]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Definitions for the 'struct sk_buff' memory handlers. | |
3 | * | |
4 | * Authors: | |
5 | * Alan Cox, <[email protected]> | |
6 | * Florian La Roche, <[email protected]> | |
7 | * | |
8 | * This program is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU General Public License | |
10 | * as published by the Free Software Foundation; either version | |
11 | * 2 of the License, or (at your option) any later version. | |
12 | */ | |
13 | ||
14 | #ifndef _LINUX_SKBUFF_H | |
15 | #define _LINUX_SKBUFF_H | |
16 | ||
1da177e4 LT |
17 | #include <linux/kernel.h> |
18 | #include <linux/compiler.h> | |
19 | #include <linux/time.h> | |
187f1882 | 20 | #include <linux/bug.h> |
1da177e4 | 21 | #include <linux/cache.h> |
56b17425 | 22 | #include <linux/rbtree.h> |
51f3d02b | 23 | #include <linux/socket.h> |
c1d1b437 | 24 | #include <linux/refcount.h> |
1da177e4 | 25 | |
60063497 | 26 | #include <linux/atomic.h> |
1da177e4 LT |
27 | #include <asm/types.h> |
28 | #include <linux/spinlock.h> | |
1da177e4 | 29 | #include <linux/net.h> |
3fc7e8a6 | 30 | #include <linux/textsearch.h> |
1da177e4 | 31 | #include <net/checksum.h> |
a80958f4 | 32 | #include <linux/rcupdate.h> |
b7aa0bf7 | 33 | #include <linux/hrtimer.h> |
131ea667 | 34 | #include <linux/dma-mapping.h> |
c8f44aff | 35 | #include <linux/netdev_features.h> |
363ec392 | 36 | #include <linux/sched.h> |
e6017571 | 37 | #include <linux/sched/clock.h> |
1bd758eb | 38 | #include <net/flow_dissector.h> |
a60e3cc7 | 39 | #include <linux/splice.h> |
72b31f72 | 40 | #include <linux/in6.h> |
8b10cab6 | 41 | #include <linux/if_packet.h> |
f70ea018 | 42 | #include <net/flow.h> |
1da177e4 | 43 | |
7a6ae71b TH |
44 | /* The interface for checksum offload between the stack and networking drivers |
45 | * is as follows... | |
46 | * | |
47 | * A. IP checksum related features | |
48 | * | |
49 | * Drivers advertise checksum offload capabilities in the features of a device. | |
50 | * From the stack's point of view these are capabilities offered by the driver, | |
51 | * a driver typically only advertises features that it is capable of offloading | |
52 | * to its device. | |
53 | * | |
54 | * The checksum related features are: | |
55 | * | |
56 | * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one | |
57 | * IP (one's complement) checksum for any combination | |
58 | * of protocols or protocol layering. The checksum is | |
59 | * computed and set in a packet per the CHECKSUM_PARTIAL | |
60 | * interface (see below). | |
61 | * | |
62 | * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain | |
63 | * TCP or UDP packets over IPv4. These are specifically | |
64 | * unencapsulated packets of the form IPv4|TCP or | |
65 | * IPv4|UDP where the Protocol field in the IPv4 header | |
66 | * is TCP or UDP. The IPv4 header may contain IP options | |
67 | * This feature cannot be set in features for a device | |
68 | * with NETIF_F_HW_CSUM also set. This feature is being | |
69 | * DEPRECATED (see below). | |
70 | * | |
71 | * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain | |
72 | * TCP or UDP packets over IPv6. These are specifically | |
73 | * unencapsulated packets of the form IPv6|TCP or | |
74 | * IPv4|UDP where the Next Header field in the IPv6 | |
75 | * header is either TCP or UDP. IPv6 extension headers | |
76 | * are not supported with this feature. This feature | |
77 | * cannot be set in features for a device with | |
78 | * NETIF_F_HW_CSUM also set. This feature is being | |
79 | * DEPRECATED (see below). | |
80 | * | |
81 | * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. | |
82 | * This flag is used only used to disable the RX checksum | |
83 | * feature for a device. The stack will accept receive | |
84 | * checksum indication in packets received on a device | |
85 | * regardless of whether NETIF_F_RXCSUM is set. | |
86 | * | |
87 | * B. Checksumming of received packets by device. Indication of checksum | |
88 | * verification is in set skb->ip_summed. Possible values are: | |
78ea85f1 DB |
89 | * |
90 | * CHECKSUM_NONE: | |
91 | * | |
7a6ae71b | 92 | * Device did not checksum this packet e.g. due to lack of capabilities. |
78ea85f1 DB |
93 | * The packet contains full (though not verified) checksum in packet but |
94 | * not in skb->csum. Thus, skb->csum is undefined in this case. | |
95 | * | |
96 | * CHECKSUM_UNNECESSARY: | |
97 | * | |
98 | * The hardware you're dealing with doesn't calculate the full checksum | |
99 | * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums | |
77cffe23 TH |
100 | * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY |
101 | * if their checksums are okay. skb->csum is still undefined in this case | |
7a6ae71b TH |
102 | * though. A driver or device must never modify the checksum field in the |
103 | * packet even if checksum is verified. | |
77cffe23 TH |
104 | * |
105 | * CHECKSUM_UNNECESSARY is applicable to following protocols: | |
106 | * TCP: IPv6 and IPv4. | |
107 | * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a | |
108 | * zero UDP checksum for either IPv4 or IPv6, the networking stack | |
109 | * may perform further validation in this case. | |
110 | * GRE: only if the checksum is present in the header. | |
111 | * SCTP: indicates the CRC in SCTP header has been validated. | |
b4759dcd | 112 | * FCOE: indicates the CRC in FC frame has been validated. |
77cffe23 TH |
113 | * |
114 | * skb->csum_level indicates the number of consecutive checksums found in | |
115 | * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. | |
116 | * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet | |
117 | * and a device is able to verify the checksums for UDP (possibly zero), | |
118 | * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to | |
119 | * two. If the device were only able to verify the UDP checksum and not | |
120 | * GRE, either because it doesn't support GRE checksum of because GRE | |
121 | * checksum is bad, skb->csum_level would be set to zero (TCP checksum is | |
122 | * not considered in this case). | |
78ea85f1 DB |
123 | * |
124 | * CHECKSUM_COMPLETE: | |
125 | * | |
126 | * This is the most generic way. The device supplied checksum of the _whole_ | |
127 | * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the | |
128 | * hardware doesn't need to parse L3/L4 headers to implement this. | |
129 | * | |
b4759dcd DC |
130 | * Notes: |
131 | * - Even if device supports only some protocols, but is able to produce | |
132 | * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. | |
133 | * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. | |
78ea85f1 DB |
134 | * |
135 | * CHECKSUM_PARTIAL: | |
136 | * | |
6edec0e6 TH |
137 | * A checksum is set up to be offloaded to a device as described in the |
138 | * output description for CHECKSUM_PARTIAL. This may occur on a packet | |
78ea85f1 | 139 | * received directly from another Linux OS, e.g., a virtualized Linux kernel |
6edec0e6 TH |
140 | * on the same host, or it may be set in the input path in GRO or remote |
141 | * checksum offload. For the purposes of checksum verification, the checksum | |
142 | * referred to by skb->csum_start + skb->csum_offset and any preceding | |
143 | * checksums in the packet are considered verified. Any checksums in the | |
144 | * packet that are after the checksum being offloaded are not considered to | |
145 | * be verified. | |
78ea85f1 | 146 | * |
7a6ae71b TH |
147 | * C. Checksumming on transmit for non-GSO. The stack requests checksum offload |
148 | * in the skb->ip_summed for a packet. Values are: | |
78ea85f1 DB |
149 | * |
150 | * CHECKSUM_PARTIAL: | |
151 | * | |
7a6ae71b | 152 | * The driver is required to checksum the packet as seen by hard_start_xmit() |
78ea85f1 | 153 | * from skb->csum_start up to the end, and to record/write the checksum at |
7a6ae71b TH |
154 | * offset skb->csum_start + skb->csum_offset. A driver may verify that the |
155 | * csum_start and csum_offset values are valid values given the length and | |
156 | * offset of the packet, however they should not attempt to validate that the | |
157 | * checksum refers to a legitimate transport layer checksum-- it is the | |
158 | * purview of the stack to validate that csum_start and csum_offset are set | |
159 | * correctly. | |
160 | * | |
161 | * When the stack requests checksum offload for a packet, the driver MUST | |
162 | * ensure that the checksum is set correctly. A driver can either offload the | |
163 | * checksum calculation to the device, or call skb_checksum_help (in the case | |
164 | * that the device does not support offload for a particular checksum). | |
165 | * | |
166 | * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of | |
167 | * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate | |
43c26a1a DC |
168 | * checksum offload capability. |
169 | * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based | |
170 | * on network device checksumming capabilities: if a packet does not match | |
171 | * them, skb_checksum_help or skb_crc32c_help (depending on the value of | |
172 | * csum_not_inet, see item D.) is called to resolve the checksum. | |
78ea85f1 | 173 | * |
7a6ae71b | 174 | * CHECKSUM_NONE: |
78ea85f1 | 175 | * |
7a6ae71b TH |
176 | * The skb was already checksummed by the protocol, or a checksum is not |
177 | * required. | |
78ea85f1 DB |
178 | * |
179 | * CHECKSUM_UNNECESSARY: | |
180 | * | |
7a6ae71b TH |
181 | * This has the same meaning on as CHECKSUM_NONE for checksum offload on |
182 | * output. | |
78ea85f1 | 183 | * |
7a6ae71b TH |
184 | * CHECKSUM_COMPLETE: |
185 | * Not used in checksum output. If a driver observes a packet with this value | |
186 | * set in skbuff, if should treat as CHECKSUM_NONE being set. | |
187 | * | |
188 | * D. Non-IP checksum (CRC) offloads | |
189 | * | |
190 | * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of | |
191 | * offloading the SCTP CRC in a packet. To perform this offload the stack | |
dba00306 DC |
192 | * will set set csum_start and csum_offset accordingly, set ip_summed to |
193 | * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in | |
194 | * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. | |
195 | * A driver that supports both IP checksum offload and SCTP CRC32c offload | |
196 | * must verify which offload is configured for a packet by testing the | |
197 | * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve | |
198 | * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. | |
7a6ae71b TH |
199 | * |
200 | * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of | |
201 | * offloading the FCOE CRC in a packet. To perform this offload the stack | |
202 | * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset | |
203 | * accordingly. Note the there is no indication in the skbuff that the | |
204 | * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports | |
205 | * both IP checksum offload and FCOE CRC offload must verify which offload | |
206 | * is configured for a packet presumably by inspecting packet headers. | |
207 | * | |
208 | * E. Checksumming on output with GSO. | |
209 | * | |
210 | * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload | |
211 | * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the | |
212 | * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as | |
213 | * part of the GSO operation is implied. If a checksum is being offloaded | |
214 | * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset | |
215 | * are set to refer to the outermost checksum being offload (two offloaded | |
216 | * checksums are possible with UDP encapsulation). | |
78ea85f1 DB |
217 | */ |
218 | ||
60476372 | 219 | /* Don't change this without changing skb_csum_unnecessary! */ |
78ea85f1 DB |
220 | #define CHECKSUM_NONE 0 |
221 | #define CHECKSUM_UNNECESSARY 1 | |
222 | #define CHECKSUM_COMPLETE 2 | |
223 | #define CHECKSUM_PARTIAL 3 | |
1da177e4 | 224 | |
77cffe23 TH |
225 | /* Maximum value in skb->csum_level */ |
226 | #define SKB_MAX_CSUM_LEVEL 3 | |
227 | ||
0bec8c88 | 228 | #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) |
fc910a27 | 229 | #define SKB_WITH_OVERHEAD(X) \ |
deea84b0 | 230 | ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
fc910a27 DM |
231 | #define SKB_MAX_ORDER(X, ORDER) \ |
232 | SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) | |
1da177e4 LT |
233 | #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) |
234 | #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) | |
235 | ||
87fb4b7b ED |
236 | /* return minimum truesize of one skb containing X bytes of data */ |
237 | #define SKB_TRUESIZE(X) ((X) + \ | |
238 | SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ | |
239 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | |
240 | ||
1da177e4 | 241 | struct net_device; |
716ea3a7 | 242 | struct scatterlist; |
9c55e01c | 243 | struct pipe_inode_info; |
a8f820aa | 244 | struct iov_iter; |
fd11a83d | 245 | struct napi_struct; |
1da177e4 | 246 | |
5f79e0f9 | 247 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
1da177e4 LT |
248 | struct nf_conntrack { |
249 | atomic_t use; | |
1da177e4 | 250 | }; |
5f79e0f9 | 251 | #endif |
1da177e4 | 252 | |
34666d46 | 253 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
1da177e4 | 254 | struct nf_bridge_info { |
53869ceb | 255 | refcount_t use; |
3eaf4025 FW |
256 | enum { |
257 | BRNF_PROTO_UNCHANGED, | |
258 | BRNF_PROTO_8021Q, | |
259 | BRNF_PROTO_PPPOE | |
7fb48c5b | 260 | } orig_proto:8; |
72b1e5e4 FW |
261 | u8 pkt_otherhost:1; |
262 | u8 in_prerouting:1; | |
263 | u8 bridged_dnat:1; | |
411ffb4f | 264 | __u16 frag_max_size; |
bf1ac5ca | 265 | struct net_device *physindev; |
63cdbc06 FW |
266 | |
267 | /* always valid & non-NULL from FORWARD on, for physdev match */ | |
268 | struct net_device *physoutdev; | |
7fb48c5b | 269 | union { |
72b1e5e4 | 270 | /* prerouting: detect dnat in orig/reply direction */ |
72b31f72 BT |
271 | __be32 ipv4_daddr; |
272 | struct in6_addr ipv6_daddr; | |
72b1e5e4 FW |
273 | |
274 | /* after prerouting + nat detected: store original source | |
275 | * mac since neigh resolution overwrites it, only used while | |
276 | * skb is out in neigh layer. | |
277 | */ | |
278 | char neigh_header[8]; | |
72b31f72 | 279 | }; |
1da177e4 LT |
280 | }; |
281 | #endif | |
282 | ||
1da177e4 LT |
283 | struct sk_buff_head { |
284 | /* These two members must be first. */ | |
285 | struct sk_buff *next; | |
286 | struct sk_buff *prev; | |
287 | ||
288 | __u32 qlen; | |
289 | spinlock_t lock; | |
290 | }; | |
291 | ||
292 | struct sk_buff; | |
293 | ||
9d4dde52 IC |
294 | /* To allow 64K frame to be packed as single skb without frag_list we |
295 | * require 64K/PAGE_SIZE pages plus 1 additional page to allow for | |
296 | * buffers which do not start on a page boundary. | |
297 | * | |
298 | * Since GRO uses frags we allocate at least 16 regardless of page | |
299 | * size. | |
a715dea3 | 300 | */ |
9d4dde52 | 301 | #if (65536/PAGE_SIZE + 1) < 16 |
eec00954 | 302 | #define MAX_SKB_FRAGS 16UL |
a715dea3 | 303 | #else |
9d4dde52 | 304 | #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) |
a715dea3 | 305 | #endif |
5f74f82e | 306 | extern int sysctl_max_skb_frags; |
1da177e4 | 307 | |
3953c46c MRL |
308 | /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to |
309 | * segment using its current segmentation instead. | |
310 | */ | |
311 | #define GSO_BY_FRAGS 0xFFFF | |
312 | ||
1da177e4 LT |
313 | typedef struct skb_frag_struct skb_frag_t; |
314 | ||
315 | struct skb_frag_struct { | |
a8605c60 IC |
316 | struct { |
317 | struct page *p; | |
318 | } page; | |
cb4dfe56 | 319 | #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) |
a309bb07 DM |
320 | __u32 page_offset; |
321 | __u32 size; | |
cb4dfe56 ED |
322 | #else |
323 | __u16 page_offset; | |
324 | __u16 size; | |
325 | #endif | |
1da177e4 LT |
326 | }; |
327 | ||
9e903e08 ED |
328 | static inline unsigned int skb_frag_size(const skb_frag_t *frag) |
329 | { | |
330 | return frag->size; | |
331 | } | |
332 | ||
333 | static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) | |
334 | { | |
335 | frag->size = size; | |
336 | } | |
337 | ||
338 | static inline void skb_frag_size_add(skb_frag_t *frag, int delta) | |
339 | { | |
340 | frag->size += delta; | |
341 | } | |
342 | ||
343 | static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) | |
344 | { | |
345 | frag->size -= delta; | |
346 | } | |
347 | ||
c613c209 WB |
348 | static inline bool skb_frag_must_loop(struct page *p) |
349 | { | |
350 | #if defined(CONFIG_HIGHMEM) | |
351 | if (PageHighMem(p)) | |
352 | return true; | |
353 | #endif | |
354 | return false; | |
355 | } | |
356 | ||
357 | /** | |
358 | * skb_frag_foreach_page - loop over pages in a fragment | |
359 | * | |
360 | * @f: skb frag to operate on | |
361 | * @f_off: offset from start of f->page.p | |
362 | * @f_len: length from f_off to loop over | |
363 | * @p: (temp var) current page | |
364 | * @p_off: (temp var) offset from start of current page, | |
365 | * non-zero only on first page. | |
366 | * @p_len: (temp var) length in current page, | |
367 | * < PAGE_SIZE only on first and last page. | |
368 | * @copied: (temp var) length so far, excluding current p_len. | |
369 | * | |
370 | * A fragment can hold a compound page, in which case per-page | |
371 | * operations, notably kmap_atomic, must be called for each | |
372 | * regular page. | |
373 | */ | |
374 | #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ | |
375 | for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ | |
376 | p_off = (f_off) & (PAGE_SIZE - 1), \ | |
377 | p_len = skb_frag_must_loop(p) ? \ | |
378 | min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ | |
379 | copied = 0; \ | |
380 | copied < f_len; \ | |
381 | copied += p_len, p++, p_off = 0, \ | |
382 | p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ | |
383 | ||
ac45f602 PO |
384 | #define HAVE_HW_TIME_STAMP |
385 | ||
386 | /** | |
d3a21be8 | 387 | * struct skb_shared_hwtstamps - hardware time stamps |
ac45f602 PO |
388 | * @hwtstamp: hardware time stamp transformed into duration |
389 | * since arbitrary point in time | |
ac45f602 PO |
390 | * |
391 | * Software time stamps generated by ktime_get_real() are stored in | |
4d276eb6 | 392 | * skb->tstamp. |
ac45f602 PO |
393 | * |
394 | * hwtstamps can only be compared against other hwtstamps from | |
395 | * the same device. | |
396 | * | |
397 | * This structure is attached to packets as part of the | |
398 | * &skb_shared_info. Use skb_hwtstamps() to get a pointer. | |
399 | */ | |
400 | struct skb_shared_hwtstamps { | |
401 | ktime_t hwtstamp; | |
ac45f602 PO |
402 | }; |
403 | ||
2244d07b OH |
404 | /* Definitions for tx_flags in struct skb_shared_info */ |
405 | enum { | |
406 | /* generate hardware time stamp */ | |
407 | SKBTX_HW_TSTAMP = 1 << 0, | |
408 | ||
e7fd2885 | 409 | /* generate software time stamp when queueing packet to NIC */ |
2244d07b OH |
410 | SKBTX_SW_TSTAMP = 1 << 1, |
411 | ||
412 | /* device driver is going to provide hardware time stamp */ | |
413 | SKBTX_IN_PROGRESS = 1 << 2, | |
414 | ||
a6686f2f | 415 | /* device driver supports TX zero-copy buffers */ |
62b1a8ab | 416 | SKBTX_DEV_ZEROCOPY = 1 << 3, |
6e3e939f JB |
417 | |
418 | /* generate wifi status information (where possible) */ | |
62b1a8ab | 419 | SKBTX_WIFI_STATUS = 1 << 4, |
c9af6db4 PS |
420 | |
421 | /* This indicates at least one fragment might be overwritten | |
422 | * (as in vmsplice(), sendfile() ...) | |
423 | * If we need to compute a TX checksum, we'll need to copy | |
424 | * all frags to avoid possible bad checksum | |
425 | */ | |
426 | SKBTX_SHARED_FRAG = 1 << 5, | |
e7fd2885 WB |
427 | |
428 | /* generate software time stamp when entering packet scheduling */ | |
429 | SKBTX_SCHED_TSTAMP = 1 << 6, | |
a6686f2f SM |
430 | }; |
431 | ||
52267790 | 432 | #define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) |
e1c8a607 | 433 | #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ |
0a2cf20c | 434 | SKBTX_SCHED_TSTAMP) |
f24b9be5 WB |
435 | #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) |
436 | ||
a6686f2f SM |
437 | /* |
438 | * The callback notifies userspace to release buffers when skb DMA is done in | |
439 | * lower device, the skb last reference should be 0 when calling this. | |
e19d6763 MT |
440 | * The zerocopy_success argument is true if zero copy transmit occurred, |
441 | * false on data copy or out of memory error caused by data copy attempt. | |
ca8f4fb2 MT |
442 | * The ctx field is used to track device context. |
443 | * The desc field is used to track userspace buffer index. | |
a6686f2f SM |
444 | */ |
445 | struct ubuf_info { | |
e19d6763 | 446 | void (*callback)(struct ubuf_info *, bool zerocopy_success); |
4ab6c99d WB |
447 | union { |
448 | struct { | |
449 | unsigned long desc; | |
450 | void *ctx; | |
451 | }; | |
452 | struct { | |
453 | u32 id; | |
454 | u16 len; | |
455 | u16 zerocopy:1; | |
456 | u32 bytelen; | |
457 | }; | |
458 | }; | |
c1d1b437 | 459 | refcount_t refcnt; |
a91dbff5 WB |
460 | |
461 | struct mmpin { | |
462 | struct user_struct *user; | |
463 | unsigned int num_pg; | |
464 | } mmp; | |
ac45f602 PO |
465 | }; |
466 | ||
52267790 WB |
467 | #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) |
468 | ||
469 | struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); | |
4ab6c99d WB |
470 | struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, |
471 | struct ubuf_info *uarg); | |
52267790 WB |
472 | |
473 | static inline void sock_zerocopy_get(struct ubuf_info *uarg) | |
474 | { | |
c1d1b437 | 475 | refcount_inc(&uarg->refcnt); |
52267790 WB |
476 | } |
477 | ||
478 | void sock_zerocopy_put(struct ubuf_info *uarg); | |
479 | void sock_zerocopy_put_abort(struct ubuf_info *uarg); | |
480 | ||
481 | void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); | |
482 | ||
483 | int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, | |
484 | struct msghdr *msg, int len, | |
485 | struct ubuf_info *uarg); | |
486 | ||
1da177e4 LT |
487 | /* This data is invariant across clones and lives at |
488 | * the end of the header data, ie. at skb->end. | |
489 | */ | |
490 | struct skb_shared_info { | |
de8f3a83 DB |
491 | __u8 __unused; |
492 | __u8 meta_len; | |
493 | __u8 nr_frags; | |
9f42f126 | 494 | __u8 tx_flags; |
7967168c HX |
495 | unsigned short gso_size; |
496 | /* Warning: this field is not always filled in (UFO)! */ | |
497 | unsigned short gso_segs; | |
1da177e4 | 498 | struct sk_buff *frag_list; |
ac45f602 | 499 | struct skb_shared_hwtstamps hwtstamps; |
7f564528 | 500 | unsigned int gso_type; |
09c2d251 | 501 | u32 tskey; |
ec7d2f2c ED |
502 | |
503 | /* | |
504 | * Warning : all fields before dataref are cleared in __alloc_skb() | |
505 | */ | |
506 | atomic_t dataref; | |
507 | ||
69e3c75f JB |
508 | /* Intermediate layers must ensure that destructor_arg |
509 | * remains valid until skb destructor */ | |
510 | void * destructor_arg; | |
a6686f2f | 511 | |
fed66381 ED |
512 | /* must be last field, see pskb_expand_head() */ |
513 | skb_frag_t frags[MAX_SKB_FRAGS]; | |
1da177e4 LT |
514 | }; |
515 | ||
516 | /* We divide dataref into two halves. The higher 16 bits hold references | |
517 | * to the payload part of skb->data. The lower 16 bits hold references to | |
334a8132 PM |
518 | * the entire skb->data. A clone of a headerless skb holds the length of |
519 | * the header in skb->hdr_len. | |
1da177e4 LT |
520 | * |
521 | * All users must obey the rule that the skb->data reference count must be | |
522 | * greater than or equal to the payload reference count. | |
523 | * | |
524 | * Holding a reference to the payload part means that the user does not | |
525 | * care about modifications to the header part of skb->data. | |
526 | */ | |
527 | #define SKB_DATAREF_SHIFT 16 | |
528 | #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) | |
529 | ||
d179cd12 DM |
530 | |
531 | enum { | |
c8753d55 VS |
532 | SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ |
533 | SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ | |
534 | SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ | |
d179cd12 DM |
535 | }; |
536 | ||
7967168c HX |
537 | enum { |
538 | SKB_GSO_TCPV4 = 1 << 0, | |
576a30eb HX |
539 | |
540 | /* This indicates the skb is from an untrusted source. */ | |
d9d30adf | 541 | SKB_GSO_DODGY = 1 << 1, |
b0da8537 MC |
542 | |
543 | /* This indicates the tcp segment has CWR set. */ | |
d9d30adf | 544 | SKB_GSO_TCP_ECN = 1 << 2, |
f83ef8c0 | 545 | |
d9d30adf | 546 | SKB_GSO_TCP_FIXEDID = 1 << 3, |
01d5b2fc | 547 | |
d9d30adf | 548 | SKB_GSO_TCPV6 = 1 << 4, |
68c33163 | 549 | |
d9d30adf | 550 | SKB_GSO_FCOE = 1 << 5, |
73136267 | 551 | |
d9d30adf | 552 | SKB_GSO_GRE = 1 << 6, |
0d89d203 | 553 | |
d9d30adf | 554 | SKB_GSO_GRE_CSUM = 1 << 7, |
cb32f511 | 555 | |
d9d30adf | 556 | SKB_GSO_IPXIP4 = 1 << 8, |
61c1db7f | 557 | |
d9d30adf | 558 | SKB_GSO_IPXIP6 = 1 << 9, |
0f4f4ffa | 559 | |
d9d30adf | 560 | SKB_GSO_UDP_TUNNEL = 1 << 10, |
4749c09c | 561 | |
d9d30adf | 562 | SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, |
cbc53e08 | 563 | |
d9d30adf | 564 | SKB_GSO_PARTIAL = 1 << 12, |
802ab55a | 565 | |
d9d30adf | 566 | SKB_GSO_TUNNEL_REMCSUM = 1 << 13, |
90017acc | 567 | |
d9d30adf | 568 | SKB_GSO_SCTP = 1 << 14, |
c7ef8f0c | 569 | |
d9d30adf | 570 | SKB_GSO_ESP = 1 << 15, |
0c19f846 WB |
571 | |
572 | SKB_GSO_UDP = 1 << 16, | |
7967168c HX |
573 | }; |
574 | ||
2e07fa9c ACM |
575 | #if BITS_PER_LONG > 32 |
576 | #define NET_SKBUFF_DATA_USES_OFFSET 1 | |
577 | #endif | |
578 | ||
579 | #ifdef NET_SKBUFF_DATA_USES_OFFSET | |
580 | typedef unsigned int sk_buff_data_t; | |
581 | #else | |
582 | typedef unsigned char *sk_buff_data_t; | |
583 | #endif | |
584 | ||
1da177e4 LT |
585 | /** |
586 | * struct sk_buff - socket buffer | |
587 | * @next: Next buffer in list | |
588 | * @prev: Previous buffer in list | |
363ec392 | 589 | * @tstamp: Time we arrived/left |
56b17425 | 590 | * @rbnode: RB tree node, alternative to next/prev for netem/tcp |
d84e0bd7 | 591 | * @sk: Socket we are owned by |
1da177e4 | 592 | * @dev: Device we arrived on/are leaving by |
d84e0bd7 | 593 | * @cb: Control buffer. Free for use by every layer. Put private vars here |
7fee226a | 594 | * @_skb_refdst: destination entry (with norefcount bit) |
67be2dd1 | 595 | * @sp: the security path, used for xfrm |
1da177e4 LT |
596 | * @len: Length of actual data |
597 | * @data_len: Data length | |
598 | * @mac_len: Length of link layer header | |
334a8132 | 599 | * @hdr_len: writable header length of cloned skb |
663ead3b HX |
600 | * @csum: Checksum (must include start/offset pair) |
601 | * @csum_start: Offset from skb->head where checksumming should start | |
602 | * @csum_offset: Offset from csum_start where checksum should be stored | |
d84e0bd7 | 603 | * @priority: Packet queueing priority |
60ff7467 | 604 | * @ignore_df: allow local fragmentation |
1da177e4 | 605 | * @cloned: Head may be cloned (check refcnt to be sure) |
d84e0bd7 | 606 | * @ip_summed: Driver fed us an IP checksum |
1da177e4 LT |
607 | * @nohdr: Payload reference only, must not modify header |
608 | * @pkt_type: Packet class | |
c83c2486 | 609 | * @fclone: skbuff clone status |
c83c2486 | 610 | * @ipvs_property: skbuff is owned by ipvs |
e7246e12 | 611 | * @tc_skip_classify: do not classify packet. set by IFB device |
8dc07fdb | 612 | * @tc_at_ingress: used within tc_classify to distinguish in/egress |
bc31c905 WB |
613 | * @tc_redirected: packet was redirected by a tc action |
614 | * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect | |
31729363 RD |
615 | * @peeked: this packet has been seen already, so stats have been |
616 | * done for it, don't do them again | |
ba9dda3a | 617 | * @nf_trace: netfilter packet trace flag |
d84e0bd7 DB |
618 | * @protocol: Packet protocol from driver |
619 | * @destructor: Destruct function | |
e2080072 | 620 | * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) |
a9e419dc | 621 | * @_nfct: Associated connection, if any (with nfctinfo bits) |
1da177e4 | 622 | * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c |
8964be4a | 623 | * @skb_iif: ifindex of device we arrived on |
1da177e4 | 624 | * @tc_index: Traffic control index |
61b905da | 625 | * @hash: the packet hash |
d84e0bd7 | 626 | * @queue_mapping: Queue mapping for multiqueue devices |
0b725a2c | 627 | * @xmit_more: More SKBs are pending for this queue |
553a5672 | 628 | * @ndisc_nodetype: router type (from link layer) |
d84e0bd7 | 629 | * @ooo_okay: allow the mapping of a socket to a queue to be changed |
61b905da | 630 | * @l4_hash: indicate hash is a canonical 4-tuple hash over transport |
4ca2462e | 631 | * ports. |
a3b18ddb | 632 | * @sw_hash: indicates hash was computed in software stack |
6e3e939f JB |
633 | * @wifi_acked_valid: wifi_acked was set |
634 | * @wifi_acked: whether frame was acked on wifi or not | |
3bdc0eba | 635 | * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS |
dba00306 | 636 | * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL |
4ff06203 | 637 | * @dst_pending_confirm: need to confirm neighbour |
06021292 | 638 | * @napi_id: id of the NAPI struct this skb came from |
984bc16c | 639 | * @secmark: security marking |
d84e0bd7 | 640 | * @mark: Generic packet mark |
86a9bad3 | 641 | * @vlan_proto: vlan encapsulation protocol |
6aa895b0 | 642 | * @vlan_tci: vlan tag control information |
0d89d203 | 643 | * @inner_protocol: Protocol (encapsulation) |
6a674e9c JG |
644 | * @inner_transport_header: Inner transport layer header (encapsulation) |
645 | * @inner_network_header: Network layer header (encapsulation) | |
aefbd2b3 | 646 | * @inner_mac_header: Link layer header (encapsulation) |
d84e0bd7 DB |
647 | * @transport_header: Transport layer header |
648 | * @network_header: Network layer header | |
649 | * @mac_header: Link layer header | |
650 | * @tail: Tail pointer | |
651 | * @end: End pointer | |
652 | * @head: Head of buffer | |
653 | * @data: Data head pointer | |
654 | * @truesize: Buffer size | |
655 | * @users: User count - see {datagram,tcp}.c | |
1da177e4 LT |
656 | */ |
657 | ||
658 | struct sk_buff { | |
363ec392 | 659 | union { |
56b17425 ED |
660 | struct { |
661 | /* These two members must be first. */ | |
662 | struct sk_buff *next; | |
663 | struct sk_buff *prev; | |
664 | ||
665 | union { | |
bffa72cf ED |
666 | struct net_device *dev; |
667 | /* Some protocols might use this space to store information, | |
668 | * while device pointer would be NULL. | |
669 | * UDP receive path is one user. | |
670 | */ | |
671 | unsigned long dev_scratch; | |
56b17425 ED |
672 | }; |
673 | }; | |
674 | struct rb_node rbnode; /* used in netem & tcp stack */ | |
363ec392 | 675 | }; |
da3f5cf1 | 676 | struct sock *sk; |
1da177e4 | 677 | |
c84d9490 | 678 | union { |
bffa72cf ED |
679 | ktime_t tstamp; |
680 | u64 skb_mstamp; | |
c84d9490 | 681 | }; |
1da177e4 LT |
682 | /* |
683 | * This is the control buffer. It is free to use for every | |
684 | * layer. Please put your private variables there. If you | |
685 | * want to keep them across layers you have to do a skb_clone() | |
686 | * first. This is owned by whoever has the skb queued ATM. | |
687 | */ | |
da3f5cf1 | 688 | char cb[48] __aligned(8); |
1da177e4 | 689 | |
e2080072 ED |
690 | union { |
691 | struct { | |
692 | unsigned long _skb_refdst; | |
693 | void (*destructor)(struct sk_buff *skb); | |
694 | }; | |
695 | struct list_head tcp_tsorted_anchor; | |
696 | }; | |
697 | ||
da3f5cf1 FF |
698 | #ifdef CONFIG_XFRM |
699 | struct sec_path *sp; | |
b1937227 ED |
700 | #endif |
701 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) | |
a9e419dc | 702 | unsigned long _nfct; |
b1937227 | 703 | #endif |
85224844 | 704 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
b1937227 | 705 | struct nf_bridge_info *nf_bridge; |
da3f5cf1 | 706 | #endif |
1da177e4 | 707 | unsigned int len, |
334a8132 PM |
708 | data_len; |
709 | __u16 mac_len, | |
710 | hdr_len; | |
b1937227 ED |
711 | |
712 | /* Following fields are _not_ copied in __copy_skb_header() | |
713 | * Note that queue_mapping is here mostly to fill a hole. | |
714 | */ | |
b1937227 | 715 | __u16 queue_mapping; |
36bbef52 DB |
716 | |
717 | /* if you move cloned around you also must adapt those constants */ | |
718 | #ifdef __BIG_ENDIAN_BITFIELD | |
719 | #define CLONED_MASK (1 << 7) | |
720 | #else | |
721 | #define CLONED_MASK 1 | |
722 | #endif | |
723 | #define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) | |
724 | ||
725 | __u8 __cloned_offset[0]; | |
b1937227 | 726 | __u8 cloned:1, |
6869c4d8 | 727 | nohdr:1, |
b84f4cc9 | 728 | fclone:2, |
a59322be | 729 | peeked:1, |
b1937227 | 730 | head_frag:1, |
36bbef52 DB |
731 | xmit_more:1, |
732 | __unused:1; /* one bit hole */ | |
4031ae6e | 733 | |
b1937227 ED |
734 | /* fields enclosed in headers_start/headers_end are copied |
735 | * using a single memcpy() in __copy_skb_header() | |
736 | */ | |
ebcf34f3 | 737 | /* private: */ |
b1937227 | 738 | __u32 headers_start[0]; |
ebcf34f3 | 739 | /* public: */ |
4031ae6e | 740 | |
233577a2 HFS |
741 | /* if you move pkt_type around you also must adapt those constants */ |
742 | #ifdef __BIG_ENDIAN_BITFIELD | |
743 | #define PKT_TYPE_MAX (7 << 5) | |
744 | #else | |
745 | #define PKT_TYPE_MAX 7 | |
1da177e4 | 746 | #endif |
233577a2 | 747 | #define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) |
fe55f6d5 | 748 | |
233577a2 | 749 | __u8 __pkt_type_offset[0]; |
b1937227 | 750 | __u8 pkt_type:3; |
c93bdd0e | 751 | __u8 pfmemalloc:1; |
b1937227 | 752 | __u8 ignore_df:1; |
b1937227 ED |
753 | |
754 | __u8 nf_trace:1; | |
755 | __u8 ip_summed:2; | |
3853b584 | 756 | __u8 ooo_okay:1; |
61b905da | 757 | __u8 l4_hash:1; |
a3b18ddb | 758 | __u8 sw_hash:1; |
6e3e939f JB |
759 | __u8 wifi_acked_valid:1; |
760 | __u8 wifi_acked:1; | |
b1937227 | 761 | |
3bdc0eba | 762 | __u8 no_fcs:1; |
77cffe23 | 763 | /* Indicates the inner headers are valid in the skbuff. */ |
6a674e9c | 764 | __u8 encapsulation:1; |
7e2b10c1 | 765 | __u8 encap_hdr_csum:1; |
5d0c2b95 | 766 | __u8 csum_valid:1; |
7e3cead5 | 767 | __u8 csum_complete_sw:1; |
b1937227 | 768 | __u8 csum_level:2; |
dba00306 | 769 | __u8 csum_not_inet:1; |
fe55f6d5 | 770 | |
4ff06203 | 771 | __u8 dst_pending_confirm:1; |
b1937227 ED |
772 | #ifdef CONFIG_IPV6_NDISC_NODETYPE |
773 | __u8 ndisc_nodetype:2; | |
774 | #endif | |
775 | __u8 ipvs_property:1; | |
8bce6d7d | 776 | __u8 inner_protocol_type:1; |
e585f236 | 777 | __u8 remcsum_offload:1; |
6bc506b4 IS |
778 | #ifdef CONFIG_NET_SWITCHDEV |
779 | __u8 offload_fwd_mark:1; | |
abf4bb6b | 780 | __u8 offload_mr_fwd_mark:1; |
6bc506b4 | 781 | #endif |
e7246e12 WB |
782 | #ifdef CONFIG_NET_CLS_ACT |
783 | __u8 tc_skip_classify:1; | |
8dc07fdb | 784 | __u8 tc_at_ingress:1; |
bc31c905 WB |
785 | __u8 tc_redirected:1; |
786 | __u8 tc_from_ingress:1; | |
e7246e12 | 787 | #endif |
b1937227 ED |
788 | |
789 | #ifdef CONFIG_NET_SCHED | |
790 | __u16 tc_index; /* traffic control index */ | |
b1937227 | 791 | #endif |
fe55f6d5 | 792 | |
b1937227 ED |
793 | union { |
794 | __wsum csum; | |
795 | struct { | |
796 | __u16 csum_start; | |
797 | __u16 csum_offset; | |
798 | }; | |
799 | }; | |
800 | __u32 priority; | |
801 | int skb_iif; | |
802 | __u32 hash; | |
803 | __be16 vlan_proto; | |
804 | __u16 vlan_tci; | |
2bd82484 ED |
805 | #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) |
806 | union { | |
807 | unsigned int napi_id; | |
808 | unsigned int sender_cpu; | |
809 | }; | |
97fc2f08 | 810 | #endif |
984bc16c | 811 | #ifdef CONFIG_NETWORK_SECMARK |
6bc506b4 | 812 | __u32 secmark; |
0c4f691f | 813 | #endif |
0c4f691f | 814 | |
3b885787 NH |
815 | union { |
816 | __u32 mark; | |
16fad69c | 817 | __u32 reserved_tailroom; |
3b885787 | 818 | }; |
1da177e4 | 819 | |
8bce6d7d TH |
820 | union { |
821 | __be16 inner_protocol; | |
822 | __u8 inner_ipproto; | |
823 | }; | |
824 | ||
1a37e412 SH |
825 | __u16 inner_transport_header; |
826 | __u16 inner_network_header; | |
827 | __u16 inner_mac_header; | |
b1937227 ED |
828 | |
829 | __be16 protocol; | |
1a37e412 SH |
830 | __u16 transport_header; |
831 | __u16 network_header; | |
832 | __u16 mac_header; | |
b1937227 | 833 | |
ebcf34f3 | 834 | /* private: */ |
b1937227 | 835 | __u32 headers_end[0]; |
ebcf34f3 | 836 | /* public: */ |
b1937227 | 837 | |
1da177e4 | 838 | /* These elements must be at the end, see alloc_skb() for details. */ |
27a884dc | 839 | sk_buff_data_t tail; |
4305b541 | 840 | sk_buff_data_t end; |
1da177e4 | 841 | unsigned char *head, |
4305b541 | 842 | *data; |
27a884dc | 843 | unsigned int truesize; |
63354797 | 844 | refcount_t users; |
1da177e4 LT |
845 | }; |
846 | ||
847 | #ifdef __KERNEL__ | |
848 | /* | |
849 | * Handling routines are only of interest to the kernel | |
850 | */ | |
851 | #include <linux/slab.h> | |
852 | ||
1da177e4 | 853 | |
c93bdd0e MG |
854 | #define SKB_ALLOC_FCLONE 0x01 |
855 | #define SKB_ALLOC_RX 0x02 | |
fd11a83d | 856 | #define SKB_ALLOC_NAPI 0x04 |
c93bdd0e MG |
857 | |
858 | /* Returns true if the skb was allocated from PFMEMALLOC reserves */ | |
859 | static inline bool skb_pfmemalloc(const struct sk_buff *skb) | |
860 | { | |
861 | return unlikely(skb->pfmemalloc); | |
862 | } | |
863 | ||
7fee226a ED |
864 | /* |
865 | * skb might have a dst pointer attached, refcounted or not. | |
866 | * _skb_refdst low order bit is set if refcount was _not_ taken | |
867 | */ | |
868 | #define SKB_DST_NOREF 1UL | |
869 | #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) | |
870 | ||
a9e419dc | 871 | #define SKB_NFCT_PTRMASK ~(7UL) |
7fee226a ED |
872 | /** |
873 | * skb_dst - returns skb dst_entry | |
874 | * @skb: buffer | |
875 | * | |
876 | * Returns skb dst_entry, regardless of reference taken or not. | |
877 | */ | |
adf30907 ED |
878 | static inline struct dst_entry *skb_dst(const struct sk_buff *skb) |
879 | { | |
7fee226a ED |
880 | /* If refdst was not refcounted, check we still are in a |
881 | * rcu_read_lock section | |
882 | */ | |
883 | WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && | |
884 | !rcu_read_lock_held() && | |
885 | !rcu_read_lock_bh_held()); | |
886 | return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); | |
adf30907 ED |
887 | } |
888 | ||
7fee226a ED |
889 | /** |
890 | * skb_dst_set - sets skb dst | |
891 | * @skb: buffer | |
892 | * @dst: dst entry | |
893 | * | |
894 | * Sets skb dst, assuming a reference was taken on dst and should | |
895 | * be released by skb_dst_drop() | |
896 | */ | |
adf30907 ED |
897 | static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) |
898 | { | |
7fee226a ED |
899 | skb->_skb_refdst = (unsigned long)dst; |
900 | } | |
901 | ||
932bc4d7 JA |
902 | /** |
903 | * skb_dst_set_noref - sets skb dst, hopefully, without taking reference | |
904 | * @skb: buffer | |
905 | * @dst: dst entry | |
906 | * | |
907 | * Sets skb dst, assuming a reference was not taken on dst. | |
908 | * If dst entry is cached, we do not take reference and dst_release | |
909 | * will be avoided by refdst_drop. If dst entry is not cached, we take | |
910 | * reference, so that last dst_release can destroy the dst immediately. | |
911 | */ | |
912 | static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) | |
913 | { | |
dbfc4fb7 HFS |
914 | WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); |
915 | skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; | |
932bc4d7 | 916 | } |
7fee226a ED |
917 | |
918 | /** | |
25985edc | 919 | * skb_dst_is_noref - Test if skb dst isn't refcounted |
7fee226a ED |
920 | * @skb: buffer |
921 | */ | |
922 | static inline bool skb_dst_is_noref(const struct sk_buff *skb) | |
923 | { | |
924 | return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); | |
adf30907 ED |
925 | } |
926 | ||
511c3f92 ED |
927 | static inline struct rtable *skb_rtable(const struct sk_buff *skb) |
928 | { | |
adf30907 | 929 | return (struct rtable *)skb_dst(skb); |
511c3f92 ED |
930 | } |
931 | ||
8b10cab6 JHS |
932 | /* For mangling skb->pkt_type from user space side from applications |
933 | * such as nft, tc, etc, we only allow a conservative subset of | |
934 | * possible pkt_types to be set. | |
935 | */ | |
936 | static inline bool skb_pkt_type_ok(u32 ptype) | |
937 | { | |
938 | return ptype <= PACKET_OTHERHOST; | |
939 | } | |
940 | ||
90b602f8 ML |
941 | static inline unsigned int skb_napi_id(const struct sk_buff *skb) |
942 | { | |
943 | #ifdef CONFIG_NET_RX_BUSY_POLL | |
944 | return skb->napi_id; | |
945 | #else | |
946 | return 0; | |
947 | #endif | |
948 | } | |
949 | ||
3889a803 PA |
950 | /* decrement the reference count and return true if we can free the skb */ |
951 | static inline bool skb_unref(struct sk_buff *skb) | |
952 | { | |
953 | if (unlikely(!skb)) | |
954 | return false; | |
63354797 | 955 | if (likely(refcount_read(&skb->users) == 1)) |
3889a803 | 956 | smp_rmb(); |
63354797 | 957 | else if (likely(!refcount_dec_and_test(&skb->users))) |
3889a803 PA |
958 | return false; |
959 | ||
960 | return true; | |
961 | } | |
962 | ||
0a463c78 | 963 | void skb_release_head_state(struct sk_buff *skb); |
7965bd4d JP |
964 | void kfree_skb(struct sk_buff *skb); |
965 | void kfree_skb_list(struct sk_buff *segs); | |
966 | void skb_tx_error(struct sk_buff *skb); | |
967 | void consume_skb(struct sk_buff *skb); | |
ca2c1418 | 968 | void __consume_stateless_skb(struct sk_buff *skb); |
7965bd4d | 969 | void __kfree_skb(struct sk_buff *skb); |
d7e8883c | 970 | extern struct kmem_cache *skbuff_head_cache; |
bad43ca8 | 971 | |
7965bd4d JP |
972 | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); |
973 | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, | |
974 | bool *fragstolen, int *delta_truesize); | |
bad43ca8 | 975 | |
7965bd4d JP |
976 | struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, |
977 | int node); | |
2ea2f62c | 978 | struct sk_buff *__build_skb(void *data, unsigned int frag_size); |
7965bd4d | 979 | struct sk_buff *build_skb(void *data, unsigned int frag_size); |
d179cd12 | 980 | static inline struct sk_buff *alloc_skb(unsigned int size, |
dd0fc66f | 981 | gfp_t priority) |
d179cd12 | 982 | { |
564824b0 | 983 | return __alloc_skb(size, priority, 0, NUMA_NO_NODE); |
d179cd12 DM |
984 | } |
985 | ||
2e4e4410 ED |
986 | struct sk_buff *alloc_skb_with_frags(unsigned long header_len, |
987 | unsigned long data_len, | |
988 | int max_page_order, | |
989 | int *errcode, | |
990 | gfp_t gfp_mask); | |
991 | ||
d0bf4a9e ED |
992 | /* Layout of fast clones : [skb1][skb2][fclone_ref] */ |
993 | struct sk_buff_fclones { | |
994 | struct sk_buff skb1; | |
995 | ||
996 | struct sk_buff skb2; | |
997 | ||
2638595a | 998 | refcount_t fclone_ref; |
d0bf4a9e ED |
999 | }; |
1000 | ||
1001 | /** | |
1002 | * skb_fclone_busy - check if fclone is busy | |
293de7de | 1003 | * @sk: socket |
d0bf4a9e ED |
1004 | * @skb: buffer |
1005 | * | |
bda13fed | 1006 | * Returns true if skb is a fast clone, and its clone is not freed. |
39bb5e62 ED |
1007 | * Some drivers call skb_orphan() in their ndo_start_xmit(), |
1008 | * so we also check that this didnt happen. | |
d0bf4a9e | 1009 | */ |
39bb5e62 ED |
1010 | static inline bool skb_fclone_busy(const struct sock *sk, |
1011 | const struct sk_buff *skb) | |
d0bf4a9e ED |
1012 | { |
1013 | const struct sk_buff_fclones *fclones; | |
1014 | ||
1015 | fclones = container_of(skb, struct sk_buff_fclones, skb1); | |
1016 | ||
1017 | return skb->fclone == SKB_FCLONE_ORIG && | |
2638595a | 1018 | refcount_read(&fclones->fclone_ref) > 1 && |
39bb5e62 | 1019 | fclones->skb2.sk == sk; |
d0bf4a9e ED |
1020 | } |
1021 | ||
d179cd12 | 1022 | static inline struct sk_buff *alloc_skb_fclone(unsigned int size, |
dd0fc66f | 1023 | gfp_t priority) |
d179cd12 | 1024 | { |
c93bdd0e | 1025 | return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); |
d179cd12 DM |
1026 | } |
1027 | ||
7965bd4d JP |
1028 | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); |
1029 | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); | |
1030 | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); | |
1031 | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); | |
bad93e9d OP |
1032 | struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, |
1033 | gfp_t gfp_mask, bool fclone); | |
1034 | static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, | |
1035 | gfp_t gfp_mask) | |
1036 | { | |
1037 | return __pskb_copy_fclone(skb, headroom, gfp_mask, false); | |
1038 | } | |
7965bd4d JP |
1039 | |
1040 | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); | |
1041 | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, | |
1042 | unsigned int headroom); | |
1043 | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, | |
1044 | int newtailroom, gfp_t priority); | |
48a1df65 JD |
1045 | int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, |
1046 | int offset, int len); | |
1047 | int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, | |
1048 | int offset, int len); | |
7965bd4d | 1049 | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); |
cd0a137a FF |
1050 | int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); |
1051 | ||
1052 | /** | |
1053 | * skb_pad - zero pad the tail of an skb | |
1054 | * @skb: buffer to pad | |
1055 | * @pad: space to pad | |
1056 | * | |
1057 | * Ensure that a buffer is followed by a padding area that is zero | |
1058 | * filled. Used by network drivers which may DMA or transfer data | |
1059 | * beyond the buffer end onto the wire. | |
1060 | * | |
1061 | * May return error in out of memory cases. The skb is freed on error. | |
1062 | */ | |
1063 | static inline int skb_pad(struct sk_buff *skb, int pad) | |
1064 | { | |
1065 | return __skb_pad(skb, pad, true); | |
1066 | } | |
ead2ceb0 | 1067 | #define dev_kfree_skb(a) consume_skb(a) |
1da177e4 | 1068 | |
7965bd4d JP |
1069 | int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, |
1070 | int getfrag(void *from, char *to, int offset, | |
1071 | int len, int odd, struct sk_buff *skb), | |
1072 | void *from, int length); | |
e89e9cf5 | 1073 | |
be12a1fe HFS |
1074 | int skb_append_pagefrags(struct sk_buff *skb, struct page *page, |
1075 | int offset, size_t size); | |
1076 | ||
d94d9fee | 1077 | struct skb_seq_state { |
677e90ed TG |
1078 | __u32 lower_offset; |
1079 | __u32 upper_offset; | |
1080 | __u32 frag_idx; | |
1081 | __u32 stepped_offset; | |
1082 | struct sk_buff *root_skb; | |
1083 | struct sk_buff *cur_skb; | |
1084 | __u8 *frag_data; | |
1085 | }; | |
1086 | ||
7965bd4d JP |
1087 | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, |
1088 | unsigned int to, struct skb_seq_state *st); | |
1089 | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, | |
1090 | struct skb_seq_state *st); | |
1091 | void skb_abort_seq_read(struct skb_seq_state *st); | |
677e90ed | 1092 | |
7965bd4d | 1093 | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, |
059a2440 | 1094 | unsigned int to, struct ts_config *config); |
3fc7e8a6 | 1095 | |
09323cc4 TH |
1096 | /* |
1097 | * Packet hash types specify the type of hash in skb_set_hash. | |
1098 | * | |
1099 | * Hash types refer to the protocol layer addresses which are used to | |
1100 | * construct a packet's hash. The hashes are used to differentiate or identify | |
1101 | * flows of the protocol layer for the hash type. Hash types are either | |
1102 | * layer-2 (L2), layer-3 (L3), or layer-4 (L4). | |
1103 | * | |
1104 | * Properties of hashes: | |
1105 | * | |
1106 | * 1) Two packets in different flows have different hash values | |
1107 | * 2) Two packets in the same flow should have the same hash value | |
1108 | * | |
1109 | * A hash at a higher layer is considered to be more specific. A driver should | |
1110 | * set the most specific hash possible. | |
1111 | * | |
1112 | * A driver cannot indicate a more specific hash than the layer at which a hash | |
1113 | * was computed. For instance an L3 hash cannot be set as an L4 hash. | |
1114 | * | |
1115 | * A driver may indicate a hash level which is less specific than the | |
1116 | * actual layer the hash was computed on. For instance, a hash computed | |
1117 | * at L4 may be considered an L3 hash. This should only be done if the | |
1118 | * driver can't unambiguously determine that the HW computed the hash at | |
1119 | * the higher layer. Note that the "should" in the second property above | |
1120 | * permits this. | |
1121 | */ | |
1122 | enum pkt_hash_types { | |
1123 | PKT_HASH_TYPE_NONE, /* Undefined type */ | |
1124 | PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ | |
1125 | PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ | |
1126 | PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ | |
1127 | }; | |
1128 | ||
bcc83839 | 1129 | static inline void skb_clear_hash(struct sk_buff *skb) |
09323cc4 | 1130 | { |
bcc83839 | 1131 | skb->hash = 0; |
a3b18ddb | 1132 | skb->sw_hash = 0; |
bcc83839 TH |
1133 | skb->l4_hash = 0; |
1134 | } | |
1135 | ||
1136 | static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) | |
1137 | { | |
1138 | if (!skb->l4_hash) | |
1139 | skb_clear_hash(skb); | |
1140 | } | |
1141 | ||
1142 | static inline void | |
1143 | __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) | |
1144 | { | |
1145 | skb->l4_hash = is_l4; | |
1146 | skb->sw_hash = is_sw; | |
61b905da | 1147 | skb->hash = hash; |
09323cc4 TH |
1148 | } |
1149 | ||
bcc83839 TH |
1150 | static inline void |
1151 | skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) | |
1152 | { | |
1153 | /* Used by drivers to set hash from HW */ | |
1154 | __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); | |
1155 | } | |
1156 | ||
1157 | static inline void | |
1158 | __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) | |
1159 | { | |
1160 | __skb_set_hash(skb, hash, true, is_l4); | |
1161 | } | |
1162 | ||
e5276937 | 1163 | void __skb_get_hash(struct sk_buff *skb); |
b917783c | 1164 | u32 __skb_get_hash_symmetric(const struct sk_buff *skb); |
e5276937 TH |
1165 | u32 skb_get_poff(const struct sk_buff *skb); |
1166 | u32 __skb_get_poff(const struct sk_buff *skb, void *data, | |
1167 | const struct flow_keys *keys, int hlen); | |
1168 | __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, | |
1169 | void *data, int hlen_proto); | |
1170 | ||
1171 | static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, | |
1172 | int thoff, u8 ip_proto) | |
1173 | { | |
1174 | return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); | |
1175 | } | |
1176 | ||
1177 | void skb_flow_dissector_init(struct flow_dissector *flow_dissector, | |
1178 | const struct flow_dissector_key *key, | |
1179 | unsigned int key_count); | |
1180 | ||
1181 | bool __skb_flow_dissect(const struct sk_buff *skb, | |
1182 | struct flow_dissector *flow_dissector, | |
1183 | void *target_container, | |
cd79a238 TH |
1184 | void *data, __be16 proto, int nhoff, int hlen, |
1185 | unsigned int flags); | |
e5276937 TH |
1186 | |
1187 | static inline bool skb_flow_dissect(const struct sk_buff *skb, | |
1188 | struct flow_dissector *flow_dissector, | |
cd79a238 | 1189 | void *target_container, unsigned int flags) |
e5276937 TH |
1190 | { |
1191 | return __skb_flow_dissect(skb, flow_dissector, target_container, | |
cd79a238 | 1192 | NULL, 0, 0, 0, flags); |
e5276937 TH |
1193 | } |
1194 | ||
1195 | static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, | |
cd79a238 TH |
1196 | struct flow_keys *flow, |
1197 | unsigned int flags) | |
e5276937 TH |
1198 | { |
1199 | memset(flow, 0, sizeof(*flow)); | |
1200 | return __skb_flow_dissect(skb, &flow_keys_dissector, flow, | |
cd79a238 | 1201 | NULL, 0, 0, 0, flags); |
e5276937 TH |
1202 | } |
1203 | ||
1204 | static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow, | |
1205 | void *data, __be16 proto, | |
cd79a238 TH |
1206 | int nhoff, int hlen, |
1207 | unsigned int flags) | |
e5276937 TH |
1208 | { |
1209 | memset(flow, 0, sizeof(*flow)); | |
1210 | return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow, | |
cd79a238 | 1211 | data, proto, nhoff, hlen, flags); |
e5276937 TH |
1212 | } |
1213 | ||
3958afa1 | 1214 | static inline __u32 skb_get_hash(struct sk_buff *skb) |
bfb564e7 | 1215 | { |
a3b18ddb | 1216 | if (!skb->l4_hash && !skb->sw_hash) |
3958afa1 | 1217 | __skb_get_hash(skb); |
bfb564e7 | 1218 | |
61b905da | 1219 | return skb->hash; |
bfb564e7 KK |
1220 | } |
1221 | ||
20a17bf6 | 1222 | static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) |
f70ea018 | 1223 | { |
c6cc1ca7 TH |
1224 | if (!skb->l4_hash && !skb->sw_hash) { |
1225 | struct flow_keys keys; | |
de4c1f8b | 1226 | __u32 hash = __get_hash_from_flowi6(fl6, &keys); |
c6cc1ca7 | 1227 | |
de4c1f8b | 1228 | __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); |
c6cc1ca7 | 1229 | } |
f70ea018 TH |
1230 | |
1231 | return skb->hash; | |
1232 | } | |
1233 | ||
50fb7992 TH |
1234 | __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb); |
1235 | ||
57bdf7f4 TH |
1236 | static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) |
1237 | { | |
61b905da | 1238 | return skb->hash; |
57bdf7f4 TH |
1239 | } |
1240 | ||
3df7a74e TH |
1241 | static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) |
1242 | { | |
61b905da | 1243 | to->hash = from->hash; |
a3b18ddb | 1244 | to->sw_hash = from->sw_hash; |
61b905da | 1245 | to->l4_hash = from->l4_hash; |
3df7a74e TH |
1246 | }; |
1247 | ||
4305b541 ACM |
1248 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
1249 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | |
1250 | { | |
1251 | return skb->head + skb->end; | |
1252 | } | |
ec47ea82 AD |
1253 | |
1254 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | |
1255 | { | |
1256 | return skb->end; | |
1257 | } | |
4305b541 ACM |
1258 | #else |
1259 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | |
1260 | { | |
1261 | return skb->end; | |
1262 | } | |
ec47ea82 AD |
1263 | |
1264 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | |
1265 | { | |
1266 | return skb->end - skb->head; | |
1267 | } | |
4305b541 ACM |
1268 | #endif |
1269 | ||
1da177e4 | 1270 | /* Internal */ |
4305b541 | 1271 | #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) |
1da177e4 | 1272 | |
ac45f602 PO |
1273 | static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) |
1274 | { | |
1275 | return &skb_shinfo(skb)->hwtstamps; | |
1276 | } | |
1277 | ||
52267790 WB |
1278 | static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) |
1279 | { | |
1280 | bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; | |
1281 | ||
1282 | return is_zcopy ? skb_uarg(skb) : NULL; | |
1283 | } | |
1284 | ||
1285 | static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg) | |
1286 | { | |
1287 | if (skb && uarg && !skb_zcopy(skb)) { | |
1288 | sock_zerocopy_get(uarg); | |
1289 | skb_shinfo(skb)->destructor_arg = uarg; | |
1290 | skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; | |
1291 | } | |
1292 | } | |
1293 | ||
1294 | /* Release a reference on a zerocopy structure */ | |
1295 | static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) | |
1296 | { | |
1297 | struct ubuf_info *uarg = skb_zcopy(skb); | |
1298 | ||
1299 | if (uarg) { | |
0a4a060b WB |
1300 | if (uarg->callback == sock_zerocopy_callback) { |
1301 | uarg->zerocopy = uarg->zerocopy && zerocopy; | |
1302 | sock_zerocopy_put(uarg); | |
1303 | } else { | |
1304 | uarg->callback(uarg, zerocopy); | |
1305 | } | |
1306 | ||
52267790 WB |
1307 | skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; |
1308 | } | |
1309 | } | |
1310 | ||
1311 | /* Abort a zerocopy operation and revert zckey on error in send syscall */ | |
1312 | static inline void skb_zcopy_abort(struct sk_buff *skb) | |
1313 | { | |
1314 | struct ubuf_info *uarg = skb_zcopy(skb); | |
1315 | ||
1316 | if (uarg) { | |
1317 | sock_zerocopy_put_abort(uarg); | |
1318 | skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; | |
1319 | } | |
1320 | } | |
1321 | ||
1da177e4 LT |
1322 | /** |
1323 | * skb_queue_empty - check if a queue is empty | |
1324 | * @list: queue head | |
1325 | * | |
1326 | * Returns true if the queue is empty, false otherwise. | |
1327 | */ | |
1328 | static inline int skb_queue_empty(const struct sk_buff_head *list) | |
1329 | { | |
fd44b93c | 1330 | return list->next == (const struct sk_buff *) list; |
1da177e4 LT |
1331 | } |
1332 | ||
fc7ebb21 DM |
1333 | /** |
1334 | * skb_queue_is_last - check if skb is the last entry in the queue | |
1335 | * @list: queue head | |
1336 | * @skb: buffer | |
1337 | * | |
1338 | * Returns true if @skb is the last buffer on the list. | |
1339 | */ | |
1340 | static inline bool skb_queue_is_last(const struct sk_buff_head *list, | |
1341 | const struct sk_buff *skb) | |
1342 | { | |
fd44b93c | 1343 | return skb->next == (const struct sk_buff *) list; |
fc7ebb21 DM |
1344 | } |
1345 | ||
832d11c5 IJ |
1346 | /** |
1347 | * skb_queue_is_first - check if skb is the first entry in the queue | |
1348 | * @list: queue head | |
1349 | * @skb: buffer | |
1350 | * | |
1351 | * Returns true if @skb is the first buffer on the list. | |
1352 | */ | |
1353 | static inline bool skb_queue_is_first(const struct sk_buff_head *list, | |
1354 | const struct sk_buff *skb) | |
1355 | { | |
fd44b93c | 1356 | return skb->prev == (const struct sk_buff *) list; |
832d11c5 IJ |
1357 | } |
1358 | ||
249c8b42 DM |
1359 | /** |
1360 | * skb_queue_next - return the next packet in the queue | |
1361 | * @list: queue head | |
1362 | * @skb: current buffer | |
1363 | * | |
1364 | * Return the next packet in @list after @skb. It is only valid to | |
1365 | * call this if skb_queue_is_last() evaluates to false. | |
1366 | */ | |
1367 | static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, | |
1368 | const struct sk_buff *skb) | |
1369 | { | |
1370 | /* This BUG_ON may seem severe, but if we just return then we | |
1371 | * are going to dereference garbage. | |
1372 | */ | |
1373 | BUG_ON(skb_queue_is_last(list, skb)); | |
1374 | return skb->next; | |
1375 | } | |
1376 | ||
832d11c5 IJ |
1377 | /** |
1378 | * skb_queue_prev - return the prev packet in the queue | |
1379 | * @list: queue head | |
1380 | * @skb: current buffer | |
1381 | * | |
1382 | * Return the prev packet in @list before @skb. It is only valid to | |
1383 | * call this if skb_queue_is_first() evaluates to false. | |
1384 | */ | |
1385 | static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, | |
1386 | const struct sk_buff *skb) | |
1387 | { | |
1388 | /* This BUG_ON may seem severe, but if we just return then we | |
1389 | * are going to dereference garbage. | |
1390 | */ | |
1391 | BUG_ON(skb_queue_is_first(list, skb)); | |
1392 | return skb->prev; | |
1393 | } | |
1394 | ||
1da177e4 LT |
1395 | /** |
1396 | * skb_get - reference buffer | |
1397 | * @skb: buffer to reference | |
1398 | * | |
1399 | * Makes another reference to a socket buffer and returns a pointer | |
1400 | * to the buffer. | |
1401 | */ | |
1402 | static inline struct sk_buff *skb_get(struct sk_buff *skb) | |
1403 | { | |
63354797 | 1404 | refcount_inc(&skb->users); |
1da177e4 LT |
1405 | return skb; |
1406 | } | |
1407 | ||
1408 | /* | |
1409 | * If users == 1, we are the only owner and are can avoid redundant | |
1410 | * atomic change. | |
1411 | */ | |
1412 | ||
1da177e4 LT |
1413 | /** |
1414 | * skb_cloned - is the buffer a clone | |
1415 | * @skb: buffer to check | |
1416 | * | |
1417 | * Returns true if the buffer was generated with skb_clone() and is | |
1418 | * one of multiple shared copies of the buffer. Cloned buffers are | |
1419 | * shared data so must not be written to under normal circumstances. | |
1420 | */ | |
1421 | static inline int skb_cloned(const struct sk_buff *skb) | |
1422 | { | |
1423 | return skb->cloned && | |
1424 | (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; | |
1425 | } | |
1426 | ||
14bbd6a5 PS |
1427 | static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) |
1428 | { | |
d0164adc | 1429 | might_sleep_if(gfpflags_allow_blocking(pri)); |
14bbd6a5 PS |
1430 | |
1431 | if (skb_cloned(skb)) | |
1432 | return pskb_expand_head(skb, 0, 0, pri); | |
1433 | ||
1434 | return 0; | |
1435 | } | |
1436 | ||
1da177e4 LT |
1437 | /** |
1438 | * skb_header_cloned - is the header a clone | |
1439 | * @skb: buffer to check | |
1440 | * | |
1441 | * Returns true if modifying the header part of the buffer requires | |
1442 | * the data to be copied. | |
1443 | */ | |
1444 | static inline int skb_header_cloned(const struct sk_buff *skb) | |
1445 | { | |
1446 | int dataref; | |
1447 | ||
1448 | if (!skb->cloned) | |
1449 | return 0; | |
1450 | ||
1451 | dataref = atomic_read(&skb_shinfo(skb)->dataref); | |
1452 | dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); | |
1453 | return dataref != 1; | |
1454 | } | |
1455 | ||
9580bf2e ED |
1456 | static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) |
1457 | { | |
1458 | might_sleep_if(gfpflags_allow_blocking(pri)); | |
1459 | ||
1460 | if (skb_header_cloned(skb)) | |
1461 | return pskb_expand_head(skb, 0, 0, pri); | |
1462 | ||
1463 | return 0; | |
1464 | } | |
1465 | ||
f4a775d1 ED |
1466 | /** |
1467 | * __skb_header_release - release reference to header | |
1468 | * @skb: buffer to operate on | |
f4a775d1 ED |
1469 | */ |
1470 | static inline void __skb_header_release(struct sk_buff *skb) | |
1471 | { | |
1472 | skb->nohdr = 1; | |
1473 | atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); | |
1474 | } | |
1475 | ||
1476 | ||
1da177e4 LT |
1477 | /** |
1478 | * skb_shared - is the buffer shared | |
1479 | * @skb: buffer to check | |
1480 | * | |
1481 | * Returns true if more than one person has a reference to this | |
1482 | * buffer. | |
1483 | */ | |
1484 | static inline int skb_shared(const struct sk_buff *skb) | |
1485 | { | |
63354797 | 1486 | return refcount_read(&skb->users) != 1; |
1da177e4 LT |
1487 | } |
1488 | ||
1489 | /** | |
1490 | * skb_share_check - check if buffer is shared and if so clone it | |
1491 | * @skb: buffer to check | |
1492 | * @pri: priority for memory allocation | |
1493 | * | |
1494 | * If the buffer is shared the buffer is cloned and the old copy | |
1495 | * drops a reference. A new clone with a single reference is returned. | |
1496 | * If the buffer is not shared the original buffer is returned. When | |
1497 | * being called from interrupt status or with spinlocks held pri must | |
1498 | * be GFP_ATOMIC. | |
1499 | * | |
1500 | * NULL is returned on a memory allocation failure. | |
1501 | */ | |
47061bc4 | 1502 | static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) |
1da177e4 | 1503 | { |
d0164adc | 1504 | might_sleep_if(gfpflags_allow_blocking(pri)); |
1da177e4 LT |
1505 | if (skb_shared(skb)) { |
1506 | struct sk_buff *nskb = skb_clone(skb, pri); | |
47061bc4 ED |
1507 | |
1508 | if (likely(nskb)) | |
1509 | consume_skb(skb); | |
1510 | else | |
1511 | kfree_skb(skb); | |
1da177e4 LT |
1512 | skb = nskb; |
1513 | } | |
1514 | return skb; | |
1515 | } | |
1516 | ||
1517 | /* | |
1518 | * Copy shared buffers into a new sk_buff. We effectively do COW on | |
1519 | * packets to handle cases where we have a local reader and forward | |
1520 | * and a couple of other messy ones. The normal one is tcpdumping | |
1521 | * a packet thats being forwarded. | |
1522 | */ | |
1523 | ||
1524 | /** | |
1525 | * skb_unshare - make a copy of a shared buffer | |
1526 | * @skb: buffer to check | |
1527 | * @pri: priority for memory allocation | |
1528 | * | |
1529 | * If the socket buffer is a clone then this function creates a new | |
1530 | * copy of the data, drops a reference count on the old copy and returns | |
1531 | * the new copy with the reference count at 1. If the buffer is not a clone | |
1532 | * the original buffer is returned. When called with a spinlock held or | |
1533 | * from interrupt state @pri must be %GFP_ATOMIC | |
1534 | * | |
1535 | * %NULL is returned on a memory allocation failure. | |
1536 | */ | |
e2bf521d | 1537 | static inline struct sk_buff *skb_unshare(struct sk_buff *skb, |
dd0fc66f | 1538 | gfp_t pri) |
1da177e4 | 1539 | { |
d0164adc | 1540 | might_sleep_if(gfpflags_allow_blocking(pri)); |
1da177e4 LT |
1541 | if (skb_cloned(skb)) { |
1542 | struct sk_buff *nskb = skb_copy(skb, pri); | |
31eff81e AA |
1543 | |
1544 | /* Free our shared copy */ | |
1545 | if (likely(nskb)) | |
1546 | consume_skb(skb); | |
1547 | else | |
1548 | kfree_skb(skb); | |
1da177e4 LT |
1549 | skb = nskb; |
1550 | } | |
1551 | return skb; | |
1552 | } | |
1553 | ||
1554 | /** | |
1a5778aa | 1555 | * skb_peek - peek at the head of an &sk_buff_head |
1da177e4 LT |
1556 | * @list_: list to peek at |
1557 | * | |
1558 | * Peek an &sk_buff. Unlike most other operations you _MUST_ | |
1559 | * be careful with this one. A peek leaves the buffer on the | |
1560 | * list and someone else may run off with it. You must hold | |
1561 | * the appropriate locks or have a private queue to do this. | |
1562 | * | |
1563 | * Returns %NULL for an empty list or a pointer to the head element. | |
1564 | * The reference count is not incremented and the reference is therefore | |
1565 | * volatile. Use with caution. | |
1566 | */ | |
05bdd2f1 | 1567 | static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) |
1da177e4 | 1568 | { |
18d07000 ED |
1569 | struct sk_buff *skb = list_->next; |
1570 | ||
1571 | if (skb == (struct sk_buff *)list_) | |
1572 | skb = NULL; | |
1573 | return skb; | |
1da177e4 LT |
1574 | } |
1575 | ||
da5ef6e5 PE |
1576 | /** |
1577 | * skb_peek_next - peek skb following the given one from a queue | |
1578 | * @skb: skb to start from | |
1579 | * @list_: list to peek at | |
1580 | * | |
1581 | * Returns %NULL when the end of the list is met or a pointer to the | |
1582 | * next element. The reference count is not incremented and the | |
1583 | * reference is therefore volatile. Use with caution. | |
1584 | */ | |
1585 | static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, | |
1586 | const struct sk_buff_head *list_) | |
1587 | { | |
1588 | struct sk_buff *next = skb->next; | |
18d07000 | 1589 | |
da5ef6e5 PE |
1590 | if (next == (struct sk_buff *)list_) |
1591 | next = NULL; | |
1592 | return next; | |
1593 | } | |
1594 | ||
1da177e4 | 1595 | /** |
1a5778aa | 1596 | * skb_peek_tail - peek at the tail of an &sk_buff_head |
1da177e4 LT |
1597 | * @list_: list to peek at |
1598 | * | |
1599 | * Peek an &sk_buff. Unlike most other operations you _MUST_ | |
1600 | * be careful with this one. A peek leaves the buffer on the | |
1601 | * list and someone else may run off with it. You must hold | |
1602 | * the appropriate locks or have a private queue to do this. | |
1603 | * | |
1604 | * Returns %NULL for an empty list or a pointer to the tail element. | |
1605 | * The reference count is not incremented and the reference is therefore | |
1606 | * volatile. Use with caution. | |
1607 | */ | |
05bdd2f1 | 1608 | static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) |
1da177e4 | 1609 | { |
18d07000 ED |
1610 | struct sk_buff *skb = list_->prev; |
1611 | ||
1612 | if (skb == (struct sk_buff *)list_) | |
1613 | skb = NULL; | |
1614 | return skb; | |
1615 | ||
1da177e4 LT |
1616 | } |
1617 | ||
1618 | /** | |
1619 | * skb_queue_len - get queue length | |
1620 | * @list_: list to measure | |
1621 | * | |
1622 | * Return the length of an &sk_buff queue. | |
1623 | */ | |
1624 | static inline __u32 skb_queue_len(const struct sk_buff_head *list_) | |
1625 | { | |
1626 | return list_->qlen; | |
1627 | } | |
1628 | ||
67fed459 DM |
1629 | /** |
1630 | * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head | |
1631 | * @list: queue to initialize | |
1632 | * | |
1633 | * This initializes only the list and queue length aspects of | |
1634 | * an sk_buff_head object. This allows to initialize the list | |
1635 | * aspects of an sk_buff_head without reinitializing things like | |
1636 | * the spinlock. It can also be used for on-stack sk_buff_head | |
1637 | * objects where the spinlock is known to not be used. | |
1638 | */ | |
1639 | static inline void __skb_queue_head_init(struct sk_buff_head *list) | |
1640 | { | |
1641 | list->prev = list->next = (struct sk_buff *)list; | |
1642 | list->qlen = 0; | |
1643 | } | |
1644 | ||
76f10ad0 AV |
1645 | /* |
1646 | * This function creates a split out lock class for each invocation; | |
1647 | * this is needed for now since a whole lot of users of the skb-queue | |
1648 | * infrastructure in drivers have different locking usage (in hardirq) | |
1649 | * than the networking core (in softirq only). In the long run either the | |
1650 | * network layer or drivers should need annotation to consolidate the | |
1651 | * main types of usage into 3 classes. | |
1652 | */ | |
1da177e4 LT |
1653 | static inline void skb_queue_head_init(struct sk_buff_head *list) |
1654 | { | |
1655 | spin_lock_init(&list->lock); | |
67fed459 | 1656 | __skb_queue_head_init(list); |
1da177e4 LT |
1657 | } |
1658 | ||
c2ecba71 PE |
1659 | static inline void skb_queue_head_init_class(struct sk_buff_head *list, |
1660 | struct lock_class_key *class) | |
1661 | { | |
1662 | skb_queue_head_init(list); | |
1663 | lockdep_set_class(&list->lock, class); | |
1664 | } | |
1665 | ||
1da177e4 | 1666 | /* |
bf299275 | 1667 | * Insert an sk_buff on a list. |
1da177e4 LT |
1668 | * |
1669 | * The "__skb_xxxx()" functions are the non-atomic ones that | |
1670 | * can only be called with interrupts disabled. | |
1671 | */ | |
7965bd4d JP |
1672 | void skb_insert(struct sk_buff *old, struct sk_buff *newsk, |
1673 | struct sk_buff_head *list); | |
bf299275 GR |
1674 | static inline void __skb_insert(struct sk_buff *newsk, |
1675 | struct sk_buff *prev, struct sk_buff *next, | |
1676 | struct sk_buff_head *list) | |
1677 | { | |
1678 | newsk->next = next; | |
1679 | newsk->prev = prev; | |
1680 | next->prev = prev->next = newsk; | |
1681 | list->qlen++; | |
1682 | } | |
1da177e4 | 1683 | |
67fed459 DM |
1684 | static inline void __skb_queue_splice(const struct sk_buff_head *list, |
1685 | struct sk_buff *prev, | |
1686 | struct sk_buff *next) | |
1687 | { | |
1688 | struct sk_buff *first = list->next; | |
1689 | struct sk_buff *last = list->prev; | |
1690 | ||
1691 | first->prev = prev; | |
1692 | prev->next = first; | |
1693 | ||
1694 | last->next = next; | |
1695 | next->prev = last; | |
1696 | } | |
1697 | ||
1698 | /** | |
1699 | * skb_queue_splice - join two skb lists, this is designed for stacks | |
1700 | * @list: the new list to add | |
1701 | * @head: the place to add it in the first list | |
1702 | */ | |
1703 | static inline void skb_queue_splice(const struct sk_buff_head *list, | |
1704 | struct sk_buff_head *head) | |
1705 | { | |
1706 | if (!skb_queue_empty(list)) { | |
1707 | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | |
1d4a31dd | 1708 | head->qlen += list->qlen; |
67fed459 DM |
1709 | } |
1710 | } | |
1711 | ||
1712 | /** | |
d9619496 | 1713 | * skb_queue_splice_init - join two skb lists and reinitialise the emptied list |
67fed459 DM |
1714 | * @list: the new list to add |
1715 | * @head: the place to add it in the first list | |
1716 | * | |
1717 | * The list at @list is reinitialised | |
1718 | */ | |
1719 | static inline void skb_queue_splice_init(struct sk_buff_head *list, | |
1720 | struct sk_buff_head *head) | |
1721 | { | |
1722 | if (!skb_queue_empty(list)) { | |
1723 | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | |
1d4a31dd | 1724 | head->qlen += list->qlen; |
67fed459 DM |
1725 | __skb_queue_head_init(list); |
1726 | } | |
1727 | } | |
1728 | ||
1729 | /** | |
1730 | * skb_queue_splice_tail - join two skb lists, each list being a queue | |
1731 | * @list: the new list to add | |
1732 | * @head: the place to add it in the first list | |
1733 | */ | |
1734 | static inline void skb_queue_splice_tail(const struct sk_buff_head *list, | |
1735 | struct sk_buff_head *head) | |
1736 | { | |
1737 | if (!skb_queue_empty(list)) { | |
1738 | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | |
1d4a31dd | 1739 | head->qlen += list->qlen; |
67fed459 DM |
1740 | } |
1741 | } | |
1742 | ||
1743 | /** | |
d9619496 | 1744 | * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list |
67fed459 DM |
1745 | * @list: the new list to add |
1746 | * @head: the place to add it in the first list | |
1747 | * | |
1748 | * Each of the lists is a queue. | |
1749 | * The list at @list is reinitialised | |
1750 | */ | |
1751 | static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, | |
1752 | struct sk_buff_head *head) | |
1753 | { | |
1754 | if (!skb_queue_empty(list)) { | |
1755 | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | |
1d4a31dd | 1756 | head->qlen += list->qlen; |
67fed459 DM |
1757 | __skb_queue_head_init(list); |
1758 | } | |
1759 | } | |
1760 | ||
1da177e4 | 1761 | /** |
300ce174 | 1762 | * __skb_queue_after - queue a buffer at the list head |
1da177e4 | 1763 | * @list: list to use |
300ce174 | 1764 | * @prev: place after this buffer |
1da177e4 LT |
1765 | * @newsk: buffer to queue |
1766 | * | |
300ce174 | 1767 | * Queue a buffer int the middle of a list. This function takes no locks |
1da177e4 LT |
1768 | * and you must therefore hold required locks before calling it. |
1769 | * | |
1770 | * A buffer cannot be placed on two lists at the same time. | |
1771 | */ | |
300ce174 SH |
1772 | static inline void __skb_queue_after(struct sk_buff_head *list, |
1773 | struct sk_buff *prev, | |
1774 | struct sk_buff *newsk) | |
1da177e4 | 1775 | { |
bf299275 | 1776 | __skb_insert(newsk, prev, prev->next, list); |
1da177e4 LT |
1777 | } |
1778 | ||
7965bd4d JP |
1779 | void skb_append(struct sk_buff *old, struct sk_buff *newsk, |
1780 | struct sk_buff_head *list); | |
7de6c033 | 1781 | |
f5572855 GR |
1782 | static inline void __skb_queue_before(struct sk_buff_head *list, |
1783 | struct sk_buff *next, | |
1784 | struct sk_buff *newsk) | |
1785 | { | |
1786 | __skb_insert(newsk, next->prev, next, list); | |
1787 | } | |
1788 | ||
300ce174 SH |
1789 | /** |
1790 | * __skb_queue_head - queue a buffer at the list head | |
1791 | * @list: list to use | |
1792 | * @newsk: buffer to queue | |
1793 | * | |
1794 | * Queue a buffer at the start of a list. This function takes no locks | |
1795 | * and you must therefore hold required locks before calling it. | |
1796 | * | |
1797 | * A buffer cannot be placed on two lists at the same time. | |
1798 | */ | |
7965bd4d | 1799 | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); |
300ce174 SH |
1800 | static inline void __skb_queue_head(struct sk_buff_head *list, |
1801 | struct sk_buff *newsk) | |
1802 | { | |
1803 | __skb_queue_after(list, (struct sk_buff *)list, newsk); | |
1804 | } | |
1805 | ||
1da177e4 LT |
1806 | /** |
1807 | * __skb_queue_tail - queue a buffer at the list tail | |
1808 | * @list: list to use | |
1809 | * @newsk: buffer to queue | |
1810 | * | |
1811 | * Queue a buffer at the end of a list. This function takes no locks | |
1812 | * and you must therefore hold required locks before calling it. | |
1813 | * | |
1814 | * A buffer cannot be placed on two lists at the same time. | |
1815 | */ | |
7965bd4d | 1816 | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); |
1da177e4 LT |
1817 | static inline void __skb_queue_tail(struct sk_buff_head *list, |
1818 | struct sk_buff *newsk) | |
1819 | { | |
f5572855 | 1820 | __skb_queue_before(list, (struct sk_buff *)list, newsk); |
1da177e4 LT |
1821 | } |
1822 | ||
1da177e4 LT |
1823 | /* |
1824 | * remove sk_buff from list. _Must_ be called atomically, and with | |
1825 | * the list known.. | |
1826 | */ | |
7965bd4d | 1827 | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); |
1da177e4 LT |
1828 | static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) |
1829 | { | |
1830 | struct sk_buff *next, *prev; | |
1831 | ||
1832 | list->qlen--; | |
1833 | next = skb->next; | |
1834 | prev = skb->prev; | |
1835 | skb->next = skb->prev = NULL; | |
1da177e4 LT |
1836 | next->prev = prev; |
1837 | prev->next = next; | |
1838 | } | |
1839 | ||
f525c06d GR |
1840 | /** |
1841 | * __skb_dequeue - remove from the head of the queue | |
1842 | * @list: list to dequeue from | |
1843 | * | |
1844 | * Remove the head of the list. This function does not take any locks | |
1845 | * so must be used with appropriate locks held only. The head item is | |
1846 | * returned or %NULL if the list is empty. | |
1847 | */ | |
7965bd4d | 1848 | struct sk_buff *skb_dequeue(struct sk_buff_head *list); |
f525c06d GR |
1849 | static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) |
1850 | { | |
1851 | struct sk_buff *skb = skb_peek(list); | |
1852 | if (skb) | |
1853 | __skb_unlink(skb, list); | |
1854 | return skb; | |
1855 | } | |
1da177e4 LT |
1856 | |
1857 | /** | |
1858 | * __skb_dequeue_tail - remove from the tail of the queue | |
1859 | * @list: list to dequeue from | |
1860 | * | |
1861 | * Remove the tail of the list. This function does not take any locks | |
1862 | * so must be used with appropriate locks held only. The tail item is | |
1863 | * returned or %NULL if the list is empty. | |
1864 | */ | |
7965bd4d | 1865 | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); |
1da177e4 LT |
1866 | static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) |
1867 | { | |
1868 | struct sk_buff *skb = skb_peek_tail(list); | |
1869 | if (skb) | |
1870 | __skb_unlink(skb, list); | |
1871 | return skb; | |
1872 | } | |
1873 | ||
1874 | ||
bdcc0924 | 1875 | static inline bool skb_is_nonlinear(const struct sk_buff *skb) |
1da177e4 LT |
1876 | { |
1877 | return skb->data_len; | |
1878 | } | |
1879 | ||
1880 | static inline unsigned int skb_headlen(const struct sk_buff *skb) | |
1881 | { | |
1882 | return skb->len - skb->data_len; | |
1883 | } | |
1884 | ||
3ece7826 | 1885 | static inline unsigned int __skb_pagelen(const struct sk_buff *skb) |
1da177e4 | 1886 | { |
c72d8cda | 1887 | unsigned int i, len = 0; |
1da177e4 | 1888 | |
c72d8cda | 1889 | for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) |
9e903e08 | 1890 | len += skb_frag_size(&skb_shinfo(skb)->frags[i]); |
3ece7826 WB |
1891 | return len; |
1892 | } | |
1893 | ||
1894 | static inline unsigned int skb_pagelen(const struct sk_buff *skb) | |
1895 | { | |
1896 | return skb_headlen(skb) + __skb_pagelen(skb); | |
1da177e4 LT |
1897 | } |
1898 | ||
131ea667 IC |
1899 | /** |
1900 | * __skb_fill_page_desc - initialise a paged fragment in an skb | |
1901 | * @skb: buffer containing fragment to be initialised | |
1902 | * @i: paged fragment index to initialise | |
1903 | * @page: the page to use for this fragment | |
1904 | * @off: the offset to the data with @page | |
1905 | * @size: the length of the data | |
1906 | * | |
1907 | * Initialises the @i'th fragment of @skb to point to &size bytes at | |
1908 | * offset @off within @page. | |
1909 | * | |
1910 | * Does not take any additional reference on the fragment. | |
1911 | */ | |
1912 | static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, | |
1913 | struct page *page, int off, int size) | |
1da177e4 LT |
1914 | { |
1915 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | |
1916 | ||
c48a11c7 | 1917 | /* |
2f064f34 MH |
1918 | * Propagate page pfmemalloc to the skb if we can. The problem is |
1919 | * that not all callers have unique ownership of the page but rely | |
1920 | * on page_is_pfmemalloc doing the right thing(tm). | |
c48a11c7 | 1921 | */ |
a8605c60 | 1922 | frag->page.p = page; |
1da177e4 | 1923 | frag->page_offset = off; |
9e903e08 | 1924 | skb_frag_size_set(frag, size); |
cca7af38 PE |
1925 | |
1926 | page = compound_head(page); | |
2f064f34 | 1927 | if (page_is_pfmemalloc(page)) |
cca7af38 | 1928 | skb->pfmemalloc = true; |
131ea667 IC |
1929 | } |
1930 | ||
1931 | /** | |
1932 | * skb_fill_page_desc - initialise a paged fragment in an skb | |
1933 | * @skb: buffer containing fragment to be initialised | |
1934 | * @i: paged fragment index to initialise | |
1935 | * @page: the page to use for this fragment | |
1936 | * @off: the offset to the data with @page | |
1937 | * @size: the length of the data | |
1938 | * | |
1939 | * As per __skb_fill_page_desc() -- initialises the @i'th fragment of | |
bc32383c | 1940 | * @skb to point to @size bytes at offset @off within @page. In |
131ea667 IC |
1941 | * addition updates @skb such that @i is the last fragment. |
1942 | * | |
1943 | * Does not take any additional reference on the fragment. | |
1944 | */ | |
1945 | static inline void skb_fill_page_desc(struct sk_buff *skb, int i, | |
1946 | struct page *page, int off, int size) | |
1947 | { | |
1948 | __skb_fill_page_desc(skb, i, page, off, size); | |
1da177e4 LT |
1949 | skb_shinfo(skb)->nr_frags = i + 1; |
1950 | } | |
1951 | ||
7965bd4d JP |
1952 | void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, |
1953 | int size, unsigned int truesize); | |
654bed16 | 1954 | |
f8e617e1 JW |
1955 | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, |
1956 | unsigned int truesize); | |
1957 | ||
1da177e4 | 1958 | #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) |
21dc3301 | 1959 | #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) |
1da177e4 LT |
1960 | #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) |
1961 | ||
27a884dc ACM |
1962 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
1963 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | |
1964 | { | |
1965 | return skb->head + skb->tail; | |
1966 | } | |
1967 | ||
1968 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | |
1969 | { | |
1970 | skb->tail = skb->data - skb->head; | |
1971 | } | |
1972 | ||
1973 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | |
1974 | { | |
1975 | skb_reset_tail_pointer(skb); | |
1976 | skb->tail += offset; | |
1977 | } | |
7cc46190 | 1978 | |
27a884dc ACM |
1979 | #else /* NET_SKBUFF_DATA_USES_OFFSET */ |
1980 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | |
1981 | { | |
1982 | return skb->tail; | |
1983 | } | |
1984 | ||
1985 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | |
1986 | { | |
1987 | skb->tail = skb->data; | |
1988 | } | |
1989 | ||
1990 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | |
1991 | { | |
1992 | skb->tail = skb->data + offset; | |
1993 | } | |
4305b541 | 1994 | |
27a884dc ACM |
1995 | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ |
1996 | ||
1da177e4 LT |
1997 | /* |
1998 | * Add data to an sk_buff | |
1999 | */ | |
4df864c1 JB |
2000 | void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); |
2001 | void *skb_put(struct sk_buff *skb, unsigned int len); | |
2002 | static inline void *__skb_put(struct sk_buff *skb, unsigned int len) | |
1da177e4 | 2003 | { |
4df864c1 | 2004 | void *tmp = skb_tail_pointer(skb); |
1da177e4 LT |
2005 | SKB_LINEAR_ASSERT(skb); |
2006 | skb->tail += len; | |
2007 | skb->len += len; | |
2008 | return tmp; | |
2009 | } | |
2010 | ||
de77b966 | 2011 | static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) |
2012 | { | |
2013 | void *tmp = __skb_put(skb, len); | |
2014 | ||
2015 | memset(tmp, 0, len); | |
2016 | return tmp; | |
2017 | } | |
2018 | ||
2019 | static inline void *__skb_put_data(struct sk_buff *skb, const void *data, | |
2020 | unsigned int len) | |
2021 | { | |
2022 | void *tmp = __skb_put(skb, len); | |
2023 | ||
2024 | memcpy(tmp, data, len); | |
2025 | return tmp; | |
2026 | } | |
2027 | ||
2028 | static inline void __skb_put_u8(struct sk_buff *skb, u8 val) | |
2029 | { | |
2030 | *(u8 *)__skb_put(skb, 1) = val; | |
2031 | } | |
2032 | ||
83ad357d | 2033 | static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) |
e45a79da | 2034 | { |
83ad357d | 2035 | void *tmp = skb_put(skb, len); |
e45a79da JB |
2036 | |
2037 | memset(tmp, 0, len); | |
2038 | ||
2039 | return tmp; | |
2040 | } | |
2041 | ||
59ae1d12 JB |
2042 | static inline void *skb_put_data(struct sk_buff *skb, const void *data, |
2043 | unsigned int len) | |
2044 | { | |
2045 | void *tmp = skb_put(skb, len); | |
2046 | ||
2047 | memcpy(tmp, data, len); | |
2048 | ||
2049 | return tmp; | |
2050 | } | |
2051 | ||
634fef61 JB |
2052 | static inline void skb_put_u8(struct sk_buff *skb, u8 val) |
2053 | { | |
2054 | *(u8 *)skb_put(skb, 1) = val; | |
2055 | } | |
2056 | ||
d58ff351 JB |
2057 | void *skb_push(struct sk_buff *skb, unsigned int len); |
2058 | static inline void *__skb_push(struct sk_buff *skb, unsigned int len) | |
1da177e4 LT |
2059 | { |
2060 | skb->data -= len; | |
2061 | skb->len += len; | |
2062 | return skb->data; | |
2063 | } | |
2064 | ||
af72868b JB |
2065 | void *skb_pull(struct sk_buff *skb, unsigned int len); |
2066 | static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) | |
1da177e4 LT |
2067 | { |
2068 | skb->len -= len; | |
2069 | BUG_ON(skb->len < skb->data_len); | |
2070 | return skb->data += len; | |
2071 | } | |
2072 | ||
af72868b | 2073 | static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) |
47d29646 DM |
2074 | { |
2075 | return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); | |
2076 | } | |
2077 | ||
af72868b | 2078 | void *__pskb_pull_tail(struct sk_buff *skb, int delta); |
1da177e4 | 2079 | |
af72868b | 2080 | static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) |
1da177e4 LT |
2081 | { |
2082 | if (len > skb_headlen(skb) && | |
987c402a | 2083 | !__pskb_pull_tail(skb, len - skb_headlen(skb))) |
1da177e4 LT |
2084 | return NULL; |
2085 | skb->len -= len; | |
2086 | return skb->data += len; | |
2087 | } | |
2088 | ||
af72868b | 2089 | static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) |
1da177e4 LT |
2090 | { |
2091 | return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); | |
2092 | } | |
2093 | ||
2094 | static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) | |
2095 | { | |
2096 | if (likely(len <= skb_headlen(skb))) | |
2097 | return 1; | |
2098 | if (unlikely(len > skb->len)) | |
2099 | return 0; | |
987c402a | 2100 | return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; |
1da177e4 LT |
2101 | } |
2102 | ||
c8c8b127 ED |
2103 | void skb_condense(struct sk_buff *skb); |
2104 | ||
1da177e4 LT |
2105 | /** |
2106 | * skb_headroom - bytes at buffer head | |
2107 | * @skb: buffer to check | |
2108 | * | |
2109 | * Return the number of bytes of free space at the head of an &sk_buff. | |
2110 | */ | |
c2636b4d | 2111 | static inline unsigned int skb_headroom(const struct sk_buff *skb) |
1da177e4 LT |
2112 | { |
2113 | return skb->data - skb->head; | |
2114 | } | |
2115 | ||
2116 | /** | |
2117 | * skb_tailroom - bytes at buffer end | |
2118 | * @skb: buffer to check | |
2119 | * | |
2120 | * Return the number of bytes of free space at the tail of an sk_buff | |
2121 | */ | |
2122 | static inline int skb_tailroom(const struct sk_buff *skb) | |
2123 | { | |
4305b541 | 2124 | return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; |
1da177e4 LT |
2125 | } |
2126 | ||
a21d4572 ED |
2127 | /** |
2128 | * skb_availroom - bytes at buffer end | |
2129 | * @skb: buffer to check | |
2130 | * | |
2131 | * Return the number of bytes of free space at the tail of an sk_buff | |
2132 | * allocated by sk_stream_alloc() | |
2133 | */ | |
2134 | static inline int skb_availroom(const struct sk_buff *skb) | |
2135 | { | |
16fad69c ED |
2136 | if (skb_is_nonlinear(skb)) |
2137 | return 0; | |
2138 | ||
2139 | return skb->end - skb->tail - skb->reserved_tailroom; | |
a21d4572 ED |
2140 | } |
2141 | ||
1da177e4 LT |
2142 | /** |
2143 | * skb_reserve - adjust headroom | |
2144 | * @skb: buffer to alter | |
2145 | * @len: bytes to move | |
2146 | * | |
2147 | * Increase the headroom of an empty &sk_buff by reducing the tail | |
2148 | * room. This is only allowed for an empty buffer. | |
2149 | */ | |
8243126c | 2150 | static inline void skb_reserve(struct sk_buff *skb, int len) |
1da177e4 LT |
2151 | { |
2152 | skb->data += len; | |
2153 | skb->tail += len; | |
2154 | } | |
2155 | ||
1837b2e2 BP |
2156 | /** |
2157 | * skb_tailroom_reserve - adjust reserved_tailroom | |
2158 | * @skb: buffer to alter | |
2159 | * @mtu: maximum amount of headlen permitted | |
2160 | * @needed_tailroom: minimum amount of reserved_tailroom | |
2161 | * | |
2162 | * Set reserved_tailroom so that headlen can be as large as possible but | |
2163 | * not larger than mtu and tailroom cannot be smaller than | |
2164 | * needed_tailroom. | |
2165 | * The required headroom should already have been reserved before using | |
2166 | * this function. | |
2167 | */ | |
2168 | static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, | |
2169 | unsigned int needed_tailroom) | |
2170 | { | |
2171 | SKB_LINEAR_ASSERT(skb); | |
2172 | if (mtu < skb_tailroom(skb) - needed_tailroom) | |
2173 | /* use at most mtu */ | |
2174 | skb->reserved_tailroom = skb_tailroom(skb) - mtu; | |
2175 | else | |
2176 | /* use up to all available space */ | |
2177 | skb->reserved_tailroom = needed_tailroom; | |
2178 | } | |
2179 | ||
8bce6d7d TH |
2180 | #define ENCAP_TYPE_ETHER 0 |
2181 | #define ENCAP_TYPE_IPPROTO 1 | |
2182 | ||
2183 | static inline void skb_set_inner_protocol(struct sk_buff *skb, | |
2184 | __be16 protocol) | |
2185 | { | |
2186 | skb->inner_protocol = protocol; | |
2187 | skb->inner_protocol_type = ENCAP_TYPE_ETHER; | |
2188 | } | |
2189 | ||
2190 | static inline void skb_set_inner_ipproto(struct sk_buff *skb, | |
2191 | __u8 ipproto) | |
2192 | { | |
2193 | skb->inner_ipproto = ipproto; | |
2194 | skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; | |
2195 | } | |
2196 | ||
6a674e9c JG |
2197 | static inline void skb_reset_inner_headers(struct sk_buff *skb) |
2198 | { | |
aefbd2b3 | 2199 | skb->inner_mac_header = skb->mac_header; |
6a674e9c JG |
2200 | skb->inner_network_header = skb->network_header; |
2201 | skb->inner_transport_header = skb->transport_header; | |
2202 | } | |
2203 | ||
0b5c9db1 JP |
2204 | static inline void skb_reset_mac_len(struct sk_buff *skb) |
2205 | { | |
2206 | skb->mac_len = skb->network_header - skb->mac_header; | |
2207 | } | |
2208 | ||
6a674e9c JG |
2209 | static inline unsigned char *skb_inner_transport_header(const struct sk_buff |
2210 | *skb) | |
2211 | { | |
2212 | return skb->head + skb->inner_transport_header; | |
2213 | } | |
2214 | ||
55dc5a9f TH |
2215 | static inline int skb_inner_transport_offset(const struct sk_buff *skb) |
2216 | { | |
2217 | return skb_inner_transport_header(skb) - skb->data; | |
2218 | } | |
2219 | ||
6a674e9c JG |
2220 | static inline void skb_reset_inner_transport_header(struct sk_buff *skb) |
2221 | { | |
2222 | skb->inner_transport_header = skb->data - skb->head; | |
2223 | } | |
2224 | ||
2225 | static inline void skb_set_inner_transport_header(struct sk_buff *skb, | |
2226 | const int offset) | |
2227 | { | |
2228 | skb_reset_inner_transport_header(skb); | |
2229 | skb->inner_transport_header += offset; | |
2230 | } | |
2231 | ||
2232 | static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) | |
2233 | { | |
2234 | return skb->head + skb->inner_network_header; | |
2235 | } | |
2236 | ||
2237 | static inline void skb_reset_inner_network_header(struct sk_buff *skb) | |
2238 | { | |
2239 | skb->inner_network_header = skb->data - skb->head; | |
2240 | } | |
2241 | ||
2242 | static inline void skb_set_inner_network_header(struct sk_buff *skb, | |
2243 | const int offset) | |
2244 | { | |
2245 | skb_reset_inner_network_header(skb); | |
2246 | skb->inner_network_header += offset; | |
2247 | } | |
2248 | ||
aefbd2b3 PS |
2249 | static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) |
2250 | { | |
2251 | return skb->head + skb->inner_mac_header; | |
2252 | } | |
2253 | ||
2254 | static inline void skb_reset_inner_mac_header(struct sk_buff *skb) | |
2255 | { | |
2256 | skb->inner_mac_header = skb->data - skb->head; | |
2257 | } | |
2258 | ||
2259 | static inline void skb_set_inner_mac_header(struct sk_buff *skb, | |
2260 | const int offset) | |
2261 | { | |
2262 | skb_reset_inner_mac_header(skb); | |
2263 | skb->inner_mac_header += offset; | |
2264 | } | |
fda55eca ED |
2265 | static inline bool skb_transport_header_was_set(const struct sk_buff *skb) |
2266 | { | |
35d04610 | 2267 | return skb->transport_header != (typeof(skb->transport_header))~0U; |
fda55eca ED |
2268 | } |
2269 | ||
9c70220b ACM |
2270 | static inline unsigned char *skb_transport_header(const struct sk_buff *skb) |
2271 | { | |
2e07fa9c | 2272 | return skb->head + skb->transport_header; |
9c70220b ACM |
2273 | } |
2274 | ||
badff6d0 ACM |
2275 | static inline void skb_reset_transport_header(struct sk_buff *skb) |
2276 | { | |
2e07fa9c | 2277 | skb->transport_header = skb->data - skb->head; |
badff6d0 ACM |
2278 | } |
2279 | ||
967b05f6 ACM |
2280 | static inline void skb_set_transport_header(struct sk_buff *skb, |
2281 | const int offset) | |
2282 | { | |
2e07fa9c ACM |
2283 | skb_reset_transport_header(skb); |
2284 | skb->transport_header += offset; | |
ea2ae17d ACM |
2285 | } |
2286 | ||
d56f90a7 ACM |
2287 | static inline unsigned char *skb_network_header(const struct sk_buff *skb) |
2288 | { | |
2e07fa9c | 2289 | return skb->head + skb->network_header; |
d56f90a7 ACM |
2290 | } |
2291 | ||
c1d2bbe1 ACM |
2292 | static inline void skb_reset_network_header(struct sk_buff *skb) |
2293 | { | |
2e07fa9c | 2294 | skb->network_header = skb->data - skb->head; |
c1d2bbe1 ACM |
2295 | } |
2296 | ||
c14d2450 ACM |
2297 | static inline void skb_set_network_header(struct sk_buff *skb, const int offset) |
2298 | { | |
2e07fa9c ACM |
2299 | skb_reset_network_header(skb); |
2300 | skb->network_header += offset; | |
c14d2450 ACM |
2301 | } |
2302 | ||
2e07fa9c | 2303 | static inline unsigned char *skb_mac_header(const struct sk_buff *skb) |
bbe735e4 | 2304 | { |
2e07fa9c | 2305 | return skb->head + skb->mac_header; |
bbe735e4 ACM |
2306 | } |
2307 | ||
ea6da4fd AV |
2308 | static inline int skb_mac_offset(const struct sk_buff *skb) |
2309 | { | |
2310 | return skb_mac_header(skb) - skb->data; | |
2311 | } | |
2312 | ||
0daf4349 DB |
2313 | static inline u32 skb_mac_header_len(const struct sk_buff *skb) |
2314 | { | |
2315 | return skb->network_header - skb->mac_header; | |
2316 | } | |
2317 | ||
2e07fa9c | 2318 | static inline int skb_mac_header_was_set(const struct sk_buff *skb) |
cfe1fc77 | 2319 | { |
35d04610 | 2320 | return skb->mac_header != (typeof(skb->mac_header))~0U; |
2e07fa9c ACM |
2321 | } |
2322 | ||
2323 | static inline void skb_reset_mac_header(struct sk_buff *skb) | |
2324 | { | |
2325 | skb->mac_header = skb->data - skb->head; | |
2326 | } | |
2327 | ||
2328 | static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) | |
2329 | { | |
2330 | skb_reset_mac_header(skb); | |
2331 | skb->mac_header += offset; | |
2332 | } | |
2333 | ||
0e3da5bb TT |
2334 | static inline void skb_pop_mac_header(struct sk_buff *skb) |
2335 | { | |
2336 | skb->mac_header = skb->network_header; | |
2337 | } | |
2338 | ||
fbbdb8f0 YX |
2339 | static inline void skb_probe_transport_header(struct sk_buff *skb, |
2340 | const int offset_hint) | |
2341 | { | |
2342 | struct flow_keys keys; | |
2343 | ||
2344 | if (skb_transport_header_was_set(skb)) | |
2345 | return; | |
cd79a238 | 2346 | else if (skb_flow_dissect_flow_keys(skb, &keys, 0)) |
42aecaa9 | 2347 | skb_set_transport_header(skb, keys.control.thoff); |
fbbdb8f0 YX |
2348 | else |
2349 | skb_set_transport_header(skb, offset_hint); | |
2350 | } | |
2351 | ||
03606895 ED |
2352 | static inline void skb_mac_header_rebuild(struct sk_buff *skb) |
2353 | { | |
2354 | if (skb_mac_header_was_set(skb)) { | |
2355 | const unsigned char *old_mac = skb_mac_header(skb); | |
2356 | ||
2357 | skb_set_mac_header(skb, -skb->mac_len); | |
2358 | memmove(skb_mac_header(skb), old_mac, skb->mac_len); | |
2359 | } | |
2360 | } | |
2361 | ||
04fb451e MM |
2362 | static inline int skb_checksum_start_offset(const struct sk_buff *skb) |
2363 | { | |
2364 | return skb->csum_start - skb_headroom(skb); | |
2365 | } | |
2366 | ||
08b64fcc AD |
2367 | static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) |
2368 | { | |
2369 | return skb->head + skb->csum_start; | |
2370 | } | |
2371 | ||
2e07fa9c ACM |
2372 | static inline int skb_transport_offset(const struct sk_buff *skb) |
2373 | { | |
2374 | return skb_transport_header(skb) - skb->data; | |
2375 | } | |
2376 | ||
2377 | static inline u32 skb_network_header_len(const struct sk_buff *skb) | |
2378 | { | |
2379 | return skb->transport_header - skb->network_header; | |
2380 | } | |
2381 | ||
6a674e9c JG |
2382 | static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) |
2383 | { | |
2384 | return skb->inner_transport_header - skb->inner_network_header; | |
2385 | } | |
2386 | ||
2e07fa9c ACM |
2387 | static inline int skb_network_offset(const struct sk_buff *skb) |
2388 | { | |
2389 | return skb_network_header(skb) - skb->data; | |
2390 | } | |
48d49d0c | 2391 | |
6a674e9c JG |
2392 | static inline int skb_inner_network_offset(const struct sk_buff *skb) |
2393 | { | |
2394 | return skb_inner_network_header(skb) - skb->data; | |
2395 | } | |
2396 | ||
f9599ce1 CG |
2397 | static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) |
2398 | { | |
2399 | return pskb_may_pull(skb, skb_network_offset(skb) + len); | |
2400 | } | |
2401 | ||
1da177e4 LT |
2402 | /* |
2403 | * CPUs often take a performance hit when accessing unaligned memory | |
2404 | * locations. The actual performance hit varies, it can be small if the | |
2405 | * hardware handles it or large if we have to take an exception and fix it | |
2406 | * in software. | |
2407 | * | |
2408 | * Since an ethernet header is 14 bytes network drivers often end up with | |
2409 | * the IP header at an unaligned offset. The IP header can be aligned by | |
2410 | * shifting the start of the packet by 2 bytes. Drivers should do this | |
2411 | * with: | |
2412 | * | |
8660c124 | 2413 | * skb_reserve(skb, NET_IP_ALIGN); |
1da177e4 LT |
2414 | * |
2415 | * The downside to this alignment of the IP header is that the DMA is now | |
2416 | * unaligned. On some architectures the cost of an unaligned DMA is high | |
2417 | * and this cost outweighs the gains made by aligning the IP header. | |
8660c124 | 2418 | * |
1da177e4 LT |
2419 | * Since this trade off varies between architectures, we allow NET_IP_ALIGN |
2420 | * to be overridden. | |
2421 | */ | |
2422 | #ifndef NET_IP_ALIGN | |
2423 | #define NET_IP_ALIGN 2 | |
2424 | #endif | |
2425 | ||
025be81e AB |
2426 | /* |
2427 | * The networking layer reserves some headroom in skb data (via | |
2428 | * dev_alloc_skb). This is used to avoid having to reallocate skb data when | |
2429 | * the header has to grow. In the default case, if the header has to grow | |
d6301d3d | 2430 | * 32 bytes or less we avoid the reallocation. |
025be81e AB |
2431 | * |
2432 | * Unfortunately this headroom changes the DMA alignment of the resulting | |
2433 | * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive | |
2434 | * on some architectures. An architecture can override this value, | |
2435 | * perhaps setting it to a cacheline in size (since that will maintain | |
2436 | * cacheline alignment of the DMA). It must be a power of 2. | |
2437 | * | |
d6301d3d | 2438 | * Various parts of the networking layer expect at least 32 bytes of |
025be81e | 2439 | * headroom, you should not reduce this. |
5933dd2f ED |
2440 | * |
2441 | * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) | |
2442 | * to reduce average number of cache lines per packet. | |
2443 | * get_rps_cpus() for example only access one 64 bytes aligned block : | |
18e8c134 | 2444 | * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) |
025be81e AB |
2445 | */ |
2446 | #ifndef NET_SKB_PAD | |
5933dd2f | 2447 | #define NET_SKB_PAD max(32, L1_CACHE_BYTES) |
025be81e AB |
2448 | #endif |
2449 | ||
7965bd4d | 2450 | int ___pskb_trim(struct sk_buff *skb, unsigned int len); |
1da177e4 | 2451 | |
5293efe6 | 2452 | static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) |
1da177e4 | 2453 | { |
c4264f27 | 2454 | if (unlikely(skb_is_nonlinear(skb))) { |
3cc0e873 HX |
2455 | WARN_ON(1); |
2456 | return; | |
2457 | } | |
27a884dc ACM |
2458 | skb->len = len; |
2459 | skb_set_tail_pointer(skb, len); | |
1da177e4 LT |
2460 | } |
2461 | ||
5293efe6 DB |
2462 | static inline void __skb_trim(struct sk_buff *skb, unsigned int len) |
2463 | { | |
2464 | __skb_set_length(skb, len); | |
2465 | } | |
2466 | ||
7965bd4d | 2467 | void skb_trim(struct sk_buff *skb, unsigned int len); |
1da177e4 LT |
2468 | |
2469 | static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) | |
2470 | { | |
3cc0e873 HX |
2471 | if (skb->data_len) |
2472 | return ___pskb_trim(skb, len); | |
2473 | __skb_trim(skb, len); | |
2474 | return 0; | |
1da177e4 LT |
2475 | } |
2476 | ||
2477 | static inline int pskb_trim(struct sk_buff *skb, unsigned int len) | |
2478 | { | |
2479 | return (len < skb->len) ? __pskb_trim(skb, len) : 0; | |
2480 | } | |
2481 | ||
e9fa4f7b HX |
2482 | /** |
2483 | * pskb_trim_unique - remove end from a paged unique (not cloned) buffer | |
2484 | * @skb: buffer to alter | |
2485 | * @len: new length | |
2486 | * | |
2487 | * This is identical to pskb_trim except that the caller knows that | |
2488 | * the skb is not cloned so we should never get an error due to out- | |
2489 | * of-memory. | |
2490 | */ | |
2491 | static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) | |
2492 | { | |
2493 | int err = pskb_trim(skb, len); | |
2494 | BUG_ON(err); | |
2495 | } | |
2496 | ||
5293efe6 DB |
2497 | static inline int __skb_grow(struct sk_buff *skb, unsigned int len) |
2498 | { | |
2499 | unsigned int diff = len - skb->len; | |
2500 | ||
2501 | if (skb_tailroom(skb) < diff) { | |
2502 | int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), | |
2503 | GFP_ATOMIC); | |
2504 | if (ret) | |
2505 | return ret; | |
2506 | } | |
2507 | __skb_set_length(skb, len); | |
2508 | return 0; | |
2509 | } | |
2510 | ||
1da177e4 LT |
2511 | /** |
2512 | * skb_orphan - orphan a buffer | |
2513 | * @skb: buffer to orphan | |
2514 | * | |
2515 | * If a buffer currently has an owner then we call the owner's | |
2516 | * destructor function and make the @skb unowned. The buffer continues | |
2517 | * to exist but is no longer charged to its former owner. | |
2518 | */ | |
2519 | static inline void skb_orphan(struct sk_buff *skb) | |
2520 | { | |
c34a7612 | 2521 | if (skb->destructor) { |
1da177e4 | 2522 | skb->destructor(skb); |
c34a7612 ED |
2523 | skb->destructor = NULL; |
2524 | skb->sk = NULL; | |
376c7311 ED |
2525 | } else { |
2526 | BUG_ON(skb->sk); | |
c34a7612 | 2527 | } |
1da177e4 LT |
2528 | } |
2529 | ||
a353e0ce MT |
2530 | /** |
2531 | * skb_orphan_frags - orphan the frags contained in a buffer | |
2532 | * @skb: buffer to orphan frags from | |
2533 | * @gfp_mask: allocation mask for replacement pages | |
2534 | * | |
2535 | * For each frag in the SKB which needs a destructor (i.e. has an | |
2536 | * owner) create a copy of that frag and release the original | |
2537 | * page by calling the destructor. | |
2538 | */ | |
2539 | static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) | |
2540 | { | |
1f8b977a WB |
2541 | if (likely(!skb_zcopy(skb))) |
2542 | return 0; | |
2543 | if (skb_uarg(skb)->callback == sock_zerocopy_callback) | |
2544 | return 0; | |
2545 | return skb_copy_ubufs(skb, gfp_mask); | |
2546 | } | |
2547 | ||
2548 | /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ | |
2549 | static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) | |
2550 | { | |
2551 | if (likely(!skb_zcopy(skb))) | |
a353e0ce MT |
2552 | return 0; |
2553 | return skb_copy_ubufs(skb, gfp_mask); | |
2554 | } | |
2555 | ||
1da177e4 LT |
2556 | /** |
2557 | * __skb_queue_purge - empty a list | |
2558 | * @list: list to empty | |
2559 | * | |
2560 | * Delete all buffers on an &sk_buff list. Each buffer is removed from | |
2561 | * the list and one reference dropped. This function does not take the | |
2562 | * list lock and the caller must hold the relevant locks to use it. | |
2563 | */ | |
7965bd4d | 2564 | void skb_queue_purge(struct sk_buff_head *list); |
1da177e4 LT |
2565 | static inline void __skb_queue_purge(struct sk_buff_head *list) |
2566 | { | |
2567 | struct sk_buff *skb; | |
2568 | while ((skb = __skb_dequeue(list)) != NULL) | |
2569 | kfree_skb(skb); | |
2570 | } | |
2571 | ||
9f5afeae YW |
2572 | void skb_rbtree_purge(struct rb_root *root); |
2573 | ||
7965bd4d | 2574 | void *netdev_alloc_frag(unsigned int fragsz); |
1da177e4 | 2575 | |
7965bd4d JP |
2576 | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, |
2577 | gfp_t gfp_mask); | |
8af27456 CH |
2578 | |
2579 | /** | |
2580 | * netdev_alloc_skb - allocate an skbuff for rx on a specific device | |
2581 | * @dev: network device to receive on | |
2582 | * @length: length to allocate | |
2583 | * | |
2584 | * Allocate a new &sk_buff and assign it a usage count of one. The | |
2585 | * buffer has unspecified headroom built in. Users should allocate | |
2586 | * the headroom they think they need without accounting for the | |
2587 | * built in space. The built in space is used for optimisations. | |
2588 | * | |
2589 | * %NULL is returned if there is no free memory. Although this function | |
2590 | * allocates memory it can be called from an interrupt. | |
2591 | */ | |
2592 | static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, | |
6f532612 | 2593 | unsigned int length) |
8af27456 CH |
2594 | { |
2595 | return __netdev_alloc_skb(dev, length, GFP_ATOMIC); | |
2596 | } | |
2597 | ||
6f532612 ED |
2598 | /* legacy helper around __netdev_alloc_skb() */ |
2599 | static inline struct sk_buff *__dev_alloc_skb(unsigned int length, | |
2600 | gfp_t gfp_mask) | |
2601 | { | |
2602 | return __netdev_alloc_skb(NULL, length, gfp_mask); | |
2603 | } | |
2604 | ||
2605 | /* legacy helper around netdev_alloc_skb() */ | |
2606 | static inline struct sk_buff *dev_alloc_skb(unsigned int length) | |
2607 | { | |
2608 | return netdev_alloc_skb(NULL, length); | |
2609 | } | |
2610 | ||
2611 | ||
4915a0de ED |
2612 | static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, |
2613 | unsigned int length, gfp_t gfp) | |
61321bbd | 2614 | { |
4915a0de | 2615 | struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); |
61321bbd ED |
2616 | |
2617 | if (NET_IP_ALIGN && skb) | |
2618 | skb_reserve(skb, NET_IP_ALIGN); | |
2619 | return skb; | |
2620 | } | |
2621 | ||
4915a0de ED |
2622 | static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, |
2623 | unsigned int length) | |
2624 | { | |
2625 | return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); | |
2626 | } | |
2627 | ||
181edb2b AD |
2628 | static inline void skb_free_frag(void *addr) |
2629 | { | |
8c2dd3e4 | 2630 | page_frag_free(addr); |
181edb2b AD |
2631 | } |
2632 | ||
ffde7328 | 2633 | void *napi_alloc_frag(unsigned int fragsz); |
fd11a83d AD |
2634 | struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, |
2635 | unsigned int length, gfp_t gfp_mask); | |
2636 | static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, | |
2637 | unsigned int length) | |
2638 | { | |
2639 | return __napi_alloc_skb(napi, length, GFP_ATOMIC); | |
2640 | } | |
795bb1c0 JDB |
2641 | void napi_consume_skb(struct sk_buff *skb, int budget); |
2642 | ||
2643 | void __kfree_skb_flush(void); | |
15fad714 | 2644 | void __kfree_skb_defer(struct sk_buff *skb); |
ffde7328 | 2645 | |
71dfda58 AD |
2646 | /** |
2647 | * __dev_alloc_pages - allocate page for network Rx | |
2648 | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx | |
2649 | * @order: size of the allocation | |
2650 | * | |
2651 | * Allocate a new page. | |
2652 | * | |
2653 | * %NULL is returned if there is no free memory. | |
2654 | */ | |
2655 | static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, | |
2656 | unsigned int order) | |
2657 | { | |
2658 | /* This piece of code contains several assumptions. | |
2659 | * 1. This is for device Rx, therefor a cold page is preferred. | |
2660 | * 2. The expectation is the user wants a compound page. | |
2661 | * 3. If requesting a order 0 page it will not be compound | |
2662 | * due to the check to see if order has a value in prep_new_page | |
2663 | * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to | |
2664 | * code in gfp_to_alloc_flags that should be enforcing this. | |
2665 | */ | |
453f85d4 | 2666 | gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; |
71dfda58 AD |
2667 | |
2668 | return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); | |
2669 | } | |
2670 | ||
2671 | static inline struct page *dev_alloc_pages(unsigned int order) | |
2672 | { | |
95829b3a | 2673 | return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); |
71dfda58 AD |
2674 | } |
2675 | ||
2676 | /** | |
2677 | * __dev_alloc_page - allocate a page for network Rx | |
2678 | * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx | |
2679 | * | |
2680 | * Allocate a new page. | |
2681 | * | |
2682 | * %NULL is returned if there is no free memory. | |
2683 | */ | |
2684 | static inline struct page *__dev_alloc_page(gfp_t gfp_mask) | |
2685 | { | |
2686 | return __dev_alloc_pages(gfp_mask, 0); | |
2687 | } | |
2688 | ||
2689 | static inline struct page *dev_alloc_page(void) | |
2690 | { | |
95829b3a | 2691 | return dev_alloc_pages(0); |
71dfda58 AD |
2692 | } |
2693 | ||
0614002b MG |
2694 | /** |
2695 | * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page | |
2696 | * @page: The page that was allocated from skb_alloc_page | |
2697 | * @skb: The skb that may need pfmemalloc set | |
2698 | */ | |
2699 | static inline void skb_propagate_pfmemalloc(struct page *page, | |
2700 | struct sk_buff *skb) | |
2701 | { | |
2f064f34 | 2702 | if (page_is_pfmemalloc(page)) |
0614002b MG |
2703 | skb->pfmemalloc = true; |
2704 | } | |
2705 | ||
131ea667 | 2706 | /** |
e227867f | 2707 | * skb_frag_page - retrieve the page referred to by a paged fragment |
131ea667 IC |
2708 | * @frag: the paged fragment |
2709 | * | |
2710 | * Returns the &struct page associated with @frag. | |
2711 | */ | |
2712 | static inline struct page *skb_frag_page(const skb_frag_t *frag) | |
2713 | { | |
a8605c60 | 2714 | return frag->page.p; |
131ea667 IC |
2715 | } |
2716 | ||
2717 | /** | |
2718 | * __skb_frag_ref - take an addition reference on a paged fragment. | |
2719 | * @frag: the paged fragment | |
2720 | * | |
2721 | * Takes an additional reference on the paged fragment @frag. | |
2722 | */ | |
2723 | static inline void __skb_frag_ref(skb_frag_t *frag) | |
2724 | { | |
2725 | get_page(skb_frag_page(frag)); | |
2726 | } | |
2727 | ||
2728 | /** | |
2729 | * skb_frag_ref - take an addition reference on a paged fragment of an skb. | |
2730 | * @skb: the buffer | |
2731 | * @f: the fragment offset. | |
2732 | * | |
2733 | * Takes an additional reference on the @f'th paged fragment of @skb. | |
2734 | */ | |
2735 | static inline void skb_frag_ref(struct sk_buff *skb, int f) | |
2736 | { | |
2737 | __skb_frag_ref(&skb_shinfo(skb)->frags[f]); | |
2738 | } | |
2739 | ||
2740 | /** | |
2741 | * __skb_frag_unref - release a reference on a paged fragment. | |
2742 | * @frag: the paged fragment | |
2743 | * | |
2744 | * Releases a reference on the paged fragment @frag. | |
2745 | */ | |
2746 | static inline void __skb_frag_unref(skb_frag_t *frag) | |
2747 | { | |
2748 | put_page(skb_frag_page(frag)); | |
2749 | } | |
2750 | ||
2751 | /** | |
2752 | * skb_frag_unref - release a reference on a paged fragment of an skb. | |
2753 | * @skb: the buffer | |
2754 | * @f: the fragment offset | |
2755 | * | |
2756 | * Releases a reference on the @f'th paged fragment of @skb. | |
2757 | */ | |
2758 | static inline void skb_frag_unref(struct sk_buff *skb, int f) | |
2759 | { | |
2760 | __skb_frag_unref(&skb_shinfo(skb)->frags[f]); | |
2761 | } | |
2762 | ||
2763 | /** | |
2764 | * skb_frag_address - gets the address of the data contained in a paged fragment | |
2765 | * @frag: the paged fragment buffer | |
2766 | * | |
2767 | * Returns the address of the data within @frag. The page must already | |
2768 | * be mapped. | |
2769 | */ | |
2770 | static inline void *skb_frag_address(const skb_frag_t *frag) | |
2771 | { | |
2772 | return page_address(skb_frag_page(frag)) + frag->page_offset; | |
2773 | } | |
2774 | ||
2775 | /** | |
2776 | * skb_frag_address_safe - gets the address of the data contained in a paged fragment | |
2777 | * @frag: the paged fragment buffer | |
2778 | * | |
2779 | * Returns the address of the data within @frag. Checks that the page | |
2780 | * is mapped and returns %NULL otherwise. | |
2781 | */ | |
2782 | static inline void *skb_frag_address_safe(const skb_frag_t *frag) | |
2783 | { | |
2784 | void *ptr = page_address(skb_frag_page(frag)); | |
2785 | if (unlikely(!ptr)) | |
2786 | return NULL; | |
2787 | ||
2788 | return ptr + frag->page_offset; | |
2789 | } | |
2790 | ||
2791 | /** | |
2792 | * __skb_frag_set_page - sets the page contained in a paged fragment | |
2793 | * @frag: the paged fragment | |
2794 | * @page: the page to set | |
2795 | * | |
2796 | * Sets the fragment @frag to contain @page. | |
2797 | */ | |
2798 | static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) | |
2799 | { | |
a8605c60 | 2800 | frag->page.p = page; |
131ea667 IC |
2801 | } |
2802 | ||
2803 | /** | |
2804 | * skb_frag_set_page - sets the page contained in a paged fragment of an skb | |
2805 | * @skb: the buffer | |
2806 | * @f: the fragment offset | |
2807 | * @page: the page to set | |
2808 | * | |
2809 | * Sets the @f'th fragment of @skb to contain @page. | |
2810 | */ | |
2811 | static inline void skb_frag_set_page(struct sk_buff *skb, int f, | |
2812 | struct page *page) | |
2813 | { | |
2814 | __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); | |
2815 | } | |
2816 | ||
400dfd3a ED |
2817 | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); |
2818 | ||
131ea667 IC |
2819 | /** |
2820 | * skb_frag_dma_map - maps a paged fragment via the DMA API | |
f83347df | 2821 | * @dev: the device to map the fragment to |
131ea667 IC |
2822 | * @frag: the paged fragment to map |
2823 | * @offset: the offset within the fragment (starting at the | |
2824 | * fragment's own offset) | |
2825 | * @size: the number of bytes to map | |
771b00a8 | 2826 | * @dir: the direction of the mapping (``PCI_DMA_*``) |
131ea667 IC |
2827 | * |
2828 | * Maps the page associated with @frag to @device. | |
2829 | */ | |
2830 | static inline dma_addr_t skb_frag_dma_map(struct device *dev, | |
2831 | const skb_frag_t *frag, | |
2832 | size_t offset, size_t size, | |
2833 | enum dma_data_direction dir) | |
2834 | { | |
2835 | return dma_map_page(dev, skb_frag_page(frag), | |
2836 | frag->page_offset + offset, size, dir); | |
2837 | } | |
2838 | ||
117632e6 ED |
2839 | static inline struct sk_buff *pskb_copy(struct sk_buff *skb, |
2840 | gfp_t gfp_mask) | |
2841 | { | |
2842 | return __pskb_copy(skb, skb_headroom(skb), gfp_mask); | |
2843 | } | |
2844 | ||
bad93e9d OP |
2845 | |
2846 | static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, | |
2847 | gfp_t gfp_mask) | |
2848 | { | |
2849 | return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); | |
2850 | } | |
2851 | ||
2852 | ||
334a8132 PM |
2853 | /** |
2854 | * skb_clone_writable - is the header of a clone writable | |
2855 | * @skb: buffer to check | |
2856 | * @len: length up to which to write | |
2857 | * | |
2858 | * Returns true if modifying the header part of the cloned buffer | |
2859 | * does not requires the data to be copied. | |
2860 | */ | |
05bdd2f1 | 2861 | static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) |
334a8132 PM |
2862 | { |
2863 | return !skb_header_cloned(skb) && | |
2864 | skb_headroom(skb) + len <= skb->hdr_len; | |
2865 | } | |
2866 | ||
3697649f DB |
2867 | static inline int skb_try_make_writable(struct sk_buff *skb, |
2868 | unsigned int write_len) | |
2869 | { | |
2870 | return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && | |
2871 | pskb_expand_head(skb, 0, 0, GFP_ATOMIC); | |
2872 | } | |
2873 | ||
d9cc2048 HX |
2874 | static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, |
2875 | int cloned) | |
2876 | { | |
2877 | int delta = 0; | |
2878 | ||
d9cc2048 HX |
2879 | if (headroom > skb_headroom(skb)) |
2880 | delta = headroom - skb_headroom(skb); | |
2881 | ||
2882 | if (delta || cloned) | |
2883 | return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, | |
2884 | GFP_ATOMIC); | |
2885 | return 0; | |
2886 | } | |
2887 | ||
1da177e4 LT |
2888 | /** |
2889 | * skb_cow - copy header of skb when it is required | |
2890 | * @skb: buffer to cow | |
2891 | * @headroom: needed headroom | |
2892 | * | |
2893 | * If the skb passed lacks sufficient headroom or its data part | |
2894 | * is shared, data is reallocated. If reallocation fails, an error | |
2895 | * is returned and original skb is not changed. | |
2896 | * | |
2897 | * The result is skb with writable area skb->head...skb->tail | |
2898 | * and at least @headroom of space at head. | |
2899 | */ | |
2900 | static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) | |
2901 | { | |
d9cc2048 HX |
2902 | return __skb_cow(skb, headroom, skb_cloned(skb)); |
2903 | } | |
1da177e4 | 2904 | |
d9cc2048 HX |
2905 | /** |
2906 | * skb_cow_head - skb_cow but only making the head writable | |
2907 | * @skb: buffer to cow | |
2908 | * @headroom: needed headroom | |
2909 | * | |
2910 | * This function is identical to skb_cow except that we replace the | |
2911 | * skb_cloned check by skb_header_cloned. It should be used when | |
2912 | * you only need to push on some header and do not need to modify | |
2913 | * the data. | |
2914 | */ | |
2915 | static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) | |
2916 | { | |
2917 | return __skb_cow(skb, headroom, skb_header_cloned(skb)); | |
1da177e4 LT |
2918 | } |
2919 | ||
2920 | /** | |
2921 | * skb_padto - pad an skbuff up to a minimal size | |
2922 | * @skb: buffer to pad | |
2923 | * @len: minimal length | |
2924 | * | |
2925 | * Pads up a buffer to ensure the trailing bytes exist and are | |
2926 | * blanked. If the buffer already contains sufficient data it | |
5b057c6b HX |
2927 | * is untouched. Otherwise it is extended. Returns zero on |
2928 | * success. The skb is freed on error. | |
1da177e4 | 2929 | */ |
5b057c6b | 2930 | static inline int skb_padto(struct sk_buff *skb, unsigned int len) |
1da177e4 LT |
2931 | { |
2932 | unsigned int size = skb->len; | |
2933 | if (likely(size >= len)) | |
5b057c6b | 2934 | return 0; |
987c402a | 2935 | return skb_pad(skb, len - size); |
1da177e4 LT |
2936 | } |
2937 | ||
9c0c1124 AD |
2938 | /** |
2939 | * skb_put_padto - increase size and pad an skbuff up to a minimal size | |
2940 | * @skb: buffer to pad | |
2941 | * @len: minimal length | |
cd0a137a | 2942 | * @free_on_error: free buffer on error |
9c0c1124 AD |
2943 | * |
2944 | * Pads up a buffer to ensure the trailing bytes exist and are | |
2945 | * blanked. If the buffer already contains sufficient data it | |
2946 | * is untouched. Otherwise it is extended. Returns zero on | |
cd0a137a | 2947 | * success. The skb is freed on error if @free_on_error is true. |
9c0c1124 | 2948 | */ |
cd0a137a FF |
2949 | static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, |
2950 | bool free_on_error) | |
9c0c1124 AD |
2951 | { |
2952 | unsigned int size = skb->len; | |
2953 | ||
2954 | if (unlikely(size < len)) { | |
2955 | len -= size; | |
cd0a137a | 2956 | if (__skb_pad(skb, len, free_on_error)) |
9c0c1124 AD |
2957 | return -ENOMEM; |
2958 | __skb_put(skb, len); | |
2959 | } | |
2960 | return 0; | |
2961 | } | |
2962 | ||
cd0a137a FF |
2963 | /** |
2964 | * skb_put_padto - increase size and pad an skbuff up to a minimal size | |
2965 | * @skb: buffer to pad | |
2966 | * @len: minimal length | |
2967 | * | |
2968 | * Pads up a buffer to ensure the trailing bytes exist and are | |
2969 | * blanked. If the buffer already contains sufficient data it | |
2970 | * is untouched. Otherwise it is extended. Returns zero on | |
2971 | * success. The skb is freed on error. | |
2972 | */ | |
2973 | static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) | |
2974 | { | |
2975 | return __skb_put_padto(skb, len, true); | |
2976 | } | |
2977 | ||
1da177e4 | 2978 | static inline int skb_add_data(struct sk_buff *skb, |
af2b040e | 2979 | struct iov_iter *from, int copy) |
1da177e4 LT |
2980 | { |
2981 | const int off = skb->len; | |
2982 | ||
2983 | if (skb->ip_summed == CHECKSUM_NONE) { | |
af2b040e | 2984 | __wsum csum = 0; |
15e6cb46 AV |
2985 | if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, |
2986 | &csum, from)) { | |
1da177e4 LT |
2987 | skb->csum = csum_block_add(skb->csum, csum, off); |
2988 | return 0; | |
2989 | } | |
15e6cb46 | 2990 | } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) |
1da177e4 LT |
2991 | return 0; |
2992 | ||
2993 | __skb_trim(skb, off); | |
2994 | return -EFAULT; | |
2995 | } | |
2996 | ||
38ba0a65 ED |
2997 | static inline bool skb_can_coalesce(struct sk_buff *skb, int i, |
2998 | const struct page *page, int off) | |
1da177e4 | 2999 | { |
1f8b977a WB |
3000 | if (skb_zcopy(skb)) |
3001 | return false; | |
1da177e4 | 3002 | if (i) { |
9e903e08 | 3003 | const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; |
1da177e4 | 3004 | |
ea2ab693 | 3005 | return page == skb_frag_page(frag) && |
9e903e08 | 3006 | off == frag->page_offset + skb_frag_size(frag); |
1da177e4 | 3007 | } |
38ba0a65 | 3008 | return false; |
1da177e4 LT |
3009 | } |
3010 | ||
364c6bad HX |
3011 | static inline int __skb_linearize(struct sk_buff *skb) |
3012 | { | |
3013 | return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; | |
3014 | } | |
3015 | ||
1da177e4 LT |
3016 | /** |
3017 | * skb_linearize - convert paged skb to linear one | |
3018 | * @skb: buffer to linarize | |
1da177e4 LT |
3019 | * |
3020 | * If there is no free memory -ENOMEM is returned, otherwise zero | |
3021 | * is returned and the old skb data released. | |
3022 | */ | |
364c6bad HX |
3023 | static inline int skb_linearize(struct sk_buff *skb) |
3024 | { | |
3025 | return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; | |
3026 | } | |
3027 | ||
cef401de ED |
3028 | /** |
3029 | * skb_has_shared_frag - can any frag be overwritten | |
3030 | * @skb: buffer to test | |
3031 | * | |
3032 | * Return true if the skb has at least one frag that might be modified | |
3033 | * by an external entity (as in vmsplice()/sendfile()) | |
3034 | */ | |
3035 | static inline bool skb_has_shared_frag(const struct sk_buff *skb) | |
3036 | { | |
c9af6db4 PS |
3037 | return skb_is_nonlinear(skb) && |
3038 | skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; | |
cef401de ED |
3039 | } |
3040 | ||
364c6bad HX |
3041 | /** |
3042 | * skb_linearize_cow - make sure skb is linear and writable | |
3043 | * @skb: buffer to process | |
3044 | * | |
3045 | * If there is no free memory -ENOMEM is returned, otherwise zero | |
3046 | * is returned and the old skb data released. | |
3047 | */ | |
3048 | static inline int skb_linearize_cow(struct sk_buff *skb) | |
1da177e4 | 3049 | { |
364c6bad HX |
3050 | return skb_is_nonlinear(skb) || skb_cloned(skb) ? |
3051 | __skb_linearize(skb) : 0; | |
1da177e4 LT |
3052 | } |
3053 | ||
479ffccc DB |
3054 | static __always_inline void |
3055 | __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, | |
3056 | unsigned int off) | |
3057 | { | |
3058 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
3059 | skb->csum = csum_block_sub(skb->csum, | |
3060 | csum_partial(start, len, 0), off); | |
3061 | else if (skb->ip_summed == CHECKSUM_PARTIAL && | |
3062 | skb_checksum_start_offset(skb) < 0) | |
3063 | skb->ip_summed = CHECKSUM_NONE; | |
3064 | } | |
3065 | ||
1da177e4 LT |
3066 | /** |
3067 | * skb_postpull_rcsum - update checksum for received skb after pull | |
3068 | * @skb: buffer to update | |
3069 | * @start: start of data before pull | |
3070 | * @len: length of data pulled | |
3071 | * | |
3072 | * After doing a pull on a received packet, you need to call this to | |
84fa7933 PM |
3073 | * update the CHECKSUM_COMPLETE checksum, or set ip_summed to |
3074 | * CHECKSUM_NONE so that it can be recomputed from scratch. | |
1da177e4 | 3075 | */ |
1da177e4 | 3076 | static inline void skb_postpull_rcsum(struct sk_buff *skb, |
cbb042f9 | 3077 | const void *start, unsigned int len) |
1da177e4 | 3078 | { |
479ffccc | 3079 | __skb_postpull_rcsum(skb, start, len, 0); |
1da177e4 LT |
3080 | } |
3081 | ||
479ffccc DB |
3082 | static __always_inline void |
3083 | __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, | |
3084 | unsigned int off) | |
3085 | { | |
3086 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
3087 | skb->csum = csum_block_add(skb->csum, | |
3088 | csum_partial(start, len, 0), off); | |
3089 | } | |
cbb042f9 | 3090 | |
479ffccc DB |
3091 | /** |
3092 | * skb_postpush_rcsum - update checksum for received skb after push | |
3093 | * @skb: buffer to update | |
3094 | * @start: start of data after push | |
3095 | * @len: length of data pushed | |
3096 | * | |
3097 | * After doing a push on a received packet, you need to call this to | |
3098 | * update the CHECKSUM_COMPLETE checksum. | |
3099 | */ | |
f8ffad69 DB |
3100 | static inline void skb_postpush_rcsum(struct sk_buff *skb, |
3101 | const void *start, unsigned int len) | |
3102 | { | |
479ffccc | 3103 | __skb_postpush_rcsum(skb, start, len, 0); |
f8ffad69 DB |
3104 | } |
3105 | ||
af72868b | 3106 | void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); |
479ffccc | 3107 | |
82a31b92 WC |
3108 | /** |
3109 | * skb_push_rcsum - push skb and update receive checksum | |
3110 | * @skb: buffer to update | |
3111 | * @len: length of data pulled | |
3112 | * | |
3113 | * This function performs an skb_push on the packet and updates | |
3114 | * the CHECKSUM_COMPLETE checksum. It should be used on | |
3115 | * receive path processing instead of skb_push unless you know | |
3116 | * that the checksum difference is zero (e.g., a valid IP header) | |
3117 | * or you are setting ip_summed to CHECKSUM_NONE. | |
3118 | */ | |
d58ff351 | 3119 | static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) |
82a31b92 WC |
3120 | { |
3121 | skb_push(skb, len); | |
3122 | skb_postpush_rcsum(skb, skb->data, len); | |
3123 | return skb->data; | |
3124 | } | |
3125 | ||
7ce5a27f DM |
3126 | /** |
3127 | * pskb_trim_rcsum - trim received skb and update checksum | |
3128 | * @skb: buffer to trim | |
3129 | * @len: new length | |
3130 | * | |
3131 | * This is exactly the same as pskb_trim except that it ensures the | |
3132 | * checksum of received packets are still valid after the operation. | |
3133 | */ | |
3134 | ||
3135 | static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) | |
3136 | { | |
3137 | if (likely(len >= skb->len)) | |
3138 | return 0; | |
3139 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
3140 | skb->ip_summed = CHECKSUM_NONE; | |
3141 | return __pskb_trim(skb, len); | |
3142 | } | |
3143 | ||
5293efe6 DB |
3144 | static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) |
3145 | { | |
3146 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
3147 | skb->ip_summed = CHECKSUM_NONE; | |
3148 | __skb_trim(skb, len); | |
3149 | return 0; | |
3150 | } | |
3151 | ||
3152 | static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) | |
3153 | { | |
3154 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
3155 | skb->ip_summed = CHECKSUM_NONE; | |
3156 | return __skb_grow(skb, len); | |
3157 | } | |
3158 | ||
18a4c0ea ED |
3159 | #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) |
3160 | #define skb_rb_first(root) rb_to_skb(rb_first(root)) | |
3161 | #define skb_rb_last(root) rb_to_skb(rb_last(root)) | |
3162 | #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) | |
3163 | #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) | |
3164 | ||
1da177e4 LT |
3165 | #define skb_queue_walk(queue, skb) \ |
3166 | for (skb = (queue)->next; \ | |
a1e4891f | 3167 | skb != (struct sk_buff *)(queue); \ |
1da177e4 LT |
3168 | skb = skb->next) |
3169 | ||
46f8914e JC |
3170 | #define skb_queue_walk_safe(queue, skb, tmp) \ |
3171 | for (skb = (queue)->next, tmp = skb->next; \ | |
3172 | skb != (struct sk_buff *)(queue); \ | |
3173 | skb = tmp, tmp = skb->next) | |
3174 | ||
1164f52a | 3175 | #define skb_queue_walk_from(queue, skb) \ |
a1e4891f | 3176 | for (; skb != (struct sk_buff *)(queue); \ |
1164f52a DM |
3177 | skb = skb->next) |
3178 | ||
18a4c0ea ED |
3179 | #define skb_rbtree_walk(skb, root) \ |
3180 | for (skb = skb_rb_first(root); skb != NULL; \ | |
3181 | skb = skb_rb_next(skb)) | |
3182 | ||
3183 | #define skb_rbtree_walk_from(skb) \ | |
3184 | for (; skb != NULL; \ | |
3185 | skb = skb_rb_next(skb)) | |
3186 | ||
3187 | #define skb_rbtree_walk_from_safe(skb, tmp) \ | |
3188 | for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ | |
3189 | skb = tmp) | |
3190 | ||
1164f52a DM |
3191 | #define skb_queue_walk_from_safe(queue, skb, tmp) \ |
3192 | for (tmp = skb->next; \ | |
3193 | skb != (struct sk_buff *)(queue); \ | |
3194 | skb = tmp, tmp = skb->next) | |
3195 | ||
300ce174 SH |
3196 | #define skb_queue_reverse_walk(queue, skb) \ |
3197 | for (skb = (queue)->prev; \ | |
a1e4891f | 3198 | skb != (struct sk_buff *)(queue); \ |
300ce174 SH |
3199 | skb = skb->prev) |
3200 | ||
686a2955 DM |
3201 | #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ |
3202 | for (skb = (queue)->prev, tmp = skb->prev; \ | |
3203 | skb != (struct sk_buff *)(queue); \ | |
3204 | skb = tmp, tmp = skb->prev) | |
3205 | ||
3206 | #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ | |
3207 | for (tmp = skb->prev; \ | |
3208 | skb != (struct sk_buff *)(queue); \ | |
3209 | skb = tmp, tmp = skb->prev) | |
1da177e4 | 3210 | |
21dc3301 | 3211 | static inline bool skb_has_frag_list(const struct sk_buff *skb) |
ee039871 DM |
3212 | { |
3213 | return skb_shinfo(skb)->frag_list != NULL; | |
3214 | } | |
3215 | ||
3216 | static inline void skb_frag_list_init(struct sk_buff *skb) | |
3217 | { | |
3218 | skb_shinfo(skb)->frag_list = NULL; | |
3219 | } | |
3220 | ||
ee039871 DM |
3221 | #define skb_walk_frags(skb, iter) \ |
3222 | for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) | |
3223 | ||
ea3793ee RW |
3224 | |
3225 | int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p, | |
3226 | const struct sk_buff *skb); | |
65101aec PA |
3227 | struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, |
3228 | struct sk_buff_head *queue, | |
3229 | unsigned int flags, | |
3230 | void (*destructor)(struct sock *sk, | |
3231 | struct sk_buff *skb), | |
3232 | int *peeked, int *off, int *err, | |
3233 | struct sk_buff **last); | |
ea3793ee | 3234 | struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags, |
7c13f97f PA |
3235 | void (*destructor)(struct sock *sk, |
3236 | struct sk_buff *skb), | |
ea3793ee RW |
3237 | int *peeked, int *off, int *err, |
3238 | struct sk_buff **last); | |
7965bd4d | 3239 | struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, |
7c13f97f PA |
3240 | void (*destructor)(struct sock *sk, |
3241 | struct sk_buff *skb), | |
7965bd4d JP |
3242 | int *peeked, int *off, int *err); |
3243 | struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, | |
3244 | int *err); | |
3245 | unsigned int datagram_poll(struct file *file, struct socket *sock, | |
3246 | struct poll_table_struct *wait); | |
c0371da6 AV |
3247 | int skb_copy_datagram_iter(const struct sk_buff *from, int offset, |
3248 | struct iov_iter *to, int size); | |
51f3d02b DM |
3249 | static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, |
3250 | struct msghdr *msg, int size) | |
3251 | { | |
e5a4b0bb | 3252 | return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); |
227158db | 3253 | } |
e5a4b0bb AV |
3254 | int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, |
3255 | struct msghdr *msg); | |
3a654f97 AV |
3256 | int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, |
3257 | struct iov_iter *from, int len); | |
3a654f97 | 3258 | int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); |
7965bd4d | 3259 | void skb_free_datagram(struct sock *sk, struct sk_buff *skb); |
627d2d6b | 3260 | void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); |
3261 | static inline void skb_free_datagram_locked(struct sock *sk, | |
3262 | struct sk_buff *skb) | |
3263 | { | |
3264 | __skb_free_datagram_locked(sk, skb, 0); | |
3265 | } | |
7965bd4d | 3266 | int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); |
7965bd4d JP |
3267 | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); |
3268 | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); | |
3269 | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, | |
3270 | int len, __wsum csum); | |
a60e3cc7 | 3271 | int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, |
7965bd4d | 3272 | struct pipe_inode_info *pipe, unsigned int len, |
25869262 | 3273 | unsigned int flags); |
20bf50de TH |
3274 | int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, |
3275 | int len); | |
3276 | int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); | |
7965bd4d | 3277 | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); |
af2806f8 | 3278 | unsigned int skb_zerocopy_headlen(const struct sk_buff *from); |
36d5fe6a ZK |
3279 | int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, |
3280 | int len, int hlen); | |
7965bd4d JP |
3281 | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); |
3282 | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); | |
3283 | void skb_scrub_packet(struct sk_buff *skb, bool xnet); | |
de960aa9 | 3284 | unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); |
ae7ef81e | 3285 | bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu); |
7965bd4d | 3286 | struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); |
0d5501c1 | 3287 | struct sk_buff *skb_vlan_untag(struct sk_buff *skb); |
e2195121 | 3288 | int skb_ensure_writable(struct sk_buff *skb, int write_len); |
bfca4c52 | 3289 | int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); |
93515d53 JP |
3290 | int skb_vlan_pop(struct sk_buff *skb); |
3291 | int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); | |
6fa01ccd SV |
3292 | struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, |
3293 | gfp_t gfp); | |
20380731 | 3294 | |
6ce8e9ce AV |
3295 | static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) |
3296 | { | |
3073f070 | 3297 | return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; |
6ce8e9ce AV |
3298 | } |
3299 | ||
7eab8d9e AV |
3300 | static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) |
3301 | { | |
e5a4b0bb | 3302 | return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; |
7eab8d9e AV |
3303 | } |
3304 | ||
2817a336 DB |
3305 | struct skb_checksum_ops { |
3306 | __wsum (*update)(const void *mem, int len, __wsum wsum); | |
3307 | __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); | |
3308 | }; | |
3309 | ||
9617813d DC |
3310 | extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; |
3311 | ||
2817a336 DB |
3312 | __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, |
3313 | __wsum csum, const struct skb_checksum_ops *ops); | |
3314 | __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, | |
3315 | __wsum csum); | |
3316 | ||
1e98a0f0 ED |
3317 | static inline void * __must_check |
3318 | __skb_header_pointer(const struct sk_buff *skb, int offset, | |
3319 | int len, void *data, int hlen, void *buffer) | |
1da177e4 | 3320 | { |
55820ee2 | 3321 | if (hlen - offset >= len) |
690e36e7 | 3322 | return data + offset; |
1da177e4 | 3323 | |
690e36e7 DM |
3324 | if (!skb || |
3325 | skb_copy_bits(skb, offset, buffer, len) < 0) | |
1da177e4 LT |
3326 | return NULL; |
3327 | ||
3328 | return buffer; | |
3329 | } | |
3330 | ||
1e98a0f0 ED |
3331 | static inline void * __must_check |
3332 | skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) | |
690e36e7 DM |
3333 | { |
3334 | return __skb_header_pointer(skb, offset, len, skb->data, | |
3335 | skb_headlen(skb), buffer); | |
3336 | } | |
3337 | ||
4262e5cc DB |
3338 | /** |
3339 | * skb_needs_linearize - check if we need to linearize a given skb | |
3340 | * depending on the given device features. | |
3341 | * @skb: socket buffer to check | |
3342 | * @features: net device features | |
3343 | * | |
3344 | * Returns true if either: | |
3345 | * 1. skb has frag_list and the device doesn't support FRAGLIST, or | |
3346 | * 2. skb is fragmented and the device does not support SG. | |
3347 | */ | |
3348 | static inline bool skb_needs_linearize(struct sk_buff *skb, | |
3349 | netdev_features_t features) | |
3350 | { | |
3351 | return skb_is_nonlinear(skb) && | |
3352 | ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || | |
3353 | (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); | |
3354 | } | |
3355 | ||
d626f62b ACM |
3356 | static inline void skb_copy_from_linear_data(const struct sk_buff *skb, |
3357 | void *to, | |
3358 | const unsigned int len) | |
3359 | { | |
3360 | memcpy(to, skb->data, len); | |
3361 | } | |
3362 | ||
3363 | static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, | |
3364 | const int offset, void *to, | |
3365 | const unsigned int len) | |
3366 | { | |
3367 | memcpy(to, skb->data + offset, len); | |
3368 | } | |
3369 | ||
27d7ff46 ACM |
3370 | static inline void skb_copy_to_linear_data(struct sk_buff *skb, |
3371 | const void *from, | |
3372 | const unsigned int len) | |
3373 | { | |
3374 | memcpy(skb->data, from, len); | |
3375 | } | |
3376 | ||
3377 | static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, | |
3378 | const int offset, | |
3379 | const void *from, | |
3380 | const unsigned int len) | |
3381 | { | |
3382 | memcpy(skb->data + offset, from, len); | |
3383 | } | |
3384 | ||
7965bd4d | 3385 | void skb_init(void); |
1da177e4 | 3386 | |
ac45f602 PO |
3387 | static inline ktime_t skb_get_ktime(const struct sk_buff *skb) |
3388 | { | |
3389 | return skb->tstamp; | |
3390 | } | |
3391 | ||
a61bbcf2 PM |
3392 | /** |
3393 | * skb_get_timestamp - get timestamp from a skb | |
3394 | * @skb: skb to get stamp from | |
3395 | * @stamp: pointer to struct timeval to store stamp in | |
3396 | * | |
3397 | * Timestamps are stored in the skb as offsets to a base timestamp. | |
3398 | * This function converts the offset back to a struct timeval and stores | |
3399 | * it in stamp. | |
3400 | */ | |
ac45f602 PO |
3401 | static inline void skb_get_timestamp(const struct sk_buff *skb, |
3402 | struct timeval *stamp) | |
a61bbcf2 | 3403 | { |
b7aa0bf7 | 3404 | *stamp = ktime_to_timeval(skb->tstamp); |
a61bbcf2 PM |
3405 | } |
3406 | ||
ac45f602 PO |
3407 | static inline void skb_get_timestampns(const struct sk_buff *skb, |
3408 | struct timespec *stamp) | |
3409 | { | |
3410 | *stamp = ktime_to_timespec(skb->tstamp); | |
3411 | } | |
3412 | ||
b7aa0bf7 | 3413 | static inline void __net_timestamp(struct sk_buff *skb) |
a61bbcf2 | 3414 | { |
b7aa0bf7 | 3415 | skb->tstamp = ktime_get_real(); |
a61bbcf2 PM |
3416 | } |
3417 | ||
164891aa SH |
3418 | static inline ktime_t net_timedelta(ktime_t t) |
3419 | { | |
3420 | return ktime_sub(ktime_get_real(), t); | |
3421 | } | |
3422 | ||
b9ce204f IJ |
3423 | static inline ktime_t net_invalid_timestamp(void) |
3424 | { | |
8b0e1953 | 3425 | return 0; |
b9ce204f | 3426 | } |
a61bbcf2 | 3427 | |
de8f3a83 DB |
3428 | static inline u8 skb_metadata_len(const struct sk_buff *skb) |
3429 | { | |
3430 | return skb_shinfo(skb)->meta_len; | |
3431 | } | |
3432 | ||
3433 | static inline void *skb_metadata_end(const struct sk_buff *skb) | |
3434 | { | |
3435 | return skb_mac_header(skb); | |
3436 | } | |
3437 | ||
3438 | static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, | |
3439 | const struct sk_buff *skb_b, | |
3440 | u8 meta_len) | |
3441 | { | |
3442 | const void *a = skb_metadata_end(skb_a); | |
3443 | const void *b = skb_metadata_end(skb_b); | |
3444 | /* Using more efficient varaiant than plain call to memcmp(). */ | |
3445 | #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 | |
3446 | u64 diffs = 0; | |
3447 | ||
3448 | switch (meta_len) { | |
3449 | #define __it(x, op) (x -= sizeof(u##op)) | |
3450 | #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) | |
3451 | case 32: diffs |= __it_diff(a, b, 64); | |
3452 | case 24: diffs |= __it_diff(a, b, 64); | |
3453 | case 16: diffs |= __it_diff(a, b, 64); | |
3454 | case 8: diffs |= __it_diff(a, b, 64); | |
3455 | break; | |
3456 | case 28: diffs |= __it_diff(a, b, 64); | |
3457 | case 20: diffs |= __it_diff(a, b, 64); | |
3458 | case 12: diffs |= __it_diff(a, b, 64); | |
3459 | case 4: diffs |= __it_diff(a, b, 32); | |
3460 | break; | |
3461 | } | |
3462 | return diffs; | |
3463 | #else | |
3464 | return memcmp(a - meta_len, b - meta_len, meta_len); | |
3465 | #endif | |
3466 | } | |
3467 | ||
3468 | static inline bool skb_metadata_differs(const struct sk_buff *skb_a, | |
3469 | const struct sk_buff *skb_b) | |
3470 | { | |
3471 | u8 len_a = skb_metadata_len(skb_a); | |
3472 | u8 len_b = skb_metadata_len(skb_b); | |
3473 | ||
3474 | if (!(len_a | len_b)) | |
3475 | return false; | |
3476 | ||
3477 | return len_a != len_b ? | |
3478 | true : __skb_metadata_differs(skb_a, skb_b, len_a); | |
3479 | } | |
3480 | ||
3481 | static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) | |
3482 | { | |
3483 | skb_shinfo(skb)->meta_len = meta_len; | |
3484 | } | |
3485 | ||
3486 | static inline void skb_metadata_clear(struct sk_buff *skb) | |
3487 | { | |
3488 | skb_metadata_set(skb, 0); | |
3489 | } | |
3490 | ||
62bccb8c AD |
3491 | struct sk_buff *skb_clone_sk(struct sk_buff *skb); |
3492 | ||
c1f19b51 RC |
3493 | #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING |
3494 | ||
7965bd4d JP |
3495 | void skb_clone_tx_timestamp(struct sk_buff *skb); |
3496 | bool skb_defer_rx_timestamp(struct sk_buff *skb); | |
c1f19b51 RC |
3497 | |
3498 | #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ | |
3499 | ||
3500 | static inline void skb_clone_tx_timestamp(struct sk_buff *skb) | |
3501 | { | |
3502 | } | |
3503 | ||
3504 | static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) | |
3505 | { | |
3506 | return false; | |
3507 | } | |
3508 | ||
3509 | #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ | |
3510 | ||
3511 | /** | |
3512 | * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps | |
3513 | * | |
da92b194 RC |
3514 | * PHY drivers may accept clones of transmitted packets for |
3515 | * timestamping via their phy_driver.txtstamp method. These drivers | |
7a76a021 BP |
3516 | * must call this function to return the skb back to the stack with a |
3517 | * timestamp. | |
da92b194 | 3518 | * |
c1f19b51 | 3519 | * @skb: clone of the the original outgoing packet |
7a76a021 | 3520 | * @hwtstamps: hardware time stamps |
c1f19b51 RC |
3521 | * |
3522 | */ | |
3523 | void skb_complete_tx_timestamp(struct sk_buff *skb, | |
3524 | struct skb_shared_hwtstamps *hwtstamps); | |
3525 | ||
e7fd2885 WB |
3526 | void __skb_tstamp_tx(struct sk_buff *orig_skb, |
3527 | struct skb_shared_hwtstamps *hwtstamps, | |
3528 | struct sock *sk, int tstype); | |
3529 | ||
ac45f602 PO |
3530 | /** |
3531 | * skb_tstamp_tx - queue clone of skb with send time stamps | |
3532 | * @orig_skb: the original outgoing packet | |
3533 | * @hwtstamps: hardware time stamps, may be NULL if not available | |
3534 | * | |
3535 | * If the skb has a socket associated, then this function clones the | |
3536 | * skb (thus sharing the actual data and optional structures), stores | |
3537 | * the optional hardware time stamping information (if non NULL) or | |
3538 | * generates a software time stamp (otherwise), then queues the clone | |
3539 | * to the error queue of the socket. Errors are silently ignored. | |
3540 | */ | |
7965bd4d JP |
3541 | void skb_tstamp_tx(struct sk_buff *orig_skb, |
3542 | struct skb_shared_hwtstamps *hwtstamps); | |
ac45f602 | 3543 | |
4507a715 RC |
3544 | /** |
3545 | * skb_tx_timestamp() - Driver hook for transmit timestamping | |
3546 | * | |
3547 | * Ethernet MAC Drivers should call this function in their hard_xmit() | |
4ff75b7c | 3548 | * function immediately before giving the sk_buff to the MAC hardware. |
4507a715 | 3549 | * |
73409f3b DM |
3550 | * Specifically, one should make absolutely sure that this function is |
3551 | * called before TX completion of this packet can trigger. Otherwise | |
3552 | * the packet could potentially already be freed. | |
3553 | * | |
4507a715 RC |
3554 | * @skb: A socket buffer. |
3555 | */ | |
3556 | static inline void skb_tx_timestamp(struct sk_buff *skb) | |
3557 | { | |
c1f19b51 | 3558 | skb_clone_tx_timestamp(skb); |
b50a5c70 ML |
3559 | if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) |
3560 | skb_tstamp_tx(skb, NULL); | |
4507a715 RC |
3561 | } |
3562 | ||
6e3e939f JB |
3563 | /** |
3564 | * skb_complete_wifi_ack - deliver skb with wifi status | |
3565 | * | |
3566 | * @skb: the original outgoing packet | |
3567 | * @acked: ack status | |
3568 | * | |
3569 | */ | |
3570 | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); | |
3571 | ||
7965bd4d JP |
3572 | __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); |
3573 | __sum16 __skb_checksum_complete(struct sk_buff *skb); | |
fb286bb2 | 3574 | |
60476372 HX |
3575 | static inline int skb_csum_unnecessary(const struct sk_buff *skb) |
3576 | { | |
6edec0e6 TH |
3577 | return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || |
3578 | skb->csum_valid || | |
3579 | (skb->ip_summed == CHECKSUM_PARTIAL && | |
3580 | skb_checksum_start_offset(skb) >= 0)); | |
60476372 HX |
3581 | } |
3582 | ||
fb286bb2 HX |
3583 | /** |
3584 | * skb_checksum_complete - Calculate checksum of an entire packet | |
3585 | * @skb: packet to process | |
3586 | * | |
3587 | * This function calculates the checksum over the entire packet plus | |
3588 | * the value of skb->csum. The latter can be used to supply the | |
3589 | * checksum of a pseudo header as used by TCP/UDP. It returns the | |
3590 | * checksum. | |
3591 | * | |
3592 | * For protocols that contain complete checksums such as ICMP/TCP/UDP, | |
3593 | * this function can be used to verify that checksum on received | |
3594 | * packets. In that case the function should return zero if the | |
3595 | * checksum is correct. In particular, this function will return zero | |
3596 | * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the | |
3597 | * hardware has already verified the correctness of the checksum. | |
3598 | */ | |
4381ca3c | 3599 | static inline __sum16 skb_checksum_complete(struct sk_buff *skb) |
fb286bb2 | 3600 | { |
60476372 HX |
3601 | return skb_csum_unnecessary(skb) ? |
3602 | 0 : __skb_checksum_complete(skb); | |
fb286bb2 HX |
3603 | } |
3604 | ||
77cffe23 TH |
3605 | static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) |
3606 | { | |
3607 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { | |
3608 | if (skb->csum_level == 0) | |
3609 | skb->ip_summed = CHECKSUM_NONE; | |
3610 | else | |
3611 | skb->csum_level--; | |
3612 | } | |
3613 | } | |
3614 | ||
3615 | static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) | |
3616 | { | |
3617 | if (skb->ip_summed == CHECKSUM_UNNECESSARY) { | |
3618 | if (skb->csum_level < SKB_MAX_CSUM_LEVEL) | |
3619 | skb->csum_level++; | |
3620 | } else if (skb->ip_summed == CHECKSUM_NONE) { | |
3621 | skb->ip_summed = CHECKSUM_UNNECESSARY; | |
3622 | skb->csum_level = 0; | |
3623 | } | |
3624 | } | |
3625 | ||
76ba0aae TH |
3626 | /* Check if we need to perform checksum complete validation. |
3627 | * | |
3628 | * Returns true if checksum complete is needed, false otherwise | |
3629 | * (either checksum is unnecessary or zero checksum is allowed). | |
3630 | */ | |
3631 | static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, | |
3632 | bool zero_okay, | |
3633 | __sum16 check) | |
3634 | { | |
5d0c2b95 TH |
3635 | if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { |
3636 | skb->csum_valid = 1; | |
77cffe23 | 3637 | __skb_decr_checksum_unnecessary(skb); |
76ba0aae TH |
3638 | return false; |
3639 | } | |
3640 | ||
3641 | return true; | |
3642 | } | |
3643 | ||
3644 | /* For small packets <= CHECKSUM_BREAK peform checksum complete directly | |
3645 | * in checksum_init. | |
3646 | */ | |
3647 | #define CHECKSUM_BREAK 76 | |
3648 | ||
4e18b9ad TH |
3649 | /* Unset checksum-complete |
3650 | * | |
3651 | * Unset checksum complete can be done when packet is being modified | |
3652 | * (uncompressed for instance) and checksum-complete value is | |
3653 | * invalidated. | |
3654 | */ | |
3655 | static inline void skb_checksum_complete_unset(struct sk_buff *skb) | |
3656 | { | |
3657 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
3658 | skb->ip_summed = CHECKSUM_NONE; | |
3659 | } | |
3660 | ||
76ba0aae TH |
3661 | /* Validate (init) checksum based on checksum complete. |
3662 | * | |
3663 | * Return values: | |
3664 | * 0: checksum is validated or try to in skb_checksum_complete. In the latter | |
3665 | * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo | |
3666 | * checksum is stored in skb->csum for use in __skb_checksum_complete | |
3667 | * non-zero: value of invalid checksum | |
3668 | * | |
3669 | */ | |
3670 | static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, | |
3671 | bool complete, | |
3672 | __wsum psum) | |
3673 | { | |
3674 | if (skb->ip_summed == CHECKSUM_COMPLETE) { | |
3675 | if (!csum_fold(csum_add(psum, skb->csum))) { | |
5d0c2b95 | 3676 | skb->csum_valid = 1; |
76ba0aae TH |
3677 | return 0; |
3678 | } | |
3679 | } | |
3680 | ||
3681 | skb->csum = psum; | |
3682 | ||
5d0c2b95 TH |
3683 | if (complete || skb->len <= CHECKSUM_BREAK) { |
3684 | __sum16 csum; | |
3685 | ||
3686 | csum = __skb_checksum_complete(skb); | |
3687 | skb->csum_valid = !csum; | |
3688 | return csum; | |
3689 | } | |
76ba0aae TH |
3690 | |
3691 | return 0; | |
3692 | } | |
3693 | ||
3694 | static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) | |
3695 | { | |
3696 | return 0; | |
3697 | } | |
3698 | ||
3699 | /* Perform checksum validate (init). Note that this is a macro since we only | |
3700 | * want to calculate the pseudo header which is an input function if necessary. | |
3701 | * First we try to validate without any computation (checksum unnecessary) and | |
3702 | * then calculate based on checksum complete calling the function to compute | |
3703 | * pseudo header. | |
3704 | * | |
3705 | * Return values: | |
3706 | * 0: checksum is validated or try to in skb_checksum_complete | |
3707 | * non-zero: value of invalid checksum | |
3708 | */ | |
3709 | #define __skb_checksum_validate(skb, proto, complete, \ | |
3710 | zero_okay, check, compute_pseudo) \ | |
3711 | ({ \ | |
3712 | __sum16 __ret = 0; \ | |
5d0c2b95 | 3713 | skb->csum_valid = 0; \ |
76ba0aae TH |
3714 | if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ |
3715 | __ret = __skb_checksum_validate_complete(skb, \ | |
3716 | complete, compute_pseudo(skb, proto)); \ | |
3717 | __ret; \ | |
3718 | }) | |
3719 | ||
3720 | #define skb_checksum_init(skb, proto, compute_pseudo) \ | |
3721 | __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) | |
3722 | ||
3723 | #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ | |
3724 | __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) | |
3725 | ||
3726 | #define skb_checksum_validate(skb, proto, compute_pseudo) \ | |
3727 | __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) | |
3728 | ||
3729 | #define skb_checksum_validate_zero_check(skb, proto, check, \ | |
3730 | compute_pseudo) \ | |
096a4cfa | 3731 | __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) |
76ba0aae TH |
3732 | |
3733 | #define skb_checksum_simple_validate(skb) \ | |
3734 | __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) | |
3735 | ||
d96535a1 TH |
3736 | static inline bool __skb_checksum_convert_check(struct sk_buff *skb) |
3737 | { | |
219f1d79 | 3738 | return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); |
d96535a1 TH |
3739 | } |
3740 | ||
3741 | static inline void __skb_checksum_convert(struct sk_buff *skb, | |
3742 | __sum16 check, __wsum pseudo) | |
3743 | { | |
3744 | skb->csum = ~pseudo; | |
3745 | skb->ip_summed = CHECKSUM_COMPLETE; | |
3746 | } | |
3747 | ||
3748 | #define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ | |
3749 | do { \ | |
3750 | if (__skb_checksum_convert_check(skb)) \ | |
3751 | __skb_checksum_convert(skb, check, \ | |
3752 | compute_pseudo(skb, proto)); \ | |
3753 | } while (0) | |
3754 | ||
15e2396d TH |
3755 | static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, |
3756 | u16 start, u16 offset) | |
3757 | { | |
3758 | skb->ip_summed = CHECKSUM_PARTIAL; | |
3759 | skb->csum_start = ((unsigned char *)ptr + start) - skb->head; | |
3760 | skb->csum_offset = offset - start; | |
3761 | } | |
3762 | ||
dcdc8994 TH |
3763 | /* Update skbuf and packet to reflect the remote checksum offload operation. |
3764 | * When called, ptr indicates the starting point for skb->csum when | |
3765 | * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete | |
3766 | * here, skb_postpull_rcsum is done so skb->csum start is ptr. | |
3767 | */ | |
3768 | static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, | |
15e2396d | 3769 | int start, int offset, bool nopartial) |
dcdc8994 TH |
3770 | { |
3771 | __wsum delta; | |
3772 | ||
15e2396d TH |
3773 | if (!nopartial) { |
3774 | skb_remcsum_adjust_partial(skb, ptr, start, offset); | |
3775 | return; | |
3776 | } | |
3777 | ||
dcdc8994 TH |
3778 | if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { |
3779 | __skb_checksum_complete(skb); | |
3780 | skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); | |
3781 | } | |
3782 | ||
3783 | delta = remcsum_adjust(ptr, skb->csum, start, offset); | |
3784 | ||
3785 | /* Adjust skb->csum since we changed the packet */ | |
3786 | skb->csum = csum_add(skb->csum, delta); | |
3787 | } | |
3788 | ||
cb9c6836 FW |
3789 | static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) |
3790 | { | |
3791 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) | |
a9e419dc | 3792 | return (void *)(skb->_nfct & SKB_NFCT_PTRMASK); |
cb9c6836 FW |
3793 | #else |
3794 | return NULL; | |
3795 | #endif | |
3796 | } | |
3797 | ||
5f79e0f9 | 3798 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
7965bd4d | 3799 | void nf_conntrack_destroy(struct nf_conntrack *nfct); |
1da177e4 LT |
3800 | static inline void nf_conntrack_put(struct nf_conntrack *nfct) |
3801 | { | |
3802 | if (nfct && atomic_dec_and_test(&nfct->use)) | |
de6e05c4 | 3803 | nf_conntrack_destroy(nfct); |
1da177e4 LT |
3804 | } |
3805 | static inline void nf_conntrack_get(struct nf_conntrack *nfct) | |
3806 | { | |
3807 | if (nfct) | |
3808 | atomic_inc(&nfct->use); | |
3809 | } | |
2fc72c7b | 3810 | #endif |
34666d46 | 3811 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
1da177e4 LT |
3812 | static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) |
3813 | { | |
53869ceb | 3814 | if (nf_bridge && refcount_dec_and_test(&nf_bridge->use)) |
1da177e4 LT |
3815 | kfree(nf_bridge); |
3816 | } | |
3817 | static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) | |
3818 | { | |
3819 | if (nf_bridge) | |
53869ceb | 3820 | refcount_inc(&nf_bridge->use); |
1da177e4 LT |
3821 | } |
3822 | #endif /* CONFIG_BRIDGE_NETFILTER */ | |
a193a4ab PM |
3823 | static inline void nf_reset(struct sk_buff *skb) |
3824 | { | |
5f79e0f9 | 3825 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
a9e419dc FW |
3826 | nf_conntrack_put(skb_nfct(skb)); |
3827 | skb->_nfct = 0; | |
2fc72c7b | 3828 | #endif |
34666d46 | 3829 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
a193a4ab PM |
3830 | nf_bridge_put(skb->nf_bridge); |
3831 | skb->nf_bridge = NULL; | |
3832 | #endif | |
3833 | } | |
3834 | ||
124dff01 PM |
3835 | static inline void nf_reset_trace(struct sk_buff *skb) |
3836 | { | |
478b360a | 3837 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) |
130549fe G |
3838 | skb->nf_trace = 0; |
3839 | #endif | |
a193a4ab PM |
3840 | } |
3841 | ||
2b5ec1a5 YY |
3842 | static inline void ipvs_reset(struct sk_buff *skb) |
3843 | { | |
3844 | #if IS_ENABLED(CONFIG_IP_VS) | |
3845 | skb->ipvs_property = 0; | |
3846 | #endif | |
3847 | } | |
3848 | ||
edda553c | 3849 | /* Note: This doesn't put any conntrack and bridge info in dst. */ |
b1937227 ED |
3850 | static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, |
3851 | bool copy) | |
edda553c | 3852 | { |
5f79e0f9 | 3853 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
a9e419dc FW |
3854 | dst->_nfct = src->_nfct; |
3855 | nf_conntrack_get(skb_nfct(src)); | |
2fc72c7b | 3856 | #endif |
34666d46 | 3857 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
edda553c YK |
3858 | dst->nf_bridge = src->nf_bridge; |
3859 | nf_bridge_get(src->nf_bridge); | |
3860 | #endif | |
478b360a | 3861 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) |
b1937227 ED |
3862 | if (copy) |
3863 | dst->nf_trace = src->nf_trace; | |
478b360a | 3864 | #endif |
edda553c YK |
3865 | } |
3866 | ||
e7ac05f3 YK |
3867 | static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) |
3868 | { | |
e7ac05f3 | 3869 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
a9e419dc | 3870 | nf_conntrack_put(skb_nfct(dst)); |
2fc72c7b | 3871 | #endif |
34666d46 | 3872 | #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) |
e7ac05f3 YK |
3873 | nf_bridge_put(dst->nf_bridge); |
3874 | #endif | |
b1937227 | 3875 | __nf_copy(dst, src, true); |
e7ac05f3 YK |
3876 | } |
3877 | ||
984bc16c JM |
3878 | #ifdef CONFIG_NETWORK_SECMARK |
3879 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | |
3880 | { | |
3881 | to->secmark = from->secmark; | |
3882 | } | |
3883 | ||
3884 | static inline void skb_init_secmark(struct sk_buff *skb) | |
3885 | { | |
3886 | skb->secmark = 0; | |
3887 | } | |
3888 | #else | |
3889 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | |
3890 | { } | |
3891 | ||
3892 | static inline void skb_init_secmark(struct sk_buff *skb) | |
3893 | { } | |
3894 | #endif | |
3895 | ||
574f7194 EB |
3896 | static inline bool skb_irq_freeable(const struct sk_buff *skb) |
3897 | { | |
3898 | return !skb->destructor && | |
3899 | #if IS_ENABLED(CONFIG_XFRM) | |
3900 | !skb->sp && | |
3901 | #endif | |
cb9c6836 | 3902 | !skb_nfct(skb) && |
574f7194 EB |
3903 | !skb->_skb_refdst && |
3904 | !skb_has_frag_list(skb); | |
3905 | } | |
3906 | ||
f25f4e44 PWJ |
3907 | static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) |
3908 | { | |
f25f4e44 | 3909 | skb->queue_mapping = queue_mapping; |
f25f4e44 PWJ |
3910 | } |
3911 | ||
9247744e | 3912 | static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) |
4e3ab47a | 3913 | { |
4e3ab47a | 3914 | return skb->queue_mapping; |
4e3ab47a PE |
3915 | } |
3916 | ||
f25f4e44 PWJ |
3917 | static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) |
3918 | { | |
f25f4e44 | 3919 | to->queue_mapping = from->queue_mapping; |
f25f4e44 PWJ |
3920 | } |
3921 | ||
d5a9e24a DM |
3922 | static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) |
3923 | { | |
3924 | skb->queue_mapping = rx_queue + 1; | |
3925 | } | |
3926 | ||
9247744e | 3927 | static inline u16 skb_get_rx_queue(const struct sk_buff *skb) |
d5a9e24a DM |
3928 | { |
3929 | return skb->queue_mapping - 1; | |
3930 | } | |
3931 | ||
9247744e | 3932 | static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) |
d5a9e24a | 3933 | { |
a02cec21 | 3934 | return skb->queue_mapping != 0; |
d5a9e24a DM |
3935 | } |
3936 | ||
4ff06203 JA |
3937 | static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) |
3938 | { | |
3939 | skb->dst_pending_confirm = val; | |
3940 | } | |
3941 | ||
3942 | static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) | |
3943 | { | |
3944 | return skb->dst_pending_confirm != 0; | |
3945 | } | |
3946 | ||
def8b4fa AD |
3947 | static inline struct sec_path *skb_sec_path(struct sk_buff *skb) |
3948 | { | |
0b3d8e08 | 3949 | #ifdef CONFIG_XFRM |
def8b4fa | 3950 | return skb->sp; |
def8b4fa | 3951 | #else |
def8b4fa | 3952 | return NULL; |
def8b4fa | 3953 | #endif |
0b3d8e08 | 3954 | } |
def8b4fa | 3955 | |
68c33163 PS |
3956 | /* Keeps track of mac header offset relative to skb->head. |
3957 | * It is useful for TSO of Tunneling protocol. e.g. GRE. | |
3958 | * For non-tunnel skb it points to skb_mac_header() and for | |
3347c960 ED |
3959 | * tunnel skb it points to outer mac header. |
3960 | * Keeps track of level of encapsulation of network headers. | |
3961 | */ | |
68c33163 | 3962 | struct skb_gso_cb { |
802ab55a AD |
3963 | union { |
3964 | int mac_offset; | |
3965 | int data_offset; | |
3966 | }; | |
3347c960 | 3967 | int encap_level; |
76443456 | 3968 | __wsum csum; |
7e2b10c1 | 3969 | __u16 csum_start; |
68c33163 | 3970 | }; |
9207f9d4 KK |
3971 | #define SKB_SGO_CB_OFFSET 32 |
3972 | #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET)) | |
68c33163 PS |
3973 | |
3974 | static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) | |
3975 | { | |
3976 | return (skb_mac_header(inner_skb) - inner_skb->head) - | |
3977 | SKB_GSO_CB(inner_skb)->mac_offset; | |
3978 | } | |
3979 | ||
1e2bd517 PS |
3980 | static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) |
3981 | { | |
3982 | int new_headroom, headroom; | |
3983 | int ret; | |
3984 | ||
3985 | headroom = skb_headroom(skb); | |
3986 | ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); | |
3987 | if (ret) | |
3988 | return ret; | |
3989 | ||
3990 | new_headroom = skb_headroom(skb); | |
3991 | SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); | |
3992 | return 0; | |
3993 | } | |
3994 | ||
08b64fcc AD |
3995 | static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) |
3996 | { | |
3997 | /* Do not update partial checksums if remote checksum is enabled. */ | |
3998 | if (skb->remcsum_offload) | |
3999 | return; | |
4000 | ||
4001 | SKB_GSO_CB(skb)->csum = res; | |
4002 | SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; | |
4003 | } | |
4004 | ||
7e2b10c1 TH |
4005 | /* Compute the checksum for a gso segment. First compute the checksum value |
4006 | * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and | |
4007 | * then add in skb->csum (checksum from csum_start to end of packet). | |
4008 | * skb->csum and csum_start are then updated to reflect the checksum of the | |
4009 | * resultant packet starting from the transport header-- the resultant checksum | |
4010 | * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo | |
4011 | * header. | |
4012 | */ | |
4013 | static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) | |
4014 | { | |
76443456 AD |
4015 | unsigned char *csum_start = skb_transport_header(skb); |
4016 | int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; | |
4017 | __wsum partial = SKB_GSO_CB(skb)->csum; | |
7e2b10c1 | 4018 | |
76443456 AD |
4019 | SKB_GSO_CB(skb)->csum = res; |
4020 | SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; | |
7e2b10c1 | 4021 | |
76443456 | 4022 | return csum_fold(csum_partial(csum_start, plen, partial)); |
7e2b10c1 TH |
4023 | } |
4024 | ||
bdcc0924 | 4025 | static inline bool skb_is_gso(const struct sk_buff *skb) |
89114afd HX |
4026 | { |
4027 | return skb_shinfo(skb)->gso_size; | |
4028 | } | |
4029 | ||
36a8f39e | 4030 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
bdcc0924 | 4031 | static inline bool skb_is_gso_v6(const struct sk_buff *skb) |
eabd7e35 BG |
4032 | { |
4033 | return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; | |
4034 | } | |
4035 | ||
5293efe6 DB |
4036 | static inline void skb_gso_reset(struct sk_buff *skb) |
4037 | { | |
4038 | skb_shinfo(skb)->gso_size = 0; | |
4039 | skb_shinfo(skb)->gso_segs = 0; | |
4040 | skb_shinfo(skb)->gso_type = 0; | |
4041 | } | |
4042 | ||
7965bd4d | 4043 | void __skb_warn_lro_forwarding(const struct sk_buff *skb); |
4497b076 BH |
4044 | |
4045 | static inline bool skb_warn_if_lro(const struct sk_buff *skb) | |
4046 | { | |
4047 | /* LRO sets gso_size but not gso_type, whereas if GSO is really | |
4048 | * wanted then gso_type will be set. */ | |
05bdd2f1 ED |
4049 | const struct skb_shared_info *shinfo = skb_shinfo(skb); |
4050 | ||
b78462eb AD |
4051 | if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && |
4052 | unlikely(shinfo->gso_type == 0)) { | |
4497b076 BH |
4053 | __skb_warn_lro_forwarding(skb); |
4054 | return true; | |
4055 | } | |
4056 | return false; | |
4057 | } | |
4058 | ||
35fc92a9 HX |
4059 | static inline void skb_forward_csum(struct sk_buff *skb) |
4060 | { | |
4061 | /* Unfortunately we don't support this one. Any brave souls? */ | |
4062 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
4063 | skb->ip_summed = CHECKSUM_NONE; | |
4064 | } | |
4065 | ||
bc8acf2c ED |
4066 | /** |
4067 | * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE | |
4068 | * @skb: skb to check | |
4069 | * | |
4070 | * fresh skbs have their ip_summed set to CHECKSUM_NONE. | |
4071 | * Instead of forcing ip_summed to CHECKSUM_NONE, we can | |
4072 | * use this helper, to document places where we make this assertion. | |
4073 | */ | |
05bdd2f1 | 4074 | static inline void skb_checksum_none_assert(const struct sk_buff *skb) |
bc8acf2c ED |
4075 | { |
4076 | #ifdef DEBUG | |
4077 | BUG_ON(skb->ip_summed != CHECKSUM_NONE); | |
4078 | #endif | |
4079 | } | |
4080 | ||
f35d9d8a | 4081 | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); |
a6686f2f | 4082 | |
ed1f50c3 | 4083 | int skb_checksum_setup(struct sk_buff *skb, bool recalculate); |
9afd85c9 LL |
4084 | struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, |
4085 | unsigned int transport_len, | |
4086 | __sum16(*skb_chkf)(struct sk_buff *skb)); | |
ed1f50c3 | 4087 | |
3a7c1ee4 AD |
4088 | /** |
4089 | * skb_head_is_locked - Determine if the skb->head is locked down | |
4090 | * @skb: skb to check | |
4091 | * | |
4092 | * The head on skbs build around a head frag can be removed if they are | |
4093 | * not cloned. This function returns true if the skb head is locked down | |
4094 | * due to either being allocated via kmalloc, or by being a clone with | |
4095 | * multiple references to the head. | |
4096 | */ | |
4097 | static inline bool skb_head_is_locked(const struct sk_buff *skb) | |
4098 | { | |
4099 | return !skb->head_frag || skb_cloned(skb); | |
4100 | } | |
fe6cc55f FW |
4101 | |
4102 | /** | |
4103 | * skb_gso_network_seglen - Return length of individual segments of a gso packet | |
4104 | * | |
4105 | * @skb: GSO skb | |
4106 | * | |
4107 | * skb_gso_network_seglen is used to determine the real size of the | |
4108 | * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). | |
4109 | * | |
4110 | * The MAC/L2 header is not accounted for. | |
4111 | */ | |
4112 | static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) | |
4113 | { | |
4114 | unsigned int hdr_len = skb_transport_header(skb) - | |
4115 | skb_network_header(skb); | |
4116 | return hdr_len + skb_gso_transport_seglen(skb); | |
4117 | } | |
ee122c79 | 4118 | |
179bc67f EC |
4119 | /* Local Checksum Offload. |
4120 | * Compute outer checksum based on the assumption that the | |
4121 | * inner checksum will be offloaded later. | |
e8ae7b00 EC |
4122 | * See Documentation/networking/checksum-offloads.txt for |
4123 | * explanation of how this works. | |
179bc67f EC |
4124 | * Fill in outer checksum adjustment (e.g. with sum of outer |
4125 | * pseudo-header) before calling. | |
4126 | * Also ensure that inner checksum is in linear data area. | |
4127 | */ | |
4128 | static inline __wsum lco_csum(struct sk_buff *skb) | |
4129 | { | |
9e74a6da AD |
4130 | unsigned char *csum_start = skb_checksum_start(skb); |
4131 | unsigned char *l4_hdr = skb_transport_header(skb); | |
4132 | __wsum partial; | |
179bc67f EC |
4133 | |
4134 | /* Start with complement of inner checksum adjustment */ | |
9e74a6da AD |
4135 | partial = ~csum_unfold(*(__force __sum16 *)(csum_start + |
4136 | skb->csum_offset)); | |
4137 | ||
179bc67f | 4138 | /* Add in checksum of our headers (incl. outer checksum |
9e74a6da | 4139 | * adjustment filled in by caller) and return result. |
179bc67f | 4140 | */ |
9e74a6da | 4141 | return csum_partial(l4_hdr, csum_start - l4_hdr, partial); |
179bc67f EC |
4142 | } |
4143 | ||
1da177e4 LT |
4144 | #endif /* __KERNEL__ */ |
4145 | #endif /* _LINUX_SKBUFF_H */ |