]> Git Repo - linux.git/blame - mm/gup.c
mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
[linux.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
47e29d32
JH
31static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
a707cdd5
JH
47/*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51static inline struct page *try_get_compound_head(struct page *page, int refs)
52{
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60}
61
3faa52c0
JH
62/*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
84{
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
1970dc6f
JH
88 int orig_refs = refs;
89
df3a0a21
PL
90 /*
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
93 */
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
97
47e29d32
JH
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
1970dc6f
JH
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
47e29d32 119 return page;
3faa52c0
JH
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124}
125
126/**
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128 *
129 * This might not do anything at all, depending on the flags argument.
130 *
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133 *
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
136 *
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138 * time. Cases:
139 *
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142 *
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
146 */
147bool __must_check try_grab_page(struct page *page, unsigned int flags)
148{
149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150
151 if (flags & FOLL_GET)
152 return try_get_page(page);
153 else if (flags & FOLL_PIN) {
47e29d32
JH
154 int refs = 1;
155
3faa52c0
JH
156 page = compound_head(page);
157
158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 return false;
160
47e29d32
JH
161 if (hpage_pincount_available(page))
162 hpage_pincount_add(page, 1);
163 else
164 refs = GUP_PIN_COUNTING_BIAS;
165
166 /*
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
171 */
172 page_ref_add(page, refs);
1970dc6f
JH
173
174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
175 }
176
177 return true;
178}
179
180#ifdef CONFIG_DEV_PAGEMAP_OPS
181static bool __unpin_devmap_managed_user_page(struct page *page)
182{
47e29d32 183 int count, refs = 1;
3faa52c0
JH
184
185 if (!page_is_devmap_managed(page))
186 return false;
187
47e29d32
JH
188 if (hpage_pincount_available(page))
189 hpage_pincount_sub(page, 1);
190 else
191 refs = GUP_PIN_COUNTING_BIAS;
192
193 count = page_ref_sub_return(page, refs);
3faa52c0 194
1970dc6f 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
196 /*
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
200 */
201 if (count == 1)
202 free_devmap_managed_page(page);
203 else if (!count)
204 __put_page(page);
205
206 return true;
207}
208#else
209static bool __unpin_devmap_managed_user_page(struct page *page)
210{
211 return false;
212}
213#endif /* CONFIG_DEV_PAGEMAP_OPS */
214
215/**
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
218 *
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
223 */
224void unpin_user_page(struct page *page)
225{
47e29d32
JH
226 int refs = 1;
227
3faa52c0
JH
228 page = compound_head(page);
229
230 /*
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
235 */
236 if (__unpin_devmap_managed_user_page(page))
237 return;
238
47e29d32
JH
239 if (hpage_pincount_available(page))
240 hpage_pincount_sub(page, 1);
241 else
242 refs = GUP_PIN_COUNTING_BIAS;
243
244 if (page_ref_sub_and_test(page, refs))
3faa52c0 245 __put_page(page);
1970dc6f
JH
246
247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
248}
249EXPORT_SYMBOL(unpin_user_page);
250
fc1d8e7c 251/**
f1f6a7dd 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 253 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 254 * @npages: number of pages in the @pages array.
2d15eb31 255 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
256 *
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
259 *
260 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 264 *
f1f6a7dd 265 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 266 *
2d15eb31
AM
267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 270 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
271 *
272 */
f1f6a7dd
JH
273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 bool make_dirty)
fc1d8e7c 275{
2d15eb31 276 unsigned long index;
fc1d8e7c 277
2d15eb31
AM
278 /*
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
282 */
283
284 if (!make_dirty) {
f1f6a7dd 285 unpin_user_pages(pages, npages);
2d15eb31
AM
286 return;
287 }
288
289 for (index = 0; index < npages; index++) {
290 struct page *page = compound_head(pages[index]);
291 /*
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
295 *
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
305 *
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
310 */
311 if (!PageDirty(page))
312 set_page_dirty_lock(page);
f1f6a7dd 313 unpin_user_page(page);
2d15eb31 314 }
fc1d8e7c 315}
f1f6a7dd 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
317
318/**
f1f6a7dd 319 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
322 *
f1f6a7dd 323 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 324 *
f1f6a7dd 325 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 326 */
f1f6a7dd 327void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
328{
329 unsigned long index;
330
331 /*
332 * TODO: this can be optimized for huge pages: if a series of pages is
333 * physically contiguous and part of the same compound page, then a
334 * single operation to the head page should suffice.
335 */
336 for (index = 0; index < npages; index++)
f1f6a7dd 337 unpin_user_page(pages[index]);
fc1d8e7c 338}
f1f6a7dd 339EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 340
050a9adc 341#ifdef CONFIG_MMU
69e68b4f
KS
342static struct page *no_page_table(struct vm_area_struct *vma,
343 unsigned int flags)
4bbd4c77 344{
69e68b4f
KS
345 /*
346 * When core dumping an enormous anonymous area that nobody
347 * has touched so far, we don't want to allocate unnecessary pages or
348 * page tables. Return error instead of NULL to skip handle_mm_fault,
349 * then get_dump_page() will return NULL to leave a hole in the dump.
350 * But we can only make this optimization where a hole would surely
351 * be zero-filled if handle_mm_fault() actually did handle it.
352 */
a0137f16
AK
353 if ((flags & FOLL_DUMP) &&
354 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
355 return ERR_PTR(-EFAULT);
356 return NULL;
357}
4bbd4c77 358
1027e443
KS
359static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 pte_t *pte, unsigned int flags)
361{
362 /* No page to get reference */
363 if (flags & FOLL_GET)
364 return -EFAULT;
365
366 if (flags & FOLL_TOUCH) {
367 pte_t entry = *pte;
368
369 if (flags & FOLL_WRITE)
370 entry = pte_mkdirty(entry);
371 entry = pte_mkyoung(entry);
372
373 if (!pte_same(*pte, entry)) {
374 set_pte_at(vma->vm_mm, address, pte, entry);
375 update_mmu_cache(vma, address, pte);
376 }
377 }
378
379 /* Proper page table entry exists, but no corresponding struct page */
380 return -EEXIST;
381}
382
19be0eaf 383/*
17839856
LT
384 * FOLL_FORCE or a forced COW break can write even to unwritable pte's,
385 * but only after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
386 */
387static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388{
17839856
LT
389 return pte_write(pte) || ((flags & FOLL_COW) && pte_dirty(pte));
390}
391
392/*
393 * A (separate) COW fault might break the page the other way and
394 * get_user_pages() would return the page from what is now the wrong
395 * VM. So we need to force a COW break at GUP time even for reads.
396 */
397static inline bool should_force_cow_break(struct vm_area_struct *vma, unsigned int flags)
398{
399 return is_cow_mapping(vma->vm_flags) && (flags & (FOLL_GET | FOLL_PIN));
19be0eaf
LT
400}
401
69e68b4f 402static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
403 unsigned long address, pmd_t *pmd, unsigned int flags,
404 struct dev_pagemap **pgmap)
69e68b4f
KS
405{
406 struct mm_struct *mm = vma->vm_mm;
407 struct page *page;
408 spinlock_t *ptl;
409 pte_t *ptep, pte;
f28d4363 410 int ret;
4bbd4c77 411
eddb1c22
JH
412 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
413 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
414 (FOLL_PIN | FOLL_GET)))
415 return ERR_PTR(-EINVAL);
69e68b4f 416retry:
4bbd4c77 417 if (unlikely(pmd_bad(*pmd)))
69e68b4f 418 return no_page_table(vma, flags);
4bbd4c77
KS
419
420 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
421 pte = *ptep;
422 if (!pte_present(pte)) {
423 swp_entry_t entry;
424 /*
425 * KSM's break_ksm() relies upon recognizing a ksm page
426 * even while it is being migrated, so for that case we
427 * need migration_entry_wait().
428 */
429 if (likely(!(flags & FOLL_MIGRATION)))
430 goto no_page;
0661a336 431 if (pte_none(pte))
4bbd4c77
KS
432 goto no_page;
433 entry = pte_to_swp_entry(pte);
434 if (!is_migration_entry(entry))
435 goto no_page;
436 pte_unmap_unlock(ptep, ptl);
437 migration_entry_wait(mm, pmd, address);
69e68b4f 438 goto retry;
4bbd4c77 439 }
8a0516ed 440 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 441 goto no_page;
19be0eaf 442 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
443 pte_unmap_unlock(ptep, ptl);
444 return NULL;
445 }
4bbd4c77
KS
446
447 page = vm_normal_page(vma, address, pte);
3faa52c0 448 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 449 /*
3faa52c0
JH
450 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
451 * case since they are only valid while holding the pgmap
452 * reference.
3565fce3 453 */
df06b37f
KB
454 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
455 if (*pgmap)
3565fce3
DW
456 page = pte_page(pte);
457 else
458 goto no_page;
459 } else if (unlikely(!page)) {
1027e443
KS
460 if (flags & FOLL_DUMP) {
461 /* Avoid special (like zero) pages in core dumps */
462 page = ERR_PTR(-EFAULT);
463 goto out;
464 }
465
466 if (is_zero_pfn(pte_pfn(pte))) {
467 page = pte_page(pte);
468 } else {
1027e443
KS
469 ret = follow_pfn_pte(vma, address, ptep, flags);
470 page = ERR_PTR(ret);
471 goto out;
472 }
4bbd4c77
KS
473 }
474
6742d293 475 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
476 get_page(page);
477 pte_unmap_unlock(ptep, ptl);
478 lock_page(page);
479 ret = split_huge_page(page);
480 unlock_page(page);
481 put_page(page);
482 if (ret)
483 return ERR_PTR(ret);
484 goto retry;
485 }
486
3faa52c0
JH
487 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
488 if (unlikely(!try_grab_page(page, flags))) {
489 page = ERR_PTR(-ENOMEM);
490 goto out;
8fde12ca 491 }
f28d4363
CI
492 /*
493 * We need to make the page accessible if and only if we are going
494 * to access its content (the FOLL_PIN case). Please see
495 * Documentation/core-api/pin_user_pages.rst for details.
496 */
497 if (flags & FOLL_PIN) {
498 ret = arch_make_page_accessible(page);
499 if (ret) {
500 unpin_user_page(page);
501 page = ERR_PTR(ret);
502 goto out;
503 }
504 }
4bbd4c77
KS
505 if (flags & FOLL_TOUCH) {
506 if ((flags & FOLL_WRITE) &&
507 !pte_dirty(pte) && !PageDirty(page))
508 set_page_dirty(page);
509 /*
510 * pte_mkyoung() would be more correct here, but atomic care
511 * is needed to avoid losing the dirty bit: it is easier to use
512 * mark_page_accessed().
513 */
514 mark_page_accessed(page);
515 }
de60f5f1 516 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
517 /* Do not mlock pte-mapped THP */
518 if (PageTransCompound(page))
519 goto out;
520
4bbd4c77
KS
521 /*
522 * The preliminary mapping check is mainly to avoid the
523 * pointless overhead of lock_page on the ZERO_PAGE
524 * which might bounce very badly if there is contention.
525 *
526 * If the page is already locked, we don't need to
527 * handle it now - vmscan will handle it later if and
528 * when it attempts to reclaim the page.
529 */
530 if (page->mapping && trylock_page(page)) {
531 lru_add_drain(); /* push cached pages to LRU */
532 /*
533 * Because we lock page here, and migration is
534 * blocked by the pte's page reference, and we
535 * know the page is still mapped, we don't even
536 * need to check for file-cache page truncation.
537 */
538 mlock_vma_page(page);
539 unlock_page(page);
540 }
541 }
1027e443 542out:
4bbd4c77 543 pte_unmap_unlock(ptep, ptl);
4bbd4c77 544 return page;
4bbd4c77
KS
545no_page:
546 pte_unmap_unlock(ptep, ptl);
547 if (!pte_none(pte))
69e68b4f
KS
548 return NULL;
549 return no_page_table(vma, flags);
550}
551
080dbb61
AK
552static struct page *follow_pmd_mask(struct vm_area_struct *vma,
553 unsigned long address, pud_t *pudp,
df06b37f
KB
554 unsigned int flags,
555 struct follow_page_context *ctx)
69e68b4f 556{
68827280 557 pmd_t *pmd, pmdval;
69e68b4f
KS
558 spinlock_t *ptl;
559 struct page *page;
560 struct mm_struct *mm = vma->vm_mm;
561
080dbb61 562 pmd = pmd_offset(pudp, address);
68827280
YH
563 /*
564 * The READ_ONCE() will stabilize the pmdval in a register or
565 * on the stack so that it will stop changing under the code.
566 */
567 pmdval = READ_ONCE(*pmd);
568 if (pmd_none(pmdval))
69e68b4f 569 return no_page_table(vma, flags);
be9d3045 570 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
571 page = follow_huge_pmd(mm, address, pmd, flags);
572 if (page)
573 return page;
574 return no_page_table(vma, flags);
69e68b4f 575 }
68827280 576 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 577 page = follow_huge_pd(vma, address,
68827280 578 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
579 PMD_SHIFT);
580 if (page)
581 return page;
582 return no_page_table(vma, flags);
583 }
84c3fc4e 584retry:
68827280 585 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
586 if (likely(!(flags & FOLL_MIGRATION)))
587 return no_page_table(vma, flags);
588 VM_BUG_ON(thp_migration_supported() &&
68827280
YH
589 !is_pmd_migration_entry(pmdval));
590 if (is_pmd_migration_entry(pmdval))
84c3fc4e 591 pmd_migration_entry_wait(mm, pmd);
68827280
YH
592 pmdval = READ_ONCE(*pmd);
593 /*
594 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 595 * mmap_lock is held in read mode
68827280
YH
596 */
597 if (pmd_none(pmdval))
598 return no_page_table(vma, flags);
84c3fc4e
ZY
599 goto retry;
600 }
68827280 601 if (pmd_devmap(pmdval)) {
3565fce3 602 ptl = pmd_lock(mm, pmd);
df06b37f 603 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
604 spin_unlock(ptl);
605 if (page)
606 return page;
607 }
68827280 608 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 609 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 610
68827280 611 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
612 return no_page_table(vma, flags);
613
84c3fc4e 614retry_locked:
6742d293 615 ptl = pmd_lock(mm, pmd);
68827280
YH
616 if (unlikely(pmd_none(*pmd))) {
617 spin_unlock(ptl);
618 return no_page_table(vma, flags);
619 }
84c3fc4e
ZY
620 if (unlikely(!pmd_present(*pmd))) {
621 spin_unlock(ptl);
622 if (likely(!(flags & FOLL_MIGRATION)))
623 return no_page_table(vma, flags);
624 pmd_migration_entry_wait(mm, pmd);
625 goto retry_locked;
626 }
6742d293
KS
627 if (unlikely(!pmd_trans_huge(*pmd))) {
628 spin_unlock(ptl);
df06b37f 629 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 630 }
bfe7b00d 631 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
632 int ret;
633 page = pmd_page(*pmd);
634 if (is_huge_zero_page(page)) {
635 spin_unlock(ptl);
636 ret = 0;
78ddc534 637 split_huge_pmd(vma, pmd, address);
337d9abf
NH
638 if (pmd_trans_unstable(pmd))
639 ret = -EBUSY;
bfe7b00d 640 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
641 if (unlikely(!try_get_page(page))) {
642 spin_unlock(ptl);
643 return ERR_PTR(-ENOMEM);
644 }
69e68b4f 645 spin_unlock(ptl);
6742d293
KS
646 lock_page(page);
647 ret = split_huge_page(page);
648 unlock_page(page);
649 put_page(page);
baa355fd
KS
650 if (pmd_none(*pmd))
651 return no_page_table(vma, flags);
bfe7b00d
SL
652 } else { /* flags & FOLL_SPLIT_PMD */
653 spin_unlock(ptl);
654 split_huge_pmd(vma, pmd, address);
655 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
656 }
657
658 return ret ? ERR_PTR(ret) :
df06b37f 659 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 660 }
6742d293
KS
661 page = follow_trans_huge_pmd(vma, address, pmd, flags);
662 spin_unlock(ptl);
df06b37f 663 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 664 return page;
4bbd4c77
KS
665}
666
080dbb61
AK
667static struct page *follow_pud_mask(struct vm_area_struct *vma,
668 unsigned long address, p4d_t *p4dp,
df06b37f
KB
669 unsigned int flags,
670 struct follow_page_context *ctx)
080dbb61
AK
671{
672 pud_t *pud;
673 spinlock_t *ptl;
674 struct page *page;
675 struct mm_struct *mm = vma->vm_mm;
676
677 pud = pud_offset(p4dp, address);
678 if (pud_none(*pud))
679 return no_page_table(vma, flags);
be9d3045 680 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
681 page = follow_huge_pud(mm, address, pud, flags);
682 if (page)
683 return page;
684 return no_page_table(vma, flags);
685 }
4dc71451
AK
686 if (is_hugepd(__hugepd(pud_val(*pud)))) {
687 page = follow_huge_pd(vma, address,
688 __hugepd(pud_val(*pud)), flags,
689 PUD_SHIFT);
690 if (page)
691 return page;
692 return no_page_table(vma, flags);
693 }
080dbb61
AK
694 if (pud_devmap(*pud)) {
695 ptl = pud_lock(mm, pud);
df06b37f 696 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
697 spin_unlock(ptl);
698 if (page)
699 return page;
700 }
701 if (unlikely(pud_bad(*pud)))
702 return no_page_table(vma, flags);
703
df06b37f 704 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
705}
706
080dbb61
AK
707static struct page *follow_p4d_mask(struct vm_area_struct *vma,
708 unsigned long address, pgd_t *pgdp,
df06b37f
KB
709 unsigned int flags,
710 struct follow_page_context *ctx)
080dbb61
AK
711{
712 p4d_t *p4d;
4dc71451 713 struct page *page;
080dbb61
AK
714
715 p4d = p4d_offset(pgdp, address);
716 if (p4d_none(*p4d))
717 return no_page_table(vma, flags);
718 BUILD_BUG_ON(p4d_huge(*p4d));
719 if (unlikely(p4d_bad(*p4d)))
720 return no_page_table(vma, flags);
721
4dc71451
AK
722 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
723 page = follow_huge_pd(vma, address,
724 __hugepd(p4d_val(*p4d)), flags,
725 P4D_SHIFT);
726 if (page)
727 return page;
728 return no_page_table(vma, flags);
729 }
df06b37f 730 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
731}
732
733/**
734 * follow_page_mask - look up a page descriptor from a user-virtual address
735 * @vma: vm_area_struct mapping @address
736 * @address: virtual address to look up
737 * @flags: flags modifying lookup behaviour
78179556
MR
738 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
739 * pointer to output page_mask
080dbb61
AK
740 *
741 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
742 *
78179556
MR
743 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
744 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
745 *
746 * On output, the @ctx->page_mask is set according to the size of the page.
747 *
748 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
749 * an error pointer if there is a mapping to something not represented
750 * by a page descriptor (see also vm_normal_page()).
751 */
a7030aea 752static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 753 unsigned long address, unsigned int flags,
df06b37f 754 struct follow_page_context *ctx)
080dbb61
AK
755{
756 pgd_t *pgd;
757 struct page *page;
758 struct mm_struct *mm = vma->vm_mm;
759
df06b37f 760 ctx->page_mask = 0;
080dbb61
AK
761
762 /* make this handle hugepd */
763 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
764 if (!IS_ERR(page)) {
3faa52c0 765 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
766 return page;
767 }
768
769 pgd = pgd_offset(mm, address);
770
771 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
772 return no_page_table(vma, flags);
773
faaa5b62
AK
774 if (pgd_huge(*pgd)) {
775 page = follow_huge_pgd(mm, address, pgd, flags);
776 if (page)
777 return page;
778 return no_page_table(vma, flags);
779 }
4dc71451
AK
780 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
781 page = follow_huge_pd(vma, address,
782 __hugepd(pgd_val(*pgd)), flags,
783 PGDIR_SHIFT);
784 if (page)
785 return page;
786 return no_page_table(vma, flags);
787 }
faaa5b62 788
df06b37f
KB
789 return follow_p4d_mask(vma, address, pgd, flags, ctx);
790}
791
792struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
793 unsigned int foll_flags)
794{
795 struct follow_page_context ctx = { NULL };
796 struct page *page;
797
798 page = follow_page_mask(vma, address, foll_flags, &ctx);
799 if (ctx.pgmap)
800 put_dev_pagemap(ctx.pgmap);
801 return page;
080dbb61
AK
802}
803
f2b495ca
KS
804static int get_gate_page(struct mm_struct *mm, unsigned long address,
805 unsigned int gup_flags, struct vm_area_struct **vma,
806 struct page **page)
807{
808 pgd_t *pgd;
c2febafc 809 p4d_t *p4d;
f2b495ca
KS
810 pud_t *pud;
811 pmd_t *pmd;
812 pte_t *pte;
813 int ret = -EFAULT;
814
815 /* user gate pages are read-only */
816 if (gup_flags & FOLL_WRITE)
817 return -EFAULT;
818 if (address > TASK_SIZE)
819 pgd = pgd_offset_k(address);
820 else
821 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
822 if (pgd_none(*pgd))
823 return -EFAULT;
c2febafc 824 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
825 if (p4d_none(*p4d))
826 return -EFAULT;
c2febafc 827 pud = pud_offset(p4d, address);
b5d1c39f
AL
828 if (pud_none(*pud))
829 return -EFAULT;
f2b495ca 830 pmd = pmd_offset(pud, address);
84c3fc4e 831 if (!pmd_present(*pmd))
f2b495ca
KS
832 return -EFAULT;
833 VM_BUG_ON(pmd_trans_huge(*pmd));
834 pte = pte_offset_map(pmd, address);
835 if (pte_none(*pte))
836 goto unmap;
837 *vma = get_gate_vma(mm);
838 if (!page)
839 goto out;
840 *page = vm_normal_page(*vma, address, *pte);
841 if (!*page) {
842 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
843 goto unmap;
844 *page = pte_page(*pte);
845 }
8fde12ca
LT
846 if (unlikely(!try_get_page(*page))) {
847 ret = -ENOMEM;
848 goto unmap;
849 }
f2b495ca
KS
850out:
851 ret = 0;
852unmap:
853 pte_unmap(pte);
854 return ret;
855}
856
9a95f3cf 857/*
c1e8d7c6
ML
858 * mmap_lock must be held on entry. If @locked != NULL and *@flags
859 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 860 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 861 */
16744483 862static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
4f6da934 863 unsigned long address, unsigned int *flags, int *locked)
16744483 864{
16744483 865 unsigned int fault_flags = 0;
2b740303 866 vm_fault_t ret;
16744483 867
de60f5f1
EM
868 /* mlock all present pages, but do not fault in new pages */
869 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
870 return -ENOENT;
16744483
KS
871 if (*flags & FOLL_WRITE)
872 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
873 if (*flags & FOLL_REMOTE)
874 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 875 if (locked)
71335f37 876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
877 if (*flags & FOLL_NOWAIT)
878 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 879 if (*flags & FOLL_TRIED) {
4426e945
PX
880 /*
881 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
882 * can co-exist
883 */
234b239b
ALC
884 fault_flags |= FAULT_FLAG_TRIED;
885 }
16744483 886
dcddffd4 887 ret = handle_mm_fault(vma, address, fault_flags);
16744483 888 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
889 int err = vm_fault_to_errno(ret, *flags);
890
891 if (err)
892 return err;
16744483
KS
893 BUG();
894 }
895
896 if (tsk) {
897 if (ret & VM_FAULT_MAJOR)
898 tsk->maj_flt++;
899 else
900 tsk->min_flt++;
901 }
902
903 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
904 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
905 *locked = 0;
16744483
KS
906 return -EBUSY;
907 }
908
909 /*
910 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
911 * necessary, even if maybe_mkwrite decided not to set pte_write. We
912 * can thus safely do subsequent page lookups as if they were reads.
913 * But only do so when looping for pte_write is futile: in some cases
914 * userspace may also be wanting to write to the gotten user page,
915 * which a read fault here might prevent (a readonly page might get
916 * reCOWed by userspace write).
917 */
918 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 919 *flags |= FOLL_COW;
16744483
KS
920 return 0;
921}
922
fa5bb209
KS
923static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
924{
925 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
926 int write = (gup_flags & FOLL_WRITE);
927 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
928
929 if (vm_flags & (VM_IO | VM_PFNMAP))
930 return -EFAULT;
931
7f7ccc2c
WT
932 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
933 return -EFAULT;
934
1b2ee126 935 if (write) {
fa5bb209
KS
936 if (!(vm_flags & VM_WRITE)) {
937 if (!(gup_flags & FOLL_FORCE))
938 return -EFAULT;
939 /*
940 * We used to let the write,force case do COW in a
941 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
942 * set a breakpoint in a read-only mapping of an
943 * executable, without corrupting the file (yet only
944 * when that file had been opened for writing!).
945 * Anon pages in shared mappings are surprising: now
946 * just reject it.
947 */
46435364 948 if (!is_cow_mapping(vm_flags))
fa5bb209 949 return -EFAULT;
fa5bb209
KS
950 }
951 } else if (!(vm_flags & VM_READ)) {
952 if (!(gup_flags & FOLL_FORCE))
953 return -EFAULT;
954 /*
955 * Is there actually any vma we can reach here which does not
956 * have VM_MAYREAD set?
957 */
958 if (!(vm_flags & VM_MAYREAD))
959 return -EFAULT;
960 }
d61172b4
DH
961 /*
962 * gups are always data accesses, not instruction
963 * fetches, so execute=false here
964 */
965 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 966 return -EFAULT;
fa5bb209
KS
967 return 0;
968}
969
4bbd4c77
KS
970/**
971 * __get_user_pages() - pin user pages in memory
972 * @tsk: task_struct of target task
973 * @mm: mm_struct of target mm
974 * @start: starting user address
975 * @nr_pages: number of pages from start to pin
976 * @gup_flags: flags modifying pin behaviour
977 * @pages: array that receives pointers to the pages pinned.
978 * Should be at least nr_pages long. Or NULL, if caller
979 * only intends to ensure the pages are faulted in.
980 * @vmas: array of pointers to vmas corresponding to each page.
981 * Or NULL if the caller does not require them.
c1e8d7c6 982 * @locked: whether we're still with the mmap_lock held
4bbd4c77 983 *
d2dfbe47
LX
984 * Returns either number of pages pinned (which may be less than the
985 * number requested), or an error. Details about the return value:
986 *
987 * -- If nr_pages is 0, returns 0.
988 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
989 * -- If nr_pages is >0, and some pages were pinned, returns the number of
990 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 991 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
992 *
993 * The caller is responsible for releasing returned @pages, via put_page().
994 *
c1e8d7c6 995 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 996 *
c1e8d7c6 997 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
998 *
999 * __get_user_pages walks a process's page tables and takes a reference to
1000 * each struct page that each user address corresponds to at a given
1001 * instant. That is, it takes the page that would be accessed if a user
1002 * thread accesses the given user virtual address at that instant.
1003 *
1004 * This does not guarantee that the page exists in the user mappings when
1005 * __get_user_pages returns, and there may even be a completely different
1006 * page there in some cases (eg. if mmapped pagecache has been invalidated
1007 * and subsequently re faulted). However it does guarantee that the page
1008 * won't be freed completely. And mostly callers simply care that the page
1009 * contains data that was valid *at some point in time*. Typically, an IO
1010 * or similar operation cannot guarantee anything stronger anyway because
1011 * locks can't be held over the syscall boundary.
1012 *
1013 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1014 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1015 * appropriate) must be called after the page is finished with, and
1016 * before put_page is called.
1017 *
c1e8d7c6 1018 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1019 * released by an up_read(). That can happen if @gup_flags does not
1020 * have FOLL_NOWAIT.
9a95f3cf 1021 *
4f6da934 1022 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1023 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1024 * when it's been released. Otherwise, it must be held for either
1025 * reading or writing and will not be released.
4bbd4c77
KS
1026 *
1027 * In most cases, get_user_pages or get_user_pages_fast should be used
1028 * instead of __get_user_pages. __get_user_pages should be used only if
1029 * you need some special @gup_flags.
1030 */
0d731759 1031static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
1032 unsigned long start, unsigned long nr_pages,
1033 unsigned int gup_flags, struct page **pages,
4f6da934 1034 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1035{
df06b37f 1036 long ret = 0, i = 0;
fa5bb209 1037 struct vm_area_struct *vma = NULL;
df06b37f 1038 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1039
1040 if (!nr_pages)
1041 return 0;
1042
f9652594
AK
1043 start = untagged_addr(start);
1044
eddb1c22 1045 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1046
1047 /*
1048 * If FOLL_FORCE is set then do not force a full fault as the hinting
1049 * fault information is unrelated to the reference behaviour of a task
1050 * using the address space
1051 */
1052 if (!(gup_flags & FOLL_FORCE))
1053 gup_flags |= FOLL_NUMA;
1054
4bbd4c77 1055 do {
fa5bb209
KS
1056 struct page *page;
1057 unsigned int foll_flags = gup_flags;
1058 unsigned int page_increm;
1059
1060 /* first iteration or cross vma bound */
1061 if (!vma || start >= vma->vm_end) {
1062 vma = find_extend_vma(mm, start);
1063 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1064 ret = get_gate_page(mm, start & PAGE_MASK,
1065 gup_flags, &vma,
1066 pages ? &pages[i] : NULL);
1067 if (ret)
08be37b7 1068 goto out;
df06b37f 1069 ctx.page_mask = 0;
fa5bb209
KS
1070 goto next_page;
1071 }
4bbd4c77 1072
df06b37f
KB
1073 if (!vma || check_vma_flags(vma, gup_flags)) {
1074 ret = -EFAULT;
1075 goto out;
1076 }
fa5bb209 1077 if (is_vm_hugetlb_page(vma)) {
17839856
LT
1078 if (should_force_cow_break(vma, foll_flags))
1079 foll_flags |= FOLL_WRITE;
fa5bb209
KS
1080 i = follow_hugetlb_page(mm, vma, pages, vmas,
1081 &start, &nr_pages, i,
17839856 1082 foll_flags, locked);
ad415db8
PX
1083 if (locked && *locked == 0) {
1084 /*
1085 * We've got a VM_FAULT_RETRY
c1e8d7c6 1086 * and we've lost mmap_lock.
ad415db8
PX
1087 * We must stop here.
1088 */
1089 BUG_ON(gup_flags & FOLL_NOWAIT);
1090 BUG_ON(ret != 0);
1091 goto out;
1092 }
fa5bb209 1093 continue;
4bbd4c77 1094 }
fa5bb209 1095 }
17839856
LT
1096
1097 if (should_force_cow_break(vma, foll_flags))
1098 foll_flags |= FOLL_WRITE;
1099
fa5bb209
KS
1100retry:
1101 /*
1102 * If we have a pending SIGKILL, don't keep faulting pages and
1103 * potentially allocating memory.
1104 */
fa45f116 1105 if (fatal_signal_pending(current)) {
d180870d 1106 ret = -EINTR;
df06b37f
KB
1107 goto out;
1108 }
fa5bb209 1109 cond_resched();
df06b37f
KB
1110
1111 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1112 if (!page) {
fa5bb209 1113 ret = faultin_page(tsk, vma, start, &foll_flags,
4f6da934 1114 locked);
fa5bb209
KS
1115 switch (ret) {
1116 case 0:
1117 goto retry;
df06b37f
KB
1118 case -EBUSY:
1119 ret = 0;
e4a9bc58 1120 fallthrough;
fa5bb209
KS
1121 case -EFAULT:
1122 case -ENOMEM:
1123 case -EHWPOISON:
df06b37f 1124 goto out;
fa5bb209
KS
1125 case -ENOENT:
1126 goto next_page;
4bbd4c77 1127 }
fa5bb209 1128 BUG();
1027e443
KS
1129 } else if (PTR_ERR(page) == -EEXIST) {
1130 /*
1131 * Proper page table entry exists, but no corresponding
1132 * struct page.
1133 */
1134 goto next_page;
1135 } else if (IS_ERR(page)) {
df06b37f
KB
1136 ret = PTR_ERR(page);
1137 goto out;
1027e443 1138 }
fa5bb209
KS
1139 if (pages) {
1140 pages[i] = page;
1141 flush_anon_page(vma, page, start);
1142 flush_dcache_page(page);
df06b37f 1143 ctx.page_mask = 0;
4bbd4c77 1144 }
4bbd4c77 1145next_page:
fa5bb209
KS
1146 if (vmas) {
1147 vmas[i] = vma;
df06b37f 1148 ctx.page_mask = 0;
fa5bb209 1149 }
df06b37f 1150 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1151 if (page_increm > nr_pages)
1152 page_increm = nr_pages;
1153 i += page_increm;
1154 start += page_increm * PAGE_SIZE;
1155 nr_pages -= page_increm;
4bbd4c77 1156 } while (nr_pages);
df06b37f
KB
1157out:
1158 if (ctx.pgmap)
1159 put_dev_pagemap(ctx.pgmap);
1160 return i ? i : ret;
4bbd4c77 1161}
4bbd4c77 1162
771ab430
TK
1163static bool vma_permits_fault(struct vm_area_struct *vma,
1164 unsigned int fault_flags)
d4925e00 1165{
1b2ee126
DH
1166 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1167 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1168 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1169
1170 if (!(vm_flags & vma->vm_flags))
1171 return false;
1172
33a709b2
DH
1173 /*
1174 * The architecture might have a hardware protection
1b2ee126 1175 * mechanism other than read/write that can deny access.
d61172b4
DH
1176 *
1177 * gup always represents data access, not instruction
1178 * fetches, so execute=false here:
33a709b2 1179 */
d61172b4 1180 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1181 return false;
1182
d4925e00
DH
1183 return true;
1184}
1185
adc8cb40 1186/**
4bbd4c77
KS
1187 * fixup_user_fault() - manually resolve a user page fault
1188 * @tsk: the task_struct to use for page fault accounting, or
1189 * NULL if faults are not to be recorded.
1190 * @mm: mm_struct of target mm
1191 * @address: user address
1192 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1193 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1194 * does not allow retry. If NULL, the caller must guarantee
1195 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1196 *
1197 * This is meant to be called in the specific scenario where for locking reasons
1198 * we try to access user memory in atomic context (within a pagefault_disable()
1199 * section), this returns -EFAULT, and we want to resolve the user fault before
1200 * trying again.
1201 *
1202 * Typically this is meant to be used by the futex code.
1203 *
1204 * The main difference with get_user_pages() is that this function will
1205 * unconditionally call handle_mm_fault() which will in turn perform all the
1206 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1207 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1208 *
1209 * This is important for some architectures where those bits also gate the
1210 * access permission to the page because they are maintained in software. On
1211 * such architectures, gup() will not be enough to make a subsequent access
1212 * succeed.
1213 *
c1e8d7c6
ML
1214 * This function will not return with an unlocked mmap_lock. So it has not the
1215 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77
KS
1216 */
1217int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1218 unsigned long address, unsigned int fault_flags,
1219 bool *unlocked)
4bbd4c77
KS
1220{
1221 struct vm_area_struct *vma;
2b740303 1222 vm_fault_t ret, major = 0;
4a9e1cda 1223
f9652594
AK
1224 address = untagged_addr(address);
1225
4a9e1cda 1226 if (unlocked)
71335f37 1227 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1228
4a9e1cda 1229retry:
4bbd4c77
KS
1230 vma = find_extend_vma(mm, address);
1231 if (!vma || address < vma->vm_start)
1232 return -EFAULT;
1233
d4925e00 1234 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1235 return -EFAULT;
1236
475f4dfc
PX
1237 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1238 fatal_signal_pending(current))
1239 return -EINTR;
1240
dcddffd4 1241 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 1242 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1243 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1244 int err = vm_fault_to_errno(ret, 0);
1245
1246 if (err)
1247 return err;
4bbd4c77
KS
1248 BUG();
1249 }
4a9e1cda
DD
1250
1251 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1252 mmap_read_lock(mm);
475f4dfc
PX
1253 *unlocked = true;
1254 fault_flags |= FAULT_FLAG_TRIED;
1255 goto retry;
4a9e1cda
DD
1256 }
1257
4bbd4c77 1258 if (tsk) {
4a9e1cda 1259 if (major)
4bbd4c77
KS
1260 tsk->maj_flt++;
1261 else
1262 tsk->min_flt++;
1263 }
1264 return 0;
1265}
add6a0cd 1266EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1267
2d3a36a4
MH
1268/*
1269 * Please note that this function, unlike __get_user_pages will not
1270 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1271 */
f0818f47
AA
1272static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1273 struct mm_struct *mm,
1274 unsigned long start,
1275 unsigned long nr_pages,
f0818f47
AA
1276 struct page **pages,
1277 struct vm_area_struct **vmas,
e716712f 1278 int *locked,
0fd71a56 1279 unsigned int flags)
f0818f47 1280{
f0818f47
AA
1281 long ret, pages_done;
1282 bool lock_dropped;
1283
1284 if (locked) {
1285 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1286 BUG_ON(vmas);
1287 /* check caller initialized locked */
1288 BUG_ON(*locked != 1);
1289 }
1290
eddb1c22
JH
1291 /*
1292 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1293 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1294 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1295 * for FOLL_GET, not for the newer FOLL_PIN.
1296 *
1297 * FOLL_PIN always expects pages to be non-null, but no need to assert
1298 * that here, as any failures will be obvious enough.
1299 */
1300 if (pages && !(flags & FOLL_PIN))
f0818f47 1301 flags |= FOLL_GET;
f0818f47
AA
1302
1303 pages_done = 0;
1304 lock_dropped = false;
1305 for (;;) {
1306 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1307 vmas, locked);
1308 if (!locked)
1309 /* VM_FAULT_RETRY couldn't trigger, bypass */
1310 return ret;
1311
1312 /* VM_FAULT_RETRY cannot return errors */
1313 if (!*locked) {
1314 BUG_ON(ret < 0);
1315 BUG_ON(ret >= nr_pages);
1316 }
1317
f0818f47
AA
1318 if (ret > 0) {
1319 nr_pages -= ret;
1320 pages_done += ret;
1321 if (!nr_pages)
1322 break;
1323 }
1324 if (*locked) {
96312e61
AA
1325 /*
1326 * VM_FAULT_RETRY didn't trigger or it was a
1327 * FOLL_NOWAIT.
1328 */
f0818f47
AA
1329 if (!pages_done)
1330 pages_done = ret;
1331 break;
1332 }
df17277b
MR
1333 /*
1334 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1335 * For the prefault case (!pages) we only update counts.
1336 */
1337 if (likely(pages))
1338 pages += ret;
f0818f47 1339 start += ret << PAGE_SHIFT;
4426e945 1340 lock_dropped = true;
f0818f47 1341
4426e945 1342retry:
f0818f47
AA
1343 /*
1344 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1345 * with both FAULT_FLAG_ALLOW_RETRY and
1346 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1347 * by fatal signals, so we need to check it before we
1348 * start trying again otherwise it can loop forever.
f0818f47 1349 */
4426e945 1350
ae46d2aa
HD
1351 if (fatal_signal_pending(current)) {
1352 if (!pages_done)
1353 pages_done = -EINTR;
4426e945 1354 break;
ae46d2aa 1355 }
4426e945 1356
d8ed45c5 1357 ret = mmap_read_lock_killable(mm);
71335f37
PX
1358 if (ret) {
1359 BUG_ON(ret > 0);
1360 if (!pages_done)
1361 pages_done = ret;
1362 break;
1363 }
4426e945 1364
c7b6a566 1365 *locked = 1;
f0818f47 1366 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1367 pages, NULL, locked);
1368 if (!*locked) {
1369 /* Continue to retry until we succeeded */
1370 BUG_ON(ret != 0);
1371 goto retry;
1372 }
f0818f47
AA
1373 if (ret != 1) {
1374 BUG_ON(ret > 1);
1375 if (!pages_done)
1376 pages_done = ret;
1377 break;
1378 }
1379 nr_pages--;
1380 pages_done++;
1381 if (!nr_pages)
1382 break;
df17277b
MR
1383 if (likely(pages))
1384 pages++;
f0818f47
AA
1385 start += PAGE_SIZE;
1386 }
e716712f 1387 if (lock_dropped && *locked) {
f0818f47
AA
1388 /*
1389 * We must let the caller know we temporarily dropped the lock
1390 * and so the critical section protected by it was lost.
1391 */
d8ed45c5 1392 mmap_read_unlock(mm);
f0818f47
AA
1393 *locked = 0;
1394 }
1395 return pages_done;
1396}
1397
d3649f68
CH
1398/**
1399 * populate_vma_page_range() - populate a range of pages in the vma.
1400 * @vma: target vma
1401 * @start: start address
1402 * @end: end address
c1e8d7c6 1403 * @locked: whether the mmap_lock is still held
d3649f68
CH
1404 *
1405 * This takes care of mlocking the pages too if VM_LOCKED is set.
1406 *
0a36f7f8
TY
1407 * Return either number of pages pinned in the vma, or a negative error
1408 * code on error.
d3649f68 1409 *
c1e8d7c6 1410 * vma->vm_mm->mmap_lock must be held.
d3649f68 1411 *
4f6da934 1412 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1413 * be unperturbed.
1414 *
4f6da934
PX
1415 * If @locked is non-NULL, it must held for read only and may be
1416 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1417 */
1418long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1419 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1420{
1421 struct mm_struct *mm = vma->vm_mm;
1422 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1423 int gup_flags;
1424
1425 VM_BUG_ON(start & ~PAGE_MASK);
1426 VM_BUG_ON(end & ~PAGE_MASK);
1427 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1428 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1429 mmap_assert_locked(mm);
d3649f68
CH
1430
1431 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1432 if (vma->vm_flags & VM_LOCKONFAULT)
1433 gup_flags &= ~FOLL_POPULATE;
1434 /*
1435 * We want to touch writable mappings with a write fault in order
1436 * to break COW, except for shared mappings because these don't COW
1437 * and we would not want to dirty them for nothing.
1438 */
1439 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1440 gup_flags |= FOLL_WRITE;
1441
1442 /*
1443 * We want mlock to succeed for regions that have any permissions
1444 * other than PROT_NONE.
1445 */
3122e80e 1446 if (vma_is_accessible(vma))
d3649f68
CH
1447 gup_flags |= FOLL_FORCE;
1448
1449 /*
1450 * We made sure addr is within a VMA, so the following will
1451 * not result in a stack expansion that recurses back here.
1452 */
1453 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
4f6da934 1454 NULL, NULL, locked);
d3649f68
CH
1455}
1456
1457/*
1458 * __mm_populate - populate and/or mlock pages within a range of address space.
1459 *
1460 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1461 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1462 * mmap_lock must not be held.
d3649f68
CH
1463 */
1464int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1465{
1466 struct mm_struct *mm = current->mm;
1467 unsigned long end, nstart, nend;
1468 struct vm_area_struct *vma = NULL;
1469 int locked = 0;
1470 long ret = 0;
1471
1472 end = start + len;
1473
1474 for (nstart = start; nstart < end; nstart = nend) {
1475 /*
1476 * We want to fault in pages for [nstart; end) address range.
1477 * Find first corresponding VMA.
1478 */
1479 if (!locked) {
1480 locked = 1;
d8ed45c5 1481 mmap_read_lock(mm);
d3649f68
CH
1482 vma = find_vma(mm, nstart);
1483 } else if (nstart >= vma->vm_end)
1484 vma = vma->vm_next;
1485 if (!vma || vma->vm_start >= end)
1486 break;
1487 /*
1488 * Set [nstart; nend) to intersection of desired address
1489 * range with the first VMA. Also, skip undesirable VMA types.
1490 */
1491 nend = min(end, vma->vm_end);
1492 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1493 continue;
1494 if (nstart < vma->vm_start)
1495 nstart = vma->vm_start;
1496 /*
1497 * Now fault in a range of pages. populate_vma_page_range()
1498 * double checks the vma flags, so that it won't mlock pages
1499 * if the vma was already munlocked.
1500 */
1501 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1502 if (ret < 0) {
1503 if (ignore_errors) {
1504 ret = 0;
1505 continue; /* continue at next VMA */
1506 }
1507 break;
1508 }
1509 nend = nstart + ret * PAGE_SIZE;
1510 ret = 0;
1511 }
1512 if (locked)
d8ed45c5 1513 mmap_read_unlock(mm);
d3649f68
CH
1514 return ret; /* 0 or negative error code */
1515}
1516
1517/**
1518 * get_dump_page() - pin user page in memory while writing it to core dump
1519 * @addr: user address
1520 *
1521 * Returns struct page pointer of user page pinned for dump,
1522 * to be freed afterwards by put_page().
1523 *
1524 * Returns NULL on any kind of failure - a hole must then be inserted into
1525 * the corefile, to preserve alignment with its headers; and also returns
1526 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1527 * allowing a hole to be left in the corefile to save diskspace.
1528 *
c1e8d7c6 1529 * Called without mmap_lock, but after all other threads have been killed.
d3649f68
CH
1530 */
1531#ifdef CONFIG_ELF_CORE
1532struct page *get_dump_page(unsigned long addr)
1533{
1534 struct vm_area_struct *vma;
1535 struct page *page;
1536
1537 if (__get_user_pages(current, current->mm, addr, 1,
1538 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1539 NULL) < 1)
1540 return NULL;
1541 flush_cache_page(vma, addr, page_to_pfn(page));
1542 return page;
1543}
1544#endif /* CONFIG_ELF_CORE */
050a9adc
CH
1545#else /* CONFIG_MMU */
1546static long __get_user_pages_locked(struct task_struct *tsk,
1547 struct mm_struct *mm, unsigned long start,
1548 unsigned long nr_pages, struct page **pages,
1549 struct vm_area_struct **vmas, int *locked,
1550 unsigned int foll_flags)
1551{
1552 struct vm_area_struct *vma;
1553 unsigned long vm_flags;
1554 int i;
1555
1556 /* calculate required read or write permissions.
1557 * If FOLL_FORCE is set, we only require the "MAY" flags.
1558 */
1559 vm_flags = (foll_flags & FOLL_WRITE) ?
1560 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1561 vm_flags &= (foll_flags & FOLL_FORCE) ?
1562 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1563
1564 for (i = 0; i < nr_pages; i++) {
1565 vma = find_vma(mm, start);
1566 if (!vma)
1567 goto finish_or_fault;
1568
1569 /* protect what we can, including chardevs */
1570 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1571 !(vm_flags & vma->vm_flags))
1572 goto finish_or_fault;
1573
1574 if (pages) {
1575 pages[i] = virt_to_page(start);
1576 if (pages[i])
1577 get_page(pages[i]);
1578 }
1579 if (vmas)
1580 vmas[i] = vma;
1581 start = (start + PAGE_SIZE) & PAGE_MASK;
1582 }
1583
1584 return i;
1585
1586finish_or_fault:
1587 return i ? : -EFAULT;
1588}
1589#endif /* !CONFIG_MMU */
d3649f68 1590
9a4e9f3b 1591#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1592static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1593{
1594 long i;
1595 struct vm_area_struct *vma_prev = NULL;
1596
1597 for (i = 0; i < nr_pages; i++) {
1598 struct vm_area_struct *vma = vmas[i];
1599
1600 if (vma == vma_prev)
1601 continue;
1602
1603 vma_prev = vma;
1604
1605 if (vma_is_fsdax(vma))
1606 return true;
1607 }
1608 return false;
1609}
9a4e9f3b
AK
1610
1611#ifdef CONFIG_CMA
1612static struct page *new_non_cma_page(struct page *page, unsigned long private)
1613{
1614 /*
1615 * We want to make sure we allocate the new page from the same node
1616 * as the source page.
1617 */
1618 int nid = page_to_nid(page);
1619 /*
1620 * Trying to allocate a page for migration. Ignore allocation
1621 * failure warnings. We don't force __GFP_THISNODE here because
1622 * this node here is the node where we have CMA reservation and
1623 * in some case these nodes will have really less non movable
1624 * allocation memory.
1625 */
1626 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1627
1628 if (PageHighMem(page))
1629 gfp_mask |= __GFP_HIGHMEM;
1630
1631#ifdef CONFIG_HUGETLB_PAGE
1632 if (PageHuge(page)) {
1633 struct hstate *h = page_hstate(page);
1634 /*
1635 * We don't want to dequeue from the pool because pool pages will
1636 * mostly be from the CMA region.
1637 */
1638 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1639 }
1640#endif
1641 if (PageTransHuge(page)) {
1642 struct page *thp;
1643 /*
1644 * ignore allocation failure warnings
1645 */
1646 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1647
1648 /*
1649 * Remove the movable mask so that we don't allocate from
1650 * CMA area again.
1651 */
1652 thp_gfpmask &= ~__GFP_MOVABLE;
1653 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1654 if (!thp)
1655 return NULL;
1656 prep_transhuge_page(thp);
1657 return thp;
1658 }
1659
1660 return __alloc_pages_node(nid, gfp_mask, 0);
1661}
1662
932f4a63
IW
1663static long check_and_migrate_cma_pages(struct task_struct *tsk,
1664 struct mm_struct *mm,
1665 unsigned long start,
1666 unsigned long nr_pages,
9a4e9f3b 1667 struct page **pages,
932f4a63
IW
1668 struct vm_area_struct **vmas,
1669 unsigned int gup_flags)
9a4e9f3b 1670{
aa712399
PL
1671 unsigned long i;
1672 unsigned long step;
9a4e9f3b
AK
1673 bool drain_allow = true;
1674 bool migrate_allow = true;
1675 LIST_HEAD(cma_page_list);
b96cc655 1676 long ret = nr_pages;
9a4e9f3b
AK
1677
1678check_again:
aa712399
PL
1679 for (i = 0; i < nr_pages;) {
1680
1681 struct page *head = compound_head(pages[i]);
1682
1683 /*
1684 * gup may start from a tail page. Advance step by the left
1685 * part.
1686 */
d8c6546b 1687 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1688 /*
1689 * If we get a page from the CMA zone, since we are going to
1690 * be pinning these entries, we might as well move them out
1691 * of the CMA zone if possible.
1692 */
aa712399
PL
1693 if (is_migrate_cma_page(head)) {
1694 if (PageHuge(head))
9a4e9f3b 1695 isolate_huge_page(head, &cma_page_list);
aa712399 1696 else {
9a4e9f3b
AK
1697 if (!PageLRU(head) && drain_allow) {
1698 lru_add_drain_all();
1699 drain_allow = false;
1700 }
1701
1702 if (!isolate_lru_page(head)) {
1703 list_add_tail(&head->lru, &cma_page_list);
1704 mod_node_page_state(page_pgdat(head),
1705 NR_ISOLATED_ANON +
9de4f22a 1706 page_is_file_lru(head),
9a4e9f3b
AK
1707 hpage_nr_pages(head));
1708 }
1709 }
1710 }
aa712399
PL
1711
1712 i += step;
9a4e9f3b
AK
1713 }
1714
1715 if (!list_empty(&cma_page_list)) {
1716 /*
1717 * drop the above get_user_pages reference.
1718 */
1719 for (i = 0; i < nr_pages; i++)
1720 put_page(pages[i]);
1721
1722 if (migrate_pages(&cma_page_list, new_non_cma_page,
1723 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1724 /*
1725 * some of the pages failed migration. Do get_user_pages
1726 * without migration.
1727 */
1728 migrate_allow = false;
1729
1730 if (!list_empty(&cma_page_list))
1731 putback_movable_pages(&cma_page_list);
1732 }
1733 /*
932f4a63
IW
1734 * We did migrate all the pages, Try to get the page references
1735 * again migrating any new CMA pages which we failed to isolate
1736 * earlier.
9a4e9f3b 1737 */
b96cc655 1738 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
932f4a63
IW
1739 pages, vmas, NULL,
1740 gup_flags);
1741
b96cc655 1742 if ((ret > 0) && migrate_allow) {
1743 nr_pages = ret;
9a4e9f3b
AK
1744 drain_allow = true;
1745 goto check_again;
1746 }
1747 }
1748
b96cc655 1749 return ret;
9a4e9f3b
AK
1750}
1751#else
932f4a63
IW
1752static long check_and_migrate_cma_pages(struct task_struct *tsk,
1753 struct mm_struct *mm,
1754 unsigned long start,
1755 unsigned long nr_pages,
1756 struct page **pages,
1757 struct vm_area_struct **vmas,
1758 unsigned int gup_flags)
9a4e9f3b
AK
1759{
1760 return nr_pages;
1761}
050a9adc 1762#endif /* CONFIG_CMA */
9a4e9f3b 1763
2bb6d283 1764/*
932f4a63
IW
1765 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1766 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1767 */
932f4a63
IW
1768static long __gup_longterm_locked(struct task_struct *tsk,
1769 struct mm_struct *mm,
1770 unsigned long start,
1771 unsigned long nr_pages,
1772 struct page **pages,
1773 struct vm_area_struct **vmas,
1774 unsigned int gup_flags)
2bb6d283 1775{
932f4a63
IW
1776 struct vm_area_struct **vmas_tmp = vmas;
1777 unsigned long flags = 0;
2bb6d283
DW
1778 long rc, i;
1779
932f4a63
IW
1780 if (gup_flags & FOLL_LONGTERM) {
1781 if (!pages)
1782 return -EINVAL;
1783
1784 if (!vmas_tmp) {
1785 vmas_tmp = kcalloc(nr_pages,
1786 sizeof(struct vm_area_struct *),
1787 GFP_KERNEL);
1788 if (!vmas_tmp)
1789 return -ENOMEM;
1790 }
1791 flags = memalloc_nocma_save();
2bb6d283
DW
1792 }
1793
932f4a63
IW
1794 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1795 vmas_tmp, NULL, gup_flags);
2bb6d283 1796
932f4a63
IW
1797 if (gup_flags & FOLL_LONGTERM) {
1798 memalloc_nocma_restore(flags);
1799 if (rc < 0)
1800 goto out;
1801
1802 if (check_dax_vmas(vmas_tmp, rc)) {
1803 for (i = 0; i < rc; i++)
1804 put_page(pages[i]);
1805 rc = -EOPNOTSUPP;
1806 goto out;
1807 }
1808
1809 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1810 vmas_tmp, gup_flags);
9a4e9f3b 1811 }
2bb6d283 1812
2bb6d283 1813out:
932f4a63
IW
1814 if (vmas_tmp != vmas)
1815 kfree(vmas_tmp);
2bb6d283
DW
1816 return rc;
1817}
932f4a63
IW
1818#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1819static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1820 struct mm_struct *mm,
1821 unsigned long start,
1822 unsigned long nr_pages,
1823 struct page **pages,
1824 struct vm_area_struct **vmas,
1825 unsigned int flags)
1826{
1827 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1828 NULL, flags);
1829}
1830#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1831
22bf29b6
JH
1832#ifdef CONFIG_MMU
1833static long __get_user_pages_remote(struct task_struct *tsk,
1834 struct mm_struct *mm,
1835 unsigned long start, unsigned long nr_pages,
1836 unsigned int gup_flags, struct page **pages,
1837 struct vm_area_struct **vmas, int *locked)
1838{
1839 /*
1840 * Parts of FOLL_LONGTERM behavior are incompatible with
1841 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1842 * vmas. However, this only comes up if locked is set, and there are
1843 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1844 * allow what we can.
1845 */
1846 if (gup_flags & FOLL_LONGTERM) {
1847 if (WARN_ON_ONCE(locked))
1848 return -EINVAL;
1849 /*
1850 * This will check the vmas (even if our vmas arg is NULL)
1851 * and return -ENOTSUPP if DAX isn't allowed in this case:
1852 */
1853 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1854 vmas, gup_flags | FOLL_TOUCH |
1855 FOLL_REMOTE);
1856 }
1857
1858 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1859 locked,
1860 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1861}
1862
adc8cb40 1863/**
c4237f8b
JH
1864 * get_user_pages_remote() - pin user pages in memory
1865 * @tsk: the task_struct to use for page fault accounting, or
1866 * NULL if faults are not to be recorded.
1867 * @mm: mm_struct of target mm
1868 * @start: starting user address
1869 * @nr_pages: number of pages from start to pin
1870 * @gup_flags: flags modifying lookup behaviour
1871 * @pages: array that receives pointers to the pages pinned.
1872 * Should be at least nr_pages long. Or NULL, if caller
1873 * only intends to ensure the pages are faulted in.
1874 * @vmas: array of pointers to vmas corresponding to each page.
1875 * Or NULL if the caller does not require them.
1876 * @locked: pointer to lock flag indicating whether lock is held and
1877 * subsequently whether VM_FAULT_RETRY functionality can be
1878 * utilised. Lock must initially be held.
1879 *
1880 * Returns either number of pages pinned (which may be less than the
1881 * number requested), or an error. Details about the return value:
1882 *
1883 * -- If nr_pages is 0, returns 0.
1884 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1885 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1886 * pages pinned. Again, this may be less than nr_pages.
1887 *
1888 * The caller is responsible for releasing returned @pages, via put_page().
1889 *
c1e8d7c6 1890 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1891 *
c1e8d7c6 1892 * Must be called with mmap_lock held for read or write.
c4237f8b 1893 *
adc8cb40
SJ
1894 * get_user_pages_remote walks a process's page tables and takes a reference
1895 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1896 * instant. That is, it takes the page that would be accessed if a user
1897 * thread accesses the given user virtual address at that instant.
1898 *
1899 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1900 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1901 * page there in some cases (eg. if mmapped pagecache has been invalidated
1902 * and subsequently re faulted). However it does guarantee that the page
1903 * won't be freed completely. And mostly callers simply care that the page
1904 * contains data that was valid *at some point in time*. Typically, an IO
1905 * or similar operation cannot guarantee anything stronger anyway because
1906 * locks can't be held over the syscall boundary.
1907 *
1908 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1909 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1910 * be called after the page is finished with, and before put_page is called.
1911 *
adc8cb40
SJ
1912 * get_user_pages_remote is typically used for fewer-copy IO operations,
1913 * to get a handle on the memory by some means other than accesses
1914 * via the user virtual addresses. The pages may be submitted for
1915 * DMA to devices or accessed via their kernel linear mapping (via the
1916 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1917 *
1918 * See also get_user_pages_fast, for performance critical applications.
1919 *
adc8cb40 1920 * get_user_pages_remote should be phased out in favor of
c4237f8b 1921 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1922 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1923 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1924 */
1925long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1926 unsigned long start, unsigned long nr_pages,
1927 unsigned int gup_flags, struct page **pages,
1928 struct vm_area_struct **vmas, int *locked)
1929{
eddb1c22
JH
1930 /*
1931 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1932 * never directly by the caller, so enforce that with an assertion:
1933 */
1934 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1935 return -EINVAL;
1936
22bf29b6
JH
1937 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1938 pages, vmas, locked);
c4237f8b
JH
1939}
1940EXPORT_SYMBOL(get_user_pages_remote);
1941
eddb1c22
JH
1942#else /* CONFIG_MMU */
1943long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1944 unsigned long start, unsigned long nr_pages,
1945 unsigned int gup_flags, struct page **pages,
1946 struct vm_area_struct **vmas, int *locked)
1947{
1948 return 0;
1949}
3faa52c0
JH
1950
1951static long __get_user_pages_remote(struct task_struct *tsk,
1952 struct mm_struct *mm,
1953 unsigned long start, unsigned long nr_pages,
1954 unsigned int gup_flags, struct page **pages,
1955 struct vm_area_struct **vmas, int *locked)
1956{
1957 return 0;
1958}
eddb1c22
JH
1959#endif /* !CONFIG_MMU */
1960
adc8cb40
SJ
1961/**
1962 * get_user_pages() - pin user pages in memory
1963 * @start: starting user address
1964 * @nr_pages: number of pages from start to pin
1965 * @gup_flags: flags modifying lookup behaviour
1966 * @pages: array that receives pointers to the pages pinned.
1967 * Should be at least nr_pages long. Or NULL, if caller
1968 * only intends to ensure the pages are faulted in.
1969 * @vmas: array of pointers to vmas corresponding to each page.
1970 * Or NULL if the caller does not require them.
1971 *
932f4a63
IW
1972 * This is the same as get_user_pages_remote(), just with a
1973 * less-flexible calling convention where we assume that the task
1974 * and mm being operated on are the current task's and don't allow
1975 * passing of a locked parameter. We also obviously don't pass
1976 * FOLL_REMOTE in here.
1977 */
1978long get_user_pages(unsigned long start, unsigned long nr_pages,
1979 unsigned int gup_flags, struct page **pages,
1980 struct vm_area_struct **vmas)
1981{
eddb1c22
JH
1982 /*
1983 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1984 * never directly by the caller, so enforce that with an assertion:
1985 */
1986 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1987 return -EINVAL;
1988
932f4a63
IW
1989 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1990 pages, vmas, gup_flags | FOLL_TOUCH);
1991}
1992EXPORT_SYMBOL(get_user_pages);
2bb6d283 1993
adc8cb40 1994/**
d3649f68 1995 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1996 *
3e4e28c5 1997 * mmap_read_lock(mm);
d3649f68
CH
1998 * do_something()
1999 * get_user_pages(tsk, mm, ..., pages, NULL);
3e4e28c5 2000 * mmap_read_unlock(mm);
acc3c8d1 2001 *
d3649f68 2002 * to:
acc3c8d1 2003 *
d3649f68 2004 * int locked = 1;
3e4e28c5 2005 * mmap_read_lock(mm);
d3649f68
CH
2006 * do_something()
2007 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
2008 * if (locked)
3e4e28c5 2009 * mmap_read_unlock(mm);
adc8cb40
SJ
2010 *
2011 * @start: starting user address
2012 * @nr_pages: number of pages from start to pin
2013 * @gup_flags: flags modifying lookup behaviour
2014 * @pages: array that receives pointers to the pages pinned.
2015 * Should be at least nr_pages long. Or NULL, if caller
2016 * only intends to ensure the pages are faulted in.
2017 * @locked: pointer to lock flag indicating whether lock is held and
2018 * subsequently whether VM_FAULT_RETRY functionality can be
2019 * utilised. Lock must initially be held.
2020 *
2021 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2022 * paths better by using either get_user_pages_locked() or
2023 * get_user_pages_unlocked().
2024 *
acc3c8d1 2025 */
d3649f68
CH
2026long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2027 unsigned int gup_flags, struct page **pages,
2028 int *locked)
acc3c8d1 2029{
acc3c8d1 2030 /*
d3649f68
CH
2031 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2032 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2033 * vmas. As there are no users of this flag in this call we simply
2034 * disallow this option for now.
acc3c8d1 2035 */
d3649f68
CH
2036 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2037 return -EINVAL;
420c2091
JH
2038 /*
2039 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2040 * never directly by the caller, so enforce that:
2041 */
2042 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2043 return -EINVAL;
acc3c8d1 2044
d3649f68
CH
2045 return __get_user_pages_locked(current, current->mm, start, nr_pages,
2046 pages, NULL, locked,
2047 gup_flags | FOLL_TOUCH);
acc3c8d1 2048}
d3649f68 2049EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
2050
2051/*
d3649f68 2052 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2053 *
3e4e28c5 2054 * mmap_read_lock(mm);
d3649f68 2055 * get_user_pages(tsk, mm, ..., pages, NULL);
3e4e28c5 2056 * mmap_read_unlock(mm);
d3649f68
CH
2057 *
2058 * with:
2059 *
2060 * get_user_pages_unlocked(tsk, mm, ..., pages);
2061 *
2062 * It is functionally equivalent to get_user_pages_fast so
2063 * get_user_pages_fast should be used instead if specific gup_flags
2064 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2065 */
d3649f68
CH
2066long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2067 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2068{
2069 struct mm_struct *mm = current->mm;
d3649f68
CH
2070 int locked = 1;
2071 long ret;
acc3c8d1 2072
d3649f68
CH
2073 /*
2074 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2075 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2076 * vmas. As there are no users of this flag in this call we simply
2077 * disallow this option for now.
2078 */
2079 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2080 return -EINVAL;
acc3c8d1 2081
d8ed45c5 2082 mmap_read_lock(mm);
d3649f68
CH
2083 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
2084 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2085 if (locked)
d8ed45c5 2086 mmap_read_unlock(mm);
d3649f68 2087 return ret;
4bbd4c77 2088}
d3649f68 2089EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2090
2091/*
67a929e0 2092 * Fast GUP
2667f50e
SC
2093 *
2094 * get_user_pages_fast attempts to pin user pages by walking the page
2095 * tables directly and avoids taking locks. Thus the walker needs to be
2096 * protected from page table pages being freed from under it, and should
2097 * block any THP splits.
2098 *
2099 * One way to achieve this is to have the walker disable interrupts, and
2100 * rely on IPIs from the TLB flushing code blocking before the page table
2101 * pages are freed. This is unsuitable for architectures that do not need
2102 * to broadcast an IPI when invalidating TLBs.
2103 *
2104 * Another way to achieve this is to batch up page table containing pages
2105 * belonging to more than one mm_user, then rcu_sched a callback to free those
2106 * pages. Disabling interrupts will allow the fast_gup walker to both block
2107 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2108 * (which is a relatively rare event). The code below adopts this strategy.
2109 *
2110 * Before activating this code, please be aware that the following assumptions
2111 * are currently made:
2112 *
ff2e6d72 2113 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2114 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2115 *
2667f50e
SC
2116 * *) ptes can be read atomically by the architecture.
2117 *
2118 * *) access_ok is sufficient to validate userspace address ranges.
2119 *
2120 * The last two assumptions can be relaxed by the addition of helper functions.
2121 *
2122 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2123 */
67a929e0 2124#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0
JH
2125
2126static void put_compound_head(struct page *page, int refs, unsigned int flags)
2127{
47e29d32 2128 if (flags & FOLL_PIN) {
1970dc6f
JH
2129 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2130 refs);
2131
47e29d32
JH
2132 if (hpage_pincount_available(page))
2133 hpage_pincount_sub(page, refs);
2134 else
2135 refs *= GUP_PIN_COUNTING_BIAS;
2136 }
3faa52c0
JH
2137
2138 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2139 /*
2140 * Calling put_page() for each ref is unnecessarily slow. Only the last
2141 * ref needs a put_page().
2142 */
2143 if (refs > 1)
2144 page_ref_sub(page, refs - 1);
2145 put_page(page);
2146}
2147
39656e83 2148#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
3faa52c0 2149
39656e83
CH
2150/*
2151 * WARNING: only to be used in the get_user_pages_fast() implementation.
2152 *
2153 * With get_user_pages_fast(), we walk down the pagetables without taking any
2154 * locks. For this we would like to load the pointers atomically, but sometimes
2155 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2156 * we do have is the guarantee that a PTE will only either go from not present
2157 * to present, or present to not present or both -- it will not switch to a
2158 * completely different present page without a TLB flush in between; something
2159 * that we are blocking by holding interrupts off.
2160 *
2161 * Setting ptes from not present to present goes:
2162 *
2163 * ptep->pte_high = h;
2164 * smp_wmb();
2165 * ptep->pte_low = l;
2166 *
2167 * And present to not present goes:
2168 *
2169 * ptep->pte_low = 0;
2170 * smp_wmb();
2171 * ptep->pte_high = 0;
2172 *
2173 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2174 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2175 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2176 * picked up a changed pte high. We might have gotten rubbish values from
2177 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2178 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2179 * operates on present ptes we're safe.
2180 */
2181static inline pte_t gup_get_pte(pte_t *ptep)
2182{
2183 pte_t pte;
2667f50e 2184
39656e83
CH
2185 do {
2186 pte.pte_low = ptep->pte_low;
2187 smp_rmb();
2188 pte.pte_high = ptep->pte_high;
2189 smp_rmb();
2190 } while (unlikely(pte.pte_low != ptep->pte_low));
2191
2192 return pte;
2193}
2194#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2195/*
39656e83 2196 * We require that the PTE can be read atomically.
0005d20b
KS
2197 */
2198static inline pte_t gup_get_pte(pte_t *ptep)
2199{
481e980a 2200 return ptep_get(ptep);
0005d20b 2201}
39656e83 2202#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2203
790c7369 2204static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2205 unsigned int flags,
790c7369 2206 struct page **pages)
b59f65fa
KS
2207{
2208 while ((*nr) - nr_start) {
2209 struct page *page = pages[--(*nr)];
2210
2211 ClearPageReferenced(page);
3faa52c0
JH
2212 if (flags & FOLL_PIN)
2213 unpin_user_page(page);
2214 else
2215 put_page(page);
b59f65fa
KS
2216 }
2217}
2218
3010a5ea 2219#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2220static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2221 unsigned int flags, struct page **pages, int *nr)
2667f50e 2222{
b59f65fa
KS
2223 struct dev_pagemap *pgmap = NULL;
2224 int nr_start = *nr, ret = 0;
2667f50e 2225 pte_t *ptep, *ptem;
2667f50e
SC
2226
2227 ptem = ptep = pte_offset_map(&pmd, addr);
2228 do {
0005d20b 2229 pte_t pte = gup_get_pte(ptep);
7aef4172 2230 struct page *head, *page;
2667f50e
SC
2231
2232 /*
2233 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2234 * path using the pte_protnone check.
2667f50e 2235 */
e7884f8e
KS
2236 if (pte_protnone(pte))
2237 goto pte_unmap;
2238
b798bec4 2239 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2240 goto pte_unmap;
2241
b59f65fa 2242 if (pte_devmap(pte)) {
7af75561
IW
2243 if (unlikely(flags & FOLL_LONGTERM))
2244 goto pte_unmap;
2245
b59f65fa
KS
2246 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2247 if (unlikely(!pgmap)) {
3b78d834 2248 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2249 goto pte_unmap;
2250 }
2251 } else if (pte_special(pte))
2667f50e
SC
2252 goto pte_unmap;
2253
2254 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2255 page = pte_page(pte);
2256
3faa52c0 2257 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2258 if (!head)
2667f50e
SC
2259 goto pte_unmap;
2260
2261 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2262 put_compound_head(head, 1, flags);
2667f50e
SC
2263 goto pte_unmap;
2264 }
2265
7aef4172 2266 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2267
f28d4363
CI
2268 /*
2269 * We need to make the page accessible if and only if we are
2270 * going to access its content (the FOLL_PIN case). Please
2271 * see Documentation/core-api/pin_user_pages.rst for
2272 * details.
2273 */
2274 if (flags & FOLL_PIN) {
2275 ret = arch_make_page_accessible(page);
2276 if (ret) {
2277 unpin_user_page(page);
2278 goto pte_unmap;
2279 }
2280 }
e9348053 2281 SetPageReferenced(page);
2667f50e
SC
2282 pages[*nr] = page;
2283 (*nr)++;
2284
2285 } while (ptep++, addr += PAGE_SIZE, addr != end);
2286
2287 ret = 1;
2288
2289pte_unmap:
832d7aa0
CH
2290 if (pgmap)
2291 put_dev_pagemap(pgmap);
2667f50e
SC
2292 pte_unmap(ptem);
2293 return ret;
2294}
2295#else
2296
2297/*
2298 * If we can't determine whether or not a pte is special, then fail immediately
2299 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2300 * to be special.
2301 *
2302 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2303 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2304 * useful to have gup_huge_pmd even if we can't operate on ptes.
2305 */
2306static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2307 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2308{
2309 return 0;
2310}
3010a5ea 2311#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2312
17596731 2313#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2314static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2315 unsigned long end, unsigned int flags,
2316 struct page **pages, int *nr)
b59f65fa
KS
2317{
2318 int nr_start = *nr;
2319 struct dev_pagemap *pgmap = NULL;
2320
2321 do {
2322 struct page *page = pfn_to_page(pfn);
2323
2324 pgmap = get_dev_pagemap(pfn, pgmap);
2325 if (unlikely(!pgmap)) {
3b78d834 2326 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2327 return 0;
2328 }
2329 SetPageReferenced(page);
2330 pages[*nr] = page;
3faa52c0
JH
2331 if (unlikely(!try_grab_page(page, flags))) {
2332 undo_dev_pagemap(nr, nr_start, flags, pages);
2333 return 0;
2334 }
b59f65fa
KS
2335 (*nr)++;
2336 pfn++;
2337 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2338
2339 if (pgmap)
2340 put_dev_pagemap(pgmap);
b59f65fa
KS
2341 return 1;
2342}
2343
a9b6de77 2344static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2345 unsigned long end, unsigned int flags,
2346 struct page **pages, int *nr)
b59f65fa
KS
2347{
2348 unsigned long fault_pfn;
a9b6de77
DW
2349 int nr_start = *nr;
2350
2351 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2352 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2353 return 0;
b59f65fa 2354
a9b6de77 2355 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2356 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2357 return 0;
2358 }
2359 return 1;
b59f65fa
KS
2360}
2361
a9b6de77 2362static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2363 unsigned long end, unsigned int flags,
2364 struct page **pages, int *nr)
b59f65fa
KS
2365{
2366 unsigned long fault_pfn;
a9b6de77
DW
2367 int nr_start = *nr;
2368
2369 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2370 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2371 return 0;
b59f65fa 2372
a9b6de77 2373 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2374 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2375 return 0;
2376 }
2377 return 1;
b59f65fa
KS
2378}
2379#else
a9b6de77 2380static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2381 unsigned long end, unsigned int flags,
2382 struct page **pages, int *nr)
b59f65fa
KS
2383{
2384 BUILD_BUG();
2385 return 0;
2386}
2387
a9b6de77 2388static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2389 unsigned long end, unsigned int flags,
2390 struct page **pages, int *nr)
b59f65fa
KS
2391{
2392 BUILD_BUG();
2393 return 0;
2394}
2395#endif
2396
a43e9820
JH
2397static int record_subpages(struct page *page, unsigned long addr,
2398 unsigned long end, struct page **pages)
2399{
2400 int nr;
2401
2402 for (nr = 0; addr != end; addr += PAGE_SIZE)
2403 pages[nr++] = page++;
2404
2405 return nr;
2406}
2407
cbd34da7
CH
2408#ifdef CONFIG_ARCH_HAS_HUGEPD
2409static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2410 unsigned long sz)
2411{
2412 unsigned long __boundary = (addr + sz) & ~(sz-1);
2413 return (__boundary - 1 < end - 1) ? __boundary : end;
2414}
2415
2416static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2417 unsigned long end, unsigned int flags,
2418 struct page **pages, int *nr)
cbd34da7
CH
2419{
2420 unsigned long pte_end;
2421 struct page *head, *page;
2422 pte_t pte;
2423 int refs;
2424
2425 pte_end = (addr + sz) & ~(sz-1);
2426 if (pte_end < end)
2427 end = pte_end;
2428
55ca2263 2429 pte = huge_ptep_get(ptep);
cbd34da7 2430
0cd22afd 2431 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2432 return 0;
2433
2434 /* hugepages are never "special" */
2435 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2436
cbd34da7 2437 head = pte_page(pte);
cbd34da7 2438 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2439 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2440
3faa52c0 2441 head = try_grab_compound_head(head, refs, flags);
a43e9820 2442 if (!head)
cbd34da7 2443 return 0;
cbd34da7
CH
2444
2445 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2446 put_compound_head(head, refs, flags);
cbd34da7
CH
2447 return 0;
2448 }
2449
a43e9820 2450 *nr += refs;
520b4a44 2451 SetPageReferenced(head);
cbd34da7
CH
2452 return 1;
2453}
2454
2455static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2456 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2457 struct page **pages, int *nr)
2458{
2459 pte_t *ptep;
2460 unsigned long sz = 1UL << hugepd_shift(hugepd);
2461 unsigned long next;
2462
2463 ptep = hugepte_offset(hugepd, addr, pdshift);
2464 do {
2465 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2466 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2467 return 0;
2468 } while (ptep++, addr = next, addr != end);
2469
2470 return 1;
2471}
2472#else
2473static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2474 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2475 struct page **pages, int *nr)
2476{
2477 return 0;
2478}
2479#endif /* CONFIG_ARCH_HAS_HUGEPD */
2480
2667f50e 2481static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2482 unsigned long end, unsigned int flags,
2483 struct page **pages, int *nr)
2667f50e 2484{
ddc58f27 2485 struct page *head, *page;
2667f50e
SC
2486 int refs;
2487
b798bec4 2488 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2489 return 0;
2490
7af75561
IW
2491 if (pmd_devmap(orig)) {
2492 if (unlikely(flags & FOLL_LONGTERM))
2493 return 0;
86dfbed4
JH
2494 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2495 pages, nr);
7af75561 2496 }
b59f65fa 2497
d63206ee 2498 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2499 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2500
3faa52c0 2501 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2502 if (!head)
2667f50e 2503 return 0;
2667f50e
SC
2504
2505 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2506 put_compound_head(head, refs, flags);
2667f50e
SC
2507 return 0;
2508 }
2509
a43e9820 2510 *nr += refs;
e9348053 2511 SetPageReferenced(head);
2667f50e
SC
2512 return 1;
2513}
2514
2515static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2516 unsigned long end, unsigned int flags,
2517 struct page **pages, int *nr)
2667f50e 2518{
ddc58f27 2519 struct page *head, *page;
2667f50e
SC
2520 int refs;
2521
b798bec4 2522 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2523 return 0;
2524
7af75561
IW
2525 if (pud_devmap(orig)) {
2526 if (unlikely(flags & FOLL_LONGTERM))
2527 return 0;
86dfbed4
JH
2528 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2529 pages, nr);
7af75561 2530 }
b59f65fa 2531
d63206ee 2532 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2533 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2534
3faa52c0 2535 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2536 if (!head)
2667f50e 2537 return 0;
2667f50e
SC
2538
2539 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2540 put_compound_head(head, refs, flags);
2667f50e
SC
2541 return 0;
2542 }
2543
a43e9820 2544 *nr += refs;
e9348053 2545 SetPageReferenced(head);
2667f50e
SC
2546 return 1;
2547}
2548
f30c59e9 2549static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2550 unsigned long end, unsigned int flags,
f30c59e9
AK
2551 struct page **pages, int *nr)
2552{
2553 int refs;
ddc58f27 2554 struct page *head, *page;
f30c59e9 2555
b798bec4 2556 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2557 return 0;
2558
b59f65fa 2559 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2560
d63206ee 2561 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2562 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2563
3faa52c0 2564 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2565 if (!head)
f30c59e9 2566 return 0;
f30c59e9
AK
2567
2568 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2569 put_compound_head(head, refs, flags);
f30c59e9
AK
2570 return 0;
2571 }
2572
a43e9820 2573 *nr += refs;
e9348053 2574 SetPageReferenced(head);
f30c59e9
AK
2575 return 1;
2576}
2577
2667f50e 2578static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2579 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2580{
2581 unsigned long next;
2582 pmd_t *pmdp;
2583
2584 pmdp = pmd_offset(&pud, addr);
2585 do {
38c5ce93 2586 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2587
2588 next = pmd_addr_end(addr, end);
84c3fc4e 2589 if (!pmd_present(pmd))
2667f50e
SC
2590 return 0;
2591
414fd080
YZ
2592 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2593 pmd_devmap(pmd))) {
2667f50e
SC
2594 /*
2595 * NUMA hinting faults need to be handled in the GUP
2596 * slowpath for accounting purposes and so that they
2597 * can be serialised against THP migration.
2598 */
8a0516ed 2599 if (pmd_protnone(pmd))
2667f50e
SC
2600 return 0;
2601
b798bec4 2602 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2603 pages, nr))
2604 return 0;
2605
f30c59e9
AK
2606 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2607 /*
2608 * architecture have different format for hugetlbfs
2609 * pmd format and THP pmd format
2610 */
2611 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2612 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2613 return 0;
b798bec4 2614 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2615 return 0;
2667f50e
SC
2616 } while (pmdp++, addr = next, addr != end);
2617
2618 return 1;
2619}
2620
c2febafc 2621static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2622 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2623{
2624 unsigned long next;
2625 pud_t *pudp;
2626
c2febafc 2627 pudp = pud_offset(&p4d, addr);
2667f50e 2628 do {
e37c6982 2629 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2630
2631 next = pud_addr_end(addr, end);
15494520 2632 if (unlikely(!pud_present(pud)))
2667f50e 2633 return 0;
f30c59e9 2634 if (unlikely(pud_huge(pud))) {
b798bec4 2635 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2636 pages, nr))
2637 return 0;
2638 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2639 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2640 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2641 return 0;
b798bec4 2642 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
2643 return 0;
2644 } while (pudp++, addr = next, addr != end);
2645
2646 return 1;
2647}
2648
c2febafc 2649static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2650 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2651{
2652 unsigned long next;
2653 p4d_t *p4dp;
2654
2655 p4dp = p4d_offset(&pgd, addr);
2656 do {
2657 p4d_t p4d = READ_ONCE(*p4dp);
2658
2659 next = p4d_addr_end(addr, end);
2660 if (p4d_none(p4d))
2661 return 0;
2662 BUILD_BUG_ON(p4d_huge(p4d));
2663 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2664 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2665 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2666 return 0;
b798bec4 2667 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
2668 return 0;
2669 } while (p4dp++, addr = next, addr != end);
2670
2671 return 1;
2672}
2673
5b65c467 2674static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2675 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2676{
2677 unsigned long next;
2678 pgd_t *pgdp;
2679
2680 pgdp = pgd_offset(current->mm, addr);
2681 do {
2682 pgd_t pgd = READ_ONCE(*pgdp);
2683
2684 next = pgd_addr_end(addr, end);
2685 if (pgd_none(pgd))
2686 return;
2687 if (unlikely(pgd_huge(pgd))) {
b798bec4 2688 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2689 pages, nr))
2690 return;
2691 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2692 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2693 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2694 return;
b798bec4 2695 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2696 return;
2697 } while (pgdp++, addr = next, addr != end);
2698}
050a9adc
CH
2699#else
2700static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2701 unsigned int flags, struct page **pages, int *nr)
2702{
2703}
2704#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2705
2706#ifndef gup_fast_permitted
2707/*
dadbb612 2708 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2709 * we need to fall back to the slow version:
2710 */
26f4c328 2711static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2712{
26f4c328 2713 return true;
5b65c467
KS
2714}
2715#endif
2716
7af75561
IW
2717static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2718 unsigned int gup_flags, struct page **pages)
2719{
2720 int ret;
2721
2722 /*
2723 * FIXME: FOLL_LONGTERM does not work with
2724 * get_user_pages_unlocked() (see comments in that function)
2725 */
2726 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2727 mmap_read_lock(current->mm);
7af75561
IW
2728 ret = __gup_longterm_locked(current, current->mm,
2729 start, nr_pages,
2730 pages, NULL, gup_flags);
d8ed45c5 2731 mmap_read_unlock(current->mm);
7af75561
IW
2732 } else {
2733 ret = get_user_pages_unlocked(start, nr_pages,
2734 pages, gup_flags);
2735 }
2736
2737 return ret;
2738}
2739
eddb1c22
JH
2740static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2741 unsigned int gup_flags,
2742 struct page **pages)
2667f50e 2743{
5b65c467 2744 unsigned long addr, len, end;
376a34ef 2745 unsigned long flags;
4628b063 2746 int nr_pinned = 0, ret = 0;
2667f50e 2747
f4000fdf 2748 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2749 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2750 FOLL_FAST_ONLY)))
817be129
CH
2751 return -EINVAL;
2752
f81cd178 2753 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2754 might_lock_read(&current->mm->mmap_lock);
f81cd178 2755
f455c854 2756 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2757 addr = start;
2758 len = (unsigned long) nr_pages << PAGE_SHIFT;
2759 end = start + len;
2760
26f4c328 2761 if (end <= start)
c61611f7 2762 return 0;
96d4f267 2763 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2764 return -EFAULT;
73e10a61 2765
17839856
LT
2766 /*
2767 * The FAST_GUP case requires FOLL_WRITE even for pure reads,
2768 * because get_user_pages() may need to cause an early COW in
2769 * order to avoid confusing the normal COW routines. So only
2770 * targets that are already writable are safe to do by just
2771 * looking at the page tables.
376a34ef
JH
2772 *
2773 * NOTE! With FOLL_FAST_ONLY we allow read-only gup_fast() here,
2774 * because there is no slow path to fall back on. But you'd
2775 * better be careful about possible COW pages - you'll get _a_
2776 * COW page, but not necessarily the one you intended to get
2777 * depending on what COW event happens after this. COW may break
2778 * the page copy in a random direction.
2779 *
2780 * Disable interrupts. The nested form is used, in order to allow
2781 * full, general purpose use of this routine.
2782 *
2783 * With interrupts disabled, we block page table pages from being
2784 * freed from under us. See struct mmu_table_batch comments in
2785 * include/asm-generic/tlb.h for more details.
2786 *
2787 * We do not adopt an rcu_read_lock(.) here as we also want to
2788 * block IPIs that come from THPs splitting.
17839856 2789 */
376a34ef
JH
2790 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2791 unsigned long fast_flags = gup_flags;
2792 if (!(gup_flags & FOLL_FAST_ONLY))
2793 fast_flags |= FOLL_WRITE;
2794
2795 local_irq_save(flags);
2796 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2797 local_irq_restore(flags);
4628b063 2798 ret = nr_pinned;
73e10a61 2799 }
2667f50e 2800
376a34ef 2801 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2667f50e 2802 /* Try to get the remaining pages with get_user_pages */
4628b063
PL
2803 start += nr_pinned << PAGE_SHIFT;
2804 pages += nr_pinned;
2667f50e 2805
4628b063 2806 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
7af75561 2807 gup_flags, pages);
2667f50e
SC
2808
2809 /* Have to be a bit careful with return values */
4628b063 2810 if (nr_pinned > 0) {
2667f50e 2811 if (ret < 0)
4628b063 2812 ret = nr_pinned;
2667f50e 2813 else
4628b063 2814 ret += nr_pinned;
2667f50e
SC
2815 }
2816 }
2817
2818 return ret;
2819}
dadbb612
SJ
2820/**
2821 * get_user_pages_fast_only() - pin user pages in memory
2822 * @start: starting user address
2823 * @nr_pages: number of pages from start to pin
2824 * @gup_flags: flags modifying pin behaviour
2825 * @pages: array that receives pointers to the pages pinned.
2826 * Should be at least nr_pages long.
2827 *
9e1f0580
JH
2828 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2829 * the regular GUP.
2830 * Note a difference with get_user_pages_fast: this always returns the
2831 * number of pages pinned, 0 if no pages were pinned.
2832 *
2833 * If the architecture does not support this function, simply return with no
2834 * pages pinned.
2835 *
2836 * Careful, careful! COW breaking can go either way, so a non-write
2837 * access can get ambiguous page results. If you call this function without
2838 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2839 */
dadbb612
SJ
2840int get_user_pages_fast_only(unsigned long start, int nr_pages,
2841 unsigned int gup_flags, struct page **pages)
9e1f0580 2842{
376a34ef 2843 int nr_pinned;
9e1f0580
JH
2844 /*
2845 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2846 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2847 *
2848 * FOLL_FAST_ONLY is required in order to match the API description of
2849 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2850 */
dadbb612 2851 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2852
376a34ef
JH
2853 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2854 pages);
9e1f0580
JH
2855
2856 /*
376a34ef
JH
2857 * As specified in the API description above, this routine is not
2858 * allowed to return negative values. However, the common core
2859 * routine internal_get_user_pages_fast() *can* return -errno.
2860 * Therefore, correct for that here:
9e1f0580 2861 */
376a34ef
JH
2862 if (nr_pinned < 0)
2863 nr_pinned = 0;
9e1f0580
JH
2864
2865 return nr_pinned;
2866}
dadbb612 2867EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2868
eddb1c22
JH
2869/**
2870 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2871 * @start: starting user address
2872 * @nr_pages: number of pages from start to pin
2873 * @gup_flags: flags modifying pin behaviour
2874 * @pages: array that receives pointers to the pages pinned.
2875 * Should be at least nr_pages long.
eddb1c22 2876 *
c1e8d7c6 2877 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2878 * If not successful, it will fall back to taking the lock and
2879 * calling get_user_pages().
2880 *
2881 * Returns number of pages pinned. This may be fewer than the number requested.
2882 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2883 * -errno.
2884 */
2885int get_user_pages_fast(unsigned long start, int nr_pages,
2886 unsigned int gup_flags, struct page **pages)
2887{
2888 /*
2889 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2890 * never directly by the caller, so enforce that:
2891 */
2892 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2893 return -EINVAL;
2894
94202f12
JH
2895 /*
2896 * The caller may or may not have explicitly set FOLL_GET; either way is
2897 * OK. However, internally (within mm/gup.c), gup fast variants must set
2898 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2899 * request.
2900 */
2901 gup_flags |= FOLL_GET;
eddb1c22
JH
2902 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2903}
050a9adc 2904EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2905
2906/**
2907 * pin_user_pages_fast() - pin user pages in memory without taking locks
2908 *
3faa52c0
JH
2909 * @start: starting user address
2910 * @nr_pages: number of pages from start to pin
2911 * @gup_flags: flags modifying pin behaviour
2912 * @pages: array that receives pointers to the pages pinned.
2913 * Should be at least nr_pages long.
2914 *
2915 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2916 * get_user_pages_fast() for documentation on the function arguments, because
2917 * the arguments here are identical.
2918 *
2919 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2920 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2921 */
2922int pin_user_pages_fast(unsigned long start, int nr_pages,
2923 unsigned int gup_flags, struct page **pages)
2924{
3faa52c0
JH
2925 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2926 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2927 return -EINVAL;
2928
2929 gup_flags |= FOLL_PIN;
2930 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2931}
2932EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2933
104acc32 2934/*
dadbb612
SJ
2935 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2936 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2937 *
2938 * The API rules are the same, too: no negative values may be returned.
2939 */
2940int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2941 unsigned int gup_flags, struct page **pages)
2942{
2943 int nr_pinned;
2944
2945 /*
2946 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2947 * rules require returning 0, rather than -errno:
2948 */
2949 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2950 return 0;
2951 /*
2952 * FOLL_FAST_ONLY is required in order to match the API description of
2953 * this routine: no fall back to regular ("slow") GUP.
2954 */
2955 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2956 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2957 pages);
2958 /*
2959 * This routine is not allowed to return negative values. However,
2960 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2961 * correct for that here:
2962 */
2963 if (nr_pinned < 0)
2964 nr_pinned = 0;
2965
2966 return nr_pinned;
2967}
2968EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2969
eddb1c22
JH
2970/**
2971 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2972 *
3faa52c0
JH
2973 * @tsk: the task_struct to use for page fault accounting, or
2974 * NULL if faults are not to be recorded.
2975 * @mm: mm_struct of target mm
2976 * @start: starting user address
2977 * @nr_pages: number of pages from start to pin
2978 * @gup_flags: flags modifying lookup behaviour
2979 * @pages: array that receives pointers to the pages pinned.
2980 * Should be at least nr_pages long. Or NULL, if caller
2981 * only intends to ensure the pages are faulted in.
2982 * @vmas: array of pointers to vmas corresponding to each page.
2983 * Or NULL if the caller does not require them.
2984 * @locked: pointer to lock flag indicating whether lock is held and
2985 * subsequently whether VM_FAULT_RETRY functionality can be
2986 * utilised. Lock must initially be held.
2987 *
2988 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2989 * get_user_pages_remote() for documentation on the function arguments, because
2990 * the arguments here are identical.
2991 *
2992 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2993 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2994 */
2995long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2996 unsigned long start, unsigned long nr_pages,
2997 unsigned int gup_flags, struct page **pages,
2998 struct vm_area_struct **vmas, int *locked)
2999{
3faa52c0
JH
3000 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3001 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3002 return -EINVAL;
3003
3004 gup_flags |= FOLL_PIN;
3005 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
3006 pages, vmas, locked);
eddb1c22
JH
3007}
3008EXPORT_SYMBOL(pin_user_pages_remote);
3009
3010/**
3011 * pin_user_pages() - pin user pages in memory for use by other devices
3012 *
3faa52c0
JH
3013 * @start: starting user address
3014 * @nr_pages: number of pages from start to pin
3015 * @gup_flags: flags modifying lookup behaviour
3016 * @pages: array that receives pointers to the pages pinned.
3017 * Should be at least nr_pages long. Or NULL, if caller
3018 * only intends to ensure the pages are faulted in.
3019 * @vmas: array of pointers to vmas corresponding to each page.
3020 * Or NULL if the caller does not require them.
3021 *
3022 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3023 * FOLL_PIN is set.
3024 *
3025 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3026 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3027 */
3028long pin_user_pages(unsigned long start, unsigned long nr_pages,
3029 unsigned int gup_flags, struct page **pages,
3030 struct vm_area_struct **vmas)
3031{
3faa52c0
JH
3032 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3033 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3034 return -EINVAL;
3035
3036 gup_flags |= FOLL_PIN;
3037 return __gup_longterm_locked(current, current->mm, start, nr_pages,
3038 pages, vmas, gup_flags);
eddb1c22
JH
3039}
3040EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3041
3042/*
3043 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3044 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3045 * FOLL_PIN and rejects FOLL_GET.
3046 */
3047long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3048 struct page **pages, unsigned int gup_flags)
3049{
3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 return -EINVAL;
3053
3054 gup_flags |= FOLL_PIN;
3055 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3056}
3057EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
3058
3059/*
3060 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3061 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3062 * FOLL_GET.
3063 */
3064long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3065 unsigned int gup_flags, struct page **pages,
3066 int *locked)
3067{
3068 /*
3069 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3070 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3071 * vmas. As there are no users of this flag in this call we simply
3072 * disallow this option for now.
3073 */
3074 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3075 return -EINVAL;
3076
3077 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3078 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3079 return -EINVAL;
3080
3081 gup_flags |= FOLL_PIN;
3082 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3083 pages, NULL, locked,
3084 gup_flags | FOLL_TOUCH);
3085}
3086EXPORT_SYMBOL(pin_user_pages_locked);
This page took 0.846864 seconds and 4 git commands to generate.