rbio->bio_list_lock); |
53b381b3 DW |
1146 | } |
1147 | ||
b8bea09a QW |
1148 | static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, |
1149 | struct raid56_bio_trace_info *trace_info) | |
1150 | { | |
1151 | const struct btrfs_io_context *bioc = rbio->bioc; | |
1152 | int i; | |
1153 | ||
1154 | ASSERT(bioc); | |
1155 | ||
1156 | /* We rely on bio->bi_bdev to find the stripe number. */ | |
1157 | if (!bio->bi_bdev) | |
1158 | goto not_found; | |
1159 | ||
1160 | for (i = 0; i < bioc->num_stripes; i++) { | |
1161 | if (bio->bi_bdev != bioc->stripes[i].dev->bdev) | |
1162 | continue; | |
1163 | trace_info->stripe_nr = i; | |
1164 | trace_info->devid = bioc->stripes[i].dev->devid; | |
1165 | trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | |
1166 | bioc->stripes[i].physical; | |
1167 | return; | |
1168 | } | |
1169 | ||
1170 | not_found: | |
1171 | trace_info->devid = -1; | |
1172 | trace_info->offset = -1; | |
1173 | trace_info->stripe_nr = -1; | |
1174 | } | |
1175 | ||
801fcfc5 CH |
1176 | static inline void bio_list_put(struct bio_list *bio_list) |
1177 | { | |
1178 | struct bio *bio; | |
1179 | ||
1180 | while ((bio = bio_list_pop(bio_list))) | |
1181 | bio_put(bio); | |
1182 | } | |
1183 | ||
67da05b3 | 1184 | /* Generate PQ for one vertical stripe. */ |
30e3c897 QW |
1185 | static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) |
1186 | { | |
1187 | void **pointers = rbio->finish_pointers; | |
1188 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | |
1189 | struct sector_ptr *sector; | |
1190 | int stripe; | |
1191 | const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; | |
1192 | ||
1193 | /* First collect one sector from each data stripe */ | |
1194 | for (stripe = 0; stripe < rbio->nr_data; stripe++) { | |
1195 | sector = sector_in_rbio(rbio, stripe, sectornr, 0); | |
1196 | pointers[stripe] = kmap_local_page(sector->page) + | |
1197 | sector->pgoff; | |
1198 | } | |
1199 | ||
1200 | /* Then add the parity stripe */ | |
1201 | sector = rbio_pstripe_sector(rbio, sectornr); | |
1202 | sector->uptodate = 1; | |
1203 | pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; | |
1204 | ||
1205 | if (has_qstripe) { | |
1206 | /* | |
1207 | * RAID6, add the qstripe and call the library function | |
1208 | * to fill in our p/q | |
1209 | */ | |
1210 | sector = rbio_qstripe_sector(rbio, sectornr); | |
1211 | sector->uptodate = 1; | |
1212 | pointers[stripe++] = kmap_local_page(sector->page) + | |
1213 | sector->pgoff; | |
1214 | ||
1215 | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, | |
1216 | pointers); | |
1217 | } else { | |
1218 | /* raid5 */ | |
1219 | memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); | |
1220 | run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); | |
1221 | } | |
1222 | for (stripe = stripe - 1; stripe >= 0; stripe--) | |
1223 | kunmap_local(pointers[stripe]); | |
1224 | } | |
1225 | ||
6486d21c QW |
1226 | static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, |
1227 | struct bio_list *bio_list) | |
53b381b3 | 1228 | { |
36920044 QW |
1229 | /* The total sector number inside the full stripe. */ |
1230 | int total_sector_nr; | |
3e77605d | 1231 | int sectornr; |
6486d21c | 1232 | int stripe; |
53b381b3 DW |
1233 | int ret; |
1234 | ||
6486d21c | 1235 | ASSERT(bio_list_size(bio_list) == 0); |
53b381b3 | 1236 | |
bd8f7e62 QW |
1237 | /* We should have at least one data sector. */ |
1238 | ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); | |
1239 | ||
5eb30ee2 QW |
1240 | /* |
1241 | * Reset errors, as we may have errors inherited from from degraded | |
1242 | * write. | |
1243 | */ | |
2942a50d | 1244 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
5eb30ee2 | 1245 | |
53b381b3 | 1246 | /* |
6486d21c | 1247 | * Start assembly. Make bios for everything from the higher layers (the |
36920044 | 1248 | * bio_list in our rbio) and our P/Q. Ignore everything else. |
53b381b3 | 1249 | */ |
36920044 QW |
1250 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
1251 | total_sector_nr++) { | |
1252 | struct sector_ptr *sector; | |
3e77605d | 1253 | |
36920044 QW |
1254 | stripe = total_sector_nr / rbio->stripe_nsectors; |
1255 | sectornr = total_sector_nr % rbio->stripe_nsectors; | |
53b381b3 | 1256 | |
36920044 QW |
1257 | /* This vertical stripe has no data, skip it. */ |
1258 | if (!test_bit(sectornr, &rbio->dbitmap)) | |
1259 | continue; | |
53b381b3 | 1260 | |
36920044 QW |
1261 | if (stripe < rbio->nr_data) { |
1262 | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | |
1263 | if (!sector) | |
1264 | continue; | |
1265 | } else { | |
1266 | sector = rbio_stripe_sector(rbio, stripe, sectornr); | |
53b381b3 | 1267 | } |
36920044 | 1268 | |
6486d21c | 1269 | ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, |
ff18a4af | 1270 | sectornr, REQ_OP_WRITE); |
36920044 | 1271 | if (ret) |
6486d21c | 1272 | goto error; |
53b381b3 DW |
1273 | } |
1274 | ||
1faf3885 | 1275 | if (likely(!rbio->bioc->replace_nr_stripes)) |
6486d21c | 1276 | return 0; |
2c8cdd6e | 1277 | |
1faf3885 QW |
1278 | /* |
1279 | * Make a copy for the replace target device. | |
1280 | * | |
1281 | * Thus the source stripe number (in replace_stripe_src) should be valid. | |
1282 | */ | |
1283 | ASSERT(rbio->bioc->replace_stripe_src >= 0); | |
1284 | ||
36920044 QW |
1285 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
1286 | total_sector_nr++) { | |
1287 | struct sector_ptr *sector; | |
2c8cdd6e | 1288 | |
36920044 QW |
1289 | stripe = total_sector_nr / rbio->stripe_nsectors; |
1290 | sectornr = total_sector_nr % rbio->stripe_nsectors; | |
3e77605d | 1291 | |
1faf3885 QW |
1292 | /* |
1293 | * For RAID56, there is only one device that can be replaced, | |
1294 | * and replace_stripe_src[0] indicates the stripe number we | |
1295 | * need to copy from. | |
1296 | */ | |
1297 | if (stripe != rbio->bioc->replace_stripe_src) { | |
36920044 QW |
1298 | /* |
1299 | * We can skip the whole stripe completely, note | |
1300 | * total_sector_nr will be increased by one anyway. | |
1301 | */ | |
1302 | ASSERT(sectornr == 0); | |
1303 | total_sector_nr += rbio->stripe_nsectors - 1; | |
1304 | continue; | |
1305 | } | |
2c8cdd6e | 1306 | |
36920044 QW |
1307 | /* This vertical stripe has no data, skip it. */ |
1308 | if (!test_bit(sectornr, &rbio->dbitmap)) | |
1309 | continue; | |
2c8cdd6e | 1310 | |
36920044 QW |
1311 | if (stripe < rbio->nr_data) { |
1312 | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | |
1313 | if (!sector) | |
1314 | continue; | |
1315 | } else { | |
1316 | sector = rbio_stripe_sector(rbio, stripe, sectornr); | |
2c8cdd6e | 1317 | } |
36920044 | 1318 | |
6486d21c | 1319 | ret = rbio_add_io_sector(rbio, bio_list, sector, |
1faf3885 | 1320 | rbio->real_stripes, |
ff18a4af | 1321 | sectornr, REQ_OP_WRITE); |
36920044 | 1322 | if (ret) |
6486d21c | 1323 | goto error; |
2c8cdd6e MX |
1324 | } |
1325 | ||
6486d21c QW |
1326 | return 0; |
1327 | error: | |
801fcfc5 | 1328 | bio_list_put(bio_list); |
6486d21c QW |
1329 | return -EIO; |
1330 | } | |
1331 | ||
2942a50d QW |
1332 | static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) |
1333 | { | |
1334 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | |
1335 | u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - | |
18d758a2 | 1336 | rbio->bioc->full_stripe_logical; |
2942a50d QW |
1337 | int total_nr_sector = offset >> fs_info->sectorsize_bits; |
1338 | ||
1339 | ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); | |
1340 | ||
1341 | bitmap_set(rbio->error_bitmap, total_nr_sector, | |
1342 | bio->bi_iter.bi_size >> fs_info->sectorsize_bits); | |
1343 | ||
1344 | /* | |
1345 | * Special handling for raid56_alloc_missing_rbio() used by | |
1346 | * scrub/replace. Unlike call path in raid56_parity_recover(), they | |
1347 | * pass an empty bio here. Thus we have to find out the missing device | |
1348 | * and mark the stripe error instead. | |
1349 | */ | |
1350 | if (bio->bi_iter.bi_size == 0) { | |
1351 | bool found_missing = false; | |
1352 | int stripe_nr; | |
1353 | ||
1354 | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | |
1355 | if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { | |
1356 | found_missing = true; | |
1357 | bitmap_set(rbio->error_bitmap, | |
1358 | stripe_nr * rbio->stripe_nsectors, | |
1359 | rbio->stripe_nsectors); | |
1360 | } | |
1361 | } | |
1362 | ASSERT(found_missing); | |
1363 | } | |
1364 | } | |
1365 | ||
5fdb7afc | 1366 | /* |
67da05b3 | 1367 | * For subpage case, we can no longer set page Up-to-date directly for |
5fdb7afc QW |
1368 | * stripe_pages[], thus we need to locate the sector. |
1369 | */ | |
1370 | static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, | |
1371 | struct page *page, | |
1372 | unsigned int pgoff) | |
1373 | { | |
1374 | int i; | |
1375 | ||
1376 | for (i = 0; i < rbio->nr_sectors; i++) { | |
1377 | struct sector_ptr *sector = &rbio->stripe_sectors[i]; | |
1378 | ||
1379 | if (sector->page == page && sector->pgoff == pgoff) | |
1380 | return sector; | |
1381 | } | |
1382 | return NULL; | |
1383 | } | |
1384 | ||
53b381b3 DW |
1385 | /* |
1386 | * this sets each page in the bio uptodate. It should only be used on private | |
1387 | * rbio pages, nothing that comes in from the higher layers | |
1388 | */ | |
5fdb7afc | 1389 | static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) |
53b381b3 | 1390 | { |
5fdb7afc | 1391 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
0198e5b7 | 1392 | struct bio_vec *bvec; |
6dc4f100 | 1393 | struct bvec_iter_all iter_all; |
6592e58c | 1394 | |
0198e5b7 | 1395 | ASSERT(!bio_flagged(bio, BIO_CLONED)); |
53b381b3 | 1396 | |
5fdb7afc QW |
1397 | bio_for_each_segment_all(bvec, bio, iter_all) { |
1398 | struct sector_ptr *sector; | |
1399 | int pgoff; | |
1400 | ||
1401 | for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; | |
1402 | pgoff += sectorsize) { | |
1403 | sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); | |
1404 | ASSERT(sector); | |
1405 | if (sector) | |
1406 | sector->uptodate = 1; | |
1407 | } | |
1408 | } | |
53b381b3 DW |
1409 | } |
1410 | ||
2942a50d QW |
1411 | static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) |
1412 | { | |
1413 | struct bio_vec *bv = bio_first_bvec_all(bio); | |
1414 | int i; | |
1415 | ||
1416 | for (i = 0; i < rbio->nr_sectors; i++) { | |
1417 | struct sector_ptr *sector; | |
1418 | ||
1419 | sector = &rbio->stripe_sectors[i]; | |
1420 | if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) | |
1421 | break; | |
1422 | sector = &rbio->bio_sectors[i]; | |
1423 | if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) | |
1424 | break; | |
1425 | } | |
1426 | ASSERT(i < rbio->nr_sectors); | |
1427 | return i; | |
1428 | } | |
1429 | ||
1430 | static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) | |
1431 | { | |
1432 | int total_sector_nr = get_bio_sector_nr(rbio, bio); | |
1433 | u32 bio_size = 0; | |
1434 | struct bio_vec *bvec; | |
a9ad4d87 | 1435 | int i; |
2942a50d | 1436 | |
c9a43aaf | 1437 | bio_for_each_bvec_all(bvec, bio, i) |
2942a50d QW |
1438 | bio_size += bvec->bv_len; |
1439 | ||
a9ad4d87 QW |
1440 | /* |
1441 | * Since we can have multiple bios touching the error_bitmap, we cannot | |
1442 | * call bitmap_set() without protection. | |
1443 | * | |
1444 | * Instead use set_bit() for each bit, as set_bit() itself is atomic. | |
1445 | */ | |
1446 | for (i = total_sector_nr; i < total_sector_nr + | |
1447 | (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) | |
1448 | set_bit(i, rbio->error_bitmap); | |
2942a50d QW |
1449 | } |
1450 | ||
7a315072 QW |
1451 | /* Verify the data sectors at read time. */ |
1452 | static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, | |
1453 | struct bio *bio) | |
1454 | { | |
1455 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | |
1456 | int total_sector_nr = get_bio_sector_nr(rbio, bio); | |
1457 | struct bio_vec *bvec; | |
1458 | struct bvec_iter_all iter_all; | |
1459 | ||
1460 | /* No data csum for the whole stripe, no need to verify. */ | |
1461 | if (!rbio->csum_bitmap || !rbio->csum_buf) | |
1462 | return; | |
1463 | ||
1464 | /* P/Q stripes, they have no data csum to verify against. */ | |
1465 | if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) | |
1466 | return; | |
1467 | ||
1468 | bio_for_each_segment_all(bvec, bio, iter_all) { | |
1469 | int bv_offset; | |
1470 | ||
1471 | for (bv_offset = bvec->bv_offset; | |
1472 | bv_offset < bvec->bv_offset + bvec->bv_len; | |
1473 | bv_offset += fs_info->sectorsize, total_sector_nr++) { | |
1474 | u8 csum_buf[BTRFS_CSUM_SIZE]; | |
1475 | u8 *expected_csum = rbio->csum_buf + | |
1476 | total_sector_nr * fs_info->csum_size; | |
1477 | int ret; | |
1478 | ||
1479 | /* No csum for this sector, skip to the next sector. */ | |
1480 | if (!test_bit(total_sector_nr, rbio->csum_bitmap)) | |
1481 | continue; | |
1482 | ||
1483 | ret = btrfs_check_sector_csum(fs_info, bvec->bv_page, | |
1484 | bv_offset, csum_buf, expected_csum); | |
1485 | if (ret < 0) | |
1486 | set_bit(total_sector_nr, rbio->error_bitmap); | |
1487 | } | |
1488 | } | |
1489 | } | |
1490 | ||
d817ce35 QW |
1491 | static void raid_wait_read_end_io(struct bio *bio) |
1492 | { | |
1493 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
1494 | ||
7a315072 | 1495 | if (bio->bi_status) { |
2942a50d | 1496 | rbio_update_error_bitmap(rbio, bio); |
7a315072 | 1497 | } else { |
d817ce35 | 1498 | set_bio_pages_uptodate(rbio, bio); |
7a315072 QW |
1499 | verify_bio_data_sectors(rbio, bio); |
1500 | } | |
d817ce35 QW |
1501 | |
1502 | bio_put(bio); | |
1503 | if (atomic_dec_and_test(&rbio->stripes_pending)) | |
1504 | wake_up(&rbio->io_wait); | |
1505 | } | |
1506 | ||
1c76fb7b | 1507 | static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, |
d817ce35 QW |
1508 | struct bio_list *bio_list) |
1509 | { | |
1510 | struct bio *bio; | |
1511 | ||
1512 | atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); | |
1513 | while ((bio = bio_list_pop(bio_list))) { | |
1514 | bio->bi_end_io = raid_wait_read_end_io; | |
1515 | ||
dbb6ecb3 | 1516 | if (trace_raid56_read_enabled()) { |
d817ce35 QW |
1517 | struct raid56_bio_trace_info trace_info = { 0 }; |
1518 | ||
1519 | bio_get_trace_info(rbio, bio, &trace_info); | |
dbb6ecb3 | 1520 | trace_raid56_read(rbio, bio, &trace_info); |
d817ce35 QW |
1521 | } |
1522 | submit_bio(bio); | |
1523 | } | |
1c76fb7b CH |
1524 | |
1525 | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | |
d817ce35 QW |
1526 | } |
1527 | ||
5eb30ee2 QW |
1528 | static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) |
1529 | { | |
1530 | const int data_pages = rbio->nr_data * rbio->stripe_npages; | |
1531 | int ret; | |
1532 | ||
09e6cef1 | 1533 | ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0); |
5eb30ee2 QW |
1534 | if (ret < 0) |
1535 | return ret; | |
1536 | ||
1537 | index_stripe_sectors(rbio); | |
1538 | return 0; | |
1539 | } | |
1540 | ||
6ac0f488 CM |
1541 | /* |
1542 | * We use plugging call backs to collect full stripes. | |
1543 | * Any time we get a partial stripe write while plugged | |
1544 | * we collect it into a list. When the unplug comes down, | |
1545 | * we sort the list by logical block number and merge | |
1546 | * everything we can into the same rbios | |
1547 | */ | |
1548 | struct btrfs_plug_cb { | |
1549 | struct blk_plug_cb cb; | |
1550 | struct btrfs_fs_info *info; | |
1551 | struct list_head rbio_list; | |
6ac0f488 CM |
1552 | }; |
1553 | ||
1554 | /* | |
1555 | * rbios on the plug list are sorted for easier merging. | |
1556 | */ | |
4f0f586b ST |
1557 | static int plug_cmp(void *priv, const struct list_head *a, |
1558 | const struct list_head *b) | |
6ac0f488 | 1559 | { |
214cc184 DS |
1560 | const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, |
1561 | plug_list); | |
1562 | const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | |
1563 | plug_list); | |
4f024f37 KO |
1564 | u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; |
1565 | u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | |
6ac0f488 CM |
1566 | |
1567 | if (a_sector < b_sector) | |
1568 | return -1; | |
1569 | if (a_sector > b_sector) | |
1570 | return 1; | |
1571 | return 0; | |
1572 | } | |
1573 | ||
93723095 | 1574 | static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) |
6ac0f488 | 1575 | { |
93723095 | 1576 | struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); |
6ac0f488 CM |
1577 | struct btrfs_raid_bio *cur; |
1578 | struct btrfs_raid_bio *last = NULL; | |
1579 | ||
6ac0f488 | 1580 | list_sort(NULL, &plug->rbio_list, plug_cmp); |
93723095 | 1581 | |
6ac0f488 CM |
1582 | while (!list_empty(&plug->rbio_list)) { |
1583 | cur = list_entry(plug->rbio_list.next, | |
1584 | struct btrfs_raid_bio, plug_list); | |
1585 | list_del_init(&cur->plug_list); | |
1586 | ||
1587 | if (rbio_is_full(cur)) { | |
93723095 QW |
1588 | /* We have a full stripe, queue it down. */ |
1589 | start_async_work(cur, rmw_rbio_work); | |
6ac0f488 CM |
1590 | continue; |
1591 | } | |
1592 | if (last) { | |
1593 | if (rbio_can_merge(last, cur)) { | |
1594 | merge_rbio(last, cur); | |
ff2b64a2 | 1595 | free_raid_bio(cur); |
6ac0f488 | 1596 | continue; |
6ac0f488 | 1597 | } |
93723095 | 1598 | start_async_work(last, rmw_rbio_work); |
6ac0f488 CM |
1599 | } |
1600 | last = cur; | |
1601 | } | |
93723095 QW |
1602 | if (last) |
1603 | start_async_work(last, rmw_rbio_work); | |
6ac0f488 CM |
1604 | kfree(plug); |
1605 | } | |
1606 | ||
bd8f7e62 QW |
1607 | /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ |
1608 | static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) | |
1609 | { | |
1610 | const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | |
1611 | const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; | |
18d758a2 | 1612 | const u64 full_stripe_start = rbio->bioc->full_stripe_logical; |
bd8f7e62 QW |
1613 | const u32 orig_len = orig_bio->bi_iter.bi_size; |
1614 | const u32 sectorsize = fs_info->sectorsize; | |
1615 | u64 cur_logical; | |
1616 | ||
1617 | ASSERT(orig_logical >= full_stripe_start && | |
1618 | orig_logical + orig_len <= full_stripe_start + | |
ff18a4af | 1619 | rbio->nr_data * BTRFS_STRIPE_LEN); |
bd8f7e62 QW |
1620 | |
1621 | bio_list_add(&rbio->bio_list, orig_bio); | |
1622 | rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; | |
1623 | ||
1624 | /* Update the dbitmap. */ | |
1625 | for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; | |
1626 | cur_logical += sectorsize) { | |
1627 | int bit = ((u32)(cur_logical - full_stripe_start) >> | |
1628 | fs_info->sectorsize_bits) % rbio->stripe_nsectors; | |
1629 | ||
1630 | set_bit(bit, &rbio->dbitmap); | |
1631 | } | |
1632 | } | |
1633 | ||
53b381b3 DW |
1634 | /* |
1635 | * our main entry point for writes from the rest of the FS. | |
1636 | */ | |
31683f4a | 1637 | void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) |
53b381b3 | 1638 | { |
6a258d72 | 1639 | struct btrfs_fs_info *fs_info = bioc->fs_info; |
53b381b3 | 1640 | struct btrfs_raid_bio *rbio; |
6ac0f488 CM |
1641 | struct btrfs_plug_cb *plug = NULL; |
1642 | struct blk_plug_cb *cb; | |
53b381b3 | 1643 | |
ff18a4af | 1644 | rbio = alloc_rbio(fs_info, bioc); |
af8e2d1d | 1645 | if (IS_ERR(rbio)) { |
abb49e87 CH |
1646 | bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); |
1647 | bio_endio(bio); | |
1648 | return; | |
af8e2d1d | 1649 | } |
1b94b556 | 1650 | rbio->operation = BTRFS_RBIO_WRITE; |
bd8f7e62 | 1651 | rbio_add_bio(rbio, bio); |
6ac0f488 CM |
1652 | |
1653 | /* | |
93723095 | 1654 | * Don't plug on full rbios, just get them out the door |
6ac0f488 CM |
1655 | * as quickly as we can |
1656 | */ | |
abb49e87 CH |
1657 | if (!rbio_is_full(rbio)) { |
1658 | cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); | |
1659 | if (cb) { | |
1660 | plug = container_of(cb, struct btrfs_plug_cb, cb); | |
1661 | if (!plug->info) { | |
1662 | plug->info = fs_info; | |
1663 | INIT_LIST_HEAD(&plug->rbio_list); | |
1664 | } | |
1665 | list_add_tail(&rbio->plug_list, &plug->rbio_list); | |
1666 | return; | |
6ac0f488 | 1667 | } |
6ac0f488 | 1668 | } |
abb49e87 | 1669 | |
93723095 QW |
1670 | /* |
1671 | * Either we don't have any existing plug, or we're doing a full stripe, | |
abb49e87 | 1672 | * queue the rmw work now. |
93723095 QW |
1673 | */ |
1674 | start_async_work(rbio, rmw_rbio_work); | |
53b381b3 DW |
1675 | } |
1676 | ||
7a315072 QW |
1677 | static int verify_one_sector(struct btrfs_raid_bio *rbio, |
1678 | int stripe_nr, int sector_nr) | |
1679 | { | |
1680 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | |
1681 | struct sector_ptr *sector; | |
1682 | u8 csum_buf[BTRFS_CSUM_SIZE]; | |
1683 | u8 *csum_expected; | |
1684 | int ret; | |
1685 | ||
1686 | if (!rbio->csum_bitmap || !rbio->csum_buf) | |
1687 | return 0; | |
1688 | ||
1689 | /* No way to verify P/Q as they are not covered by data csum. */ | |
1690 | if (stripe_nr >= rbio->nr_data) | |
1691 | return 0; | |
1692 | /* | |
1693 | * If we're rebuilding a read, we have to use pages from the | |
1694 | * bio list if possible. | |
1695 | */ | |
3a3c7a7f | 1696 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
7a315072 QW |
1697 | sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); |
1698 | } else { | |
1699 | sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); | |
1700 | } | |
1701 | ||
1702 | ASSERT(sector->page); | |
1703 | ||
1704 | csum_expected = rbio->csum_buf + | |
1705 | (stripe_nr * rbio->stripe_nsectors + sector_nr) * | |
1706 | fs_info->csum_size; | |
1707 | ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff, | |
1708 | csum_buf, csum_expected); | |
1709 | return ret; | |
1710 | } | |
1711 | ||
9c5ff9b4 QW |
1712 | /* |
1713 | * Recover a vertical stripe specified by @sector_nr. | |
1714 | * @*pointers are the pre-allocated pointers by the caller, so we don't | |
1715 | * need to allocate/free the pointers again and again. | |
1716 | */ | |
75b47033 QW |
1717 | static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, |
1718 | void **pointers, void **unmap_array) | |
9c5ff9b4 QW |
1719 | { |
1720 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | |
1721 | struct sector_ptr *sector; | |
1722 | const u32 sectorsize = fs_info->sectorsize; | |
75b47033 QW |
1723 | int found_errors; |
1724 | int faila; | |
1725 | int failb; | |
9c5ff9b4 | 1726 | int stripe_nr; |
7a315072 | 1727 | int ret = 0; |
9c5ff9b4 QW |
1728 | |
1729 | /* | |
1730 | * Now we just use bitmap to mark the horizontal stripes in | |
1731 | * which we have data when doing parity scrub. | |
1732 | */ | |
1733 | if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | |
1734 | !test_bit(sector_nr, &rbio->dbitmap)) | |
75b47033 QW |
1735 | return 0; |
1736 | ||
1737 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, | |
1738 | &failb); | |
1739 | /* | |
67da05b3 | 1740 | * No errors in the vertical stripe, skip it. Can happen for recovery |
75b47033 QW |
1741 | * which only part of a stripe failed csum check. |
1742 | */ | |
1743 | if (!found_errors) | |
1744 | return 0; | |
1745 | ||
1746 | if (found_errors > rbio->bioc->max_errors) | |
1747 | return -EIO; | |
9c5ff9b4 QW |
1748 | |
1749 | /* | |
1750 | * Setup our array of pointers with sectors from each stripe | |
1751 | * | |
1752 | * NOTE: store a duplicate array of pointers to preserve the | |
1753 | * pointer order. | |
1754 | */ | |
1755 | for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { | |
1756 | /* | |
75b47033 QW |
1757 | * If we're rebuilding a read, we have to use pages from the |
1758 | * bio list if possible. | |
9c5ff9b4 | 1759 | */ |
3a3c7a7f | 1760 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
9c5ff9b4 QW |
1761 | sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); |
1762 | } else { | |
1763 | sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); | |
1764 | } | |
1765 | ASSERT(sector->page); | |
1766 | pointers[stripe_nr] = kmap_local_page(sector->page) + | |
1767 | sector->pgoff; | |
1768 | unmap_array[stripe_nr] = pointers[stripe_nr]; | |
1769 | } | |
1770 | ||
1771 | /* All raid6 handling here */ | |
1772 | if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { | |
1773 | /* Single failure, rebuild from parity raid5 style */ | |
1774 | if (failb < 0) { | |
1775 | if (faila == rbio->nr_data) | |
1776 | /* | |
1777 | * Just the P stripe has failed, without | |
1778 | * a bad data or Q stripe. | |
1779 | * We have nothing to do, just skip the | |
1780 | * recovery for this stripe. | |
1781 | */ | |
1782 | goto cleanup; | |
1783 | /* | |
1784 | * a single failure in raid6 is rebuilt | |
1785 | * in the pstripe code below | |
1786 | */ | |
1787 | goto pstripe; | |
1788 | } | |
1789 | ||
1790 | /* | |
1791 | * If the q stripe is failed, do a pstripe reconstruction from | |
1792 | * the xors. | |
1793 | * If both the q stripe and the P stripe are failed, we're | |
1794 | * here due to a crc mismatch and we can't give them the | |
1795 | * data they want. | |
1796 | */ | |
18d758a2 QW |
1797 | if (failb == rbio->real_stripes - 1) { |
1798 | if (faila == rbio->real_stripes - 2) | |
9c5ff9b4 QW |
1799 | /* |
1800 | * Only P and Q are corrupted. | |
1801 | * We only care about data stripes recovery, | |
1802 | * can skip this vertical stripe. | |
1803 | */ | |
1804 | goto cleanup; | |
1805 | /* | |
1806 | * Otherwise we have one bad data stripe and | |
1807 | * a good P stripe. raid5! | |
1808 | */ | |
1809 | goto pstripe; | |
1810 | } | |
1811 | ||
18d758a2 | 1812 | if (failb == rbio->real_stripes - 2) { |
9c5ff9b4 QW |
1813 | raid6_datap_recov(rbio->real_stripes, sectorsize, |
1814 | faila, pointers); | |
1815 | } else { | |
1816 | raid6_2data_recov(rbio->real_stripes, sectorsize, | |
1817 | faila, failb, pointers); | |
1818 | } | |
1819 | } else { | |
1820 | void *p; | |
1821 | ||
1822 | /* Rebuild from P stripe here (raid5 or raid6). */ | |
1823 | ASSERT(failb == -1); | |
1824 | pstripe: | |
1825 | /* Copy parity block into failed block to start with */ | |
1826 | memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); | |
1827 | ||
1828 | /* Rearrange the pointer array */ | |
1829 | p = pointers[faila]; | |
1830 | for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; | |
1831 | stripe_nr++) | |
1832 | pointers[stripe_nr] = pointers[stripe_nr + 1]; | |
1833 | pointers[rbio->nr_data - 1] = p; | |
1834 | ||
1835 | /* Xor in the rest */ | |
1836 | run_xor(pointers, rbio->nr_data - 1, sectorsize); | |
1837 | ||
1838 | } | |
1839 | ||
1840 | /* | |
1841 | * No matter if this is a RMW or recovery, we should have all | |
1842 | * failed sectors repaired in the vertical stripe, thus they are now | |
1843 | * uptodate. | |
1844 | * Especially if we determine to cache the rbio, we need to | |
1845 | * have at least all data sectors uptodate. | |
7a315072 QW |
1846 | * |
1847 | * If possible, also check if the repaired sector matches its data | |
1848 | * checksum. | |
9c5ff9b4 | 1849 | */ |
75b47033 | 1850 | if (faila >= 0) { |
7a315072 QW |
1851 | ret = verify_one_sector(rbio, faila, sector_nr); |
1852 | if (ret < 0) | |
1853 | goto cleanup; | |
1854 | ||
75b47033 | 1855 | sector = rbio_stripe_sector(rbio, faila, sector_nr); |
9c5ff9b4 QW |
1856 | sector->uptodate = 1; |
1857 | } | |
75b47033 | 1858 | if (failb >= 0) { |
f7c11aff | 1859 | ret = verify_one_sector(rbio, failb, sector_nr); |
7a315072 QW |
1860 | if (ret < 0) |
1861 | goto cleanup; | |
1862 | ||
75b47033 | 1863 | sector = rbio_stripe_sector(rbio, failb, sector_nr); |
9c5ff9b4 QW |
1864 | sector->uptodate = 1; |
1865 | } | |
1866 | ||
1867 | cleanup: | |
1868 | for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) | |
1869 | kunmap_local(unmap_array[stripe_nr]); | |
7a315072 | 1870 | return ret; |
9c5ff9b4 QW |
1871 | } |
1872 | ||
ec936b03 | 1873 | static int recover_sectors(struct btrfs_raid_bio *rbio) |
53b381b3 | 1874 | { |
9c5ff9b4 QW |
1875 | void **pointers = NULL; |
1876 | void **unmap_array = NULL; | |
ec936b03 QW |
1877 | int sectornr; |
1878 | int ret = 0; | |
53b381b3 | 1879 | |
07e4d380 | 1880 | /* |
ec936b03 QW |
1881 | * @pointers array stores the pointer for each sector. |
1882 | * | |
1883 | * @unmap_array stores copy of pointers that does not get reordered | |
1884 | * during reconstruction so that kunmap_local works. | |
07e4d380 | 1885 | */ |
31e818fe | 1886 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
94a0b58d | 1887 | unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); |
ec936b03 QW |
1888 | if (!pointers || !unmap_array) { |
1889 | ret = -ENOMEM; | |
1890 | goto out; | |
94a0b58d IW |
1891 | } |
1892 | ||
3a3c7a7f | 1893 | if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { |
74cc3600 | 1894 | spin_lock(&rbio->bio_list_lock); |
53b381b3 | 1895 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
74cc3600 | 1896 | spin_unlock(&rbio->bio_list_lock); |
53b381b3 DW |
1897 | } |
1898 | ||
1899 | index_rbio_pages(rbio); | |
1900 | ||
75b47033 QW |
1901 | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { |
1902 | ret = recover_vertical(rbio, sectornr, pointers, unmap_array); | |
1903 | if (ret < 0) | |
1904 | break; | |
1905 | } | |
53b381b3 | 1906 | |
ec936b03 | 1907 | out: |
53b381b3 | 1908 | kfree(pointers); |
ec936b03 QW |
1909 | kfree(unmap_array); |
1910 | return ret; | |
1911 | } | |
1912 | ||
40f87ddb | 1913 | static void recover_rbio(struct btrfs_raid_bio *rbio) |
53b381b3 | 1914 | { |
d838d05e | 1915 | struct bio_list bio_list = BIO_EMPTY_LIST; |
d31968d9 QW |
1916 | int total_sector_nr; |
1917 | int ret = 0; | |
53b381b3 | 1918 | |
d838d05e CH |
1919 | /* |
1920 | * Either we're doing recover for a read failure or degraded write, | |
1921 | * caller should have set error bitmap correctly. | |
1922 | */ | |
1923 | ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); | |
1924 | ||
1925 | /* For recovery, we need to read all sectors including P/Q. */ | |
1926 | ret = alloc_rbio_pages(rbio); | |
1927 | if (ret < 0) | |
40f87ddb | 1928 | goto out; |
d838d05e CH |
1929 | |
1930 | index_rbio_pages(rbio); | |
1931 | ||
53b381b3 | 1932 | /* |
f6065f8e QW |
1933 | * Read everything that hasn't failed. However this time we will |
1934 | * not trust any cached sector. | |
1935 | * As we may read out some stale data but higher layer is not reading | |
1936 | * that stale part. | |
1937 | * | |
1938 | * So here we always re-read everything in recovery path. | |
53b381b3 | 1939 | */ |
ef340fcc QW |
1940 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
1941 | total_sector_nr++) { | |
1942 | int stripe = total_sector_nr / rbio->stripe_nsectors; | |
1943 | int sectornr = total_sector_nr % rbio->stripe_nsectors; | |
1944 | struct sector_ptr *sector; | |
1945 | ||
75b47033 QW |
1946 | /* |
1947 | * Skip the range which has error. It can be a range which is | |
1948 | * marked error (for csum mismatch), or it can be a missing | |
1949 | * device. | |
1950 | */ | |
1951 | if (!rbio->bioc->stripes[stripe].dev->bdev || | |
1952 | test_bit(total_sector_nr, rbio->error_bitmap)) { | |
1953 | /* | |
1954 | * Also set the error bit for missing device, which | |
1955 | * may not yet have its error bit set. | |
1956 | */ | |
1957 | set_bit(total_sector_nr, rbio->error_bitmap); | |
53b381b3 | 1958 | continue; |
5588383e | 1959 | } |
75b47033 | 1960 | |
ef340fcc | 1961 | sector = rbio_stripe_sector(rbio, stripe, sectornr); |
d838d05e | 1962 | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, |
ff18a4af | 1963 | sectornr, REQ_OP_READ); |
d838d05e CH |
1964 | if (ret < 0) { |
1965 | bio_list_put(&bio_list); | |
40f87ddb | 1966 | goto out; |
d838d05e | 1967 | } |
53b381b3 | 1968 | } |
d817ce35 | 1969 | |
1c76fb7b | 1970 | submit_read_wait_bio_list(rbio, &bio_list); |
40f87ddb CH |
1971 | ret = recover_sectors(rbio); |
1972 | out: | |
1973 | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | |
d817ce35 QW |
1974 | } |
1975 | ||
1976 | static void recover_rbio_work(struct work_struct *work) | |
1977 | { | |
1978 | struct btrfs_raid_bio *rbio; | |
d817ce35 QW |
1979 | |
1980 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
40f87ddb CH |
1981 | if (!lock_stripe_add(rbio)) |
1982 | recover_rbio(rbio); | |
d817ce35 QW |
1983 | } |
1984 | ||
1985 | static void recover_rbio_work_locked(struct work_struct *work) | |
1986 | { | |
40f87ddb | 1987 | recover_rbio(container_of(work, struct btrfs_raid_bio, work)); |
d817ce35 QW |
1988 | } |
1989 | ||
75b47033 QW |
1990 | static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) |
1991 | { | |
1992 | bool found = false; | |
1993 | int sector_nr; | |
1994 | ||
1995 | /* | |
1996 | * This is for RAID6 extra recovery tries, thus mirror number should | |
1997 | * be large than 2. | |
1998 | * Mirror 1 means read from data stripes. Mirror 2 means rebuild using | |
1999 | * RAID5 methods. | |
2000 | */ | |
2001 | ASSERT(mirror_num > 2); | |
2002 | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { | |
2003 | int found_errors; | |
2004 | int faila; | |
2005 | int failb; | |
2006 | ||
2007 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, | |
2008 | &faila, &failb); | |
2009 | /* This vertical stripe doesn't have errors. */ | |
2010 | if (!found_errors) | |
2011 | continue; | |
2012 | ||
2013 | /* | |
2014 | * If we found errors, there should be only one error marked | |
2015 | * by previous set_rbio_range_error(). | |
2016 | */ | |
2017 | ASSERT(found_errors == 1); | |
2018 | found = true; | |
2019 | ||
2020 | /* Now select another stripe to mark as error. */ | |
2021 | failb = rbio->real_stripes - (mirror_num - 1); | |
2022 | if (failb <= faila) | |
2023 | failb--; | |
2024 | ||
2025 | /* Set the extra bit in error bitmap. */ | |
2026 | if (failb >= 0) | |
2027 | set_bit(failb * rbio->stripe_nsectors + sector_nr, | |
2028 | rbio->error_bitmap); | |
2029 | } | |
2030 | ||
2031 | /* We should found at least one vertical stripe with error.*/ | |
2032 | ASSERT(found); | |
2033 | } | |
2034 | ||
53b381b3 DW |
2035 | /* |
2036 | * the main entry point for reads from the higher layers. This | |
2037 | * is really only called when the normal read path had a failure, | |
2038 | * so we assume the bio they send down corresponds to a failed part | |
2039 | * of the drive. | |
2040 | */ | |
6065fd95 | 2041 | void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, |
f1c29379 | 2042 | int mirror_num) |
53b381b3 | 2043 | { |
6a258d72 | 2044 | struct btrfs_fs_info *fs_info = bioc->fs_info; |
53b381b3 | 2045 | struct btrfs_raid_bio *rbio; |
53b381b3 | 2046 | |
ff18a4af | 2047 | rbio = alloc_rbio(fs_info, bioc); |
af8e2d1d | 2048 | if (IS_ERR(rbio)) { |
6065fd95 | 2049 | bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); |
d817ce35 QW |
2050 | bio_endio(bio); |
2051 | return; | |
af8e2d1d | 2052 | } |
53b381b3 | 2053 | |
1b94b556 | 2054 | rbio->operation = BTRFS_RBIO_READ_REBUILD; |
bd8f7e62 | 2055 | rbio_add_bio(rbio, bio); |
53b381b3 | 2056 | |
2942a50d QW |
2057 | set_rbio_range_error(rbio, bio); |
2058 | ||
53b381b3 | 2059 | /* |
8810f751 LB |
2060 | * Loop retry: |
2061 | * for 'mirror == 2', reconstruct from all other stripes. | |
2062 | * for 'mirror_num > 2', select a stripe to fail on every retry. | |
53b381b3 | 2063 | */ |
ad3daf1c | 2064 | if (mirror_num > 2) |
75b47033 | 2065 | set_rbio_raid6_extra_error(rbio, mirror_num); |
53b381b3 | 2066 | |
d817ce35 | 2067 | start_async_work(rbio, recover_rbio_work); |
53b381b3 DW |
2068 | } |
2069 | ||
c5a41562 QW |
2070 | static void fill_data_csums(struct btrfs_raid_bio *rbio) |
2071 | { | |
2072 | struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; | |
2073 | struct btrfs_root *csum_root = btrfs_csum_root(fs_info, | |
18d758a2 QW |
2074 | rbio->bioc->full_stripe_logical); |
2075 | const u64 start = rbio->bioc->full_stripe_logical; | |
c5a41562 QW |
2076 | const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << |
2077 | fs_info->sectorsize_bits; | |
2078 | int ret; | |
2079 | ||
2080 | /* The rbio should not have its csum buffer initialized. */ | |
2081 | ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); | |
2082 | ||
2083 | /* | |
2084 | * Skip the csum search if: | |
2085 | * | |
2086 | * - The rbio doesn't belong to data block groups | |
2087 | * Then we are doing IO for tree blocks, no need to search csums. | |
2088 | * | |
2089 | * - The rbio belongs to mixed block groups | |
2090 | * This is to avoid deadlock, as we're already holding the full | |
2091 | * stripe lock, if we trigger a metadata read, and it needs to do | |
2092 | * raid56 recovery, we will deadlock. | |
2093 | */ | |
2094 | if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || | |
2095 | rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) | |
2096 | return; | |
2097 | ||
2098 | rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * | |
2099 | fs_info->csum_size, GFP_NOFS); | |
2100 | rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, | |
2101 | GFP_NOFS); | |
2102 | if (!rbio->csum_buf || !rbio->csum_bitmap) { | |
2103 | ret = -ENOMEM; | |
2104 | goto error; | |
2105 | } | |
2106 | ||
3c771c19 QW |
2107 | ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, |
2108 | rbio->csum_buf, rbio->csum_bitmap); | |
c5a41562 QW |
2109 | if (ret < 0) |
2110 | goto error; | |
2111 | if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) | |
2112 | goto no_csum; | |
2113 | return; | |
2114 | ||
2115 | error: | |
2116 | /* | |
2117 | * We failed to allocate memory or grab the csum, but it's not fatal, | |
2118 | * we can still continue. But better to warn users that RMW is no | |
2119 | * longer safe for this particular sub-stripe write. | |
2120 | */ | |
2121 | btrfs_warn_rl(fs_info, | |
2122 | "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", | |
18d758a2 | 2123 | rbio->bioc->full_stripe_logical, ret); |
c5a41562 QW |
2124 | no_csum: |
2125 | kfree(rbio->csum_buf); | |
2126 | bitmap_free(rbio->csum_bitmap); | |
2127 | rbio->csum_buf = NULL; | |
2128 | rbio->csum_bitmap = NULL; | |
2129 | } | |
2130 | ||
7a315072 | 2131 | static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) |
5eb30ee2 | 2132 | { |
02efa3a6 CH |
2133 | struct bio_list bio_list = BIO_EMPTY_LIST; |
2134 | int total_sector_nr; | |
2135 | int ret = 0; | |
5eb30ee2 | 2136 | |
c5a41562 QW |
2137 | /* |
2138 | * Fill the data csums we need for data verification. We need to fill | |
2139 | * the csum_bitmap/csum_buf first, as our endio function will try to | |
2140 | * verify the data sectors. | |
2141 | */ | |
2142 | fill_data_csums(rbio); | |
2143 | ||
02efa3a6 CH |
2144 | /* |
2145 | * Build a list of bios to read all sectors (including data and P/Q). | |
2146 | * | |
2147 | * This behavior is to compensate the later csum verification and recovery. | |
2148 | */ | |
2149 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | |
2150 | total_sector_nr++) { | |
2151 | struct sector_ptr *sector; | |
2152 | int stripe = total_sector_nr / rbio->stripe_nsectors; | |
2153 | int sectornr = total_sector_nr % rbio->stripe_nsectors; | |
5eb30ee2 | 2154 | |
02efa3a6 CH |
2155 | sector = rbio_stripe_sector(rbio, stripe, sectornr); |
2156 | ret = rbio_add_io_sector(rbio, &bio_list, sector, | |
2157 | stripe, sectornr, REQ_OP_READ); | |
2158 | if (ret) { | |
2159 | bio_list_put(&bio_list); | |
2160 | return ret; | |
2161 | } | |
2162 | } | |
7a315072 QW |
2163 | |
2164 | /* | |
2165 | * We may or may not have any corrupted sectors (including missing dev | |
2166 | * and csum mismatch), just let recover_sectors() to handle them all. | |
2167 | */ | |
02efa3a6 CH |
2168 | submit_read_wait_bio_list(rbio, &bio_list); |
2169 | return recover_sectors(rbio); | |
5eb30ee2 QW |
2170 | } |
2171 | ||
2172 | static void raid_wait_write_end_io(struct bio *bio) | |
2173 | { | |
2174 | struct btrfs_raid_bio *rbio = bio->bi_private; | |
2175 | blk_status_t err = bio->bi_status; | |
2176 | ||
ad3daf1c | 2177 | if (err) |
2942a50d | 2178 | rbio_update_error_bitmap(rbio, bio); |
5eb30ee2 QW |
2179 | bio_put(bio); |
2180 | if (atomic_dec_and_test(&rbio->stripes_pending)) | |
2181 | wake_up(&rbio->io_wait); | |
2182 | } | |
2183 | ||
2184 | static void submit_write_bios(struct btrfs_raid_bio *rbio, | |
2185 | struct bio_list *bio_list) | |
2186 | { | |
2187 | struct bio *bio; | |
2188 | ||
2189 | atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); | |
2190 | while ((bio = bio_list_pop(bio_list))) { | |
2191 | bio->bi_end_io = raid_wait_write_end_io; | |
2192 | ||
dbb6ecb3 | 2193 | if (trace_raid56_write_enabled()) { |
5eb30ee2 QW |
2194 | struct raid56_bio_trace_info trace_info = { 0 }; |
2195 | ||
2196 | bio_get_trace_info(rbio, bio, &trace_info); | |
dbb6ecb3 | 2197 | trace_raid56_write(rbio, bio, &trace_info); |
5eb30ee2 QW |
2198 | } |
2199 | submit_bio(bio); | |
2200 | } | |
2201 | } | |
2202 | ||
7a315072 QW |
2203 | /* |
2204 | * To determine if we need to read any sector from the disk. | |
2205 | * Should only be utilized in RMW path, to skip cached rbio. | |
2206 | */ | |
2207 | static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) | |
2208 | { | |
2209 | int i; | |
2210 | ||
2211 | for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { | |
2212 | struct sector_ptr *sector = &rbio->stripe_sectors[i]; | |
2213 | ||
2214 | /* | |
2215 | * We have a sector which doesn't have page nor uptodate, | |
2216 | * thus this rbio can not be cached one, as cached one must | |
2217 | * have all its data sectors present and uptodate. | |
2218 | */ | |
2219 | if (!sector->page || !sector->uptodate) | |
2220 | return true; | |
2221 | } | |
2222 | return false; | |
2223 | } | |
2224 | ||
1d0ef1ca | 2225 | static void rmw_rbio(struct btrfs_raid_bio *rbio) |
5eb30ee2 QW |
2226 | { |
2227 | struct bio_list bio_list; | |
2228 | int sectornr; | |
2229 | int ret = 0; | |
2230 | ||
2231 | /* | |
2232 | * Allocate the pages for parity first, as P/Q pages will always be | |
2233 | * needed for both full-stripe and sub-stripe writes. | |
2234 | */ | |
2235 | ret = alloc_rbio_parity_pages(rbio); | |
2236 | if (ret < 0) | |
1d0ef1ca | 2237 | goto out; |
5eb30ee2 | 2238 | |
7a315072 QW |
2239 | /* |
2240 | * Either full stripe write, or we have every data sector already | |
2241 | * cached, can go to write path immediately. | |
2242 | */ | |
4d762701 CH |
2243 | if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { |
2244 | /* | |
2245 | * Now we're doing sub-stripe write, also need all data stripes | |
2246 | * to do the full RMW. | |
2247 | */ | |
2248 | ret = alloc_rbio_data_pages(rbio); | |
2249 | if (ret < 0) | |
1d0ef1ca | 2250 | goto out; |
5eb30ee2 | 2251 | |
4d762701 | 2252 | index_rbio_pages(rbio); |
5eb30ee2 | 2253 | |
4d762701 CH |
2254 | ret = rmw_read_wait_recover(rbio); |
2255 | if (ret < 0) | |
1d0ef1ca | 2256 | goto out; |
4d762701 | 2257 | } |
5eb30ee2 | 2258 | |
5eb30ee2 QW |
2259 | /* |
2260 | * At this stage we're not allowed to add any new bios to the | |
2261 | * bio list any more, anyone else that wants to change this stripe | |
2262 | * needs to do their own rmw. | |
2263 | */ | |
74cc3600 | 2264 | spin_lock(&rbio->bio_list_lock); |
5eb30ee2 | 2265 | set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); |
74cc3600 | 2266 | spin_unlock(&rbio->bio_list_lock); |
5eb30ee2 | 2267 | |
2942a50d | 2268 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
5eb30ee2 QW |
2269 | |
2270 | index_rbio_pages(rbio); | |
2271 | ||
2272 | /* | |
2273 | * We don't cache full rbios because we're assuming | |
2274 | * the higher layers are unlikely to use this area of | |
2275 | * the disk again soon. If they do use it again, | |
2276 | * hopefully they will send another full bio. | |
2277 | */ | |
2278 | if (!rbio_is_full(rbio)) | |
2279 | cache_rbio_pages(rbio); | |
2280 | else | |
2281 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
2282 | ||
2283 | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) | |
2284 | generate_pq_vertical(rbio, sectornr); | |
2285 | ||
2286 | bio_list_init(&bio_list); | |
2287 | ret = rmw_assemble_write_bios(rbio, &bio_list); | |
2288 | if (ret < 0) | |
1d0ef1ca | 2289 | goto out; |
5eb30ee2 QW |
2290 | |
2291 | /* We should have at least one bio assembled. */ | |
2292 | ASSERT(bio_list_size(&bio_list)); | |
2293 | submit_write_bios(rbio, &bio_list); | |
2294 | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); | |
2295 | ||
ad3daf1c QW |
2296 | /* We may have more errors than our tolerance during the read. */ |
2297 | for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { | |
2298 | int found_errors; | |
2299 | ||
2300 | found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); | |
2301 | if (found_errors > rbio->bioc->max_errors) { | |
2302 | ret = -EIO; | |
2303 | break; | |
2304 | } | |
2305 | } | |
1d0ef1ca CH |
2306 | out: |
2307 | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | |
5eb30ee2 QW |
2308 | } |
2309 | ||
93723095 QW |
2310 | static void rmw_rbio_work(struct work_struct *work) |
2311 | { | |
2312 | struct btrfs_raid_bio *rbio; | |
93723095 QW |
2313 | |
2314 | rbio = container_of(work, struct btrfs_raid_bio, work); | |
1d0ef1ca CH |
2315 | if (lock_stripe_add(rbio) == 0) |
2316 | rmw_rbio(rbio); | |
93723095 QW |
2317 | } |
2318 | ||
2319 | static void rmw_rbio_work_locked(struct work_struct *work) | |
53b381b3 | 2320 | { |
1d0ef1ca | 2321 | rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); |
53b381b3 DW |
2322 | } |
2323 | ||
5a6ac9ea MX |
2324 | /* |
2325 | * The following code is used to scrub/replace the parity stripe | |
2326 | * | |
4c664611 | 2327 | * Caller must have already increased bio_counter for getting @bioc. |
ae6529c3 | 2328 | * |
5a6ac9ea MX |
2329 | * Note: We need make sure all the pages that add into the scrub/replace |
2330 | * raid bio are correct and not be changed during the scrub/replace. That | |
2331 | * is those pages just hold metadata or file data with checksum. | |
2332 | */ | |
2333 | ||
6a258d72 QW |
2334 | struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, |
2335 | struct btrfs_io_context *bioc, | |
ff18a4af | 2336 | struct btrfs_device *scrub_dev, |
6a258d72 | 2337 | unsigned long *dbitmap, int stripe_nsectors) |
5a6ac9ea | 2338 | { |
6a258d72 | 2339 | struct btrfs_fs_info *fs_info = bioc->fs_info; |
5a6ac9ea MX |
2340 | struct btrfs_raid_bio *rbio; |
2341 | int i; | |
2342 | ||
ff18a4af | 2343 | rbio = alloc_rbio(fs_info, bioc); |
5a6ac9ea MX |
2344 | if (IS_ERR(rbio)) |
2345 | return NULL; | |
2346 | bio_list_add(&rbio->bio_list, bio); | |
2347 | /* | |
2348 | * This is a special bio which is used to hold the completion handler | |
2349 | * and make the scrub rbio is similar to the other types | |
2350 | */ | |
2351 | ASSERT(!bio->bi_iter.bi_size); | |
2352 | rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | |
2353 | ||
9cd3a7eb | 2354 | /* |
4c664611 | 2355 | * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted |
9cd3a7eb LB |
2356 | * to the end position, so this search can start from the first parity |
2357 | * stripe. | |
2358 | */ | |
2359 | for (i = rbio->nr_data; i < rbio->real_stripes; i++) { | |
4c664611 | 2360 | if (bioc->stripes[i].dev == scrub_dev) { |
5a6ac9ea MX |
2361 | rbio->scrubp = i; |
2362 | break; | |
2363 | } | |
2364 | } | |
9cd3a7eb | 2365 | ASSERT(i < rbio->real_stripes); |
5a6ac9ea | 2366 | |
c67c68eb | 2367 | bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); |
5a6ac9ea MX |
2368 | return rbio; |
2369 | } | |
2370 | ||
5a6ac9ea MX |
2371 | /* |
2372 | * We just scrub the parity that we have correct data on the same horizontal, | |
2373 | * so we needn't allocate all pages for all the stripes. | |
2374 | */ | |
2375 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | |
2376 | { | |
3907ce29 | 2377 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; |
aee35e4b | 2378 | int total_sector_nr; |
5a6ac9ea | 2379 | |
aee35e4b QW |
2380 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; |
2381 | total_sector_nr++) { | |
2382 | struct page *page; | |
2383 | int sectornr = total_sector_nr % rbio->stripe_nsectors; | |
2384 | int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; | |
5a6ac9ea | 2385 | |
aee35e4b QW |
2386 | if (!test_bit(sectornr, &rbio->dbitmap)) |
2387 | continue; | |
2388 | if (rbio->stripe_pages[index]) | |
2389 | continue; | |
2390 | page = alloc_page(GFP_NOFS); | |
2391 | if (!page) | |
2392 | return -ENOMEM; | |
2393 | rbio->stripe_pages[index] = page; | |
5a6ac9ea | 2394 | } |
eb357060 | 2395 | index_stripe_sectors(rbio); |
5a6ac9ea MX |
2396 | return 0; |
2397 | } | |
2398 | ||
486c737f | 2399 | static int finish_parity_scrub(struct btrfs_raid_bio *rbio) |
5a6ac9ea | 2400 | { |
4c664611 | 2401 | struct btrfs_io_context *bioc = rbio->bioc; |
46900662 | 2402 | const u32 sectorsize = bioc->fs_info->sectorsize; |
1389053e | 2403 | void **pointers = rbio->finish_pointers; |
c67c68eb | 2404 | unsigned long *pbitmap = &rbio->finish_pbitmap; |
5a6ac9ea MX |
2405 | int nr_data = rbio->nr_data; |
2406 | int stripe; | |
3e77605d | 2407 | int sectornr; |
c17af965 | 2408 | bool has_qstripe; |
46900662 QW |
2409 | struct sector_ptr p_sector = { 0 }; |
2410 | struct sector_ptr q_sector = { 0 }; | |
5a6ac9ea | 2411 | struct bio_list bio_list; |
76035976 | 2412 | int is_replace = 0; |
5a6ac9ea MX |
2413 | int ret; |
2414 | ||
2415 | bio_list_init(&bio_list); | |
2416 | ||
c17af965 DS |
2417 | if (rbio->real_stripes - rbio->nr_data == 1) |
2418 | has_qstripe = false; | |
2419 | else if (rbio->real_stripes - rbio->nr_data == 2) | |
2420 | has_qstripe = true; | |
2421 | else | |
5a6ac9ea | 2422 | BUG(); |
5a6ac9ea | 2423 | |
1faf3885 QW |
2424 | /* |
2425 | * Replace is running and our P/Q stripe is being replaced, then we | |
2426 | * need to duplicate the final write to replace target. | |
2427 | */ | |
2428 | if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { | |
76035976 | 2429 | is_replace = 1; |
c67c68eb | 2430 | bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); |
76035976 MX |
2431 | } |
2432 | ||
5a6ac9ea MX |
2433 | /* |
2434 | * Because the higher layers(scrubber) are unlikely to | |
2435 | * use this area of the disk again soon, so don't cache | |
2436 | * it. | |
2437 | */ | |
2438 | clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | |
2439 | ||
46900662 QW |
2440 | p_sector.page = alloc_page(GFP_NOFS); |
2441 | if (!p_sector.page) | |
6bfd0133 | 2442 | return -ENOMEM; |
46900662 QW |
2443 | p_sector.pgoff = 0; |
2444 | p_sector.uptodate = 1; | |
5a6ac9ea | 2445 | |
c17af965 | 2446 | if (has_qstripe) { |
d70cef0d | 2447 | /* RAID6, allocate and map temp space for the Q stripe */ |
46900662 QW |
2448 | q_sector.page = alloc_page(GFP_NOFS); |
2449 | if (!q_sector.page) { | |
2450 | __free_page(p_sector.page); | |
2451 | p_sector.page = NULL; | |
6bfd0133 | 2452 | return -ENOMEM; |
5a6ac9ea | 2453 | } |
46900662 QW |
2454 | q_sector.pgoff = 0; |
2455 | q_sector.uptodate = 1; | |
2456 | pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); | |
5a6ac9ea MX |
2457 | } |
2458 | ||
2942a50d | 2459 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
5a6ac9ea | 2460 | |
d70cef0d | 2461 | /* Map the parity stripe just once */ |
46900662 | 2462 | pointers[nr_data] = kmap_local_page(p_sector.page); |
d70cef0d | 2463 | |
c67c68eb | 2464 | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { |
46900662 | 2465 | struct sector_ptr *sector; |
5a6ac9ea | 2466 | void *parity; |
46900662 | 2467 | |
5a6ac9ea MX |
2468 | /* first collect one page from each data stripe */ |
2469 | for (stripe = 0; stripe < nr_data; stripe++) { | |
46900662 QW |
2470 | sector = sector_in_rbio(rbio, stripe, sectornr, 0); |
2471 | pointers[stripe] = kmap_local_page(sector->page) + | |
2472 | sector->pgoff; | |
5a6ac9ea MX |
2473 | } |
2474 | ||
c17af965 | 2475 | if (has_qstripe) { |
d70cef0d | 2476 | /* RAID6, call the library function to fill in our P/Q */ |
46900662 | 2477 | raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, |
5a6ac9ea MX |
2478 | pointers); |
2479 | } else { | |
2480 | /* raid5 */ | |
46900662 QW |
2481 | memcpy(pointers[nr_data], pointers[0], sectorsize); |
2482 | run_xor(pointers + 1, nr_data - 1, sectorsize); | |
5a6ac9ea MX |
2483 | } |
2484 | ||
01327610 | 2485 | /* Check scrubbing parity and repair it */ |
46900662 QW |
2486 | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); |
2487 | parity = kmap_local_page(sector->page) + sector->pgoff; | |
2488 | if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) | |
2489 | memcpy(parity, pointers[rbio->scrubp], sectorsize); | |
5a6ac9ea MX |
2490 | else |
2491 | /* Parity is right, needn't writeback */ | |
c67c68eb | 2492 | bitmap_clear(&rbio->dbitmap, sectornr, 1); |
58c1a35c | 2493 | kunmap_local(parity); |
5a6ac9ea | 2494 | |
94a0b58d IW |
2495 | for (stripe = nr_data - 1; stripe >= 0; stripe--) |
2496 | kunmap_local(pointers[stripe]); | |
5a6ac9ea MX |
2497 | } |
2498 | ||
94a0b58d | 2499 | kunmap_local(pointers[nr_data]); |
46900662 QW |
2500 | __free_page(p_sector.page); |
2501 | p_sector.page = NULL; | |
2502 | if (q_sector.page) { | |
94a0b58d | 2503 | kunmap_local(pointers[rbio->real_stripes - 1]); |
46900662 QW |
2504 | __free_page(q_sector.page); |
2505 | q_sector.page = NULL; | |
d70cef0d | 2506 | } |
5a6ac9ea | 2507 | |
5a6ac9ea MX |
2508 | /* |
2509 | * time to start writing. Make bios for everything from the | |
2510 | * higher layers (the bio_list in our rbio) and our p/q. Ignore | |
2511 | * everything else. | |
2512 | */ | |
c67c68eb | 2513 | for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { |
3e77605d | 2514 | struct sector_ptr *sector; |
5a6ac9ea | 2515 | |
3e77605d QW |
2516 | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); |
2517 | ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, | |
ff18a4af | 2518 | sectornr, REQ_OP_WRITE); |
5a6ac9ea MX |
2519 | if (ret) |
2520 | goto cleanup; | |
2521 | } | |
2522 | ||
76035976 MX |
2523 | if (!is_replace) |
2524 | goto submit_write; | |
2525 | ||
1faf3885 QW |
2526 | /* |
2527 | * Replace is running and our parity stripe needs to be duplicated to | |
2528 | * the target device. Check we have a valid source stripe number. | |
2529 | */ | |
2530 | ASSERT(rbio->bioc->replace_stripe_src >= 0); | |
3e77605d QW |
2531 | for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { |
2532 | struct sector_ptr *sector; | |
76035976 | 2533 | |
3e77605d QW |
2534 | sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); |
2535 | ret = rbio_add_io_sector(rbio, &bio_list, sector, | |
1faf3885 QW |
2536 | rbio->real_stripes, |
2537 | sectornr, REQ_OP_WRITE); | |
76035976 MX |
2538 | if (ret) |
2539 | goto cleanup; | |
2540 | } | |
2541 | ||
2542 | submit_write: | |
6bfd0133 QW |
2543 | submit_write_bios(rbio, &bio_list); |
2544 | return 0; | |
5a6ac9ea MX |
2545 | |
2546 | cleanup: | |
801fcfc5 | 2547 | bio_list_put(&bio_list); |
6bfd0133 | 2548 | return ret; |
5a6ac9ea MX |
2549 | } |
2550 | ||
2551 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | |
2552 | { | |
2553 | if (stripe >= 0 && stripe < rbio->nr_data) | |
2554 | return 1; | |
2555 | return 0; | |
2556 | } | |
2557 | ||
6bfd0133 | 2558 | static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) |
5a6ac9ea | 2559 | { |
75b47033 QW |
2560 | void **pointers = NULL; |
2561 | void **unmap_array = NULL; | |
2562 | int sector_nr; | |
e7fc357e | 2563 | int ret = 0; |
5a6ac9ea | 2564 | |
75b47033 QW |
2565 | /* |
2566 | * @pointers array stores the pointer for each sector. | |
2567 | * | |
2568 | * @unmap_array stores copy of pointers that does not get reordered | |
2569 | * during reconstruction so that kunmap_local works. | |
2570 | */ | |
2571 | pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | |
2572 | unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | |
2573 | if (!pointers || !unmap_array) { | |
2574 | ret = -ENOMEM; | |
2575 | goto out; | |
2576 | } | |
5a6ac9ea | 2577 | |
75b47033 QW |
2578 | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { |
2579 | int dfail = 0, failp = -1; | |
2580 | int faila; | |
2581 | int failb; | |
2582 | int found_errors; | |
5a6ac9ea | 2583 | |
75b47033 QW |
2584 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, |
2585 | &faila, &failb); | |
2586 | if (found_errors > rbio->bioc->max_errors) { | |
2587 | ret = -EIO; | |
2588 | goto out; | |
2589 | } | |
2590 | if (found_errors == 0) | |
2591 | continue; | |
5a6ac9ea | 2592 | |
75b47033 QW |
2593 | /* We should have at least one error here. */ |
2594 | ASSERT(faila >= 0 || failb >= 0); | |
5a6ac9ea | 2595 | |
75b47033 QW |
2596 | if (is_data_stripe(rbio, faila)) |
2597 | dfail++; | |
2598 | else if (is_parity_stripe(faila)) | |
2599 | failp = faila; | |
5a6ac9ea | 2600 | |
75b47033 QW |
2601 | if (is_data_stripe(rbio, failb)) |
2602 | dfail++; | |
2603 | else if (is_parity_stripe(failb)) | |
2604 | failp = failb; | |
2605 | /* | |
2606 | * Because we can not use a scrubbing parity to repair the | |
2607 | * data, so the capability of the repair is declined. (In the | |
2608 | * case of RAID5, we can not repair anything.) | |
2609 | */ | |
2610 | if (dfail > rbio->bioc->max_errors - 1) { | |
2611 | ret = -EIO; | |
2612 | goto out; | |
2613 | } | |
2614 | /* | |
2615 | * If all data is good, only parity is correctly, just repair | |
2616 | * the parity, no need to recover data stripes. | |
2617 | */ | |
2618 | if (dfail == 0) | |
2619 | continue; | |
6bfd0133 | 2620 | |
75b47033 QW |
2621 | /* |
2622 | * Here means we got one corrupted data stripe and one | |
2623 | * corrupted parity on RAID6, if the corrupted parity is | |
2624 | * scrubbing parity, luckily, use the other one to repair the | |
2625 | * data, or we can not repair the data stripe. | |
2626 | */ | |
2627 | if (failp != rbio->scrubp) { | |
2628 | ret = -EIO; | |
2629 | goto out; | |
2630 | } | |
2631 | ||
2632 | ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); | |
2633 | if (ret < 0) | |
2634 | goto out; | |
2635 | } | |
2636 | out: | |
2637 | kfree(pointers); | |
2638 | kfree(unmap_array); | |
6bfd0133 | 2639 | return ret; |
5a6ac9ea MX |
2640 | } |
2641 | ||
52f0c198 | 2642 | static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) |
5a6ac9ea | 2643 | { |
52f0c198 | 2644 | struct bio_list bio_list = BIO_EMPTY_LIST; |
cb3450b7 QW |
2645 | int total_sector_nr; |
2646 | int ret = 0; | |
5a6ac9ea | 2647 | |
1c10702e QW |
2648 | /* Build a list of bios to read all the missing parts. */ |
2649 | for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; | |
2650 | total_sector_nr++) { | |
2651 | int sectornr = total_sector_nr % rbio->stripe_nsectors; | |
2652 | int stripe = total_sector_nr / rbio->stripe_nsectors; | |
2653 | struct sector_ptr *sector; | |
5a6ac9ea | 2654 | |
1c10702e QW |
2655 | /* No data in the vertical stripe, no need to read. */ |
2656 | if (!test_bit(sectornr, &rbio->dbitmap)) | |
2657 | continue; | |
5a6ac9ea | 2658 | |
1c10702e QW |
2659 | /* |
2660 | * We want to find all the sectors missing from the rbio and | |
2661 | * read them from the disk. If sector_in_rbio() finds a sector | |
2662 | * in the bio list we don't need to read it off the stripe. | |
2663 | */ | |
2664 | sector = sector_in_rbio(rbio, stripe, sectornr, 1); | |
2665 | if (sector) | |
2666 | continue; | |
2667 | ||
2668 | sector = rbio_stripe_sector(rbio, stripe, sectornr); | |
2669 | /* | |
2670 | * The bio cache may have handed us an uptodate sector. If so, | |
2671 | * use it. | |
2672 | */ | |
2673 | if (sector->uptodate) | |
2674 | continue; | |
2675 | ||
52f0c198 | 2676 | ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, |
ff18a4af | 2677 | sectornr, REQ_OP_READ); |
52f0c198 CH |
2678 | if (ret) { |
2679 | bio_list_put(&bio_list); | |
2680 | return ret; | |
2681 | } | |
5a6ac9ea | 2682 | } |
52f0c198 CH |
2683 | |
2684 | submit_read_wait_bio_list(rbio, &bio_list); | |
cb3450b7 | 2685 | return 0; |
cb3450b7 QW |
2686 | } |
2687 | ||
08241d3c | 2688 | static void scrub_rbio(struct btrfs_raid_bio *rbio) |
cb3450b7 | 2689 | { |
ad3daf1c | 2690 | int sector_nr; |
cb3450b7 | 2691 | int ret; |
cb3450b7 | 2692 | |
cb3450b7 QW |
2693 | ret = alloc_rbio_essential_pages(rbio); |
2694 | if (ret) | |
08241d3c | 2695 | goto out; |
cb3450b7 | 2696 | |
2942a50d QW |
2697 | bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); |
2698 | ||
52f0c198 | 2699 | ret = scrub_assemble_read_bios(rbio); |
cb3450b7 | 2700 | if (ret < 0) |
08241d3c | 2701 | goto out; |
5a6ac9ea | 2702 | |
75b47033 | 2703 | /* We may have some failures, recover the failed sectors first. */ |
6bfd0133 QW |
2704 | ret = recover_scrub_rbio(rbio); |
2705 | if (ret < 0) | |
08241d3c | 2706 | goto out; |
5a6ac9ea | 2707 | |
6bfd0133 QW |
2708 | /* |
2709 | * We have every sector properly prepared. Can finish the scrub | |
2710 | * and writeback the good content. | |
2711 | */ | |
486c737f | 2712 | ret = finish_parity_scrub(rbio); |
6bfd0133 | 2713 | wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); |
ad3daf1c QW |
2714 | for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { |
2715 | int found_errors; | |
2716 | ||
2717 | found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); | |
2718 | if (found_errors > rbio->bioc->max_errors) { | |
2719 | ret = -EIO; | |
2720 | break; | |
2721 | } | |
2722 | } | |
08241d3c CH |
2723 | out: |
2724 | rbio_orig_end_io(rbio, errno_to_blk_status(ret)); | |
5a6ac9ea MX |
2725 | } |
2726 | ||
6bfd0133 | 2727 | static void scrub_rbio_work_locked(struct work_struct *work) |
5a6ac9ea | 2728 | { |
08241d3c | 2729 | scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); |
5a6ac9ea MX |
2730 | } |
2731 | ||
5a6ac9ea MX |
2732 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) |
2733 | { | |
2734 | if (!lock_stripe_add(rbio)) | |
6bfd0133 | 2735 | start_async_work(rbio, scrub_rbio_work_locked); |
5a6ac9ea | 2736 | } |
94ead93e QW |
2737 | |
2738 | /* | |
2739 | * This is for scrub call sites where we already have correct data contents. | |
2740 | * This allows us to avoid reading data stripes again. | |
2741 | * | |
2742 | * Unfortunately here we have to do page copy, other than reusing the pages. | |
2743 | * This is due to the fact rbio has its own page management for its cache. | |
2744 | */ | |
2745 | void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio, | |
2746 | struct page **data_pages, u64 data_logical) | |
2747 | { | |
2748 | const u64 offset_in_full_stripe = data_logical - | |
2749 | rbio->bioc->full_stripe_logical; | |
2750 | const int page_index = offset_in_full_stripe >> PAGE_SHIFT; | |
2751 | const u32 sectorsize = rbio->bioc->fs_info->sectorsize; | |
2752 | const u32 sectors_per_page = PAGE_SIZE / sectorsize; | |
2753 | int ret; | |
2754 | ||
2755 | /* | |
2756 | * If we hit ENOMEM temporarily, but later at | |
2757 | * raid56_parity_submit_scrub_rbio() time it succeeded, we just do | |
2758 | * the extra read, not a big deal. | |
2759 | * | |
2760 | * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, | |
2761 | * the bio would got proper error number set. | |
2762 | */ | |
2763 | ret = alloc_rbio_data_pages(rbio); | |
2764 | if (ret < 0) | |
2765 | return; | |
2766 | ||
2767 | /* data_logical must be at stripe boundary and inside the full stripe. */ | |
2768 | ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); | |
2769 | ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); | |
2770 | ||
2771 | for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) { | |
2772 | struct page *dst = rbio->stripe_pages[page_nr + page_index]; | |
2773 | struct page *src = data_pages[page_nr]; | |
2774 | ||
2775 | memcpy_page(dst, 0, src, 0, PAGE_SIZE); | |
2776 | for (int sector_nr = sectors_per_page * page_index; | |
2777 | sector_nr < sectors_per_page * (page_index + 1); | |
2778 | sector_nr++) | |
2779 | rbio->stripe_sectors[sector_nr].uptodate = true; | |
2780 | } | |
2781 | } |