]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * Definitions for the 'struct sk_buff' memory handlers. | |
3 | * | |
4 | * Authors: | |
5 | * Alan Cox, <[email protected]> | |
6 | * Florian La Roche, <[email protected]> | |
7 | * | |
8 | * This program is free software; you can redistribute it and/or | |
9 | * modify it under the terms of the GNU General Public License | |
10 | * as published by the Free Software Foundation; either version | |
11 | * 2 of the License, or (at your option) any later version. | |
12 | */ | |
13 | ||
14 | #ifndef _LINUX_SKBUFF_H | |
15 | #define _LINUX_SKBUFF_H | |
16 | ||
1da177e4 | 17 | #include <linux/kernel.h> |
fe55f6d5 | 18 | #include <linux/kmemcheck.h> |
1da177e4 LT |
19 | #include <linux/compiler.h> |
20 | #include <linux/time.h> | |
187f1882 | 21 | #include <linux/bug.h> |
1da177e4 LT |
22 | #include <linux/cache.h> |
23 | ||
60063497 | 24 | #include <linux/atomic.h> |
1da177e4 LT |
25 | #include <asm/types.h> |
26 | #include <linux/spinlock.h> | |
1da177e4 | 27 | #include <linux/net.h> |
3fc7e8a6 | 28 | #include <linux/textsearch.h> |
1da177e4 | 29 | #include <net/checksum.h> |
a80958f4 | 30 | #include <linux/rcupdate.h> |
97fc2f08 | 31 | #include <linux/dmaengine.h> |
b7aa0bf7 | 32 | #include <linux/hrtimer.h> |
131ea667 | 33 | #include <linux/dma-mapping.h> |
c8f44aff | 34 | #include <linux/netdev_features.h> |
363ec392 | 35 | #include <linux/sched.h> |
5203cd28 | 36 | #include <net/flow_keys.h> |
1da177e4 | 37 | |
78ea85f1 DB |
38 | /* A. Checksumming of received packets by device. |
39 | * | |
40 | * CHECKSUM_NONE: | |
41 | * | |
42 | * Device failed to checksum this packet e.g. due to lack of capabilities. | |
43 | * The packet contains full (though not verified) checksum in packet but | |
44 | * not in skb->csum. Thus, skb->csum is undefined in this case. | |
45 | * | |
46 | * CHECKSUM_UNNECESSARY: | |
47 | * | |
48 | * The hardware you're dealing with doesn't calculate the full checksum | |
49 | * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums | |
50 | * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will | |
51 | * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still | |
52 | * undefined in this case though. It is a bad option, but, unfortunately, | |
53 | * nowadays most vendors do this. Apparently with the secret goal to sell | |
54 | * you new devices, when you will add new protocol to your host, f.e. IPv6 8) | |
55 | * | |
56 | * CHECKSUM_COMPLETE: | |
57 | * | |
58 | * This is the most generic way. The device supplied checksum of the _whole_ | |
59 | * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the | |
60 | * hardware doesn't need to parse L3/L4 headers to implement this. | |
61 | * | |
62 | * Note: Even if device supports only some protocols, but is able to produce | |
63 | * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. | |
64 | * | |
65 | * CHECKSUM_PARTIAL: | |
66 | * | |
67 | * This is identical to the case for output below. This may occur on a packet | |
68 | * received directly from another Linux OS, e.g., a virtualized Linux kernel | |
69 | * on the same host. The packet can be treated in the same way as | |
70 | * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the | |
71 | * checksum must be filled in by the OS or the hardware. | |
72 | * | |
73 | * B. Checksumming on output. | |
74 | * | |
75 | * CHECKSUM_NONE: | |
76 | * | |
77 | * The skb was already checksummed by the protocol, or a checksum is not | |
78 | * required. | |
79 | * | |
80 | * CHECKSUM_PARTIAL: | |
81 | * | |
82 | * The device is required to checksum the packet as seen by hard_start_xmit() | |
83 | * from skb->csum_start up to the end, and to record/write the checksum at | |
84 | * offset skb->csum_start + skb->csum_offset. | |
85 | * | |
86 | * The device must show its capabilities in dev->features, set up at device | |
87 | * setup time, e.g. netdev_features.h: | |
88 | * | |
89 | * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. | |
90 | * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over | |
91 | * IPv4. Sigh. Vendors like this way for an unknown reason. | |
92 | * Though, see comment above about CHECKSUM_UNNECESSARY. 8) | |
93 | * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. | |
94 | * NETIF_F_... - Well, you get the picture. | |
95 | * | |
96 | * CHECKSUM_UNNECESSARY: | |
97 | * | |
98 | * Normally, the device will do per protocol specific checksumming. Protocol | |
99 | * implementations that do not want the NIC to perform the checksum | |
100 | * calculation should use this flag in their outgoing skbs. | |
101 | * | |
102 | * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC | |
103 | * offload. Correspondingly, the FCoE protocol driver | |
104 | * stack should use CHECKSUM_UNNECESSARY. | |
105 | * | |
106 | * Any questions? No questions, good. --ANK | |
107 | */ | |
108 | ||
60476372 | 109 | /* Don't change this without changing skb_csum_unnecessary! */ |
78ea85f1 DB |
110 | #define CHECKSUM_NONE 0 |
111 | #define CHECKSUM_UNNECESSARY 1 | |
112 | #define CHECKSUM_COMPLETE 2 | |
113 | #define CHECKSUM_PARTIAL 3 | |
1da177e4 LT |
114 | |
115 | #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ | |
116 | ~(SMP_CACHE_BYTES - 1)) | |
fc910a27 | 117 | #define SKB_WITH_OVERHEAD(X) \ |
deea84b0 | 118 | ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) |
fc910a27 DM |
119 | #define SKB_MAX_ORDER(X, ORDER) \ |
120 | SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) | |
1da177e4 LT |
121 | #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) |
122 | #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) | |
123 | ||
87fb4b7b ED |
124 | /* return minimum truesize of one skb containing X bytes of data */ |
125 | #define SKB_TRUESIZE(X) ((X) + \ | |
126 | SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ | |
127 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) | |
128 | ||
1da177e4 | 129 | struct net_device; |
716ea3a7 | 130 | struct scatterlist; |
9c55e01c | 131 | struct pipe_inode_info; |
1da177e4 | 132 | |
5f79e0f9 | 133 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
1da177e4 LT |
134 | struct nf_conntrack { |
135 | atomic_t use; | |
1da177e4 | 136 | }; |
5f79e0f9 | 137 | #endif |
1da177e4 LT |
138 | |
139 | #ifdef CONFIG_BRIDGE_NETFILTER | |
140 | struct nf_bridge_info { | |
bf1ac5ca ED |
141 | atomic_t use; |
142 | unsigned int mask; | |
143 | struct net_device *physindev; | |
144 | struct net_device *physoutdev; | |
145 | unsigned long data[32 / sizeof(unsigned long)]; | |
1da177e4 LT |
146 | }; |
147 | #endif | |
148 | ||
1da177e4 LT |
149 | struct sk_buff_head { |
150 | /* These two members must be first. */ | |
151 | struct sk_buff *next; | |
152 | struct sk_buff *prev; | |
153 | ||
154 | __u32 qlen; | |
155 | spinlock_t lock; | |
156 | }; | |
157 | ||
158 | struct sk_buff; | |
159 | ||
9d4dde52 IC |
160 | /* To allow 64K frame to be packed as single skb without frag_list we |
161 | * require 64K/PAGE_SIZE pages plus 1 additional page to allow for | |
162 | * buffers which do not start on a page boundary. | |
163 | * | |
164 | * Since GRO uses frags we allocate at least 16 regardless of page | |
165 | * size. | |
a715dea3 | 166 | */ |
9d4dde52 | 167 | #if (65536/PAGE_SIZE + 1) < 16 |
eec00954 | 168 | #define MAX_SKB_FRAGS 16UL |
a715dea3 | 169 | #else |
9d4dde52 | 170 | #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) |
a715dea3 | 171 | #endif |
1da177e4 LT |
172 | |
173 | typedef struct skb_frag_struct skb_frag_t; | |
174 | ||
175 | struct skb_frag_struct { | |
a8605c60 IC |
176 | struct { |
177 | struct page *p; | |
178 | } page; | |
cb4dfe56 | 179 | #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) |
a309bb07 DM |
180 | __u32 page_offset; |
181 | __u32 size; | |
cb4dfe56 ED |
182 | #else |
183 | __u16 page_offset; | |
184 | __u16 size; | |
185 | #endif | |
1da177e4 LT |
186 | }; |
187 | ||
9e903e08 ED |
188 | static inline unsigned int skb_frag_size(const skb_frag_t *frag) |
189 | { | |
190 | return frag->size; | |
191 | } | |
192 | ||
193 | static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) | |
194 | { | |
195 | frag->size = size; | |
196 | } | |
197 | ||
198 | static inline void skb_frag_size_add(skb_frag_t *frag, int delta) | |
199 | { | |
200 | frag->size += delta; | |
201 | } | |
202 | ||
203 | static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) | |
204 | { | |
205 | frag->size -= delta; | |
206 | } | |
207 | ||
ac45f602 PO |
208 | #define HAVE_HW_TIME_STAMP |
209 | ||
210 | /** | |
d3a21be8 | 211 | * struct skb_shared_hwtstamps - hardware time stamps |
ac45f602 PO |
212 | * @hwtstamp: hardware time stamp transformed into duration |
213 | * since arbitrary point in time | |
214 | * @syststamp: hwtstamp transformed to system time base | |
215 | * | |
216 | * Software time stamps generated by ktime_get_real() are stored in | |
217 | * skb->tstamp. The relation between the different kinds of time | |
218 | * stamps is as follows: | |
219 | * | |
220 | * syststamp and tstamp can be compared against each other in | |
221 | * arbitrary combinations. The accuracy of a | |
222 | * syststamp/tstamp/"syststamp from other device" comparison is | |
223 | * limited by the accuracy of the transformation into system time | |
224 | * base. This depends on the device driver and its underlying | |
225 | * hardware. | |
226 | * | |
227 | * hwtstamps can only be compared against other hwtstamps from | |
228 | * the same device. | |
229 | * | |
230 | * This structure is attached to packets as part of the | |
231 | * &skb_shared_info. Use skb_hwtstamps() to get a pointer. | |
232 | */ | |
233 | struct skb_shared_hwtstamps { | |
234 | ktime_t hwtstamp; | |
235 | ktime_t syststamp; | |
236 | }; | |
237 | ||
2244d07b OH |
238 | /* Definitions for tx_flags in struct skb_shared_info */ |
239 | enum { | |
240 | /* generate hardware time stamp */ | |
241 | SKBTX_HW_TSTAMP = 1 << 0, | |
242 | ||
243 | /* generate software time stamp */ | |
244 | SKBTX_SW_TSTAMP = 1 << 1, | |
245 | ||
246 | /* device driver is going to provide hardware time stamp */ | |
247 | SKBTX_IN_PROGRESS = 1 << 2, | |
248 | ||
a6686f2f | 249 | /* device driver supports TX zero-copy buffers */ |
62b1a8ab | 250 | SKBTX_DEV_ZEROCOPY = 1 << 3, |
6e3e939f JB |
251 | |
252 | /* generate wifi status information (where possible) */ | |
62b1a8ab | 253 | SKBTX_WIFI_STATUS = 1 << 4, |
c9af6db4 PS |
254 | |
255 | /* This indicates at least one fragment might be overwritten | |
256 | * (as in vmsplice(), sendfile() ...) | |
257 | * If we need to compute a TX checksum, we'll need to copy | |
258 | * all frags to avoid possible bad checksum | |
259 | */ | |
260 | SKBTX_SHARED_FRAG = 1 << 5, | |
a6686f2f SM |
261 | }; |
262 | ||
263 | /* | |
264 | * The callback notifies userspace to release buffers when skb DMA is done in | |
265 | * lower device, the skb last reference should be 0 when calling this. | |
e19d6763 MT |
266 | * The zerocopy_success argument is true if zero copy transmit occurred, |
267 | * false on data copy or out of memory error caused by data copy attempt. | |
ca8f4fb2 MT |
268 | * The ctx field is used to track device context. |
269 | * The desc field is used to track userspace buffer index. | |
a6686f2f SM |
270 | */ |
271 | struct ubuf_info { | |
e19d6763 | 272 | void (*callback)(struct ubuf_info *, bool zerocopy_success); |
ca8f4fb2 | 273 | void *ctx; |
a6686f2f | 274 | unsigned long desc; |
ac45f602 PO |
275 | }; |
276 | ||
1da177e4 LT |
277 | /* This data is invariant across clones and lives at |
278 | * the end of the header data, ie. at skb->end. | |
279 | */ | |
280 | struct skb_shared_info { | |
9f42f126 IC |
281 | unsigned char nr_frags; |
282 | __u8 tx_flags; | |
7967168c HX |
283 | unsigned short gso_size; |
284 | /* Warning: this field is not always filled in (UFO)! */ | |
285 | unsigned short gso_segs; | |
286 | unsigned short gso_type; | |
1da177e4 | 287 | struct sk_buff *frag_list; |
ac45f602 | 288 | struct skb_shared_hwtstamps hwtstamps; |
9f42f126 | 289 | __be32 ip6_frag_id; |
ec7d2f2c ED |
290 | |
291 | /* | |
292 | * Warning : all fields before dataref are cleared in __alloc_skb() | |
293 | */ | |
294 | atomic_t dataref; | |
295 | ||
69e3c75f JB |
296 | /* Intermediate layers must ensure that destructor_arg |
297 | * remains valid until skb destructor */ | |
298 | void * destructor_arg; | |
a6686f2f | 299 | |
fed66381 ED |
300 | /* must be last field, see pskb_expand_head() */ |
301 | skb_frag_t frags[MAX_SKB_FRAGS]; | |
1da177e4 LT |
302 | }; |
303 | ||
304 | /* We divide dataref into two halves. The higher 16 bits hold references | |
305 | * to the payload part of skb->data. The lower 16 bits hold references to | |
334a8132 PM |
306 | * the entire skb->data. A clone of a headerless skb holds the length of |
307 | * the header in skb->hdr_len. | |
1da177e4 LT |
308 | * |
309 | * All users must obey the rule that the skb->data reference count must be | |
310 | * greater than or equal to the payload reference count. | |
311 | * | |
312 | * Holding a reference to the payload part means that the user does not | |
313 | * care about modifications to the header part of skb->data. | |
314 | */ | |
315 | #define SKB_DATAREF_SHIFT 16 | |
316 | #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) | |
317 | ||
d179cd12 DM |
318 | |
319 | enum { | |
320 | SKB_FCLONE_UNAVAILABLE, | |
321 | SKB_FCLONE_ORIG, | |
322 | SKB_FCLONE_CLONE, | |
323 | }; | |
324 | ||
7967168c HX |
325 | enum { |
326 | SKB_GSO_TCPV4 = 1 << 0, | |
f83ef8c0 | 327 | SKB_GSO_UDP = 1 << 1, |
576a30eb HX |
328 | |
329 | /* This indicates the skb is from an untrusted source. */ | |
330 | SKB_GSO_DODGY = 1 << 2, | |
b0da8537 MC |
331 | |
332 | /* This indicates the tcp segment has CWR set. */ | |
f83ef8c0 HX |
333 | SKB_GSO_TCP_ECN = 1 << 3, |
334 | ||
335 | SKB_GSO_TCPV6 = 1 << 4, | |
01d5b2fc CL |
336 | |
337 | SKB_GSO_FCOE = 1 << 5, | |
68c33163 PS |
338 | |
339 | SKB_GSO_GRE = 1 << 6, | |
73136267 | 340 | |
cb32f511 | 341 | SKB_GSO_IPIP = 1 << 7, |
0d89d203 | 342 | |
61c1db7f | 343 | SKB_GSO_SIT = 1 << 8, |
cb32f511 | 344 | |
61c1db7f ED |
345 | SKB_GSO_UDP_TUNNEL = 1 << 9, |
346 | ||
347 | SKB_GSO_MPLS = 1 << 10, | |
7967168c HX |
348 | }; |
349 | ||
2e07fa9c ACM |
350 | #if BITS_PER_LONG > 32 |
351 | #define NET_SKBUFF_DATA_USES_OFFSET 1 | |
352 | #endif | |
353 | ||
354 | #ifdef NET_SKBUFF_DATA_USES_OFFSET | |
355 | typedef unsigned int sk_buff_data_t; | |
356 | #else | |
357 | typedef unsigned char *sk_buff_data_t; | |
358 | #endif | |
359 | ||
363ec392 ED |
360 | /** |
361 | * struct skb_mstamp - multi resolution time stamps | |
362 | * @stamp_us: timestamp in us resolution | |
363 | * @stamp_jiffies: timestamp in jiffies | |
364 | */ | |
365 | struct skb_mstamp { | |
366 | union { | |
367 | u64 v64; | |
368 | struct { | |
369 | u32 stamp_us; | |
370 | u32 stamp_jiffies; | |
371 | }; | |
372 | }; | |
373 | }; | |
374 | ||
375 | /** | |
376 | * skb_mstamp_get - get current timestamp | |
377 | * @cl: place to store timestamps | |
378 | */ | |
379 | static inline void skb_mstamp_get(struct skb_mstamp *cl) | |
380 | { | |
381 | u64 val = local_clock(); | |
382 | ||
383 | do_div(val, NSEC_PER_USEC); | |
384 | cl->stamp_us = (u32)val; | |
385 | cl->stamp_jiffies = (u32)jiffies; | |
386 | } | |
387 | ||
388 | /** | |
389 | * skb_mstamp_delta - compute the difference in usec between two skb_mstamp | |
390 | * @t1: pointer to newest sample | |
391 | * @t0: pointer to oldest sample | |
392 | */ | |
393 | static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, | |
394 | const struct skb_mstamp *t0) | |
395 | { | |
396 | s32 delta_us = t1->stamp_us - t0->stamp_us; | |
397 | u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; | |
398 | ||
399 | /* If delta_us is negative, this might be because interval is too big, | |
400 | * or local_clock() drift is too big : fallback using jiffies. | |
401 | */ | |
402 | if (delta_us <= 0 || | |
403 | delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) | |
404 | ||
405 | delta_us = jiffies_to_usecs(delta_jiffies); | |
406 | ||
407 | return delta_us; | |
408 | } | |
409 | ||
410 | ||
1da177e4 LT |
411 | /** |
412 | * struct sk_buff - socket buffer | |
413 | * @next: Next buffer in list | |
414 | * @prev: Previous buffer in list | |
363ec392 | 415 | * @tstamp: Time we arrived/left |
d84e0bd7 | 416 | * @sk: Socket we are owned by |
1da177e4 | 417 | * @dev: Device we arrived on/are leaving by |
d84e0bd7 | 418 | * @cb: Control buffer. Free for use by every layer. Put private vars here |
7fee226a | 419 | * @_skb_refdst: destination entry (with norefcount bit) |
67be2dd1 | 420 | * @sp: the security path, used for xfrm |
1da177e4 LT |
421 | * @len: Length of actual data |
422 | * @data_len: Data length | |
423 | * @mac_len: Length of link layer header | |
334a8132 | 424 | * @hdr_len: writable header length of cloned skb |
663ead3b HX |
425 | * @csum: Checksum (must include start/offset pair) |
426 | * @csum_start: Offset from skb->head where checksumming should start | |
427 | * @csum_offset: Offset from csum_start where checksum should be stored | |
d84e0bd7 | 428 | * @priority: Packet queueing priority |
67be2dd1 | 429 | * @local_df: allow local fragmentation |
1da177e4 | 430 | * @cloned: Head may be cloned (check refcnt to be sure) |
d84e0bd7 | 431 | * @ip_summed: Driver fed us an IP checksum |
1da177e4 | 432 | * @nohdr: Payload reference only, must not modify header |
d84e0bd7 | 433 | * @nfctinfo: Relationship of this skb to the connection |
1da177e4 | 434 | * @pkt_type: Packet class |
c83c2486 | 435 | * @fclone: skbuff clone status |
c83c2486 | 436 | * @ipvs_property: skbuff is owned by ipvs |
31729363 RD |
437 | * @peeked: this packet has been seen already, so stats have been |
438 | * done for it, don't do them again | |
ba9dda3a | 439 | * @nf_trace: netfilter packet trace flag |
d84e0bd7 DB |
440 | * @protocol: Packet protocol from driver |
441 | * @destructor: Destruct function | |
442 | * @nfct: Associated connection, if any | |
1da177e4 | 443 | * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c |
8964be4a | 444 | * @skb_iif: ifindex of device we arrived on |
1da177e4 LT |
445 | * @tc_index: Traffic control index |
446 | * @tc_verd: traffic control verdict | |
d84e0bd7 DB |
447 | * @rxhash: the packet hash computed on receive |
448 | * @queue_mapping: Queue mapping for multiqueue devices | |
553a5672 | 449 | * @ndisc_nodetype: router type (from link layer) |
d84e0bd7 | 450 | * @ooo_okay: allow the mapping of a socket to a queue to be changed |
4ca2462e CG |
451 | * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport |
452 | * ports. | |
6e3e939f JB |
453 | * @wifi_acked_valid: wifi_acked was set |
454 | * @wifi_acked: whether frame was acked on wifi or not | |
3bdc0eba | 455 | * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS |
f4b8ea78 RD |
456 | * @dma_cookie: a cookie to one of several possible DMA operations |
457 | * done by skb DMA functions | |
06021292 | 458 | * @napi_id: id of the NAPI struct this skb came from |
984bc16c | 459 | * @secmark: security marking |
d84e0bd7 DB |
460 | * @mark: Generic packet mark |
461 | * @dropcount: total number of sk_receive_queue overflows | |
86a9bad3 | 462 | * @vlan_proto: vlan encapsulation protocol |
6aa895b0 | 463 | * @vlan_tci: vlan tag control information |
0d89d203 | 464 | * @inner_protocol: Protocol (encapsulation) |
6a674e9c JG |
465 | * @inner_transport_header: Inner transport layer header (encapsulation) |
466 | * @inner_network_header: Network layer header (encapsulation) | |
aefbd2b3 | 467 | * @inner_mac_header: Link layer header (encapsulation) |
d84e0bd7 DB |
468 | * @transport_header: Transport layer header |
469 | * @network_header: Network layer header | |
470 | * @mac_header: Link layer header | |
471 | * @tail: Tail pointer | |
472 | * @end: End pointer | |
473 | * @head: Head of buffer | |
474 | * @data: Data head pointer | |
475 | * @truesize: Buffer size | |
476 | * @users: User count - see {datagram,tcp}.c | |
1da177e4 LT |
477 | */ |
478 | ||
479 | struct sk_buff { | |
480 | /* These two members must be first. */ | |
481 | struct sk_buff *next; | |
482 | struct sk_buff *prev; | |
483 | ||
363ec392 ED |
484 | union { |
485 | ktime_t tstamp; | |
486 | struct skb_mstamp skb_mstamp; | |
487 | }; | |
da3f5cf1 FF |
488 | |
489 | struct sock *sk; | |
1da177e4 | 490 | struct net_device *dev; |
1da177e4 | 491 | |
1da177e4 LT |
492 | /* |
493 | * This is the control buffer. It is free to use for every | |
494 | * layer. Please put your private variables there. If you | |
495 | * want to keep them across layers you have to do a skb_clone() | |
496 | * first. This is owned by whoever has the skb queued ATM. | |
497 | */ | |
da3f5cf1 | 498 | char cb[48] __aligned(8); |
1da177e4 | 499 | |
7fee226a | 500 | unsigned long _skb_refdst; |
da3f5cf1 FF |
501 | #ifdef CONFIG_XFRM |
502 | struct sec_path *sp; | |
503 | #endif | |
1da177e4 | 504 | unsigned int len, |
334a8132 PM |
505 | data_len; |
506 | __u16 mac_len, | |
507 | hdr_len; | |
ff1dcadb AV |
508 | union { |
509 | __wsum csum; | |
663ead3b HX |
510 | struct { |
511 | __u16 csum_start; | |
512 | __u16 csum_offset; | |
513 | }; | |
ff1dcadb | 514 | }; |
1da177e4 | 515 | __u32 priority; |
fe55f6d5 | 516 | kmemcheck_bitfield_begin(flags1); |
1cbb3380 TG |
517 | __u8 local_df:1, |
518 | cloned:1, | |
519 | ip_summed:2, | |
6869c4d8 HW |
520 | nohdr:1, |
521 | nfctinfo:3; | |
d179cd12 | 522 | __u8 pkt_type:3, |
b84f4cc9 | 523 | fclone:2, |
ba9dda3a | 524 | ipvs_property:1, |
a59322be | 525 | peeked:1, |
ba9dda3a | 526 | nf_trace:1; |
fe55f6d5 | 527 | kmemcheck_bitfield_end(flags1); |
4ab408de | 528 | __be16 protocol; |
1da177e4 LT |
529 | |
530 | void (*destructor)(struct sk_buff *skb); | |
9fb9cbb1 | 531 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
5f79e0f9 | 532 | struct nf_conntrack *nfct; |
2fc72c7b | 533 | #endif |
1da177e4 LT |
534 | #ifdef CONFIG_BRIDGE_NETFILTER |
535 | struct nf_bridge_info *nf_bridge; | |
536 | #endif | |
f25f4e44 | 537 | |
8964be4a | 538 | int skb_iif; |
4031ae6e AD |
539 | |
540 | __u32 rxhash; | |
541 | ||
86a9bad3 | 542 | __be16 vlan_proto; |
4031ae6e AD |
543 | __u16 vlan_tci; |
544 | ||
1da177e4 | 545 | #ifdef CONFIG_NET_SCHED |
b6b99eb5 | 546 | __u16 tc_index; /* traffic control index */ |
1da177e4 | 547 | #ifdef CONFIG_NET_CLS_ACT |
b6b99eb5 | 548 | __u16 tc_verd; /* traffic control verdict */ |
1da177e4 | 549 | #endif |
1da177e4 | 550 | #endif |
fe55f6d5 | 551 | |
0a14842f | 552 | __u16 queue_mapping; |
fe55f6d5 | 553 | kmemcheck_bitfield_begin(flags2); |
de357cc0 | 554 | #ifdef CONFIG_IPV6_NDISC_NODETYPE |
8a4eb573 | 555 | __u8 ndisc_nodetype:2; |
d0f09804 | 556 | #endif |
c93bdd0e | 557 | __u8 pfmemalloc:1; |
3853b584 | 558 | __u8 ooo_okay:1; |
bdeab991 | 559 | __u8 l4_rxhash:1; |
6e3e939f JB |
560 | __u8 wifi_acked_valid:1; |
561 | __u8 wifi_acked:1; | |
3bdc0eba | 562 | __u8 no_fcs:1; |
d3836f21 | 563 | __u8 head_frag:1; |
6a674e9c JG |
564 | /* Encapsulation protocol and NIC drivers should use |
565 | * this flag to indicate to each other if the skb contains | |
566 | * encapsulated packet or not and maybe use the inner packet | |
567 | * headers if needed | |
568 | */ | |
569 | __u8 encapsulation:1; | |
45906723 | 570 | /* 6/8 bit hole (depending on ndisc_nodetype presence) */ |
fe55f6d5 VN |
571 | kmemcheck_bitfield_end(flags2); |
572 | ||
e0d1095a | 573 | #if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL |
06021292 ET |
574 | union { |
575 | unsigned int napi_id; | |
576 | dma_cookie_t dma_cookie; | |
577 | }; | |
97fc2f08 | 578 | #endif |
984bc16c JM |
579 | #ifdef CONFIG_NETWORK_SECMARK |
580 | __u32 secmark; | |
581 | #endif | |
3b885787 NH |
582 | union { |
583 | __u32 mark; | |
584 | __u32 dropcount; | |
16fad69c | 585 | __u32 reserved_tailroom; |
3b885787 | 586 | }; |
1da177e4 | 587 | |
0d89d203 | 588 | __be16 inner_protocol; |
1a37e412 SH |
589 | __u16 inner_transport_header; |
590 | __u16 inner_network_header; | |
591 | __u16 inner_mac_header; | |
592 | __u16 transport_header; | |
593 | __u16 network_header; | |
594 | __u16 mac_header; | |
1da177e4 | 595 | /* These elements must be at the end, see alloc_skb() for details. */ |
27a884dc | 596 | sk_buff_data_t tail; |
4305b541 | 597 | sk_buff_data_t end; |
1da177e4 | 598 | unsigned char *head, |
4305b541 | 599 | *data; |
27a884dc ACM |
600 | unsigned int truesize; |
601 | atomic_t users; | |
1da177e4 LT |
602 | }; |
603 | ||
604 | #ifdef __KERNEL__ | |
605 | /* | |
606 | * Handling routines are only of interest to the kernel | |
607 | */ | |
608 | #include <linux/slab.h> | |
609 | ||
1da177e4 | 610 | |
c93bdd0e MG |
611 | #define SKB_ALLOC_FCLONE 0x01 |
612 | #define SKB_ALLOC_RX 0x02 | |
613 | ||
614 | /* Returns true if the skb was allocated from PFMEMALLOC reserves */ | |
615 | static inline bool skb_pfmemalloc(const struct sk_buff *skb) | |
616 | { | |
617 | return unlikely(skb->pfmemalloc); | |
618 | } | |
619 | ||
7fee226a ED |
620 | /* |
621 | * skb might have a dst pointer attached, refcounted or not. | |
622 | * _skb_refdst low order bit is set if refcount was _not_ taken | |
623 | */ | |
624 | #define SKB_DST_NOREF 1UL | |
625 | #define SKB_DST_PTRMASK ~(SKB_DST_NOREF) | |
626 | ||
627 | /** | |
628 | * skb_dst - returns skb dst_entry | |
629 | * @skb: buffer | |
630 | * | |
631 | * Returns skb dst_entry, regardless of reference taken or not. | |
632 | */ | |
adf30907 ED |
633 | static inline struct dst_entry *skb_dst(const struct sk_buff *skb) |
634 | { | |
7fee226a ED |
635 | /* If refdst was not refcounted, check we still are in a |
636 | * rcu_read_lock section | |
637 | */ | |
638 | WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && | |
639 | !rcu_read_lock_held() && | |
640 | !rcu_read_lock_bh_held()); | |
641 | return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); | |
adf30907 ED |
642 | } |
643 | ||
7fee226a ED |
644 | /** |
645 | * skb_dst_set - sets skb dst | |
646 | * @skb: buffer | |
647 | * @dst: dst entry | |
648 | * | |
649 | * Sets skb dst, assuming a reference was taken on dst and should | |
650 | * be released by skb_dst_drop() | |
651 | */ | |
adf30907 ED |
652 | static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) |
653 | { | |
7fee226a ED |
654 | skb->_skb_refdst = (unsigned long)dst; |
655 | } | |
656 | ||
7965bd4d JP |
657 | void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, |
658 | bool force); | |
932bc4d7 JA |
659 | |
660 | /** | |
661 | * skb_dst_set_noref - sets skb dst, hopefully, without taking reference | |
662 | * @skb: buffer | |
663 | * @dst: dst entry | |
664 | * | |
665 | * Sets skb dst, assuming a reference was not taken on dst. | |
666 | * If dst entry is cached, we do not take reference and dst_release | |
667 | * will be avoided by refdst_drop. If dst entry is not cached, we take | |
668 | * reference, so that last dst_release can destroy the dst immediately. | |
669 | */ | |
670 | static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) | |
671 | { | |
672 | __skb_dst_set_noref(skb, dst, false); | |
673 | } | |
674 | ||
675 | /** | |
676 | * skb_dst_set_noref_force - sets skb dst, without taking reference | |
677 | * @skb: buffer | |
678 | * @dst: dst entry | |
679 | * | |
680 | * Sets skb dst, assuming a reference was not taken on dst. | |
681 | * No reference is taken and no dst_release will be called. While for | |
682 | * cached dsts deferred reclaim is a basic feature, for entries that are | |
683 | * not cached it is caller's job to guarantee that last dst_release for | |
684 | * provided dst happens when nobody uses it, eg. after a RCU grace period. | |
685 | */ | |
686 | static inline void skb_dst_set_noref_force(struct sk_buff *skb, | |
687 | struct dst_entry *dst) | |
688 | { | |
689 | __skb_dst_set_noref(skb, dst, true); | |
690 | } | |
7fee226a ED |
691 | |
692 | /** | |
25985edc | 693 | * skb_dst_is_noref - Test if skb dst isn't refcounted |
7fee226a ED |
694 | * @skb: buffer |
695 | */ | |
696 | static inline bool skb_dst_is_noref(const struct sk_buff *skb) | |
697 | { | |
698 | return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); | |
adf30907 ED |
699 | } |
700 | ||
511c3f92 ED |
701 | static inline struct rtable *skb_rtable(const struct sk_buff *skb) |
702 | { | |
adf30907 | 703 | return (struct rtable *)skb_dst(skb); |
511c3f92 ED |
704 | } |
705 | ||
7965bd4d JP |
706 | void kfree_skb(struct sk_buff *skb); |
707 | void kfree_skb_list(struct sk_buff *segs); | |
708 | void skb_tx_error(struct sk_buff *skb); | |
709 | void consume_skb(struct sk_buff *skb); | |
710 | void __kfree_skb(struct sk_buff *skb); | |
d7e8883c | 711 | extern struct kmem_cache *skbuff_head_cache; |
bad43ca8 | 712 | |
7965bd4d JP |
713 | void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); |
714 | bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, | |
715 | bool *fragstolen, int *delta_truesize); | |
bad43ca8 | 716 | |
7965bd4d JP |
717 | struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, |
718 | int node); | |
719 | struct sk_buff *build_skb(void *data, unsigned int frag_size); | |
d179cd12 | 720 | static inline struct sk_buff *alloc_skb(unsigned int size, |
dd0fc66f | 721 | gfp_t priority) |
d179cd12 | 722 | { |
564824b0 | 723 | return __alloc_skb(size, priority, 0, NUMA_NO_NODE); |
d179cd12 DM |
724 | } |
725 | ||
726 | static inline struct sk_buff *alloc_skb_fclone(unsigned int size, | |
dd0fc66f | 727 | gfp_t priority) |
d179cd12 | 728 | { |
c93bdd0e | 729 | return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); |
d179cd12 DM |
730 | } |
731 | ||
7965bd4d | 732 | struct sk_buff *__alloc_skb_head(gfp_t priority, int node); |
0ebd0ac5 PM |
733 | static inline struct sk_buff *alloc_skb_head(gfp_t priority) |
734 | { | |
735 | return __alloc_skb_head(priority, -1); | |
736 | } | |
737 | ||
7965bd4d JP |
738 | struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); |
739 | int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); | |
740 | struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); | |
741 | struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); | |
742 | struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask); | |
743 | ||
744 | int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); | |
745 | struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, | |
746 | unsigned int headroom); | |
747 | struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, | |
748 | int newtailroom, gfp_t priority); | |
25a91d8d FD |
749 | int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, |
750 | int offset, int len); | |
7965bd4d JP |
751 | int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, |
752 | int len); | |
753 | int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); | |
754 | int skb_pad(struct sk_buff *skb, int pad); | |
ead2ceb0 | 755 | #define dev_kfree_skb(a) consume_skb(a) |
1da177e4 | 756 | |
7965bd4d JP |
757 | int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, |
758 | int getfrag(void *from, char *to, int offset, | |
759 | int len, int odd, struct sk_buff *skb), | |
760 | void *from, int length); | |
e89e9cf5 | 761 | |
d94d9fee | 762 | struct skb_seq_state { |
677e90ed TG |
763 | __u32 lower_offset; |
764 | __u32 upper_offset; | |
765 | __u32 frag_idx; | |
766 | __u32 stepped_offset; | |
767 | struct sk_buff *root_skb; | |
768 | struct sk_buff *cur_skb; | |
769 | __u8 *frag_data; | |
770 | }; | |
771 | ||
7965bd4d JP |
772 | void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, |
773 | unsigned int to, struct skb_seq_state *st); | |
774 | unsigned int skb_seq_read(unsigned int consumed, const u8 **data, | |
775 | struct skb_seq_state *st); | |
776 | void skb_abort_seq_read(struct skb_seq_state *st); | |
677e90ed | 777 | |
7965bd4d JP |
778 | unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, |
779 | unsigned int to, struct ts_config *config, | |
780 | struct ts_state *state); | |
3fc7e8a6 | 781 | |
09323cc4 TH |
782 | /* |
783 | * Packet hash types specify the type of hash in skb_set_hash. | |
784 | * | |
785 | * Hash types refer to the protocol layer addresses which are used to | |
786 | * construct a packet's hash. The hashes are used to differentiate or identify | |
787 | * flows of the protocol layer for the hash type. Hash types are either | |
788 | * layer-2 (L2), layer-3 (L3), or layer-4 (L4). | |
789 | * | |
790 | * Properties of hashes: | |
791 | * | |
792 | * 1) Two packets in different flows have different hash values | |
793 | * 2) Two packets in the same flow should have the same hash value | |
794 | * | |
795 | * A hash at a higher layer is considered to be more specific. A driver should | |
796 | * set the most specific hash possible. | |
797 | * | |
798 | * A driver cannot indicate a more specific hash than the layer at which a hash | |
799 | * was computed. For instance an L3 hash cannot be set as an L4 hash. | |
800 | * | |
801 | * A driver may indicate a hash level which is less specific than the | |
802 | * actual layer the hash was computed on. For instance, a hash computed | |
803 | * at L4 may be considered an L3 hash. This should only be done if the | |
804 | * driver can't unambiguously determine that the HW computed the hash at | |
805 | * the higher layer. Note that the "should" in the second property above | |
806 | * permits this. | |
807 | */ | |
808 | enum pkt_hash_types { | |
809 | PKT_HASH_TYPE_NONE, /* Undefined type */ | |
810 | PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ | |
811 | PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ | |
812 | PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ | |
813 | }; | |
814 | ||
815 | static inline void | |
816 | skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) | |
817 | { | |
818 | skb->l4_rxhash = (type == PKT_HASH_TYPE_L4); | |
819 | skb->rxhash = hash; | |
820 | } | |
821 | ||
3958afa1 TH |
822 | void __skb_get_hash(struct sk_buff *skb); |
823 | static inline __u32 skb_get_hash(struct sk_buff *skb) | |
bfb564e7 | 824 | { |
ecd5cf5d | 825 | if (!skb->l4_rxhash) |
3958afa1 | 826 | __skb_get_hash(skb); |
bfb564e7 KK |
827 | |
828 | return skb->rxhash; | |
829 | } | |
830 | ||
57bdf7f4 TH |
831 | static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) |
832 | { | |
833 | return skb->rxhash; | |
834 | } | |
835 | ||
7539fadc TH |
836 | static inline void skb_clear_hash(struct sk_buff *skb) |
837 | { | |
838 | skb->rxhash = 0; | |
839 | skb->l4_rxhash = 0; | |
840 | } | |
841 | ||
842 | static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) | |
843 | { | |
844 | if (!skb->l4_rxhash) | |
845 | skb_clear_hash(skb); | |
846 | } | |
847 | ||
3df7a74e TH |
848 | static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) |
849 | { | |
850 | to->rxhash = from->rxhash; | |
851 | to->l4_rxhash = from->l4_rxhash; | |
852 | }; | |
853 | ||
4305b541 ACM |
854 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
855 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | |
856 | { | |
857 | return skb->head + skb->end; | |
858 | } | |
ec47ea82 AD |
859 | |
860 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | |
861 | { | |
862 | return skb->end; | |
863 | } | |
4305b541 ACM |
864 | #else |
865 | static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) | |
866 | { | |
867 | return skb->end; | |
868 | } | |
ec47ea82 AD |
869 | |
870 | static inline unsigned int skb_end_offset(const struct sk_buff *skb) | |
871 | { | |
872 | return skb->end - skb->head; | |
873 | } | |
4305b541 ACM |
874 | #endif |
875 | ||
1da177e4 | 876 | /* Internal */ |
4305b541 | 877 | #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) |
1da177e4 | 878 | |
ac45f602 PO |
879 | static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) |
880 | { | |
881 | return &skb_shinfo(skb)->hwtstamps; | |
882 | } | |
883 | ||
1da177e4 LT |
884 | /** |
885 | * skb_queue_empty - check if a queue is empty | |
886 | * @list: queue head | |
887 | * | |
888 | * Returns true if the queue is empty, false otherwise. | |
889 | */ | |
890 | static inline int skb_queue_empty(const struct sk_buff_head *list) | |
891 | { | |
fd44b93c | 892 | return list->next == (const struct sk_buff *) list; |
1da177e4 LT |
893 | } |
894 | ||
fc7ebb21 DM |
895 | /** |
896 | * skb_queue_is_last - check if skb is the last entry in the queue | |
897 | * @list: queue head | |
898 | * @skb: buffer | |
899 | * | |
900 | * Returns true if @skb is the last buffer on the list. | |
901 | */ | |
902 | static inline bool skb_queue_is_last(const struct sk_buff_head *list, | |
903 | const struct sk_buff *skb) | |
904 | { | |
fd44b93c | 905 | return skb->next == (const struct sk_buff *) list; |
fc7ebb21 DM |
906 | } |
907 | ||
832d11c5 IJ |
908 | /** |
909 | * skb_queue_is_first - check if skb is the first entry in the queue | |
910 | * @list: queue head | |
911 | * @skb: buffer | |
912 | * | |
913 | * Returns true if @skb is the first buffer on the list. | |
914 | */ | |
915 | static inline bool skb_queue_is_first(const struct sk_buff_head *list, | |
916 | const struct sk_buff *skb) | |
917 | { | |
fd44b93c | 918 | return skb->prev == (const struct sk_buff *) list; |
832d11c5 IJ |
919 | } |
920 | ||
249c8b42 DM |
921 | /** |
922 | * skb_queue_next - return the next packet in the queue | |
923 | * @list: queue head | |
924 | * @skb: current buffer | |
925 | * | |
926 | * Return the next packet in @list after @skb. It is only valid to | |
927 | * call this if skb_queue_is_last() evaluates to false. | |
928 | */ | |
929 | static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, | |
930 | const struct sk_buff *skb) | |
931 | { | |
932 | /* This BUG_ON may seem severe, but if we just return then we | |
933 | * are going to dereference garbage. | |
934 | */ | |
935 | BUG_ON(skb_queue_is_last(list, skb)); | |
936 | return skb->next; | |
937 | } | |
938 | ||
832d11c5 IJ |
939 | /** |
940 | * skb_queue_prev - return the prev packet in the queue | |
941 | * @list: queue head | |
942 | * @skb: current buffer | |
943 | * | |
944 | * Return the prev packet in @list before @skb. It is only valid to | |
945 | * call this if skb_queue_is_first() evaluates to false. | |
946 | */ | |
947 | static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, | |
948 | const struct sk_buff *skb) | |
949 | { | |
950 | /* This BUG_ON may seem severe, but if we just return then we | |
951 | * are going to dereference garbage. | |
952 | */ | |
953 | BUG_ON(skb_queue_is_first(list, skb)); | |
954 | return skb->prev; | |
955 | } | |
956 | ||
1da177e4 LT |
957 | /** |
958 | * skb_get - reference buffer | |
959 | * @skb: buffer to reference | |
960 | * | |
961 | * Makes another reference to a socket buffer and returns a pointer | |
962 | * to the buffer. | |
963 | */ | |
964 | static inline struct sk_buff *skb_get(struct sk_buff *skb) | |
965 | { | |
966 | atomic_inc(&skb->users); | |
967 | return skb; | |
968 | } | |
969 | ||
970 | /* | |
971 | * If users == 1, we are the only owner and are can avoid redundant | |
972 | * atomic change. | |
973 | */ | |
974 | ||
1da177e4 LT |
975 | /** |
976 | * skb_cloned - is the buffer a clone | |
977 | * @skb: buffer to check | |
978 | * | |
979 | * Returns true if the buffer was generated with skb_clone() and is | |
980 | * one of multiple shared copies of the buffer. Cloned buffers are | |
981 | * shared data so must not be written to under normal circumstances. | |
982 | */ | |
983 | static inline int skb_cloned(const struct sk_buff *skb) | |
984 | { | |
985 | return skb->cloned && | |
986 | (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; | |
987 | } | |
988 | ||
14bbd6a5 PS |
989 | static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) |
990 | { | |
991 | might_sleep_if(pri & __GFP_WAIT); | |
992 | ||
993 | if (skb_cloned(skb)) | |
994 | return pskb_expand_head(skb, 0, 0, pri); | |
995 | ||
996 | return 0; | |
997 | } | |
998 | ||
1da177e4 LT |
999 | /** |
1000 | * skb_header_cloned - is the header a clone | |
1001 | * @skb: buffer to check | |
1002 | * | |
1003 | * Returns true if modifying the header part of the buffer requires | |
1004 | * the data to be copied. | |
1005 | */ | |
1006 | static inline int skb_header_cloned(const struct sk_buff *skb) | |
1007 | { | |
1008 | int dataref; | |
1009 | ||
1010 | if (!skb->cloned) | |
1011 | return 0; | |
1012 | ||
1013 | dataref = atomic_read(&skb_shinfo(skb)->dataref); | |
1014 | dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); | |
1015 | return dataref != 1; | |
1016 | } | |
1017 | ||
1018 | /** | |
1019 | * skb_header_release - release reference to header | |
1020 | * @skb: buffer to operate on | |
1021 | * | |
1022 | * Drop a reference to the header part of the buffer. This is done | |
1023 | * by acquiring a payload reference. You must not read from the header | |
1024 | * part of skb->data after this. | |
1025 | */ | |
1026 | static inline void skb_header_release(struct sk_buff *skb) | |
1027 | { | |
1028 | BUG_ON(skb->nohdr); | |
1029 | skb->nohdr = 1; | |
1030 | atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); | |
1031 | } | |
1032 | ||
1033 | /** | |
1034 | * skb_shared - is the buffer shared | |
1035 | * @skb: buffer to check | |
1036 | * | |
1037 | * Returns true if more than one person has a reference to this | |
1038 | * buffer. | |
1039 | */ | |
1040 | static inline int skb_shared(const struct sk_buff *skb) | |
1041 | { | |
1042 | return atomic_read(&skb->users) != 1; | |
1043 | } | |
1044 | ||
1045 | /** | |
1046 | * skb_share_check - check if buffer is shared and if so clone it | |
1047 | * @skb: buffer to check | |
1048 | * @pri: priority for memory allocation | |
1049 | * | |
1050 | * If the buffer is shared the buffer is cloned and the old copy | |
1051 | * drops a reference. A new clone with a single reference is returned. | |
1052 | * If the buffer is not shared the original buffer is returned. When | |
1053 | * being called from interrupt status or with spinlocks held pri must | |
1054 | * be GFP_ATOMIC. | |
1055 | * | |
1056 | * NULL is returned on a memory allocation failure. | |
1057 | */ | |
47061bc4 | 1058 | static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) |
1da177e4 LT |
1059 | { |
1060 | might_sleep_if(pri & __GFP_WAIT); | |
1061 | if (skb_shared(skb)) { | |
1062 | struct sk_buff *nskb = skb_clone(skb, pri); | |
47061bc4 ED |
1063 | |
1064 | if (likely(nskb)) | |
1065 | consume_skb(skb); | |
1066 | else | |
1067 | kfree_skb(skb); | |
1da177e4 LT |
1068 | skb = nskb; |
1069 | } | |
1070 | return skb; | |
1071 | } | |
1072 | ||
1073 | /* | |
1074 | * Copy shared buffers into a new sk_buff. We effectively do COW on | |
1075 | * packets to handle cases where we have a local reader and forward | |
1076 | * and a couple of other messy ones. The normal one is tcpdumping | |
1077 | * a packet thats being forwarded. | |
1078 | */ | |
1079 | ||
1080 | /** | |
1081 | * skb_unshare - make a copy of a shared buffer | |
1082 | * @skb: buffer to check | |
1083 | * @pri: priority for memory allocation | |
1084 | * | |
1085 | * If the socket buffer is a clone then this function creates a new | |
1086 | * copy of the data, drops a reference count on the old copy and returns | |
1087 | * the new copy with the reference count at 1. If the buffer is not a clone | |
1088 | * the original buffer is returned. When called with a spinlock held or | |
1089 | * from interrupt state @pri must be %GFP_ATOMIC | |
1090 | * | |
1091 | * %NULL is returned on a memory allocation failure. | |
1092 | */ | |
e2bf521d | 1093 | static inline struct sk_buff *skb_unshare(struct sk_buff *skb, |
dd0fc66f | 1094 | gfp_t pri) |
1da177e4 LT |
1095 | { |
1096 | might_sleep_if(pri & __GFP_WAIT); | |
1097 | if (skb_cloned(skb)) { | |
1098 | struct sk_buff *nskb = skb_copy(skb, pri); | |
1099 | kfree_skb(skb); /* Free our shared copy */ | |
1100 | skb = nskb; | |
1101 | } | |
1102 | return skb; | |
1103 | } | |
1104 | ||
1105 | /** | |
1a5778aa | 1106 | * skb_peek - peek at the head of an &sk_buff_head |
1da177e4 LT |
1107 | * @list_: list to peek at |
1108 | * | |
1109 | * Peek an &sk_buff. Unlike most other operations you _MUST_ | |
1110 | * be careful with this one. A peek leaves the buffer on the | |
1111 | * list and someone else may run off with it. You must hold | |
1112 | * the appropriate locks or have a private queue to do this. | |
1113 | * | |
1114 | * Returns %NULL for an empty list or a pointer to the head element. | |
1115 | * The reference count is not incremented and the reference is therefore | |
1116 | * volatile. Use with caution. | |
1117 | */ | |
05bdd2f1 | 1118 | static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) |
1da177e4 | 1119 | { |
18d07000 ED |
1120 | struct sk_buff *skb = list_->next; |
1121 | ||
1122 | if (skb == (struct sk_buff *)list_) | |
1123 | skb = NULL; | |
1124 | return skb; | |
1da177e4 LT |
1125 | } |
1126 | ||
da5ef6e5 PE |
1127 | /** |
1128 | * skb_peek_next - peek skb following the given one from a queue | |
1129 | * @skb: skb to start from | |
1130 | * @list_: list to peek at | |
1131 | * | |
1132 | * Returns %NULL when the end of the list is met or a pointer to the | |
1133 | * next element. The reference count is not incremented and the | |
1134 | * reference is therefore volatile. Use with caution. | |
1135 | */ | |
1136 | static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, | |
1137 | const struct sk_buff_head *list_) | |
1138 | { | |
1139 | struct sk_buff *next = skb->next; | |
18d07000 | 1140 | |
da5ef6e5 PE |
1141 | if (next == (struct sk_buff *)list_) |
1142 | next = NULL; | |
1143 | return next; | |
1144 | } | |
1145 | ||
1da177e4 | 1146 | /** |
1a5778aa | 1147 | * skb_peek_tail - peek at the tail of an &sk_buff_head |
1da177e4 LT |
1148 | * @list_: list to peek at |
1149 | * | |
1150 | * Peek an &sk_buff. Unlike most other operations you _MUST_ | |
1151 | * be careful with this one. A peek leaves the buffer on the | |
1152 | * list and someone else may run off with it. You must hold | |
1153 | * the appropriate locks or have a private queue to do this. | |
1154 | * | |
1155 | * Returns %NULL for an empty list or a pointer to the tail element. | |
1156 | * The reference count is not incremented and the reference is therefore | |
1157 | * volatile. Use with caution. | |
1158 | */ | |
05bdd2f1 | 1159 | static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) |
1da177e4 | 1160 | { |
18d07000 ED |
1161 | struct sk_buff *skb = list_->prev; |
1162 | ||
1163 | if (skb == (struct sk_buff *)list_) | |
1164 | skb = NULL; | |
1165 | return skb; | |
1166 | ||
1da177e4 LT |
1167 | } |
1168 | ||
1169 | /** | |
1170 | * skb_queue_len - get queue length | |
1171 | * @list_: list to measure | |
1172 | * | |
1173 | * Return the length of an &sk_buff queue. | |
1174 | */ | |
1175 | static inline __u32 skb_queue_len(const struct sk_buff_head *list_) | |
1176 | { | |
1177 | return list_->qlen; | |
1178 | } | |
1179 | ||
67fed459 DM |
1180 | /** |
1181 | * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head | |
1182 | * @list: queue to initialize | |
1183 | * | |
1184 | * This initializes only the list and queue length aspects of | |
1185 | * an sk_buff_head object. This allows to initialize the list | |
1186 | * aspects of an sk_buff_head without reinitializing things like | |
1187 | * the spinlock. It can also be used for on-stack sk_buff_head | |
1188 | * objects where the spinlock is known to not be used. | |
1189 | */ | |
1190 | static inline void __skb_queue_head_init(struct sk_buff_head *list) | |
1191 | { | |
1192 | list->prev = list->next = (struct sk_buff *)list; | |
1193 | list->qlen = 0; | |
1194 | } | |
1195 | ||
76f10ad0 AV |
1196 | /* |
1197 | * This function creates a split out lock class for each invocation; | |
1198 | * this is needed for now since a whole lot of users of the skb-queue | |
1199 | * infrastructure in drivers have different locking usage (in hardirq) | |
1200 | * than the networking core (in softirq only). In the long run either the | |
1201 | * network layer or drivers should need annotation to consolidate the | |
1202 | * main types of usage into 3 classes. | |
1203 | */ | |
1da177e4 LT |
1204 | static inline void skb_queue_head_init(struct sk_buff_head *list) |
1205 | { | |
1206 | spin_lock_init(&list->lock); | |
67fed459 | 1207 | __skb_queue_head_init(list); |
1da177e4 LT |
1208 | } |
1209 | ||
c2ecba71 PE |
1210 | static inline void skb_queue_head_init_class(struct sk_buff_head *list, |
1211 | struct lock_class_key *class) | |
1212 | { | |
1213 | skb_queue_head_init(list); | |
1214 | lockdep_set_class(&list->lock, class); | |
1215 | } | |
1216 | ||
1da177e4 | 1217 | /* |
bf299275 | 1218 | * Insert an sk_buff on a list. |
1da177e4 LT |
1219 | * |
1220 | * The "__skb_xxxx()" functions are the non-atomic ones that | |
1221 | * can only be called with interrupts disabled. | |
1222 | */ | |
7965bd4d JP |
1223 | void skb_insert(struct sk_buff *old, struct sk_buff *newsk, |
1224 | struct sk_buff_head *list); | |
bf299275 GR |
1225 | static inline void __skb_insert(struct sk_buff *newsk, |
1226 | struct sk_buff *prev, struct sk_buff *next, | |
1227 | struct sk_buff_head *list) | |
1228 | { | |
1229 | newsk->next = next; | |
1230 | newsk->prev = prev; | |
1231 | next->prev = prev->next = newsk; | |
1232 | list->qlen++; | |
1233 | } | |
1da177e4 | 1234 | |
67fed459 DM |
1235 | static inline void __skb_queue_splice(const struct sk_buff_head *list, |
1236 | struct sk_buff *prev, | |
1237 | struct sk_buff *next) | |
1238 | { | |
1239 | struct sk_buff *first = list->next; | |
1240 | struct sk_buff *last = list->prev; | |
1241 | ||
1242 | first->prev = prev; | |
1243 | prev->next = first; | |
1244 | ||
1245 | last->next = next; | |
1246 | next->prev = last; | |
1247 | } | |
1248 | ||
1249 | /** | |
1250 | * skb_queue_splice - join two skb lists, this is designed for stacks | |
1251 | * @list: the new list to add | |
1252 | * @head: the place to add it in the first list | |
1253 | */ | |
1254 | static inline void skb_queue_splice(const struct sk_buff_head *list, | |
1255 | struct sk_buff_head *head) | |
1256 | { | |
1257 | if (!skb_queue_empty(list)) { | |
1258 | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | |
1d4a31dd | 1259 | head->qlen += list->qlen; |
67fed459 DM |
1260 | } |
1261 | } | |
1262 | ||
1263 | /** | |
d9619496 | 1264 | * skb_queue_splice_init - join two skb lists and reinitialise the emptied list |
67fed459 DM |
1265 | * @list: the new list to add |
1266 | * @head: the place to add it in the first list | |
1267 | * | |
1268 | * The list at @list is reinitialised | |
1269 | */ | |
1270 | static inline void skb_queue_splice_init(struct sk_buff_head *list, | |
1271 | struct sk_buff_head *head) | |
1272 | { | |
1273 | if (!skb_queue_empty(list)) { | |
1274 | __skb_queue_splice(list, (struct sk_buff *) head, head->next); | |
1d4a31dd | 1275 | head->qlen += list->qlen; |
67fed459 DM |
1276 | __skb_queue_head_init(list); |
1277 | } | |
1278 | } | |
1279 | ||
1280 | /** | |
1281 | * skb_queue_splice_tail - join two skb lists, each list being a queue | |
1282 | * @list: the new list to add | |
1283 | * @head: the place to add it in the first list | |
1284 | */ | |
1285 | static inline void skb_queue_splice_tail(const struct sk_buff_head *list, | |
1286 | struct sk_buff_head *head) | |
1287 | { | |
1288 | if (!skb_queue_empty(list)) { | |
1289 | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | |
1d4a31dd | 1290 | head->qlen += list->qlen; |
67fed459 DM |
1291 | } |
1292 | } | |
1293 | ||
1294 | /** | |
d9619496 | 1295 | * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list |
67fed459 DM |
1296 | * @list: the new list to add |
1297 | * @head: the place to add it in the first list | |
1298 | * | |
1299 | * Each of the lists is a queue. | |
1300 | * The list at @list is reinitialised | |
1301 | */ | |
1302 | static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, | |
1303 | struct sk_buff_head *head) | |
1304 | { | |
1305 | if (!skb_queue_empty(list)) { | |
1306 | __skb_queue_splice(list, head->prev, (struct sk_buff *) head); | |
1d4a31dd | 1307 | head->qlen += list->qlen; |
67fed459 DM |
1308 | __skb_queue_head_init(list); |
1309 | } | |
1310 | } | |
1311 | ||
1da177e4 | 1312 | /** |
300ce174 | 1313 | * __skb_queue_after - queue a buffer at the list head |
1da177e4 | 1314 | * @list: list to use |
300ce174 | 1315 | * @prev: place after this buffer |
1da177e4 LT |
1316 | * @newsk: buffer to queue |
1317 | * | |
300ce174 | 1318 | * Queue a buffer int the middle of a list. This function takes no locks |
1da177e4 LT |
1319 | * and you must therefore hold required locks before calling it. |
1320 | * | |
1321 | * A buffer cannot be placed on two lists at the same time. | |
1322 | */ | |
300ce174 SH |
1323 | static inline void __skb_queue_after(struct sk_buff_head *list, |
1324 | struct sk_buff *prev, | |
1325 | struct sk_buff *newsk) | |
1da177e4 | 1326 | { |
bf299275 | 1327 | __skb_insert(newsk, prev, prev->next, list); |
1da177e4 LT |
1328 | } |
1329 | ||
7965bd4d JP |
1330 | void skb_append(struct sk_buff *old, struct sk_buff *newsk, |
1331 | struct sk_buff_head *list); | |
7de6c033 | 1332 | |
f5572855 GR |
1333 | static inline void __skb_queue_before(struct sk_buff_head *list, |
1334 | struct sk_buff *next, | |
1335 | struct sk_buff *newsk) | |
1336 | { | |
1337 | __skb_insert(newsk, next->prev, next, list); | |
1338 | } | |
1339 | ||
300ce174 SH |
1340 | /** |
1341 | * __skb_queue_head - queue a buffer at the list head | |
1342 | * @list: list to use | |
1343 | * @newsk: buffer to queue | |
1344 | * | |
1345 | * Queue a buffer at the start of a list. This function takes no locks | |
1346 | * and you must therefore hold required locks before calling it. | |
1347 | * | |
1348 | * A buffer cannot be placed on two lists at the same time. | |
1349 | */ | |
7965bd4d | 1350 | void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); |
300ce174 SH |
1351 | static inline void __skb_queue_head(struct sk_buff_head *list, |
1352 | struct sk_buff *newsk) | |
1353 | { | |
1354 | __skb_queue_after(list, (struct sk_buff *)list, newsk); | |
1355 | } | |
1356 | ||
1da177e4 LT |
1357 | /** |
1358 | * __skb_queue_tail - queue a buffer at the list tail | |
1359 | * @list: list to use | |
1360 | * @newsk: buffer to queue | |
1361 | * | |
1362 | * Queue a buffer at the end of a list. This function takes no locks | |
1363 | * and you must therefore hold required locks before calling it. | |
1364 | * | |
1365 | * A buffer cannot be placed on two lists at the same time. | |
1366 | */ | |
7965bd4d | 1367 | void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); |
1da177e4 LT |
1368 | static inline void __skb_queue_tail(struct sk_buff_head *list, |
1369 | struct sk_buff *newsk) | |
1370 | { | |
f5572855 | 1371 | __skb_queue_before(list, (struct sk_buff *)list, newsk); |
1da177e4 LT |
1372 | } |
1373 | ||
1da177e4 LT |
1374 | /* |
1375 | * remove sk_buff from list. _Must_ be called atomically, and with | |
1376 | * the list known.. | |
1377 | */ | |
7965bd4d | 1378 | void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); |
1da177e4 LT |
1379 | static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) |
1380 | { | |
1381 | struct sk_buff *next, *prev; | |
1382 | ||
1383 | list->qlen--; | |
1384 | next = skb->next; | |
1385 | prev = skb->prev; | |
1386 | skb->next = skb->prev = NULL; | |
1da177e4 LT |
1387 | next->prev = prev; |
1388 | prev->next = next; | |
1389 | } | |
1390 | ||
f525c06d GR |
1391 | /** |
1392 | * __skb_dequeue - remove from the head of the queue | |
1393 | * @list: list to dequeue from | |
1394 | * | |
1395 | * Remove the head of the list. This function does not take any locks | |
1396 | * so must be used with appropriate locks held only. The head item is | |
1397 | * returned or %NULL if the list is empty. | |
1398 | */ | |
7965bd4d | 1399 | struct sk_buff *skb_dequeue(struct sk_buff_head *list); |
f525c06d GR |
1400 | static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) |
1401 | { | |
1402 | struct sk_buff *skb = skb_peek(list); | |
1403 | if (skb) | |
1404 | __skb_unlink(skb, list); | |
1405 | return skb; | |
1406 | } | |
1da177e4 LT |
1407 | |
1408 | /** | |
1409 | * __skb_dequeue_tail - remove from the tail of the queue | |
1410 | * @list: list to dequeue from | |
1411 | * | |
1412 | * Remove the tail of the list. This function does not take any locks | |
1413 | * so must be used with appropriate locks held only. The tail item is | |
1414 | * returned or %NULL if the list is empty. | |
1415 | */ | |
7965bd4d | 1416 | struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); |
1da177e4 LT |
1417 | static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) |
1418 | { | |
1419 | struct sk_buff *skb = skb_peek_tail(list); | |
1420 | if (skb) | |
1421 | __skb_unlink(skb, list); | |
1422 | return skb; | |
1423 | } | |
1424 | ||
1425 | ||
bdcc0924 | 1426 | static inline bool skb_is_nonlinear(const struct sk_buff *skb) |
1da177e4 LT |
1427 | { |
1428 | return skb->data_len; | |
1429 | } | |
1430 | ||
1431 | static inline unsigned int skb_headlen(const struct sk_buff *skb) | |
1432 | { | |
1433 | return skb->len - skb->data_len; | |
1434 | } | |
1435 | ||
1436 | static inline int skb_pagelen(const struct sk_buff *skb) | |
1437 | { | |
1438 | int i, len = 0; | |
1439 | ||
1440 | for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) | |
9e903e08 | 1441 | len += skb_frag_size(&skb_shinfo(skb)->frags[i]); |
1da177e4 LT |
1442 | return len + skb_headlen(skb); |
1443 | } | |
1444 | ||
131ea667 IC |
1445 | /** |
1446 | * __skb_fill_page_desc - initialise a paged fragment in an skb | |
1447 | * @skb: buffer containing fragment to be initialised | |
1448 | * @i: paged fragment index to initialise | |
1449 | * @page: the page to use for this fragment | |
1450 | * @off: the offset to the data with @page | |
1451 | * @size: the length of the data | |
1452 | * | |
1453 | * Initialises the @i'th fragment of @skb to point to &size bytes at | |
1454 | * offset @off within @page. | |
1455 | * | |
1456 | * Does not take any additional reference on the fragment. | |
1457 | */ | |
1458 | static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, | |
1459 | struct page *page, int off, int size) | |
1da177e4 LT |
1460 | { |
1461 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | |
1462 | ||
c48a11c7 MG |
1463 | /* |
1464 | * Propagate page->pfmemalloc to the skb if we can. The problem is | |
1465 | * that not all callers have unique ownership of the page. If | |
1466 | * pfmemalloc is set, we check the mapping as a mapping implies | |
1467 | * page->index is set (index and pfmemalloc share space). | |
1468 | * If it's a valid mapping, we cannot use page->pfmemalloc but we | |
1469 | * do not lose pfmemalloc information as the pages would not be | |
1470 | * allocated using __GFP_MEMALLOC. | |
1471 | */ | |
a8605c60 | 1472 | frag->page.p = page; |
1da177e4 | 1473 | frag->page_offset = off; |
9e903e08 | 1474 | skb_frag_size_set(frag, size); |
cca7af38 PE |
1475 | |
1476 | page = compound_head(page); | |
1477 | if (page->pfmemalloc && !page->mapping) | |
1478 | skb->pfmemalloc = true; | |
131ea667 IC |
1479 | } |
1480 | ||
1481 | /** | |
1482 | * skb_fill_page_desc - initialise a paged fragment in an skb | |
1483 | * @skb: buffer containing fragment to be initialised | |
1484 | * @i: paged fragment index to initialise | |
1485 | * @page: the page to use for this fragment | |
1486 | * @off: the offset to the data with @page | |
1487 | * @size: the length of the data | |
1488 | * | |
1489 | * As per __skb_fill_page_desc() -- initialises the @i'th fragment of | |
bc32383c | 1490 | * @skb to point to @size bytes at offset @off within @page. In |
131ea667 IC |
1491 | * addition updates @skb such that @i is the last fragment. |
1492 | * | |
1493 | * Does not take any additional reference on the fragment. | |
1494 | */ | |
1495 | static inline void skb_fill_page_desc(struct sk_buff *skb, int i, | |
1496 | struct page *page, int off, int size) | |
1497 | { | |
1498 | __skb_fill_page_desc(skb, i, page, off, size); | |
1da177e4 LT |
1499 | skb_shinfo(skb)->nr_frags = i + 1; |
1500 | } | |
1501 | ||
7965bd4d JP |
1502 | void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, |
1503 | int size, unsigned int truesize); | |
654bed16 | 1504 | |
f8e617e1 JW |
1505 | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, |
1506 | unsigned int truesize); | |
1507 | ||
1da177e4 | 1508 | #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) |
21dc3301 | 1509 | #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) |
1da177e4 LT |
1510 | #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) |
1511 | ||
27a884dc ACM |
1512 | #ifdef NET_SKBUFF_DATA_USES_OFFSET |
1513 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | |
1514 | { | |
1515 | return skb->head + skb->tail; | |
1516 | } | |
1517 | ||
1518 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | |
1519 | { | |
1520 | skb->tail = skb->data - skb->head; | |
1521 | } | |
1522 | ||
1523 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | |
1524 | { | |
1525 | skb_reset_tail_pointer(skb); | |
1526 | skb->tail += offset; | |
1527 | } | |
7cc46190 | 1528 | |
27a884dc ACM |
1529 | #else /* NET_SKBUFF_DATA_USES_OFFSET */ |
1530 | static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) | |
1531 | { | |
1532 | return skb->tail; | |
1533 | } | |
1534 | ||
1535 | static inline void skb_reset_tail_pointer(struct sk_buff *skb) | |
1536 | { | |
1537 | skb->tail = skb->data; | |
1538 | } | |
1539 | ||
1540 | static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) | |
1541 | { | |
1542 | skb->tail = skb->data + offset; | |
1543 | } | |
4305b541 | 1544 | |
27a884dc ACM |
1545 | #endif /* NET_SKBUFF_DATA_USES_OFFSET */ |
1546 | ||
1da177e4 LT |
1547 | /* |
1548 | * Add data to an sk_buff | |
1549 | */ | |
0c7ddf36 | 1550 | unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); |
7965bd4d | 1551 | unsigned char *skb_put(struct sk_buff *skb, unsigned int len); |
1da177e4 LT |
1552 | static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) |
1553 | { | |
27a884dc | 1554 | unsigned char *tmp = skb_tail_pointer(skb); |
1da177e4 LT |
1555 | SKB_LINEAR_ASSERT(skb); |
1556 | skb->tail += len; | |
1557 | skb->len += len; | |
1558 | return tmp; | |
1559 | } | |
1560 | ||
7965bd4d | 1561 | unsigned char *skb_push(struct sk_buff *skb, unsigned int len); |
1da177e4 LT |
1562 | static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) |
1563 | { | |
1564 | skb->data -= len; | |
1565 | skb->len += len; | |
1566 | return skb->data; | |
1567 | } | |
1568 | ||
7965bd4d | 1569 | unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); |
1da177e4 LT |
1570 | static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) |
1571 | { | |
1572 | skb->len -= len; | |
1573 | BUG_ON(skb->len < skb->data_len); | |
1574 | return skb->data += len; | |
1575 | } | |
1576 | ||
47d29646 DM |
1577 | static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) |
1578 | { | |
1579 | return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); | |
1580 | } | |
1581 | ||
7965bd4d | 1582 | unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); |
1da177e4 LT |
1583 | |
1584 | static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) | |
1585 | { | |
1586 | if (len > skb_headlen(skb) && | |
987c402a | 1587 | !__pskb_pull_tail(skb, len - skb_headlen(skb))) |
1da177e4 LT |
1588 | return NULL; |
1589 | skb->len -= len; | |
1590 | return skb->data += len; | |
1591 | } | |
1592 | ||
1593 | static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) | |
1594 | { | |
1595 | return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); | |
1596 | } | |
1597 | ||
1598 | static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) | |
1599 | { | |
1600 | if (likely(len <= skb_headlen(skb))) | |
1601 | return 1; | |
1602 | if (unlikely(len > skb->len)) | |
1603 | return 0; | |
987c402a | 1604 | return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; |
1da177e4 LT |
1605 | } |
1606 | ||
1607 | /** | |
1608 | * skb_headroom - bytes at buffer head | |
1609 | * @skb: buffer to check | |
1610 | * | |
1611 | * Return the number of bytes of free space at the head of an &sk_buff. | |
1612 | */ | |
c2636b4d | 1613 | static inline unsigned int skb_headroom(const struct sk_buff *skb) |
1da177e4 LT |
1614 | { |
1615 | return skb->data - skb->head; | |
1616 | } | |
1617 | ||
1618 | /** | |
1619 | * skb_tailroom - bytes at buffer end | |
1620 | * @skb: buffer to check | |
1621 | * | |
1622 | * Return the number of bytes of free space at the tail of an sk_buff | |
1623 | */ | |
1624 | static inline int skb_tailroom(const struct sk_buff *skb) | |
1625 | { | |
4305b541 | 1626 | return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; |
1da177e4 LT |
1627 | } |
1628 | ||
a21d4572 ED |
1629 | /** |
1630 | * skb_availroom - bytes at buffer end | |
1631 | * @skb: buffer to check | |
1632 | * | |
1633 | * Return the number of bytes of free space at the tail of an sk_buff | |
1634 | * allocated by sk_stream_alloc() | |
1635 | */ | |
1636 | static inline int skb_availroom(const struct sk_buff *skb) | |
1637 | { | |
16fad69c ED |
1638 | if (skb_is_nonlinear(skb)) |
1639 | return 0; | |
1640 | ||
1641 | return skb->end - skb->tail - skb->reserved_tailroom; | |
a21d4572 ED |
1642 | } |
1643 | ||
1da177e4 LT |
1644 | /** |
1645 | * skb_reserve - adjust headroom | |
1646 | * @skb: buffer to alter | |
1647 | * @len: bytes to move | |
1648 | * | |
1649 | * Increase the headroom of an empty &sk_buff by reducing the tail | |
1650 | * room. This is only allowed for an empty buffer. | |
1651 | */ | |
8243126c | 1652 | static inline void skb_reserve(struct sk_buff *skb, int len) |
1da177e4 LT |
1653 | { |
1654 | skb->data += len; | |
1655 | skb->tail += len; | |
1656 | } | |
1657 | ||
6a674e9c JG |
1658 | static inline void skb_reset_inner_headers(struct sk_buff *skb) |
1659 | { | |
aefbd2b3 | 1660 | skb->inner_mac_header = skb->mac_header; |
6a674e9c JG |
1661 | skb->inner_network_header = skb->network_header; |
1662 | skb->inner_transport_header = skb->transport_header; | |
1663 | } | |
1664 | ||
0b5c9db1 JP |
1665 | static inline void skb_reset_mac_len(struct sk_buff *skb) |
1666 | { | |
1667 | skb->mac_len = skb->network_header - skb->mac_header; | |
1668 | } | |
1669 | ||
6a674e9c JG |
1670 | static inline unsigned char *skb_inner_transport_header(const struct sk_buff |
1671 | *skb) | |
1672 | { | |
1673 | return skb->head + skb->inner_transport_header; | |
1674 | } | |
1675 | ||
1676 | static inline void skb_reset_inner_transport_header(struct sk_buff *skb) | |
1677 | { | |
1678 | skb->inner_transport_header = skb->data - skb->head; | |
1679 | } | |
1680 | ||
1681 | static inline void skb_set_inner_transport_header(struct sk_buff *skb, | |
1682 | const int offset) | |
1683 | { | |
1684 | skb_reset_inner_transport_header(skb); | |
1685 | skb->inner_transport_header += offset; | |
1686 | } | |
1687 | ||
1688 | static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) | |
1689 | { | |
1690 | return skb->head + skb->inner_network_header; | |
1691 | } | |
1692 | ||
1693 | static inline void skb_reset_inner_network_header(struct sk_buff *skb) | |
1694 | { | |
1695 | skb->inner_network_header = skb->data - skb->head; | |
1696 | } | |
1697 | ||
1698 | static inline void skb_set_inner_network_header(struct sk_buff *skb, | |
1699 | const int offset) | |
1700 | { | |
1701 | skb_reset_inner_network_header(skb); | |
1702 | skb->inner_network_header += offset; | |
1703 | } | |
1704 | ||
aefbd2b3 PS |
1705 | static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) |
1706 | { | |
1707 | return skb->head + skb->inner_mac_header; | |
1708 | } | |
1709 | ||
1710 | static inline void skb_reset_inner_mac_header(struct sk_buff *skb) | |
1711 | { | |
1712 | skb->inner_mac_header = skb->data - skb->head; | |
1713 | } | |
1714 | ||
1715 | static inline void skb_set_inner_mac_header(struct sk_buff *skb, | |
1716 | const int offset) | |
1717 | { | |
1718 | skb_reset_inner_mac_header(skb); | |
1719 | skb->inner_mac_header += offset; | |
1720 | } | |
fda55eca ED |
1721 | static inline bool skb_transport_header_was_set(const struct sk_buff *skb) |
1722 | { | |
35d04610 | 1723 | return skb->transport_header != (typeof(skb->transport_header))~0U; |
fda55eca ED |
1724 | } |
1725 | ||
9c70220b ACM |
1726 | static inline unsigned char *skb_transport_header(const struct sk_buff *skb) |
1727 | { | |
2e07fa9c | 1728 | return skb->head + skb->transport_header; |
9c70220b ACM |
1729 | } |
1730 | ||
badff6d0 ACM |
1731 | static inline void skb_reset_transport_header(struct sk_buff *skb) |
1732 | { | |
2e07fa9c | 1733 | skb->transport_header = skb->data - skb->head; |
badff6d0 ACM |
1734 | } |
1735 | ||
967b05f6 ACM |
1736 | static inline void skb_set_transport_header(struct sk_buff *skb, |
1737 | const int offset) | |
1738 | { | |
2e07fa9c ACM |
1739 | skb_reset_transport_header(skb); |
1740 | skb->transport_header += offset; | |
ea2ae17d ACM |
1741 | } |
1742 | ||
d56f90a7 ACM |
1743 | static inline unsigned char *skb_network_header(const struct sk_buff *skb) |
1744 | { | |
2e07fa9c | 1745 | return skb->head + skb->network_header; |
d56f90a7 ACM |
1746 | } |
1747 | ||
c1d2bbe1 ACM |
1748 | static inline void skb_reset_network_header(struct sk_buff *skb) |
1749 | { | |
2e07fa9c | 1750 | skb->network_header = skb->data - skb->head; |
c1d2bbe1 ACM |
1751 | } |
1752 | ||
c14d2450 ACM |
1753 | static inline void skb_set_network_header(struct sk_buff *skb, const int offset) |
1754 | { | |
2e07fa9c ACM |
1755 | skb_reset_network_header(skb); |
1756 | skb->network_header += offset; | |
c14d2450 ACM |
1757 | } |
1758 | ||
2e07fa9c | 1759 | static inline unsigned char *skb_mac_header(const struct sk_buff *skb) |
bbe735e4 | 1760 | { |
2e07fa9c | 1761 | return skb->head + skb->mac_header; |
bbe735e4 ACM |
1762 | } |
1763 | ||
2e07fa9c | 1764 | static inline int skb_mac_header_was_set(const struct sk_buff *skb) |
cfe1fc77 | 1765 | { |
35d04610 | 1766 | return skb->mac_header != (typeof(skb->mac_header))~0U; |
2e07fa9c ACM |
1767 | } |
1768 | ||
1769 | static inline void skb_reset_mac_header(struct sk_buff *skb) | |
1770 | { | |
1771 | skb->mac_header = skb->data - skb->head; | |
1772 | } | |
1773 | ||
1774 | static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) | |
1775 | { | |
1776 | skb_reset_mac_header(skb); | |
1777 | skb->mac_header += offset; | |
1778 | } | |
1779 | ||
0e3da5bb TT |
1780 | static inline void skb_pop_mac_header(struct sk_buff *skb) |
1781 | { | |
1782 | skb->mac_header = skb->network_header; | |
1783 | } | |
1784 | ||
fbbdb8f0 YX |
1785 | static inline void skb_probe_transport_header(struct sk_buff *skb, |
1786 | const int offset_hint) | |
1787 | { | |
1788 | struct flow_keys keys; | |
1789 | ||
1790 | if (skb_transport_header_was_set(skb)) | |
1791 | return; | |
1792 | else if (skb_flow_dissect(skb, &keys)) | |
1793 | skb_set_transport_header(skb, keys.thoff); | |
1794 | else | |
1795 | skb_set_transport_header(skb, offset_hint); | |
1796 | } | |
1797 | ||
03606895 ED |
1798 | static inline void skb_mac_header_rebuild(struct sk_buff *skb) |
1799 | { | |
1800 | if (skb_mac_header_was_set(skb)) { | |
1801 | const unsigned char *old_mac = skb_mac_header(skb); | |
1802 | ||
1803 | skb_set_mac_header(skb, -skb->mac_len); | |
1804 | memmove(skb_mac_header(skb), old_mac, skb->mac_len); | |
1805 | } | |
1806 | } | |
1807 | ||
04fb451e MM |
1808 | static inline int skb_checksum_start_offset(const struct sk_buff *skb) |
1809 | { | |
1810 | return skb->csum_start - skb_headroom(skb); | |
1811 | } | |
1812 | ||
2e07fa9c ACM |
1813 | static inline int skb_transport_offset(const struct sk_buff *skb) |
1814 | { | |
1815 | return skb_transport_header(skb) - skb->data; | |
1816 | } | |
1817 | ||
1818 | static inline u32 skb_network_header_len(const struct sk_buff *skb) | |
1819 | { | |
1820 | return skb->transport_header - skb->network_header; | |
1821 | } | |
1822 | ||
6a674e9c JG |
1823 | static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) |
1824 | { | |
1825 | return skb->inner_transport_header - skb->inner_network_header; | |
1826 | } | |
1827 | ||
2e07fa9c ACM |
1828 | static inline int skb_network_offset(const struct sk_buff *skb) |
1829 | { | |
1830 | return skb_network_header(skb) - skb->data; | |
1831 | } | |
48d49d0c | 1832 | |
6a674e9c JG |
1833 | static inline int skb_inner_network_offset(const struct sk_buff *skb) |
1834 | { | |
1835 | return skb_inner_network_header(skb) - skb->data; | |
1836 | } | |
1837 | ||
f9599ce1 CG |
1838 | static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) |
1839 | { | |
1840 | return pskb_may_pull(skb, skb_network_offset(skb) + len); | |
1841 | } | |
1842 | ||
1da177e4 LT |
1843 | /* |
1844 | * CPUs often take a performance hit when accessing unaligned memory | |
1845 | * locations. The actual performance hit varies, it can be small if the | |
1846 | * hardware handles it or large if we have to take an exception and fix it | |
1847 | * in software. | |
1848 | * | |
1849 | * Since an ethernet header is 14 bytes network drivers often end up with | |
1850 | * the IP header at an unaligned offset. The IP header can be aligned by | |
1851 | * shifting the start of the packet by 2 bytes. Drivers should do this | |
1852 | * with: | |
1853 | * | |
8660c124 | 1854 | * skb_reserve(skb, NET_IP_ALIGN); |
1da177e4 LT |
1855 | * |
1856 | * The downside to this alignment of the IP header is that the DMA is now | |
1857 | * unaligned. On some architectures the cost of an unaligned DMA is high | |
1858 | * and this cost outweighs the gains made by aligning the IP header. | |
8660c124 | 1859 | * |
1da177e4 LT |
1860 | * Since this trade off varies between architectures, we allow NET_IP_ALIGN |
1861 | * to be overridden. | |
1862 | */ | |
1863 | #ifndef NET_IP_ALIGN | |
1864 | #define NET_IP_ALIGN 2 | |
1865 | #endif | |
1866 | ||
025be81e AB |
1867 | /* |
1868 | * The networking layer reserves some headroom in skb data (via | |
1869 | * dev_alloc_skb). This is used to avoid having to reallocate skb data when | |
1870 | * the header has to grow. In the default case, if the header has to grow | |
d6301d3d | 1871 | * 32 bytes or less we avoid the reallocation. |
025be81e AB |
1872 | * |
1873 | * Unfortunately this headroom changes the DMA alignment of the resulting | |
1874 | * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive | |
1875 | * on some architectures. An architecture can override this value, | |
1876 | * perhaps setting it to a cacheline in size (since that will maintain | |
1877 | * cacheline alignment of the DMA). It must be a power of 2. | |
1878 | * | |
d6301d3d | 1879 | * Various parts of the networking layer expect at least 32 bytes of |
025be81e | 1880 | * headroom, you should not reduce this. |
5933dd2f ED |
1881 | * |
1882 | * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) | |
1883 | * to reduce average number of cache lines per packet. | |
1884 | * get_rps_cpus() for example only access one 64 bytes aligned block : | |
18e8c134 | 1885 | * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) |
025be81e AB |
1886 | */ |
1887 | #ifndef NET_SKB_PAD | |
5933dd2f | 1888 | #define NET_SKB_PAD max(32, L1_CACHE_BYTES) |
025be81e AB |
1889 | #endif |
1890 | ||
7965bd4d | 1891 | int ___pskb_trim(struct sk_buff *skb, unsigned int len); |
1da177e4 LT |
1892 | |
1893 | static inline void __skb_trim(struct sk_buff *skb, unsigned int len) | |
1894 | { | |
c4264f27 | 1895 | if (unlikely(skb_is_nonlinear(skb))) { |
3cc0e873 HX |
1896 | WARN_ON(1); |
1897 | return; | |
1898 | } | |
27a884dc ACM |
1899 | skb->len = len; |
1900 | skb_set_tail_pointer(skb, len); | |
1da177e4 LT |
1901 | } |
1902 | ||
7965bd4d | 1903 | void skb_trim(struct sk_buff *skb, unsigned int len); |
1da177e4 LT |
1904 | |
1905 | static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) | |
1906 | { | |
3cc0e873 HX |
1907 | if (skb->data_len) |
1908 | return ___pskb_trim(skb, len); | |
1909 | __skb_trim(skb, len); | |
1910 | return 0; | |
1da177e4 LT |
1911 | } |
1912 | ||
1913 | static inline int pskb_trim(struct sk_buff *skb, unsigned int len) | |
1914 | { | |
1915 | return (len < skb->len) ? __pskb_trim(skb, len) : 0; | |
1916 | } | |
1917 | ||
e9fa4f7b HX |
1918 | /** |
1919 | * pskb_trim_unique - remove end from a paged unique (not cloned) buffer | |
1920 | * @skb: buffer to alter | |
1921 | * @len: new length | |
1922 | * | |
1923 | * This is identical to pskb_trim except that the caller knows that | |
1924 | * the skb is not cloned so we should never get an error due to out- | |
1925 | * of-memory. | |
1926 | */ | |
1927 | static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) | |
1928 | { | |
1929 | int err = pskb_trim(skb, len); | |
1930 | BUG_ON(err); | |
1931 | } | |
1932 | ||
1da177e4 LT |
1933 | /** |
1934 | * skb_orphan - orphan a buffer | |
1935 | * @skb: buffer to orphan | |
1936 | * | |
1937 | * If a buffer currently has an owner then we call the owner's | |
1938 | * destructor function and make the @skb unowned. The buffer continues | |
1939 | * to exist but is no longer charged to its former owner. | |
1940 | */ | |
1941 | static inline void skb_orphan(struct sk_buff *skb) | |
1942 | { | |
c34a7612 | 1943 | if (skb->destructor) { |
1da177e4 | 1944 | skb->destructor(skb); |
c34a7612 ED |
1945 | skb->destructor = NULL; |
1946 | skb->sk = NULL; | |
376c7311 ED |
1947 | } else { |
1948 | BUG_ON(skb->sk); | |
c34a7612 | 1949 | } |
1da177e4 LT |
1950 | } |
1951 | ||
a353e0ce MT |
1952 | /** |
1953 | * skb_orphan_frags - orphan the frags contained in a buffer | |
1954 | * @skb: buffer to orphan frags from | |
1955 | * @gfp_mask: allocation mask for replacement pages | |
1956 | * | |
1957 | * For each frag in the SKB which needs a destructor (i.e. has an | |
1958 | * owner) create a copy of that frag and release the original | |
1959 | * page by calling the destructor. | |
1960 | */ | |
1961 | static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) | |
1962 | { | |
1963 | if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) | |
1964 | return 0; | |
1965 | return skb_copy_ubufs(skb, gfp_mask); | |
1966 | } | |
1967 | ||
1da177e4 LT |
1968 | /** |
1969 | * __skb_queue_purge - empty a list | |
1970 | * @list: list to empty | |
1971 | * | |
1972 | * Delete all buffers on an &sk_buff list. Each buffer is removed from | |
1973 | * the list and one reference dropped. This function does not take the | |
1974 | * list lock and the caller must hold the relevant locks to use it. | |
1975 | */ | |
7965bd4d | 1976 | void skb_queue_purge(struct sk_buff_head *list); |
1da177e4 LT |
1977 | static inline void __skb_queue_purge(struct sk_buff_head *list) |
1978 | { | |
1979 | struct sk_buff *skb; | |
1980 | while ((skb = __skb_dequeue(list)) != NULL) | |
1981 | kfree_skb(skb); | |
1982 | } | |
1983 | ||
e5e67305 AD |
1984 | #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) |
1985 | #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) | |
1986 | #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE | |
1987 | ||
7965bd4d | 1988 | void *netdev_alloc_frag(unsigned int fragsz); |
1da177e4 | 1989 | |
7965bd4d JP |
1990 | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, |
1991 | gfp_t gfp_mask); | |
8af27456 CH |
1992 | |
1993 | /** | |
1994 | * netdev_alloc_skb - allocate an skbuff for rx on a specific device | |
1995 | * @dev: network device to receive on | |
1996 | * @length: length to allocate | |
1997 | * | |
1998 | * Allocate a new &sk_buff and assign it a usage count of one. The | |
1999 | * buffer has unspecified headroom built in. Users should allocate | |
2000 | * the headroom they think they need without accounting for the | |
2001 | * built in space. The built in space is used for optimisations. | |
2002 | * | |
2003 | * %NULL is returned if there is no free memory. Although this function | |
2004 | * allocates memory it can be called from an interrupt. | |
2005 | */ | |
2006 | static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, | |
6f532612 | 2007 | unsigned int length) |
8af27456 CH |
2008 | { |
2009 | return __netdev_alloc_skb(dev, length, GFP_ATOMIC); | |
2010 | } | |
2011 | ||
6f532612 ED |
2012 | /* legacy helper around __netdev_alloc_skb() */ |
2013 | static inline struct sk_buff *__dev_alloc_skb(unsigned int length, | |
2014 | gfp_t gfp_mask) | |
2015 | { | |
2016 | return __netdev_alloc_skb(NULL, length, gfp_mask); | |
2017 | } | |
2018 | ||
2019 | /* legacy helper around netdev_alloc_skb() */ | |
2020 | static inline struct sk_buff *dev_alloc_skb(unsigned int length) | |
2021 | { | |
2022 | return netdev_alloc_skb(NULL, length); | |
2023 | } | |
2024 | ||
2025 | ||
4915a0de ED |
2026 | static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, |
2027 | unsigned int length, gfp_t gfp) | |
61321bbd | 2028 | { |
4915a0de | 2029 | struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); |
61321bbd ED |
2030 | |
2031 | if (NET_IP_ALIGN && skb) | |
2032 | skb_reserve(skb, NET_IP_ALIGN); | |
2033 | return skb; | |
2034 | } | |
2035 | ||
4915a0de ED |
2036 | static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, |
2037 | unsigned int length) | |
2038 | { | |
2039 | return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); | |
2040 | } | |
2041 | ||
bc6fc9fa FF |
2042 | /** |
2043 | * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data | |
0614002b MG |
2044 | * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX |
2045 | * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used | |
2046 | * @order: size of the allocation | |
2047 | * | |
2048 | * Allocate a new page. | |
2049 | * | |
2050 | * %NULL is returned if there is no free memory. | |
2051 | */ | |
2052 | static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, | |
2053 | struct sk_buff *skb, | |
2054 | unsigned int order) | |
2055 | { | |
2056 | struct page *page; | |
2057 | ||
2058 | gfp_mask |= __GFP_COLD; | |
2059 | ||
2060 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2061 | gfp_mask |= __GFP_MEMALLOC; | |
2062 | ||
2063 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); | |
2064 | if (skb && page && page->pfmemalloc) | |
2065 | skb->pfmemalloc = true; | |
2066 | ||
2067 | return page; | |
2068 | } | |
2069 | ||
2070 | /** | |
2071 | * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data | |
2072 | * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX | |
2073 | * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used | |
2074 | * | |
2075 | * Allocate a new page. | |
2076 | * | |
2077 | * %NULL is returned if there is no free memory. | |
2078 | */ | |
2079 | static inline struct page *__skb_alloc_page(gfp_t gfp_mask, | |
2080 | struct sk_buff *skb) | |
2081 | { | |
2082 | return __skb_alloc_pages(gfp_mask, skb, 0); | |
2083 | } | |
2084 | ||
2085 | /** | |
2086 | * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page | |
2087 | * @page: The page that was allocated from skb_alloc_page | |
2088 | * @skb: The skb that may need pfmemalloc set | |
2089 | */ | |
2090 | static inline void skb_propagate_pfmemalloc(struct page *page, | |
2091 | struct sk_buff *skb) | |
2092 | { | |
2093 | if (page && page->pfmemalloc) | |
2094 | skb->pfmemalloc = true; | |
2095 | } | |
2096 | ||
131ea667 IC |
2097 | /** |
2098 | * skb_frag_page - retrieve the page refered to by a paged fragment | |
2099 | * @frag: the paged fragment | |
2100 | * | |
2101 | * Returns the &struct page associated with @frag. | |
2102 | */ | |
2103 | static inline struct page *skb_frag_page(const skb_frag_t *frag) | |
2104 | { | |
a8605c60 | 2105 | return frag->page.p; |
131ea667 IC |
2106 | } |
2107 | ||
2108 | /** | |
2109 | * __skb_frag_ref - take an addition reference on a paged fragment. | |
2110 | * @frag: the paged fragment | |
2111 | * | |
2112 | * Takes an additional reference on the paged fragment @frag. | |
2113 | */ | |
2114 | static inline void __skb_frag_ref(skb_frag_t *frag) | |
2115 | { | |
2116 | get_page(skb_frag_page(frag)); | |
2117 | } | |
2118 | ||
2119 | /** | |
2120 | * skb_frag_ref - take an addition reference on a paged fragment of an skb. | |
2121 | * @skb: the buffer | |
2122 | * @f: the fragment offset. | |
2123 | * | |
2124 | * Takes an additional reference on the @f'th paged fragment of @skb. | |
2125 | */ | |
2126 | static inline void skb_frag_ref(struct sk_buff *skb, int f) | |
2127 | { | |
2128 | __skb_frag_ref(&skb_shinfo(skb)->frags[f]); | |
2129 | } | |
2130 | ||
2131 | /** | |
2132 | * __skb_frag_unref - release a reference on a paged fragment. | |
2133 | * @frag: the paged fragment | |
2134 | * | |
2135 | * Releases a reference on the paged fragment @frag. | |
2136 | */ | |
2137 | static inline void __skb_frag_unref(skb_frag_t *frag) | |
2138 | { | |
2139 | put_page(skb_frag_page(frag)); | |
2140 | } | |
2141 | ||
2142 | /** | |
2143 | * skb_frag_unref - release a reference on a paged fragment of an skb. | |
2144 | * @skb: the buffer | |
2145 | * @f: the fragment offset | |
2146 | * | |
2147 | * Releases a reference on the @f'th paged fragment of @skb. | |
2148 | */ | |
2149 | static inline void skb_frag_unref(struct sk_buff *skb, int f) | |
2150 | { | |
2151 | __skb_frag_unref(&skb_shinfo(skb)->frags[f]); | |
2152 | } | |
2153 | ||
2154 | /** | |
2155 | * skb_frag_address - gets the address of the data contained in a paged fragment | |
2156 | * @frag: the paged fragment buffer | |
2157 | * | |
2158 | * Returns the address of the data within @frag. The page must already | |
2159 | * be mapped. | |
2160 | */ | |
2161 | static inline void *skb_frag_address(const skb_frag_t *frag) | |
2162 | { | |
2163 | return page_address(skb_frag_page(frag)) + frag->page_offset; | |
2164 | } | |
2165 | ||
2166 | /** | |
2167 | * skb_frag_address_safe - gets the address of the data contained in a paged fragment | |
2168 | * @frag: the paged fragment buffer | |
2169 | * | |
2170 | * Returns the address of the data within @frag. Checks that the page | |
2171 | * is mapped and returns %NULL otherwise. | |
2172 | */ | |
2173 | static inline void *skb_frag_address_safe(const skb_frag_t *frag) | |
2174 | { | |
2175 | void *ptr = page_address(skb_frag_page(frag)); | |
2176 | if (unlikely(!ptr)) | |
2177 | return NULL; | |
2178 | ||
2179 | return ptr + frag->page_offset; | |
2180 | } | |
2181 | ||
2182 | /** | |
2183 | * __skb_frag_set_page - sets the page contained in a paged fragment | |
2184 | * @frag: the paged fragment | |
2185 | * @page: the page to set | |
2186 | * | |
2187 | * Sets the fragment @frag to contain @page. | |
2188 | */ | |
2189 | static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) | |
2190 | { | |
a8605c60 | 2191 | frag->page.p = page; |
131ea667 IC |
2192 | } |
2193 | ||
2194 | /** | |
2195 | * skb_frag_set_page - sets the page contained in a paged fragment of an skb | |
2196 | * @skb: the buffer | |
2197 | * @f: the fragment offset | |
2198 | * @page: the page to set | |
2199 | * | |
2200 | * Sets the @f'th fragment of @skb to contain @page. | |
2201 | */ | |
2202 | static inline void skb_frag_set_page(struct sk_buff *skb, int f, | |
2203 | struct page *page) | |
2204 | { | |
2205 | __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); | |
2206 | } | |
2207 | ||
400dfd3a ED |
2208 | bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); |
2209 | ||
131ea667 IC |
2210 | /** |
2211 | * skb_frag_dma_map - maps a paged fragment via the DMA API | |
f83347df | 2212 | * @dev: the device to map the fragment to |
131ea667 IC |
2213 | * @frag: the paged fragment to map |
2214 | * @offset: the offset within the fragment (starting at the | |
2215 | * fragment's own offset) | |
2216 | * @size: the number of bytes to map | |
f83347df | 2217 | * @dir: the direction of the mapping (%PCI_DMA_*) |
131ea667 IC |
2218 | * |
2219 | * Maps the page associated with @frag to @device. | |
2220 | */ | |
2221 | static inline dma_addr_t skb_frag_dma_map(struct device *dev, | |
2222 | const skb_frag_t *frag, | |
2223 | size_t offset, size_t size, | |
2224 | enum dma_data_direction dir) | |
2225 | { | |
2226 | return dma_map_page(dev, skb_frag_page(frag), | |
2227 | frag->page_offset + offset, size, dir); | |
2228 | } | |
2229 | ||
117632e6 ED |
2230 | static inline struct sk_buff *pskb_copy(struct sk_buff *skb, |
2231 | gfp_t gfp_mask) | |
2232 | { | |
2233 | return __pskb_copy(skb, skb_headroom(skb), gfp_mask); | |
2234 | } | |
2235 | ||
334a8132 PM |
2236 | /** |
2237 | * skb_clone_writable - is the header of a clone writable | |
2238 | * @skb: buffer to check | |
2239 | * @len: length up to which to write | |
2240 | * | |
2241 | * Returns true if modifying the header part of the cloned buffer | |
2242 | * does not requires the data to be copied. | |
2243 | */ | |
05bdd2f1 | 2244 | static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) |
334a8132 PM |
2245 | { |
2246 | return !skb_header_cloned(skb) && | |
2247 | skb_headroom(skb) + len <= skb->hdr_len; | |
2248 | } | |
2249 | ||
d9cc2048 HX |
2250 | static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, |
2251 | int cloned) | |
2252 | { | |
2253 | int delta = 0; | |
2254 | ||
d9cc2048 HX |
2255 | if (headroom > skb_headroom(skb)) |
2256 | delta = headroom - skb_headroom(skb); | |
2257 | ||
2258 | if (delta || cloned) | |
2259 | return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, | |
2260 | GFP_ATOMIC); | |
2261 | return 0; | |
2262 | } | |
2263 | ||
1da177e4 LT |
2264 | /** |
2265 | * skb_cow - copy header of skb when it is required | |
2266 | * @skb: buffer to cow | |
2267 | * @headroom: needed headroom | |
2268 | * | |
2269 | * If the skb passed lacks sufficient headroom or its data part | |
2270 | * is shared, data is reallocated. If reallocation fails, an error | |
2271 | * is returned and original skb is not changed. | |
2272 | * | |
2273 | * The result is skb with writable area skb->head...skb->tail | |
2274 | * and at least @headroom of space at head. | |
2275 | */ | |
2276 | static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) | |
2277 | { | |
d9cc2048 HX |
2278 | return __skb_cow(skb, headroom, skb_cloned(skb)); |
2279 | } | |
1da177e4 | 2280 | |
d9cc2048 HX |
2281 | /** |
2282 | * skb_cow_head - skb_cow but only making the head writable | |
2283 | * @skb: buffer to cow | |
2284 | * @headroom: needed headroom | |
2285 | * | |
2286 | * This function is identical to skb_cow except that we replace the | |
2287 | * skb_cloned check by skb_header_cloned. It should be used when | |
2288 | * you only need to push on some header and do not need to modify | |
2289 | * the data. | |
2290 | */ | |
2291 | static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) | |
2292 | { | |
2293 | return __skb_cow(skb, headroom, skb_header_cloned(skb)); | |
1da177e4 LT |
2294 | } |
2295 | ||
2296 | /** | |
2297 | * skb_padto - pad an skbuff up to a minimal size | |
2298 | * @skb: buffer to pad | |
2299 | * @len: minimal length | |
2300 | * | |
2301 | * Pads up a buffer to ensure the trailing bytes exist and are | |
2302 | * blanked. If the buffer already contains sufficient data it | |
5b057c6b HX |
2303 | * is untouched. Otherwise it is extended. Returns zero on |
2304 | * success. The skb is freed on error. | |
1da177e4 LT |
2305 | */ |
2306 | ||
5b057c6b | 2307 | static inline int skb_padto(struct sk_buff *skb, unsigned int len) |
1da177e4 LT |
2308 | { |
2309 | unsigned int size = skb->len; | |
2310 | if (likely(size >= len)) | |
5b057c6b | 2311 | return 0; |
987c402a | 2312 | return skb_pad(skb, len - size); |
1da177e4 LT |
2313 | } |
2314 | ||
2315 | static inline int skb_add_data(struct sk_buff *skb, | |
2316 | char __user *from, int copy) | |
2317 | { | |
2318 | const int off = skb->len; | |
2319 | ||
2320 | if (skb->ip_summed == CHECKSUM_NONE) { | |
2321 | int err = 0; | |
5084205f | 2322 | __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), |
1da177e4 LT |
2323 | copy, 0, &err); |
2324 | if (!err) { | |
2325 | skb->csum = csum_block_add(skb->csum, csum, off); | |
2326 | return 0; | |
2327 | } | |
2328 | } else if (!copy_from_user(skb_put(skb, copy), from, copy)) | |
2329 | return 0; | |
2330 | ||
2331 | __skb_trim(skb, off); | |
2332 | return -EFAULT; | |
2333 | } | |
2334 | ||
38ba0a65 ED |
2335 | static inline bool skb_can_coalesce(struct sk_buff *skb, int i, |
2336 | const struct page *page, int off) | |
1da177e4 LT |
2337 | { |
2338 | if (i) { | |
9e903e08 | 2339 | const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; |
1da177e4 | 2340 | |
ea2ab693 | 2341 | return page == skb_frag_page(frag) && |
9e903e08 | 2342 | off == frag->page_offset + skb_frag_size(frag); |
1da177e4 | 2343 | } |
38ba0a65 | 2344 | return false; |
1da177e4 LT |
2345 | } |
2346 | ||
364c6bad HX |
2347 | static inline int __skb_linearize(struct sk_buff *skb) |
2348 | { | |
2349 | return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; | |
2350 | } | |
2351 | ||
1da177e4 LT |
2352 | /** |
2353 | * skb_linearize - convert paged skb to linear one | |
2354 | * @skb: buffer to linarize | |
1da177e4 LT |
2355 | * |
2356 | * If there is no free memory -ENOMEM is returned, otherwise zero | |
2357 | * is returned and the old skb data released. | |
2358 | */ | |
364c6bad HX |
2359 | static inline int skb_linearize(struct sk_buff *skb) |
2360 | { | |
2361 | return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; | |
2362 | } | |
2363 | ||
cef401de ED |
2364 | /** |
2365 | * skb_has_shared_frag - can any frag be overwritten | |
2366 | * @skb: buffer to test | |
2367 | * | |
2368 | * Return true if the skb has at least one frag that might be modified | |
2369 | * by an external entity (as in vmsplice()/sendfile()) | |
2370 | */ | |
2371 | static inline bool skb_has_shared_frag(const struct sk_buff *skb) | |
2372 | { | |
c9af6db4 PS |
2373 | return skb_is_nonlinear(skb) && |
2374 | skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; | |
cef401de ED |
2375 | } |
2376 | ||
364c6bad HX |
2377 | /** |
2378 | * skb_linearize_cow - make sure skb is linear and writable | |
2379 | * @skb: buffer to process | |
2380 | * | |
2381 | * If there is no free memory -ENOMEM is returned, otherwise zero | |
2382 | * is returned and the old skb data released. | |
2383 | */ | |
2384 | static inline int skb_linearize_cow(struct sk_buff *skb) | |
1da177e4 | 2385 | { |
364c6bad HX |
2386 | return skb_is_nonlinear(skb) || skb_cloned(skb) ? |
2387 | __skb_linearize(skb) : 0; | |
1da177e4 LT |
2388 | } |
2389 | ||
2390 | /** | |
2391 | * skb_postpull_rcsum - update checksum for received skb after pull | |
2392 | * @skb: buffer to update | |
2393 | * @start: start of data before pull | |
2394 | * @len: length of data pulled | |
2395 | * | |
2396 | * After doing a pull on a received packet, you need to call this to | |
84fa7933 PM |
2397 | * update the CHECKSUM_COMPLETE checksum, or set ip_summed to |
2398 | * CHECKSUM_NONE so that it can be recomputed from scratch. | |
1da177e4 LT |
2399 | */ |
2400 | ||
2401 | static inline void skb_postpull_rcsum(struct sk_buff *skb, | |
cbb042f9 | 2402 | const void *start, unsigned int len) |
1da177e4 | 2403 | { |
84fa7933 | 2404 | if (skb->ip_summed == CHECKSUM_COMPLETE) |
1da177e4 LT |
2405 | skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); |
2406 | } | |
2407 | ||
cbb042f9 HX |
2408 | unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); |
2409 | ||
7ce5a27f DM |
2410 | /** |
2411 | * pskb_trim_rcsum - trim received skb and update checksum | |
2412 | * @skb: buffer to trim | |
2413 | * @len: new length | |
2414 | * | |
2415 | * This is exactly the same as pskb_trim except that it ensures the | |
2416 | * checksum of received packets are still valid after the operation. | |
2417 | */ | |
2418 | ||
2419 | static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) | |
2420 | { | |
2421 | if (likely(len >= skb->len)) | |
2422 | return 0; | |
2423 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
2424 | skb->ip_summed = CHECKSUM_NONE; | |
2425 | return __pskb_trim(skb, len); | |
2426 | } | |
2427 | ||
1da177e4 LT |
2428 | #define skb_queue_walk(queue, skb) \ |
2429 | for (skb = (queue)->next; \ | |
a1e4891f | 2430 | skb != (struct sk_buff *)(queue); \ |
1da177e4 LT |
2431 | skb = skb->next) |
2432 | ||
46f8914e JC |
2433 | #define skb_queue_walk_safe(queue, skb, tmp) \ |
2434 | for (skb = (queue)->next, tmp = skb->next; \ | |
2435 | skb != (struct sk_buff *)(queue); \ | |
2436 | skb = tmp, tmp = skb->next) | |
2437 | ||
1164f52a | 2438 | #define skb_queue_walk_from(queue, skb) \ |
a1e4891f | 2439 | for (; skb != (struct sk_buff *)(queue); \ |
1164f52a DM |
2440 | skb = skb->next) |
2441 | ||
2442 | #define skb_queue_walk_from_safe(queue, skb, tmp) \ | |
2443 | for (tmp = skb->next; \ | |
2444 | skb != (struct sk_buff *)(queue); \ | |
2445 | skb = tmp, tmp = skb->next) | |
2446 | ||
300ce174 SH |
2447 | #define skb_queue_reverse_walk(queue, skb) \ |
2448 | for (skb = (queue)->prev; \ | |
a1e4891f | 2449 | skb != (struct sk_buff *)(queue); \ |
300ce174 SH |
2450 | skb = skb->prev) |
2451 | ||
686a2955 DM |
2452 | #define skb_queue_reverse_walk_safe(queue, skb, tmp) \ |
2453 | for (skb = (queue)->prev, tmp = skb->prev; \ | |
2454 | skb != (struct sk_buff *)(queue); \ | |
2455 | skb = tmp, tmp = skb->prev) | |
2456 | ||
2457 | #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ | |
2458 | for (tmp = skb->prev; \ | |
2459 | skb != (struct sk_buff *)(queue); \ | |
2460 | skb = tmp, tmp = skb->prev) | |
1da177e4 | 2461 | |
21dc3301 | 2462 | static inline bool skb_has_frag_list(const struct sk_buff *skb) |
ee039871 DM |
2463 | { |
2464 | return skb_shinfo(skb)->frag_list != NULL; | |
2465 | } | |
2466 | ||
2467 | static inline void skb_frag_list_init(struct sk_buff *skb) | |
2468 | { | |
2469 | skb_shinfo(skb)->frag_list = NULL; | |
2470 | } | |
2471 | ||
2472 | static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) | |
2473 | { | |
2474 | frag->next = skb_shinfo(skb)->frag_list; | |
2475 | skb_shinfo(skb)->frag_list = frag; | |
2476 | } | |
2477 | ||
2478 | #define skb_walk_frags(skb, iter) \ | |
2479 | for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) | |
2480 | ||
7965bd4d JP |
2481 | struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, |
2482 | int *peeked, int *off, int *err); | |
2483 | struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, | |
2484 | int *err); | |
2485 | unsigned int datagram_poll(struct file *file, struct socket *sock, | |
2486 | struct poll_table_struct *wait); | |
2487 | int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, | |
2488 | struct iovec *to, int size); | |
2489 | int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, | |
2490 | struct iovec *iov); | |
2491 | int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, | |
2492 | const struct iovec *from, int from_offset, | |
2493 | int len); | |
2494 | int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, | |
2495 | int offset, size_t count); | |
2496 | int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, | |
2497 | const struct iovec *to, int to_offset, | |
2498 | int size); | |
2499 | void skb_free_datagram(struct sock *sk, struct sk_buff *skb); | |
2500 | void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); | |
2501 | int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); | |
7965bd4d JP |
2502 | int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); |
2503 | int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); | |
2504 | __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, | |
2505 | int len, __wsum csum); | |
2506 | int skb_splice_bits(struct sk_buff *skb, unsigned int offset, | |
2507 | struct pipe_inode_info *pipe, unsigned int len, | |
2508 | unsigned int flags); | |
2509 | void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); | |
af2806f8 TG |
2510 | unsigned int skb_zerocopy_headlen(const struct sk_buff *from); |
2511 | void skb_zerocopy(struct sk_buff *to, const struct sk_buff *from, | |
2512 | int len, int hlen); | |
7965bd4d JP |
2513 | void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); |
2514 | int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); | |
2515 | void skb_scrub_packet(struct sk_buff *skb, bool xnet); | |
de960aa9 | 2516 | unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); |
7965bd4d | 2517 | struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); |
20380731 | 2518 | |
2817a336 DB |
2519 | struct skb_checksum_ops { |
2520 | __wsum (*update)(const void *mem, int len, __wsum wsum); | |
2521 | __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); | |
2522 | }; | |
2523 | ||
2524 | __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, | |
2525 | __wsum csum, const struct skb_checksum_ops *ops); | |
2526 | __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, | |
2527 | __wsum csum); | |
2528 | ||
1da177e4 LT |
2529 | static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, |
2530 | int len, void *buffer) | |
2531 | { | |
2532 | int hlen = skb_headlen(skb); | |
2533 | ||
55820ee2 | 2534 | if (hlen - offset >= len) |
1da177e4 LT |
2535 | return skb->data + offset; |
2536 | ||
2537 | if (skb_copy_bits(skb, offset, buffer, len) < 0) | |
2538 | return NULL; | |
2539 | ||
2540 | return buffer; | |
2541 | } | |
2542 | ||
4262e5cc DB |
2543 | /** |
2544 | * skb_needs_linearize - check if we need to linearize a given skb | |
2545 | * depending on the given device features. | |
2546 | * @skb: socket buffer to check | |
2547 | * @features: net device features | |
2548 | * | |
2549 | * Returns true if either: | |
2550 | * 1. skb has frag_list and the device doesn't support FRAGLIST, or | |
2551 | * 2. skb is fragmented and the device does not support SG. | |
2552 | */ | |
2553 | static inline bool skb_needs_linearize(struct sk_buff *skb, | |
2554 | netdev_features_t features) | |
2555 | { | |
2556 | return skb_is_nonlinear(skb) && | |
2557 | ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || | |
2558 | (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); | |
2559 | } | |
2560 | ||
d626f62b ACM |
2561 | static inline void skb_copy_from_linear_data(const struct sk_buff *skb, |
2562 | void *to, | |
2563 | const unsigned int len) | |
2564 | { | |
2565 | memcpy(to, skb->data, len); | |
2566 | } | |
2567 | ||
2568 | static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, | |
2569 | const int offset, void *to, | |
2570 | const unsigned int len) | |
2571 | { | |
2572 | memcpy(to, skb->data + offset, len); | |
2573 | } | |
2574 | ||
27d7ff46 ACM |
2575 | static inline void skb_copy_to_linear_data(struct sk_buff *skb, |
2576 | const void *from, | |
2577 | const unsigned int len) | |
2578 | { | |
2579 | memcpy(skb->data, from, len); | |
2580 | } | |
2581 | ||
2582 | static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, | |
2583 | const int offset, | |
2584 | const void *from, | |
2585 | const unsigned int len) | |
2586 | { | |
2587 | memcpy(skb->data + offset, from, len); | |
2588 | } | |
2589 | ||
7965bd4d | 2590 | void skb_init(void); |
1da177e4 | 2591 | |
ac45f602 PO |
2592 | static inline ktime_t skb_get_ktime(const struct sk_buff *skb) |
2593 | { | |
2594 | return skb->tstamp; | |
2595 | } | |
2596 | ||
a61bbcf2 PM |
2597 | /** |
2598 | * skb_get_timestamp - get timestamp from a skb | |
2599 | * @skb: skb to get stamp from | |
2600 | * @stamp: pointer to struct timeval to store stamp in | |
2601 | * | |
2602 | * Timestamps are stored in the skb as offsets to a base timestamp. | |
2603 | * This function converts the offset back to a struct timeval and stores | |
2604 | * it in stamp. | |
2605 | */ | |
ac45f602 PO |
2606 | static inline void skb_get_timestamp(const struct sk_buff *skb, |
2607 | struct timeval *stamp) | |
a61bbcf2 | 2608 | { |
b7aa0bf7 | 2609 | *stamp = ktime_to_timeval(skb->tstamp); |
a61bbcf2 PM |
2610 | } |
2611 | ||
ac45f602 PO |
2612 | static inline void skb_get_timestampns(const struct sk_buff *skb, |
2613 | struct timespec *stamp) | |
2614 | { | |
2615 | *stamp = ktime_to_timespec(skb->tstamp); | |
2616 | } | |
2617 | ||
b7aa0bf7 | 2618 | static inline void __net_timestamp(struct sk_buff *skb) |
a61bbcf2 | 2619 | { |
b7aa0bf7 | 2620 | skb->tstamp = ktime_get_real(); |
a61bbcf2 PM |
2621 | } |
2622 | ||
164891aa SH |
2623 | static inline ktime_t net_timedelta(ktime_t t) |
2624 | { | |
2625 | return ktime_sub(ktime_get_real(), t); | |
2626 | } | |
2627 | ||
b9ce204f IJ |
2628 | static inline ktime_t net_invalid_timestamp(void) |
2629 | { | |
2630 | return ktime_set(0, 0); | |
2631 | } | |
a61bbcf2 | 2632 | |
7965bd4d | 2633 | void skb_timestamping_init(void); |
c1f19b51 RC |
2634 | |
2635 | #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING | |
2636 | ||
7965bd4d JP |
2637 | void skb_clone_tx_timestamp(struct sk_buff *skb); |
2638 | bool skb_defer_rx_timestamp(struct sk_buff *skb); | |
c1f19b51 RC |
2639 | |
2640 | #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ | |
2641 | ||
2642 | static inline void skb_clone_tx_timestamp(struct sk_buff *skb) | |
2643 | { | |
2644 | } | |
2645 | ||
2646 | static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) | |
2647 | { | |
2648 | return false; | |
2649 | } | |
2650 | ||
2651 | #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ | |
2652 | ||
2653 | /** | |
2654 | * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps | |
2655 | * | |
da92b194 RC |
2656 | * PHY drivers may accept clones of transmitted packets for |
2657 | * timestamping via their phy_driver.txtstamp method. These drivers | |
2658 | * must call this function to return the skb back to the stack, with | |
2659 | * or without a timestamp. | |
2660 | * | |
c1f19b51 | 2661 | * @skb: clone of the the original outgoing packet |
da92b194 | 2662 | * @hwtstamps: hardware time stamps, may be NULL if not available |
c1f19b51 RC |
2663 | * |
2664 | */ | |
2665 | void skb_complete_tx_timestamp(struct sk_buff *skb, | |
2666 | struct skb_shared_hwtstamps *hwtstamps); | |
2667 | ||
ac45f602 PO |
2668 | /** |
2669 | * skb_tstamp_tx - queue clone of skb with send time stamps | |
2670 | * @orig_skb: the original outgoing packet | |
2671 | * @hwtstamps: hardware time stamps, may be NULL if not available | |
2672 | * | |
2673 | * If the skb has a socket associated, then this function clones the | |
2674 | * skb (thus sharing the actual data and optional structures), stores | |
2675 | * the optional hardware time stamping information (if non NULL) or | |
2676 | * generates a software time stamp (otherwise), then queues the clone | |
2677 | * to the error queue of the socket. Errors are silently ignored. | |
2678 | */ | |
7965bd4d JP |
2679 | void skb_tstamp_tx(struct sk_buff *orig_skb, |
2680 | struct skb_shared_hwtstamps *hwtstamps); | |
ac45f602 | 2681 | |
4507a715 RC |
2682 | static inline void sw_tx_timestamp(struct sk_buff *skb) |
2683 | { | |
2244d07b OH |
2684 | if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && |
2685 | !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) | |
4507a715 RC |
2686 | skb_tstamp_tx(skb, NULL); |
2687 | } | |
2688 | ||
2689 | /** | |
2690 | * skb_tx_timestamp() - Driver hook for transmit timestamping | |
2691 | * | |
2692 | * Ethernet MAC Drivers should call this function in their hard_xmit() | |
4ff75b7c | 2693 | * function immediately before giving the sk_buff to the MAC hardware. |
4507a715 | 2694 | * |
73409f3b DM |
2695 | * Specifically, one should make absolutely sure that this function is |
2696 | * called before TX completion of this packet can trigger. Otherwise | |
2697 | * the packet could potentially already be freed. | |
2698 | * | |
4507a715 RC |
2699 | * @skb: A socket buffer. |
2700 | */ | |
2701 | static inline void skb_tx_timestamp(struct sk_buff *skb) | |
2702 | { | |
c1f19b51 | 2703 | skb_clone_tx_timestamp(skb); |
4507a715 RC |
2704 | sw_tx_timestamp(skb); |
2705 | } | |
2706 | ||
6e3e939f JB |
2707 | /** |
2708 | * skb_complete_wifi_ack - deliver skb with wifi status | |
2709 | * | |
2710 | * @skb: the original outgoing packet | |
2711 | * @acked: ack status | |
2712 | * | |
2713 | */ | |
2714 | void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); | |
2715 | ||
7965bd4d JP |
2716 | __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); |
2717 | __sum16 __skb_checksum_complete(struct sk_buff *skb); | |
fb286bb2 | 2718 | |
60476372 HX |
2719 | static inline int skb_csum_unnecessary(const struct sk_buff *skb) |
2720 | { | |
2721 | return skb->ip_summed & CHECKSUM_UNNECESSARY; | |
2722 | } | |
2723 | ||
fb286bb2 HX |
2724 | /** |
2725 | * skb_checksum_complete - Calculate checksum of an entire packet | |
2726 | * @skb: packet to process | |
2727 | * | |
2728 | * This function calculates the checksum over the entire packet plus | |
2729 | * the value of skb->csum. The latter can be used to supply the | |
2730 | * checksum of a pseudo header as used by TCP/UDP. It returns the | |
2731 | * checksum. | |
2732 | * | |
2733 | * For protocols that contain complete checksums such as ICMP/TCP/UDP, | |
2734 | * this function can be used to verify that checksum on received | |
2735 | * packets. In that case the function should return zero if the | |
2736 | * checksum is correct. In particular, this function will return zero | |
2737 | * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the | |
2738 | * hardware has already verified the correctness of the checksum. | |
2739 | */ | |
4381ca3c | 2740 | static inline __sum16 skb_checksum_complete(struct sk_buff *skb) |
fb286bb2 | 2741 | { |
60476372 HX |
2742 | return skb_csum_unnecessary(skb) ? |
2743 | 0 : __skb_checksum_complete(skb); | |
fb286bb2 HX |
2744 | } |
2745 | ||
5f79e0f9 | 2746 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
7965bd4d | 2747 | void nf_conntrack_destroy(struct nf_conntrack *nfct); |
1da177e4 LT |
2748 | static inline void nf_conntrack_put(struct nf_conntrack *nfct) |
2749 | { | |
2750 | if (nfct && atomic_dec_and_test(&nfct->use)) | |
de6e05c4 | 2751 | nf_conntrack_destroy(nfct); |
1da177e4 LT |
2752 | } |
2753 | static inline void nf_conntrack_get(struct nf_conntrack *nfct) | |
2754 | { | |
2755 | if (nfct) | |
2756 | atomic_inc(&nfct->use); | |
2757 | } | |
2fc72c7b | 2758 | #endif |
1da177e4 LT |
2759 | #ifdef CONFIG_BRIDGE_NETFILTER |
2760 | static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) | |
2761 | { | |
2762 | if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) | |
2763 | kfree(nf_bridge); | |
2764 | } | |
2765 | static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) | |
2766 | { | |
2767 | if (nf_bridge) | |
2768 | atomic_inc(&nf_bridge->use); | |
2769 | } | |
2770 | #endif /* CONFIG_BRIDGE_NETFILTER */ | |
a193a4ab PM |
2771 | static inline void nf_reset(struct sk_buff *skb) |
2772 | { | |
5f79e0f9 | 2773 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
a193a4ab PM |
2774 | nf_conntrack_put(skb->nfct); |
2775 | skb->nfct = NULL; | |
2fc72c7b | 2776 | #endif |
a193a4ab PM |
2777 | #ifdef CONFIG_BRIDGE_NETFILTER |
2778 | nf_bridge_put(skb->nf_bridge); | |
2779 | skb->nf_bridge = NULL; | |
2780 | #endif | |
2781 | } | |
2782 | ||
124dff01 PM |
2783 | static inline void nf_reset_trace(struct sk_buff *skb) |
2784 | { | |
478b360a | 2785 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) |
130549fe G |
2786 | skb->nf_trace = 0; |
2787 | #endif | |
a193a4ab PM |
2788 | } |
2789 | ||
edda553c YK |
2790 | /* Note: This doesn't put any conntrack and bridge info in dst. */ |
2791 | static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) | |
2792 | { | |
5f79e0f9 | 2793 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
edda553c YK |
2794 | dst->nfct = src->nfct; |
2795 | nf_conntrack_get(src->nfct); | |
2796 | dst->nfctinfo = src->nfctinfo; | |
2fc72c7b | 2797 | #endif |
edda553c YK |
2798 | #ifdef CONFIG_BRIDGE_NETFILTER |
2799 | dst->nf_bridge = src->nf_bridge; | |
2800 | nf_bridge_get(src->nf_bridge); | |
2801 | #endif | |
478b360a FW |
2802 | #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) |
2803 | dst->nf_trace = src->nf_trace; | |
2804 | #endif | |
edda553c YK |
2805 | } |
2806 | ||
e7ac05f3 YK |
2807 | static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) |
2808 | { | |
e7ac05f3 | 2809 | #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) |
5f79e0f9 | 2810 | nf_conntrack_put(dst->nfct); |
2fc72c7b | 2811 | #endif |
e7ac05f3 YK |
2812 | #ifdef CONFIG_BRIDGE_NETFILTER |
2813 | nf_bridge_put(dst->nf_bridge); | |
2814 | #endif | |
2815 | __nf_copy(dst, src); | |
2816 | } | |
2817 | ||
984bc16c JM |
2818 | #ifdef CONFIG_NETWORK_SECMARK |
2819 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | |
2820 | { | |
2821 | to->secmark = from->secmark; | |
2822 | } | |
2823 | ||
2824 | static inline void skb_init_secmark(struct sk_buff *skb) | |
2825 | { | |
2826 | skb->secmark = 0; | |
2827 | } | |
2828 | #else | |
2829 | static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) | |
2830 | { } | |
2831 | ||
2832 | static inline void skb_init_secmark(struct sk_buff *skb) | |
2833 | { } | |
2834 | #endif | |
2835 | ||
f25f4e44 PWJ |
2836 | static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) |
2837 | { | |
f25f4e44 | 2838 | skb->queue_mapping = queue_mapping; |
f25f4e44 PWJ |
2839 | } |
2840 | ||
9247744e | 2841 | static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) |
4e3ab47a | 2842 | { |
4e3ab47a | 2843 | return skb->queue_mapping; |
4e3ab47a PE |
2844 | } |
2845 | ||
f25f4e44 PWJ |
2846 | static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) |
2847 | { | |
f25f4e44 | 2848 | to->queue_mapping = from->queue_mapping; |
f25f4e44 PWJ |
2849 | } |
2850 | ||
d5a9e24a DM |
2851 | static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) |
2852 | { | |
2853 | skb->queue_mapping = rx_queue + 1; | |
2854 | } | |
2855 | ||
9247744e | 2856 | static inline u16 skb_get_rx_queue(const struct sk_buff *skb) |
d5a9e24a DM |
2857 | { |
2858 | return skb->queue_mapping - 1; | |
2859 | } | |
2860 | ||
9247744e | 2861 | static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) |
d5a9e24a | 2862 | { |
a02cec21 | 2863 | return skb->queue_mapping != 0; |
d5a9e24a DM |
2864 | } |
2865 | ||
7965bd4d JP |
2866 | u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, |
2867 | unsigned int num_tx_queues); | |
9247744e | 2868 | |
def8b4fa AD |
2869 | static inline struct sec_path *skb_sec_path(struct sk_buff *skb) |
2870 | { | |
0b3d8e08 | 2871 | #ifdef CONFIG_XFRM |
def8b4fa | 2872 | return skb->sp; |
def8b4fa | 2873 | #else |
def8b4fa | 2874 | return NULL; |
def8b4fa | 2875 | #endif |
0b3d8e08 | 2876 | } |
def8b4fa | 2877 | |
68c33163 PS |
2878 | /* Keeps track of mac header offset relative to skb->head. |
2879 | * It is useful for TSO of Tunneling protocol. e.g. GRE. | |
2880 | * For non-tunnel skb it points to skb_mac_header() and for | |
3347c960 ED |
2881 | * tunnel skb it points to outer mac header. |
2882 | * Keeps track of level of encapsulation of network headers. | |
2883 | */ | |
68c33163 | 2884 | struct skb_gso_cb { |
3347c960 ED |
2885 | int mac_offset; |
2886 | int encap_level; | |
68c33163 PS |
2887 | }; |
2888 | #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) | |
2889 | ||
2890 | static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) | |
2891 | { | |
2892 | return (skb_mac_header(inner_skb) - inner_skb->head) - | |
2893 | SKB_GSO_CB(inner_skb)->mac_offset; | |
2894 | } | |
2895 | ||
1e2bd517 PS |
2896 | static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) |
2897 | { | |
2898 | int new_headroom, headroom; | |
2899 | int ret; | |
2900 | ||
2901 | headroom = skb_headroom(skb); | |
2902 | ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); | |
2903 | if (ret) | |
2904 | return ret; | |
2905 | ||
2906 | new_headroom = skb_headroom(skb); | |
2907 | SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); | |
2908 | return 0; | |
2909 | } | |
2910 | ||
bdcc0924 | 2911 | static inline bool skb_is_gso(const struct sk_buff *skb) |
89114afd HX |
2912 | { |
2913 | return skb_shinfo(skb)->gso_size; | |
2914 | } | |
2915 | ||
36a8f39e | 2916 | /* Note: Should be called only if skb_is_gso(skb) is true */ |
bdcc0924 | 2917 | static inline bool skb_is_gso_v6(const struct sk_buff *skb) |
eabd7e35 BG |
2918 | { |
2919 | return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; | |
2920 | } | |
2921 | ||
7965bd4d | 2922 | void __skb_warn_lro_forwarding(const struct sk_buff *skb); |
4497b076 BH |
2923 | |
2924 | static inline bool skb_warn_if_lro(const struct sk_buff *skb) | |
2925 | { | |
2926 | /* LRO sets gso_size but not gso_type, whereas if GSO is really | |
2927 | * wanted then gso_type will be set. */ | |
05bdd2f1 ED |
2928 | const struct skb_shared_info *shinfo = skb_shinfo(skb); |
2929 | ||
b78462eb AD |
2930 | if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && |
2931 | unlikely(shinfo->gso_type == 0)) { | |
4497b076 BH |
2932 | __skb_warn_lro_forwarding(skb); |
2933 | return true; | |
2934 | } | |
2935 | return false; | |
2936 | } | |
2937 | ||
35fc92a9 HX |
2938 | static inline void skb_forward_csum(struct sk_buff *skb) |
2939 | { | |
2940 | /* Unfortunately we don't support this one. Any brave souls? */ | |
2941 | if (skb->ip_summed == CHECKSUM_COMPLETE) | |
2942 | skb->ip_summed = CHECKSUM_NONE; | |
2943 | } | |
2944 | ||
bc8acf2c ED |
2945 | /** |
2946 | * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE | |
2947 | * @skb: skb to check | |
2948 | * | |
2949 | * fresh skbs have their ip_summed set to CHECKSUM_NONE. | |
2950 | * Instead of forcing ip_summed to CHECKSUM_NONE, we can | |
2951 | * use this helper, to document places where we make this assertion. | |
2952 | */ | |
05bdd2f1 | 2953 | static inline void skb_checksum_none_assert(const struct sk_buff *skb) |
bc8acf2c ED |
2954 | { |
2955 | #ifdef DEBUG | |
2956 | BUG_ON(skb->ip_summed != CHECKSUM_NONE); | |
2957 | #endif | |
2958 | } | |
2959 | ||
f35d9d8a | 2960 | bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); |
a6686f2f | 2961 | |
ed1f50c3 PD |
2962 | int skb_checksum_setup(struct sk_buff *skb, bool recalculate); |
2963 | ||
f77668dc DB |
2964 | u32 __skb_get_poff(const struct sk_buff *skb); |
2965 | ||
3a7c1ee4 AD |
2966 | /** |
2967 | * skb_head_is_locked - Determine if the skb->head is locked down | |
2968 | * @skb: skb to check | |
2969 | * | |
2970 | * The head on skbs build around a head frag can be removed if they are | |
2971 | * not cloned. This function returns true if the skb head is locked down | |
2972 | * due to either being allocated via kmalloc, or by being a clone with | |
2973 | * multiple references to the head. | |
2974 | */ | |
2975 | static inline bool skb_head_is_locked(const struct sk_buff *skb) | |
2976 | { | |
2977 | return !skb->head_frag || skb_cloned(skb); | |
2978 | } | |
fe6cc55f FW |
2979 | |
2980 | /** | |
2981 | * skb_gso_network_seglen - Return length of individual segments of a gso packet | |
2982 | * | |
2983 | * @skb: GSO skb | |
2984 | * | |
2985 | * skb_gso_network_seglen is used to determine the real size of the | |
2986 | * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). | |
2987 | * | |
2988 | * The MAC/L2 header is not accounted for. | |
2989 | */ | |
2990 | static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) | |
2991 | { | |
2992 | unsigned int hdr_len = skb_transport_header(skb) - | |
2993 | skb_network_header(skb); | |
2994 | return hdr_len + skb_gso_transport_seglen(skb); | |
2995 | } | |
1da177e4 LT |
2996 | #endif /* __KERNEL__ */ |
2997 | #endif /* _LINUX_SKBUFF_H */ |