]> Git Repo - linux.git/blame - fs/btrfs/raid56.c
btrfs: replace btrfs_wait_tree_block_writeback by wait_on_extent_buffer_writeback
[linux.git] / fs / btrfs / raid56.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
53b381b3
DW
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
53b381b3 5 */
c1d7c514 6
53b381b3 7#include <linux/sched.h>
53b381b3
DW
8#include <linux/bio.h>
9#include <linux/slab.h>
53b381b3 10#include <linux/blkdev.h>
53b381b3
DW
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
818e010b 15#include <linux/mm.h>
9b569ea0 16#include "messages.h"
cea62800 17#include "misc.h"
53b381b3 18#include "ctree.h"
53b381b3 19#include "disk-io.h"
53b381b3
DW
20#include "volumes.h"
21#include "raid56.h"
22#include "async-thread.h"
c5a41562 23#include "file-item.h"
7a315072 24#include "btrfs_inode.h"
53b381b3
DW
25
26/* set when additional merges to this rbio are not allowed */
27#define RBIO_RMW_LOCKED_BIT 1
28
4ae10b3a
CM
29/*
30 * set when this rbio is sitting in the hash, but it is just a cache
31 * of past RMW
32 */
33#define RBIO_CACHE_BIT 2
34
35/*
36 * set when it is safe to trust the stripe_pages for caching
37 */
38#define RBIO_CACHE_READY_BIT 3
39
4ae10b3a
CM
40#define RBIO_CACHE_SIZE 1024
41
8a953348
DS
42#define BTRFS_STRIPE_HASH_TABLE_BITS 11
43
44/* Used by the raid56 code to lock stripes for read/modify/write */
45struct btrfs_stripe_hash {
46 struct list_head hash_list;
47 spinlock_t lock;
48};
49
50/* Used by the raid56 code to lock stripes for read/modify/write */
51struct btrfs_stripe_hash_table {
52 struct list_head stripe_cache;
53 spinlock_t cache_lock;
54 int cache_size;
55 struct btrfs_stripe_hash table[];
56};
57
eb357060
QW
58/*
59 * A bvec like structure to present a sector inside a page.
60 *
61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
62 */
63struct sector_ptr {
64 struct page *page;
00425dd9
QW
65 unsigned int pgoff:24;
66 unsigned int uptodate:8;
eb357060
QW
67};
68
93723095
QW
69static void rmw_rbio_work(struct work_struct *work);
70static void rmw_rbio_work_locked(struct work_struct *work);
53b381b3
DW
71static void index_rbio_pages(struct btrfs_raid_bio *rbio);
72static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73
6bfd0133
QW
74static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
75static void scrub_rbio_work_locked(struct work_struct *work);
5a6ac9ea 76
797d74b7
QW
77static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78{
2942a50d 79 bitmap_free(rbio->error_bitmap);
797d74b7
QW
80 kfree(rbio->stripe_pages);
81 kfree(rbio->bio_sectors);
82 kfree(rbio->stripe_sectors);
83 kfree(rbio->finish_pointers);
84}
85
ff2b64a2
QW
86static void free_raid_bio(struct btrfs_raid_bio *rbio)
87{
88 int i;
89
90 if (!refcount_dec_and_test(&rbio->refs))
91 return;
92
93 WARN_ON(!list_empty(&rbio->stripe_cache));
94 WARN_ON(!list_empty(&rbio->hash_list));
95 WARN_ON(!bio_list_empty(&rbio->bio_list));
96
97 for (i = 0; i < rbio->nr_pages; i++) {
98 if (rbio->stripe_pages[i]) {
99 __free_page(rbio->stripe_pages[i]);
100 rbio->stripe_pages[i] = NULL;
101 }
102 }
103
104 btrfs_put_bioc(rbio->bioc);
797d74b7 105 free_raid_bio_pointers(rbio);
ff2b64a2
QW
106 kfree(rbio);
107}
108
385de0ef 109static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
ac638859 110{
385de0ef
CH
111 INIT_WORK(&rbio->work, work_func);
112 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
ac638859
DS
113}
114
53b381b3
DW
115/*
116 * the stripe hash table is used for locking, and to collect
117 * bios in hopes of making a full stripe
118 */
119int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120{
121 struct btrfs_stripe_hash_table *table;
122 struct btrfs_stripe_hash_table *x;
123 struct btrfs_stripe_hash *cur;
124 struct btrfs_stripe_hash *h;
125 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
126 int i;
127
128 if (info->stripe_hash_table)
129 return 0;
130
83c8266a
DS
131 /*
132 * The table is large, starting with order 4 and can go as high as
133 * order 7 in case lock debugging is turned on.
134 *
135 * Try harder to allocate and fallback to vmalloc to lower the chance
136 * of a failing mount.
137 */
ee787f95 138 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
818e010b
DS
139 if (!table)
140 return -ENOMEM;
53b381b3 141
4ae10b3a
CM
142 spin_lock_init(&table->cache_lock);
143 INIT_LIST_HEAD(&table->stripe_cache);
144
53b381b3
DW
145 h = table->table;
146
147 for (i = 0; i < num_entries; i++) {
148 cur = h + i;
149 INIT_LIST_HEAD(&cur->hash_list);
150 spin_lock_init(&cur->lock);
53b381b3
DW
151 }
152
153 x = cmpxchg(&info->stripe_hash_table, NULL, table);
fe3b7bb0 154 kvfree(x);
53b381b3
DW
155 return 0;
156}
157
4ae10b3a
CM
158/*
159 * caching an rbio means to copy anything from the
ac26df8b 160 * bio_sectors array into the stripe_pages array. We
4ae10b3a
CM
161 * use the page uptodate bit in the stripe cache array
162 * to indicate if it has valid data
163 *
164 * once the caching is done, we set the cache ready
165 * bit.
166 */
167static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
168{
169 int i;
4ae10b3a
CM
170 int ret;
171
172 ret = alloc_rbio_pages(rbio);
173 if (ret)
174 return;
175
00425dd9
QW
176 for (i = 0; i < rbio->nr_sectors; i++) {
177 /* Some range not covered by bio (partial write), skip it */
88074c8b
QW
178 if (!rbio->bio_sectors[i].page) {
179 /*
180 * Even if the sector is not covered by bio, if it is
181 * a data sector it should still be uptodate as it is
182 * read from disk.
183 */
184 if (i < rbio->nr_data * rbio->stripe_nsectors)
185 ASSERT(rbio->stripe_sectors[i].uptodate);
00425dd9 186 continue;
88074c8b 187 }
00425dd9
QW
188
189 ASSERT(rbio->stripe_sectors[i].page);
190 memcpy_page(rbio->stripe_sectors[i].page,
191 rbio->stripe_sectors[i].pgoff,
192 rbio->bio_sectors[i].page,
193 rbio->bio_sectors[i].pgoff,
194 rbio->bioc->fs_info->sectorsize);
195 rbio->stripe_sectors[i].uptodate = 1;
196 }
4ae10b3a
CM
197 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
198}
199
53b381b3
DW
200/*
201 * we hash on the first logical address of the stripe
202 */
203static int rbio_bucket(struct btrfs_raid_bio *rbio)
204{
4c664611 205 u64 num = rbio->bioc->raid_map[0];
53b381b3
DW
206
207 /*
208 * we shift down quite a bit. We're using byte
209 * addressing, and most of the lower bits are zeros.
210 * This tends to upset hash_64, and it consistently
211 * returns just one or two different values.
212 *
213 * shifting off the lower bits fixes things.
214 */
215 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
216}
217
d4e28d9b
QW
218static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
219 unsigned int page_nr)
220{
221 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
222 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
223 int i;
224
225 ASSERT(page_nr < rbio->nr_pages);
226
227 for (i = sectors_per_page * page_nr;
228 i < sectors_per_page * page_nr + sectors_per_page;
229 i++) {
230 if (!rbio->stripe_sectors[i].uptodate)
231 return false;
232 }
233 return true;
234}
235
eb357060
QW
236/*
237 * Update the stripe_sectors[] array to use correct page and pgoff
238 *
239 * Should be called every time any page pointer in stripes_pages[] got modified.
240 */
241static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242{
243 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
244 u32 offset;
245 int i;
246
247 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
248 int page_index = offset >> PAGE_SHIFT;
249
250 ASSERT(page_index < rbio->nr_pages);
251 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
252 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
253 }
254}
255
4d100466
QW
256static void steal_rbio_page(struct btrfs_raid_bio *src,
257 struct btrfs_raid_bio *dest, int page_nr)
258{
259 const u32 sectorsize = src->bioc->fs_info->sectorsize;
260 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
261 int i;
262
263 if (dest->stripe_pages[page_nr])
264 __free_page(dest->stripe_pages[page_nr]);
265 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
266 src->stripe_pages[page_nr] = NULL;
267
268 /* Also update the sector->uptodate bits. */
269 for (i = sectors_per_page * page_nr;
270 i < sectors_per_page * page_nr + sectors_per_page; i++)
271 dest->stripe_sectors[i].uptodate = true;
272}
273
88074c8b
QW
274static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275{
276 const int sector_nr = (page_nr << PAGE_SHIFT) >>
277 rbio->bioc->fs_info->sectorsize_bits;
278
279 /*
280 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
281 * we won't have a page which is half data half parity.
282 *
283 * Thus if the first sector of the page belongs to data stripes, then
284 * the full page belongs to data stripes.
285 */
286 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
287}
288
4ae10b3a 289/*
d4e28d9b
QW
290 * Stealing an rbio means taking all the uptodate pages from the stripe array
291 * in the source rbio and putting them into the destination rbio.
292 *
293 * This will also update the involved stripe_sectors[] which are referring to
294 * the old pages.
4ae10b3a
CM
295 */
296static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297{
298 int i;
4ae10b3a
CM
299
300 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
301 return;
302
303 for (i = 0; i < dest->nr_pages; i++) {
88074c8b
QW
304 struct page *p = src->stripe_pages[i];
305
306 /*
307 * We don't need to steal P/Q pages as they will always be
308 * regenerated for RMW or full write anyway.
309 */
310 if (!is_data_stripe_page(src, i))
4ae10b3a 311 continue;
4ae10b3a 312
88074c8b
QW
313 /*
314 * If @src already has RBIO_CACHE_READY_BIT, it should have
315 * all data stripe pages present and uptodate.
316 */
317 ASSERT(p);
318 ASSERT(full_page_sectors_uptodate(src, i));
4d100466 319 steal_rbio_page(src, dest, i);
4ae10b3a 320 }
eb357060
QW
321 index_stripe_sectors(dest);
322 index_stripe_sectors(src);
4ae10b3a
CM
323}
324
53b381b3
DW
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
bd8f7e62
QW
337 /* Also inherit the bitmaps from @victim. */
338 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
339 dest->stripe_nsectors);
53b381b3
DW
340 bio_list_init(&victim->bio_list);
341}
342
343/*
4ae10b3a
CM
344 * used to prune items that are in the cache. The caller
345 * must hold the hash table lock.
346 */
347static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348{
349 int bucket = rbio_bucket(rbio);
350 struct btrfs_stripe_hash_table *table;
351 struct btrfs_stripe_hash *h;
352 int freeit = 0;
353
354 /*
355 * check the bit again under the hash table lock.
356 */
357 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 return;
359
6a258d72 360 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a
CM
361 h = table->table + bucket;
362
363 /* hold the lock for the bucket because we may be
364 * removing it from the hash table
365 */
366 spin_lock(&h->lock);
367
368 /*
369 * hold the lock for the bio list because we need
370 * to make sure the bio list is empty
371 */
372 spin_lock(&rbio->bio_list_lock);
373
374 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 list_del_init(&rbio->stripe_cache);
376 table->cache_size -= 1;
377 freeit = 1;
378
379 /* if the bio list isn't empty, this rbio is
380 * still involved in an IO. We take it out
381 * of the cache list, and drop the ref that
382 * was held for the list.
383 *
384 * If the bio_list was empty, we also remove
385 * the rbio from the hash_table, and drop
386 * the corresponding ref
387 */
388 if (bio_list_empty(&rbio->bio_list)) {
389 if (!list_empty(&rbio->hash_list)) {
390 list_del_init(&rbio->hash_list);
dec95574 391 refcount_dec(&rbio->refs);
4ae10b3a
CM
392 BUG_ON(!list_empty(&rbio->plug_list));
393 }
394 }
395 }
396
397 spin_unlock(&rbio->bio_list_lock);
398 spin_unlock(&h->lock);
399
400 if (freeit)
ff2b64a2 401 free_raid_bio(rbio);
4ae10b3a
CM
402}
403
404/*
405 * prune a given rbio from the cache
406 */
407static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408{
409 struct btrfs_stripe_hash_table *table;
410 unsigned long flags;
411
412 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
413 return;
414
6a258d72 415 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a
CM
416
417 spin_lock_irqsave(&table->cache_lock, flags);
418 __remove_rbio_from_cache(rbio);
419 spin_unlock_irqrestore(&table->cache_lock, flags);
420}
421
422/*
423 * remove everything in the cache
424 */
48a3b636 425static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
426{
427 struct btrfs_stripe_hash_table *table;
428 unsigned long flags;
429 struct btrfs_raid_bio *rbio;
430
431 table = info->stripe_hash_table;
432
433 spin_lock_irqsave(&table->cache_lock, flags);
434 while (!list_empty(&table->stripe_cache)) {
435 rbio = list_entry(table->stripe_cache.next,
436 struct btrfs_raid_bio,
437 stripe_cache);
438 __remove_rbio_from_cache(rbio);
439 }
440 spin_unlock_irqrestore(&table->cache_lock, flags);
441}
442
443/*
444 * remove all cached entries and free the hash table
445 * used by unmount
53b381b3
DW
446 */
447void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
448{
449 if (!info->stripe_hash_table)
450 return;
4ae10b3a 451 btrfs_clear_rbio_cache(info);
f749303b 452 kvfree(info->stripe_hash_table);
53b381b3
DW
453 info->stripe_hash_table = NULL;
454}
455
4ae10b3a
CM
456/*
457 * insert an rbio into the stripe cache. It
458 * must have already been prepared by calling
459 * cache_rbio_pages
460 *
461 * If this rbio was already cached, it gets
462 * moved to the front of the lru.
463 *
464 * If the size of the rbio cache is too big, we
465 * prune an item.
466 */
467static void cache_rbio(struct btrfs_raid_bio *rbio)
468{
469 struct btrfs_stripe_hash_table *table;
470 unsigned long flags;
471
472 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
473 return;
474
6a258d72 475 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a
CM
476
477 spin_lock_irqsave(&table->cache_lock, flags);
478 spin_lock(&rbio->bio_list_lock);
479
480 /* bump our ref if we were not in the list before */
481 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 482 refcount_inc(&rbio->refs);
4ae10b3a
CM
483
484 if (!list_empty(&rbio->stripe_cache)){
485 list_move(&rbio->stripe_cache, &table->stripe_cache);
486 } else {
487 list_add(&rbio->stripe_cache, &table->stripe_cache);
488 table->cache_size += 1;
489 }
490
491 spin_unlock(&rbio->bio_list_lock);
492
493 if (table->cache_size > RBIO_CACHE_SIZE) {
494 struct btrfs_raid_bio *found;
495
496 found = list_entry(table->stripe_cache.prev,
497 struct btrfs_raid_bio,
498 stripe_cache);
499
500 if (found != rbio)
501 __remove_rbio_from_cache(found);
502 }
503
504 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
505}
506
53b381b3
DW
507/*
508 * helper function to run the xor_blocks api. It is only
509 * able to do MAX_XOR_BLOCKS at a time, so we need to
510 * loop through.
511 */
512static void run_xor(void **pages, int src_cnt, ssize_t len)
513{
514 int src_off = 0;
515 int xor_src_cnt = 0;
516 void *dest = pages[src_cnt];
517
518 while(src_cnt > 0) {
519 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
520 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
521
522 src_cnt -= xor_src_cnt;
523 src_off += xor_src_cnt;
524 }
525}
526
527/*
176571a1
DS
528 * Returns true if the bio list inside this rbio covers an entire stripe (no
529 * rmw required).
53b381b3 530 */
176571a1 531static int rbio_is_full(struct btrfs_raid_bio *rbio)
53b381b3 532{
176571a1 533 unsigned long flags;
53b381b3
DW
534 unsigned long size = rbio->bio_list_bytes;
535 int ret = 1;
536
176571a1 537 spin_lock_irqsave(&rbio->bio_list_lock, flags);
ff18a4af 538 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
53b381b3 539 ret = 0;
ff18a4af 540 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
53b381b3 541 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
176571a1 542
53b381b3
DW
543 return ret;
544}
545
546/*
547 * returns 1 if it is safe to merge two rbios together.
548 * The merging is safe if the two rbios correspond to
549 * the same stripe and if they are both going in the same
550 * direction (read vs write), and if neither one is
551 * locked for final IO
552 *
553 * The caller is responsible for locking such that
554 * rmw_locked is safe to test
555 */
556static int rbio_can_merge(struct btrfs_raid_bio *last,
557 struct btrfs_raid_bio *cur)
558{
559 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
560 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
561 return 0;
562
4ae10b3a
CM
563 /*
564 * we can't merge with cached rbios, since the
565 * idea is that when we merge the destination
566 * rbio is going to run our IO for us. We can
01327610 567 * steal from cached rbios though, other functions
4ae10b3a
CM
568 * handle that.
569 */
570 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
571 test_bit(RBIO_CACHE_BIT, &cur->flags))
572 return 0;
573
4c664611 574 if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
53b381b3
DW
575 return 0;
576
5a6ac9ea
MX
577 /* we can't merge with different operations */
578 if (last->operation != cur->operation)
579 return 0;
580 /*
581 * We've need read the full stripe from the drive.
582 * check and repair the parity and write the new results.
583 *
584 * We're not allowed to add any new bios to the
585 * bio list here, anyone else that wants to
586 * change this stripe needs to do their own rmw.
587 */
db34be19 588 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 589 return 0;
53b381b3 590
ad3daf1c
QW
591 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
592 last->operation == BTRFS_RBIO_READ_REBUILD)
b4ee1782
OS
593 return 0;
594
53b381b3
DW
595 return 1;
596}
597
3e77605d
QW
598static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
599 unsigned int stripe_nr,
600 unsigned int sector_nr)
601{
602 ASSERT(stripe_nr < rbio->real_stripes);
603 ASSERT(sector_nr < rbio->stripe_nsectors);
604
605 return stripe_nr * rbio->stripe_nsectors + sector_nr;
606}
607
608/* Return a sector from rbio->stripe_sectors, not from the bio list */
609static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
610 unsigned int stripe_nr,
611 unsigned int sector_nr)
612{
613 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
614 sector_nr)];
615}
616
1145059a
QW
617/* Grab a sector inside P stripe */
618static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
619 unsigned int sector_nr)
b7178a5f 620{
1145059a 621 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
b7178a5f
ZL
622}
623
1145059a
QW
624/* Grab a sector inside Q stripe, return NULL if not RAID6 */
625static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
626 unsigned int sector_nr)
53b381b3 627{
1145059a
QW
628 if (rbio->nr_data + 1 == rbio->real_stripes)
629 return NULL;
630 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
53b381b3
DW
631}
632
53b381b3
DW
633/*
634 * The first stripe in the table for a logical address
635 * has the lock. rbios are added in one of three ways:
636 *
637 * 1) Nobody has the stripe locked yet. The rbio is given
638 * the lock and 0 is returned. The caller must start the IO
639 * themselves.
640 *
641 * 2) Someone has the stripe locked, but we're able to merge
642 * with the lock owner. The rbio is freed and the IO will
643 * start automatically along with the existing rbio. 1 is returned.
644 *
645 * 3) Someone has the stripe locked, but we're not able to merge.
646 * The rbio is added to the lock owner's plug list, or merged into
647 * an rbio already on the plug list. When the lock owner unlocks,
648 * the next rbio on the list is run and the IO is started automatically.
649 * 1 is returned
650 *
651 * If we return 0, the caller still owns the rbio and must continue with
652 * IO submission. If we return 1, the caller must assume the rbio has
653 * already been freed.
654 */
655static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
656{
721860d5 657 struct btrfs_stripe_hash *h;
53b381b3
DW
658 struct btrfs_raid_bio *cur;
659 struct btrfs_raid_bio *pending;
660 unsigned long flags;
53b381b3 661 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 662 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 663 int ret = 0;
53b381b3 664
6a258d72 665 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
721860d5 666
53b381b3
DW
667 spin_lock_irqsave(&h->lock, flags);
668 list_for_each_entry(cur, &h->hash_list, hash_list) {
4c664611 669 if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
9d6cb1b0 670 continue;
4ae10b3a 671
9d6cb1b0 672 spin_lock(&cur->bio_list_lock);
4ae10b3a 673
9d6cb1b0
JT
674 /* Can we steal this cached rbio's pages? */
675 if (bio_list_empty(&cur->bio_list) &&
676 list_empty(&cur->plug_list) &&
677 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
678 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
679 list_del_init(&cur->hash_list);
680 refcount_dec(&cur->refs);
53b381b3 681
9d6cb1b0
JT
682 steal_rbio(cur, rbio);
683 cache_drop = cur;
684 spin_unlock(&cur->bio_list_lock);
4ae10b3a 685
9d6cb1b0
JT
686 goto lockit;
687 }
53b381b3 688
9d6cb1b0
JT
689 /* Can we merge into the lock owner? */
690 if (rbio_can_merge(cur, rbio)) {
691 merge_rbio(cur, rbio);
53b381b3 692 spin_unlock(&cur->bio_list_lock);
9d6cb1b0 693 freeit = rbio;
53b381b3
DW
694 ret = 1;
695 goto out;
696 }
9d6cb1b0
JT
697
698
699 /*
700 * We couldn't merge with the running rbio, see if we can merge
701 * with the pending ones. We don't have to check for rmw_locked
702 * because there is no way they are inside finish_rmw right now
703 */
704 list_for_each_entry(pending, &cur->plug_list, plug_list) {
705 if (rbio_can_merge(pending, rbio)) {
706 merge_rbio(pending, rbio);
707 spin_unlock(&cur->bio_list_lock);
708 freeit = rbio;
709 ret = 1;
710 goto out;
711 }
712 }
713
714 /*
715 * No merging, put us on the tail of the plug list, our rbio
716 * will be started with the currently running rbio unlocks
717 */
718 list_add_tail(&rbio->plug_list, &cur->plug_list);
719 spin_unlock(&cur->bio_list_lock);
720 ret = 1;
721 goto out;
53b381b3 722 }
4ae10b3a 723lockit:
dec95574 724 refcount_inc(&rbio->refs);
53b381b3
DW
725 list_add(&rbio->hash_list, &h->hash_list);
726out:
727 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
728 if (cache_drop)
729 remove_rbio_from_cache(cache_drop);
53b381b3 730 if (freeit)
ff2b64a2 731 free_raid_bio(freeit);
53b381b3
DW
732 return ret;
733}
734
d817ce35
QW
735static void recover_rbio_work_locked(struct work_struct *work);
736
53b381b3
DW
737/*
738 * called as rmw or parity rebuild is completed. If the plug list has more
739 * rbios waiting for this stripe, the next one on the list will be started
740 */
741static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
742{
743 int bucket;
744 struct btrfs_stripe_hash *h;
745 unsigned long flags;
4ae10b3a 746 int keep_cache = 0;
53b381b3
DW
747
748 bucket = rbio_bucket(rbio);
6a258d72 749 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
53b381b3 750
4ae10b3a
CM
751 if (list_empty(&rbio->plug_list))
752 cache_rbio(rbio);
753
53b381b3
DW
754 spin_lock_irqsave(&h->lock, flags);
755 spin_lock(&rbio->bio_list_lock);
756
757 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
758 /*
759 * if we're still cached and there is no other IO
760 * to perform, just leave this rbio here for others
761 * to steal from later
762 */
763 if (list_empty(&rbio->plug_list) &&
764 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
765 keep_cache = 1;
766 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
767 BUG_ON(!bio_list_empty(&rbio->bio_list));
768 goto done;
769 }
53b381b3
DW
770
771 list_del_init(&rbio->hash_list);
dec95574 772 refcount_dec(&rbio->refs);
53b381b3
DW
773
774 /*
775 * we use the plug list to hold all the rbios
776 * waiting for the chance to lock this stripe.
777 * hand the lock over to one of them.
778 */
779 if (!list_empty(&rbio->plug_list)) {
780 struct btrfs_raid_bio *next;
781 struct list_head *head = rbio->plug_list.next;
782
783 next = list_entry(head, struct btrfs_raid_bio,
784 plug_list);
785
786 list_del_init(&rbio->plug_list);
787
788 list_add(&next->hash_list, &h->hash_list);
dec95574 789 refcount_inc(&next->refs);
53b381b3
DW
790 spin_unlock(&rbio->bio_list_lock);
791 spin_unlock_irqrestore(&h->lock, flags);
792
1b94b556 793 if (next->operation == BTRFS_RBIO_READ_REBUILD)
d817ce35 794 start_async_work(next, recover_rbio_work_locked);
b4ee1782
OS
795 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
796 steal_rbio(rbio, next);
d817ce35 797 start_async_work(next, recover_rbio_work_locked);
b4ee1782 798 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 799 steal_rbio(rbio, next);
93723095 800 start_async_work(next, rmw_rbio_work_locked);
5a6ac9ea
MX
801 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
802 steal_rbio(rbio, next);
6bfd0133 803 start_async_work(next, scrub_rbio_work_locked);
4ae10b3a 804 }
53b381b3
DW
805
806 goto done_nolock;
53b381b3
DW
807 }
808 }
4ae10b3a 809done:
53b381b3
DW
810 spin_unlock(&rbio->bio_list_lock);
811 spin_unlock_irqrestore(&h->lock, flags);
812
813done_nolock:
4ae10b3a
CM
814 if (!keep_cache)
815 remove_rbio_from_cache(rbio);
53b381b3
DW
816}
817
7583d8d0 818static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
53b381b3 819{
7583d8d0
LB
820 struct bio *next;
821
822 while (cur) {
823 next = cur->bi_next;
824 cur->bi_next = NULL;
825 cur->bi_status = err;
826 bio_endio(cur);
827 cur = next;
828 }
53b381b3
DW
829}
830
831/*
832 * this frees the rbio and runs through all the bios in the
833 * bio_list and calls end_io on them
834 */
4e4cbee9 835static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
836{
837 struct bio *cur = bio_list_get(&rbio->bio_list);
7583d8d0 838 struct bio *extra;
4245215d 839
c5a41562
QW
840 kfree(rbio->csum_buf);
841 bitmap_free(rbio->csum_bitmap);
842 rbio->csum_buf = NULL;
843 rbio->csum_bitmap = NULL;
844
bd8f7e62
QW
845 /*
846 * Clear the data bitmap, as the rbio may be cached for later usage.
847 * do this before before unlock_stripe() so there will be no new bio
848 * for this bio.
849 */
850 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
4245215d 851
7583d8d0
LB
852 /*
853 * At this moment, rbio->bio_list is empty, however since rbio does not
854 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
855 * hash list, rbio may be merged with others so that rbio->bio_list
856 * becomes non-empty.
857 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
858 * more and we can call bio_endio() on all queued bios.
859 */
860 unlock_stripe(rbio);
861 extra = bio_list_get(&rbio->bio_list);
ff2b64a2 862 free_raid_bio(rbio);
53b381b3 863
7583d8d0
LB
864 rbio_endio_bio_list(cur, err);
865 if (extra)
866 rbio_endio_bio_list(extra, err);
53b381b3
DW
867}
868
43dd529a
DS
869/*
870 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
3e77605d
QW
871 *
872 * @rbio: The raid bio
873 * @stripe_nr: Stripe number, valid range [0, real_stripe)
874 * @sector_nr: Sector number inside the stripe,
875 * valid range [0, stripe_nsectors)
876 * @bio_list_only: Whether to use sectors inside the bio list only.
877 *
878 * The read/modify/write code wants to reuse the original bio page as much
879 * as possible, and only use stripe_sectors as fallback.
880 */
881static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
882 int stripe_nr, int sector_nr,
883 bool bio_list_only)
884{
885 struct sector_ptr *sector;
886 int index;
887
888 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
889 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
890
891 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
892 ASSERT(index >= 0 && index < rbio->nr_sectors);
893
894 spin_lock_irq(&rbio->bio_list_lock);
895 sector = &rbio->bio_sectors[index];
896 if (sector->page || bio_list_only) {
897 /* Don't return sector without a valid page pointer */
898 if (!sector->page)
899 sector = NULL;
900 spin_unlock_irq(&rbio->bio_list_lock);
901 return sector;
902 }
903 spin_unlock_irq(&rbio->bio_list_lock);
904
905 return &rbio->stripe_sectors[index];
906}
907
53b381b3
DW
908/*
909 * allocation and initial setup for the btrfs_raid_bio. Not
910 * this does not allocate any pages for rbio->pages.
911 */
2ff7e61e 912static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
ff18a4af 913 struct btrfs_io_context *bioc)
53b381b3 914{
843de58b 915 const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
ff18a4af 916 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
843de58b 917 const unsigned int num_pages = stripe_npages * real_stripes;
ff18a4af
CH
918 const unsigned int stripe_nsectors =
919 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
94efbe19 920 const unsigned int num_sectors = stripe_nsectors * real_stripes;
53b381b3 921 struct btrfs_raid_bio *rbio;
53b381b3 922
94efbe19
QW
923 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
924 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
c67c68eb
QW
925 /*
926 * Our current stripe len should be fixed to 64k thus stripe_nsectors
927 * (at most 16) should be no larger than BITS_PER_LONG.
928 */
929 ASSERT(stripe_nsectors <= BITS_PER_LONG);
843de58b 930
797d74b7 931 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
af8e2d1d 932 if (!rbio)
53b381b3 933 return ERR_PTR(-ENOMEM);
797d74b7
QW
934 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
935 GFP_NOFS);
936 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
937 GFP_NOFS);
938 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
939 GFP_NOFS);
940 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
2942a50d 941 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
797d74b7
QW
942
943 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
2942a50d 944 !rbio->finish_pointers || !rbio->error_bitmap) {
797d74b7
QW
945 free_raid_bio_pointers(rbio);
946 kfree(rbio);
947 return ERR_PTR(-ENOMEM);
948 }
53b381b3
DW
949
950 bio_list_init(&rbio->bio_list);
d817ce35 951 init_waitqueue_head(&rbio->io_wait);
53b381b3
DW
952 INIT_LIST_HEAD(&rbio->plug_list);
953 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 954 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3 955 INIT_LIST_HEAD(&rbio->hash_list);
f1c29379 956 btrfs_get_bioc(bioc);
4c664611 957 rbio->bioc = bioc;
53b381b3 958 rbio->nr_pages = num_pages;
94efbe19 959 rbio->nr_sectors = num_sectors;
2c8cdd6e 960 rbio->real_stripes = real_stripes;
5a6ac9ea 961 rbio->stripe_npages = stripe_npages;
94efbe19 962 rbio->stripe_nsectors = stripe_nsectors;
dec95574 963 refcount_set(&rbio->refs, 1);
b89e1b01 964 atomic_set(&rbio->stripes_pending, 0);
53b381b3 965
0b30f719
QW
966 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
967 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
53b381b3 968
53b381b3
DW
969 return rbio;
970}
971
972/* allocate pages for all the stripes in the bio, including parity */
973static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
974{
eb357060
QW
975 int ret;
976
977 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
978 if (ret < 0)
979 return ret;
980 /* Mapping all sectors */
981 index_stripe_sectors(rbio);
982 return 0;
53b381b3
DW
983}
984
b7178a5f 985/* only allocate pages for p/q stripes */
53b381b3
DW
986static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
987{
f77183dc 988 const int data_pages = rbio->nr_data * rbio->stripe_npages;
eb357060 989 int ret;
53b381b3 990
eb357060
QW
991 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
992 rbio->stripe_pages + data_pages);
993 if (ret < 0)
994 return ret;
995
996 index_stripe_sectors(rbio);
997 return 0;
53b381b3
DW
998}
999
75b47033 1000/*
67da05b3 1001 * Return the total number of errors found in the vertical stripe of @sector_nr.
75b47033
QW
1002 *
1003 * @faila and @failb will also be updated to the first and second stripe
1004 * number of the errors.
1005 */
1006static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1007 int *faila, int *failb)
1008{
1009 int stripe_nr;
1010 int found_errors = 0;
1011
ad3daf1c
QW
1012 if (faila || failb) {
1013 /*
1014 * Both @faila and @failb should be valid pointers if any of
1015 * them is specified.
1016 */
1017 ASSERT(faila && failb);
1018 *faila = -1;
1019 *failb = -1;
1020 }
75b47033
QW
1021
1022 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1023 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1024
1025 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1026 found_errors++;
ad3daf1c
QW
1027 if (faila) {
1028 /* Update faila and failb. */
1029 if (*faila < 0)
1030 *faila = stripe_nr;
1031 else if (*failb < 0)
1032 *failb = stripe_nr;
1033 }
75b47033
QW
1034 }
1035 }
1036 return found_errors;
1037}
1038
53b381b3 1039/*
3e77605d
QW
1040 * Add a single sector @sector into our list of bios for IO.
1041 *
1042 * Return 0 if everything went well.
1043 * Return <0 for error.
53b381b3 1044 */
3e77605d
QW
1045static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1046 struct bio_list *bio_list,
1047 struct sector_ptr *sector,
1048 unsigned int stripe_nr,
1049 unsigned int sector_nr,
bf9486d6 1050 enum req_op op)
53b381b3 1051{
3e77605d 1052 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
53b381b3 1053 struct bio *last = bio_list->tail;
53b381b3
DW
1054 int ret;
1055 struct bio *bio;
4c664611 1056 struct btrfs_io_stripe *stripe;
53b381b3
DW
1057 u64 disk_start;
1058
3e77605d
QW
1059 /*
1060 * Note: here stripe_nr has taken device replace into consideration,
1061 * thus it can be larger than rbio->real_stripe.
1062 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1063 */
1064 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1065 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1066 ASSERT(sector->page);
1067
4c664611 1068 stripe = &rbio->bioc->stripes[stripe_nr];
3e77605d 1069 disk_start = stripe->physical + sector_nr * sectorsize;
53b381b3
DW
1070
1071 /* if the device is missing, just fail this stripe */
2942a50d 1072 if (!stripe->dev->bdev) {
ad3daf1c
QW
1073 int found_errors;
1074
2942a50d
QW
1075 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1076 rbio->error_bitmap);
ad3daf1c
QW
1077
1078 /* Check if we have reached tolerance early. */
1079 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1080 NULL, NULL);
1081 if (found_errors > rbio->bioc->max_errors)
1082 return -EIO;
1083 return 0;
2942a50d 1084 }
53b381b3
DW
1085
1086 /* see if we can add this page onto our existing bio */
1087 if (last) {
1201b58b 1088 u64 last_end = last->bi_iter.bi_sector << 9;
4f024f37 1089 last_end += last->bi_iter.bi_size;
53b381b3
DW
1090
1091 /*
1092 * we can't merge these if they are from different
1093 * devices or if they are not contiguous
1094 */
f90ae76a 1095 if (last_end == disk_start && !last->bi_status &&
309dca30 1096 last->bi_bdev == stripe->dev->bdev) {
3e77605d
QW
1097 ret = bio_add_page(last, sector->page, sectorsize,
1098 sector->pgoff);
1099 if (ret == sectorsize)
53b381b3
DW
1100 return 0;
1101 }
1102 }
1103
1104 /* put a new bio on the list */
ff18a4af
CH
1105 bio = bio_alloc(stripe->dev->bdev,
1106 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
bf9486d6 1107 op, GFP_NOFS);
4f024f37 1108 bio->bi_iter.bi_sector = disk_start >> 9;
e01bf588 1109 bio->bi_private = rbio;
53b381b3 1110
3e77605d 1111 bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
53b381b3
DW
1112 bio_list_add(bio_list, bio);
1113 return 0;
1114}
1115
00425dd9
QW
1116static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1117{
1118 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1119 struct bio_vec bvec;
1120 struct bvec_iter iter;
1121 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1122 rbio->bioc->raid_map[0];
1123
00425dd9
QW
1124 bio_for_each_segment(bvec, bio, iter) {
1125 u32 bvec_offset;
1126
1127 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1128 bvec_offset += sectorsize, offset += sectorsize) {
1129 int index = offset / sectorsize;
1130 struct sector_ptr *sector = &rbio->bio_sectors[index];
1131
1132 sector->page = bvec.bv_page;
1133 sector->pgoff = bvec.bv_offset + bvec_offset;
1134 ASSERT(sector->pgoff < PAGE_SIZE);
1135 }
1136 }
1137}
1138
53b381b3
DW
1139/*
1140 * helper function to walk our bio list and populate the bio_pages array with
1141 * the result. This seems expensive, but it is faster than constantly
1142 * searching through the bio list as we setup the IO in finish_rmw or stripe
1143 * reconstruction.
1144 *
1145 * This must be called before you trust the answers from page_in_rbio
1146 */
1147static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1148{
1149 struct bio *bio;
53b381b3
DW
1150
1151 spin_lock_irq(&rbio->bio_list_lock);
00425dd9
QW
1152 bio_list_for_each(bio, &rbio->bio_list)
1153 index_one_bio(rbio, bio);
1154
53b381b3
DW
1155 spin_unlock_irq(&rbio->bio_list_lock);
1156}
1157
b8bea09a
QW
1158static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1159 struct raid56_bio_trace_info *trace_info)
1160{
1161 const struct btrfs_io_context *bioc = rbio->bioc;
1162 int i;
1163
1164 ASSERT(bioc);
1165
1166 /* We rely on bio->bi_bdev to find the stripe number. */
1167 if (!bio->bi_bdev)
1168 goto not_found;
1169
1170 for (i = 0; i < bioc->num_stripes; i++) {
1171 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1172 continue;
1173 trace_info->stripe_nr = i;
1174 trace_info->devid = bioc->stripes[i].dev->devid;
1175 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1176 bioc->stripes[i].physical;
1177 return;
1178 }
1179
1180not_found:
1181 trace_info->devid = -1;
1182 trace_info->offset = -1;
1183 trace_info->stripe_nr = -1;
1184}
1185
67da05b3 1186/* Generate PQ for one vertical stripe. */
30e3c897
QW
1187static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1188{
1189 void **pointers = rbio->finish_pointers;
1190 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1191 struct sector_ptr *sector;
1192 int stripe;
1193 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1194
1195 /* First collect one sector from each data stripe */
1196 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1197 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1198 pointers[stripe] = kmap_local_page(sector->page) +
1199 sector->pgoff;
1200 }
1201
1202 /* Then add the parity stripe */
1203 sector = rbio_pstripe_sector(rbio, sectornr);
1204 sector->uptodate = 1;
1205 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1206
1207 if (has_qstripe) {
1208 /*
1209 * RAID6, add the qstripe and call the library function
1210 * to fill in our p/q
1211 */
1212 sector = rbio_qstripe_sector(rbio, sectornr);
1213 sector->uptodate = 1;
1214 pointers[stripe++] = kmap_local_page(sector->page) +
1215 sector->pgoff;
1216
1217 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1218 pointers);
1219 } else {
1220 /* raid5 */
1221 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1222 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1223 }
1224 for (stripe = stripe - 1; stripe >= 0; stripe--)
1225 kunmap_local(pointers[stripe]);
1226}
1227
6486d21c
QW
1228static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1229 struct bio_list *bio_list)
53b381b3 1230{
6486d21c 1231 struct bio *bio;
36920044
QW
1232 /* The total sector number inside the full stripe. */
1233 int total_sector_nr;
3e77605d 1234 int sectornr;
6486d21c 1235 int stripe;
53b381b3
DW
1236 int ret;
1237
6486d21c 1238 ASSERT(bio_list_size(bio_list) == 0);
53b381b3 1239
bd8f7e62
QW
1240 /* We should have at least one data sector. */
1241 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1242
5eb30ee2
QW
1243 /*
1244 * Reset errors, as we may have errors inherited from from degraded
1245 * write.
1246 */
2942a50d 1247 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5eb30ee2 1248
53b381b3 1249 /*
6486d21c 1250 * Start assembly. Make bios for everything from the higher layers (the
36920044 1251 * bio_list in our rbio) and our P/Q. Ignore everything else.
53b381b3 1252 */
36920044
QW
1253 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1254 total_sector_nr++) {
1255 struct sector_ptr *sector;
3e77605d 1256
36920044
QW
1257 stripe = total_sector_nr / rbio->stripe_nsectors;
1258 sectornr = total_sector_nr % rbio->stripe_nsectors;
53b381b3 1259
36920044
QW
1260 /* This vertical stripe has no data, skip it. */
1261 if (!test_bit(sectornr, &rbio->dbitmap))
1262 continue;
53b381b3 1263
36920044
QW
1264 if (stripe < rbio->nr_data) {
1265 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1266 if (!sector)
1267 continue;
1268 } else {
1269 sector = rbio_stripe_sector(rbio, stripe, sectornr);
53b381b3 1270 }
36920044 1271
6486d21c 1272 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
ff18a4af 1273 sectornr, REQ_OP_WRITE);
36920044 1274 if (ret)
6486d21c 1275 goto error;
53b381b3
DW
1276 }
1277
6486d21c
QW
1278 if (likely(!rbio->bioc->num_tgtdevs))
1279 return 0;
2c8cdd6e 1280
6486d21c 1281 /* Make a copy for the replace target device. */
36920044
QW
1282 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1283 total_sector_nr++) {
1284 struct sector_ptr *sector;
2c8cdd6e 1285
36920044
QW
1286 stripe = total_sector_nr / rbio->stripe_nsectors;
1287 sectornr = total_sector_nr % rbio->stripe_nsectors;
3e77605d 1288
6486d21c 1289 if (!rbio->bioc->tgtdev_map[stripe]) {
36920044
QW
1290 /*
1291 * We can skip the whole stripe completely, note
1292 * total_sector_nr will be increased by one anyway.
1293 */
1294 ASSERT(sectornr == 0);
1295 total_sector_nr += rbio->stripe_nsectors - 1;
1296 continue;
1297 }
2c8cdd6e 1298
36920044
QW
1299 /* This vertical stripe has no data, skip it. */
1300 if (!test_bit(sectornr, &rbio->dbitmap))
1301 continue;
2c8cdd6e 1302
36920044
QW
1303 if (stripe < rbio->nr_data) {
1304 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1305 if (!sector)
1306 continue;
1307 } else {
1308 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2c8cdd6e 1309 }
36920044 1310
6486d21c 1311 ret = rbio_add_io_sector(rbio, bio_list, sector,
36920044 1312 rbio->bioc->tgtdev_map[stripe],
ff18a4af 1313 sectornr, REQ_OP_WRITE);
36920044 1314 if (ret)
6486d21c 1315 goto error;
2c8cdd6e
MX
1316 }
1317
6486d21c
QW
1318 return 0;
1319error:
1320 while ((bio = bio_list_pop(bio_list)))
1321 bio_put(bio);
1322 return -EIO;
1323}
1324
2942a50d
QW
1325static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1326{
1327 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1328 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1329 rbio->bioc->raid_map[0];
1330 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1331
1332 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1333
1334 bitmap_set(rbio->error_bitmap, total_nr_sector,
1335 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1336
1337 /*
1338 * Special handling for raid56_alloc_missing_rbio() used by
1339 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1340 * pass an empty bio here. Thus we have to find out the missing device
1341 * and mark the stripe error instead.
1342 */
1343 if (bio->bi_iter.bi_size == 0) {
1344 bool found_missing = false;
1345 int stripe_nr;
1346
1347 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1348 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1349 found_missing = true;
1350 bitmap_set(rbio->error_bitmap,
1351 stripe_nr * rbio->stripe_nsectors,
1352 rbio->stripe_nsectors);
1353 }
1354 }
1355 ASSERT(found_missing);
1356 }
1357}
1358
5fdb7afc 1359/*
67da05b3 1360 * For subpage case, we can no longer set page Up-to-date directly for
5fdb7afc
QW
1361 * stripe_pages[], thus we need to locate the sector.
1362 */
1363static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1364 struct page *page,
1365 unsigned int pgoff)
1366{
1367 int i;
1368
1369 for (i = 0; i < rbio->nr_sectors; i++) {
1370 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1371
1372 if (sector->page == page && sector->pgoff == pgoff)
1373 return sector;
1374 }
1375 return NULL;
1376}
1377
53b381b3
DW
1378/*
1379 * this sets each page in the bio uptodate. It should only be used on private
1380 * rbio pages, nothing that comes in from the higher layers
1381 */
5fdb7afc 1382static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
53b381b3 1383{
5fdb7afc 1384 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
0198e5b7 1385 struct bio_vec *bvec;
6dc4f100 1386 struct bvec_iter_all iter_all;
6592e58c 1387
0198e5b7 1388 ASSERT(!bio_flagged(bio, BIO_CLONED));
53b381b3 1389
5fdb7afc
QW
1390 bio_for_each_segment_all(bvec, bio, iter_all) {
1391 struct sector_ptr *sector;
1392 int pgoff;
1393
1394 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1395 pgoff += sectorsize) {
1396 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1397 ASSERT(sector);
1398 if (sector)
1399 sector->uptodate = 1;
1400 }
1401 }
53b381b3
DW
1402}
1403
2942a50d
QW
1404static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1405{
1406 struct bio_vec *bv = bio_first_bvec_all(bio);
1407 int i;
1408
1409 for (i = 0; i < rbio->nr_sectors; i++) {
1410 struct sector_ptr *sector;
1411
1412 sector = &rbio->stripe_sectors[i];
1413 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1414 break;
1415 sector = &rbio->bio_sectors[i];
1416 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1417 break;
1418 }
1419 ASSERT(i < rbio->nr_sectors);
1420 return i;
1421}
1422
1423static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1424{
1425 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1426 u32 bio_size = 0;
1427 struct bio_vec *bvec;
a9ad4d87 1428 int i;
2942a50d 1429
c9a43aaf 1430 bio_for_each_bvec_all(bvec, bio, i)
2942a50d
QW
1431 bio_size += bvec->bv_len;
1432
a9ad4d87
QW
1433 /*
1434 * Since we can have multiple bios touching the error_bitmap, we cannot
1435 * call bitmap_set() without protection.
1436 *
1437 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1438 */
1439 for (i = total_sector_nr; i < total_sector_nr +
1440 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1441 set_bit(i, rbio->error_bitmap);
2942a50d
QW
1442}
1443
7a315072
QW
1444/* Verify the data sectors at read time. */
1445static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1446 struct bio *bio)
1447{
1448 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1449 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1450 struct bio_vec *bvec;
1451 struct bvec_iter_all iter_all;
1452
1453 /* No data csum for the whole stripe, no need to verify. */
1454 if (!rbio->csum_bitmap || !rbio->csum_buf)
1455 return;
1456
1457 /* P/Q stripes, they have no data csum to verify against. */
1458 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1459 return;
1460
1461 bio_for_each_segment_all(bvec, bio, iter_all) {
1462 int bv_offset;
1463
1464 for (bv_offset = bvec->bv_offset;
1465 bv_offset < bvec->bv_offset + bvec->bv_len;
1466 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1467 u8 csum_buf[BTRFS_CSUM_SIZE];
1468 u8 *expected_csum = rbio->csum_buf +
1469 total_sector_nr * fs_info->csum_size;
1470 int ret;
1471
1472 /* No csum for this sector, skip to the next sector. */
1473 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1474 continue;
1475
1476 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1477 bv_offset, csum_buf, expected_csum);
1478 if (ret < 0)
1479 set_bit(total_sector_nr, rbio->error_bitmap);
1480 }
1481 }
1482}
1483
d817ce35
QW
1484static void raid_wait_read_end_io(struct bio *bio)
1485{
1486 struct btrfs_raid_bio *rbio = bio->bi_private;
1487
7a315072 1488 if (bio->bi_status) {
2942a50d 1489 rbio_update_error_bitmap(rbio, bio);
7a315072 1490 } else {
d817ce35 1491 set_bio_pages_uptodate(rbio, bio);
7a315072
QW
1492 verify_bio_data_sectors(rbio, bio);
1493 }
d817ce35
QW
1494
1495 bio_put(bio);
1496 if (atomic_dec_and_test(&rbio->stripes_pending))
1497 wake_up(&rbio->io_wait);
1498}
1499
1500static void submit_read_bios(struct btrfs_raid_bio *rbio,
1501 struct bio_list *bio_list)
1502{
1503 struct bio *bio;
1504
1505 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1506 while ((bio = bio_list_pop(bio_list))) {
1507 bio->bi_end_io = raid_wait_read_end_io;
1508
1509 if (trace_raid56_scrub_read_recover_enabled()) {
1510 struct raid56_bio_trace_info trace_info = { 0 };
1511
1512 bio_get_trace_info(rbio, bio, &trace_info);
1513 trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
1514 }
1515 submit_bio(bio);
1516 }
1517}
1518
509c27aa
QW
1519static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
1520 struct bio_list *bio_list)
53b381b3 1521{
53b381b3 1522 struct bio *bio;
509c27aa
QW
1523 int total_sector_nr;
1524 int ret = 0;
53b381b3 1525
509c27aa 1526 ASSERT(bio_list_size(bio_list) == 0);
53b381b3 1527
7a315072
QW
1528 /*
1529 * Build a list of bios to read all sectors (including data and P/Q).
1530 *
67da05b3 1531 * This behavior is to compensate the later csum verification and
7a315072
QW
1532 * recovery.
1533 */
1534 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
550cdeb3
QW
1535 total_sector_nr++) {
1536 struct sector_ptr *sector;
1537 int stripe = total_sector_nr / rbio->stripe_nsectors;
1538 int sectornr = total_sector_nr % rbio->stripe_nsectors;
3e77605d 1539
550cdeb3 1540 sector = rbio_stripe_sector(rbio, stripe, sectornr);
509c27aa 1541 ret = rbio_add_io_sector(rbio, bio_list, sector,
ff18a4af 1542 stripe, sectornr, REQ_OP_READ);
550cdeb3
QW
1543 if (ret)
1544 goto cleanup;
53b381b3 1545 }
509c27aa
QW
1546 return 0;
1547
1548cleanup:
1549 while ((bio = bio_list_pop(bio_list)))
1550 bio_put(bio);
1551 return ret;
1552}
1553
5eb30ee2
QW
1554static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1555{
1556 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1557 int ret;
1558
1559 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1560 if (ret < 0)
1561 return ret;
1562
1563 index_stripe_sectors(rbio);
1564 return 0;
1565}
1566
6ac0f488
CM
1567/*
1568 * We use plugging call backs to collect full stripes.
1569 * Any time we get a partial stripe write while plugged
1570 * we collect it into a list. When the unplug comes down,
1571 * we sort the list by logical block number and merge
1572 * everything we can into the same rbios
1573 */
1574struct btrfs_plug_cb {
1575 struct blk_plug_cb cb;
1576 struct btrfs_fs_info *info;
1577 struct list_head rbio_list;
385de0ef 1578 struct work_struct work;
6ac0f488
CM
1579};
1580
1581/*
1582 * rbios on the plug list are sorted for easier merging.
1583 */
4f0f586b
ST
1584static int plug_cmp(void *priv, const struct list_head *a,
1585 const struct list_head *b)
6ac0f488 1586{
214cc184
DS
1587 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1588 plug_list);
1589 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1590 plug_list);
4f024f37
KO
1591 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1592 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1593
1594 if (a_sector < b_sector)
1595 return -1;
1596 if (a_sector > b_sector)
1597 return 1;
1598 return 0;
1599}
1600
93723095 1601static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
6ac0f488 1602{
93723095 1603 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
6ac0f488
CM
1604 struct btrfs_raid_bio *cur;
1605 struct btrfs_raid_bio *last = NULL;
1606
6ac0f488 1607 list_sort(NULL, &plug->rbio_list, plug_cmp);
93723095 1608
6ac0f488
CM
1609 while (!list_empty(&plug->rbio_list)) {
1610 cur = list_entry(plug->rbio_list.next,
1611 struct btrfs_raid_bio, plug_list);
1612 list_del_init(&cur->plug_list);
1613
1614 if (rbio_is_full(cur)) {
93723095
QW
1615 /* We have a full stripe, queue it down. */
1616 start_async_work(cur, rmw_rbio_work);
6ac0f488
CM
1617 continue;
1618 }
1619 if (last) {
1620 if (rbio_can_merge(last, cur)) {
1621 merge_rbio(last, cur);
ff2b64a2 1622 free_raid_bio(cur);
6ac0f488 1623 continue;
6ac0f488 1624 }
93723095 1625 start_async_work(last, rmw_rbio_work);
6ac0f488
CM
1626 }
1627 last = cur;
1628 }
93723095
QW
1629 if (last)
1630 start_async_work(last, rmw_rbio_work);
6ac0f488
CM
1631 kfree(plug);
1632}
1633
bd8f7e62
QW
1634/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1635static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1636{
1637 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1638 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1639 const u64 full_stripe_start = rbio->bioc->raid_map[0];
1640 const u32 orig_len = orig_bio->bi_iter.bi_size;
1641 const u32 sectorsize = fs_info->sectorsize;
1642 u64 cur_logical;
1643
1644 ASSERT(orig_logical >= full_stripe_start &&
1645 orig_logical + orig_len <= full_stripe_start +
ff18a4af 1646 rbio->nr_data * BTRFS_STRIPE_LEN);
bd8f7e62
QW
1647
1648 bio_list_add(&rbio->bio_list, orig_bio);
1649 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1650
1651 /* Update the dbitmap. */
1652 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1653 cur_logical += sectorsize) {
1654 int bit = ((u32)(cur_logical - full_stripe_start) >>
1655 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1656
1657 set_bit(bit, &rbio->dbitmap);
1658 }
1659}
1660
53b381b3
DW
1661/*
1662 * our main entry point for writes from the rest of the FS.
1663 */
31683f4a 1664void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
53b381b3 1665{
6a258d72 1666 struct btrfs_fs_info *fs_info = bioc->fs_info;
53b381b3 1667 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1668 struct btrfs_plug_cb *plug = NULL;
1669 struct blk_plug_cb *cb;
31683f4a 1670 int ret = 0;
53b381b3 1671
ff18a4af 1672 rbio = alloc_rbio(fs_info, bioc);
af8e2d1d 1673 if (IS_ERR(rbio)) {
31683f4a 1674 ret = PTR_ERR(rbio);
f1c29379 1675 goto fail;
af8e2d1d 1676 }
1b94b556 1677 rbio->operation = BTRFS_RBIO_WRITE;
bd8f7e62 1678 rbio_add_bio(rbio, bio);
6ac0f488
CM
1679
1680 /*
93723095 1681 * Don't plug on full rbios, just get them out the door
6ac0f488
CM
1682 * as quickly as we can
1683 */
93723095
QW
1684 if (rbio_is_full(rbio))
1685 goto queue_rbio;
6ac0f488 1686
93723095 1687 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1688 if (cb) {
1689 plug = container_of(cb, struct btrfs_plug_cb, cb);
1690 if (!plug->info) {
0b246afa 1691 plug->info = fs_info;
6ac0f488
CM
1692 INIT_LIST_HEAD(&plug->rbio_list);
1693 }
1694 list_add_tail(&rbio->plug_list, &plug->rbio_list);
93723095 1695 return;
6ac0f488 1696 }
93723095
QW
1697queue_rbio:
1698 /*
1699 * Either we don't have any existing plug, or we're doing a full stripe,
1700 * can queue the rmw work now.
1701 */
1702 start_async_work(rbio, rmw_rbio_work);
31683f4a
CH
1703
1704 return;
1705
f1c29379 1706fail:
31683f4a
CH
1707 bio->bi_status = errno_to_blk_status(ret);
1708 bio_endio(bio);
53b381b3
DW
1709}
1710
7a315072
QW
1711static int verify_one_sector(struct btrfs_raid_bio *rbio,
1712 int stripe_nr, int sector_nr)
1713{
1714 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1715 struct sector_ptr *sector;
1716 u8 csum_buf[BTRFS_CSUM_SIZE];
1717 u8 *csum_expected;
1718 int ret;
1719
1720 if (!rbio->csum_bitmap || !rbio->csum_buf)
1721 return 0;
1722
1723 /* No way to verify P/Q as they are not covered by data csum. */
1724 if (stripe_nr >= rbio->nr_data)
1725 return 0;
1726 /*
1727 * If we're rebuilding a read, we have to use pages from the
1728 * bio list if possible.
1729 */
1730 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1731 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1732 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1733 } else {
1734 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1735 }
1736
1737 ASSERT(sector->page);
1738
1739 csum_expected = rbio->csum_buf +
1740 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1741 fs_info->csum_size;
1742 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1743 csum_buf, csum_expected);
1744 return ret;
1745}
1746
9c5ff9b4
QW
1747/*
1748 * Recover a vertical stripe specified by @sector_nr.
1749 * @*pointers are the pre-allocated pointers by the caller, so we don't
1750 * need to allocate/free the pointers again and again.
1751 */
75b47033
QW
1752static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1753 void **pointers, void **unmap_array)
9c5ff9b4
QW
1754{
1755 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1756 struct sector_ptr *sector;
1757 const u32 sectorsize = fs_info->sectorsize;
75b47033
QW
1758 int found_errors;
1759 int faila;
1760 int failb;
9c5ff9b4 1761 int stripe_nr;
7a315072 1762 int ret = 0;
9c5ff9b4
QW
1763
1764 /*
1765 * Now we just use bitmap to mark the horizontal stripes in
1766 * which we have data when doing parity scrub.
1767 */
1768 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1769 !test_bit(sector_nr, &rbio->dbitmap))
75b47033
QW
1770 return 0;
1771
1772 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1773 &failb);
1774 /*
67da05b3 1775 * No errors in the vertical stripe, skip it. Can happen for recovery
75b47033
QW
1776 * which only part of a stripe failed csum check.
1777 */
1778 if (!found_errors)
1779 return 0;
1780
1781 if (found_errors > rbio->bioc->max_errors)
1782 return -EIO;
9c5ff9b4
QW
1783
1784 /*
1785 * Setup our array of pointers with sectors from each stripe
1786 *
1787 * NOTE: store a duplicate array of pointers to preserve the
1788 * pointer order.
1789 */
1790 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1791 /*
75b47033
QW
1792 * If we're rebuilding a read, we have to use pages from the
1793 * bio list if possible.
9c5ff9b4
QW
1794 */
1795 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
75b47033 1796 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
9c5ff9b4
QW
1797 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1798 } else {
1799 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1800 }
1801 ASSERT(sector->page);
1802 pointers[stripe_nr] = kmap_local_page(sector->page) +
1803 sector->pgoff;
1804 unmap_array[stripe_nr] = pointers[stripe_nr];
1805 }
1806
1807 /* All raid6 handling here */
1808 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1809 /* Single failure, rebuild from parity raid5 style */
1810 if (failb < 0) {
1811 if (faila == rbio->nr_data)
1812 /*
1813 * Just the P stripe has failed, without
1814 * a bad data or Q stripe.
1815 * We have nothing to do, just skip the
1816 * recovery for this stripe.
1817 */
1818 goto cleanup;
1819 /*
1820 * a single failure in raid6 is rebuilt
1821 * in the pstripe code below
1822 */
1823 goto pstripe;
1824 }
1825
1826 /*
1827 * If the q stripe is failed, do a pstripe reconstruction from
1828 * the xors.
1829 * If both the q stripe and the P stripe are failed, we're
1830 * here due to a crc mismatch and we can't give them the
1831 * data they want.
1832 */
1833 if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
1834 if (rbio->bioc->raid_map[faila] ==
1835 RAID5_P_STRIPE)
1836 /*
1837 * Only P and Q are corrupted.
1838 * We only care about data stripes recovery,
1839 * can skip this vertical stripe.
1840 */
1841 goto cleanup;
1842 /*
1843 * Otherwise we have one bad data stripe and
1844 * a good P stripe. raid5!
1845 */
1846 goto pstripe;
1847 }
1848
1849 if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1850 raid6_datap_recov(rbio->real_stripes, sectorsize,
1851 faila, pointers);
1852 } else {
1853 raid6_2data_recov(rbio->real_stripes, sectorsize,
1854 faila, failb, pointers);
1855 }
1856 } else {
1857 void *p;
1858
1859 /* Rebuild from P stripe here (raid5 or raid6). */
1860 ASSERT(failb == -1);
1861pstripe:
1862 /* Copy parity block into failed block to start with */
1863 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1864
1865 /* Rearrange the pointer array */
1866 p = pointers[faila];
1867 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1868 stripe_nr++)
1869 pointers[stripe_nr] = pointers[stripe_nr + 1];
1870 pointers[rbio->nr_data - 1] = p;
1871
1872 /* Xor in the rest */
1873 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1874
1875 }
1876
1877 /*
1878 * No matter if this is a RMW or recovery, we should have all
1879 * failed sectors repaired in the vertical stripe, thus they are now
1880 * uptodate.
1881 * Especially if we determine to cache the rbio, we need to
1882 * have at least all data sectors uptodate.
7a315072
QW
1883 *
1884 * If possible, also check if the repaired sector matches its data
1885 * checksum.
9c5ff9b4 1886 */
75b47033 1887 if (faila >= 0) {
7a315072
QW
1888 ret = verify_one_sector(rbio, faila, sector_nr);
1889 if (ret < 0)
1890 goto cleanup;
1891
75b47033 1892 sector = rbio_stripe_sector(rbio, faila, sector_nr);
9c5ff9b4
QW
1893 sector->uptodate = 1;
1894 }
75b47033 1895 if (failb >= 0) {
f7c11aff 1896 ret = verify_one_sector(rbio, failb, sector_nr);
7a315072
QW
1897 if (ret < 0)
1898 goto cleanup;
1899
75b47033 1900 sector = rbio_stripe_sector(rbio, failb, sector_nr);
9c5ff9b4
QW
1901 sector->uptodate = 1;
1902 }
1903
1904cleanup:
1905 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1906 kunmap_local(unmap_array[stripe_nr]);
7a315072 1907 return ret;
9c5ff9b4
QW
1908}
1909
ec936b03 1910static int recover_sectors(struct btrfs_raid_bio *rbio)
53b381b3 1911{
9c5ff9b4
QW
1912 void **pointers = NULL;
1913 void **unmap_array = NULL;
ec936b03
QW
1914 int sectornr;
1915 int ret = 0;
53b381b3 1916
07e4d380 1917 /*
ec936b03
QW
1918 * @pointers array stores the pointer for each sector.
1919 *
1920 * @unmap_array stores copy of pointers that does not get reordered
1921 * during reconstruction so that kunmap_local works.
07e4d380 1922 */
31e818fe 1923 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
94a0b58d 1924 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
ec936b03
QW
1925 if (!pointers || !unmap_array) {
1926 ret = -ENOMEM;
1927 goto out;
94a0b58d
IW
1928 }
1929
b4ee1782
OS
1930 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1931 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1932 spin_lock_irq(&rbio->bio_list_lock);
1933 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1934 spin_unlock_irq(&rbio->bio_list_lock);
1935 }
1936
1937 index_rbio_pages(rbio);
1938
75b47033
QW
1939 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1940 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1941 if (ret < 0)
1942 break;
1943 }
53b381b3 1944
ec936b03 1945out:
53b381b3 1946 kfree(pointers);
ec936b03
QW
1947 kfree(unmap_array);
1948 return ret;
1949}
1950
d31968d9
QW
1951static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
1952 struct bio_list *bio_list)
53b381b3 1953{
53b381b3 1954 struct bio *bio;
d31968d9
QW
1955 int total_sector_nr;
1956 int ret = 0;
53b381b3 1957
d31968d9 1958 ASSERT(bio_list_size(bio_list) == 0);
53b381b3 1959 /*
f6065f8e
QW
1960 * Read everything that hasn't failed. However this time we will
1961 * not trust any cached sector.
1962 * As we may read out some stale data but higher layer is not reading
1963 * that stale part.
1964 *
1965 * So here we always re-read everything in recovery path.
53b381b3 1966 */
ef340fcc
QW
1967 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1968 total_sector_nr++) {
1969 int stripe = total_sector_nr / rbio->stripe_nsectors;
1970 int sectornr = total_sector_nr % rbio->stripe_nsectors;
1971 struct sector_ptr *sector;
1972
75b47033
QW
1973 /*
1974 * Skip the range which has error. It can be a range which is
1975 * marked error (for csum mismatch), or it can be a missing
1976 * device.
1977 */
1978 if (!rbio->bioc->stripes[stripe].dev->bdev ||
1979 test_bit(total_sector_nr, rbio->error_bitmap)) {
1980 /*
1981 * Also set the error bit for missing device, which
1982 * may not yet have its error bit set.
1983 */
1984 set_bit(total_sector_nr, rbio->error_bitmap);
53b381b3 1985 continue;
5588383e 1986 }
75b47033 1987
ef340fcc 1988 sector = rbio_stripe_sector(rbio, stripe, sectornr);
d31968d9 1989 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
ff18a4af 1990 sectornr, REQ_OP_READ);
ef340fcc 1991 if (ret < 0)
d31968d9 1992 goto error;
53b381b3 1993 }
d31968d9
QW
1994 return 0;
1995error:
1996 while ((bio = bio_list_pop(bio_list)))
1997 bio_put(bio);
1998
1999 return -EIO;
2000}
2001
d817ce35
QW
2002static int recover_rbio(struct btrfs_raid_bio *rbio)
2003{
2004 struct bio_list bio_list;
2005 struct bio *bio;
2006 int ret;
2007
2008 /*
2009 * Either we're doing recover for a read failure or degraded write,
75b47033 2010 * caller should have set error bitmap correctly.
d817ce35 2011 */
2942a50d 2012 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
d817ce35
QW
2013 bio_list_init(&bio_list);
2014
d817ce35
QW
2015 /* For recovery, we need to read all sectors including P/Q. */
2016 ret = alloc_rbio_pages(rbio);
2017 if (ret < 0)
2018 goto out;
2019
2020 index_rbio_pages(rbio);
2021
2022 ret = recover_assemble_read_bios(rbio, &bio_list);
2023 if (ret < 0)
2024 goto out;
2025
2026 submit_read_bios(rbio, &bio_list);
2027 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2028
d817ce35
QW
2029 ret = recover_sectors(rbio);
2030
2031out:
2032 while ((bio = bio_list_pop(&bio_list)))
2033 bio_put(bio);
2034
2035 return ret;
2036}
2037
2038static void recover_rbio_work(struct work_struct *work)
2039{
2040 struct btrfs_raid_bio *rbio;
2041 int ret;
2042
2043 rbio = container_of(work, struct btrfs_raid_bio, work);
2044
2045 ret = lock_stripe_add(rbio);
2046 if (ret == 0) {
2047 ret = recover_rbio(rbio);
2048 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2049 }
2050}
2051
2052static void recover_rbio_work_locked(struct work_struct *work)
2053{
2054 struct btrfs_raid_bio *rbio;
2055 int ret;
2056
2057 rbio = container_of(work, struct btrfs_raid_bio, work);
2058
2059 ret = recover_rbio(rbio);
2060 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2061}
2062
75b47033
QW
2063static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2064{
2065 bool found = false;
2066 int sector_nr;
2067
2068 /*
2069 * This is for RAID6 extra recovery tries, thus mirror number should
2070 * be large than 2.
2071 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2072 * RAID5 methods.
2073 */
2074 ASSERT(mirror_num > 2);
2075 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2076 int found_errors;
2077 int faila;
2078 int failb;
2079
2080 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2081 &faila, &failb);
2082 /* This vertical stripe doesn't have errors. */
2083 if (!found_errors)
2084 continue;
2085
2086 /*
2087 * If we found errors, there should be only one error marked
2088 * by previous set_rbio_range_error().
2089 */
2090 ASSERT(found_errors == 1);
2091 found = true;
2092
2093 /* Now select another stripe to mark as error. */
2094 failb = rbio->real_stripes - (mirror_num - 1);
2095 if (failb <= faila)
2096 failb--;
2097
2098 /* Set the extra bit in error bitmap. */
2099 if (failb >= 0)
2100 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2101 rbio->error_bitmap);
2102 }
2103
2104 /* We should found at least one vertical stripe with error.*/
2105 ASSERT(found);
2106}
2107
53b381b3
DW
2108/*
2109 * the main entry point for reads from the higher layers. This
2110 * is really only called when the normal read path had a failure,
2111 * so we assume the bio they send down corresponds to a failed part
2112 * of the drive.
2113 */
6065fd95 2114void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
f1c29379 2115 int mirror_num)
53b381b3 2116{
6a258d72 2117 struct btrfs_fs_info *fs_info = bioc->fs_info;
53b381b3 2118 struct btrfs_raid_bio *rbio;
53b381b3 2119
ff18a4af 2120 rbio = alloc_rbio(fs_info, bioc);
af8e2d1d 2121 if (IS_ERR(rbio)) {
6065fd95 2122 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
d817ce35
QW
2123 bio_endio(bio);
2124 return;
af8e2d1d 2125 }
53b381b3 2126
1b94b556 2127 rbio->operation = BTRFS_RBIO_READ_REBUILD;
bd8f7e62 2128 rbio_add_bio(rbio, bio);
53b381b3 2129
2942a50d
QW
2130 set_rbio_range_error(rbio, bio);
2131
53b381b3 2132 /*
8810f751
LB
2133 * Loop retry:
2134 * for 'mirror == 2', reconstruct from all other stripes.
2135 * for 'mirror_num > 2', select a stripe to fail on every retry.
53b381b3 2136 */
ad3daf1c 2137 if (mirror_num > 2)
75b47033 2138 set_rbio_raid6_extra_error(rbio, mirror_num);
53b381b3 2139
d817ce35 2140 start_async_work(rbio, recover_rbio_work);
53b381b3
DW
2141}
2142
c5a41562
QW
2143static void fill_data_csums(struct btrfs_raid_bio *rbio)
2144{
2145 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2146 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2147 rbio->bioc->raid_map[0]);
2148 const u64 start = rbio->bioc->raid_map[0];
2149 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2150 fs_info->sectorsize_bits;
2151 int ret;
2152
2153 /* The rbio should not have its csum buffer initialized. */
2154 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2155
2156 /*
2157 * Skip the csum search if:
2158 *
2159 * - The rbio doesn't belong to data block groups
2160 * Then we are doing IO for tree blocks, no need to search csums.
2161 *
2162 * - The rbio belongs to mixed block groups
2163 * This is to avoid deadlock, as we're already holding the full
2164 * stripe lock, if we trigger a metadata read, and it needs to do
2165 * raid56 recovery, we will deadlock.
2166 */
2167 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2168 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2169 return;
2170
2171 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2172 fs_info->csum_size, GFP_NOFS);
2173 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2174 GFP_NOFS);
2175 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2176 ret = -ENOMEM;
2177 goto error;
2178 }
2179
2180 ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
2181 rbio->csum_buf, rbio->csum_bitmap);
2182 if (ret < 0)
2183 goto error;
2184 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2185 goto no_csum;
2186 return;
2187
2188error:
2189 /*
2190 * We failed to allocate memory or grab the csum, but it's not fatal,
2191 * we can still continue. But better to warn users that RMW is no
2192 * longer safe for this particular sub-stripe write.
2193 */
2194 btrfs_warn_rl(fs_info,
2195"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2196 rbio->bioc->raid_map[0], ret);
2197no_csum:
2198 kfree(rbio->csum_buf);
2199 bitmap_free(rbio->csum_bitmap);
2200 rbio->csum_buf = NULL;
2201 rbio->csum_bitmap = NULL;
2202}
2203
7a315072 2204static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
5eb30ee2
QW
2205{
2206 struct bio_list bio_list;
2207 struct bio *bio;
2208 int ret;
2209
2210 bio_list_init(&bio_list);
5eb30ee2 2211
c5a41562
QW
2212 /*
2213 * Fill the data csums we need for data verification. We need to fill
2214 * the csum_bitmap/csum_buf first, as our endio function will try to
2215 * verify the data sectors.
2216 */
2217 fill_data_csums(rbio);
2218
5eb30ee2
QW
2219 ret = rmw_assemble_read_bios(rbio, &bio_list);
2220 if (ret < 0)
2221 goto out;
2222
2223 submit_read_bios(rbio, &bio_list);
2224 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
7a315072
QW
2225
2226 /*
2227 * We may or may not have any corrupted sectors (including missing dev
2228 * and csum mismatch), just let recover_sectors() to handle them all.
2229 */
2230 ret = recover_sectors(rbio);
5eb30ee2
QW
2231 return ret;
2232out:
2233 while ((bio = bio_list_pop(&bio_list)))
2234 bio_put(bio);
2235
2236 return ret;
2237}
2238
2239static void raid_wait_write_end_io(struct bio *bio)
2240{
2241 struct btrfs_raid_bio *rbio = bio->bi_private;
2242 blk_status_t err = bio->bi_status;
2243
ad3daf1c 2244 if (err)
2942a50d 2245 rbio_update_error_bitmap(rbio, bio);
5eb30ee2
QW
2246 bio_put(bio);
2247 if (atomic_dec_and_test(&rbio->stripes_pending))
2248 wake_up(&rbio->io_wait);
2249}
2250
2251static void submit_write_bios(struct btrfs_raid_bio *rbio,
2252 struct bio_list *bio_list)
2253{
2254 struct bio *bio;
2255
2256 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2257 while ((bio = bio_list_pop(bio_list))) {
2258 bio->bi_end_io = raid_wait_write_end_io;
2259
2260 if (trace_raid56_write_stripe_enabled()) {
2261 struct raid56_bio_trace_info trace_info = { 0 };
2262
2263 bio_get_trace_info(rbio, bio, &trace_info);
2264 trace_raid56_write_stripe(rbio, bio, &trace_info);
2265 }
2266 submit_bio(bio);
2267 }
2268}
2269
7a315072
QW
2270/*
2271 * To determine if we need to read any sector from the disk.
2272 * Should only be utilized in RMW path, to skip cached rbio.
2273 */
2274static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2275{
2276 int i;
2277
2278 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2279 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2280
2281 /*
2282 * We have a sector which doesn't have page nor uptodate,
2283 * thus this rbio can not be cached one, as cached one must
2284 * have all its data sectors present and uptodate.
2285 */
2286 if (!sector->page || !sector->uptodate)
2287 return true;
2288 }
2289 return false;
2290}
2291
93723095 2292static int rmw_rbio(struct btrfs_raid_bio *rbio)
5eb30ee2
QW
2293{
2294 struct bio_list bio_list;
2295 int sectornr;
2296 int ret = 0;
2297
2298 /*
2299 * Allocate the pages for parity first, as P/Q pages will always be
2300 * needed for both full-stripe and sub-stripe writes.
2301 */
2302 ret = alloc_rbio_parity_pages(rbio);
2303 if (ret < 0)
2304 return ret;
2305
7a315072
QW
2306 /*
2307 * Either full stripe write, or we have every data sector already
2308 * cached, can go to write path immediately.
2309 */
2310 if (rbio_is_full(rbio) || !need_read_stripe_sectors(rbio))
5eb30ee2 2311 goto write;
7a315072 2312
5eb30ee2
QW
2313 /*
2314 * Now we're doing sub-stripe write, also need all data stripes to do
2315 * the full RMW.
2316 */
2317 ret = alloc_rbio_data_pages(rbio);
2318 if (ret < 0)
2319 return ret;
2320
5eb30ee2
QW
2321 index_rbio_pages(rbio);
2322
7a315072 2323 ret = rmw_read_wait_recover(rbio);
5eb30ee2
QW
2324 if (ret < 0)
2325 return ret;
2326
5eb30ee2
QW
2327write:
2328 /*
2329 * At this stage we're not allowed to add any new bios to the
2330 * bio list any more, anyone else that wants to change this stripe
2331 * needs to do their own rmw.
2332 */
2333 spin_lock_irq(&rbio->bio_list_lock);
2334 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2335 spin_unlock_irq(&rbio->bio_list_lock);
2336
2942a50d 2337 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5eb30ee2
QW
2338
2339 index_rbio_pages(rbio);
2340
2341 /*
2342 * We don't cache full rbios because we're assuming
2343 * the higher layers are unlikely to use this area of
2344 * the disk again soon. If they do use it again,
2345 * hopefully they will send another full bio.
2346 */
2347 if (!rbio_is_full(rbio))
2348 cache_rbio_pages(rbio);
2349 else
2350 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2351
2352 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2353 generate_pq_vertical(rbio, sectornr);
2354
2355 bio_list_init(&bio_list);
2356 ret = rmw_assemble_write_bios(rbio, &bio_list);
2357 if (ret < 0)
2358 return ret;
2359
2360 /* We should have at least one bio assembled. */
2361 ASSERT(bio_list_size(&bio_list));
2362 submit_write_bios(rbio, &bio_list);
2363 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2364
ad3daf1c
QW
2365 /* We may have more errors than our tolerance during the read. */
2366 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2367 int found_errors;
2368
2369 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2370 if (found_errors > rbio->bioc->max_errors) {
2371 ret = -EIO;
2372 break;
2373 }
2374 }
5eb30ee2
QW
2375 return ret;
2376}
2377
93723095
QW
2378static void rmw_rbio_work(struct work_struct *work)
2379{
2380 struct btrfs_raid_bio *rbio;
2381 int ret;
2382
2383 rbio = container_of(work, struct btrfs_raid_bio, work);
2384
2385 ret = lock_stripe_add(rbio);
2386 if (ret == 0) {
2387 ret = rmw_rbio(rbio);
2388 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2389 }
2390}
2391
2392static void rmw_rbio_work_locked(struct work_struct *work)
53b381b3
DW
2393{
2394 struct btrfs_raid_bio *rbio;
93723095 2395 int ret;
53b381b3
DW
2396
2397 rbio = container_of(work, struct btrfs_raid_bio, work);
93723095
QW
2398
2399 ret = rmw_rbio(rbio);
2400 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
53b381b3
DW
2401}
2402
5a6ac9ea
MX
2403/*
2404 * The following code is used to scrub/replace the parity stripe
2405 *
4c664611 2406 * Caller must have already increased bio_counter for getting @bioc.
ae6529c3 2407 *
5a6ac9ea
MX
2408 * Note: We need make sure all the pages that add into the scrub/replace
2409 * raid bio are correct and not be changed during the scrub/replace. That
2410 * is those pages just hold metadata or file data with checksum.
2411 */
2412
6a258d72
QW
2413struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2414 struct btrfs_io_context *bioc,
ff18a4af 2415 struct btrfs_device *scrub_dev,
6a258d72 2416 unsigned long *dbitmap, int stripe_nsectors)
5a6ac9ea 2417{
6a258d72 2418 struct btrfs_fs_info *fs_info = bioc->fs_info;
5a6ac9ea
MX
2419 struct btrfs_raid_bio *rbio;
2420 int i;
2421
ff18a4af 2422 rbio = alloc_rbio(fs_info, bioc);
5a6ac9ea
MX
2423 if (IS_ERR(rbio))
2424 return NULL;
2425 bio_list_add(&rbio->bio_list, bio);
2426 /*
2427 * This is a special bio which is used to hold the completion handler
2428 * and make the scrub rbio is similar to the other types
2429 */
2430 ASSERT(!bio->bi_iter.bi_size);
2431 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2432
9cd3a7eb 2433 /*
4c664611 2434 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
9cd3a7eb
LB
2435 * to the end position, so this search can start from the first parity
2436 * stripe.
2437 */
2438 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
4c664611 2439 if (bioc->stripes[i].dev == scrub_dev) {
5a6ac9ea
MX
2440 rbio->scrubp = i;
2441 break;
2442 }
2443 }
9cd3a7eb 2444 ASSERT(i < rbio->real_stripes);
5a6ac9ea 2445
c67c68eb 2446 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
5a6ac9ea
MX
2447 return rbio;
2448}
2449
b4ee1782
OS
2450/* Used for both parity scrub and missing. */
2451void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
6346f6bf 2452 unsigned int pgoff, u64 logical)
5a6ac9ea 2453{
6346f6bf 2454 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
5a6ac9ea
MX
2455 int stripe_offset;
2456 int index;
2457
4c664611 2458 ASSERT(logical >= rbio->bioc->raid_map[0]);
6346f6bf 2459 ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
ff18a4af 2460 BTRFS_STRIPE_LEN * rbio->nr_data);
4c664611 2461 stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
6346f6bf
QW
2462 index = stripe_offset / sectorsize;
2463 rbio->bio_sectors[index].page = page;
2464 rbio->bio_sectors[index].pgoff = pgoff;
5a6ac9ea
MX
2465}
2466
2467/*
2468 * We just scrub the parity that we have correct data on the same horizontal,
2469 * so we needn't allocate all pages for all the stripes.
2470 */
2471static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2472{
3907ce29 2473 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
aee35e4b 2474 int total_sector_nr;
5a6ac9ea 2475
aee35e4b
QW
2476 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2477 total_sector_nr++) {
2478 struct page *page;
2479 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2480 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
5a6ac9ea 2481
aee35e4b
QW
2482 if (!test_bit(sectornr, &rbio->dbitmap))
2483 continue;
2484 if (rbio->stripe_pages[index])
2485 continue;
2486 page = alloc_page(GFP_NOFS);
2487 if (!page)
2488 return -ENOMEM;
2489 rbio->stripe_pages[index] = page;
5a6ac9ea 2490 }
eb357060 2491 index_stripe_sectors(rbio);
5a6ac9ea
MX
2492 return 0;
2493}
2494
6bfd0133 2495static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
5a6ac9ea 2496{
4c664611 2497 struct btrfs_io_context *bioc = rbio->bioc;
46900662 2498 const u32 sectorsize = bioc->fs_info->sectorsize;
1389053e 2499 void **pointers = rbio->finish_pointers;
c67c68eb 2500 unsigned long *pbitmap = &rbio->finish_pbitmap;
5a6ac9ea
MX
2501 int nr_data = rbio->nr_data;
2502 int stripe;
3e77605d 2503 int sectornr;
c17af965 2504 bool has_qstripe;
46900662
QW
2505 struct sector_ptr p_sector = { 0 };
2506 struct sector_ptr q_sector = { 0 };
5a6ac9ea
MX
2507 struct bio_list bio_list;
2508 struct bio *bio;
76035976 2509 int is_replace = 0;
5a6ac9ea
MX
2510 int ret;
2511
2512 bio_list_init(&bio_list);
2513
c17af965
DS
2514 if (rbio->real_stripes - rbio->nr_data == 1)
2515 has_qstripe = false;
2516 else if (rbio->real_stripes - rbio->nr_data == 2)
2517 has_qstripe = true;
2518 else
5a6ac9ea 2519 BUG();
5a6ac9ea 2520
4c664611 2521 if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
76035976 2522 is_replace = 1;
c67c68eb 2523 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
76035976
MX
2524 }
2525
5a6ac9ea
MX
2526 /*
2527 * Because the higher layers(scrubber) are unlikely to
2528 * use this area of the disk again soon, so don't cache
2529 * it.
2530 */
2531 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2532
2533 if (!need_check)
2534 goto writeback;
2535
46900662
QW
2536 p_sector.page = alloc_page(GFP_NOFS);
2537 if (!p_sector.page)
6bfd0133 2538 return -ENOMEM;
46900662
QW
2539 p_sector.pgoff = 0;
2540 p_sector.uptodate = 1;
5a6ac9ea 2541
c17af965 2542 if (has_qstripe) {
d70cef0d 2543 /* RAID6, allocate and map temp space for the Q stripe */
46900662
QW
2544 q_sector.page = alloc_page(GFP_NOFS);
2545 if (!q_sector.page) {
2546 __free_page(p_sector.page);
2547 p_sector.page = NULL;
6bfd0133 2548 return -ENOMEM;
5a6ac9ea 2549 }
46900662
QW
2550 q_sector.pgoff = 0;
2551 q_sector.uptodate = 1;
2552 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
5a6ac9ea
MX
2553 }
2554
2942a50d 2555 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5a6ac9ea 2556
d70cef0d 2557 /* Map the parity stripe just once */
46900662 2558 pointers[nr_data] = kmap_local_page(p_sector.page);
d70cef0d 2559
c67c68eb 2560 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
46900662 2561 struct sector_ptr *sector;
5a6ac9ea 2562 void *parity;
46900662 2563
5a6ac9ea
MX
2564 /* first collect one page from each data stripe */
2565 for (stripe = 0; stripe < nr_data; stripe++) {
46900662
QW
2566 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2567 pointers[stripe] = kmap_local_page(sector->page) +
2568 sector->pgoff;
5a6ac9ea
MX
2569 }
2570
c17af965 2571 if (has_qstripe) {
d70cef0d 2572 /* RAID6, call the library function to fill in our P/Q */
46900662 2573 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
5a6ac9ea
MX
2574 pointers);
2575 } else {
2576 /* raid5 */
46900662
QW
2577 memcpy(pointers[nr_data], pointers[0], sectorsize);
2578 run_xor(pointers + 1, nr_data - 1, sectorsize);
5a6ac9ea
MX
2579 }
2580
01327610 2581 /* Check scrubbing parity and repair it */
46900662
QW
2582 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2583 parity = kmap_local_page(sector->page) + sector->pgoff;
2584 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2585 memcpy(parity, pointers[rbio->scrubp], sectorsize);
5a6ac9ea
MX
2586 else
2587 /* Parity is right, needn't writeback */
c67c68eb 2588 bitmap_clear(&rbio->dbitmap, sectornr, 1);
58c1a35c 2589 kunmap_local(parity);
5a6ac9ea 2590
94a0b58d
IW
2591 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2592 kunmap_local(pointers[stripe]);
5a6ac9ea
MX
2593 }
2594
94a0b58d 2595 kunmap_local(pointers[nr_data]);
46900662
QW
2596 __free_page(p_sector.page);
2597 p_sector.page = NULL;
2598 if (q_sector.page) {
94a0b58d 2599 kunmap_local(pointers[rbio->real_stripes - 1]);
46900662
QW
2600 __free_page(q_sector.page);
2601 q_sector.page = NULL;
d70cef0d 2602 }
5a6ac9ea
MX
2603
2604writeback:
2605 /*
2606 * time to start writing. Make bios for everything from the
2607 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2608 * everything else.
2609 */
c67c68eb 2610 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
3e77605d 2611 struct sector_ptr *sector;
5a6ac9ea 2612
3e77605d
QW
2613 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2614 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
ff18a4af 2615 sectornr, REQ_OP_WRITE);
5a6ac9ea
MX
2616 if (ret)
2617 goto cleanup;
2618 }
2619
76035976
MX
2620 if (!is_replace)
2621 goto submit_write;
2622
3e77605d
QW
2623 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2624 struct sector_ptr *sector;
76035976 2625
3e77605d
QW
2626 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2627 ret = rbio_add_io_sector(rbio, &bio_list, sector,
4c664611 2628 bioc->tgtdev_map[rbio->scrubp],
ff18a4af 2629 sectornr, REQ_OP_WRITE);
76035976
MX
2630 if (ret)
2631 goto cleanup;
2632 }
2633
2634submit_write:
6bfd0133
QW
2635 submit_write_bios(rbio, &bio_list);
2636 return 0;
5a6ac9ea
MX
2637
2638cleanup:
785884fc
LB
2639 while ((bio = bio_list_pop(&bio_list)))
2640 bio_put(bio);
6bfd0133 2641 return ret;
5a6ac9ea
MX
2642}
2643
2644static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2645{
2646 if (stripe >= 0 && stripe < rbio->nr_data)
2647 return 1;
2648 return 0;
2649}
2650
6bfd0133 2651static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
5a6ac9ea 2652{
75b47033
QW
2653 void **pointers = NULL;
2654 void **unmap_array = NULL;
2655 int sector_nr;
e7fc357e 2656 int ret = 0;
5a6ac9ea 2657
75b47033
QW
2658 /*
2659 * @pointers array stores the pointer for each sector.
2660 *
2661 * @unmap_array stores copy of pointers that does not get reordered
2662 * during reconstruction so that kunmap_local works.
2663 */
2664 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2665 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2666 if (!pointers || !unmap_array) {
2667 ret = -ENOMEM;
2668 goto out;
2669 }
5a6ac9ea 2670
75b47033
QW
2671 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2672 int dfail = 0, failp = -1;
2673 int faila;
2674 int failb;
2675 int found_errors;
5a6ac9ea 2676
75b47033
QW
2677 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2678 &faila, &failb);
2679 if (found_errors > rbio->bioc->max_errors) {
2680 ret = -EIO;
2681 goto out;
2682 }
2683 if (found_errors == 0)
2684 continue;
5a6ac9ea 2685
75b47033
QW
2686 /* We should have at least one error here. */
2687 ASSERT(faila >= 0 || failb >= 0);
5a6ac9ea 2688
75b47033
QW
2689 if (is_data_stripe(rbio, faila))
2690 dfail++;
2691 else if (is_parity_stripe(faila))
2692 failp = faila;
5a6ac9ea 2693
75b47033
QW
2694 if (is_data_stripe(rbio, failb))
2695 dfail++;
2696 else if (is_parity_stripe(failb))
2697 failp = failb;
2698 /*
2699 * Because we can not use a scrubbing parity to repair the
2700 * data, so the capability of the repair is declined. (In the
2701 * case of RAID5, we can not repair anything.)
2702 */
2703 if (dfail > rbio->bioc->max_errors - 1) {
2704 ret = -EIO;
2705 goto out;
2706 }
2707 /*
2708 * If all data is good, only parity is correctly, just repair
2709 * the parity, no need to recover data stripes.
2710 */
2711 if (dfail == 0)
2712 continue;
6bfd0133 2713
75b47033
QW
2714 /*
2715 * Here means we got one corrupted data stripe and one
2716 * corrupted parity on RAID6, if the corrupted parity is
2717 * scrubbing parity, luckily, use the other one to repair the
2718 * data, or we can not repair the data stripe.
2719 */
2720 if (failp != rbio->scrubp) {
2721 ret = -EIO;
2722 goto out;
2723 }
2724
2725 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2726 if (ret < 0)
2727 goto out;
2728 }
2729out:
2730 kfree(pointers);
2731 kfree(unmap_array);
6bfd0133 2732 return ret;
5a6ac9ea
MX
2733}
2734
cb3450b7
QW
2735static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
2736 struct bio_list *bio_list)
5a6ac9ea 2737{
5a6ac9ea 2738 struct bio *bio;
cb3450b7
QW
2739 int total_sector_nr;
2740 int ret = 0;
5a6ac9ea 2741
cb3450b7 2742 ASSERT(bio_list_size(bio_list) == 0);
5a6ac9ea 2743
1c10702e
QW
2744 /* Build a list of bios to read all the missing parts. */
2745 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2746 total_sector_nr++) {
2747 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2748 int stripe = total_sector_nr / rbio->stripe_nsectors;
2749 struct sector_ptr *sector;
5a6ac9ea 2750
1c10702e
QW
2751 /* No data in the vertical stripe, no need to read. */
2752 if (!test_bit(sectornr, &rbio->dbitmap))
2753 continue;
5a6ac9ea 2754
1c10702e
QW
2755 /*
2756 * We want to find all the sectors missing from the rbio and
2757 * read them from the disk. If sector_in_rbio() finds a sector
2758 * in the bio list we don't need to read it off the stripe.
2759 */
2760 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2761 if (sector)
2762 continue;
2763
2764 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2765 /*
2766 * The bio cache may have handed us an uptodate sector. If so,
2767 * use it.
2768 */
2769 if (sector->uptodate)
2770 continue;
2771
cb3450b7 2772 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
ff18a4af 2773 sectornr, REQ_OP_READ);
1c10702e 2774 if (ret)
cb3450b7 2775 goto error;
5a6ac9ea 2776 }
cb3450b7
QW
2777 return 0;
2778error:
2779 while ((bio = bio_list_pop(bio_list)))
2780 bio_put(bio);
2781 return ret;
2782}
2783
6bfd0133 2784static int scrub_rbio(struct btrfs_raid_bio *rbio)
cb3450b7 2785{
6bfd0133 2786 bool need_check = false;
cb3450b7 2787 struct bio_list bio_list;
ad3daf1c 2788 int sector_nr;
cb3450b7
QW
2789 int ret;
2790 struct bio *bio;
2791
2792 bio_list_init(&bio_list);
2793
2794 ret = alloc_rbio_essential_pages(rbio);
2795 if (ret)
2796 goto cleanup;
2797
2942a50d
QW
2798 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2799
cb3450b7
QW
2800 ret = scrub_assemble_read_bios(rbio, &bio_list);
2801 if (ret < 0)
2802 goto cleanup;
5a6ac9ea 2803
6bfd0133
QW
2804 submit_read_bios(rbio, &bio_list);
2805 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
5a6ac9ea 2806
75b47033 2807 /* We may have some failures, recover the failed sectors first. */
6bfd0133
QW
2808 ret = recover_scrub_rbio(rbio);
2809 if (ret < 0)
2810 goto cleanup;
5a6ac9ea 2811
6bfd0133
QW
2812 /*
2813 * We have every sector properly prepared. Can finish the scrub
2814 * and writeback the good content.
2815 */
2816 ret = finish_parity_scrub(rbio, need_check);
2817 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
ad3daf1c
QW
2818 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2819 int found_errors;
2820
2821 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2822 if (found_errors > rbio->bioc->max_errors) {
2823 ret = -EIO;
2824 break;
2825 }
2826 }
6bfd0133 2827 return ret;
5a6ac9ea
MX
2828
2829cleanup:
785884fc
LB
2830 while ((bio = bio_list_pop(&bio_list)))
2831 bio_put(bio);
2832
6bfd0133 2833 return ret;
5a6ac9ea
MX
2834}
2835
6bfd0133 2836static void scrub_rbio_work_locked(struct work_struct *work)
5a6ac9ea
MX
2837{
2838 struct btrfs_raid_bio *rbio;
6bfd0133 2839 int ret;
5a6ac9ea
MX
2840
2841 rbio = container_of(work, struct btrfs_raid_bio, work);
6bfd0133
QW
2842 ret = scrub_rbio(rbio);
2843 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
5a6ac9ea
MX
2844}
2845
5a6ac9ea
MX
2846void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2847{
2848 if (!lock_stripe_add(rbio))
6bfd0133 2849 start_async_work(rbio, scrub_rbio_work_locked);
5a6ac9ea 2850}
b4ee1782
OS
2851
2852/* The following code is used for dev replace of a missing RAID 5/6 device. */
2853
2854struct btrfs_raid_bio *
ff18a4af 2855raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
b4ee1782 2856{
6a258d72 2857 struct btrfs_fs_info *fs_info = bioc->fs_info;
b4ee1782
OS
2858 struct btrfs_raid_bio *rbio;
2859
ff18a4af 2860 rbio = alloc_rbio(fs_info, bioc);
b4ee1782
OS
2861 if (IS_ERR(rbio))
2862 return NULL;
2863
2864 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2865 bio_list_add(&rbio->bio_list, bio);
2866 /*
2867 * This is a special bio which is used to hold the completion handler
2868 * and make the scrub rbio is similar to the other types
2869 */
2870 ASSERT(!bio->bi_iter.bi_size);
2871
2942a50d 2872 set_rbio_range_error(rbio, bio);
b4ee1782
OS
2873
2874 return rbio;
2875}
2876
b4ee1782
OS
2877void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2878{
d817ce35 2879 start_async_work(rbio, recover_rbio_work);
b4ee1782 2880}
This page took 1.025781 seconds and 4 git commands to generate.