]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
88f306b6 KS |
26 | * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) |
27 | * mapping->i_mmap_rwsem | |
28 | * anon_vma->rwsem | |
29 | * mm->page_table_lock or pte_lock | |
30 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
31 | * swap_lock (in swap_duplicate, swap_info_get) | |
32 | * mmlist_lock (in mmput, drain_mmlist and others) | |
33 | * mapping->private_lock (in __set_page_dirty_buffers) | |
34 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) | |
35 | * mapping->tree_lock (widely used) | |
36 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) | |
37 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) | |
38 | * sb_lock (within inode_lock in fs/fs-writeback.c) | |
39 | * mapping->tree_lock (widely used, in set_page_dirty, | |
40 | * in arch-dependent flush_dcache_mmap_lock, | |
41 | * within bdi.wb->list_lock in __sync_single_inode) | |
6a46079c | 42 | * |
5a505085 | 43 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 44 | * ->tasklist_lock |
6a46079c | 45 | * pte map lock |
1da177e4 LT |
46 | */ |
47 | ||
48 | #include <linux/mm.h> | |
49 | #include <linux/pagemap.h> | |
50 | #include <linux/swap.h> | |
51 | #include <linux/swapops.h> | |
52 | #include <linux/slab.h> | |
53 | #include <linux/init.h> | |
5ad64688 | 54 | #include <linux/ksm.h> |
1da177e4 LT |
55 | #include <linux/rmap.h> |
56 | #include <linux/rcupdate.h> | |
b95f1b31 | 57 | #include <linux/export.h> |
8a9f3ccd | 58 | #include <linux/memcontrol.h> |
cddb8a5c | 59 | #include <linux/mmu_notifier.h> |
64cdd548 | 60 | #include <linux/migrate.h> |
0fe6e20b | 61 | #include <linux/hugetlb.h> |
ef5d437f | 62 | #include <linux/backing-dev.h> |
33c3fc71 | 63 | #include <linux/page_idle.h> |
1da177e4 LT |
64 | |
65 | #include <asm/tlbflush.h> | |
66 | ||
72b252ae MG |
67 | #include <trace/events/tlb.h> |
68 | ||
b291f000 NP |
69 | #include "internal.h" |
70 | ||
fdd2e5f8 | 71 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 72 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
73 | |
74 | static inline struct anon_vma *anon_vma_alloc(void) | |
75 | { | |
01d8b20d PZ |
76 | struct anon_vma *anon_vma; |
77 | ||
78 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
79 | if (anon_vma) { | |
80 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
81 | anon_vma->degree = 1; /* Reference for first vma */ |
82 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
83 | /* |
84 | * Initialise the anon_vma root to point to itself. If called | |
85 | * from fork, the root will be reset to the parents anon_vma. | |
86 | */ | |
87 | anon_vma->root = anon_vma; | |
88 | } | |
89 | ||
90 | return anon_vma; | |
fdd2e5f8 AB |
91 | } |
92 | ||
01d8b20d | 93 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 94 | { |
01d8b20d | 95 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
96 | |
97 | /* | |
4fc3f1d6 | 98 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
99 | * we can safely hold the lock without the anon_vma getting |
100 | * freed. | |
101 | * | |
102 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
103 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 104 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 105 | * |
4fc3f1d6 IM |
106 | * page_lock_anon_vma_read() VS put_anon_vma() |
107 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 108 | * LOCK MB |
4fc3f1d6 | 109 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
110 | * |
111 | * LOCK should suffice since the actual taking of the lock must | |
112 | * happen _before_ what follows. | |
113 | */ | |
7f39dda9 | 114 | might_sleep(); |
5a505085 | 115 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 116 | anon_vma_lock_write(anon_vma); |
08b52706 | 117 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
118 | } |
119 | ||
fdd2e5f8 AB |
120 | kmem_cache_free(anon_vma_cachep, anon_vma); |
121 | } | |
1da177e4 | 122 | |
dd34739c | 123 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 124 | { |
dd34739c | 125 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
126 | } |
127 | ||
e574b5fd | 128 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
129 | { |
130 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
131 | } | |
132 | ||
6583a843 KC |
133 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
134 | struct anon_vma_chain *avc, | |
135 | struct anon_vma *anon_vma) | |
136 | { | |
137 | avc->vma = vma; | |
138 | avc->anon_vma = anon_vma; | |
139 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 140 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
141 | } |
142 | ||
d9d332e0 LT |
143 | /** |
144 | * anon_vma_prepare - attach an anon_vma to a memory region | |
145 | * @vma: the memory region in question | |
146 | * | |
147 | * This makes sure the memory mapping described by 'vma' has | |
148 | * an 'anon_vma' attached to it, so that we can associate the | |
149 | * anonymous pages mapped into it with that anon_vma. | |
150 | * | |
151 | * The common case will be that we already have one, but if | |
23a0790a | 152 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
153 | * can re-use the anon_vma from (very common when the only |
154 | * reason for splitting a vma has been mprotect()), or we | |
155 | * allocate a new one. | |
156 | * | |
157 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 158 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
159 | * and that may actually touch the spinlock even in the newly |
160 | * allocated vma (it depends on RCU to make sure that the | |
161 | * anon_vma isn't actually destroyed). | |
162 | * | |
163 | * As a result, we need to do proper anon_vma locking even | |
164 | * for the new allocation. At the same time, we do not want | |
165 | * to do any locking for the common case of already having | |
166 | * an anon_vma. | |
167 | * | |
168 | * This must be called with the mmap_sem held for reading. | |
169 | */ | |
1da177e4 LT |
170 | int anon_vma_prepare(struct vm_area_struct *vma) |
171 | { | |
172 | struct anon_vma *anon_vma = vma->anon_vma; | |
5beb4930 | 173 | struct anon_vma_chain *avc; |
1da177e4 LT |
174 | |
175 | might_sleep(); | |
176 | if (unlikely(!anon_vma)) { | |
177 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 178 | struct anon_vma *allocated; |
1da177e4 | 179 | |
dd34739c | 180 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
181 | if (!avc) |
182 | goto out_enomem; | |
183 | ||
1da177e4 | 184 | anon_vma = find_mergeable_anon_vma(vma); |
d9d332e0 LT |
185 | allocated = NULL; |
186 | if (!anon_vma) { | |
1da177e4 LT |
187 | anon_vma = anon_vma_alloc(); |
188 | if (unlikely(!anon_vma)) | |
5beb4930 | 189 | goto out_enomem_free_avc; |
1da177e4 | 190 | allocated = anon_vma; |
1da177e4 LT |
191 | } |
192 | ||
4fc3f1d6 | 193 | anon_vma_lock_write(anon_vma); |
1da177e4 LT |
194 | /* page_table_lock to protect against threads */ |
195 | spin_lock(&mm->page_table_lock); | |
196 | if (likely(!vma->anon_vma)) { | |
197 | vma->anon_vma = anon_vma; | |
6583a843 | 198 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 KK |
199 | /* vma reference or self-parent link for new root */ |
200 | anon_vma->degree++; | |
1da177e4 | 201 | allocated = NULL; |
31f2b0eb | 202 | avc = NULL; |
1da177e4 LT |
203 | } |
204 | spin_unlock(&mm->page_table_lock); | |
08b52706 | 205 | anon_vma_unlock_write(anon_vma); |
31f2b0eb ON |
206 | |
207 | if (unlikely(allocated)) | |
01d8b20d | 208 | put_anon_vma(allocated); |
31f2b0eb | 209 | if (unlikely(avc)) |
5beb4930 | 210 | anon_vma_chain_free(avc); |
1da177e4 LT |
211 | } |
212 | return 0; | |
5beb4930 RR |
213 | |
214 | out_enomem_free_avc: | |
215 | anon_vma_chain_free(avc); | |
216 | out_enomem: | |
217 | return -ENOMEM; | |
1da177e4 LT |
218 | } |
219 | ||
bb4aa396 LT |
220 | /* |
221 | * This is a useful helper function for locking the anon_vma root as | |
222 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
223 | * have the same vma. | |
224 | * | |
225 | * Such anon_vma's should have the same root, so you'd expect to see | |
226 | * just a single mutex_lock for the whole traversal. | |
227 | */ | |
228 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
229 | { | |
230 | struct anon_vma *new_root = anon_vma->root; | |
231 | if (new_root != root) { | |
232 | if (WARN_ON_ONCE(root)) | |
5a505085 | 233 | up_write(&root->rwsem); |
bb4aa396 | 234 | root = new_root; |
5a505085 | 235 | down_write(&root->rwsem); |
bb4aa396 LT |
236 | } |
237 | return root; | |
238 | } | |
239 | ||
240 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
241 | { | |
242 | if (root) | |
5a505085 | 243 | up_write(&root->rwsem); |
bb4aa396 LT |
244 | } |
245 | ||
5beb4930 RR |
246 | /* |
247 | * Attach the anon_vmas from src to dst. | |
248 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
249 | * |
250 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
251 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
252 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
253 | * constantly forking task. On the other hand, an anon_vma with more than one | |
254 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
255 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
256 | * page is mapped. | |
5beb4930 RR |
257 | */ |
258 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 259 | { |
5beb4930 | 260 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 261 | struct anon_vma *root = NULL; |
5beb4930 | 262 | |
646d87b4 | 263 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
264 | struct anon_vma *anon_vma; |
265 | ||
dd34739c LT |
266 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
267 | if (unlikely(!avc)) { | |
268 | unlock_anon_vma_root(root); | |
269 | root = NULL; | |
270 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
271 | if (!avc) | |
272 | goto enomem_failure; | |
273 | } | |
bb4aa396 LT |
274 | anon_vma = pavc->anon_vma; |
275 | root = lock_anon_vma_root(root, anon_vma); | |
276 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
277 | |
278 | /* | |
279 | * Reuse existing anon_vma if its degree lower than two, | |
280 | * that means it has no vma and only one anon_vma child. | |
281 | * | |
282 | * Do not chose parent anon_vma, otherwise first child | |
283 | * will always reuse it. Root anon_vma is never reused: | |
284 | * it has self-parent reference and at least one child. | |
285 | */ | |
286 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
287 | anon_vma->degree < 2) | |
288 | dst->anon_vma = anon_vma; | |
5beb4930 | 289 | } |
7a3ef208 KK |
290 | if (dst->anon_vma) |
291 | dst->anon_vma->degree++; | |
bb4aa396 | 292 | unlock_anon_vma_root(root); |
5beb4930 | 293 | return 0; |
1da177e4 | 294 | |
5beb4930 | 295 | enomem_failure: |
3fe89b3e LY |
296 | /* |
297 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
298 | * decremented in unlink_anon_vmas(). | |
299 | * We can safely do this because callers of anon_vma_clone() don't care | |
300 | * about dst->anon_vma if anon_vma_clone() failed. | |
301 | */ | |
302 | dst->anon_vma = NULL; | |
5beb4930 RR |
303 | unlink_anon_vmas(dst); |
304 | return -ENOMEM; | |
1da177e4 LT |
305 | } |
306 | ||
5beb4930 RR |
307 | /* |
308 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
309 | * the corresponding VMA in the parent process is attached to. | |
310 | * Returns 0 on success, non-zero on failure. | |
311 | */ | |
312 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 313 | { |
5beb4930 RR |
314 | struct anon_vma_chain *avc; |
315 | struct anon_vma *anon_vma; | |
c4ea95d7 | 316 | int error; |
1da177e4 | 317 | |
5beb4930 RR |
318 | /* Don't bother if the parent process has no anon_vma here. */ |
319 | if (!pvma->anon_vma) | |
320 | return 0; | |
321 | ||
7a3ef208 KK |
322 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
323 | vma->anon_vma = NULL; | |
324 | ||
5beb4930 RR |
325 | /* |
326 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
327 | * so rmap can find non-COWed pages in child processes. | |
328 | */ | |
c4ea95d7 DF |
329 | error = anon_vma_clone(vma, pvma); |
330 | if (error) | |
331 | return error; | |
5beb4930 | 332 | |
7a3ef208 KK |
333 | /* An existing anon_vma has been reused, all done then. */ |
334 | if (vma->anon_vma) | |
335 | return 0; | |
336 | ||
5beb4930 RR |
337 | /* Then add our own anon_vma. */ |
338 | anon_vma = anon_vma_alloc(); | |
339 | if (!anon_vma) | |
340 | goto out_error; | |
dd34739c | 341 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
342 | if (!avc) |
343 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
344 | |
345 | /* | |
346 | * The root anon_vma's spinlock is the lock actually used when we | |
347 | * lock any of the anon_vmas in this anon_vma tree. | |
348 | */ | |
349 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 350 | anon_vma->parent = pvma->anon_vma; |
76545066 | 351 | /* |
01d8b20d PZ |
352 | * With refcounts, an anon_vma can stay around longer than the |
353 | * process it belongs to. The root anon_vma needs to be pinned until | |
354 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
355 | */ |
356 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
357 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
358 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 359 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 360 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 361 | anon_vma->parent->degree++; |
08b52706 | 362 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
363 | |
364 | return 0; | |
365 | ||
366 | out_error_free_anon_vma: | |
01d8b20d | 367 | put_anon_vma(anon_vma); |
5beb4930 | 368 | out_error: |
4946d54c | 369 | unlink_anon_vmas(vma); |
5beb4930 | 370 | return -ENOMEM; |
1da177e4 LT |
371 | } |
372 | ||
5beb4930 RR |
373 | void unlink_anon_vmas(struct vm_area_struct *vma) |
374 | { | |
375 | struct anon_vma_chain *avc, *next; | |
eee2acba | 376 | struct anon_vma *root = NULL; |
5beb4930 | 377 | |
5c341ee1 RR |
378 | /* |
379 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
380 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
381 | */ | |
5beb4930 | 382 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
383 | struct anon_vma *anon_vma = avc->anon_vma; |
384 | ||
385 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 386 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
387 | |
388 | /* | |
389 | * Leave empty anon_vmas on the list - we'll need | |
390 | * to free them outside the lock. | |
391 | */ | |
7a3ef208 KK |
392 | if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { |
393 | anon_vma->parent->degree--; | |
eee2acba | 394 | continue; |
7a3ef208 | 395 | } |
eee2acba PZ |
396 | |
397 | list_del(&avc->same_vma); | |
398 | anon_vma_chain_free(avc); | |
399 | } | |
7a3ef208 KK |
400 | if (vma->anon_vma) |
401 | vma->anon_vma->degree--; | |
eee2acba PZ |
402 | unlock_anon_vma_root(root); |
403 | ||
404 | /* | |
405 | * Iterate the list once more, it now only contains empty and unlinked | |
406 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 407 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
408 | */ |
409 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
410 | struct anon_vma *anon_vma = avc->anon_vma; | |
411 | ||
7a3ef208 | 412 | BUG_ON(anon_vma->degree); |
eee2acba PZ |
413 | put_anon_vma(anon_vma); |
414 | ||
5beb4930 RR |
415 | list_del(&avc->same_vma); |
416 | anon_vma_chain_free(avc); | |
417 | } | |
418 | } | |
419 | ||
51cc5068 | 420 | static void anon_vma_ctor(void *data) |
1da177e4 | 421 | { |
a35afb83 | 422 | struct anon_vma *anon_vma = data; |
1da177e4 | 423 | |
5a505085 | 424 | init_rwsem(&anon_vma->rwsem); |
83813267 | 425 | atomic_set(&anon_vma->refcount, 0); |
bf181b9f | 426 | anon_vma->rb_root = RB_ROOT; |
1da177e4 LT |
427 | } |
428 | ||
429 | void __init anon_vma_init(void) | |
430 | { | |
431 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5d097056 VD |
432 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
433 | anon_vma_ctor); | |
434 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
435 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
436 | } |
437 | ||
438 | /* | |
6111e4ca PZ |
439 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
440 | * | |
441 | * Since there is no serialization what so ever against page_remove_rmap() | |
442 | * the best this function can do is return a locked anon_vma that might | |
443 | * have been relevant to this page. | |
444 | * | |
445 | * The page might have been remapped to a different anon_vma or the anon_vma | |
446 | * returned may already be freed (and even reused). | |
447 | * | |
bc658c96 PZ |
448 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
449 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
450 | * ensure that any anon_vma obtained from the page will still be valid for as | |
451 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
452 | * | |
6111e4ca PZ |
453 | * All users of this function must be very careful when walking the anon_vma |
454 | * chain and verify that the page in question is indeed mapped in it | |
455 | * [ something equivalent to page_mapped_in_vma() ]. | |
456 | * | |
457 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
458 | * that the anon_vma pointer from page->mapping is valid if there is a | |
459 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 460 | */ |
746b18d4 | 461 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 462 | { |
746b18d4 | 463 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
464 | unsigned long anon_mapping; |
465 | ||
466 | rcu_read_lock(); | |
4db0c3c2 | 467 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 468 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
469 | goto out; |
470 | if (!page_mapped(page)) | |
471 | goto out; | |
472 | ||
473 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
474 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
475 | anon_vma = NULL; | |
476 | goto out; | |
477 | } | |
f1819427 HD |
478 | |
479 | /* | |
480 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
481 | * freed. But if it has been unmapped, we have no security against the |
482 | * anon_vma structure being freed and reused (for another anon_vma: | |
483 | * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() | |
484 | * above cannot corrupt). | |
f1819427 | 485 | */ |
746b18d4 | 486 | if (!page_mapped(page)) { |
7f39dda9 | 487 | rcu_read_unlock(); |
746b18d4 | 488 | put_anon_vma(anon_vma); |
7f39dda9 | 489 | return NULL; |
746b18d4 | 490 | } |
1da177e4 LT |
491 | out: |
492 | rcu_read_unlock(); | |
746b18d4 PZ |
493 | |
494 | return anon_vma; | |
495 | } | |
496 | ||
88c22088 PZ |
497 | /* |
498 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
499 | * | |
500 | * Its a little more complex as it tries to keep the fast path to a single | |
501 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
502 | * reference like with page_get_anon_vma() and then block on the mutex. | |
503 | */ | |
4fc3f1d6 | 504 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 505 | { |
88c22088 | 506 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 507 | struct anon_vma *root_anon_vma; |
88c22088 | 508 | unsigned long anon_mapping; |
746b18d4 | 509 | |
88c22088 | 510 | rcu_read_lock(); |
4db0c3c2 | 511 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
512 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
513 | goto out; | |
514 | if (!page_mapped(page)) | |
515 | goto out; | |
516 | ||
517 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 518 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 519 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 520 | /* |
eee0f252 HD |
521 | * If the page is still mapped, then this anon_vma is still |
522 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 523 | * not go away, see anon_vma_free(). |
88c22088 | 524 | */ |
eee0f252 | 525 | if (!page_mapped(page)) { |
4fc3f1d6 | 526 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
527 | anon_vma = NULL; |
528 | } | |
529 | goto out; | |
530 | } | |
746b18d4 | 531 | |
88c22088 PZ |
532 | /* trylock failed, we got to sleep */ |
533 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
534 | anon_vma = NULL; | |
535 | goto out; | |
536 | } | |
537 | ||
538 | if (!page_mapped(page)) { | |
7f39dda9 | 539 | rcu_read_unlock(); |
88c22088 | 540 | put_anon_vma(anon_vma); |
7f39dda9 | 541 | return NULL; |
88c22088 PZ |
542 | } |
543 | ||
544 | /* we pinned the anon_vma, its safe to sleep */ | |
545 | rcu_read_unlock(); | |
4fc3f1d6 | 546 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
547 | |
548 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
549 | /* | |
550 | * Oops, we held the last refcount, release the lock | |
551 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 552 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 553 | */ |
4fc3f1d6 | 554 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
555 | __put_anon_vma(anon_vma); |
556 | anon_vma = NULL; | |
557 | } | |
558 | ||
559 | return anon_vma; | |
560 | ||
561 | out: | |
562 | rcu_read_unlock(); | |
746b18d4 | 563 | return anon_vma; |
34bbd704 ON |
564 | } |
565 | ||
4fc3f1d6 | 566 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 567 | { |
4fc3f1d6 | 568 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
569 | } |
570 | ||
72b252ae MG |
571 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
572 | static void percpu_flush_tlb_batch_pages(void *data) | |
573 | { | |
574 | /* | |
575 | * All TLB entries are flushed on the assumption that it is | |
576 | * cheaper to flush all TLBs and let them be refilled than | |
577 | * flushing individual PFNs. Note that we do not track mm's | |
578 | * to flush as that might simply be multiple full TLB flushes | |
579 | * for no gain. | |
580 | */ | |
581 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); | |
582 | flush_tlb_local(); | |
583 | } | |
584 | ||
585 | /* | |
586 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
587 | * important if a PTE was dirty when it was unmapped that it's flushed | |
588 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
589 | * it must be flushed before freeing to prevent data leakage. | |
590 | */ | |
591 | void try_to_unmap_flush(void) | |
592 | { | |
593 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
594 | int cpu; | |
595 | ||
596 | if (!tlb_ubc->flush_required) | |
597 | return; | |
598 | ||
599 | cpu = get_cpu(); | |
600 | ||
601 | trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL); | |
602 | ||
603 | if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) | |
604 | percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask); | |
605 | ||
606 | if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) { | |
607 | smp_call_function_many(&tlb_ubc->cpumask, | |
608 | percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true); | |
609 | } | |
610 | cpumask_clear(&tlb_ubc->cpumask); | |
611 | tlb_ubc->flush_required = false; | |
d950c947 | 612 | tlb_ubc->writable = false; |
72b252ae MG |
613 | put_cpu(); |
614 | } | |
615 | ||
d950c947 MG |
616 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
617 | void try_to_unmap_flush_dirty(void) | |
618 | { | |
619 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
620 | ||
621 | if (tlb_ubc->writable) | |
622 | try_to_unmap_flush(); | |
623 | } | |
624 | ||
72b252ae | 625 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, |
d950c947 | 626 | struct page *page, bool writable) |
72b252ae MG |
627 | { |
628 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
629 | ||
630 | cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm)); | |
631 | tlb_ubc->flush_required = true; | |
d950c947 MG |
632 | |
633 | /* | |
634 | * If the PTE was dirty then it's best to assume it's writable. The | |
635 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
636 | * before the page is queued for IO. | |
637 | */ | |
638 | if (writable) | |
639 | tlb_ubc->writable = true; | |
72b252ae MG |
640 | } |
641 | ||
642 | /* | |
643 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
644 | * unmap operations to reduce IPIs. | |
645 | */ | |
646 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
647 | { | |
648 | bool should_defer = false; | |
649 | ||
650 | if (!(flags & TTU_BATCH_FLUSH)) | |
651 | return false; | |
652 | ||
653 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
654 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
655 | should_defer = true; | |
656 | put_cpu(); | |
657 | ||
658 | return should_defer; | |
659 | } | |
660 | #else | |
661 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, | |
d950c947 | 662 | struct page *page, bool writable) |
72b252ae MG |
663 | { |
664 | } | |
665 | ||
666 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
667 | { | |
668 | return false; | |
669 | } | |
670 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
671 | ||
1da177e4 | 672 | /* |
bf89c8c8 | 673 | * At what user virtual address is page expected in vma? |
ab941e0f | 674 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
675 | */ |
676 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
677 | { | |
86c2ad19 | 678 | unsigned long address; |
21d0d443 | 679 | if (PageAnon(page)) { |
4829b906 HD |
680 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
681 | /* | |
682 | * Note: swapoff's unuse_vma() is more efficient with this | |
683 | * check, and needs it to match anon_vma when KSM is active. | |
684 | */ | |
685 | if (!vma->anon_vma || !page__anon_vma || | |
686 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 687 | return -EFAULT; |
27ba0644 KS |
688 | } else if (page->mapping) { |
689 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
690 | return -EFAULT; |
691 | } else | |
692 | return -EFAULT; | |
86c2ad19 ML |
693 | address = __vma_address(page, vma); |
694 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
695 | return -EFAULT; | |
696 | return address; | |
1da177e4 LT |
697 | } |
698 | ||
6219049a BL |
699 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
700 | { | |
701 | pgd_t *pgd; | |
702 | pud_t *pud; | |
703 | pmd_t *pmd = NULL; | |
f72e7dcd | 704 | pmd_t pmde; |
6219049a BL |
705 | |
706 | pgd = pgd_offset(mm, address); | |
707 | if (!pgd_present(*pgd)) | |
708 | goto out; | |
709 | ||
710 | pud = pud_offset(pgd, address); | |
711 | if (!pud_present(*pud)) | |
712 | goto out; | |
713 | ||
714 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 715 | /* |
8809aa2d | 716 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
717 | * without holding anon_vma lock for write. So when looking for a |
718 | * genuine pmde (in which to find pte), test present and !THP together. | |
719 | */ | |
e37c6982 CB |
720 | pmde = *pmd; |
721 | barrier(); | |
f72e7dcd | 722 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
723 | pmd = NULL; |
724 | out: | |
725 | return pmd; | |
726 | } | |
727 | ||
81b4082d ND |
728 | /* |
729 | * Check that @page is mapped at @address into @mm. | |
730 | * | |
479db0bf NP |
731 | * If @sync is false, page_check_address may perform a racy check to avoid |
732 | * the page table lock when the pte is not present (helpful when reclaiming | |
733 | * highly shared pages). | |
734 | * | |
b8072f09 | 735 | * On success returns with pte mapped and locked. |
81b4082d | 736 | */ |
e9a81a82 | 737 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 738 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d | 739 | { |
81b4082d ND |
740 | pmd_t *pmd; |
741 | pte_t *pte; | |
c0718806 | 742 | spinlock_t *ptl; |
81b4082d | 743 | |
0fe6e20b | 744 | if (unlikely(PageHuge(page))) { |
98398c32 | 745 | /* when pud is not present, pte will be NULL */ |
0fe6e20b | 746 | pte = huge_pte_offset(mm, address); |
98398c32 JW |
747 | if (!pte) |
748 | return NULL; | |
749 | ||
cb900f41 | 750 | ptl = huge_pte_lockptr(page_hstate(page), mm, pte); |
0fe6e20b NH |
751 | goto check; |
752 | } | |
753 | ||
6219049a BL |
754 | pmd = mm_find_pmd(mm, address); |
755 | if (!pmd) | |
c0718806 HD |
756 | return NULL; |
757 | ||
c0718806 HD |
758 | pte = pte_offset_map(pmd, address); |
759 | /* Make a quick check before getting the lock */ | |
479db0bf | 760 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
761 | pte_unmap(pte); |
762 | return NULL; | |
763 | } | |
764 | ||
4c21e2f2 | 765 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 766 | check: |
c0718806 HD |
767 | spin_lock(ptl); |
768 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
769 | *ptlp = ptl; | |
770 | return pte; | |
81b4082d | 771 | } |
c0718806 HD |
772 | pte_unmap_unlock(pte, ptl); |
773 | return NULL; | |
81b4082d ND |
774 | } |
775 | ||
b291f000 NP |
776 | /** |
777 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
778 | * @page: the page to test | |
779 | * @vma: the VMA to test | |
780 | * | |
781 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
782 | * if the page is not mapped into the page tables of this VMA. Only | |
783 | * valid for normal file or anonymous VMAs. | |
784 | */ | |
6a46079c | 785 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
786 | { |
787 | unsigned long address; | |
788 | pte_t *pte; | |
789 | spinlock_t *ptl; | |
790 | ||
86c2ad19 ML |
791 | address = __vma_address(page, vma); |
792 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
b291f000 NP |
793 | return 0; |
794 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
795 | if (!pte) /* the page is not in this mm */ | |
796 | return 0; | |
797 | pte_unmap_unlock(pte, ptl); | |
798 | ||
799 | return 1; | |
800 | } | |
801 | ||
8749cfea | 802 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1da177e4 | 803 | /* |
8749cfea VD |
804 | * Check that @page is mapped at @address into @mm. In contrast to |
805 | * page_check_address(), this function can handle transparent huge pages. | |
806 | * | |
807 | * On success returns true with pte mapped and locked. For PMD-mapped | |
808 | * transparent huge pages *@ptep is set to NULL. | |
1da177e4 | 809 | */ |
8749cfea VD |
810 | bool page_check_address_transhuge(struct page *page, struct mm_struct *mm, |
811 | unsigned long address, pmd_t **pmdp, | |
812 | pte_t **ptep, spinlock_t **ptlp) | |
1da177e4 | 813 | { |
b20ce5e0 KS |
814 | pgd_t *pgd; |
815 | pud_t *pud; | |
816 | pmd_t *pmd; | |
817 | pte_t *pte; | |
8749cfea | 818 | spinlock_t *ptl; |
1da177e4 | 819 | |
b20ce5e0 KS |
820 | if (unlikely(PageHuge(page))) { |
821 | /* when pud is not present, pte will be NULL */ | |
822 | pte = huge_pte_offset(mm, address); | |
823 | if (!pte) | |
8749cfea | 824 | return false; |
2da28bfd | 825 | |
b20ce5e0 | 826 | ptl = huge_pte_lockptr(page_hstate(page), mm, pte); |
8749cfea | 827 | pmd = NULL; |
b20ce5e0 KS |
828 | goto check_pte; |
829 | } | |
830 | ||
831 | pgd = pgd_offset(mm, address); | |
832 | if (!pgd_present(*pgd)) | |
8749cfea | 833 | return false; |
b20ce5e0 KS |
834 | pud = pud_offset(pgd, address); |
835 | if (!pud_present(*pud)) | |
8749cfea | 836 | return false; |
b20ce5e0 KS |
837 | pmd = pmd_offset(pud, address); |
838 | ||
839 | if (pmd_trans_huge(*pmd)) { | |
b20ce5e0 KS |
840 | ptl = pmd_lock(mm, pmd); |
841 | if (!pmd_present(*pmd)) | |
842 | goto unlock_pmd; | |
843 | if (unlikely(!pmd_trans_huge(*pmd))) { | |
117b0791 | 844 | spin_unlock(ptl); |
b20ce5e0 KS |
845 | goto map_pte; |
846 | } | |
847 | ||
848 | if (pmd_page(*pmd) != page) | |
849 | goto unlock_pmd; | |
850 | ||
8749cfea | 851 | pte = NULL; |
b20ce5e0 KS |
852 | goto found; |
853 | unlock_pmd: | |
854 | spin_unlock(ptl); | |
8749cfea | 855 | return false; |
71e3aac0 | 856 | } else { |
b20ce5e0 | 857 | pmd_t pmde = *pmd; |
71e3aac0 | 858 | |
b20ce5e0 KS |
859 | barrier(); |
860 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) | |
8749cfea | 861 | return false; |
b20ce5e0 KS |
862 | } |
863 | map_pte: | |
864 | pte = pte_offset_map(pmd, address); | |
865 | if (!pte_present(*pte)) { | |
866 | pte_unmap(pte); | |
8749cfea | 867 | return false; |
b20ce5e0 | 868 | } |
71e3aac0 | 869 | |
b20ce5e0 KS |
870 | ptl = pte_lockptr(mm, pmd); |
871 | check_pte: | |
872 | spin_lock(ptl); | |
2da28bfd | 873 | |
b20ce5e0 KS |
874 | if (!pte_present(*pte)) { |
875 | pte_unmap_unlock(pte, ptl); | |
8749cfea | 876 | return false; |
b20ce5e0 KS |
877 | } |
878 | ||
879 | /* THP can be referenced by any subpage */ | |
880 | if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) { | |
881 | pte_unmap_unlock(pte, ptl); | |
8749cfea | 882 | return false; |
b20ce5e0 | 883 | } |
8749cfea VD |
884 | found: |
885 | *ptep = pte; | |
886 | *pmdp = pmd; | |
887 | *ptlp = ptl; | |
888 | return true; | |
889 | } | |
890 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ | |
891 | ||
892 | struct page_referenced_arg { | |
893 | int mapcount; | |
894 | int referenced; | |
895 | unsigned long vm_flags; | |
896 | struct mem_cgroup *memcg; | |
897 | }; | |
898 | /* | |
899 | * arg: page_referenced_arg will be passed | |
900 | */ | |
901 | static int page_referenced_one(struct page *page, struct vm_area_struct *vma, | |
902 | unsigned long address, void *arg) | |
903 | { | |
904 | struct mm_struct *mm = vma->vm_mm; | |
905 | struct page_referenced_arg *pra = arg; | |
906 | pmd_t *pmd; | |
907 | pte_t *pte; | |
908 | spinlock_t *ptl; | |
909 | int referenced = 0; | |
910 | ||
911 | if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl)) | |
912 | return SWAP_AGAIN; | |
b20ce5e0 KS |
913 | |
914 | if (vma->vm_flags & VM_LOCKED) { | |
8749cfea VD |
915 | if (pte) |
916 | pte_unmap(pte); | |
917 | spin_unlock(ptl); | |
b20ce5e0 KS |
918 | pra->vm_flags |= VM_LOCKED; |
919 | return SWAP_FAIL; /* To break the loop */ | |
71e3aac0 AA |
920 | } |
921 | ||
8749cfea VD |
922 | if (pte) { |
923 | if (ptep_clear_flush_young_notify(vma, address, pte)) { | |
924 | /* | |
925 | * Don't treat a reference through a sequentially read | |
926 | * mapping as such. If the page has been used in | |
927 | * another mapping, we will catch it; if this other | |
928 | * mapping is already gone, the unmap path will have | |
929 | * set PG_referenced or activated the page. | |
930 | */ | |
931 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) | |
932 | referenced++; | |
933 | } | |
934 | pte_unmap(pte); | |
935 | } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | |
936 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) | |
b20ce5e0 | 937 | referenced++; |
8749cfea VD |
938 | } else { |
939 | /* unexpected pmd-mapped page? */ | |
940 | WARN_ON_ONCE(1); | |
b20ce5e0 | 941 | } |
8749cfea | 942 | spin_unlock(ptl); |
b20ce5e0 | 943 | |
33c3fc71 VD |
944 | if (referenced) |
945 | clear_page_idle(page); | |
946 | if (test_and_clear_page_young(page)) | |
947 | referenced++; | |
948 | ||
9f32624b JK |
949 | if (referenced) { |
950 | pra->referenced++; | |
951 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 952 | } |
34bbd704 | 953 | |
9f32624b JK |
954 | pra->mapcount--; |
955 | if (!pra->mapcount) | |
956 | return SWAP_SUCCESS; /* To break the loop */ | |
957 | ||
958 | return SWAP_AGAIN; | |
1da177e4 LT |
959 | } |
960 | ||
9f32624b | 961 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 962 | { |
9f32624b JK |
963 | struct page_referenced_arg *pra = arg; |
964 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 965 | |
9f32624b JK |
966 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
967 | return true; | |
1da177e4 | 968 | |
9f32624b | 969 | return false; |
1da177e4 LT |
970 | } |
971 | ||
972 | /** | |
973 | * page_referenced - test if the page was referenced | |
974 | * @page: the page to test | |
975 | * @is_locked: caller holds lock on the page | |
72835c86 | 976 | * @memcg: target memory cgroup |
6fe6b7e3 | 977 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
978 | * |
979 | * Quick test_and_clear_referenced for all mappings to a page, | |
980 | * returns the number of ptes which referenced the page. | |
981 | */ | |
6fe6b7e3 WF |
982 | int page_referenced(struct page *page, |
983 | int is_locked, | |
72835c86 | 984 | struct mem_cgroup *memcg, |
6fe6b7e3 | 985 | unsigned long *vm_flags) |
1da177e4 | 986 | { |
9f32624b | 987 | int ret; |
5ad64688 | 988 | int we_locked = 0; |
9f32624b | 989 | struct page_referenced_arg pra = { |
b20ce5e0 | 990 | .mapcount = total_mapcount(page), |
9f32624b JK |
991 | .memcg = memcg, |
992 | }; | |
993 | struct rmap_walk_control rwc = { | |
994 | .rmap_one = page_referenced_one, | |
995 | .arg = (void *)&pra, | |
996 | .anon_lock = page_lock_anon_vma_read, | |
997 | }; | |
1da177e4 | 998 | |
6fe6b7e3 | 999 | *vm_flags = 0; |
9f32624b JK |
1000 | if (!page_mapped(page)) |
1001 | return 0; | |
1002 | ||
1003 | if (!page_rmapping(page)) | |
1004 | return 0; | |
1005 | ||
1006 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
1007 | we_locked = trylock_page(page); | |
1008 | if (!we_locked) | |
1009 | return 1; | |
1da177e4 | 1010 | } |
9f32624b JK |
1011 | |
1012 | /* | |
1013 | * If we are reclaiming on behalf of a cgroup, skip | |
1014 | * counting on behalf of references from different | |
1015 | * cgroups | |
1016 | */ | |
1017 | if (memcg) { | |
1018 | rwc.invalid_vma = invalid_page_referenced_vma; | |
1019 | } | |
1020 | ||
1021 | ret = rmap_walk(page, &rwc); | |
1022 | *vm_flags = pra.vm_flags; | |
1023 | ||
1024 | if (we_locked) | |
1025 | unlock_page(page); | |
1026 | ||
1027 | return pra.referenced; | |
1da177e4 LT |
1028 | } |
1029 | ||
1cb1729b | 1030 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 1031 | unsigned long address, void *arg) |
d08b3851 PZ |
1032 | { |
1033 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 1034 | pte_t *pte; |
d08b3851 PZ |
1035 | spinlock_t *ptl; |
1036 | int ret = 0; | |
9853a407 | 1037 | int *cleaned = arg; |
d08b3851 | 1038 | |
479db0bf | 1039 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
1040 | if (!pte) |
1041 | goto out; | |
1042 | ||
c2fda5fe PZ |
1043 | if (pte_dirty(*pte) || pte_write(*pte)) { |
1044 | pte_t entry; | |
d08b3851 | 1045 | |
c2fda5fe | 1046 | flush_cache_page(vma, address, pte_pfn(*pte)); |
2ec74c3e | 1047 | entry = ptep_clear_flush(vma, address, pte); |
c2fda5fe PZ |
1048 | entry = pte_wrprotect(entry); |
1049 | entry = pte_mkclean(entry); | |
d6e88e67 | 1050 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
1051 | ret = 1; |
1052 | } | |
d08b3851 | 1053 | |
d08b3851 | 1054 | pte_unmap_unlock(pte, ptl); |
2ec74c3e | 1055 | |
9853a407 | 1056 | if (ret) { |
2ec74c3e | 1057 | mmu_notifier_invalidate_page(mm, address); |
9853a407 JK |
1058 | (*cleaned)++; |
1059 | } | |
d08b3851 | 1060 | out: |
9853a407 | 1061 | return SWAP_AGAIN; |
d08b3851 PZ |
1062 | } |
1063 | ||
9853a407 | 1064 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1065 | { |
9853a407 | 1066 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1067 | return false; |
d08b3851 | 1068 | |
871beb8c | 1069 | return true; |
d08b3851 PZ |
1070 | } |
1071 | ||
1072 | int page_mkclean(struct page *page) | |
1073 | { | |
9853a407 JK |
1074 | int cleaned = 0; |
1075 | struct address_space *mapping; | |
1076 | struct rmap_walk_control rwc = { | |
1077 | .arg = (void *)&cleaned, | |
1078 | .rmap_one = page_mkclean_one, | |
1079 | .invalid_vma = invalid_mkclean_vma, | |
1080 | }; | |
d08b3851 PZ |
1081 | |
1082 | BUG_ON(!PageLocked(page)); | |
1083 | ||
9853a407 JK |
1084 | if (!page_mapped(page)) |
1085 | return 0; | |
1086 | ||
1087 | mapping = page_mapping(page); | |
1088 | if (!mapping) | |
1089 | return 0; | |
1090 | ||
1091 | rmap_walk(page, &rwc); | |
d08b3851 | 1092 | |
9853a407 | 1093 | return cleaned; |
d08b3851 | 1094 | } |
60b59bea | 1095 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 1096 | |
c44b6743 RR |
1097 | /** |
1098 | * page_move_anon_rmap - move a page to our anon_vma | |
1099 | * @page: the page to move to our anon_vma | |
1100 | * @vma: the vma the page belongs to | |
1101 | * @address: the user virtual address mapped | |
1102 | * | |
1103 | * When a page belongs exclusively to one process after a COW event, | |
1104 | * that page can be moved into the anon_vma that belongs to just that | |
1105 | * process, so the rmap code will not search the parent or sibling | |
1106 | * processes. | |
1107 | */ | |
1108 | void page_move_anon_rmap(struct page *page, | |
1109 | struct vm_area_struct *vma, unsigned long address) | |
1110 | { | |
1111 | struct anon_vma *anon_vma = vma->anon_vma; | |
1112 | ||
309381fe | 1113 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1114 | VM_BUG_ON_VMA(!anon_vma, vma); |
309381fe | 1115 | VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); |
c44b6743 RR |
1116 | |
1117 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1118 | /* |
1119 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
1120 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
1121 | * PageAnon()) will not see one without the other. | |
1122 | */ | |
1123 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1124 | } |
1125 | ||
9617d95e | 1126 | /** |
4e1c1975 AK |
1127 | * __page_set_anon_rmap - set up new anonymous rmap |
1128 | * @page: Page to add to rmap | |
1129 | * @vma: VM area to add page to. | |
1130 | * @address: User virtual address of the mapping | |
e8a03feb | 1131 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1132 | */ |
1133 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1134 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1135 | { |
e8a03feb | 1136 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1137 | |
e8a03feb | 1138 | BUG_ON(!anon_vma); |
ea90002b | 1139 | |
4e1c1975 AK |
1140 | if (PageAnon(page)) |
1141 | return; | |
1142 | ||
ea90002b | 1143 | /* |
e8a03feb RR |
1144 | * If the page isn't exclusively mapped into this vma, |
1145 | * we must use the _oldest_ possible anon_vma for the | |
1146 | * page mapping! | |
ea90002b | 1147 | */ |
4e1c1975 | 1148 | if (!exclusive) |
288468c3 | 1149 | anon_vma = anon_vma->root; |
9617d95e | 1150 | |
9617d95e NP |
1151 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1152 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1153 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1154 | } |
1155 | ||
c97a9e10 | 1156 | /** |
43d8eac4 | 1157 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1158 | * @page: the page to add the mapping to |
1159 | * @vma: the vm area in which the mapping is added | |
1160 | * @address: the user virtual address mapped | |
1161 | */ | |
1162 | static void __page_check_anon_rmap(struct page *page, | |
1163 | struct vm_area_struct *vma, unsigned long address) | |
1164 | { | |
1165 | #ifdef CONFIG_DEBUG_VM | |
1166 | /* | |
1167 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1168 | * be set up correctly at this point. | |
1169 | * | |
1170 | * We have exclusion against page_add_anon_rmap because the caller | |
1171 | * always holds the page locked, except if called from page_dup_rmap, | |
1172 | * in which case the page is already known to be setup. | |
1173 | * | |
1174 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1175 | * are initially only visible via the pagetables, and the pte is locked | |
1176 | * over the call to page_add_new_anon_rmap. | |
1177 | */ | |
44ab57a0 | 1178 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
53f9263b | 1179 | BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address)); |
c97a9e10 NP |
1180 | #endif |
1181 | } | |
1182 | ||
1da177e4 LT |
1183 | /** |
1184 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1185 | * @page: the page to add the mapping to | |
1186 | * @vma: the vm area in which the mapping is added | |
1187 | * @address: the user virtual address mapped | |
d281ee61 | 1188 | * @compound: charge the page as compound or small page |
1da177e4 | 1189 | * |
5ad64688 | 1190 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1191 | * the anon_vma case: to serialize mapping,index checking after setting, |
1192 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1193 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1194 | */ |
1195 | void page_add_anon_rmap(struct page *page, | |
d281ee61 | 1196 | struct vm_area_struct *vma, unsigned long address, bool compound) |
ad8c2ee8 | 1197 | { |
d281ee61 | 1198 | do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0); |
ad8c2ee8 RR |
1199 | } |
1200 | ||
1201 | /* | |
1202 | * Special version of the above for do_swap_page, which often runs | |
1203 | * into pages that are exclusively owned by the current process. | |
1204 | * Everybody else should continue to use page_add_anon_rmap above. | |
1205 | */ | |
1206 | void do_page_add_anon_rmap(struct page *page, | |
d281ee61 | 1207 | struct vm_area_struct *vma, unsigned long address, int flags) |
1da177e4 | 1208 | { |
53f9263b KS |
1209 | bool compound = flags & RMAP_COMPOUND; |
1210 | bool first; | |
1211 | ||
e9b61f19 KS |
1212 | if (compound) { |
1213 | atomic_t *mapcount; | |
53f9263b | 1214 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
e9b61f19 KS |
1215 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); |
1216 | mapcount = compound_mapcount_ptr(page); | |
1217 | first = atomic_inc_and_test(mapcount); | |
53f9263b KS |
1218 | } else { |
1219 | first = atomic_inc_and_test(&page->_mapcount); | |
1220 | } | |
1221 | ||
79134171 | 1222 | if (first) { |
d281ee61 | 1223 | int nr = compound ? hpage_nr_pages(page) : 1; |
bea04b07 JZ |
1224 | /* |
1225 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1226 | * these counters are not modified in interrupt context, and | |
1227 | * pte lock(a spinlock) is held, which implies preemption | |
1228 | * disabled. | |
1229 | */ | |
d281ee61 | 1230 | if (compound) { |
79134171 AA |
1231 | __inc_zone_page_state(page, |
1232 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
d281ee61 KS |
1233 | } |
1234 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr); | |
79134171 | 1235 | } |
5ad64688 HD |
1236 | if (unlikely(PageKsm(page))) |
1237 | return; | |
1238 | ||
309381fe | 1239 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
53f9263b | 1240 | |
5dbe0af4 | 1241 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1242 | if (first) |
d281ee61 KS |
1243 | __page_set_anon_rmap(page, vma, address, |
1244 | flags & RMAP_EXCLUSIVE); | |
69029cd5 | 1245 | else |
c97a9e10 | 1246 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1247 | } |
1248 | ||
43d8eac4 | 1249 | /** |
9617d95e NP |
1250 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1251 | * @page: the page to add the mapping to | |
1252 | * @vma: the vm area in which the mapping is added | |
1253 | * @address: the user virtual address mapped | |
d281ee61 | 1254 | * @compound: charge the page as compound or small page |
9617d95e NP |
1255 | * |
1256 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1257 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1258 | * Page does not have to be locked. |
9617d95e NP |
1259 | */ |
1260 | void page_add_new_anon_rmap(struct page *page, | |
d281ee61 | 1261 | struct vm_area_struct *vma, unsigned long address, bool compound) |
9617d95e | 1262 | { |
d281ee61 KS |
1263 | int nr = compound ? hpage_nr_pages(page) : 1; |
1264 | ||
81d1b09c | 1265 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
cbf84b7a | 1266 | SetPageSwapBacked(page); |
d281ee61 KS |
1267 | if (compound) { |
1268 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
53f9263b KS |
1269 | /* increment count (starts at -1) */ |
1270 | atomic_set(compound_mapcount_ptr(page), 0); | |
79134171 | 1271 | __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); |
53f9263b KS |
1272 | } else { |
1273 | /* Anon THP always mapped first with PMD */ | |
1274 | VM_BUG_ON_PAGE(PageTransCompound(page), page); | |
1275 | /* increment count (starts at -1) */ | |
1276 | atomic_set(&page->_mapcount, 0); | |
d281ee61 KS |
1277 | } |
1278 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, nr); | |
e8a03feb | 1279 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1280 | } |
1281 | ||
1da177e4 LT |
1282 | /** |
1283 | * page_add_file_rmap - add pte mapping to a file page | |
1284 | * @page: the page to add the mapping to | |
1285 | * | |
b8072f09 | 1286 | * The caller needs to hold the pte lock. |
1da177e4 LT |
1287 | */ |
1288 | void page_add_file_rmap(struct page *page) | |
1289 | { | |
d7365e78 | 1290 | struct mem_cgroup *memcg; |
89c06bd5 | 1291 | |
6de22619 | 1292 | memcg = mem_cgroup_begin_page_stat(page); |
d69b042f | 1293 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 1294 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
d7365e78 | 1295 | mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); |
d69b042f | 1296 | } |
6de22619 | 1297 | mem_cgroup_end_page_stat(memcg); |
1da177e4 LT |
1298 | } |
1299 | ||
8186eb6a JW |
1300 | static void page_remove_file_rmap(struct page *page) |
1301 | { | |
1302 | struct mem_cgroup *memcg; | |
8186eb6a | 1303 | |
6de22619 | 1304 | memcg = mem_cgroup_begin_page_stat(page); |
8186eb6a | 1305 | |
53f9263b KS |
1306 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ |
1307 | if (unlikely(PageHuge(page))) { | |
1308 | /* hugetlb pages are always mapped with pmds */ | |
1309 | atomic_dec(compound_mapcount_ptr(page)); | |
8186eb6a | 1310 | goto out; |
53f9263b | 1311 | } |
8186eb6a | 1312 | |
53f9263b KS |
1313 | /* page still mapped by someone else? */ |
1314 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1315 | goto out; |
1316 | ||
1317 | /* | |
1318 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1319 | * these counters are not modified in interrupt context, and | |
1320 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1321 | */ | |
1322 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
1323 | mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); | |
1324 | ||
1325 | if (unlikely(PageMlocked(page))) | |
1326 | clear_page_mlock(page); | |
1327 | out: | |
6de22619 | 1328 | mem_cgroup_end_page_stat(memcg); |
8186eb6a JW |
1329 | } |
1330 | ||
53f9263b KS |
1331 | static void page_remove_anon_compound_rmap(struct page *page) |
1332 | { | |
1333 | int i, nr; | |
1334 | ||
1335 | if (!atomic_add_negative(-1, compound_mapcount_ptr(page))) | |
1336 | return; | |
1337 | ||
1338 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1339 | if (unlikely(PageHuge(page))) | |
1340 | return; | |
1341 | ||
1342 | if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) | |
1343 | return; | |
1344 | ||
1345 | __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); | |
1346 | ||
1347 | if (TestClearPageDoubleMap(page)) { | |
1348 | /* | |
1349 | * Subpages can be mapped with PTEs too. Check how many of | |
1350 | * themi are still mapped. | |
1351 | */ | |
1352 | for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) { | |
1353 | if (atomic_add_negative(-1, &page[i]._mapcount)) | |
1354 | nr++; | |
1355 | } | |
1356 | } else { | |
1357 | nr = HPAGE_PMD_NR; | |
1358 | } | |
1359 | ||
e90309c9 KS |
1360 | if (unlikely(PageMlocked(page))) |
1361 | clear_page_mlock(page); | |
1362 | ||
9a982250 | 1363 | if (nr) { |
53f9263b | 1364 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, -nr); |
9a982250 KS |
1365 | deferred_split_huge_page(page); |
1366 | } | |
53f9263b KS |
1367 | } |
1368 | ||
1da177e4 LT |
1369 | /** |
1370 | * page_remove_rmap - take down pte mapping from a page | |
d281ee61 KS |
1371 | * @page: page to remove mapping from |
1372 | * @compound: uncharge the page as compound or small page | |
1da177e4 | 1373 | * |
b8072f09 | 1374 | * The caller needs to hold the pte lock. |
1da177e4 | 1375 | */ |
d281ee61 | 1376 | void page_remove_rmap(struct page *page, bool compound) |
1da177e4 | 1377 | { |
8186eb6a | 1378 | if (!PageAnon(page)) { |
d281ee61 | 1379 | VM_BUG_ON_PAGE(compound && !PageHuge(page), page); |
8186eb6a JW |
1380 | page_remove_file_rmap(page); |
1381 | return; | |
1382 | } | |
89c06bd5 | 1383 | |
53f9263b KS |
1384 | if (compound) |
1385 | return page_remove_anon_compound_rmap(page); | |
1386 | ||
b904dcfe KM |
1387 | /* page still mapped by someone else? */ |
1388 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1389 | return; |
1390 | ||
0fe6e20b | 1391 | /* |
bea04b07 JZ |
1392 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1393 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1394 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1395 | */ |
53f9263b | 1396 | __dec_zone_page_state(page, NR_ANON_PAGES); |
8186eb6a | 1397 | |
e6c509f8 HD |
1398 | if (unlikely(PageMlocked(page))) |
1399 | clear_page_mlock(page); | |
8186eb6a | 1400 | |
9a982250 KS |
1401 | if (PageTransCompound(page)) |
1402 | deferred_split_huge_page(compound_head(page)); | |
1403 | ||
b904dcfe KM |
1404 | /* |
1405 | * It would be tidy to reset the PageAnon mapping here, | |
1406 | * but that might overwrite a racing page_add_anon_rmap | |
1407 | * which increments mapcount after us but sets mapping | |
1408 | * before us: so leave the reset to free_hot_cold_page, | |
1409 | * and remember that it's only reliable while mapped. | |
1410 | * Leaving it set also helps swapoff to reinstate ptes | |
1411 | * faster for those pages still in swapcache. | |
1412 | */ | |
1da177e4 LT |
1413 | } |
1414 | ||
854e9ed0 MK |
1415 | struct rmap_private { |
1416 | enum ttu_flags flags; | |
1417 | int lazyfreed; | |
1418 | }; | |
1419 | ||
1da177e4 | 1420 | /* |
52629506 | 1421 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1422 | */ |
ac769501 | 1423 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1424 | unsigned long address, void *arg) |
1da177e4 LT |
1425 | { |
1426 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
1427 | pte_t *pte; |
1428 | pte_t pteval; | |
c0718806 | 1429 | spinlock_t *ptl; |
1da177e4 | 1430 | int ret = SWAP_AGAIN; |
854e9ed0 MK |
1431 | struct rmap_private *rp = arg; |
1432 | enum ttu_flags flags = rp->flags; | |
1da177e4 | 1433 | |
b87537d9 HD |
1434 | /* munlock has nothing to gain from examining un-locked vmas */ |
1435 | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | |
1436 | goto out; | |
1437 | ||
479db0bf | 1438 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 1439 | if (!pte) |
81b4082d | 1440 | goto out; |
1da177e4 LT |
1441 | |
1442 | /* | |
1443 | * If the page is mlock()d, we cannot swap it out. | |
1444 | * If it's recently referenced (perhaps page_referenced | |
1445 | * skipped over this mm) then we should reactivate it. | |
1446 | */ | |
14fa31b8 | 1447 | if (!(flags & TTU_IGNORE_MLOCK)) { |
b87537d9 HD |
1448 | if (vma->vm_flags & VM_LOCKED) { |
1449 | /* Holding pte lock, we do *not* need mmap_sem here */ | |
1450 | mlock_vma_page(page); | |
1451 | ret = SWAP_MLOCK; | |
1452 | goto out_unmap; | |
1453 | } | |
daa5ba76 | 1454 | if (flags & TTU_MUNLOCK) |
53f79acb | 1455 | goto out_unmap; |
14fa31b8 AK |
1456 | } |
1457 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
1458 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1459 | ret = SWAP_FAIL; | |
1460 | goto out_unmap; | |
1461 | } | |
1462 | } | |
1da177e4 | 1463 | |
1da177e4 LT |
1464 | /* Nuke the page table entry. */ |
1465 | flush_cache_page(vma, address, page_to_pfn(page)); | |
72b252ae MG |
1466 | if (should_defer_flush(mm, flags)) { |
1467 | /* | |
1468 | * We clear the PTE but do not flush so potentially a remote | |
1469 | * CPU could still be writing to the page. If the entry was | |
1470 | * previously clean then the architecture must guarantee that | |
1471 | * a clear->dirty transition on a cached TLB entry is written | |
1472 | * through and traps if the PTE is unmapped. | |
1473 | */ | |
1474 | pteval = ptep_get_and_clear(mm, address, pte); | |
1475 | ||
d950c947 | 1476 | set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval)); |
72b252ae MG |
1477 | } else { |
1478 | pteval = ptep_clear_flush(vma, address, pte); | |
1479 | } | |
1da177e4 LT |
1480 | |
1481 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1482 | if (pte_dirty(pteval)) | |
1483 | set_page_dirty(page); | |
1484 | ||
365e9c87 HD |
1485 | /* Update high watermark before we lower rss */ |
1486 | update_hiwater_rss(mm); | |
1487 | ||
888b9f7c | 1488 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5d317b2b NH |
1489 | if (PageHuge(page)) { |
1490 | hugetlb_count_sub(1 << compound_order(page), mm); | |
1491 | } else { | |
eca56ff9 | 1492 | dec_mm_counter(mm, mm_counter(page)); |
5f24ae58 | 1493 | } |
888b9f7c | 1494 | set_pte_at(mm, address, pte, |
5f24ae58 | 1495 | swp_entry_to_pte(make_hwpoison_entry(page))); |
45961722 KW |
1496 | } else if (pte_unused(pteval)) { |
1497 | /* | |
1498 | * The guest indicated that the page content is of no | |
1499 | * interest anymore. Simply discard the pte, vmscan | |
1500 | * will take care of the rest. | |
1501 | */ | |
eca56ff9 | 1502 | dec_mm_counter(mm, mm_counter(page)); |
470f119f HD |
1503 | } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) { |
1504 | swp_entry_t entry; | |
1505 | pte_t swp_pte; | |
1506 | /* | |
1507 | * Store the pfn of the page in a special migration | |
1508 | * pte. do_swap_page() will wait until the migration | |
1509 | * pte is removed and then restart fault handling. | |
1510 | */ | |
1511 | entry = make_migration_entry(page, pte_write(pteval)); | |
1512 | swp_pte = swp_entry_to_pte(entry); | |
1513 | if (pte_soft_dirty(pteval)) | |
1514 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1515 | set_pte_at(mm, address, pte, swp_pte); | |
888b9f7c | 1516 | } else if (PageAnon(page)) { |
4c21e2f2 | 1517 | swp_entry_t entry = { .val = page_private(page) }; |
179ef71c | 1518 | pte_t swp_pte; |
470f119f HD |
1519 | /* |
1520 | * Store the swap location in the pte. | |
1521 | * See handle_pte_fault() ... | |
1522 | */ | |
1523 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | |
854e9ed0 MK |
1524 | |
1525 | if (!PageDirty(page) && (flags & TTU_LZFREE)) { | |
1526 | /* It's a freeable page by MADV_FREE */ | |
1527 | dec_mm_counter(mm, MM_ANONPAGES); | |
1528 | rp->lazyfreed++; | |
1529 | goto discard; | |
1530 | } | |
1531 | ||
470f119f HD |
1532 | if (swap_duplicate(entry) < 0) { |
1533 | set_pte_at(mm, address, pte, pteval); | |
1534 | ret = SWAP_FAIL; | |
1535 | goto out_unmap; | |
1536 | } | |
1537 | if (list_empty(&mm->mmlist)) { | |
1538 | spin_lock(&mmlist_lock); | |
1539 | if (list_empty(&mm->mmlist)) | |
1540 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1541 | spin_unlock(&mmlist_lock); | |
1da177e4 | 1542 | } |
470f119f HD |
1543 | dec_mm_counter(mm, MM_ANONPAGES); |
1544 | inc_mm_counter(mm, MM_SWAPENTS); | |
179ef71c CG |
1545 | swp_pte = swp_entry_to_pte(entry); |
1546 | if (pte_soft_dirty(pteval)) | |
1547 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1548 | set_pte_at(mm, address, pte, swp_pte); | |
04e62a29 | 1549 | } else |
eca56ff9 | 1550 | dec_mm_counter(mm, mm_counter_file(page)); |
1da177e4 | 1551 | |
854e9ed0 | 1552 | discard: |
d281ee61 | 1553 | page_remove_rmap(page, PageHuge(page)); |
1da177e4 LT |
1554 | page_cache_release(page); |
1555 | ||
1556 | out_unmap: | |
c0718806 | 1557 | pte_unmap_unlock(pte, ptl); |
b87537d9 | 1558 | if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK)) |
2ec74c3e | 1559 | mmu_notifier_invalidate_page(mm, address); |
caed0f48 KM |
1560 | out: |
1561 | return ret; | |
1da177e4 LT |
1562 | } |
1563 | ||
71e3aac0 | 1564 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1565 | { |
1566 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1567 | ||
1568 | if (!maybe_stack) | |
1569 | return false; | |
1570 | ||
1571 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1572 | VM_STACK_INCOMPLETE_SETUP) | |
1573 | return true; | |
1574 | ||
1575 | return false; | |
1576 | } | |
1577 | ||
52629506 JK |
1578 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1579 | { | |
1580 | return is_vma_temporary_stack(vma); | |
1581 | } | |
1582 | ||
52629506 JK |
1583 | static int page_not_mapped(struct page *page) |
1584 | { | |
1585 | return !page_mapped(page); | |
1586 | }; | |
1587 | ||
1da177e4 LT |
1588 | /** |
1589 | * try_to_unmap - try to remove all page table mappings to a page | |
1590 | * @page: the page to get unmapped | |
14fa31b8 | 1591 | * @flags: action and flags |
1da177e4 LT |
1592 | * |
1593 | * Tries to remove all the page table entries which are mapping this | |
1594 | * page, used in the pageout path. Caller must hold the page lock. | |
1595 | * Return values are: | |
1596 | * | |
1597 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1598 | * SWAP_AGAIN - we missed a mapping, try again later | |
1599 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1600 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1601 | */ |
14fa31b8 | 1602 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1603 | { |
1604 | int ret; | |
854e9ed0 MK |
1605 | struct rmap_private rp = { |
1606 | .flags = flags, | |
1607 | .lazyfreed = 0, | |
1608 | }; | |
1609 | ||
52629506 JK |
1610 | struct rmap_walk_control rwc = { |
1611 | .rmap_one = try_to_unmap_one, | |
854e9ed0 | 1612 | .arg = &rp, |
52629506 | 1613 | .done = page_not_mapped, |
52629506 JK |
1614 | .anon_lock = page_lock_anon_vma_read, |
1615 | }; | |
1da177e4 | 1616 | |
309381fe | 1617 | VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); |
1da177e4 | 1618 | |
52629506 JK |
1619 | /* |
1620 | * During exec, a temporary VMA is setup and later moved. | |
1621 | * The VMA is moved under the anon_vma lock but not the | |
1622 | * page tables leading to a race where migration cannot | |
1623 | * find the migration ptes. Rather than increasing the | |
1624 | * locking requirements of exec(), migration skips | |
1625 | * temporary VMAs until after exec() completes. | |
1626 | */ | |
daa5ba76 | 1627 | if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) |
52629506 JK |
1628 | rwc.invalid_vma = invalid_migration_vma; |
1629 | ||
1630 | ret = rmap_walk(page, &rwc); | |
1631 | ||
854e9ed0 | 1632 | if (ret != SWAP_MLOCK && !page_mapped(page)) { |
1da177e4 | 1633 | ret = SWAP_SUCCESS; |
854e9ed0 MK |
1634 | if (rp.lazyfreed && !PageDirty(page)) |
1635 | ret = SWAP_LZFREE; | |
1636 | } | |
1da177e4 LT |
1637 | return ret; |
1638 | } | |
81b4082d | 1639 | |
b291f000 NP |
1640 | /** |
1641 | * try_to_munlock - try to munlock a page | |
1642 | * @page: the page to be munlocked | |
1643 | * | |
1644 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1645 | * to make sure nobody else has this page mlocked. The page will be | |
1646 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1647 | * | |
1648 | * Return values are: | |
1649 | * | |
53f79acb | 1650 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1651 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1652 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1653 | * SWAP_MLOCK - page is now mlocked. |
1654 | */ | |
1655 | int try_to_munlock(struct page *page) | |
1656 | { | |
e8351ac9 | 1657 | int ret; |
854e9ed0 MK |
1658 | struct rmap_private rp = { |
1659 | .flags = TTU_MUNLOCK, | |
1660 | .lazyfreed = 0, | |
1661 | }; | |
1662 | ||
e8351ac9 JK |
1663 | struct rmap_walk_control rwc = { |
1664 | .rmap_one = try_to_unmap_one, | |
854e9ed0 | 1665 | .arg = &rp, |
e8351ac9 | 1666 | .done = page_not_mapped, |
e8351ac9 JK |
1667 | .anon_lock = page_lock_anon_vma_read, |
1668 | ||
1669 | }; | |
1670 | ||
309381fe | 1671 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
b291f000 | 1672 | |
e8351ac9 JK |
1673 | ret = rmap_walk(page, &rwc); |
1674 | return ret; | |
b291f000 | 1675 | } |
e9995ef9 | 1676 | |
01d8b20d | 1677 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1678 | { |
01d8b20d | 1679 | struct anon_vma *root = anon_vma->root; |
76545066 | 1680 | |
624483f3 | 1681 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1682 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1683 | anon_vma_free(root); | |
76545066 | 1684 | } |
76545066 | 1685 | |
0dd1c7bb JK |
1686 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1687 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1688 | { |
1689 | struct anon_vma *anon_vma; | |
1690 | ||
0dd1c7bb JK |
1691 | if (rwc->anon_lock) |
1692 | return rwc->anon_lock(page); | |
1693 | ||
faecd8dd JK |
1694 | /* |
1695 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1696 | * because that depends on page_mapped(); but not all its usages | |
1697 | * are holding mmap_sem. Users without mmap_sem are required to | |
1698 | * take a reference count to prevent the anon_vma disappearing | |
1699 | */ | |
1700 | anon_vma = page_anon_vma(page); | |
1701 | if (!anon_vma) | |
1702 | return NULL; | |
1703 | ||
1704 | anon_vma_lock_read(anon_vma); | |
1705 | return anon_vma; | |
1706 | } | |
1707 | ||
e9995ef9 | 1708 | /* |
e8351ac9 JK |
1709 | * rmap_walk_anon - do something to anonymous page using the object-based |
1710 | * rmap method | |
1711 | * @page: the page to be handled | |
1712 | * @rwc: control variable according to each walk type | |
1713 | * | |
1714 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1715 | * contained in the anon_vma struct it points to. | |
1716 | * | |
1717 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1718 | * where the page was found will be held for write. So, we won't recheck | |
1719 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1720 | * LOCKED. | |
e9995ef9 | 1721 | */ |
051ac83a | 1722 | static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1723 | { |
1724 | struct anon_vma *anon_vma; | |
b258d860 | 1725 | pgoff_t pgoff; |
5beb4930 | 1726 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1727 | int ret = SWAP_AGAIN; |
1728 | ||
0dd1c7bb | 1729 | anon_vma = rmap_walk_anon_lock(page, rwc); |
e9995ef9 HD |
1730 | if (!anon_vma) |
1731 | return ret; | |
faecd8dd | 1732 | |
b258d860 | 1733 | pgoff = page_to_pgoff(page); |
bf181b9f | 1734 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
5beb4930 | 1735 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1736 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1737 | |
ad12695f AA |
1738 | cond_resched(); |
1739 | ||
0dd1c7bb JK |
1740 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1741 | continue; | |
1742 | ||
051ac83a | 1743 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 HD |
1744 | if (ret != SWAP_AGAIN) |
1745 | break; | |
0dd1c7bb JK |
1746 | if (rwc->done && rwc->done(page)) |
1747 | break; | |
e9995ef9 | 1748 | } |
4fc3f1d6 | 1749 | anon_vma_unlock_read(anon_vma); |
e9995ef9 HD |
1750 | return ret; |
1751 | } | |
1752 | ||
e8351ac9 JK |
1753 | /* |
1754 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1755 | * @page: the page to be handled | |
1756 | * @rwc: control variable according to each walk type | |
1757 | * | |
1758 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1759 | * contained in the address_space struct it points to. | |
1760 | * | |
1761 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1762 | * where the page was found will be held for write. So, we won't recheck | |
1763 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1764 | * LOCKED. | |
1765 | */ | |
051ac83a | 1766 | static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1767 | { |
1768 | struct address_space *mapping = page->mapping; | |
b258d860 | 1769 | pgoff_t pgoff; |
e9995ef9 | 1770 | struct vm_area_struct *vma; |
e9995ef9 HD |
1771 | int ret = SWAP_AGAIN; |
1772 | ||
9f32624b JK |
1773 | /* |
1774 | * The page lock not only makes sure that page->mapping cannot | |
1775 | * suddenly be NULLified by truncation, it makes sure that the | |
1776 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1777 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1778 | */ |
81d1b09c | 1779 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1780 | |
e9995ef9 HD |
1781 | if (!mapping) |
1782 | return ret; | |
3dec0ba0 | 1783 | |
b258d860 | 1784 | pgoff = page_to_pgoff(page); |
3dec0ba0 | 1785 | i_mmap_lock_read(mapping); |
6b2dbba8 | 1786 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
e9995ef9 | 1787 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1788 | |
ad12695f AA |
1789 | cond_resched(); |
1790 | ||
0dd1c7bb JK |
1791 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1792 | continue; | |
1793 | ||
051ac83a | 1794 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 | 1795 | if (ret != SWAP_AGAIN) |
0dd1c7bb JK |
1796 | goto done; |
1797 | if (rwc->done && rwc->done(page)) | |
1798 | goto done; | |
e9995ef9 | 1799 | } |
0dd1c7bb | 1800 | |
0dd1c7bb | 1801 | done: |
3dec0ba0 | 1802 | i_mmap_unlock_read(mapping); |
e9995ef9 HD |
1803 | return ret; |
1804 | } | |
1805 | ||
051ac83a | 1806 | int rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1807 | { |
e9995ef9 | 1808 | if (unlikely(PageKsm(page))) |
051ac83a | 1809 | return rmap_walk_ksm(page, rwc); |
e9995ef9 | 1810 | else if (PageAnon(page)) |
051ac83a | 1811 | return rmap_walk_anon(page, rwc); |
e9995ef9 | 1812 | else |
051ac83a | 1813 | return rmap_walk_file(page, rwc); |
e9995ef9 | 1814 | } |
0fe6e20b | 1815 | |
e3390f67 | 1816 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1817 | /* |
1818 | * The following three functions are for anonymous (private mapped) hugepages. | |
1819 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1820 | * and no lru code, because we handle hugepages differently from common pages. | |
1821 | */ | |
1822 | static void __hugepage_set_anon_rmap(struct page *page, | |
1823 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1824 | { | |
1825 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1826 | |
0fe6e20b | 1827 | BUG_ON(!anon_vma); |
433abed6 NH |
1828 | |
1829 | if (PageAnon(page)) | |
1830 | return; | |
1831 | if (!exclusive) | |
1832 | anon_vma = anon_vma->root; | |
1833 | ||
0fe6e20b NH |
1834 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1835 | page->mapping = (struct address_space *) anon_vma; | |
1836 | page->index = linear_page_index(vma, address); | |
1837 | } | |
1838 | ||
1839 | void hugepage_add_anon_rmap(struct page *page, | |
1840 | struct vm_area_struct *vma, unsigned long address) | |
1841 | { | |
1842 | struct anon_vma *anon_vma = vma->anon_vma; | |
1843 | int first; | |
a850ea30 NH |
1844 | |
1845 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1846 | BUG_ON(!anon_vma); |
5dbe0af4 | 1847 | /* address might be in next vma when migration races vma_adjust */ |
53f9263b | 1848 | first = atomic_inc_and_test(compound_mapcount_ptr(page)); |
0fe6e20b NH |
1849 | if (first) |
1850 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1851 | } | |
1852 | ||
1853 | void hugepage_add_new_anon_rmap(struct page *page, | |
1854 | struct vm_area_struct *vma, unsigned long address) | |
1855 | { | |
1856 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
53f9263b | 1857 | atomic_set(compound_mapcount_ptr(page), 0); |
0fe6e20b NH |
1858 | __hugepage_set_anon_rmap(page, vma, address, 1); |
1859 | } | |
e3390f67 | 1860 | #endif /* CONFIG_HUGETLB_PAGE */ |