]> Git Repo - linux.git/blame - fs/btrfs/raid56.c
btrfs: migrate various end io functions to folios
[linux.git] / fs / btrfs / raid56.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
53b381b3
DW
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
53b381b3 5 */
c1d7c514 6
53b381b3 7#include <linux/sched.h>
53b381b3
DW
8#include <linux/bio.h>
9#include <linux/slab.h>
53b381b3 10#include <linux/blkdev.h>
53b381b3
DW
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
818e010b 15#include <linux/mm.h>
9b569ea0 16#include "messages.h"
cea62800 17#include "misc.h"
53b381b3 18#include "ctree.h"
53b381b3 19#include "disk-io.h"
53b381b3
DW
20#include "volumes.h"
21#include "raid56.h"
22#include "async-thread.h"
c5a41562 23#include "file-item.h"
7a315072 24#include "btrfs_inode.h"
53b381b3
DW
25
26/* set when additional merges to this rbio are not allowed */
27#define RBIO_RMW_LOCKED_BIT 1
28
4ae10b3a
CM
29/*
30 * set when this rbio is sitting in the hash, but it is just a cache
31 * of past RMW
32 */
33#define RBIO_CACHE_BIT 2
34
35/*
36 * set when it is safe to trust the stripe_pages for caching
37 */
38#define RBIO_CACHE_READY_BIT 3
39
4ae10b3a
CM
40#define RBIO_CACHE_SIZE 1024
41
8a953348
DS
42#define BTRFS_STRIPE_HASH_TABLE_BITS 11
43
44/* Used by the raid56 code to lock stripes for read/modify/write */
45struct btrfs_stripe_hash {
46 struct list_head hash_list;
47 spinlock_t lock;
48};
49
50/* Used by the raid56 code to lock stripes for read/modify/write */
51struct btrfs_stripe_hash_table {
52 struct list_head stripe_cache;
53 spinlock_t cache_lock;
54 int cache_size;
55 struct btrfs_stripe_hash table[];
56};
57
eb357060
QW
58/*
59 * A bvec like structure to present a sector inside a page.
60 *
61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
62 */
63struct sector_ptr {
64 struct page *page;
00425dd9
QW
65 unsigned int pgoff:24;
66 unsigned int uptodate:8;
eb357060
QW
67};
68
93723095
QW
69static void rmw_rbio_work(struct work_struct *work);
70static void rmw_rbio_work_locked(struct work_struct *work);
53b381b3
DW
71static void index_rbio_pages(struct btrfs_raid_bio *rbio);
72static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73
486c737f 74static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
6bfd0133 75static void scrub_rbio_work_locked(struct work_struct *work);
5a6ac9ea 76
797d74b7
QW
77static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78{
2942a50d 79 bitmap_free(rbio->error_bitmap);
797d74b7
QW
80 kfree(rbio->stripe_pages);
81 kfree(rbio->bio_sectors);
82 kfree(rbio->stripe_sectors);
83 kfree(rbio->finish_pointers);
84}
85
ff2b64a2
QW
86static void free_raid_bio(struct btrfs_raid_bio *rbio)
87{
88 int i;
89
90 if (!refcount_dec_and_test(&rbio->refs))
91 return;
92
93 WARN_ON(!list_empty(&rbio->stripe_cache));
94 WARN_ON(!list_empty(&rbio->hash_list));
95 WARN_ON(!bio_list_empty(&rbio->bio_list));
96
97 for (i = 0; i < rbio->nr_pages; i++) {
98 if (rbio->stripe_pages[i]) {
99 __free_page(rbio->stripe_pages[i]);
100 rbio->stripe_pages[i] = NULL;
101 }
102 }
103
104 btrfs_put_bioc(rbio->bioc);
797d74b7 105 free_raid_bio_pointers(rbio);
ff2b64a2
QW
106 kfree(rbio);
107}
108
385de0ef 109static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
ac638859 110{
385de0ef
CH
111 INIT_WORK(&rbio->work, work_func);
112 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
ac638859
DS
113}
114
53b381b3
DW
115/*
116 * the stripe hash table is used for locking, and to collect
117 * bios in hopes of making a full stripe
118 */
119int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120{
121 struct btrfs_stripe_hash_table *table;
122 struct btrfs_stripe_hash_table *x;
123 struct btrfs_stripe_hash *cur;
124 struct btrfs_stripe_hash *h;
125 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
126 int i;
127
128 if (info->stripe_hash_table)
129 return 0;
130
83c8266a
DS
131 /*
132 * The table is large, starting with order 4 and can go as high as
133 * order 7 in case lock debugging is turned on.
134 *
135 * Try harder to allocate and fallback to vmalloc to lower the chance
136 * of a failing mount.
137 */
ee787f95 138 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
818e010b
DS
139 if (!table)
140 return -ENOMEM;
53b381b3 141
4ae10b3a
CM
142 spin_lock_init(&table->cache_lock);
143 INIT_LIST_HEAD(&table->stripe_cache);
144
53b381b3
DW
145 h = table->table;
146
147 for (i = 0; i < num_entries; i++) {
148 cur = h + i;
149 INIT_LIST_HEAD(&cur->hash_list);
150 spin_lock_init(&cur->lock);
53b381b3
DW
151 }
152
153 x = cmpxchg(&info->stripe_hash_table, NULL, table);
fe3b7bb0 154 kvfree(x);
53b381b3
DW
155 return 0;
156}
157
4ae10b3a
CM
158/*
159 * caching an rbio means to copy anything from the
ac26df8b 160 * bio_sectors array into the stripe_pages array. We
4ae10b3a
CM
161 * use the page uptodate bit in the stripe cache array
162 * to indicate if it has valid data
163 *
164 * once the caching is done, we set the cache ready
165 * bit.
166 */
167static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
168{
169 int i;
4ae10b3a
CM
170 int ret;
171
172 ret = alloc_rbio_pages(rbio);
173 if (ret)
174 return;
175
00425dd9
QW
176 for (i = 0; i < rbio->nr_sectors; i++) {
177 /* Some range not covered by bio (partial write), skip it */
88074c8b
QW
178 if (!rbio->bio_sectors[i].page) {
179 /*
180 * Even if the sector is not covered by bio, if it is
181 * a data sector it should still be uptodate as it is
182 * read from disk.
183 */
184 if (i < rbio->nr_data * rbio->stripe_nsectors)
185 ASSERT(rbio->stripe_sectors[i].uptodate);
00425dd9 186 continue;
88074c8b 187 }
00425dd9
QW
188
189 ASSERT(rbio->stripe_sectors[i].page);
190 memcpy_page(rbio->stripe_sectors[i].page,
191 rbio->stripe_sectors[i].pgoff,
192 rbio->bio_sectors[i].page,
193 rbio->bio_sectors[i].pgoff,
194 rbio->bioc->fs_info->sectorsize);
195 rbio->stripe_sectors[i].uptodate = 1;
196 }
4ae10b3a
CM
197 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
198}
199
53b381b3
DW
200/*
201 * we hash on the first logical address of the stripe
202 */
203static int rbio_bucket(struct btrfs_raid_bio *rbio)
204{
18d758a2 205 u64 num = rbio->bioc->full_stripe_logical;
53b381b3
DW
206
207 /*
208 * we shift down quite a bit. We're using byte
209 * addressing, and most of the lower bits are zeros.
210 * This tends to upset hash_64, and it consistently
211 * returns just one or two different values.
212 *
213 * shifting off the lower bits fixes things.
214 */
215 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
216}
217
d4e28d9b
QW
218static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
219 unsigned int page_nr)
220{
221 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
222 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
223 int i;
224
225 ASSERT(page_nr < rbio->nr_pages);
226
227 for (i = sectors_per_page * page_nr;
228 i < sectors_per_page * page_nr + sectors_per_page;
229 i++) {
230 if (!rbio->stripe_sectors[i].uptodate)
231 return false;
232 }
233 return true;
234}
235
eb357060
QW
236/*
237 * Update the stripe_sectors[] array to use correct page and pgoff
238 *
239 * Should be called every time any page pointer in stripes_pages[] got modified.
240 */
241static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242{
243 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
244 u32 offset;
245 int i;
246
247 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
248 int page_index = offset >> PAGE_SHIFT;
249
250 ASSERT(page_index < rbio->nr_pages);
251 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
252 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
253 }
254}
255
4d100466
QW
256static void steal_rbio_page(struct btrfs_raid_bio *src,
257 struct btrfs_raid_bio *dest, int page_nr)
258{
259 const u32 sectorsize = src->bioc->fs_info->sectorsize;
260 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
261 int i;
262
263 if (dest->stripe_pages[page_nr])
264 __free_page(dest->stripe_pages[page_nr]);
265 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
266 src->stripe_pages[page_nr] = NULL;
267
268 /* Also update the sector->uptodate bits. */
269 for (i = sectors_per_page * page_nr;
270 i < sectors_per_page * page_nr + sectors_per_page; i++)
271 dest->stripe_sectors[i].uptodate = true;
272}
273
88074c8b
QW
274static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275{
276 const int sector_nr = (page_nr << PAGE_SHIFT) >>
277 rbio->bioc->fs_info->sectorsize_bits;
278
279 /*
280 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
281 * we won't have a page which is half data half parity.
282 *
283 * Thus if the first sector of the page belongs to data stripes, then
284 * the full page belongs to data stripes.
285 */
286 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
287}
288
4ae10b3a 289/*
d4e28d9b
QW
290 * Stealing an rbio means taking all the uptodate pages from the stripe array
291 * in the source rbio and putting them into the destination rbio.
292 *
293 * This will also update the involved stripe_sectors[] which are referring to
294 * the old pages.
4ae10b3a
CM
295 */
296static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297{
298 int i;
4ae10b3a
CM
299
300 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
301 return;
302
303 for (i = 0; i < dest->nr_pages; i++) {
88074c8b
QW
304 struct page *p = src->stripe_pages[i];
305
306 /*
307 * We don't need to steal P/Q pages as they will always be
308 * regenerated for RMW or full write anyway.
309 */
310 if (!is_data_stripe_page(src, i))
4ae10b3a 311 continue;
4ae10b3a 312
88074c8b
QW
313 /*
314 * If @src already has RBIO_CACHE_READY_BIT, it should have
315 * all data stripe pages present and uptodate.
316 */
317 ASSERT(p);
318 ASSERT(full_page_sectors_uptodate(src, i));
4d100466 319 steal_rbio_page(src, dest, i);
4ae10b3a 320 }
eb357060
QW
321 index_stripe_sectors(dest);
322 index_stripe_sectors(src);
4ae10b3a
CM
323}
324
53b381b3
DW
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
bd8f7e62
QW
337 /* Also inherit the bitmaps from @victim. */
338 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
339 dest->stripe_nsectors);
53b381b3
DW
340 bio_list_init(&victim->bio_list);
341}
342
343/*
4ae10b3a
CM
344 * used to prune items that are in the cache. The caller
345 * must hold the hash table lock.
346 */
347static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348{
349 int bucket = rbio_bucket(rbio);
350 struct btrfs_stripe_hash_table *table;
351 struct btrfs_stripe_hash *h;
352 int freeit = 0;
353
354 /*
355 * check the bit again under the hash table lock.
356 */
357 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 return;
359
6a258d72 360 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a
CM
361 h = table->table + bucket;
362
363 /* hold the lock for the bucket because we may be
364 * removing it from the hash table
365 */
366 spin_lock(&h->lock);
367
368 /*
369 * hold the lock for the bio list because we need
370 * to make sure the bio list is empty
371 */
372 spin_lock(&rbio->bio_list_lock);
373
374 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 list_del_init(&rbio->stripe_cache);
376 table->cache_size -= 1;
377 freeit = 1;
378
379 /* if the bio list isn't empty, this rbio is
380 * still involved in an IO. We take it out
381 * of the cache list, and drop the ref that
382 * was held for the list.
383 *
384 * If the bio_list was empty, we also remove
385 * the rbio from the hash_table, and drop
386 * the corresponding ref
387 */
388 if (bio_list_empty(&rbio->bio_list)) {
389 if (!list_empty(&rbio->hash_list)) {
390 list_del_init(&rbio->hash_list);
dec95574 391 refcount_dec(&rbio->refs);
4ae10b3a
CM
392 BUG_ON(!list_empty(&rbio->plug_list));
393 }
394 }
395 }
396
397 spin_unlock(&rbio->bio_list_lock);
398 spin_unlock(&h->lock);
399
400 if (freeit)
ff2b64a2 401 free_raid_bio(rbio);
4ae10b3a
CM
402}
403
404/*
405 * prune a given rbio from the cache
406 */
407static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408{
409 struct btrfs_stripe_hash_table *table;
4ae10b3a
CM
410
411 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
412 return;
413
6a258d72 414 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a 415
74cc3600 416 spin_lock(&table->cache_lock);
4ae10b3a 417 __remove_rbio_from_cache(rbio);
74cc3600 418 spin_unlock(&table->cache_lock);
4ae10b3a
CM
419}
420
421/*
422 * remove everything in the cache
423 */
48a3b636 424static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
425{
426 struct btrfs_stripe_hash_table *table;
4ae10b3a
CM
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
74cc3600 431 spin_lock(&table->cache_lock);
4ae10b3a
CM
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
74cc3600 438 spin_unlock(&table->cache_lock);
4ae10b3a
CM
439}
440
441/*
442 * remove all cached entries and free the hash table
443 * used by unmount
53b381b3
DW
444 */
445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446{
447 if (!info->stripe_hash_table)
448 return;
4ae10b3a 449 btrfs_clear_rbio_cache(info);
f749303b 450 kvfree(info->stripe_hash_table);
53b381b3
DW
451 info->stripe_hash_table = NULL;
452}
453
4ae10b3a
CM
454/*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
465static void cache_rbio(struct btrfs_raid_bio *rbio)
466{
467 struct btrfs_stripe_hash_table *table;
4ae10b3a
CM
468
469 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
470 return;
471
6a258d72 472 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a 473
74cc3600 474 spin_lock(&table->cache_lock);
4ae10b3a
CM
475 spin_lock(&rbio->bio_list_lock);
476
477 /* bump our ref if we were not in the list before */
478 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 479 refcount_inc(&rbio->refs);
4ae10b3a
CM
480
481 if (!list_empty(&rbio->stripe_cache)){
482 list_move(&rbio->stripe_cache, &table->stripe_cache);
483 } else {
484 list_add(&rbio->stripe_cache, &table->stripe_cache);
485 table->cache_size += 1;
486 }
487
488 spin_unlock(&rbio->bio_list_lock);
489
490 if (table->cache_size > RBIO_CACHE_SIZE) {
491 struct btrfs_raid_bio *found;
492
493 found = list_entry(table->stripe_cache.prev,
494 struct btrfs_raid_bio,
495 stripe_cache);
496
497 if (found != rbio)
498 __remove_rbio_from_cache(found);
499 }
500
74cc3600 501 spin_unlock(&table->cache_lock);
4ae10b3a
CM
502}
503
53b381b3
DW
504/*
505 * helper function to run the xor_blocks api. It is only
506 * able to do MAX_XOR_BLOCKS at a time, so we need to
507 * loop through.
508 */
509static void run_xor(void **pages, int src_cnt, ssize_t len)
510{
511 int src_off = 0;
512 int xor_src_cnt = 0;
513 void *dest = pages[src_cnt];
514
515 while(src_cnt > 0) {
516 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
517 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
518
519 src_cnt -= xor_src_cnt;
520 src_off += xor_src_cnt;
521 }
522}
523
524/*
176571a1
DS
525 * Returns true if the bio list inside this rbio covers an entire stripe (no
526 * rmw required).
53b381b3 527 */
176571a1 528static int rbio_is_full(struct btrfs_raid_bio *rbio)
53b381b3
DW
529{
530 unsigned long size = rbio->bio_list_bytes;
531 int ret = 1;
532
74cc3600 533 spin_lock(&rbio->bio_list_lock);
ff18a4af 534 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
53b381b3 535 ret = 0;
ff18a4af 536 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
74cc3600 537 spin_unlock(&rbio->bio_list_lock);
176571a1 538
53b381b3
DW
539 return ret;
540}
541
542/*
543 * returns 1 if it is safe to merge two rbios together.
544 * The merging is safe if the two rbios correspond to
545 * the same stripe and if they are both going in the same
546 * direction (read vs write), and if neither one is
547 * locked for final IO
548 *
549 * The caller is responsible for locking such that
550 * rmw_locked is safe to test
551 */
552static int rbio_can_merge(struct btrfs_raid_bio *last,
553 struct btrfs_raid_bio *cur)
554{
555 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
556 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
557 return 0;
558
4ae10b3a
CM
559 /*
560 * we can't merge with cached rbios, since the
561 * idea is that when we merge the destination
562 * rbio is going to run our IO for us. We can
01327610 563 * steal from cached rbios though, other functions
4ae10b3a
CM
564 * handle that.
565 */
566 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
567 test_bit(RBIO_CACHE_BIT, &cur->flags))
568 return 0;
569
18d758a2 570 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
53b381b3
DW
571 return 0;
572
5a6ac9ea
MX
573 /* we can't merge with different operations */
574 if (last->operation != cur->operation)
575 return 0;
576 /*
577 * We've need read the full stripe from the drive.
578 * check and repair the parity and write the new results.
579 *
580 * We're not allowed to add any new bios to the
581 * bio list here, anyone else that wants to
582 * change this stripe needs to do their own rmw.
583 */
db34be19 584 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 585 return 0;
53b381b3 586
3a3c7a7f 587 if (last->operation == BTRFS_RBIO_READ_REBUILD)
b4ee1782
OS
588 return 0;
589
53b381b3
DW
590 return 1;
591}
592
3e77605d
QW
593static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
594 unsigned int stripe_nr,
595 unsigned int sector_nr)
596{
597 ASSERT(stripe_nr < rbio->real_stripes);
598 ASSERT(sector_nr < rbio->stripe_nsectors);
599
600 return stripe_nr * rbio->stripe_nsectors + sector_nr;
601}
602
603/* Return a sector from rbio->stripe_sectors, not from the bio list */
604static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
605 unsigned int stripe_nr,
606 unsigned int sector_nr)
607{
608 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
609 sector_nr)];
610}
611
1145059a
QW
612/* Grab a sector inside P stripe */
613static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
614 unsigned int sector_nr)
b7178a5f 615{
1145059a 616 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
b7178a5f
ZL
617}
618
1145059a
QW
619/* Grab a sector inside Q stripe, return NULL if not RAID6 */
620static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
621 unsigned int sector_nr)
53b381b3 622{
1145059a
QW
623 if (rbio->nr_data + 1 == rbio->real_stripes)
624 return NULL;
625 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
53b381b3
DW
626}
627
53b381b3
DW
628/*
629 * The first stripe in the table for a logical address
630 * has the lock. rbios are added in one of three ways:
631 *
632 * 1) Nobody has the stripe locked yet. The rbio is given
633 * the lock and 0 is returned. The caller must start the IO
634 * themselves.
635 *
636 * 2) Someone has the stripe locked, but we're able to merge
637 * with the lock owner. The rbio is freed and the IO will
638 * start automatically along with the existing rbio. 1 is returned.
639 *
640 * 3) Someone has the stripe locked, but we're not able to merge.
641 * The rbio is added to the lock owner's plug list, or merged into
642 * an rbio already on the plug list. When the lock owner unlocks,
643 * the next rbio on the list is run and the IO is started automatically.
644 * 1 is returned
645 *
646 * If we return 0, the caller still owns the rbio and must continue with
647 * IO submission. If we return 1, the caller must assume the rbio has
648 * already been freed.
649 */
650static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
651{
721860d5 652 struct btrfs_stripe_hash *h;
53b381b3
DW
653 struct btrfs_raid_bio *cur;
654 struct btrfs_raid_bio *pending;
53b381b3 655 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 656 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 657 int ret = 0;
53b381b3 658
6a258d72 659 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
721860d5 660
74cc3600 661 spin_lock(&h->lock);
53b381b3 662 list_for_each_entry(cur, &h->hash_list, hash_list) {
18d758a2 663 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
9d6cb1b0 664 continue;
4ae10b3a 665
9d6cb1b0 666 spin_lock(&cur->bio_list_lock);
4ae10b3a 667
9d6cb1b0
JT
668 /* Can we steal this cached rbio's pages? */
669 if (bio_list_empty(&cur->bio_list) &&
670 list_empty(&cur->plug_list) &&
671 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
672 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
673 list_del_init(&cur->hash_list);
674 refcount_dec(&cur->refs);
53b381b3 675
9d6cb1b0
JT
676 steal_rbio(cur, rbio);
677 cache_drop = cur;
678 spin_unlock(&cur->bio_list_lock);
4ae10b3a 679
9d6cb1b0
JT
680 goto lockit;
681 }
53b381b3 682
9d6cb1b0
JT
683 /* Can we merge into the lock owner? */
684 if (rbio_can_merge(cur, rbio)) {
685 merge_rbio(cur, rbio);
53b381b3 686 spin_unlock(&cur->bio_list_lock);
9d6cb1b0 687 freeit = rbio;
53b381b3
DW
688 ret = 1;
689 goto out;
690 }
9d6cb1b0
JT
691
692
693 /*
694 * We couldn't merge with the running rbio, see if we can merge
695 * with the pending ones. We don't have to check for rmw_locked
696 * because there is no way they are inside finish_rmw right now
697 */
698 list_for_each_entry(pending, &cur->plug_list, plug_list) {
699 if (rbio_can_merge(pending, rbio)) {
700 merge_rbio(pending, rbio);
701 spin_unlock(&cur->bio_list_lock);
702 freeit = rbio;
703 ret = 1;
704 goto out;
705 }
706 }
707
708 /*
709 * No merging, put us on the tail of the plug list, our rbio
710 * will be started with the currently running rbio unlocks
711 */
712 list_add_tail(&rbio->plug_list, &cur->plug_list);
713 spin_unlock(&cur->bio_list_lock);
714 ret = 1;
715 goto out;
53b381b3 716 }
4ae10b3a 717lockit:
dec95574 718 refcount_inc(&rbio->refs);
53b381b3
DW
719 list_add(&rbio->hash_list, &h->hash_list);
720out:
74cc3600 721 spin_unlock(&h->lock);
4ae10b3a
CM
722 if (cache_drop)
723 remove_rbio_from_cache(cache_drop);
53b381b3 724 if (freeit)
ff2b64a2 725 free_raid_bio(freeit);
53b381b3
DW
726 return ret;
727}
728
d817ce35
QW
729static void recover_rbio_work_locked(struct work_struct *work);
730
53b381b3
DW
731/*
732 * called as rmw or parity rebuild is completed. If the plug list has more
733 * rbios waiting for this stripe, the next one on the list will be started
734 */
735static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
736{
737 int bucket;
738 struct btrfs_stripe_hash *h;
4ae10b3a 739 int keep_cache = 0;
53b381b3
DW
740
741 bucket = rbio_bucket(rbio);
6a258d72 742 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
53b381b3 743
4ae10b3a
CM
744 if (list_empty(&rbio->plug_list))
745 cache_rbio(rbio);
746
74cc3600 747 spin_lock(&h->lock);
53b381b3
DW
748 spin_lock(&rbio->bio_list_lock);
749
750 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
751 /*
752 * if we're still cached and there is no other IO
753 * to perform, just leave this rbio here for others
754 * to steal from later
755 */
756 if (list_empty(&rbio->plug_list) &&
757 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
758 keep_cache = 1;
759 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
760 BUG_ON(!bio_list_empty(&rbio->bio_list));
761 goto done;
762 }
53b381b3
DW
763
764 list_del_init(&rbio->hash_list);
dec95574 765 refcount_dec(&rbio->refs);
53b381b3
DW
766
767 /*
768 * we use the plug list to hold all the rbios
769 * waiting for the chance to lock this stripe.
770 * hand the lock over to one of them.
771 */
772 if (!list_empty(&rbio->plug_list)) {
773 struct btrfs_raid_bio *next;
774 struct list_head *head = rbio->plug_list.next;
775
776 next = list_entry(head, struct btrfs_raid_bio,
777 plug_list);
778
779 list_del_init(&rbio->plug_list);
780
781 list_add(&next->hash_list, &h->hash_list);
dec95574 782 refcount_inc(&next->refs);
53b381b3 783 spin_unlock(&rbio->bio_list_lock);
74cc3600 784 spin_unlock(&h->lock);
53b381b3 785
3a3c7a7f 786 if (next->operation == BTRFS_RBIO_READ_REBUILD) {
d817ce35 787 start_async_work(next, recover_rbio_work_locked);
b4ee1782 788 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 789 steal_rbio(rbio, next);
93723095 790 start_async_work(next, rmw_rbio_work_locked);
5a6ac9ea
MX
791 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
792 steal_rbio(rbio, next);
6bfd0133 793 start_async_work(next, scrub_rbio_work_locked);
4ae10b3a 794 }
53b381b3
DW
795
796 goto done_nolock;
53b381b3
DW
797 }
798 }
4ae10b3a 799done:
53b381b3 800 spin_unlock(&rbio->bio_list_lock);
74cc3600 801 spin_unlock(&h->lock);
53b381b3
DW
802
803done_nolock:
4ae10b3a
CM
804 if (!keep_cache)
805 remove_rbio_from_cache(rbio);
53b381b3
DW
806}
807
7583d8d0 808static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
53b381b3 809{
7583d8d0
LB
810 struct bio *next;
811
812 while (cur) {
813 next = cur->bi_next;
814 cur->bi_next = NULL;
815 cur->bi_status = err;
816 bio_endio(cur);
817 cur = next;
818 }
53b381b3
DW
819}
820
821/*
822 * this frees the rbio and runs through all the bios in the
823 * bio_list and calls end_io on them
824 */
4e4cbee9 825static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
826{
827 struct bio *cur = bio_list_get(&rbio->bio_list);
7583d8d0 828 struct bio *extra;
4245215d 829
c5a41562
QW
830 kfree(rbio->csum_buf);
831 bitmap_free(rbio->csum_bitmap);
832 rbio->csum_buf = NULL;
833 rbio->csum_bitmap = NULL;
834
bd8f7e62
QW
835 /*
836 * Clear the data bitmap, as the rbio may be cached for later usage.
837 * do this before before unlock_stripe() so there will be no new bio
838 * for this bio.
839 */
840 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
4245215d 841
7583d8d0
LB
842 /*
843 * At this moment, rbio->bio_list is empty, however since rbio does not
844 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
845 * hash list, rbio may be merged with others so that rbio->bio_list
846 * becomes non-empty.
847 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
848 * more and we can call bio_endio() on all queued bios.
849 */
850 unlock_stripe(rbio);
851 extra = bio_list_get(&rbio->bio_list);
ff2b64a2 852 free_raid_bio(rbio);
53b381b3 853
7583d8d0
LB
854 rbio_endio_bio_list(cur, err);
855 if (extra)
856 rbio_endio_bio_list(extra, err);
53b381b3
DW
857}
858
43dd529a
DS
859/*
860 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
3e77605d
QW
861 *
862 * @rbio: The raid bio
863 * @stripe_nr: Stripe number, valid range [0, real_stripe)
864 * @sector_nr: Sector number inside the stripe,
865 * valid range [0, stripe_nsectors)
866 * @bio_list_only: Whether to use sectors inside the bio list only.
867 *
868 * The read/modify/write code wants to reuse the original bio page as much
869 * as possible, and only use stripe_sectors as fallback.
870 */
871static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
872 int stripe_nr, int sector_nr,
873 bool bio_list_only)
874{
875 struct sector_ptr *sector;
876 int index;
877
878 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
879 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
880
881 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
882 ASSERT(index >= 0 && index < rbio->nr_sectors);
883
74cc3600 884 spin_lock(&rbio->bio_list_lock);
3e77605d
QW
885 sector = &rbio->bio_sectors[index];
886 if (sector->page || bio_list_only) {
887 /* Don't return sector without a valid page pointer */
888 if (!sector->page)
889 sector = NULL;
74cc3600 890 spin_unlock(&rbio->bio_list_lock);
3e77605d
QW
891 return sector;
892 }
74cc3600 893 spin_unlock(&rbio->bio_list_lock);
3e77605d
QW
894
895 return &rbio->stripe_sectors[index];
896}
897
53b381b3
DW
898/*
899 * allocation and initial setup for the btrfs_raid_bio. Not
900 * this does not allocate any pages for rbio->pages.
901 */
2ff7e61e 902static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
ff18a4af 903 struct btrfs_io_context *bioc)
53b381b3 904{
1faf3885 905 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
ff18a4af 906 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
843de58b 907 const unsigned int num_pages = stripe_npages * real_stripes;
ff18a4af
CH
908 const unsigned int stripe_nsectors =
909 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
94efbe19 910 const unsigned int num_sectors = stripe_nsectors * real_stripes;
53b381b3 911 struct btrfs_raid_bio *rbio;
53b381b3 912
94efbe19
QW
913 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
914 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
c67c68eb
QW
915 /*
916 * Our current stripe len should be fixed to 64k thus stripe_nsectors
917 * (at most 16) should be no larger than BITS_PER_LONG.
918 */
919 ASSERT(stripe_nsectors <= BITS_PER_LONG);
843de58b 920
797d74b7 921 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
af8e2d1d 922 if (!rbio)
53b381b3 923 return ERR_PTR(-ENOMEM);
797d74b7
QW
924 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
925 GFP_NOFS);
926 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
927 GFP_NOFS);
928 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
929 GFP_NOFS);
930 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
2942a50d 931 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
797d74b7
QW
932
933 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
2942a50d 934 !rbio->finish_pointers || !rbio->error_bitmap) {
797d74b7
QW
935 free_raid_bio_pointers(rbio);
936 kfree(rbio);
937 return ERR_PTR(-ENOMEM);
938 }
53b381b3
DW
939
940 bio_list_init(&rbio->bio_list);
d817ce35 941 init_waitqueue_head(&rbio->io_wait);
53b381b3
DW
942 INIT_LIST_HEAD(&rbio->plug_list);
943 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 944 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3 945 INIT_LIST_HEAD(&rbio->hash_list);
f1c29379 946 btrfs_get_bioc(bioc);
4c664611 947 rbio->bioc = bioc;
53b381b3 948 rbio->nr_pages = num_pages;
94efbe19 949 rbio->nr_sectors = num_sectors;
2c8cdd6e 950 rbio->real_stripes = real_stripes;
5a6ac9ea 951 rbio->stripe_npages = stripe_npages;
94efbe19 952 rbio->stripe_nsectors = stripe_nsectors;
dec95574 953 refcount_set(&rbio->refs, 1);
b89e1b01 954 atomic_set(&rbio->stripes_pending, 0);
53b381b3 955
0b30f719
QW
956 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
957 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
53b381b3 958
53b381b3
DW
959 return rbio;
960}
961
962/* allocate pages for all the stripes in the bio, including parity */
963static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
964{
eb357060
QW
965 int ret;
966
09e6cef1 967 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, 0);
eb357060
QW
968 if (ret < 0)
969 return ret;
970 /* Mapping all sectors */
971 index_stripe_sectors(rbio);
972 return 0;
53b381b3
DW
973}
974
b7178a5f 975/* only allocate pages for p/q stripes */
53b381b3
DW
976static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
977{
f77183dc 978 const int data_pages = rbio->nr_data * rbio->stripe_npages;
eb357060 979 int ret;
53b381b3 980
eb357060 981 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
09e6cef1 982 rbio->stripe_pages + data_pages, 0);
eb357060
QW
983 if (ret < 0)
984 return ret;
985
986 index_stripe_sectors(rbio);
987 return 0;
53b381b3
DW
988}
989
75b47033 990/*
67da05b3 991 * Return the total number of errors found in the vertical stripe of @sector_nr.
75b47033
QW
992 *
993 * @faila and @failb will also be updated to the first and second stripe
994 * number of the errors.
995 */
996static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
997 int *faila, int *failb)
998{
999 int stripe_nr;
1000 int found_errors = 0;
1001
ad3daf1c
QW
1002 if (faila || failb) {
1003 /*
1004 * Both @faila and @failb should be valid pointers if any of
1005 * them is specified.
1006 */
1007 ASSERT(faila && failb);
1008 *faila = -1;
1009 *failb = -1;
1010 }
75b47033
QW
1011
1012 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1013 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1014
1015 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1016 found_errors++;
ad3daf1c
QW
1017 if (faila) {
1018 /* Update faila and failb. */
1019 if (*faila < 0)
1020 *faila = stripe_nr;
1021 else if (*failb < 0)
1022 *failb = stripe_nr;
1023 }
75b47033
QW
1024 }
1025 }
1026 return found_errors;
1027}
1028
53b381b3 1029/*
3e77605d
QW
1030 * Add a single sector @sector into our list of bios for IO.
1031 *
1032 * Return 0 if everything went well.
1033 * Return <0 for error.
53b381b3 1034 */
3e77605d
QW
1035static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1036 struct bio_list *bio_list,
1037 struct sector_ptr *sector,
1038 unsigned int stripe_nr,
1039 unsigned int sector_nr,
bf9486d6 1040 enum req_op op)
53b381b3 1041{
3e77605d 1042 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
53b381b3 1043 struct bio *last = bio_list->tail;
53b381b3
DW
1044 int ret;
1045 struct bio *bio;
4c664611 1046 struct btrfs_io_stripe *stripe;
53b381b3
DW
1047 u64 disk_start;
1048
3e77605d
QW
1049 /*
1050 * Note: here stripe_nr has taken device replace into consideration,
1051 * thus it can be larger than rbio->real_stripe.
1052 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1053 */
1054 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1055 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1056 ASSERT(sector->page);
1057
4c664611 1058 stripe = &rbio->bioc->stripes[stripe_nr];
3e77605d 1059 disk_start = stripe->physical + sector_nr * sectorsize;
53b381b3
DW
1060
1061 /* if the device is missing, just fail this stripe */
2942a50d 1062 if (!stripe->dev->bdev) {
ad3daf1c
QW
1063 int found_errors;
1064
2942a50d
QW
1065 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1066 rbio->error_bitmap);
ad3daf1c
QW
1067
1068 /* Check if we have reached tolerance early. */
1069 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1070 NULL, NULL);
1071 if (found_errors > rbio->bioc->max_errors)
1072 return -EIO;
1073 return 0;
2942a50d 1074 }
53b381b3
DW
1075
1076 /* see if we can add this page onto our existing bio */
1077 if (last) {
adbe7e38 1078 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
4f024f37 1079 last_end += last->bi_iter.bi_size;
53b381b3
DW
1080
1081 /*
1082 * we can't merge these if they are from different
1083 * devices or if they are not contiguous
1084 */
f90ae76a 1085 if (last_end == disk_start && !last->bi_status &&
309dca30 1086 last->bi_bdev == stripe->dev->bdev) {
3e77605d
QW
1087 ret = bio_add_page(last, sector->page, sectorsize,
1088 sector->pgoff);
1089 if (ret == sectorsize)
53b381b3
DW
1090 return 0;
1091 }
1092 }
1093
1094 /* put a new bio on the list */
ff18a4af
CH
1095 bio = bio_alloc(stripe->dev->bdev,
1096 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
bf9486d6 1097 op, GFP_NOFS);
29e70be2 1098 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
e01bf588 1099 bio->bi_private = rbio;
53b381b3 1100
cf32e41f 1101 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
53b381b3
DW
1102 bio_list_add(bio_list, bio);
1103 return 0;
1104}
1105
00425dd9
QW
1106static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1107{
1108 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1109 struct bio_vec bvec;
1110 struct bvec_iter iter;
1111 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
18d758a2 1112 rbio->bioc->full_stripe_logical;
00425dd9 1113
00425dd9
QW
1114 bio_for_each_segment(bvec, bio, iter) {
1115 u32 bvec_offset;
1116
1117 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1118 bvec_offset += sectorsize, offset += sectorsize) {
1119 int index = offset / sectorsize;
1120 struct sector_ptr *sector = &rbio->bio_sectors[index];
1121
1122 sector->page = bvec.bv_page;
1123 sector->pgoff = bvec.bv_offset + bvec_offset;
1124 ASSERT(sector->pgoff < PAGE_SIZE);
1125 }
1126 }
1127}
1128
53b381b3
DW
1129/*
1130 * helper function to walk our bio list and populate the bio_pages array with
1131 * the result. This seems expensive, but it is faster than constantly
1132 * searching through the bio list as we setup the IO in finish_rmw or stripe
1133 * reconstruction.
1134 *
1135 * This must be called before you trust the answers from page_in_rbio
1136 */
1137static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1138{
1139 struct bio *bio;
53b381b3 1140
74cc3600 1141 spin_lock(&rbio->bio_list_lock);
00425dd9
QW
1142 bio_list_for_each(bio, &rbio->bio_list)
1143 index_one_bio(rbio, bio);
1144
74cc3600 1145 spin_unlock(&rbio->bio_list_lock);
53b381b3
DW
1146}
1147
b8bea09a
QW
1148static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1149 struct raid56_bio_trace_info *trace_info)
1150{
1151 const struct btrfs_io_context *bioc = rbio->bioc;
1152 int i;
1153
1154 ASSERT(bioc);
1155
1156 /* We rely on bio->bi_bdev to find the stripe number. */
1157 if (!bio->bi_bdev)
1158 goto not_found;
1159
1160 for (i = 0; i < bioc->num_stripes; i++) {
1161 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1162 continue;
1163 trace_info->stripe_nr = i;
1164 trace_info->devid = bioc->stripes[i].dev->devid;
1165 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1166 bioc->stripes[i].physical;
1167 return;
1168 }
1169
1170not_found:
1171 trace_info->devid = -1;
1172 trace_info->offset = -1;
1173 trace_info->stripe_nr = -1;
1174}
1175
801fcfc5
CH
1176static inline void bio_list_put(struct bio_list *bio_list)
1177{
1178 struct bio *bio;
1179
1180 while ((bio = bio_list_pop(bio_list)))
1181 bio_put(bio);
1182}
1183
67da05b3 1184/* Generate PQ for one vertical stripe. */
30e3c897
QW
1185static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1186{
1187 void **pointers = rbio->finish_pointers;
1188 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1189 struct sector_ptr *sector;
1190 int stripe;
1191 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1192
1193 /* First collect one sector from each data stripe */
1194 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1195 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1196 pointers[stripe] = kmap_local_page(sector->page) +
1197 sector->pgoff;
1198 }
1199
1200 /* Then add the parity stripe */
1201 sector = rbio_pstripe_sector(rbio, sectornr);
1202 sector->uptodate = 1;
1203 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1204
1205 if (has_qstripe) {
1206 /*
1207 * RAID6, add the qstripe and call the library function
1208 * to fill in our p/q
1209 */
1210 sector = rbio_qstripe_sector(rbio, sectornr);
1211 sector->uptodate = 1;
1212 pointers[stripe++] = kmap_local_page(sector->page) +
1213 sector->pgoff;
1214
1215 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1216 pointers);
1217 } else {
1218 /* raid5 */
1219 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1220 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1221 }
1222 for (stripe = stripe - 1; stripe >= 0; stripe--)
1223 kunmap_local(pointers[stripe]);
1224}
1225
6486d21c
QW
1226static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1227 struct bio_list *bio_list)
53b381b3 1228{
36920044
QW
1229 /* The total sector number inside the full stripe. */
1230 int total_sector_nr;
3e77605d 1231 int sectornr;
6486d21c 1232 int stripe;
53b381b3
DW
1233 int ret;
1234
6486d21c 1235 ASSERT(bio_list_size(bio_list) == 0);
53b381b3 1236
bd8f7e62
QW
1237 /* We should have at least one data sector. */
1238 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1239
5eb30ee2
QW
1240 /*
1241 * Reset errors, as we may have errors inherited from from degraded
1242 * write.
1243 */
2942a50d 1244 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5eb30ee2 1245
53b381b3 1246 /*
6486d21c 1247 * Start assembly. Make bios for everything from the higher layers (the
36920044 1248 * bio_list in our rbio) and our P/Q. Ignore everything else.
53b381b3 1249 */
36920044
QW
1250 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1251 total_sector_nr++) {
1252 struct sector_ptr *sector;
3e77605d 1253
36920044
QW
1254 stripe = total_sector_nr / rbio->stripe_nsectors;
1255 sectornr = total_sector_nr % rbio->stripe_nsectors;
53b381b3 1256
36920044
QW
1257 /* This vertical stripe has no data, skip it. */
1258 if (!test_bit(sectornr, &rbio->dbitmap))
1259 continue;
53b381b3 1260
36920044
QW
1261 if (stripe < rbio->nr_data) {
1262 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1263 if (!sector)
1264 continue;
1265 } else {
1266 sector = rbio_stripe_sector(rbio, stripe, sectornr);
53b381b3 1267 }
36920044 1268
6486d21c 1269 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
ff18a4af 1270 sectornr, REQ_OP_WRITE);
36920044 1271 if (ret)
6486d21c 1272 goto error;
53b381b3
DW
1273 }
1274
1faf3885 1275 if (likely(!rbio->bioc->replace_nr_stripes))
6486d21c 1276 return 0;
2c8cdd6e 1277
1faf3885
QW
1278 /*
1279 * Make a copy for the replace target device.
1280 *
1281 * Thus the source stripe number (in replace_stripe_src) should be valid.
1282 */
1283 ASSERT(rbio->bioc->replace_stripe_src >= 0);
1284
36920044
QW
1285 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1286 total_sector_nr++) {
1287 struct sector_ptr *sector;
2c8cdd6e 1288
36920044
QW
1289 stripe = total_sector_nr / rbio->stripe_nsectors;
1290 sectornr = total_sector_nr % rbio->stripe_nsectors;
3e77605d 1291
1faf3885
QW
1292 /*
1293 * For RAID56, there is only one device that can be replaced,
1294 * and replace_stripe_src[0] indicates the stripe number we
1295 * need to copy from.
1296 */
1297 if (stripe != rbio->bioc->replace_stripe_src) {
36920044
QW
1298 /*
1299 * We can skip the whole stripe completely, note
1300 * total_sector_nr will be increased by one anyway.
1301 */
1302 ASSERT(sectornr == 0);
1303 total_sector_nr += rbio->stripe_nsectors - 1;
1304 continue;
1305 }
2c8cdd6e 1306
36920044
QW
1307 /* This vertical stripe has no data, skip it. */
1308 if (!test_bit(sectornr, &rbio->dbitmap))
1309 continue;
2c8cdd6e 1310
36920044
QW
1311 if (stripe < rbio->nr_data) {
1312 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1313 if (!sector)
1314 continue;
1315 } else {
1316 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2c8cdd6e 1317 }
36920044 1318
6486d21c 1319 ret = rbio_add_io_sector(rbio, bio_list, sector,
1faf3885 1320 rbio->real_stripes,
ff18a4af 1321 sectornr, REQ_OP_WRITE);
36920044 1322 if (ret)
6486d21c 1323 goto error;
2c8cdd6e
MX
1324 }
1325
6486d21c
QW
1326 return 0;
1327error:
801fcfc5 1328 bio_list_put(bio_list);
6486d21c
QW
1329 return -EIO;
1330}
1331
2942a50d
QW
1332static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1333{
1334 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1335 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
18d758a2 1336 rbio->bioc->full_stripe_logical;
2942a50d
QW
1337 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1338
1339 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1340
1341 bitmap_set(rbio->error_bitmap, total_nr_sector,
1342 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1343
1344 /*
1345 * Special handling for raid56_alloc_missing_rbio() used by
1346 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1347 * pass an empty bio here. Thus we have to find out the missing device
1348 * and mark the stripe error instead.
1349 */
1350 if (bio->bi_iter.bi_size == 0) {
1351 bool found_missing = false;
1352 int stripe_nr;
1353
1354 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1355 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1356 found_missing = true;
1357 bitmap_set(rbio->error_bitmap,
1358 stripe_nr * rbio->stripe_nsectors,
1359 rbio->stripe_nsectors);
1360 }
1361 }
1362 ASSERT(found_missing);
1363 }
1364}
1365
5fdb7afc 1366/*
67da05b3 1367 * For subpage case, we can no longer set page Up-to-date directly for
5fdb7afc
QW
1368 * stripe_pages[], thus we need to locate the sector.
1369 */
1370static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1371 struct page *page,
1372 unsigned int pgoff)
1373{
1374 int i;
1375
1376 for (i = 0; i < rbio->nr_sectors; i++) {
1377 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1378
1379 if (sector->page == page && sector->pgoff == pgoff)
1380 return sector;
1381 }
1382 return NULL;
1383}
1384
53b381b3
DW
1385/*
1386 * this sets each page in the bio uptodate. It should only be used on private
1387 * rbio pages, nothing that comes in from the higher layers
1388 */
5fdb7afc 1389static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
53b381b3 1390{
5fdb7afc 1391 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
0198e5b7 1392 struct bio_vec *bvec;
6dc4f100 1393 struct bvec_iter_all iter_all;
6592e58c 1394
0198e5b7 1395 ASSERT(!bio_flagged(bio, BIO_CLONED));
53b381b3 1396
5fdb7afc
QW
1397 bio_for_each_segment_all(bvec, bio, iter_all) {
1398 struct sector_ptr *sector;
1399 int pgoff;
1400
1401 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1402 pgoff += sectorsize) {
1403 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1404 ASSERT(sector);
1405 if (sector)
1406 sector->uptodate = 1;
1407 }
1408 }
53b381b3
DW
1409}
1410
2942a50d
QW
1411static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1412{
1413 struct bio_vec *bv = bio_first_bvec_all(bio);
1414 int i;
1415
1416 for (i = 0; i < rbio->nr_sectors; i++) {
1417 struct sector_ptr *sector;
1418
1419 sector = &rbio->stripe_sectors[i];
1420 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1421 break;
1422 sector = &rbio->bio_sectors[i];
1423 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1424 break;
1425 }
1426 ASSERT(i < rbio->nr_sectors);
1427 return i;
1428}
1429
1430static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1431{
1432 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1433 u32 bio_size = 0;
1434 struct bio_vec *bvec;
a9ad4d87 1435 int i;
2942a50d 1436
c9a43aaf 1437 bio_for_each_bvec_all(bvec, bio, i)
2942a50d
QW
1438 bio_size += bvec->bv_len;
1439
a9ad4d87
QW
1440 /*
1441 * Since we can have multiple bios touching the error_bitmap, we cannot
1442 * call bitmap_set() without protection.
1443 *
1444 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1445 */
1446 for (i = total_sector_nr; i < total_sector_nr +
1447 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1448 set_bit(i, rbio->error_bitmap);
2942a50d
QW
1449}
1450
7a315072
QW
1451/* Verify the data sectors at read time. */
1452static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1453 struct bio *bio)
1454{
1455 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1456 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1457 struct bio_vec *bvec;
1458 struct bvec_iter_all iter_all;
1459
1460 /* No data csum for the whole stripe, no need to verify. */
1461 if (!rbio->csum_bitmap || !rbio->csum_buf)
1462 return;
1463
1464 /* P/Q stripes, they have no data csum to verify against. */
1465 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1466 return;
1467
1468 bio_for_each_segment_all(bvec, bio, iter_all) {
1469 int bv_offset;
1470
1471 for (bv_offset = bvec->bv_offset;
1472 bv_offset < bvec->bv_offset + bvec->bv_len;
1473 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1474 u8 csum_buf[BTRFS_CSUM_SIZE];
1475 u8 *expected_csum = rbio->csum_buf +
1476 total_sector_nr * fs_info->csum_size;
1477 int ret;
1478
1479 /* No csum for this sector, skip to the next sector. */
1480 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1481 continue;
1482
1483 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1484 bv_offset, csum_buf, expected_csum);
1485 if (ret < 0)
1486 set_bit(total_sector_nr, rbio->error_bitmap);
1487 }
1488 }
1489}
1490
d817ce35
QW
1491static void raid_wait_read_end_io(struct bio *bio)
1492{
1493 struct btrfs_raid_bio *rbio = bio->bi_private;
1494
7a315072 1495 if (bio->bi_status) {
2942a50d 1496 rbio_update_error_bitmap(rbio, bio);
7a315072 1497 } else {
d817ce35 1498 set_bio_pages_uptodate(rbio, bio);
7a315072
QW
1499 verify_bio_data_sectors(rbio, bio);
1500 }
d817ce35
QW
1501
1502 bio_put(bio);
1503 if (atomic_dec_and_test(&rbio->stripes_pending))
1504 wake_up(&rbio->io_wait);
1505}
1506
1c76fb7b 1507static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
d817ce35
QW
1508 struct bio_list *bio_list)
1509{
1510 struct bio *bio;
1511
1512 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1513 while ((bio = bio_list_pop(bio_list))) {
1514 bio->bi_end_io = raid_wait_read_end_io;
1515
dbb6ecb3 1516 if (trace_raid56_read_enabled()) {
d817ce35
QW
1517 struct raid56_bio_trace_info trace_info = { 0 };
1518
1519 bio_get_trace_info(rbio, bio, &trace_info);
dbb6ecb3 1520 trace_raid56_read(rbio, bio, &trace_info);
d817ce35
QW
1521 }
1522 submit_bio(bio);
1523 }
1c76fb7b
CH
1524
1525 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
d817ce35
QW
1526}
1527
5eb30ee2
QW
1528static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1529{
1530 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1531 int ret;
1532
09e6cef1 1533 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, 0);
5eb30ee2
QW
1534 if (ret < 0)
1535 return ret;
1536
1537 index_stripe_sectors(rbio);
1538 return 0;
1539}
1540
6ac0f488
CM
1541/*
1542 * We use plugging call backs to collect full stripes.
1543 * Any time we get a partial stripe write while plugged
1544 * we collect it into a list. When the unplug comes down,
1545 * we sort the list by logical block number and merge
1546 * everything we can into the same rbios
1547 */
1548struct btrfs_plug_cb {
1549 struct blk_plug_cb cb;
1550 struct btrfs_fs_info *info;
1551 struct list_head rbio_list;
6ac0f488
CM
1552};
1553
1554/*
1555 * rbios on the plug list are sorted for easier merging.
1556 */
4f0f586b
ST
1557static int plug_cmp(void *priv, const struct list_head *a,
1558 const struct list_head *b)
6ac0f488 1559{
214cc184
DS
1560 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1561 plug_list);
1562 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1563 plug_list);
4f024f37
KO
1564 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1565 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1566
1567 if (a_sector < b_sector)
1568 return -1;
1569 if (a_sector > b_sector)
1570 return 1;
1571 return 0;
1572}
1573
93723095 1574static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
6ac0f488 1575{
93723095 1576 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
6ac0f488
CM
1577 struct btrfs_raid_bio *cur;
1578 struct btrfs_raid_bio *last = NULL;
1579
6ac0f488 1580 list_sort(NULL, &plug->rbio_list, plug_cmp);
93723095 1581
6ac0f488
CM
1582 while (!list_empty(&plug->rbio_list)) {
1583 cur = list_entry(plug->rbio_list.next,
1584 struct btrfs_raid_bio, plug_list);
1585 list_del_init(&cur->plug_list);
1586
1587 if (rbio_is_full(cur)) {
93723095
QW
1588 /* We have a full stripe, queue it down. */
1589 start_async_work(cur, rmw_rbio_work);
6ac0f488
CM
1590 continue;
1591 }
1592 if (last) {
1593 if (rbio_can_merge(last, cur)) {
1594 merge_rbio(last, cur);
ff2b64a2 1595 free_raid_bio(cur);
6ac0f488 1596 continue;
6ac0f488 1597 }
93723095 1598 start_async_work(last, rmw_rbio_work);
6ac0f488
CM
1599 }
1600 last = cur;
1601 }
93723095
QW
1602 if (last)
1603 start_async_work(last, rmw_rbio_work);
6ac0f488
CM
1604 kfree(plug);
1605}
1606
bd8f7e62
QW
1607/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1608static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1609{
1610 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1611 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
18d758a2 1612 const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
bd8f7e62
QW
1613 const u32 orig_len = orig_bio->bi_iter.bi_size;
1614 const u32 sectorsize = fs_info->sectorsize;
1615 u64 cur_logical;
1616
1617 ASSERT(orig_logical >= full_stripe_start &&
1618 orig_logical + orig_len <= full_stripe_start +
ff18a4af 1619 rbio->nr_data * BTRFS_STRIPE_LEN);
bd8f7e62
QW
1620
1621 bio_list_add(&rbio->bio_list, orig_bio);
1622 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1623
1624 /* Update the dbitmap. */
1625 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1626 cur_logical += sectorsize) {
1627 int bit = ((u32)(cur_logical - full_stripe_start) >>
1628 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1629
1630 set_bit(bit, &rbio->dbitmap);
1631 }
1632}
1633
53b381b3
DW
1634/*
1635 * our main entry point for writes from the rest of the FS.
1636 */
31683f4a 1637void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
53b381b3 1638{
6a258d72 1639 struct btrfs_fs_info *fs_info = bioc->fs_info;
53b381b3 1640 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1641 struct btrfs_plug_cb *plug = NULL;
1642 struct blk_plug_cb *cb;
53b381b3 1643
ff18a4af 1644 rbio = alloc_rbio(fs_info, bioc);
af8e2d1d 1645 if (IS_ERR(rbio)) {
abb49e87
CH
1646 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1647 bio_endio(bio);
1648 return;
af8e2d1d 1649 }
1b94b556 1650 rbio->operation = BTRFS_RBIO_WRITE;
bd8f7e62 1651 rbio_add_bio(rbio, bio);
6ac0f488
CM
1652
1653 /*
93723095 1654 * Don't plug on full rbios, just get them out the door
6ac0f488
CM
1655 * as quickly as we can
1656 */
abb49e87
CH
1657 if (!rbio_is_full(rbio)) {
1658 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1659 if (cb) {
1660 plug = container_of(cb, struct btrfs_plug_cb, cb);
1661 if (!plug->info) {
1662 plug->info = fs_info;
1663 INIT_LIST_HEAD(&plug->rbio_list);
1664 }
1665 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1666 return;
6ac0f488 1667 }
6ac0f488 1668 }
abb49e87 1669
93723095
QW
1670 /*
1671 * Either we don't have any existing plug, or we're doing a full stripe,
abb49e87 1672 * queue the rmw work now.
93723095
QW
1673 */
1674 start_async_work(rbio, rmw_rbio_work);
53b381b3
DW
1675}
1676
7a315072
QW
1677static int verify_one_sector(struct btrfs_raid_bio *rbio,
1678 int stripe_nr, int sector_nr)
1679{
1680 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1681 struct sector_ptr *sector;
1682 u8 csum_buf[BTRFS_CSUM_SIZE];
1683 u8 *csum_expected;
1684 int ret;
1685
1686 if (!rbio->csum_bitmap || !rbio->csum_buf)
1687 return 0;
1688
1689 /* No way to verify P/Q as they are not covered by data csum. */
1690 if (stripe_nr >= rbio->nr_data)
1691 return 0;
1692 /*
1693 * If we're rebuilding a read, we have to use pages from the
1694 * bio list if possible.
1695 */
3a3c7a7f 1696 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
7a315072
QW
1697 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1698 } else {
1699 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1700 }
1701
1702 ASSERT(sector->page);
1703
1704 csum_expected = rbio->csum_buf +
1705 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1706 fs_info->csum_size;
1707 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1708 csum_buf, csum_expected);
1709 return ret;
1710}
1711
9c5ff9b4
QW
1712/*
1713 * Recover a vertical stripe specified by @sector_nr.
1714 * @*pointers are the pre-allocated pointers by the caller, so we don't
1715 * need to allocate/free the pointers again and again.
1716 */
75b47033
QW
1717static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1718 void **pointers, void **unmap_array)
9c5ff9b4
QW
1719{
1720 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1721 struct sector_ptr *sector;
1722 const u32 sectorsize = fs_info->sectorsize;
75b47033
QW
1723 int found_errors;
1724 int faila;
1725 int failb;
9c5ff9b4 1726 int stripe_nr;
7a315072 1727 int ret = 0;
9c5ff9b4
QW
1728
1729 /*
1730 * Now we just use bitmap to mark the horizontal stripes in
1731 * which we have data when doing parity scrub.
1732 */
1733 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1734 !test_bit(sector_nr, &rbio->dbitmap))
75b47033
QW
1735 return 0;
1736
1737 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1738 &failb);
1739 /*
67da05b3 1740 * No errors in the vertical stripe, skip it. Can happen for recovery
75b47033
QW
1741 * which only part of a stripe failed csum check.
1742 */
1743 if (!found_errors)
1744 return 0;
1745
1746 if (found_errors > rbio->bioc->max_errors)
1747 return -EIO;
9c5ff9b4
QW
1748
1749 /*
1750 * Setup our array of pointers with sectors from each stripe
1751 *
1752 * NOTE: store a duplicate array of pointers to preserve the
1753 * pointer order.
1754 */
1755 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1756 /*
75b47033
QW
1757 * If we're rebuilding a read, we have to use pages from the
1758 * bio list if possible.
9c5ff9b4 1759 */
3a3c7a7f 1760 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
9c5ff9b4
QW
1761 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1762 } else {
1763 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1764 }
1765 ASSERT(sector->page);
1766 pointers[stripe_nr] = kmap_local_page(sector->page) +
1767 sector->pgoff;
1768 unmap_array[stripe_nr] = pointers[stripe_nr];
1769 }
1770
1771 /* All raid6 handling here */
1772 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1773 /* Single failure, rebuild from parity raid5 style */
1774 if (failb < 0) {
1775 if (faila == rbio->nr_data)
1776 /*
1777 * Just the P stripe has failed, without
1778 * a bad data or Q stripe.
1779 * We have nothing to do, just skip the
1780 * recovery for this stripe.
1781 */
1782 goto cleanup;
1783 /*
1784 * a single failure in raid6 is rebuilt
1785 * in the pstripe code below
1786 */
1787 goto pstripe;
1788 }
1789
1790 /*
1791 * If the q stripe is failed, do a pstripe reconstruction from
1792 * the xors.
1793 * If both the q stripe and the P stripe are failed, we're
1794 * here due to a crc mismatch and we can't give them the
1795 * data they want.
1796 */
18d758a2
QW
1797 if (failb == rbio->real_stripes - 1) {
1798 if (faila == rbio->real_stripes - 2)
9c5ff9b4
QW
1799 /*
1800 * Only P and Q are corrupted.
1801 * We only care about data stripes recovery,
1802 * can skip this vertical stripe.
1803 */
1804 goto cleanup;
1805 /*
1806 * Otherwise we have one bad data stripe and
1807 * a good P stripe. raid5!
1808 */
1809 goto pstripe;
1810 }
1811
18d758a2 1812 if (failb == rbio->real_stripes - 2) {
9c5ff9b4
QW
1813 raid6_datap_recov(rbio->real_stripes, sectorsize,
1814 faila, pointers);
1815 } else {
1816 raid6_2data_recov(rbio->real_stripes, sectorsize,
1817 faila, failb, pointers);
1818 }
1819 } else {
1820 void *p;
1821
1822 /* Rebuild from P stripe here (raid5 or raid6). */
1823 ASSERT(failb == -1);
1824pstripe:
1825 /* Copy parity block into failed block to start with */
1826 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1827
1828 /* Rearrange the pointer array */
1829 p = pointers[faila];
1830 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1831 stripe_nr++)
1832 pointers[stripe_nr] = pointers[stripe_nr + 1];
1833 pointers[rbio->nr_data - 1] = p;
1834
1835 /* Xor in the rest */
1836 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1837
1838 }
1839
1840 /*
1841 * No matter if this is a RMW or recovery, we should have all
1842 * failed sectors repaired in the vertical stripe, thus they are now
1843 * uptodate.
1844 * Especially if we determine to cache the rbio, we need to
1845 * have at least all data sectors uptodate.
7a315072
QW
1846 *
1847 * If possible, also check if the repaired sector matches its data
1848 * checksum.
9c5ff9b4 1849 */
75b47033 1850 if (faila >= 0) {
7a315072
QW
1851 ret = verify_one_sector(rbio, faila, sector_nr);
1852 if (ret < 0)
1853 goto cleanup;
1854
75b47033 1855 sector = rbio_stripe_sector(rbio, faila, sector_nr);
9c5ff9b4
QW
1856 sector->uptodate = 1;
1857 }
75b47033 1858 if (failb >= 0) {
f7c11aff 1859 ret = verify_one_sector(rbio, failb, sector_nr);
7a315072
QW
1860 if (ret < 0)
1861 goto cleanup;
1862
75b47033 1863 sector = rbio_stripe_sector(rbio, failb, sector_nr);
9c5ff9b4
QW
1864 sector->uptodate = 1;
1865 }
1866
1867cleanup:
1868 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1869 kunmap_local(unmap_array[stripe_nr]);
7a315072 1870 return ret;
9c5ff9b4
QW
1871}
1872
ec936b03 1873static int recover_sectors(struct btrfs_raid_bio *rbio)
53b381b3 1874{
9c5ff9b4
QW
1875 void **pointers = NULL;
1876 void **unmap_array = NULL;
ec936b03
QW
1877 int sectornr;
1878 int ret = 0;
53b381b3 1879
07e4d380 1880 /*
ec936b03
QW
1881 * @pointers array stores the pointer for each sector.
1882 *
1883 * @unmap_array stores copy of pointers that does not get reordered
1884 * during reconstruction so that kunmap_local works.
07e4d380 1885 */
31e818fe 1886 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
94a0b58d 1887 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
ec936b03
QW
1888 if (!pointers || !unmap_array) {
1889 ret = -ENOMEM;
1890 goto out;
94a0b58d
IW
1891 }
1892
3a3c7a7f 1893 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
74cc3600 1894 spin_lock(&rbio->bio_list_lock);
53b381b3 1895 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
74cc3600 1896 spin_unlock(&rbio->bio_list_lock);
53b381b3
DW
1897 }
1898
1899 index_rbio_pages(rbio);
1900
75b47033
QW
1901 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1902 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1903 if (ret < 0)
1904 break;
1905 }
53b381b3 1906
ec936b03 1907out:
53b381b3 1908 kfree(pointers);
ec936b03
QW
1909 kfree(unmap_array);
1910 return ret;
1911}
1912
40f87ddb 1913static void recover_rbio(struct btrfs_raid_bio *rbio)
53b381b3 1914{
d838d05e 1915 struct bio_list bio_list = BIO_EMPTY_LIST;
d31968d9
QW
1916 int total_sector_nr;
1917 int ret = 0;
53b381b3 1918
d838d05e
CH
1919 /*
1920 * Either we're doing recover for a read failure or degraded write,
1921 * caller should have set error bitmap correctly.
1922 */
1923 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
1924
1925 /* For recovery, we need to read all sectors including P/Q. */
1926 ret = alloc_rbio_pages(rbio);
1927 if (ret < 0)
40f87ddb 1928 goto out;
d838d05e
CH
1929
1930 index_rbio_pages(rbio);
1931
53b381b3 1932 /*
f6065f8e
QW
1933 * Read everything that hasn't failed. However this time we will
1934 * not trust any cached sector.
1935 * As we may read out some stale data but higher layer is not reading
1936 * that stale part.
1937 *
1938 * So here we always re-read everything in recovery path.
53b381b3 1939 */
ef340fcc
QW
1940 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1941 total_sector_nr++) {
1942 int stripe = total_sector_nr / rbio->stripe_nsectors;
1943 int sectornr = total_sector_nr % rbio->stripe_nsectors;
1944 struct sector_ptr *sector;
1945
75b47033
QW
1946 /*
1947 * Skip the range which has error. It can be a range which is
1948 * marked error (for csum mismatch), or it can be a missing
1949 * device.
1950 */
1951 if (!rbio->bioc->stripes[stripe].dev->bdev ||
1952 test_bit(total_sector_nr, rbio->error_bitmap)) {
1953 /*
1954 * Also set the error bit for missing device, which
1955 * may not yet have its error bit set.
1956 */
1957 set_bit(total_sector_nr, rbio->error_bitmap);
53b381b3 1958 continue;
5588383e 1959 }
75b47033 1960
ef340fcc 1961 sector = rbio_stripe_sector(rbio, stripe, sectornr);
d838d05e 1962 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
ff18a4af 1963 sectornr, REQ_OP_READ);
d838d05e
CH
1964 if (ret < 0) {
1965 bio_list_put(&bio_list);
40f87ddb 1966 goto out;
d838d05e 1967 }
53b381b3 1968 }
d817ce35 1969
1c76fb7b 1970 submit_read_wait_bio_list(rbio, &bio_list);
40f87ddb
CH
1971 ret = recover_sectors(rbio);
1972out:
1973 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
d817ce35
QW
1974}
1975
1976static void recover_rbio_work(struct work_struct *work)
1977{
1978 struct btrfs_raid_bio *rbio;
d817ce35
QW
1979
1980 rbio = container_of(work, struct btrfs_raid_bio, work);
40f87ddb
CH
1981 if (!lock_stripe_add(rbio))
1982 recover_rbio(rbio);
d817ce35
QW
1983}
1984
1985static void recover_rbio_work_locked(struct work_struct *work)
1986{
40f87ddb 1987 recover_rbio(container_of(work, struct btrfs_raid_bio, work));
d817ce35
QW
1988}
1989
75b47033
QW
1990static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
1991{
1992 bool found = false;
1993 int sector_nr;
1994
1995 /*
1996 * This is for RAID6 extra recovery tries, thus mirror number should
1997 * be large than 2.
1998 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
1999 * RAID5 methods.
2000 */
2001 ASSERT(mirror_num > 2);
2002 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2003 int found_errors;
2004 int faila;
2005 int failb;
2006
2007 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2008 &faila, &failb);
2009 /* This vertical stripe doesn't have errors. */
2010 if (!found_errors)
2011 continue;
2012
2013 /*
2014 * If we found errors, there should be only one error marked
2015 * by previous set_rbio_range_error().
2016 */
2017 ASSERT(found_errors == 1);
2018 found = true;
2019
2020 /* Now select another stripe to mark as error. */
2021 failb = rbio->real_stripes - (mirror_num - 1);
2022 if (failb <= faila)
2023 failb--;
2024
2025 /* Set the extra bit in error bitmap. */
2026 if (failb >= 0)
2027 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2028 rbio->error_bitmap);
2029 }
2030
2031 /* We should found at least one vertical stripe with error.*/
2032 ASSERT(found);
2033}
2034
53b381b3
DW
2035/*
2036 * the main entry point for reads from the higher layers. This
2037 * is really only called when the normal read path had a failure,
2038 * so we assume the bio they send down corresponds to a failed part
2039 * of the drive.
2040 */
6065fd95 2041void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
f1c29379 2042 int mirror_num)
53b381b3 2043{
6a258d72 2044 struct btrfs_fs_info *fs_info = bioc->fs_info;
53b381b3 2045 struct btrfs_raid_bio *rbio;
53b381b3 2046
ff18a4af 2047 rbio = alloc_rbio(fs_info, bioc);
af8e2d1d 2048 if (IS_ERR(rbio)) {
6065fd95 2049 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
d817ce35
QW
2050 bio_endio(bio);
2051 return;
af8e2d1d 2052 }
53b381b3 2053
1b94b556 2054 rbio->operation = BTRFS_RBIO_READ_REBUILD;
bd8f7e62 2055 rbio_add_bio(rbio, bio);
53b381b3 2056
2942a50d
QW
2057 set_rbio_range_error(rbio, bio);
2058
53b381b3 2059 /*
8810f751
LB
2060 * Loop retry:
2061 * for 'mirror == 2', reconstruct from all other stripes.
2062 * for 'mirror_num > 2', select a stripe to fail on every retry.
53b381b3 2063 */
ad3daf1c 2064 if (mirror_num > 2)
75b47033 2065 set_rbio_raid6_extra_error(rbio, mirror_num);
53b381b3 2066
d817ce35 2067 start_async_work(rbio, recover_rbio_work);
53b381b3
DW
2068}
2069
c5a41562
QW
2070static void fill_data_csums(struct btrfs_raid_bio *rbio)
2071{
2072 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2073 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
18d758a2
QW
2074 rbio->bioc->full_stripe_logical);
2075 const u64 start = rbio->bioc->full_stripe_logical;
c5a41562
QW
2076 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2077 fs_info->sectorsize_bits;
2078 int ret;
2079
2080 /* The rbio should not have its csum buffer initialized. */
2081 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2082
2083 /*
2084 * Skip the csum search if:
2085 *
2086 * - The rbio doesn't belong to data block groups
2087 * Then we are doing IO for tree blocks, no need to search csums.
2088 *
2089 * - The rbio belongs to mixed block groups
2090 * This is to avoid deadlock, as we're already holding the full
2091 * stripe lock, if we trigger a metadata read, and it needs to do
2092 * raid56 recovery, we will deadlock.
2093 */
2094 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2095 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2096 return;
2097
2098 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2099 fs_info->csum_size, GFP_NOFS);
2100 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2101 GFP_NOFS);
2102 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2103 ret = -ENOMEM;
2104 goto error;
2105 }
2106
3c771c19
QW
2107 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2108 rbio->csum_buf, rbio->csum_bitmap);
c5a41562
QW
2109 if (ret < 0)
2110 goto error;
2111 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2112 goto no_csum;
2113 return;
2114
2115error:
2116 /*
2117 * We failed to allocate memory or grab the csum, but it's not fatal,
2118 * we can still continue. But better to warn users that RMW is no
2119 * longer safe for this particular sub-stripe write.
2120 */
2121 btrfs_warn_rl(fs_info,
2122"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
18d758a2 2123 rbio->bioc->full_stripe_logical, ret);
c5a41562
QW
2124no_csum:
2125 kfree(rbio->csum_buf);
2126 bitmap_free(rbio->csum_bitmap);
2127 rbio->csum_buf = NULL;
2128 rbio->csum_bitmap = NULL;
2129}
2130
7a315072 2131static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
5eb30ee2 2132{
02efa3a6
CH
2133 struct bio_list bio_list = BIO_EMPTY_LIST;
2134 int total_sector_nr;
2135 int ret = 0;
5eb30ee2 2136
c5a41562
QW
2137 /*
2138 * Fill the data csums we need for data verification. We need to fill
2139 * the csum_bitmap/csum_buf first, as our endio function will try to
2140 * verify the data sectors.
2141 */
2142 fill_data_csums(rbio);
2143
02efa3a6
CH
2144 /*
2145 * Build a list of bios to read all sectors (including data and P/Q).
2146 *
2147 * This behavior is to compensate the later csum verification and recovery.
2148 */
2149 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2150 total_sector_nr++) {
2151 struct sector_ptr *sector;
2152 int stripe = total_sector_nr / rbio->stripe_nsectors;
2153 int sectornr = total_sector_nr % rbio->stripe_nsectors;
5eb30ee2 2154
02efa3a6
CH
2155 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2156 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2157 stripe, sectornr, REQ_OP_READ);
2158 if (ret) {
2159 bio_list_put(&bio_list);
2160 return ret;
2161 }
2162 }
7a315072
QW
2163
2164 /*
2165 * We may or may not have any corrupted sectors (including missing dev
2166 * and csum mismatch), just let recover_sectors() to handle them all.
2167 */
02efa3a6
CH
2168 submit_read_wait_bio_list(rbio, &bio_list);
2169 return recover_sectors(rbio);
5eb30ee2
QW
2170}
2171
2172static void raid_wait_write_end_io(struct bio *bio)
2173{
2174 struct btrfs_raid_bio *rbio = bio->bi_private;
2175 blk_status_t err = bio->bi_status;
2176
ad3daf1c 2177 if (err)
2942a50d 2178 rbio_update_error_bitmap(rbio, bio);
5eb30ee2
QW
2179 bio_put(bio);
2180 if (atomic_dec_and_test(&rbio->stripes_pending))
2181 wake_up(&rbio->io_wait);
2182}
2183
2184static void submit_write_bios(struct btrfs_raid_bio *rbio,
2185 struct bio_list *bio_list)
2186{
2187 struct bio *bio;
2188
2189 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2190 while ((bio = bio_list_pop(bio_list))) {
2191 bio->bi_end_io = raid_wait_write_end_io;
2192
dbb6ecb3 2193 if (trace_raid56_write_enabled()) {
5eb30ee2
QW
2194 struct raid56_bio_trace_info trace_info = { 0 };
2195
2196 bio_get_trace_info(rbio, bio, &trace_info);
dbb6ecb3 2197 trace_raid56_write(rbio, bio, &trace_info);
5eb30ee2
QW
2198 }
2199 submit_bio(bio);
2200 }
2201}
2202
7a315072
QW
2203/*
2204 * To determine if we need to read any sector from the disk.
2205 * Should only be utilized in RMW path, to skip cached rbio.
2206 */
2207static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2208{
2209 int i;
2210
2211 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2212 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2213
2214 /*
2215 * We have a sector which doesn't have page nor uptodate,
2216 * thus this rbio can not be cached one, as cached one must
2217 * have all its data sectors present and uptodate.
2218 */
2219 if (!sector->page || !sector->uptodate)
2220 return true;
2221 }
2222 return false;
2223}
2224
1d0ef1ca 2225static void rmw_rbio(struct btrfs_raid_bio *rbio)
5eb30ee2
QW
2226{
2227 struct bio_list bio_list;
2228 int sectornr;
2229 int ret = 0;
2230
2231 /*
2232 * Allocate the pages for parity first, as P/Q pages will always be
2233 * needed for both full-stripe and sub-stripe writes.
2234 */
2235 ret = alloc_rbio_parity_pages(rbio);
2236 if (ret < 0)
1d0ef1ca 2237 goto out;
5eb30ee2 2238
7a315072
QW
2239 /*
2240 * Either full stripe write, or we have every data sector already
2241 * cached, can go to write path immediately.
2242 */
4d762701
CH
2243 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2244 /*
2245 * Now we're doing sub-stripe write, also need all data stripes
2246 * to do the full RMW.
2247 */
2248 ret = alloc_rbio_data_pages(rbio);
2249 if (ret < 0)
1d0ef1ca 2250 goto out;
5eb30ee2 2251
4d762701 2252 index_rbio_pages(rbio);
5eb30ee2 2253
4d762701
CH
2254 ret = rmw_read_wait_recover(rbio);
2255 if (ret < 0)
1d0ef1ca 2256 goto out;
4d762701 2257 }
5eb30ee2 2258
5eb30ee2
QW
2259 /*
2260 * At this stage we're not allowed to add any new bios to the
2261 * bio list any more, anyone else that wants to change this stripe
2262 * needs to do their own rmw.
2263 */
74cc3600 2264 spin_lock(&rbio->bio_list_lock);
5eb30ee2 2265 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
74cc3600 2266 spin_unlock(&rbio->bio_list_lock);
5eb30ee2 2267
2942a50d 2268 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5eb30ee2
QW
2269
2270 index_rbio_pages(rbio);
2271
2272 /*
2273 * We don't cache full rbios because we're assuming
2274 * the higher layers are unlikely to use this area of
2275 * the disk again soon. If they do use it again,
2276 * hopefully they will send another full bio.
2277 */
2278 if (!rbio_is_full(rbio))
2279 cache_rbio_pages(rbio);
2280 else
2281 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2282
2283 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2284 generate_pq_vertical(rbio, sectornr);
2285
2286 bio_list_init(&bio_list);
2287 ret = rmw_assemble_write_bios(rbio, &bio_list);
2288 if (ret < 0)
1d0ef1ca 2289 goto out;
5eb30ee2
QW
2290
2291 /* We should have at least one bio assembled. */
2292 ASSERT(bio_list_size(&bio_list));
2293 submit_write_bios(rbio, &bio_list);
2294 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2295
ad3daf1c
QW
2296 /* We may have more errors than our tolerance during the read. */
2297 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2298 int found_errors;
2299
2300 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2301 if (found_errors > rbio->bioc->max_errors) {
2302 ret = -EIO;
2303 break;
2304 }
2305 }
1d0ef1ca
CH
2306out:
2307 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
5eb30ee2
QW
2308}
2309
93723095
QW
2310static void rmw_rbio_work(struct work_struct *work)
2311{
2312 struct btrfs_raid_bio *rbio;
93723095
QW
2313
2314 rbio = container_of(work, struct btrfs_raid_bio, work);
1d0ef1ca
CH
2315 if (lock_stripe_add(rbio) == 0)
2316 rmw_rbio(rbio);
93723095
QW
2317}
2318
2319static void rmw_rbio_work_locked(struct work_struct *work)
53b381b3 2320{
1d0ef1ca 2321 rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
53b381b3
DW
2322}
2323
5a6ac9ea
MX
2324/*
2325 * The following code is used to scrub/replace the parity stripe
2326 *
4c664611 2327 * Caller must have already increased bio_counter for getting @bioc.
ae6529c3 2328 *
5a6ac9ea
MX
2329 * Note: We need make sure all the pages that add into the scrub/replace
2330 * raid bio are correct and not be changed during the scrub/replace. That
2331 * is those pages just hold metadata or file data with checksum.
2332 */
2333
6a258d72
QW
2334struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2335 struct btrfs_io_context *bioc,
ff18a4af 2336 struct btrfs_device *scrub_dev,
6a258d72 2337 unsigned long *dbitmap, int stripe_nsectors)
5a6ac9ea 2338{
6a258d72 2339 struct btrfs_fs_info *fs_info = bioc->fs_info;
5a6ac9ea
MX
2340 struct btrfs_raid_bio *rbio;
2341 int i;
2342
ff18a4af 2343 rbio = alloc_rbio(fs_info, bioc);
5a6ac9ea
MX
2344 if (IS_ERR(rbio))
2345 return NULL;
2346 bio_list_add(&rbio->bio_list, bio);
2347 /*
2348 * This is a special bio which is used to hold the completion handler
2349 * and make the scrub rbio is similar to the other types
2350 */
2351 ASSERT(!bio->bi_iter.bi_size);
2352 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2353
9cd3a7eb 2354 /*
4c664611 2355 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
9cd3a7eb
LB
2356 * to the end position, so this search can start from the first parity
2357 * stripe.
2358 */
2359 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
4c664611 2360 if (bioc->stripes[i].dev == scrub_dev) {
5a6ac9ea
MX
2361 rbio->scrubp = i;
2362 break;
2363 }
2364 }
9cd3a7eb 2365 ASSERT(i < rbio->real_stripes);
5a6ac9ea 2366
c67c68eb 2367 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
5a6ac9ea
MX
2368 return rbio;
2369}
2370
5a6ac9ea
MX
2371/*
2372 * We just scrub the parity that we have correct data on the same horizontal,
2373 * so we needn't allocate all pages for all the stripes.
2374 */
2375static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2376{
3907ce29 2377 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
aee35e4b 2378 int total_sector_nr;
5a6ac9ea 2379
aee35e4b
QW
2380 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2381 total_sector_nr++) {
2382 struct page *page;
2383 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2384 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
5a6ac9ea 2385
aee35e4b
QW
2386 if (!test_bit(sectornr, &rbio->dbitmap))
2387 continue;
2388 if (rbio->stripe_pages[index])
2389 continue;
2390 page = alloc_page(GFP_NOFS);
2391 if (!page)
2392 return -ENOMEM;
2393 rbio->stripe_pages[index] = page;
5a6ac9ea 2394 }
eb357060 2395 index_stripe_sectors(rbio);
5a6ac9ea
MX
2396 return 0;
2397}
2398
486c737f 2399static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
5a6ac9ea 2400{
4c664611 2401 struct btrfs_io_context *bioc = rbio->bioc;
46900662 2402 const u32 sectorsize = bioc->fs_info->sectorsize;
1389053e 2403 void **pointers = rbio->finish_pointers;
c67c68eb 2404 unsigned long *pbitmap = &rbio->finish_pbitmap;
5a6ac9ea
MX
2405 int nr_data = rbio->nr_data;
2406 int stripe;
3e77605d 2407 int sectornr;
c17af965 2408 bool has_qstripe;
46900662
QW
2409 struct sector_ptr p_sector = { 0 };
2410 struct sector_ptr q_sector = { 0 };
5a6ac9ea 2411 struct bio_list bio_list;
76035976 2412 int is_replace = 0;
5a6ac9ea
MX
2413 int ret;
2414
2415 bio_list_init(&bio_list);
2416
c17af965
DS
2417 if (rbio->real_stripes - rbio->nr_data == 1)
2418 has_qstripe = false;
2419 else if (rbio->real_stripes - rbio->nr_data == 2)
2420 has_qstripe = true;
2421 else
5a6ac9ea 2422 BUG();
5a6ac9ea 2423
1faf3885
QW
2424 /*
2425 * Replace is running and our P/Q stripe is being replaced, then we
2426 * need to duplicate the final write to replace target.
2427 */
2428 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
76035976 2429 is_replace = 1;
c67c68eb 2430 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
76035976
MX
2431 }
2432
5a6ac9ea
MX
2433 /*
2434 * Because the higher layers(scrubber) are unlikely to
2435 * use this area of the disk again soon, so don't cache
2436 * it.
2437 */
2438 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2439
46900662
QW
2440 p_sector.page = alloc_page(GFP_NOFS);
2441 if (!p_sector.page)
6bfd0133 2442 return -ENOMEM;
46900662
QW
2443 p_sector.pgoff = 0;
2444 p_sector.uptodate = 1;
5a6ac9ea 2445
c17af965 2446 if (has_qstripe) {
d70cef0d 2447 /* RAID6, allocate and map temp space for the Q stripe */
46900662
QW
2448 q_sector.page = alloc_page(GFP_NOFS);
2449 if (!q_sector.page) {
2450 __free_page(p_sector.page);
2451 p_sector.page = NULL;
6bfd0133 2452 return -ENOMEM;
5a6ac9ea 2453 }
46900662
QW
2454 q_sector.pgoff = 0;
2455 q_sector.uptodate = 1;
2456 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
5a6ac9ea
MX
2457 }
2458
2942a50d 2459 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5a6ac9ea 2460
d70cef0d 2461 /* Map the parity stripe just once */
46900662 2462 pointers[nr_data] = kmap_local_page(p_sector.page);
d70cef0d 2463
c67c68eb 2464 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
46900662 2465 struct sector_ptr *sector;
5a6ac9ea 2466 void *parity;
46900662 2467
5a6ac9ea
MX
2468 /* first collect one page from each data stripe */
2469 for (stripe = 0; stripe < nr_data; stripe++) {
46900662
QW
2470 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2471 pointers[stripe] = kmap_local_page(sector->page) +
2472 sector->pgoff;
5a6ac9ea
MX
2473 }
2474
c17af965 2475 if (has_qstripe) {
d70cef0d 2476 /* RAID6, call the library function to fill in our P/Q */
46900662 2477 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
5a6ac9ea
MX
2478 pointers);
2479 } else {
2480 /* raid5 */
46900662
QW
2481 memcpy(pointers[nr_data], pointers[0], sectorsize);
2482 run_xor(pointers + 1, nr_data - 1, sectorsize);
5a6ac9ea
MX
2483 }
2484
01327610 2485 /* Check scrubbing parity and repair it */
46900662
QW
2486 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2487 parity = kmap_local_page(sector->page) + sector->pgoff;
2488 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2489 memcpy(parity, pointers[rbio->scrubp], sectorsize);
5a6ac9ea
MX
2490 else
2491 /* Parity is right, needn't writeback */
c67c68eb 2492 bitmap_clear(&rbio->dbitmap, sectornr, 1);
58c1a35c 2493 kunmap_local(parity);
5a6ac9ea 2494
94a0b58d
IW
2495 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2496 kunmap_local(pointers[stripe]);
5a6ac9ea
MX
2497 }
2498
94a0b58d 2499 kunmap_local(pointers[nr_data]);
46900662
QW
2500 __free_page(p_sector.page);
2501 p_sector.page = NULL;
2502 if (q_sector.page) {
94a0b58d 2503 kunmap_local(pointers[rbio->real_stripes - 1]);
46900662
QW
2504 __free_page(q_sector.page);
2505 q_sector.page = NULL;
d70cef0d 2506 }
5a6ac9ea 2507
5a6ac9ea
MX
2508 /*
2509 * time to start writing. Make bios for everything from the
2510 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2511 * everything else.
2512 */
c67c68eb 2513 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
3e77605d 2514 struct sector_ptr *sector;
5a6ac9ea 2515
3e77605d
QW
2516 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2517 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
ff18a4af 2518 sectornr, REQ_OP_WRITE);
5a6ac9ea
MX
2519 if (ret)
2520 goto cleanup;
2521 }
2522
76035976
MX
2523 if (!is_replace)
2524 goto submit_write;
2525
1faf3885
QW
2526 /*
2527 * Replace is running and our parity stripe needs to be duplicated to
2528 * the target device. Check we have a valid source stripe number.
2529 */
2530 ASSERT(rbio->bioc->replace_stripe_src >= 0);
3e77605d
QW
2531 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2532 struct sector_ptr *sector;
76035976 2533
3e77605d
QW
2534 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2535 ret = rbio_add_io_sector(rbio, &bio_list, sector,
1faf3885
QW
2536 rbio->real_stripes,
2537 sectornr, REQ_OP_WRITE);
76035976
MX
2538 if (ret)
2539 goto cleanup;
2540 }
2541
2542submit_write:
6bfd0133
QW
2543 submit_write_bios(rbio, &bio_list);
2544 return 0;
5a6ac9ea
MX
2545
2546cleanup:
801fcfc5 2547 bio_list_put(&bio_list);
6bfd0133 2548 return ret;
5a6ac9ea
MX
2549}
2550
2551static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2552{
2553 if (stripe >= 0 && stripe < rbio->nr_data)
2554 return 1;
2555 return 0;
2556}
2557
6bfd0133 2558static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
5a6ac9ea 2559{
75b47033
QW
2560 void **pointers = NULL;
2561 void **unmap_array = NULL;
2562 int sector_nr;
e7fc357e 2563 int ret = 0;
5a6ac9ea 2564
75b47033
QW
2565 /*
2566 * @pointers array stores the pointer for each sector.
2567 *
2568 * @unmap_array stores copy of pointers that does not get reordered
2569 * during reconstruction so that kunmap_local works.
2570 */
2571 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2572 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2573 if (!pointers || !unmap_array) {
2574 ret = -ENOMEM;
2575 goto out;
2576 }
5a6ac9ea 2577
75b47033
QW
2578 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2579 int dfail = 0, failp = -1;
2580 int faila;
2581 int failb;
2582 int found_errors;
5a6ac9ea 2583
75b47033
QW
2584 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2585 &faila, &failb);
2586 if (found_errors > rbio->bioc->max_errors) {
2587 ret = -EIO;
2588 goto out;
2589 }
2590 if (found_errors == 0)
2591 continue;
5a6ac9ea 2592
75b47033
QW
2593 /* We should have at least one error here. */
2594 ASSERT(faila >= 0 || failb >= 0);
5a6ac9ea 2595
75b47033
QW
2596 if (is_data_stripe(rbio, faila))
2597 dfail++;
2598 else if (is_parity_stripe(faila))
2599 failp = faila;
5a6ac9ea 2600
75b47033
QW
2601 if (is_data_stripe(rbio, failb))
2602 dfail++;
2603 else if (is_parity_stripe(failb))
2604 failp = failb;
2605 /*
2606 * Because we can not use a scrubbing parity to repair the
2607 * data, so the capability of the repair is declined. (In the
2608 * case of RAID5, we can not repair anything.)
2609 */
2610 if (dfail > rbio->bioc->max_errors - 1) {
2611 ret = -EIO;
2612 goto out;
2613 }
2614 /*
2615 * If all data is good, only parity is correctly, just repair
2616 * the parity, no need to recover data stripes.
2617 */
2618 if (dfail == 0)
2619 continue;
6bfd0133 2620
75b47033
QW
2621 /*
2622 * Here means we got one corrupted data stripe and one
2623 * corrupted parity on RAID6, if the corrupted parity is
2624 * scrubbing parity, luckily, use the other one to repair the
2625 * data, or we can not repair the data stripe.
2626 */
2627 if (failp != rbio->scrubp) {
2628 ret = -EIO;
2629 goto out;
2630 }
2631
2632 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2633 if (ret < 0)
2634 goto out;
2635 }
2636out:
2637 kfree(pointers);
2638 kfree(unmap_array);
6bfd0133 2639 return ret;
5a6ac9ea
MX
2640}
2641
52f0c198 2642static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
5a6ac9ea 2643{
52f0c198 2644 struct bio_list bio_list = BIO_EMPTY_LIST;
cb3450b7
QW
2645 int total_sector_nr;
2646 int ret = 0;
5a6ac9ea 2647
1c10702e
QW
2648 /* Build a list of bios to read all the missing parts. */
2649 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2650 total_sector_nr++) {
2651 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2652 int stripe = total_sector_nr / rbio->stripe_nsectors;
2653 struct sector_ptr *sector;
5a6ac9ea 2654
1c10702e
QW
2655 /* No data in the vertical stripe, no need to read. */
2656 if (!test_bit(sectornr, &rbio->dbitmap))
2657 continue;
5a6ac9ea 2658
1c10702e
QW
2659 /*
2660 * We want to find all the sectors missing from the rbio and
2661 * read them from the disk. If sector_in_rbio() finds a sector
2662 * in the bio list we don't need to read it off the stripe.
2663 */
2664 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2665 if (sector)
2666 continue;
2667
2668 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2669 /*
2670 * The bio cache may have handed us an uptodate sector. If so,
2671 * use it.
2672 */
2673 if (sector->uptodate)
2674 continue;
2675
52f0c198 2676 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
ff18a4af 2677 sectornr, REQ_OP_READ);
52f0c198
CH
2678 if (ret) {
2679 bio_list_put(&bio_list);
2680 return ret;
2681 }
5a6ac9ea 2682 }
52f0c198
CH
2683
2684 submit_read_wait_bio_list(rbio, &bio_list);
cb3450b7 2685 return 0;
cb3450b7
QW
2686}
2687
08241d3c 2688static void scrub_rbio(struct btrfs_raid_bio *rbio)
cb3450b7 2689{
ad3daf1c 2690 int sector_nr;
cb3450b7 2691 int ret;
cb3450b7 2692
cb3450b7
QW
2693 ret = alloc_rbio_essential_pages(rbio);
2694 if (ret)
08241d3c 2695 goto out;
cb3450b7 2696
2942a50d
QW
2697 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2698
52f0c198 2699 ret = scrub_assemble_read_bios(rbio);
cb3450b7 2700 if (ret < 0)
08241d3c 2701 goto out;
5a6ac9ea 2702
75b47033 2703 /* We may have some failures, recover the failed sectors first. */
6bfd0133
QW
2704 ret = recover_scrub_rbio(rbio);
2705 if (ret < 0)
08241d3c 2706 goto out;
5a6ac9ea 2707
6bfd0133
QW
2708 /*
2709 * We have every sector properly prepared. Can finish the scrub
2710 * and writeback the good content.
2711 */
486c737f 2712 ret = finish_parity_scrub(rbio);
6bfd0133 2713 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
ad3daf1c
QW
2714 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2715 int found_errors;
2716
2717 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2718 if (found_errors > rbio->bioc->max_errors) {
2719 ret = -EIO;
2720 break;
2721 }
2722 }
08241d3c
CH
2723out:
2724 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
5a6ac9ea
MX
2725}
2726
6bfd0133 2727static void scrub_rbio_work_locked(struct work_struct *work)
5a6ac9ea 2728{
08241d3c 2729 scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
5a6ac9ea
MX
2730}
2731
5a6ac9ea
MX
2732void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2733{
2734 if (!lock_stripe_add(rbio))
6bfd0133 2735 start_async_work(rbio, scrub_rbio_work_locked);
5a6ac9ea 2736}
94ead93e
QW
2737
2738/*
2739 * This is for scrub call sites where we already have correct data contents.
2740 * This allows us to avoid reading data stripes again.
2741 *
2742 * Unfortunately here we have to do page copy, other than reusing the pages.
2743 * This is due to the fact rbio has its own page management for its cache.
2744 */
2745void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2746 struct page **data_pages, u64 data_logical)
2747{
2748 const u64 offset_in_full_stripe = data_logical -
2749 rbio->bioc->full_stripe_logical;
2750 const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2751 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2752 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2753 int ret;
2754
2755 /*
2756 * If we hit ENOMEM temporarily, but later at
2757 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2758 * the extra read, not a big deal.
2759 *
2760 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2761 * the bio would got proper error number set.
2762 */
2763 ret = alloc_rbio_data_pages(rbio);
2764 if (ret < 0)
2765 return;
2766
2767 /* data_logical must be at stripe boundary and inside the full stripe. */
2768 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2769 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2770
2771 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2772 struct page *dst = rbio->stripe_pages[page_nr + page_index];
2773 struct page *src = data_pages[page_nr];
2774
2775 memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2776 for (int sector_nr = sectors_per_page * page_index;
2777 sector_nr < sectors_per_page * (page_index + 1);
2778 sector_nr++)
2779 rbio->stripe_sectors[sector_nr].uptodate = true;
2780 }
2781}
This page took 1.060756 seconds and 4 git commands to generate.