]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
c8c06efa | 26 | * mapping->i_mmap_rwsem |
5a505085 | 27 | * anon_vma->rwsem |
82591e6e NP |
28 | * mm->page_table_lock or pte_lock |
29 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
30 | * swap_lock (in swap_duplicate, swap_info_get) | |
31 | * mmlist_lock (in mmput, drain_mmlist and others) | |
32 | * mapping->private_lock (in __set_page_dirty_buffers) | |
c4843a75 GT |
33 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) |
34 | * mapping->tree_lock (widely used) | |
250df6ed | 35 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
f758eeab | 36 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) |
82591e6e NP |
37 | * sb_lock (within inode_lock in fs/fs-writeback.c) |
38 | * mapping->tree_lock (widely used, in set_page_dirty, | |
39 | * in arch-dependent flush_dcache_mmap_lock, | |
f758eeab | 40 | * within bdi.wb->list_lock in __sync_single_inode) |
6a46079c | 41 | * |
5a505085 | 42 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 43 | * ->tasklist_lock |
6a46079c | 44 | * pte map lock |
1da177e4 LT |
45 | */ |
46 | ||
47 | #include <linux/mm.h> | |
48 | #include <linux/pagemap.h> | |
49 | #include <linux/swap.h> | |
50 | #include <linux/swapops.h> | |
51 | #include <linux/slab.h> | |
52 | #include <linux/init.h> | |
5ad64688 | 53 | #include <linux/ksm.h> |
1da177e4 LT |
54 | #include <linux/rmap.h> |
55 | #include <linux/rcupdate.h> | |
b95f1b31 | 56 | #include <linux/export.h> |
8a9f3ccd | 57 | #include <linux/memcontrol.h> |
cddb8a5c | 58 | #include <linux/mmu_notifier.h> |
64cdd548 | 59 | #include <linux/migrate.h> |
0fe6e20b | 60 | #include <linux/hugetlb.h> |
ef5d437f | 61 | #include <linux/backing-dev.h> |
1da177e4 LT |
62 | |
63 | #include <asm/tlbflush.h> | |
64 | ||
b291f000 NP |
65 | #include "internal.h" |
66 | ||
fdd2e5f8 | 67 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 68 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
69 | |
70 | static inline struct anon_vma *anon_vma_alloc(void) | |
71 | { | |
01d8b20d PZ |
72 | struct anon_vma *anon_vma; |
73 | ||
74 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
75 | if (anon_vma) { | |
76 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
77 | anon_vma->degree = 1; /* Reference for first vma */ |
78 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
79 | /* |
80 | * Initialise the anon_vma root to point to itself. If called | |
81 | * from fork, the root will be reset to the parents anon_vma. | |
82 | */ | |
83 | anon_vma->root = anon_vma; | |
84 | } | |
85 | ||
86 | return anon_vma; | |
fdd2e5f8 AB |
87 | } |
88 | ||
01d8b20d | 89 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 90 | { |
01d8b20d | 91 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
92 | |
93 | /* | |
4fc3f1d6 | 94 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
95 | * we can safely hold the lock without the anon_vma getting |
96 | * freed. | |
97 | * | |
98 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
99 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 100 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 101 | * |
4fc3f1d6 IM |
102 | * page_lock_anon_vma_read() VS put_anon_vma() |
103 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 104 | * LOCK MB |
4fc3f1d6 | 105 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
106 | * |
107 | * LOCK should suffice since the actual taking of the lock must | |
108 | * happen _before_ what follows. | |
109 | */ | |
7f39dda9 | 110 | might_sleep(); |
5a505085 | 111 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 112 | anon_vma_lock_write(anon_vma); |
08b52706 | 113 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
114 | } |
115 | ||
fdd2e5f8 AB |
116 | kmem_cache_free(anon_vma_cachep, anon_vma); |
117 | } | |
1da177e4 | 118 | |
dd34739c | 119 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 120 | { |
dd34739c | 121 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
122 | } |
123 | ||
e574b5fd | 124 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
125 | { |
126 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
127 | } | |
128 | ||
6583a843 KC |
129 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
130 | struct anon_vma_chain *avc, | |
131 | struct anon_vma *anon_vma) | |
132 | { | |
133 | avc->vma = vma; | |
134 | avc->anon_vma = anon_vma; | |
135 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 136 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
137 | } |
138 | ||
d9d332e0 LT |
139 | /** |
140 | * anon_vma_prepare - attach an anon_vma to a memory region | |
141 | * @vma: the memory region in question | |
142 | * | |
143 | * This makes sure the memory mapping described by 'vma' has | |
144 | * an 'anon_vma' attached to it, so that we can associate the | |
145 | * anonymous pages mapped into it with that anon_vma. | |
146 | * | |
147 | * The common case will be that we already have one, but if | |
23a0790a | 148 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
149 | * can re-use the anon_vma from (very common when the only |
150 | * reason for splitting a vma has been mprotect()), or we | |
151 | * allocate a new one. | |
152 | * | |
153 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 154 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
155 | * and that may actually touch the spinlock even in the newly |
156 | * allocated vma (it depends on RCU to make sure that the | |
157 | * anon_vma isn't actually destroyed). | |
158 | * | |
159 | * As a result, we need to do proper anon_vma locking even | |
160 | * for the new allocation. At the same time, we do not want | |
161 | * to do any locking for the common case of already having | |
162 | * an anon_vma. | |
163 | * | |
164 | * This must be called with the mmap_sem held for reading. | |
165 | */ | |
1da177e4 LT |
166 | int anon_vma_prepare(struct vm_area_struct *vma) |
167 | { | |
168 | struct anon_vma *anon_vma = vma->anon_vma; | |
5beb4930 | 169 | struct anon_vma_chain *avc; |
1da177e4 LT |
170 | |
171 | might_sleep(); | |
172 | if (unlikely(!anon_vma)) { | |
173 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 174 | struct anon_vma *allocated; |
1da177e4 | 175 | |
dd34739c | 176 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
177 | if (!avc) |
178 | goto out_enomem; | |
179 | ||
1da177e4 | 180 | anon_vma = find_mergeable_anon_vma(vma); |
d9d332e0 LT |
181 | allocated = NULL; |
182 | if (!anon_vma) { | |
1da177e4 LT |
183 | anon_vma = anon_vma_alloc(); |
184 | if (unlikely(!anon_vma)) | |
5beb4930 | 185 | goto out_enomem_free_avc; |
1da177e4 | 186 | allocated = anon_vma; |
1da177e4 LT |
187 | } |
188 | ||
4fc3f1d6 | 189 | anon_vma_lock_write(anon_vma); |
1da177e4 LT |
190 | /* page_table_lock to protect against threads */ |
191 | spin_lock(&mm->page_table_lock); | |
192 | if (likely(!vma->anon_vma)) { | |
193 | vma->anon_vma = anon_vma; | |
6583a843 | 194 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 KK |
195 | /* vma reference or self-parent link for new root */ |
196 | anon_vma->degree++; | |
1da177e4 | 197 | allocated = NULL; |
31f2b0eb | 198 | avc = NULL; |
1da177e4 LT |
199 | } |
200 | spin_unlock(&mm->page_table_lock); | |
08b52706 | 201 | anon_vma_unlock_write(anon_vma); |
31f2b0eb ON |
202 | |
203 | if (unlikely(allocated)) | |
01d8b20d | 204 | put_anon_vma(allocated); |
31f2b0eb | 205 | if (unlikely(avc)) |
5beb4930 | 206 | anon_vma_chain_free(avc); |
1da177e4 LT |
207 | } |
208 | return 0; | |
5beb4930 RR |
209 | |
210 | out_enomem_free_avc: | |
211 | anon_vma_chain_free(avc); | |
212 | out_enomem: | |
213 | return -ENOMEM; | |
1da177e4 LT |
214 | } |
215 | ||
bb4aa396 LT |
216 | /* |
217 | * This is a useful helper function for locking the anon_vma root as | |
218 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
219 | * have the same vma. | |
220 | * | |
221 | * Such anon_vma's should have the same root, so you'd expect to see | |
222 | * just a single mutex_lock for the whole traversal. | |
223 | */ | |
224 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
225 | { | |
226 | struct anon_vma *new_root = anon_vma->root; | |
227 | if (new_root != root) { | |
228 | if (WARN_ON_ONCE(root)) | |
5a505085 | 229 | up_write(&root->rwsem); |
bb4aa396 | 230 | root = new_root; |
5a505085 | 231 | down_write(&root->rwsem); |
bb4aa396 LT |
232 | } |
233 | return root; | |
234 | } | |
235 | ||
236 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
237 | { | |
238 | if (root) | |
5a505085 | 239 | up_write(&root->rwsem); |
bb4aa396 LT |
240 | } |
241 | ||
5beb4930 RR |
242 | /* |
243 | * Attach the anon_vmas from src to dst. | |
244 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
245 | * |
246 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
247 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
248 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
249 | * constantly forking task. On the other hand, an anon_vma with more than one | |
250 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
251 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
252 | * page is mapped. | |
5beb4930 RR |
253 | */ |
254 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 255 | { |
5beb4930 | 256 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 257 | struct anon_vma *root = NULL; |
5beb4930 | 258 | |
646d87b4 | 259 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
260 | struct anon_vma *anon_vma; |
261 | ||
dd34739c LT |
262 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
263 | if (unlikely(!avc)) { | |
264 | unlock_anon_vma_root(root); | |
265 | root = NULL; | |
266 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
267 | if (!avc) | |
268 | goto enomem_failure; | |
269 | } | |
bb4aa396 LT |
270 | anon_vma = pavc->anon_vma; |
271 | root = lock_anon_vma_root(root, anon_vma); | |
272 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
273 | |
274 | /* | |
275 | * Reuse existing anon_vma if its degree lower than two, | |
276 | * that means it has no vma and only one anon_vma child. | |
277 | * | |
278 | * Do not chose parent anon_vma, otherwise first child | |
279 | * will always reuse it. Root anon_vma is never reused: | |
280 | * it has self-parent reference and at least one child. | |
281 | */ | |
282 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
283 | anon_vma->degree < 2) | |
284 | dst->anon_vma = anon_vma; | |
5beb4930 | 285 | } |
7a3ef208 KK |
286 | if (dst->anon_vma) |
287 | dst->anon_vma->degree++; | |
bb4aa396 | 288 | unlock_anon_vma_root(root); |
5beb4930 | 289 | return 0; |
1da177e4 | 290 | |
5beb4930 | 291 | enomem_failure: |
3fe89b3e LY |
292 | /* |
293 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
294 | * decremented in unlink_anon_vmas(). | |
295 | * We can safely do this because callers of anon_vma_clone() don't care | |
296 | * about dst->anon_vma if anon_vma_clone() failed. | |
297 | */ | |
298 | dst->anon_vma = NULL; | |
5beb4930 RR |
299 | unlink_anon_vmas(dst); |
300 | return -ENOMEM; | |
1da177e4 LT |
301 | } |
302 | ||
5beb4930 RR |
303 | /* |
304 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
305 | * the corresponding VMA in the parent process is attached to. | |
306 | * Returns 0 on success, non-zero on failure. | |
307 | */ | |
308 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 309 | { |
5beb4930 RR |
310 | struct anon_vma_chain *avc; |
311 | struct anon_vma *anon_vma; | |
c4ea95d7 | 312 | int error; |
1da177e4 | 313 | |
5beb4930 RR |
314 | /* Don't bother if the parent process has no anon_vma here. */ |
315 | if (!pvma->anon_vma) | |
316 | return 0; | |
317 | ||
7a3ef208 KK |
318 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
319 | vma->anon_vma = NULL; | |
320 | ||
5beb4930 RR |
321 | /* |
322 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
323 | * so rmap can find non-COWed pages in child processes. | |
324 | */ | |
c4ea95d7 DF |
325 | error = anon_vma_clone(vma, pvma); |
326 | if (error) | |
327 | return error; | |
5beb4930 | 328 | |
7a3ef208 KK |
329 | /* An existing anon_vma has been reused, all done then. */ |
330 | if (vma->anon_vma) | |
331 | return 0; | |
332 | ||
5beb4930 RR |
333 | /* Then add our own anon_vma. */ |
334 | anon_vma = anon_vma_alloc(); | |
335 | if (!anon_vma) | |
336 | goto out_error; | |
dd34739c | 337 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
338 | if (!avc) |
339 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
340 | |
341 | /* | |
342 | * The root anon_vma's spinlock is the lock actually used when we | |
343 | * lock any of the anon_vmas in this anon_vma tree. | |
344 | */ | |
345 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 346 | anon_vma->parent = pvma->anon_vma; |
76545066 | 347 | /* |
01d8b20d PZ |
348 | * With refcounts, an anon_vma can stay around longer than the |
349 | * process it belongs to. The root anon_vma needs to be pinned until | |
350 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
351 | */ |
352 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
353 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
354 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 355 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 356 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 357 | anon_vma->parent->degree++; |
08b52706 | 358 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
359 | |
360 | return 0; | |
361 | ||
362 | out_error_free_anon_vma: | |
01d8b20d | 363 | put_anon_vma(anon_vma); |
5beb4930 | 364 | out_error: |
4946d54c | 365 | unlink_anon_vmas(vma); |
5beb4930 | 366 | return -ENOMEM; |
1da177e4 LT |
367 | } |
368 | ||
5beb4930 RR |
369 | void unlink_anon_vmas(struct vm_area_struct *vma) |
370 | { | |
371 | struct anon_vma_chain *avc, *next; | |
eee2acba | 372 | struct anon_vma *root = NULL; |
5beb4930 | 373 | |
5c341ee1 RR |
374 | /* |
375 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
376 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
377 | */ | |
5beb4930 | 378 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
379 | struct anon_vma *anon_vma = avc->anon_vma; |
380 | ||
381 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 382 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
383 | |
384 | /* | |
385 | * Leave empty anon_vmas on the list - we'll need | |
386 | * to free them outside the lock. | |
387 | */ | |
7a3ef208 KK |
388 | if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { |
389 | anon_vma->parent->degree--; | |
eee2acba | 390 | continue; |
7a3ef208 | 391 | } |
eee2acba PZ |
392 | |
393 | list_del(&avc->same_vma); | |
394 | anon_vma_chain_free(avc); | |
395 | } | |
7a3ef208 KK |
396 | if (vma->anon_vma) |
397 | vma->anon_vma->degree--; | |
eee2acba PZ |
398 | unlock_anon_vma_root(root); |
399 | ||
400 | /* | |
401 | * Iterate the list once more, it now only contains empty and unlinked | |
402 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 403 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
404 | */ |
405 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
406 | struct anon_vma *anon_vma = avc->anon_vma; | |
407 | ||
7a3ef208 | 408 | BUG_ON(anon_vma->degree); |
eee2acba PZ |
409 | put_anon_vma(anon_vma); |
410 | ||
5beb4930 RR |
411 | list_del(&avc->same_vma); |
412 | anon_vma_chain_free(avc); | |
413 | } | |
414 | } | |
415 | ||
51cc5068 | 416 | static void anon_vma_ctor(void *data) |
1da177e4 | 417 | { |
a35afb83 | 418 | struct anon_vma *anon_vma = data; |
1da177e4 | 419 | |
5a505085 | 420 | init_rwsem(&anon_vma->rwsem); |
83813267 | 421 | atomic_set(&anon_vma->refcount, 0); |
bf181b9f | 422 | anon_vma->rb_root = RB_ROOT; |
1da177e4 LT |
423 | } |
424 | ||
425 | void __init anon_vma_init(void) | |
426 | { | |
427 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 428 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
5beb4930 | 429 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); |
1da177e4 LT |
430 | } |
431 | ||
432 | /* | |
6111e4ca PZ |
433 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
434 | * | |
435 | * Since there is no serialization what so ever against page_remove_rmap() | |
436 | * the best this function can do is return a locked anon_vma that might | |
437 | * have been relevant to this page. | |
438 | * | |
439 | * The page might have been remapped to a different anon_vma or the anon_vma | |
440 | * returned may already be freed (and even reused). | |
441 | * | |
bc658c96 PZ |
442 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
443 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
444 | * ensure that any anon_vma obtained from the page will still be valid for as | |
445 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
446 | * | |
6111e4ca PZ |
447 | * All users of this function must be very careful when walking the anon_vma |
448 | * chain and verify that the page in question is indeed mapped in it | |
449 | * [ something equivalent to page_mapped_in_vma() ]. | |
450 | * | |
451 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
452 | * that the anon_vma pointer from page->mapping is valid if there is a | |
453 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 454 | */ |
746b18d4 | 455 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 456 | { |
746b18d4 | 457 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
458 | unsigned long anon_mapping; |
459 | ||
460 | rcu_read_lock(); | |
4db0c3c2 | 461 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 462 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
463 | goto out; |
464 | if (!page_mapped(page)) | |
465 | goto out; | |
466 | ||
467 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
468 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
469 | anon_vma = NULL; | |
470 | goto out; | |
471 | } | |
f1819427 HD |
472 | |
473 | /* | |
474 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
475 | * freed. But if it has been unmapped, we have no security against the |
476 | * anon_vma structure being freed and reused (for another anon_vma: | |
477 | * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() | |
478 | * above cannot corrupt). | |
f1819427 | 479 | */ |
746b18d4 | 480 | if (!page_mapped(page)) { |
7f39dda9 | 481 | rcu_read_unlock(); |
746b18d4 | 482 | put_anon_vma(anon_vma); |
7f39dda9 | 483 | return NULL; |
746b18d4 | 484 | } |
1da177e4 LT |
485 | out: |
486 | rcu_read_unlock(); | |
746b18d4 PZ |
487 | |
488 | return anon_vma; | |
489 | } | |
490 | ||
88c22088 PZ |
491 | /* |
492 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
493 | * | |
494 | * Its a little more complex as it tries to keep the fast path to a single | |
495 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
496 | * reference like with page_get_anon_vma() and then block on the mutex. | |
497 | */ | |
4fc3f1d6 | 498 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 499 | { |
88c22088 | 500 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 501 | struct anon_vma *root_anon_vma; |
88c22088 | 502 | unsigned long anon_mapping; |
746b18d4 | 503 | |
88c22088 | 504 | rcu_read_lock(); |
4db0c3c2 | 505 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
506 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
507 | goto out; | |
508 | if (!page_mapped(page)) | |
509 | goto out; | |
510 | ||
511 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 512 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 513 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 514 | /* |
eee0f252 HD |
515 | * If the page is still mapped, then this anon_vma is still |
516 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 517 | * not go away, see anon_vma_free(). |
88c22088 | 518 | */ |
eee0f252 | 519 | if (!page_mapped(page)) { |
4fc3f1d6 | 520 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
521 | anon_vma = NULL; |
522 | } | |
523 | goto out; | |
524 | } | |
746b18d4 | 525 | |
88c22088 PZ |
526 | /* trylock failed, we got to sleep */ |
527 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
528 | anon_vma = NULL; | |
529 | goto out; | |
530 | } | |
531 | ||
532 | if (!page_mapped(page)) { | |
7f39dda9 | 533 | rcu_read_unlock(); |
88c22088 | 534 | put_anon_vma(anon_vma); |
7f39dda9 | 535 | return NULL; |
88c22088 PZ |
536 | } |
537 | ||
538 | /* we pinned the anon_vma, its safe to sleep */ | |
539 | rcu_read_unlock(); | |
4fc3f1d6 | 540 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
541 | |
542 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
543 | /* | |
544 | * Oops, we held the last refcount, release the lock | |
545 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 546 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 547 | */ |
4fc3f1d6 | 548 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
549 | __put_anon_vma(anon_vma); |
550 | anon_vma = NULL; | |
551 | } | |
552 | ||
553 | return anon_vma; | |
554 | ||
555 | out: | |
556 | rcu_read_unlock(); | |
746b18d4 | 557 | return anon_vma; |
34bbd704 ON |
558 | } |
559 | ||
4fc3f1d6 | 560 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 561 | { |
4fc3f1d6 | 562 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
563 | } |
564 | ||
565 | /* | |
3ad33b24 | 566 | * At what user virtual address is page expected in @vma? |
1da177e4 | 567 | */ |
86c2ad19 ML |
568 | static inline unsigned long |
569 | __vma_address(struct page *page, struct vm_area_struct *vma) | |
1da177e4 | 570 | { |
a0f7a756 | 571 | pgoff_t pgoff = page_to_pgoff(page); |
86c2ad19 ML |
572 | return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
573 | } | |
574 | ||
575 | inline unsigned long | |
576 | vma_address(struct page *page, struct vm_area_struct *vma) | |
577 | { | |
578 | unsigned long address = __vma_address(page, vma); | |
579 | ||
580 | /* page should be within @vma mapping range */ | |
81d1b09c | 581 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
86c2ad19 | 582 | |
1da177e4 LT |
583 | return address; |
584 | } | |
585 | ||
586 | /* | |
bf89c8c8 | 587 | * At what user virtual address is page expected in vma? |
ab941e0f | 588 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
589 | */ |
590 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
591 | { | |
86c2ad19 | 592 | unsigned long address; |
21d0d443 | 593 | if (PageAnon(page)) { |
4829b906 HD |
594 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
595 | /* | |
596 | * Note: swapoff's unuse_vma() is more efficient with this | |
597 | * check, and needs it to match anon_vma when KSM is active. | |
598 | */ | |
599 | if (!vma->anon_vma || !page__anon_vma || | |
600 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 601 | return -EFAULT; |
27ba0644 KS |
602 | } else if (page->mapping) { |
603 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
604 | return -EFAULT; |
605 | } else | |
606 | return -EFAULT; | |
86c2ad19 ML |
607 | address = __vma_address(page, vma); |
608 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
609 | return -EFAULT; | |
610 | return address; | |
1da177e4 LT |
611 | } |
612 | ||
6219049a BL |
613 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
614 | { | |
615 | pgd_t *pgd; | |
616 | pud_t *pud; | |
617 | pmd_t *pmd = NULL; | |
f72e7dcd | 618 | pmd_t pmde; |
6219049a BL |
619 | |
620 | pgd = pgd_offset(mm, address); | |
621 | if (!pgd_present(*pgd)) | |
622 | goto out; | |
623 | ||
624 | pud = pud_offset(pgd, address); | |
625 | if (!pud_present(*pud)) | |
626 | goto out; | |
627 | ||
628 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 629 | /* |
8809aa2d | 630 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
631 | * without holding anon_vma lock for write. So when looking for a |
632 | * genuine pmde (in which to find pte), test present and !THP together. | |
633 | */ | |
e37c6982 CB |
634 | pmde = *pmd; |
635 | barrier(); | |
f72e7dcd | 636 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
637 | pmd = NULL; |
638 | out: | |
639 | return pmd; | |
640 | } | |
641 | ||
81b4082d ND |
642 | /* |
643 | * Check that @page is mapped at @address into @mm. | |
644 | * | |
479db0bf NP |
645 | * If @sync is false, page_check_address may perform a racy check to avoid |
646 | * the page table lock when the pte is not present (helpful when reclaiming | |
647 | * highly shared pages). | |
648 | * | |
b8072f09 | 649 | * On success returns with pte mapped and locked. |
81b4082d | 650 | */ |
e9a81a82 | 651 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 652 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d | 653 | { |
81b4082d ND |
654 | pmd_t *pmd; |
655 | pte_t *pte; | |
c0718806 | 656 | spinlock_t *ptl; |
81b4082d | 657 | |
0fe6e20b | 658 | if (unlikely(PageHuge(page))) { |
98398c32 | 659 | /* when pud is not present, pte will be NULL */ |
0fe6e20b | 660 | pte = huge_pte_offset(mm, address); |
98398c32 JW |
661 | if (!pte) |
662 | return NULL; | |
663 | ||
cb900f41 | 664 | ptl = huge_pte_lockptr(page_hstate(page), mm, pte); |
0fe6e20b NH |
665 | goto check; |
666 | } | |
667 | ||
6219049a BL |
668 | pmd = mm_find_pmd(mm, address); |
669 | if (!pmd) | |
c0718806 HD |
670 | return NULL; |
671 | ||
c0718806 HD |
672 | pte = pte_offset_map(pmd, address); |
673 | /* Make a quick check before getting the lock */ | |
479db0bf | 674 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
675 | pte_unmap(pte); |
676 | return NULL; | |
677 | } | |
678 | ||
4c21e2f2 | 679 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 680 | check: |
c0718806 HD |
681 | spin_lock(ptl); |
682 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
683 | *ptlp = ptl; | |
684 | return pte; | |
81b4082d | 685 | } |
c0718806 HD |
686 | pte_unmap_unlock(pte, ptl); |
687 | return NULL; | |
81b4082d ND |
688 | } |
689 | ||
b291f000 NP |
690 | /** |
691 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
692 | * @page: the page to test | |
693 | * @vma: the VMA to test | |
694 | * | |
695 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
696 | * if the page is not mapped into the page tables of this VMA. Only | |
697 | * valid for normal file or anonymous VMAs. | |
698 | */ | |
6a46079c | 699 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
700 | { |
701 | unsigned long address; | |
702 | pte_t *pte; | |
703 | spinlock_t *ptl; | |
704 | ||
86c2ad19 ML |
705 | address = __vma_address(page, vma); |
706 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
b291f000 NP |
707 | return 0; |
708 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
709 | if (!pte) /* the page is not in this mm */ | |
710 | return 0; | |
711 | pte_unmap_unlock(pte, ptl); | |
712 | ||
713 | return 1; | |
714 | } | |
715 | ||
9f32624b JK |
716 | struct page_referenced_arg { |
717 | int mapcount; | |
718 | int referenced; | |
719 | unsigned long vm_flags; | |
720 | struct mem_cgroup *memcg; | |
721 | }; | |
1da177e4 | 722 | /* |
9f32624b | 723 | * arg: page_referenced_arg will be passed |
1da177e4 | 724 | */ |
ac769501 | 725 | static int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
9f32624b | 726 | unsigned long address, void *arg) |
1da177e4 LT |
727 | { |
728 | struct mm_struct *mm = vma->vm_mm; | |
117b0791 | 729 | spinlock_t *ptl; |
1da177e4 | 730 | int referenced = 0; |
9f32624b | 731 | struct page_referenced_arg *pra = arg; |
1da177e4 | 732 | |
71e3aac0 AA |
733 | if (unlikely(PageTransHuge(page))) { |
734 | pmd_t *pmd; | |
735 | ||
2da28bfd AA |
736 | /* |
737 | * rmap might return false positives; we must filter | |
738 | * these out using page_check_address_pmd(). | |
739 | */ | |
71e3aac0 | 740 | pmd = page_check_address_pmd(page, mm, address, |
117b0791 KS |
741 | PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); |
742 | if (!pmd) | |
9f32624b | 743 | return SWAP_AGAIN; |
2da28bfd AA |
744 | |
745 | if (vma->vm_flags & VM_LOCKED) { | |
117b0791 | 746 | spin_unlock(ptl); |
9f32624b JK |
747 | pra->vm_flags |= VM_LOCKED; |
748 | return SWAP_FAIL; /* To break the loop */ | |
2da28bfd AA |
749 | } |
750 | ||
751 | /* go ahead even if the pmd is pmd_trans_splitting() */ | |
752 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) | |
71e3aac0 | 753 | referenced++; |
117b0791 | 754 | spin_unlock(ptl); |
71e3aac0 AA |
755 | } else { |
756 | pte_t *pte; | |
71e3aac0 | 757 | |
2da28bfd AA |
758 | /* |
759 | * rmap might return false positives; we must filter | |
760 | * these out using page_check_address(). | |
761 | */ | |
71e3aac0 AA |
762 | pte = page_check_address(page, mm, address, &ptl, 0); |
763 | if (!pte) | |
9f32624b | 764 | return SWAP_AGAIN; |
71e3aac0 | 765 | |
2da28bfd AA |
766 | if (vma->vm_flags & VM_LOCKED) { |
767 | pte_unmap_unlock(pte, ptl); | |
9f32624b JK |
768 | pra->vm_flags |= VM_LOCKED; |
769 | return SWAP_FAIL; /* To break the loop */ | |
2da28bfd AA |
770 | } |
771 | ||
71e3aac0 AA |
772 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
773 | /* | |
774 | * Don't treat a reference through a sequentially read | |
775 | * mapping as such. If the page has been used in | |
776 | * another mapping, we will catch it; if this other | |
777 | * mapping is already gone, the unmap path will have | |
778 | * set PG_referenced or activated the page. | |
779 | */ | |
64363aad | 780 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) |
71e3aac0 AA |
781 | referenced++; |
782 | } | |
783 | pte_unmap_unlock(pte, ptl); | |
784 | } | |
785 | ||
9f32624b JK |
786 | if (referenced) { |
787 | pra->referenced++; | |
788 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 789 | } |
34bbd704 | 790 | |
9f32624b JK |
791 | pra->mapcount--; |
792 | if (!pra->mapcount) | |
793 | return SWAP_SUCCESS; /* To break the loop */ | |
794 | ||
795 | return SWAP_AGAIN; | |
1da177e4 LT |
796 | } |
797 | ||
9f32624b | 798 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 799 | { |
9f32624b JK |
800 | struct page_referenced_arg *pra = arg; |
801 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 802 | |
9f32624b JK |
803 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
804 | return true; | |
1da177e4 | 805 | |
9f32624b | 806 | return false; |
1da177e4 LT |
807 | } |
808 | ||
809 | /** | |
810 | * page_referenced - test if the page was referenced | |
811 | * @page: the page to test | |
812 | * @is_locked: caller holds lock on the page | |
72835c86 | 813 | * @memcg: target memory cgroup |
6fe6b7e3 | 814 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
815 | * |
816 | * Quick test_and_clear_referenced for all mappings to a page, | |
817 | * returns the number of ptes which referenced the page. | |
818 | */ | |
6fe6b7e3 WF |
819 | int page_referenced(struct page *page, |
820 | int is_locked, | |
72835c86 | 821 | struct mem_cgroup *memcg, |
6fe6b7e3 | 822 | unsigned long *vm_flags) |
1da177e4 | 823 | { |
9f32624b | 824 | int ret; |
5ad64688 | 825 | int we_locked = 0; |
9f32624b JK |
826 | struct page_referenced_arg pra = { |
827 | .mapcount = page_mapcount(page), | |
828 | .memcg = memcg, | |
829 | }; | |
830 | struct rmap_walk_control rwc = { | |
831 | .rmap_one = page_referenced_one, | |
832 | .arg = (void *)&pra, | |
833 | .anon_lock = page_lock_anon_vma_read, | |
834 | }; | |
1da177e4 | 835 | |
6fe6b7e3 | 836 | *vm_flags = 0; |
9f32624b JK |
837 | if (!page_mapped(page)) |
838 | return 0; | |
839 | ||
840 | if (!page_rmapping(page)) | |
841 | return 0; | |
842 | ||
843 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
844 | we_locked = trylock_page(page); | |
845 | if (!we_locked) | |
846 | return 1; | |
1da177e4 | 847 | } |
9f32624b JK |
848 | |
849 | /* | |
850 | * If we are reclaiming on behalf of a cgroup, skip | |
851 | * counting on behalf of references from different | |
852 | * cgroups | |
853 | */ | |
854 | if (memcg) { | |
855 | rwc.invalid_vma = invalid_page_referenced_vma; | |
856 | } | |
857 | ||
858 | ret = rmap_walk(page, &rwc); | |
859 | *vm_flags = pra.vm_flags; | |
860 | ||
861 | if (we_locked) | |
862 | unlock_page(page); | |
863 | ||
864 | return pra.referenced; | |
1da177e4 LT |
865 | } |
866 | ||
1cb1729b | 867 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 868 | unsigned long address, void *arg) |
d08b3851 PZ |
869 | { |
870 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 871 | pte_t *pte; |
d08b3851 PZ |
872 | spinlock_t *ptl; |
873 | int ret = 0; | |
9853a407 | 874 | int *cleaned = arg; |
d08b3851 | 875 | |
479db0bf | 876 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
877 | if (!pte) |
878 | goto out; | |
879 | ||
c2fda5fe PZ |
880 | if (pte_dirty(*pte) || pte_write(*pte)) { |
881 | pte_t entry; | |
d08b3851 | 882 | |
c2fda5fe | 883 | flush_cache_page(vma, address, pte_pfn(*pte)); |
2ec74c3e | 884 | entry = ptep_clear_flush(vma, address, pte); |
c2fda5fe PZ |
885 | entry = pte_wrprotect(entry); |
886 | entry = pte_mkclean(entry); | |
d6e88e67 | 887 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
888 | ret = 1; |
889 | } | |
d08b3851 | 890 | |
d08b3851 | 891 | pte_unmap_unlock(pte, ptl); |
2ec74c3e | 892 | |
9853a407 | 893 | if (ret) { |
2ec74c3e | 894 | mmu_notifier_invalidate_page(mm, address); |
9853a407 JK |
895 | (*cleaned)++; |
896 | } | |
d08b3851 | 897 | out: |
9853a407 | 898 | return SWAP_AGAIN; |
d08b3851 PZ |
899 | } |
900 | ||
9853a407 | 901 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 902 | { |
9853a407 | 903 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 904 | return false; |
d08b3851 | 905 | |
871beb8c | 906 | return true; |
d08b3851 PZ |
907 | } |
908 | ||
909 | int page_mkclean(struct page *page) | |
910 | { | |
9853a407 JK |
911 | int cleaned = 0; |
912 | struct address_space *mapping; | |
913 | struct rmap_walk_control rwc = { | |
914 | .arg = (void *)&cleaned, | |
915 | .rmap_one = page_mkclean_one, | |
916 | .invalid_vma = invalid_mkclean_vma, | |
917 | }; | |
d08b3851 PZ |
918 | |
919 | BUG_ON(!PageLocked(page)); | |
920 | ||
9853a407 JK |
921 | if (!page_mapped(page)) |
922 | return 0; | |
923 | ||
924 | mapping = page_mapping(page); | |
925 | if (!mapping) | |
926 | return 0; | |
927 | ||
928 | rmap_walk(page, &rwc); | |
d08b3851 | 929 | |
9853a407 | 930 | return cleaned; |
d08b3851 | 931 | } |
60b59bea | 932 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 933 | |
c44b6743 RR |
934 | /** |
935 | * page_move_anon_rmap - move a page to our anon_vma | |
936 | * @page: the page to move to our anon_vma | |
937 | * @vma: the vma the page belongs to | |
938 | * @address: the user virtual address mapped | |
939 | * | |
940 | * When a page belongs exclusively to one process after a COW event, | |
941 | * that page can be moved into the anon_vma that belongs to just that | |
942 | * process, so the rmap code will not search the parent or sibling | |
943 | * processes. | |
944 | */ | |
945 | void page_move_anon_rmap(struct page *page, | |
946 | struct vm_area_struct *vma, unsigned long address) | |
947 | { | |
948 | struct anon_vma *anon_vma = vma->anon_vma; | |
949 | ||
309381fe | 950 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 951 | VM_BUG_ON_VMA(!anon_vma, vma); |
309381fe | 952 | VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); |
c44b6743 RR |
953 | |
954 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
955 | /* |
956 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
957 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
958 | * PageAnon()) will not see one without the other. | |
959 | */ | |
960 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
961 | } |
962 | ||
9617d95e | 963 | /** |
4e1c1975 AK |
964 | * __page_set_anon_rmap - set up new anonymous rmap |
965 | * @page: Page to add to rmap | |
966 | * @vma: VM area to add page to. | |
967 | * @address: User virtual address of the mapping | |
e8a03feb | 968 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
969 | */ |
970 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 971 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 972 | { |
e8a03feb | 973 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 974 | |
e8a03feb | 975 | BUG_ON(!anon_vma); |
ea90002b | 976 | |
4e1c1975 AK |
977 | if (PageAnon(page)) |
978 | return; | |
979 | ||
ea90002b | 980 | /* |
e8a03feb RR |
981 | * If the page isn't exclusively mapped into this vma, |
982 | * we must use the _oldest_ possible anon_vma for the | |
983 | * page mapping! | |
ea90002b | 984 | */ |
4e1c1975 | 985 | if (!exclusive) |
288468c3 | 986 | anon_vma = anon_vma->root; |
9617d95e | 987 | |
9617d95e NP |
988 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
989 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 990 | page->index = linear_page_index(vma, address); |
9617d95e NP |
991 | } |
992 | ||
c97a9e10 | 993 | /** |
43d8eac4 | 994 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
995 | * @page: the page to add the mapping to |
996 | * @vma: the vm area in which the mapping is added | |
997 | * @address: the user virtual address mapped | |
998 | */ | |
999 | static void __page_check_anon_rmap(struct page *page, | |
1000 | struct vm_area_struct *vma, unsigned long address) | |
1001 | { | |
1002 | #ifdef CONFIG_DEBUG_VM | |
1003 | /* | |
1004 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1005 | * be set up correctly at this point. | |
1006 | * | |
1007 | * We have exclusion against page_add_anon_rmap because the caller | |
1008 | * always holds the page locked, except if called from page_dup_rmap, | |
1009 | * in which case the page is already known to be setup. | |
1010 | * | |
1011 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1012 | * are initially only visible via the pagetables, and the pte is locked | |
1013 | * over the call to page_add_new_anon_rmap. | |
1014 | */ | |
44ab57a0 | 1015 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
c97a9e10 NP |
1016 | BUG_ON(page->index != linear_page_index(vma, address)); |
1017 | #endif | |
1018 | } | |
1019 | ||
1da177e4 LT |
1020 | /** |
1021 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1022 | * @page: the page to add the mapping to | |
1023 | * @vma: the vm area in which the mapping is added | |
1024 | * @address: the user virtual address mapped | |
1025 | * | |
5ad64688 | 1026 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1027 | * the anon_vma case: to serialize mapping,index checking after setting, |
1028 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1029 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1030 | */ |
1031 | void page_add_anon_rmap(struct page *page, | |
1032 | struct vm_area_struct *vma, unsigned long address) | |
ad8c2ee8 RR |
1033 | { |
1034 | do_page_add_anon_rmap(page, vma, address, 0); | |
1035 | } | |
1036 | ||
1037 | /* | |
1038 | * Special version of the above for do_swap_page, which often runs | |
1039 | * into pages that are exclusively owned by the current process. | |
1040 | * Everybody else should continue to use page_add_anon_rmap above. | |
1041 | */ | |
1042 | void do_page_add_anon_rmap(struct page *page, | |
1043 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1da177e4 | 1044 | { |
5ad64688 | 1045 | int first = atomic_inc_and_test(&page->_mapcount); |
79134171 | 1046 | if (first) { |
bea04b07 JZ |
1047 | /* |
1048 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1049 | * these counters are not modified in interrupt context, and | |
1050 | * pte lock(a spinlock) is held, which implies preemption | |
1051 | * disabled. | |
1052 | */ | |
3cd14fcd | 1053 | if (PageTransHuge(page)) |
79134171 AA |
1054 | __inc_zone_page_state(page, |
1055 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
3cd14fcd KS |
1056 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1057 | hpage_nr_pages(page)); | |
79134171 | 1058 | } |
5ad64688 HD |
1059 | if (unlikely(PageKsm(page))) |
1060 | return; | |
1061 | ||
309381fe | 1062 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
5dbe0af4 | 1063 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1064 | if (first) |
ad8c2ee8 | 1065 | __page_set_anon_rmap(page, vma, address, exclusive); |
69029cd5 | 1066 | else |
c97a9e10 | 1067 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1068 | } |
1069 | ||
43d8eac4 | 1070 | /** |
9617d95e NP |
1071 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1072 | * @page: the page to add the mapping to | |
1073 | * @vma: the vm area in which the mapping is added | |
1074 | * @address: the user virtual address mapped | |
1075 | * | |
1076 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1077 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1078 | * Page does not have to be locked. |
9617d95e NP |
1079 | */ |
1080 | void page_add_new_anon_rmap(struct page *page, | |
1081 | struct vm_area_struct *vma, unsigned long address) | |
1082 | { | |
81d1b09c | 1083 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
cbf84b7a HD |
1084 | SetPageSwapBacked(page); |
1085 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
3cd14fcd | 1086 | if (PageTransHuge(page)) |
79134171 | 1087 | __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); |
3cd14fcd KS |
1088 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1089 | hpage_nr_pages(page)); | |
e8a03feb | 1090 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1091 | } |
1092 | ||
1da177e4 LT |
1093 | /** |
1094 | * page_add_file_rmap - add pte mapping to a file page | |
1095 | * @page: the page to add the mapping to | |
1096 | * | |
b8072f09 | 1097 | * The caller needs to hold the pte lock. |
1da177e4 LT |
1098 | */ |
1099 | void page_add_file_rmap(struct page *page) | |
1100 | { | |
d7365e78 | 1101 | struct mem_cgroup *memcg; |
89c06bd5 | 1102 | |
6de22619 | 1103 | memcg = mem_cgroup_begin_page_stat(page); |
d69b042f | 1104 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 1105 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
d7365e78 | 1106 | mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); |
d69b042f | 1107 | } |
6de22619 | 1108 | mem_cgroup_end_page_stat(memcg); |
1da177e4 LT |
1109 | } |
1110 | ||
8186eb6a JW |
1111 | static void page_remove_file_rmap(struct page *page) |
1112 | { | |
1113 | struct mem_cgroup *memcg; | |
8186eb6a | 1114 | |
6de22619 | 1115 | memcg = mem_cgroup_begin_page_stat(page); |
8186eb6a JW |
1116 | |
1117 | /* page still mapped by someone else? */ | |
1118 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1119 | goto out; | |
1120 | ||
1121 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ | |
1122 | if (unlikely(PageHuge(page))) | |
1123 | goto out; | |
1124 | ||
1125 | /* | |
1126 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1127 | * these counters are not modified in interrupt context, and | |
1128 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1129 | */ | |
1130 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
1131 | mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); | |
1132 | ||
1133 | if (unlikely(PageMlocked(page))) | |
1134 | clear_page_mlock(page); | |
1135 | out: | |
6de22619 | 1136 | mem_cgroup_end_page_stat(memcg); |
8186eb6a JW |
1137 | } |
1138 | ||
1da177e4 LT |
1139 | /** |
1140 | * page_remove_rmap - take down pte mapping from a page | |
1141 | * @page: page to remove mapping from | |
1142 | * | |
b8072f09 | 1143 | * The caller needs to hold the pte lock. |
1da177e4 | 1144 | */ |
edc315fd | 1145 | void page_remove_rmap(struct page *page) |
1da177e4 | 1146 | { |
8186eb6a JW |
1147 | if (!PageAnon(page)) { |
1148 | page_remove_file_rmap(page); | |
1149 | return; | |
1150 | } | |
89c06bd5 | 1151 | |
b904dcfe KM |
1152 | /* page still mapped by someone else? */ |
1153 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1154 | return; |
1155 | ||
1156 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1157 | if (unlikely(PageHuge(page))) | |
1158 | return; | |
b904dcfe | 1159 | |
0fe6e20b | 1160 | /* |
bea04b07 JZ |
1161 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1162 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1163 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1164 | */ |
8186eb6a JW |
1165 | if (PageTransHuge(page)) |
1166 | __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); | |
1167 | ||
1168 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, | |
1169 | -hpage_nr_pages(page)); | |
1170 | ||
e6c509f8 HD |
1171 | if (unlikely(PageMlocked(page))) |
1172 | clear_page_mlock(page); | |
8186eb6a | 1173 | |
b904dcfe KM |
1174 | /* |
1175 | * It would be tidy to reset the PageAnon mapping here, | |
1176 | * but that might overwrite a racing page_add_anon_rmap | |
1177 | * which increments mapcount after us but sets mapping | |
1178 | * before us: so leave the reset to free_hot_cold_page, | |
1179 | * and remember that it's only reliable while mapped. | |
1180 | * Leaving it set also helps swapoff to reinstate ptes | |
1181 | * faster for those pages still in swapcache. | |
1182 | */ | |
1da177e4 LT |
1183 | } |
1184 | ||
1185 | /* | |
52629506 | 1186 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1187 | */ |
ac769501 | 1188 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1189 | unsigned long address, void *arg) |
1da177e4 LT |
1190 | { |
1191 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
1192 | pte_t *pte; |
1193 | pte_t pteval; | |
c0718806 | 1194 | spinlock_t *ptl; |
1da177e4 | 1195 | int ret = SWAP_AGAIN; |
52629506 | 1196 | enum ttu_flags flags = (enum ttu_flags)arg; |
1da177e4 | 1197 | |
479db0bf | 1198 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 1199 | if (!pte) |
81b4082d | 1200 | goto out; |
1da177e4 LT |
1201 | |
1202 | /* | |
1203 | * If the page is mlock()d, we cannot swap it out. | |
1204 | * If it's recently referenced (perhaps page_referenced | |
1205 | * skipped over this mm) then we should reactivate it. | |
1206 | */ | |
14fa31b8 | 1207 | if (!(flags & TTU_IGNORE_MLOCK)) { |
caed0f48 KM |
1208 | if (vma->vm_flags & VM_LOCKED) |
1209 | goto out_mlock; | |
1210 | ||
daa5ba76 | 1211 | if (flags & TTU_MUNLOCK) |
53f79acb | 1212 | goto out_unmap; |
14fa31b8 AK |
1213 | } |
1214 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
1215 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1216 | ret = SWAP_FAIL; | |
1217 | goto out_unmap; | |
1218 | } | |
1219 | } | |
1da177e4 | 1220 | |
1da177e4 LT |
1221 | /* Nuke the page table entry. */ |
1222 | flush_cache_page(vma, address, page_to_pfn(page)); | |
2ec74c3e | 1223 | pteval = ptep_clear_flush(vma, address, pte); |
1da177e4 LT |
1224 | |
1225 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1226 | if (pte_dirty(pteval)) | |
1227 | set_page_dirty(page); | |
1228 | ||
365e9c87 HD |
1229 | /* Update high watermark before we lower rss */ |
1230 | update_hiwater_rss(mm); | |
1231 | ||
888b9f7c | 1232 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5f24ae58 NH |
1233 | if (!PageHuge(page)) { |
1234 | if (PageAnon(page)) | |
1235 | dec_mm_counter(mm, MM_ANONPAGES); | |
1236 | else | |
1237 | dec_mm_counter(mm, MM_FILEPAGES); | |
1238 | } | |
888b9f7c | 1239 | set_pte_at(mm, address, pte, |
5f24ae58 | 1240 | swp_entry_to_pte(make_hwpoison_entry(page))); |
45961722 KW |
1241 | } else if (pte_unused(pteval)) { |
1242 | /* | |
1243 | * The guest indicated that the page content is of no | |
1244 | * interest anymore. Simply discard the pte, vmscan | |
1245 | * will take care of the rest. | |
1246 | */ | |
1247 | if (PageAnon(page)) | |
1248 | dec_mm_counter(mm, MM_ANONPAGES); | |
1249 | else | |
1250 | dec_mm_counter(mm, MM_FILEPAGES); | |
888b9f7c | 1251 | } else if (PageAnon(page)) { |
4c21e2f2 | 1252 | swp_entry_t entry = { .val = page_private(page) }; |
179ef71c | 1253 | pte_t swp_pte; |
0697212a CL |
1254 | |
1255 | if (PageSwapCache(page)) { | |
1256 | /* | |
1257 | * Store the swap location in the pte. | |
1258 | * See handle_pte_fault() ... | |
1259 | */ | |
570a335b HD |
1260 | if (swap_duplicate(entry) < 0) { |
1261 | set_pte_at(mm, address, pte, pteval); | |
1262 | ret = SWAP_FAIL; | |
1263 | goto out_unmap; | |
1264 | } | |
0697212a CL |
1265 | if (list_empty(&mm->mmlist)) { |
1266 | spin_lock(&mmlist_lock); | |
1267 | if (list_empty(&mm->mmlist)) | |
1268 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1269 | spin_unlock(&mmlist_lock); | |
1270 | } | |
d559db08 | 1271 | dec_mm_counter(mm, MM_ANONPAGES); |
b084d435 | 1272 | inc_mm_counter(mm, MM_SWAPENTS); |
ce1744f4 | 1273 | } else if (IS_ENABLED(CONFIG_MIGRATION)) { |
0697212a CL |
1274 | /* |
1275 | * Store the pfn of the page in a special migration | |
1276 | * pte. do_swap_page() will wait until the migration | |
1277 | * pte is removed and then restart fault handling. | |
1278 | */ | |
daa5ba76 | 1279 | BUG_ON(!(flags & TTU_MIGRATION)); |
0697212a | 1280 | entry = make_migration_entry(page, pte_write(pteval)); |
1da177e4 | 1281 | } |
179ef71c CG |
1282 | swp_pte = swp_entry_to_pte(entry); |
1283 | if (pte_soft_dirty(pteval)) | |
1284 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1285 | set_pte_at(mm, address, pte, swp_pte); | |
ce1744f4 | 1286 | } else if (IS_ENABLED(CONFIG_MIGRATION) && |
daa5ba76 | 1287 | (flags & TTU_MIGRATION)) { |
04e62a29 CL |
1288 | /* Establish migration entry for a file page */ |
1289 | swp_entry_t entry; | |
1290 | entry = make_migration_entry(page, pte_write(pteval)); | |
1291 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1292 | } else | |
d559db08 | 1293 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 | 1294 | |
edc315fd | 1295 | page_remove_rmap(page); |
1da177e4 LT |
1296 | page_cache_release(page); |
1297 | ||
1298 | out_unmap: | |
c0718806 | 1299 | pte_unmap_unlock(pte, ptl); |
daa5ba76 | 1300 | if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) |
2ec74c3e | 1301 | mmu_notifier_invalidate_page(mm, address); |
caed0f48 KM |
1302 | out: |
1303 | return ret; | |
53f79acb | 1304 | |
caed0f48 KM |
1305 | out_mlock: |
1306 | pte_unmap_unlock(pte, ptl); | |
1307 | ||
1308 | ||
1309 | /* | |
1310 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | |
1311 | * unstable result and race. Plus, We can't wait here because | |
c8c06efa | 1312 | * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem. |
caed0f48 KM |
1313 | * if trylock failed, the page remain in evictable lru and later |
1314 | * vmscan could retry to move the page to unevictable lru if the | |
1315 | * page is actually mlocked. | |
1316 | */ | |
1317 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
1318 | if (vma->vm_flags & VM_LOCKED) { | |
1319 | mlock_vma_page(page); | |
1320 | ret = SWAP_MLOCK; | |
53f79acb | 1321 | } |
caed0f48 | 1322 | up_read(&vma->vm_mm->mmap_sem); |
53f79acb | 1323 | } |
1da177e4 LT |
1324 | return ret; |
1325 | } | |
1326 | ||
71e3aac0 | 1327 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1328 | { |
1329 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1330 | ||
1331 | if (!maybe_stack) | |
1332 | return false; | |
1333 | ||
1334 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1335 | VM_STACK_INCOMPLETE_SETUP) | |
1336 | return true; | |
1337 | ||
1338 | return false; | |
1339 | } | |
1340 | ||
52629506 JK |
1341 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1342 | { | |
1343 | return is_vma_temporary_stack(vma); | |
1344 | } | |
1345 | ||
52629506 JK |
1346 | static int page_not_mapped(struct page *page) |
1347 | { | |
1348 | return !page_mapped(page); | |
1349 | }; | |
1350 | ||
1da177e4 LT |
1351 | /** |
1352 | * try_to_unmap - try to remove all page table mappings to a page | |
1353 | * @page: the page to get unmapped | |
14fa31b8 | 1354 | * @flags: action and flags |
1da177e4 LT |
1355 | * |
1356 | * Tries to remove all the page table entries which are mapping this | |
1357 | * page, used in the pageout path. Caller must hold the page lock. | |
1358 | * Return values are: | |
1359 | * | |
1360 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1361 | * SWAP_AGAIN - we missed a mapping, try again later | |
1362 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1363 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1364 | */ |
14fa31b8 | 1365 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1366 | { |
1367 | int ret; | |
52629506 JK |
1368 | struct rmap_walk_control rwc = { |
1369 | .rmap_one = try_to_unmap_one, | |
1370 | .arg = (void *)flags, | |
1371 | .done = page_not_mapped, | |
52629506 JK |
1372 | .anon_lock = page_lock_anon_vma_read, |
1373 | }; | |
1da177e4 | 1374 | |
309381fe | 1375 | VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); |
1da177e4 | 1376 | |
52629506 JK |
1377 | /* |
1378 | * During exec, a temporary VMA is setup and later moved. | |
1379 | * The VMA is moved under the anon_vma lock but not the | |
1380 | * page tables leading to a race where migration cannot | |
1381 | * find the migration ptes. Rather than increasing the | |
1382 | * locking requirements of exec(), migration skips | |
1383 | * temporary VMAs until after exec() completes. | |
1384 | */ | |
daa5ba76 | 1385 | if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) |
52629506 JK |
1386 | rwc.invalid_vma = invalid_migration_vma; |
1387 | ||
1388 | ret = rmap_walk(page, &rwc); | |
1389 | ||
b291f000 | 1390 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1da177e4 LT |
1391 | ret = SWAP_SUCCESS; |
1392 | return ret; | |
1393 | } | |
81b4082d | 1394 | |
b291f000 NP |
1395 | /** |
1396 | * try_to_munlock - try to munlock a page | |
1397 | * @page: the page to be munlocked | |
1398 | * | |
1399 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1400 | * to make sure nobody else has this page mlocked. The page will be | |
1401 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1402 | * | |
1403 | * Return values are: | |
1404 | * | |
53f79acb | 1405 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1406 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1407 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1408 | * SWAP_MLOCK - page is now mlocked. |
1409 | */ | |
1410 | int try_to_munlock(struct page *page) | |
1411 | { | |
e8351ac9 JK |
1412 | int ret; |
1413 | struct rmap_walk_control rwc = { | |
1414 | .rmap_one = try_to_unmap_one, | |
1415 | .arg = (void *)TTU_MUNLOCK, | |
1416 | .done = page_not_mapped, | |
e8351ac9 JK |
1417 | .anon_lock = page_lock_anon_vma_read, |
1418 | ||
1419 | }; | |
1420 | ||
309381fe | 1421 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
b291f000 | 1422 | |
e8351ac9 JK |
1423 | ret = rmap_walk(page, &rwc); |
1424 | return ret; | |
b291f000 | 1425 | } |
e9995ef9 | 1426 | |
01d8b20d | 1427 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1428 | { |
01d8b20d | 1429 | struct anon_vma *root = anon_vma->root; |
76545066 | 1430 | |
624483f3 | 1431 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1432 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1433 | anon_vma_free(root); | |
76545066 | 1434 | } |
76545066 | 1435 | |
0dd1c7bb JK |
1436 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1437 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1438 | { |
1439 | struct anon_vma *anon_vma; | |
1440 | ||
0dd1c7bb JK |
1441 | if (rwc->anon_lock) |
1442 | return rwc->anon_lock(page); | |
1443 | ||
faecd8dd JK |
1444 | /* |
1445 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1446 | * because that depends on page_mapped(); but not all its usages | |
1447 | * are holding mmap_sem. Users without mmap_sem are required to | |
1448 | * take a reference count to prevent the anon_vma disappearing | |
1449 | */ | |
1450 | anon_vma = page_anon_vma(page); | |
1451 | if (!anon_vma) | |
1452 | return NULL; | |
1453 | ||
1454 | anon_vma_lock_read(anon_vma); | |
1455 | return anon_vma; | |
1456 | } | |
1457 | ||
e9995ef9 | 1458 | /* |
e8351ac9 JK |
1459 | * rmap_walk_anon - do something to anonymous page using the object-based |
1460 | * rmap method | |
1461 | * @page: the page to be handled | |
1462 | * @rwc: control variable according to each walk type | |
1463 | * | |
1464 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1465 | * contained in the anon_vma struct it points to. | |
1466 | * | |
1467 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1468 | * where the page was found will be held for write. So, we won't recheck | |
1469 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1470 | * LOCKED. | |
e9995ef9 | 1471 | */ |
051ac83a | 1472 | static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1473 | { |
1474 | struct anon_vma *anon_vma; | |
b258d860 | 1475 | pgoff_t pgoff; |
5beb4930 | 1476 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1477 | int ret = SWAP_AGAIN; |
1478 | ||
0dd1c7bb | 1479 | anon_vma = rmap_walk_anon_lock(page, rwc); |
e9995ef9 HD |
1480 | if (!anon_vma) |
1481 | return ret; | |
faecd8dd | 1482 | |
b258d860 | 1483 | pgoff = page_to_pgoff(page); |
bf181b9f | 1484 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
5beb4930 | 1485 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1486 | unsigned long address = vma_address(page, vma); |
0dd1c7bb JK |
1487 | |
1488 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | |
1489 | continue; | |
1490 | ||
051ac83a | 1491 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 HD |
1492 | if (ret != SWAP_AGAIN) |
1493 | break; | |
0dd1c7bb JK |
1494 | if (rwc->done && rwc->done(page)) |
1495 | break; | |
e9995ef9 | 1496 | } |
4fc3f1d6 | 1497 | anon_vma_unlock_read(anon_vma); |
e9995ef9 HD |
1498 | return ret; |
1499 | } | |
1500 | ||
e8351ac9 JK |
1501 | /* |
1502 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1503 | * @page: the page to be handled | |
1504 | * @rwc: control variable according to each walk type | |
1505 | * | |
1506 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1507 | * contained in the address_space struct it points to. | |
1508 | * | |
1509 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1510 | * where the page was found will be held for write. So, we won't recheck | |
1511 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1512 | * LOCKED. | |
1513 | */ | |
051ac83a | 1514 | static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1515 | { |
1516 | struct address_space *mapping = page->mapping; | |
b258d860 | 1517 | pgoff_t pgoff; |
e9995ef9 | 1518 | struct vm_area_struct *vma; |
e9995ef9 HD |
1519 | int ret = SWAP_AGAIN; |
1520 | ||
9f32624b JK |
1521 | /* |
1522 | * The page lock not only makes sure that page->mapping cannot | |
1523 | * suddenly be NULLified by truncation, it makes sure that the | |
1524 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1525 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1526 | */ |
81d1b09c | 1527 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1528 | |
e9995ef9 HD |
1529 | if (!mapping) |
1530 | return ret; | |
3dec0ba0 | 1531 | |
b258d860 | 1532 | pgoff = page_to_pgoff(page); |
3dec0ba0 | 1533 | i_mmap_lock_read(mapping); |
6b2dbba8 | 1534 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
e9995ef9 | 1535 | unsigned long address = vma_address(page, vma); |
0dd1c7bb JK |
1536 | |
1537 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | |
1538 | continue; | |
1539 | ||
051ac83a | 1540 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 | 1541 | if (ret != SWAP_AGAIN) |
0dd1c7bb JK |
1542 | goto done; |
1543 | if (rwc->done && rwc->done(page)) | |
1544 | goto done; | |
e9995ef9 | 1545 | } |
0dd1c7bb | 1546 | |
0dd1c7bb | 1547 | done: |
3dec0ba0 | 1548 | i_mmap_unlock_read(mapping); |
e9995ef9 HD |
1549 | return ret; |
1550 | } | |
1551 | ||
051ac83a | 1552 | int rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1553 | { |
e9995ef9 | 1554 | if (unlikely(PageKsm(page))) |
051ac83a | 1555 | return rmap_walk_ksm(page, rwc); |
e9995ef9 | 1556 | else if (PageAnon(page)) |
051ac83a | 1557 | return rmap_walk_anon(page, rwc); |
e9995ef9 | 1558 | else |
051ac83a | 1559 | return rmap_walk_file(page, rwc); |
e9995ef9 | 1560 | } |
0fe6e20b | 1561 | |
e3390f67 | 1562 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1563 | /* |
1564 | * The following three functions are for anonymous (private mapped) hugepages. | |
1565 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1566 | * and no lru code, because we handle hugepages differently from common pages. | |
1567 | */ | |
1568 | static void __hugepage_set_anon_rmap(struct page *page, | |
1569 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1570 | { | |
1571 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1572 | |
0fe6e20b | 1573 | BUG_ON(!anon_vma); |
433abed6 NH |
1574 | |
1575 | if (PageAnon(page)) | |
1576 | return; | |
1577 | if (!exclusive) | |
1578 | anon_vma = anon_vma->root; | |
1579 | ||
0fe6e20b NH |
1580 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1581 | page->mapping = (struct address_space *) anon_vma; | |
1582 | page->index = linear_page_index(vma, address); | |
1583 | } | |
1584 | ||
1585 | void hugepage_add_anon_rmap(struct page *page, | |
1586 | struct vm_area_struct *vma, unsigned long address) | |
1587 | { | |
1588 | struct anon_vma *anon_vma = vma->anon_vma; | |
1589 | int first; | |
a850ea30 NH |
1590 | |
1591 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1592 | BUG_ON(!anon_vma); |
5dbe0af4 | 1593 | /* address might be in next vma when migration races vma_adjust */ |
0fe6e20b NH |
1594 | first = atomic_inc_and_test(&page->_mapcount); |
1595 | if (first) | |
1596 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1597 | } | |
1598 | ||
1599 | void hugepage_add_new_anon_rmap(struct page *page, | |
1600 | struct vm_area_struct *vma, unsigned long address) | |
1601 | { | |
1602 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1603 | atomic_set(&page->_mapcount, 0); | |
1604 | __hugepage_set_anon_rmap(page, vma, address, 1); | |
1605 | } | |
e3390f67 | 1606 | #endif /* CONFIG_HUGETLB_PAGE */ |