]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 LT |
2 | /* |
3 | * linux/mm/vmscan.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
6 | * | |
7 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
8 | * kswapd added: 7.1.96 sct | |
9 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
10 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
11 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
12 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
13 | */ | |
14 | ||
b1de0d13 MH |
15 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
16 | ||
1da177e4 | 17 | #include <linux/mm.h> |
5b3cc15a | 18 | #include <linux/sched/mm.h> |
1da177e4 | 19 | #include <linux/module.h> |
5a0e3ad6 | 20 | #include <linux/gfp.h> |
1da177e4 LT |
21 | #include <linux/kernel_stat.h> |
22 | #include <linux/swap.h> | |
23 | #include <linux/pagemap.h> | |
24 | #include <linux/init.h> | |
25 | #include <linux/highmem.h> | |
70ddf637 | 26 | #include <linux/vmpressure.h> |
e129b5c2 | 27 | #include <linux/vmstat.h> |
1da177e4 LT |
28 | #include <linux/file.h> |
29 | #include <linux/writeback.h> | |
30 | #include <linux/blkdev.h> | |
31 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
32 | buffer_heads_over_limit */ | |
33 | #include <linux/mm_inline.h> | |
1da177e4 LT |
34 | #include <linux/backing-dev.h> |
35 | #include <linux/rmap.h> | |
36 | #include <linux/topology.h> | |
37 | #include <linux/cpu.h> | |
38 | #include <linux/cpuset.h> | |
3e7d3449 | 39 | #include <linux/compaction.h> |
1da177e4 LT |
40 | #include <linux/notifier.h> |
41 | #include <linux/rwsem.h> | |
248a0301 | 42 | #include <linux/delay.h> |
3218ae14 | 43 | #include <linux/kthread.h> |
7dfb7103 | 44 | #include <linux/freezer.h> |
66e1707b | 45 | #include <linux/memcontrol.h> |
873b4771 | 46 | #include <linux/delayacct.h> |
af936a16 | 47 | #include <linux/sysctl.h> |
929bea7c | 48 | #include <linux/oom.h> |
64e3d12f | 49 | #include <linux/pagevec.h> |
268bb0ce | 50 | #include <linux/prefetch.h> |
b1de0d13 | 51 | #include <linux/printk.h> |
f9fe48be | 52 | #include <linux/dax.h> |
eb414681 | 53 | #include <linux/psi.h> |
1da177e4 LT |
54 | |
55 | #include <asm/tlbflush.h> | |
56 | #include <asm/div64.h> | |
57 | ||
58 | #include <linux/swapops.h> | |
117aad1e | 59 | #include <linux/balloon_compaction.h> |
1da177e4 | 60 | |
0f8053a5 NP |
61 | #include "internal.h" |
62 | ||
33906bc5 MG |
63 | #define CREATE_TRACE_POINTS |
64 | #include <trace/events/vmscan.h> | |
65 | ||
1da177e4 | 66 | struct scan_control { |
22fba335 KM |
67 | /* How many pages shrink_list() should reclaim */ |
68 | unsigned long nr_to_reclaim; | |
69 | ||
ee814fe2 JW |
70 | /* |
71 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
72 | * are scanned. | |
73 | */ | |
74 | nodemask_t *nodemask; | |
9e3b2f8c | 75 | |
f16015fb JW |
76 | /* |
77 | * The memory cgroup that hit its limit and as a result is the | |
78 | * primary target of this reclaim invocation. | |
79 | */ | |
80 | struct mem_cgroup *target_mem_cgroup; | |
66e1707b | 81 | |
1276ad68 | 82 | /* Writepage batching in laptop mode; RECLAIM_WRITE */ |
ee814fe2 JW |
83 | unsigned int may_writepage:1; |
84 | ||
85 | /* Can mapped pages be reclaimed? */ | |
86 | unsigned int may_unmap:1; | |
87 | ||
88 | /* Can pages be swapped as part of reclaim? */ | |
89 | unsigned int may_swap:1; | |
90 | ||
1c30844d MG |
91 | /* e.g. boosted watermark reclaim leaves slabs alone */ |
92 | unsigned int may_shrinkslab:1; | |
93 | ||
d6622f63 YX |
94 | /* |
95 | * Cgroups are not reclaimed below their configured memory.low, | |
96 | * unless we threaten to OOM. If any cgroups are skipped due to | |
97 | * memory.low and nothing was reclaimed, go back for memory.low. | |
98 | */ | |
99 | unsigned int memcg_low_reclaim:1; | |
100 | unsigned int memcg_low_skipped:1; | |
241994ed | 101 | |
ee814fe2 JW |
102 | unsigned int hibernation_mode:1; |
103 | ||
104 | /* One of the zones is ready for compaction */ | |
105 | unsigned int compaction_ready:1; | |
106 | ||
bb451fdf GT |
107 | /* Allocation order */ |
108 | s8 order; | |
109 | ||
110 | /* Scan (total_size >> priority) pages at once */ | |
111 | s8 priority; | |
112 | ||
113 | /* The highest zone to isolate pages for reclaim from */ | |
114 | s8 reclaim_idx; | |
115 | ||
116 | /* This context's GFP mask */ | |
117 | gfp_t gfp_mask; | |
118 | ||
ee814fe2 JW |
119 | /* Incremented by the number of inactive pages that were scanned */ |
120 | unsigned long nr_scanned; | |
121 | ||
122 | /* Number of pages freed so far during a call to shrink_zones() */ | |
123 | unsigned long nr_reclaimed; | |
d108c772 AR |
124 | |
125 | struct { | |
126 | unsigned int dirty; | |
127 | unsigned int unqueued_dirty; | |
128 | unsigned int congested; | |
129 | unsigned int writeback; | |
130 | unsigned int immediate; | |
131 | unsigned int file_taken; | |
132 | unsigned int taken; | |
133 | } nr; | |
1da177e4 LT |
134 | }; |
135 | ||
1da177e4 LT |
136 | #ifdef ARCH_HAS_PREFETCH |
137 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
138 | do { \ | |
139 | if ((_page)->lru.prev != _base) { \ | |
140 | struct page *prev; \ | |
141 | \ | |
142 | prev = lru_to_page(&(_page->lru)); \ | |
143 | prefetch(&prev->_field); \ | |
144 | } \ | |
145 | } while (0) | |
146 | #else | |
147 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
148 | #endif | |
149 | ||
150 | #ifdef ARCH_HAS_PREFETCHW | |
151 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
152 | do { \ | |
153 | if ((_page)->lru.prev != _base) { \ | |
154 | struct page *prev; \ | |
155 | \ | |
156 | prev = lru_to_page(&(_page->lru)); \ | |
157 | prefetchw(&prev->_field); \ | |
158 | } \ | |
159 | } while (0) | |
160 | #else | |
161 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
162 | #endif | |
163 | ||
164 | /* | |
165 | * From 0 .. 100. Higher means more swappy. | |
166 | */ | |
167 | int vm_swappiness = 60; | |
d0480be4 WSH |
168 | /* |
169 | * The total number of pages which are beyond the high watermark within all | |
170 | * zones. | |
171 | */ | |
172 | unsigned long vm_total_pages; | |
1da177e4 LT |
173 | |
174 | static LIST_HEAD(shrinker_list); | |
175 | static DECLARE_RWSEM(shrinker_rwsem); | |
176 | ||
b4c2b231 | 177 | #ifdef CONFIG_MEMCG_KMEM |
7e010df5 KT |
178 | |
179 | /* | |
180 | * We allow subsystems to populate their shrinker-related | |
181 | * LRU lists before register_shrinker_prepared() is called | |
182 | * for the shrinker, since we don't want to impose | |
183 | * restrictions on their internal registration order. | |
184 | * In this case shrink_slab_memcg() may find corresponding | |
185 | * bit is set in the shrinkers map. | |
186 | * | |
187 | * This value is used by the function to detect registering | |
188 | * shrinkers and to skip do_shrink_slab() calls for them. | |
189 | */ | |
190 | #define SHRINKER_REGISTERING ((struct shrinker *)~0UL) | |
191 | ||
b4c2b231 KT |
192 | static DEFINE_IDR(shrinker_idr); |
193 | static int shrinker_nr_max; | |
194 | ||
195 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) | |
196 | { | |
197 | int id, ret = -ENOMEM; | |
198 | ||
199 | down_write(&shrinker_rwsem); | |
200 | /* This may call shrinker, so it must use down_read_trylock() */ | |
7e010df5 | 201 | id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL); |
b4c2b231 KT |
202 | if (id < 0) |
203 | goto unlock; | |
204 | ||
0a4465d3 KT |
205 | if (id >= shrinker_nr_max) { |
206 | if (memcg_expand_shrinker_maps(id)) { | |
207 | idr_remove(&shrinker_idr, id); | |
208 | goto unlock; | |
209 | } | |
210 | ||
b4c2b231 | 211 | shrinker_nr_max = id + 1; |
0a4465d3 | 212 | } |
b4c2b231 KT |
213 | shrinker->id = id; |
214 | ret = 0; | |
215 | unlock: | |
216 | up_write(&shrinker_rwsem); | |
217 | return ret; | |
218 | } | |
219 | ||
220 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | |
221 | { | |
222 | int id = shrinker->id; | |
223 | ||
224 | BUG_ON(id < 0); | |
225 | ||
226 | down_write(&shrinker_rwsem); | |
227 | idr_remove(&shrinker_idr, id); | |
228 | up_write(&shrinker_rwsem); | |
229 | } | |
230 | #else /* CONFIG_MEMCG_KMEM */ | |
231 | static int prealloc_memcg_shrinker(struct shrinker *shrinker) | |
232 | { | |
233 | return 0; | |
234 | } | |
235 | ||
236 | static void unregister_memcg_shrinker(struct shrinker *shrinker) | |
237 | { | |
238 | } | |
239 | #endif /* CONFIG_MEMCG_KMEM */ | |
240 | ||
c255a458 | 241 | #ifdef CONFIG_MEMCG |
89b5fae5 JW |
242 | static bool global_reclaim(struct scan_control *sc) |
243 | { | |
f16015fb | 244 | return !sc->target_mem_cgroup; |
89b5fae5 | 245 | } |
97c9341f TH |
246 | |
247 | /** | |
248 | * sane_reclaim - is the usual dirty throttling mechanism operational? | |
249 | * @sc: scan_control in question | |
250 | * | |
251 | * The normal page dirty throttling mechanism in balance_dirty_pages() is | |
252 | * completely broken with the legacy memcg and direct stalling in | |
253 | * shrink_page_list() is used for throttling instead, which lacks all the | |
254 | * niceties such as fairness, adaptive pausing, bandwidth proportional | |
255 | * allocation and configurability. | |
256 | * | |
257 | * This function tests whether the vmscan currently in progress can assume | |
258 | * that the normal dirty throttling mechanism is operational. | |
259 | */ | |
260 | static bool sane_reclaim(struct scan_control *sc) | |
261 | { | |
262 | struct mem_cgroup *memcg = sc->target_mem_cgroup; | |
263 | ||
264 | if (!memcg) | |
265 | return true; | |
266 | #ifdef CONFIG_CGROUP_WRITEBACK | |
69234ace | 267 | if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) |
97c9341f TH |
268 | return true; |
269 | #endif | |
270 | return false; | |
271 | } | |
e3c1ac58 AR |
272 | |
273 | static void set_memcg_congestion(pg_data_t *pgdat, | |
274 | struct mem_cgroup *memcg, | |
275 | bool congested) | |
276 | { | |
277 | struct mem_cgroup_per_node *mn; | |
278 | ||
279 | if (!memcg) | |
280 | return; | |
281 | ||
282 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | |
283 | WRITE_ONCE(mn->congested, congested); | |
284 | } | |
285 | ||
286 | static bool memcg_congested(pg_data_t *pgdat, | |
287 | struct mem_cgroup *memcg) | |
288 | { | |
289 | struct mem_cgroup_per_node *mn; | |
290 | ||
291 | mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id); | |
292 | return READ_ONCE(mn->congested); | |
293 | ||
294 | } | |
91a45470 | 295 | #else |
89b5fae5 JW |
296 | static bool global_reclaim(struct scan_control *sc) |
297 | { | |
298 | return true; | |
299 | } | |
97c9341f TH |
300 | |
301 | static bool sane_reclaim(struct scan_control *sc) | |
302 | { | |
303 | return true; | |
304 | } | |
e3c1ac58 AR |
305 | |
306 | static inline void set_memcg_congestion(struct pglist_data *pgdat, | |
307 | struct mem_cgroup *memcg, bool congested) | |
308 | { | |
309 | } | |
310 | ||
311 | static inline bool memcg_congested(struct pglist_data *pgdat, | |
312 | struct mem_cgroup *memcg) | |
313 | { | |
314 | return false; | |
315 | ||
316 | } | |
91a45470 KH |
317 | #endif |
318 | ||
5a1c84b4 MG |
319 | /* |
320 | * This misses isolated pages which are not accounted for to save counters. | |
321 | * As the data only determines if reclaim or compaction continues, it is | |
322 | * not expected that isolated pages will be a dominating factor. | |
323 | */ | |
324 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
325 | { | |
326 | unsigned long nr; | |
327 | ||
328 | nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) + | |
329 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE); | |
330 | if (get_nr_swap_pages() > 0) | |
331 | nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) + | |
332 | zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON); | |
333 | ||
334 | return nr; | |
335 | } | |
336 | ||
fd538803 MH |
337 | /** |
338 | * lruvec_lru_size - Returns the number of pages on the given LRU list. | |
339 | * @lruvec: lru vector | |
340 | * @lru: lru to use | |
341 | * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list) | |
342 | */ | |
343 | unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx) | |
c9f299d9 | 344 | { |
fd538803 MH |
345 | unsigned long lru_size; |
346 | int zid; | |
347 | ||
c3c787e8 | 348 | if (!mem_cgroup_disabled()) |
fd538803 MH |
349 | lru_size = mem_cgroup_get_lru_size(lruvec, lru); |
350 | else | |
351 | lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru); | |
a3d8e054 | 352 | |
fd538803 MH |
353 | for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) { |
354 | struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid]; | |
355 | unsigned long size; | |
c9f299d9 | 356 | |
fd538803 MH |
357 | if (!managed_zone(zone)) |
358 | continue; | |
359 | ||
360 | if (!mem_cgroup_disabled()) | |
361 | size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid); | |
362 | else | |
363 | size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid], | |
364 | NR_ZONE_LRU_BASE + lru); | |
365 | lru_size -= min(size, lru_size); | |
366 | } | |
367 | ||
368 | return lru_size; | |
b4536f0c | 369 | |
b4536f0c MH |
370 | } |
371 | ||
1da177e4 | 372 | /* |
1d3d4437 | 373 | * Add a shrinker callback to be called from the vm. |
1da177e4 | 374 | */ |
8e04944f | 375 | int prealloc_shrinker(struct shrinker *shrinker) |
1da177e4 | 376 | { |
b9726c26 | 377 | unsigned int size = sizeof(*shrinker->nr_deferred); |
1d3d4437 | 378 | |
1d3d4437 GC |
379 | if (shrinker->flags & SHRINKER_NUMA_AWARE) |
380 | size *= nr_node_ids; | |
381 | ||
382 | shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); | |
383 | if (!shrinker->nr_deferred) | |
384 | return -ENOMEM; | |
b4c2b231 KT |
385 | |
386 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) { | |
387 | if (prealloc_memcg_shrinker(shrinker)) | |
388 | goto free_deferred; | |
389 | } | |
390 | ||
8e04944f | 391 | return 0; |
b4c2b231 KT |
392 | |
393 | free_deferred: | |
394 | kfree(shrinker->nr_deferred); | |
395 | shrinker->nr_deferred = NULL; | |
396 | return -ENOMEM; | |
8e04944f TH |
397 | } |
398 | ||
399 | void free_prealloced_shrinker(struct shrinker *shrinker) | |
400 | { | |
b4c2b231 KT |
401 | if (!shrinker->nr_deferred) |
402 | return; | |
403 | ||
404 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) | |
405 | unregister_memcg_shrinker(shrinker); | |
406 | ||
8e04944f TH |
407 | kfree(shrinker->nr_deferred); |
408 | shrinker->nr_deferred = NULL; | |
409 | } | |
1d3d4437 | 410 | |
8e04944f TH |
411 | void register_shrinker_prepared(struct shrinker *shrinker) |
412 | { | |
8e1f936b RR |
413 | down_write(&shrinker_rwsem); |
414 | list_add_tail(&shrinker->list, &shrinker_list); | |
7e010df5 | 415 | #ifdef CONFIG_MEMCG_KMEM |
8df4a44c KT |
416 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) |
417 | idr_replace(&shrinker_idr, shrinker, shrinker->id); | |
7e010df5 | 418 | #endif |
8e1f936b | 419 | up_write(&shrinker_rwsem); |
8e04944f TH |
420 | } |
421 | ||
422 | int register_shrinker(struct shrinker *shrinker) | |
423 | { | |
424 | int err = prealloc_shrinker(shrinker); | |
425 | ||
426 | if (err) | |
427 | return err; | |
428 | register_shrinker_prepared(shrinker); | |
1d3d4437 | 429 | return 0; |
1da177e4 | 430 | } |
8e1f936b | 431 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
432 | |
433 | /* | |
434 | * Remove one | |
435 | */ | |
8e1f936b | 436 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 | 437 | { |
bb422a73 TH |
438 | if (!shrinker->nr_deferred) |
439 | return; | |
b4c2b231 KT |
440 | if (shrinker->flags & SHRINKER_MEMCG_AWARE) |
441 | unregister_memcg_shrinker(shrinker); | |
1da177e4 LT |
442 | down_write(&shrinker_rwsem); |
443 | list_del(&shrinker->list); | |
444 | up_write(&shrinker_rwsem); | |
ae393321 | 445 | kfree(shrinker->nr_deferred); |
bb422a73 | 446 | shrinker->nr_deferred = NULL; |
1da177e4 | 447 | } |
8e1f936b | 448 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 LT |
449 | |
450 | #define SHRINK_BATCH 128 | |
1d3d4437 | 451 | |
cb731d6c | 452 | static unsigned long do_shrink_slab(struct shrink_control *shrinkctl, |
9092c71b | 453 | struct shrinker *shrinker, int priority) |
1d3d4437 GC |
454 | { |
455 | unsigned long freed = 0; | |
456 | unsigned long long delta; | |
457 | long total_scan; | |
d5bc5fd3 | 458 | long freeable; |
1d3d4437 GC |
459 | long nr; |
460 | long new_nr; | |
461 | int nid = shrinkctl->nid; | |
462 | long batch_size = shrinker->batch ? shrinker->batch | |
463 | : SHRINK_BATCH; | |
5f33a080 | 464 | long scanned = 0, next_deferred; |
1d3d4437 | 465 | |
ac7fb3ad KT |
466 | if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) |
467 | nid = 0; | |
468 | ||
d5bc5fd3 | 469 | freeable = shrinker->count_objects(shrinker, shrinkctl); |
9b996468 KT |
470 | if (freeable == 0 || freeable == SHRINK_EMPTY) |
471 | return freeable; | |
1d3d4437 GC |
472 | |
473 | /* | |
474 | * copy the current shrinker scan count into a local variable | |
475 | * and zero it so that other concurrent shrinker invocations | |
476 | * don't also do this scanning work. | |
477 | */ | |
478 | nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); | |
479 | ||
480 | total_scan = nr; | |
4b85afbd JW |
481 | if (shrinker->seeks) { |
482 | delta = freeable >> priority; | |
483 | delta *= 4; | |
484 | do_div(delta, shrinker->seeks); | |
485 | } else { | |
486 | /* | |
487 | * These objects don't require any IO to create. Trim | |
488 | * them aggressively under memory pressure to keep | |
489 | * them from causing refetches in the IO caches. | |
490 | */ | |
491 | delta = freeable / 2; | |
492 | } | |
172b06c3 | 493 | |
1d3d4437 GC |
494 | total_scan += delta; |
495 | if (total_scan < 0) { | |
d75f773c | 496 | pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n", |
a0b02131 | 497 | shrinker->scan_objects, total_scan); |
d5bc5fd3 | 498 | total_scan = freeable; |
5f33a080 SL |
499 | next_deferred = nr; |
500 | } else | |
501 | next_deferred = total_scan; | |
1d3d4437 GC |
502 | |
503 | /* | |
504 | * We need to avoid excessive windup on filesystem shrinkers | |
505 | * due to large numbers of GFP_NOFS allocations causing the | |
506 | * shrinkers to return -1 all the time. This results in a large | |
507 | * nr being built up so when a shrink that can do some work | |
508 | * comes along it empties the entire cache due to nr >>> | |
d5bc5fd3 | 509 | * freeable. This is bad for sustaining a working set in |
1d3d4437 GC |
510 | * memory. |
511 | * | |
512 | * Hence only allow the shrinker to scan the entire cache when | |
513 | * a large delta change is calculated directly. | |
514 | */ | |
d5bc5fd3 VD |
515 | if (delta < freeable / 4) |
516 | total_scan = min(total_scan, freeable / 2); | |
1d3d4437 GC |
517 | |
518 | /* | |
519 | * Avoid risking looping forever due to too large nr value: | |
520 | * never try to free more than twice the estimate number of | |
521 | * freeable entries. | |
522 | */ | |
d5bc5fd3 VD |
523 | if (total_scan > freeable * 2) |
524 | total_scan = freeable * 2; | |
1d3d4437 GC |
525 | |
526 | trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, | |
9092c71b | 527 | freeable, delta, total_scan, priority); |
1d3d4437 | 528 | |
0b1fb40a VD |
529 | /* |
530 | * Normally, we should not scan less than batch_size objects in one | |
531 | * pass to avoid too frequent shrinker calls, but if the slab has less | |
532 | * than batch_size objects in total and we are really tight on memory, | |
533 | * we will try to reclaim all available objects, otherwise we can end | |
534 | * up failing allocations although there are plenty of reclaimable | |
535 | * objects spread over several slabs with usage less than the | |
536 | * batch_size. | |
537 | * | |
538 | * We detect the "tight on memory" situations by looking at the total | |
539 | * number of objects we want to scan (total_scan). If it is greater | |
d5bc5fd3 | 540 | * than the total number of objects on slab (freeable), we must be |
0b1fb40a VD |
541 | * scanning at high prio and therefore should try to reclaim as much as |
542 | * possible. | |
543 | */ | |
544 | while (total_scan >= batch_size || | |
d5bc5fd3 | 545 | total_scan >= freeable) { |
a0b02131 | 546 | unsigned long ret; |
0b1fb40a | 547 | unsigned long nr_to_scan = min(batch_size, total_scan); |
1d3d4437 | 548 | |
0b1fb40a | 549 | shrinkctl->nr_to_scan = nr_to_scan; |
d460acb5 | 550 | shrinkctl->nr_scanned = nr_to_scan; |
a0b02131 DC |
551 | ret = shrinker->scan_objects(shrinker, shrinkctl); |
552 | if (ret == SHRINK_STOP) | |
553 | break; | |
554 | freed += ret; | |
1d3d4437 | 555 | |
d460acb5 CW |
556 | count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned); |
557 | total_scan -= shrinkctl->nr_scanned; | |
558 | scanned += shrinkctl->nr_scanned; | |
1d3d4437 GC |
559 | |
560 | cond_resched(); | |
561 | } | |
562 | ||
5f33a080 SL |
563 | if (next_deferred >= scanned) |
564 | next_deferred -= scanned; | |
565 | else | |
566 | next_deferred = 0; | |
1d3d4437 GC |
567 | /* |
568 | * move the unused scan count back into the shrinker in a | |
569 | * manner that handles concurrent updates. If we exhausted the | |
570 | * scan, there is no need to do an update. | |
571 | */ | |
5f33a080 SL |
572 | if (next_deferred > 0) |
573 | new_nr = atomic_long_add_return(next_deferred, | |
1d3d4437 GC |
574 | &shrinker->nr_deferred[nid]); |
575 | else | |
576 | new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); | |
577 | ||
df9024a8 | 578 | trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan); |
1d3d4437 | 579 | return freed; |
1495f230 YH |
580 | } |
581 | ||
b0dedc49 KT |
582 | #ifdef CONFIG_MEMCG_KMEM |
583 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, | |
584 | struct mem_cgroup *memcg, int priority) | |
585 | { | |
586 | struct memcg_shrinker_map *map; | |
b8e57efa KT |
587 | unsigned long ret, freed = 0; |
588 | int i; | |
b0dedc49 KT |
589 | |
590 | if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)) | |
591 | return 0; | |
592 | ||
593 | if (!down_read_trylock(&shrinker_rwsem)) | |
594 | return 0; | |
595 | ||
596 | map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map, | |
597 | true); | |
598 | if (unlikely(!map)) | |
599 | goto unlock; | |
600 | ||
601 | for_each_set_bit(i, map->map, shrinker_nr_max) { | |
602 | struct shrink_control sc = { | |
603 | .gfp_mask = gfp_mask, | |
604 | .nid = nid, | |
605 | .memcg = memcg, | |
606 | }; | |
607 | struct shrinker *shrinker; | |
608 | ||
609 | shrinker = idr_find(&shrinker_idr, i); | |
7e010df5 KT |
610 | if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) { |
611 | if (!shrinker) | |
612 | clear_bit(i, map->map); | |
b0dedc49 KT |
613 | continue; |
614 | } | |
615 | ||
b0dedc49 | 616 | ret = do_shrink_slab(&sc, shrinker, priority); |
f90280d6 KT |
617 | if (ret == SHRINK_EMPTY) { |
618 | clear_bit(i, map->map); | |
619 | /* | |
620 | * After the shrinker reported that it had no objects to | |
621 | * free, but before we cleared the corresponding bit in | |
622 | * the memcg shrinker map, a new object might have been | |
623 | * added. To make sure, we have the bit set in this | |
624 | * case, we invoke the shrinker one more time and reset | |
625 | * the bit if it reports that it is not empty anymore. | |
626 | * The memory barrier here pairs with the barrier in | |
627 | * memcg_set_shrinker_bit(): | |
628 | * | |
629 | * list_lru_add() shrink_slab_memcg() | |
630 | * list_add_tail() clear_bit() | |
631 | * <MB> <MB> | |
632 | * set_bit() do_shrink_slab() | |
633 | */ | |
634 | smp_mb__after_atomic(); | |
635 | ret = do_shrink_slab(&sc, shrinker, priority); | |
636 | if (ret == SHRINK_EMPTY) | |
637 | ret = 0; | |
638 | else | |
639 | memcg_set_shrinker_bit(memcg, nid, i); | |
640 | } | |
b0dedc49 KT |
641 | freed += ret; |
642 | ||
643 | if (rwsem_is_contended(&shrinker_rwsem)) { | |
644 | freed = freed ? : 1; | |
645 | break; | |
646 | } | |
647 | } | |
648 | unlock: | |
649 | up_read(&shrinker_rwsem); | |
650 | return freed; | |
651 | } | |
652 | #else /* CONFIG_MEMCG_KMEM */ | |
653 | static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid, | |
654 | struct mem_cgroup *memcg, int priority) | |
655 | { | |
656 | return 0; | |
657 | } | |
658 | #endif /* CONFIG_MEMCG_KMEM */ | |
659 | ||
6b4f7799 | 660 | /** |
cb731d6c | 661 | * shrink_slab - shrink slab caches |
6b4f7799 JW |
662 | * @gfp_mask: allocation context |
663 | * @nid: node whose slab caches to target | |
cb731d6c | 664 | * @memcg: memory cgroup whose slab caches to target |
9092c71b | 665 | * @priority: the reclaim priority |
1da177e4 | 666 | * |
6b4f7799 | 667 | * Call the shrink functions to age shrinkable caches. |
1da177e4 | 668 | * |
6b4f7799 JW |
669 | * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set, |
670 | * unaware shrinkers will receive a node id of 0 instead. | |
1da177e4 | 671 | * |
aeed1d32 VD |
672 | * @memcg specifies the memory cgroup to target. Unaware shrinkers |
673 | * are called only if it is the root cgroup. | |
cb731d6c | 674 | * |
9092c71b JB |
675 | * @priority is sc->priority, we take the number of objects and >> by priority |
676 | * in order to get the scan target. | |
b15e0905 | 677 | * |
6b4f7799 | 678 | * Returns the number of reclaimed slab objects. |
1da177e4 | 679 | */ |
cb731d6c VD |
680 | static unsigned long shrink_slab(gfp_t gfp_mask, int nid, |
681 | struct mem_cgroup *memcg, | |
9092c71b | 682 | int priority) |
1da177e4 | 683 | { |
b8e57efa | 684 | unsigned long ret, freed = 0; |
1da177e4 LT |
685 | struct shrinker *shrinker; |
686 | ||
aeed1d32 | 687 | if (!mem_cgroup_is_root(memcg)) |
b0dedc49 | 688 | return shrink_slab_memcg(gfp_mask, nid, memcg, priority); |
cb731d6c | 689 | |
e830c63a | 690 | if (!down_read_trylock(&shrinker_rwsem)) |
f06590bd | 691 | goto out; |
1da177e4 LT |
692 | |
693 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
6b4f7799 JW |
694 | struct shrink_control sc = { |
695 | .gfp_mask = gfp_mask, | |
696 | .nid = nid, | |
cb731d6c | 697 | .memcg = memcg, |
6b4f7799 | 698 | }; |
ec97097b | 699 | |
9b996468 KT |
700 | ret = do_shrink_slab(&sc, shrinker, priority); |
701 | if (ret == SHRINK_EMPTY) | |
702 | ret = 0; | |
703 | freed += ret; | |
e496612c MK |
704 | /* |
705 | * Bail out if someone want to register a new shrinker to | |
706 | * prevent the regsitration from being stalled for long periods | |
707 | * by parallel ongoing shrinking. | |
708 | */ | |
709 | if (rwsem_is_contended(&shrinker_rwsem)) { | |
710 | freed = freed ? : 1; | |
711 | break; | |
712 | } | |
1da177e4 | 713 | } |
6b4f7799 | 714 | |
1da177e4 | 715 | up_read(&shrinker_rwsem); |
f06590bd MK |
716 | out: |
717 | cond_resched(); | |
24f7c6b9 | 718 | return freed; |
1da177e4 LT |
719 | } |
720 | ||
cb731d6c VD |
721 | void drop_slab_node(int nid) |
722 | { | |
723 | unsigned long freed; | |
724 | ||
725 | do { | |
726 | struct mem_cgroup *memcg = NULL; | |
727 | ||
728 | freed = 0; | |
aeed1d32 | 729 | memcg = mem_cgroup_iter(NULL, NULL, NULL); |
cb731d6c | 730 | do { |
9092c71b | 731 | freed += shrink_slab(GFP_KERNEL, nid, memcg, 0); |
cb731d6c VD |
732 | } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL); |
733 | } while (freed > 10); | |
734 | } | |
735 | ||
736 | void drop_slab(void) | |
737 | { | |
738 | int nid; | |
739 | ||
740 | for_each_online_node(nid) | |
741 | drop_slab_node(nid); | |
742 | } | |
743 | ||
1da177e4 LT |
744 | static inline int is_page_cache_freeable(struct page *page) |
745 | { | |
ceddc3a5 JW |
746 | /* |
747 | * A freeable page cache page is referenced only by the caller | |
67891fff MW |
748 | * that isolated the page, the page cache and optional buffer |
749 | * heads at page->private. | |
ceddc3a5 | 750 | */ |
67891fff | 751 | int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ? |
bd4c82c2 | 752 | HPAGE_PMD_NR : 1; |
67891fff | 753 | return page_count(page) - page_has_private(page) == 1 + page_cache_pins; |
1da177e4 LT |
754 | } |
755 | ||
703c2708 | 756 | static int may_write_to_inode(struct inode *inode, struct scan_control *sc) |
1da177e4 | 757 | { |
930d9152 | 758 | if (current->flags & PF_SWAPWRITE) |
1da177e4 | 759 | return 1; |
703c2708 | 760 | if (!inode_write_congested(inode)) |
1da177e4 | 761 | return 1; |
703c2708 | 762 | if (inode_to_bdi(inode) == current->backing_dev_info) |
1da177e4 LT |
763 | return 1; |
764 | return 0; | |
765 | } | |
766 | ||
767 | /* | |
768 | * We detected a synchronous write error writing a page out. Probably | |
769 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
770 | * fsync(), msync() or close(). | |
771 | * | |
772 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
773 | * prevents it from being freed up. But we have a ref on the page and once | |
774 | * that page is locked, the mapping is pinned. | |
775 | * | |
776 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
777 | * __GFP_FS. | |
778 | */ | |
779 | static void handle_write_error(struct address_space *mapping, | |
780 | struct page *page, int error) | |
781 | { | |
7eaceacc | 782 | lock_page(page); |
3e9f45bd GC |
783 | if (page_mapping(page) == mapping) |
784 | mapping_set_error(mapping, error); | |
1da177e4 LT |
785 | unlock_page(page); |
786 | } | |
787 | ||
04e62a29 CL |
788 | /* possible outcome of pageout() */ |
789 | typedef enum { | |
790 | /* failed to write page out, page is locked */ | |
791 | PAGE_KEEP, | |
792 | /* move page to the active list, page is locked */ | |
793 | PAGE_ACTIVATE, | |
794 | /* page has been sent to the disk successfully, page is unlocked */ | |
795 | PAGE_SUCCESS, | |
796 | /* page is clean and locked */ | |
797 | PAGE_CLEAN, | |
798 | } pageout_t; | |
799 | ||
1da177e4 | 800 | /* |
1742f19f AM |
801 | * pageout is called by shrink_page_list() for each dirty page. |
802 | * Calls ->writepage(). | |
1da177e4 | 803 | */ |
c661b078 | 804 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
7d3579e8 | 805 | struct scan_control *sc) |
1da177e4 LT |
806 | { |
807 | /* | |
808 | * If the page is dirty, only perform writeback if that write | |
809 | * will be non-blocking. To prevent this allocation from being | |
810 | * stalled by pagecache activity. But note that there may be | |
811 | * stalls if we need to run get_block(). We could test | |
812 | * PagePrivate for that. | |
813 | * | |
8174202b | 814 | * If this process is currently in __generic_file_write_iter() against |
1da177e4 LT |
815 | * this page's queue, we can perform writeback even if that |
816 | * will block. | |
817 | * | |
818 | * If the page is swapcache, write it back even if that would | |
819 | * block, for some throttling. This happens by accident, because | |
820 | * swap_backing_dev_info is bust: it doesn't reflect the | |
821 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1da177e4 LT |
822 | */ |
823 | if (!is_page_cache_freeable(page)) | |
824 | return PAGE_KEEP; | |
825 | if (!mapping) { | |
826 | /* | |
827 | * Some data journaling orphaned pages can have | |
828 | * page->mapping == NULL while being dirty with clean buffers. | |
829 | */ | |
266cf658 | 830 | if (page_has_private(page)) { |
1da177e4 LT |
831 | if (try_to_free_buffers(page)) { |
832 | ClearPageDirty(page); | |
b1de0d13 | 833 | pr_info("%s: orphaned page\n", __func__); |
1da177e4 LT |
834 | return PAGE_CLEAN; |
835 | } | |
836 | } | |
837 | return PAGE_KEEP; | |
838 | } | |
839 | if (mapping->a_ops->writepage == NULL) | |
840 | return PAGE_ACTIVATE; | |
703c2708 | 841 | if (!may_write_to_inode(mapping->host, sc)) |
1da177e4 LT |
842 | return PAGE_KEEP; |
843 | ||
844 | if (clear_page_dirty_for_io(page)) { | |
845 | int res; | |
846 | struct writeback_control wbc = { | |
847 | .sync_mode = WB_SYNC_NONE, | |
848 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
849 | .range_start = 0, |
850 | .range_end = LLONG_MAX, | |
1da177e4 LT |
851 | .for_reclaim = 1, |
852 | }; | |
853 | ||
854 | SetPageReclaim(page); | |
855 | res = mapping->a_ops->writepage(page, &wbc); | |
856 | if (res < 0) | |
857 | handle_write_error(mapping, page, res); | |
994fc28c | 858 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
859 | ClearPageReclaim(page); |
860 | return PAGE_ACTIVATE; | |
861 | } | |
c661b078 | 862 | |
1da177e4 LT |
863 | if (!PageWriteback(page)) { |
864 | /* synchronous write or broken a_ops? */ | |
865 | ClearPageReclaim(page); | |
866 | } | |
3aa23851 | 867 | trace_mm_vmscan_writepage(page); |
c4a25635 | 868 | inc_node_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
869 | return PAGE_SUCCESS; |
870 | } | |
871 | ||
872 | return PAGE_CLEAN; | |
873 | } | |
874 | ||
a649fd92 | 875 | /* |
e286781d NP |
876 | * Same as remove_mapping, but if the page is removed from the mapping, it |
877 | * gets returned with a refcount of 0. | |
a649fd92 | 878 | */ |
a528910e JW |
879 | static int __remove_mapping(struct address_space *mapping, struct page *page, |
880 | bool reclaimed) | |
49d2e9cc | 881 | { |
c4843a75 | 882 | unsigned long flags; |
bd4c82c2 | 883 | int refcount; |
c4843a75 | 884 | |
28e4d965 NP |
885 | BUG_ON(!PageLocked(page)); |
886 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc | 887 | |
b93b0163 | 888 | xa_lock_irqsave(&mapping->i_pages, flags); |
49d2e9cc | 889 | /* |
0fd0e6b0 NP |
890 | * The non racy check for a busy page. |
891 | * | |
892 | * Must be careful with the order of the tests. When someone has | |
893 | * a ref to the page, it may be possible that they dirty it then | |
894 | * drop the reference. So if PageDirty is tested before page_count | |
895 | * here, then the following race may occur: | |
896 | * | |
897 | * get_user_pages(&page); | |
898 | * [user mapping goes away] | |
899 | * write_to(page); | |
900 | * !PageDirty(page) [good] | |
901 | * SetPageDirty(page); | |
902 | * put_page(page); | |
903 | * !page_count(page) [good, discard it] | |
904 | * | |
905 | * [oops, our write_to data is lost] | |
906 | * | |
907 | * Reversing the order of the tests ensures such a situation cannot | |
908 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
0139aa7b | 909 | * load is not satisfied before that of page->_refcount. |
0fd0e6b0 NP |
910 | * |
911 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
b93b0163 | 912 | * and thus under the i_pages lock, then this ordering is not required. |
49d2e9cc | 913 | */ |
bd4c82c2 YH |
914 | if (unlikely(PageTransHuge(page)) && PageSwapCache(page)) |
915 | refcount = 1 + HPAGE_PMD_NR; | |
916 | else | |
917 | refcount = 2; | |
918 | if (!page_ref_freeze(page, refcount)) | |
49d2e9cc | 919 | goto cannot_free; |
1c4c3b99 | 920 | /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */ |
e286781d | 921 | if (unlikely(PageDirty(page))) { |
bd4c82c2 | 922 | page_ref_unfreeze(page, refcount); |
49d2e9cc | 923 | goto cannot_free; |
e286781d | 924 | } |
49d2e9cc CL |
925 | |
926 | if (PageSwapCache(page)) { | |
927 | swp_entry_t swap = { .val = page_private(page) }; | |
0a31bc97 | 928 | mem_cgroup_swapout(page, swap); |
4e17ec25 | 929 | __delete_from_swap_cache(page, swap); |
b93b0163 | 930 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
75f6d6d2 | 931 | put_swap_page(page, swap); |
e286781d | 932 | } else { |
6072d13c | 933 | void (*freepage)(struct page *); |
a528910e | 934 | void *shadow = NULL; |
6072d13c LT |
935 | |
936 | freepage = mapping->a_ops->freepage; | |
a528910e JW |
937 | /* |
938 | * Remember a shadow entry for reclaimed file cache in | |
939 | * order to detect refaults, thus thrashing, later on. | |
940 | * | |
941 | * But don't store shadows in an address space that is | |
942 | * already exiting. This is not just an optizimation, | |
943 | * inode reclaim needs to empty out the radix tree or | |
944 | * the nodes are lost. Don't plant shadows behind its | |
945 | * back. | |
f9fe48be RZ |
946 | * |
947 | * We also don't store shadows for DAX mappings because the | |
948 | * only page cache pages found in these are zero pages | |
949 | * covering holes, and because we don't want to mix DAX | |
950 | * exceptional entries and shadow exceptional entries in the | |
b93b0163 | 951 | * same address_space. |
a528910e JW |
952 | */ |
953 | if (reclaimed && page_is_file_cache(page) && | |
f9fe48be | 954 | !mapping_exiting(mapping) && !dax_mapping(mapping)) |
a7ca12f9 | 955 | shadow = workingset_eviction(page); |
62cccb8c | 956 | __delete_from_page_cache(page, shadow); |
b93b0163 | 957 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
6072d13c LT |
958 | |
959 | if (freepage != NULL) | |
960 | freepage(page); | |
49d2e9cc CL |
961 | } |
962 | ||
49d2e9cc CL |
963 | return 1; |
964 | ||
965 | cannot_free: | |
b93b0163 | 966 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
49d2e9cc CL |
967 | return 0; |
968 | } | |
969 | ||
e286781d NP |
970 | /* |
971 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
972 | * someone else has a ref on the page, abort and return 0. If it was | |
973 | * successfully detached, return 1. Assumes the caller has a single ref on | |
974 | * this page. | |
975 | */ | |
976 | int remove_mapping(struct address_space *mapping, struct page *page) | |
977 | { | |
a528910e | 978 | if (__remove_mapping(mapping, page, false)) { |
e286781d NP |
979 | /* |
980 | * Unfreezing the refcount with 1 rather than 2 effectively | |
981 | * drops the pagecache ref for us without requiring another | |
982 | * atomic operation. | |
983 | */ | |
fe896d18 | 984 | page_ref_unfreeze(page, 1); |
e286781d NP |
985 | return 1; |
986 | } | |
987 | return 0; | |
988 | } | |
989 | ||
894bc310 LS |
990 | /** |
991 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
992 | * @page: page to be put back to appropriate lru list | |
993 | * | |
994 | * Add previously isolated @page to appropriate LRU list. | |
995 | * Page may still be unevictable for other reasons. | |
996 | * | |
997 | * lru_lock must not be held, interrupts must be enabled. | |
998 | */ | |
894bc310 LS |
999 | void putback_lru_page(struct page *page) |
1000 | { | |
9c4e6b1a | 1001 | lru_cache_add(page); |
894bc310 LS |
1002 | put_page(page); /* drop ref from isolate */ |
1003 | } | |
1004 | ||
dfc8d636 JW |
1005 | enum page_references { |
1006 | PAGEREF_RECLAIM, | |
1007 | PAGEREF_RECLAIM_CLEAN, | |
64574746 | 1008 | PAGEREF_KEEP, |
dfc8d636 JW |
1009 | PAGEREF_ACTIVATE, |
1010 | }; | |
1011 | ||
1012 | static enum page_references page_check_references(struct page *page, | |
1013 | struct scan_control *sc) | |
1014 | { | |
64574746 | 1015 | int referenced_ptes, referenced_page; |
dfc8d636 | 1016 | unsigned long vm_flags; |
dfc8d636 | 1017 | |
c3ac9a8a JW |
1018 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
1019 | &vm_flags); | |
64574746 | 1020 | referenced_page = TestClearPageReferenced(page); |
dfc8d636 | 1021 | |
dfc8d636 JW |
1022 | /* |
1023 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
1024 | * move the page to the unevictable list. | |
1025 | */ | |
1026 | if (vm_flags & VM_LOCKED) | |
1027 | return PAGEREF_RECLAIM; | |
1028 | ||
64574746 | 1029 | if (referenced_ptes) { |
e4898273 | 1030 | if (PageSwapBacked(page)) |
64574746 JW |
1031 | return PAGEREF_ACTIVATE; |
1032 | /* | |
1033 | * All mapped pages start out with page table | |
1034 | * references from the instantiating fault, so we need | |
1035 | * to look twice if a mapped file page is used more | |
1036 | * than once. | |
1037 | * | |
1038 | * Mark it and spare it for another trip around the | |
1039 | * inactive list. Another page table reference will | |
1040 | * lead to its activation. | |
1041 | * | |
1042 | * Note: the mark is set for activated pages as well | |
1043 | * so that recently deactivated but used pages are | |
1044 | * quickly recovered. | |
1045 | */ | |
1046 | SetPageReferenced(page); | |
1047 | ||
34dbc67a | 1048 | if (referenced_page || referenced_ptes > 1) |
64574746 JW |
1049 | return PAGEREF_ACTIVATE; |
1050 | ||
c909e993 KK |
1051 | /* |
1052 | * Activate file-backed executable pages after first usage. | |
1053 | */ | |
1054 | if (vm_flags & VM_EXEC) | |
1055 | return PAGEREF_ACTIVATE; | |
1056 | ||
64574746 JW |
1057 | return PAGEREF_KEEP; |
1058 | } | |
dfc8d636 JW |
1059 | |
1060 | /* Reclaim if clean, defer dirty pages to writeback */ | |
2e30244a | 1061 | if (referenced_page && !PageSwapBacked(page)) |
64574746 JW |
1062 | return PAGEREF_RECLAIM_CLEAN; |
1063 | ||
1064 | return PAGEREF_RECLAIM; | |
dfc8d636 JW |
1065 | } |
1066 | ||
e2be15f6 MG |
1067 | /* Check if a page is dirty or under writeback */ |
1068 | static void page_check_dirty_writeback(struct page *page, | |
1069 | bool *dirty, bool *writeback) | |
1070 | { | |
b4597226 MG |
1071 | struct address_space *mapping; |
1072 | ||
e2be15f6 MG |
1073 | /* |
1074 | * Anonymous pages are not handled by flushers and must be written | |
1075 | * from reclaim context. Do not stall reclaim based on them | |
1076 | */ | |
802a3a92 SL |
1077 | if (!page_is_file_cache(page) || |
1078 | (PageAnon(page) && !PageSwapBacked(page))) { | |
e2be15f6 MG |
1079 | *dirty = false; |
1080 | *writeback = false; | |
1081 | return; | |
1082 | } | |
1083 | ||
1084 | /* By default assume that the page flags are accurate */ | |
1085 | *dirty = PageDirty(page); | |
1086 | *writeback = PageWriteback(page); | |
b4597226 MG |
1087 | |
1088 | /* Verify dirty/writeback state if the filesystem supports it */ | |
1089 | if (!page_has_private(page)) | |
1090 | return; | |
1091 | ||
1092 | mapping = page_mapping(page); | |
1093 | if (mapping && mapping->a_ops->is_dirty_writeback) | |
1094 | mapping->a_ops->is_dirty_writeback(page, dirty, writeback); | |
e2be15f6 MG |
1095 | } |
1096 | ||
1da177e4 | 1097 | /* |
1742f19f | 1098 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 1099 | */ |
1742f19f | 1100 | static unsigned long shrink_page_list(struct list_head *page_list, |
599d0c95 | 1101 | struct pglist_data *pgdat, |
f84f6e2b | 1102 | struct scan_control *sc, |
02c6de8d | 1103 | enum ttu_flags ttu_flags, |
3c710c1a | 1104 | struct reclaim_stat *stat, |
02c6de8d | 1105 | bool force_reclaim) |
1da177e4 LT |
1106 | { |
1107 | LIST_HEAD(ret_pages); | |
abe4c3b5 | 1108 | LIST_HEAD(free_pages); |
3c710c1a | 1109 | unsigned nr_reclaimed = 0; |
886cf190 | 1110 | unsigned pgactivate = 0; |
1da177e4 | 1111 | |
060f005f | 1112 | memset(stat, 0, sizeof(*stat)); |
1da177e4 LT |
1113 | cond_resched(); |
1114 | ||
1da177e4 LT |
1115 | while (!list_empty(page_list)) { |
1116 | struct address_space *mapping; | |
1117 | struct page *page; | |
1118 | int may_enter_fs; | |
02c6de8d | 1119 | enum page_references references = PAGEREF_RECLAIM_CLEAN; |
e2be15f6 | 1120 | bool dirty, writeback; |
1da177e4 LT |
1121 | |
1122 | cond_resched(); | |
1123 | ||
1124 | page = lru_to_page(page_list); | |
1125 | list_del(&page->lru); | |
1126 | ||
529ae9aa | 1127 | if (!trylock_page(page)) |
1da177e4 LT |
1128 | goto keep; |
1129 | ||
309381fe | 1130 | VM_BUG_ON_PAGE(PageActive(page), page); |
1da177e4 LT |
1131 | |
1132 | sc->nr_scanned++; | |
80e43426 | 1133 | |
39b5f29a | 1134 | if (unlikely(!page_evictable(page))) |
ad6b6704 | 1135 | goto activate_locked; |
894bc310 | 1136 | |
a6dc60f8 | 1137 | if (!sc->may_unmap && page_mapped(page)) |
80e43426 CL |
1138 | goto keep_locked; |
1139 | ||
1da177e4 | 1140 | /* Double the slab pressure for mapped and swapcache pages */ |
802a3a92 SL |
1141 | if ((page_mapped(page) || PageSwapCache(page)) && |
1142 | !(PageAnon(page) && !PageSwapBacked(page))) | |
1da177e4 LT |
1143 | sc->nr_scanned++; |
1144 | ||
c661b078 AW |
1145 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
1146 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
1147 | ||
e2be15f6 | 1148 | /* |
894befec | 1149 | * The number of dirty pages determines if a node is marked |
e2be15f6 MG |
1150 | * reclaim_congested which affects wait_iff_congested. kswapd |
1151 | * will stall and start writing pages if the tail of the LRU | |
1152 | * is all dirty unqueued pages. | |
1153 | */ | |
1154 | page_check_dirty_writeback(page, &dirty, &writeback); | |
1155 | if (dirty || writeback) | |
060f005f | 1156 | stat->nr_dirty++; |
e2be15f6 MG |
1157 | |
1158 | if (dirty && !writeback) | |
060f005f | 1159 | stat->nr_unqueued_dirty++; |
e2be15f6 | 1160 | |
d04e8acd MG |
1161 | /* |
1162 | * Treat this page as congested if the underlying BDI is or if | |
1163 | * pages are cycling through the LRU so quickly that the | |
1164 | * pages marked for immediate reclaim are making it to the | |
1165 | * end of the LRU a second time. | |
1166 | */ | |
e2be15f6 | 1167 | mapping = page_mapping(page); |
1da58ee2 | 1168 | if (((dirty || writeback) && mapping && |
703c2708 | 1169 | inode_write_congested(mapping->host)) || |
d04e8acd | 1170 | (writeback && PageReclaim(page))) |
060f005f | 1171 | stat->nr_congested++; |
e2be15f6 | 1172 | |
283aba9f MG |
1173 | /* |
1174 | * If a page at the tail of the LRU is under writeback, there | |
1175 | * are three cases to consider. | |
1176 | * | |
1177 | * 1) If reclaim is encountering an excessive number of pages | |
1178 | * under writeback and this page is both under writeback and | |
1179 | * PageReclaim then it indicates that pages are being queued | |
1180 | * for IO but are being recycled through the LRU before the | |
1181 | * IO can complete. Waiting on the page itself risks an | |
1182 | * indefinite stall if it is impossible to writeback the | |
1183 | * page due to IO error or disconnected storage so instead | |
b1a6f21e MG |
1184 | * note that the LRU is being scanned too quickly and the |
1185 | * caller can stall after page list has been processed. | |
283aba9f | 1186 | * |
97c9341f | 1187 | * 2) Global or new memcg reclaim encounters a page that is |
ecf5fc6e MH |
1188 | * not marked for immediate reclaim, or the caller does not |
1189 | * have __GFP_FS (or __GFP_IO if it's simply going to swap, | |
1190 | * not to fs). In this case mark the page for immediate | |
97c9341f | 1191 | * reclaim and continue scanning. |
283aba9f | 1192 | * |
ecf5fc6e MH |
1193 | * Require may_enter_fs because we would wait on fs, which |
1194 | * may not have submitted IO yet. And the loop driver might | |
283aba9f MG |
1195 | * enter reclaim, and deadlock if it waits on a page for |
1196 | * which it is needed to do the write (loop masks off | |
1197 | * __GFP_IO|__GFP_FS for this reason); but more thought | |
1198 | * would probably show more reasons. | |
1199 | * | |
7fadc820 | 1200 | * 3) Legacy memcg encounters a page that is already marked |
283aba9f MG |
1201 | * PageReclaim. memcg does not have any dirty pages |
1202 | * throttling so we could easily OOM just because too many | |
1203 | * pages are in writeback and there is nothing else to | |
1204 | * reclaim. Wait for the writeback to complete. | |
c55e8d03 JW |
1205 | * |
1206 | * In cases 1) and 2) we activate the pages to get them out of | |
1207 | * the way while we continue scanning for clean pages on the | |
1208 | * inactive list and refilling from the active list. The | |
1209 | * observation here is that waiting for disk writes is more | |
1210 | * expensive than potentially causing reloads down the line. | |
1211 | * Since they're marked for immediate reclaim, they won't put | |
1212 | * memory pressure on the cache working set any longer than it | |
1213 | * takes to write them to disk. | |
283aba9f | 1214 | */ |
c661b078 | 1215 | if (PageWriteback(page)) { |
283aba9f MG |
1216 | /* Case 1 above */ |
1217 | if (current_is_kswapd() && | |
1218 | PageReclaim(page) && | |
599d0c95 | 1219 | test_bit(PGDAT_WRITEBACK, &pgdat->flags)) { |
060f005f | 1220 | stat->nr_immediate++; |
c55e8d03 | 1221 | goto activate_locked; |
283aba9f MG |
1222 | |
1223 | /* Case 2 above */ | |
97c9341f | 1224 | } else if (sane_reclaim(sc) || |
ecf5fc6e | 1225 | !PageReclaim(page) || !may_enter_fs) { |
c3b94f44 HD |
1226 | /* |
1227 | * This is slightly racy - end_page_writeback() | |
1228 | * might have just cleared PageReclaim, then | |
1229 | * setting PageReclaim here end up interpreted | |
1230 | * as PageReadahead - but that does not matter | |
1231 | * enough to care. What we do want is for this | |
1232 | * page to have PageReclaim set next time memcg | |
1233 | * reclaim reaches the tests above, so it will | |
1234 | * then wait_on_page_writeback() to avoid OOM; | |
1235 | * and it's also appropriate in global reclaim. | |
1236 | */ | |
1237 | SetPageReclaim(page); | |
060f005f | 1238 | stat->nr_writeback++; |
c55e8d03 | 1239 | goto activate_locked; |
283aba9f MG |
1240 | |
1241 | /* Case 3 above */ | |
1242 | } else { | |
7fadc820 | 1243 | unlock_page(page); |
283aba9f | 1244 | wait_on_page_writeback(page); |
7fadc820 HD |
1245 | /* then go back and try same page again */ |
1246 | list_add_tail(&page->lru, page_list); | |
1247 | continue; | |
e62e384e | 1248 | } |
c661b078 | 1249 | } |
1da177e4 | 1250 | |
02c6de8d MK |
1251 | if (!force_reclaim) |
1252 | references = page_check_references(page, sc); | |
1253 | ||
dfc8d636 JW |
1254 | switch (references) { |
1255 | case PAGEREF_ACTIVATE: | |
1da177e4 | 1256 | goto activate_locked; |
64574746 | 1257 | case PAGEREF_KEEP: |
060f005f | 1258 | stat->nr_ref_keep++; |
64574746 | 1259 | goto keep_locked; |
dfc8d636 JW |
1260 | case PAGEREF_RECLAIM: |
1261 | case PAGEREF_RECLAIM_CLEAN: | |
1262 | ; /* try to reclaim the page below */ | |
1263 | } | |
1da177e4 | 1264 | |
1da177e4 LT |
1265 | /* |
1266 | * Anonymous process memory has backing store? | |
1267 | * Try to allocate it some swap space here. | |
802a3a92 | 1268 | * Lazyfree page could be freed directly |
1da177e4 | 1269 | */ |
bd4c82c2 YH |
1270 | if (PageAnon(page) && PageSwapBacked(page)) { |
1271 | if (!PageSwapCache(page)) { | |
1272 | if (!(sc->gfp_mask & __GFP_IO)) | |
1273 | goto keep_locked; | |
1274 | if (PageTransHuge(page)) { | |
1275 | /* cannot split THP, skip it */ | |
1276 | if (!can_split_huge_page(page, NULL)) | |
1277 | goto activate_locked; | |
1278 | /* | |
1279 | * Split pages without a PMD map right | |
1280 | * away. Chances are some or all of the | |
1281 | * tail pages can be freed without IO. | |
1282 | */ | |
1283 | if (!compound_mapcount(page) && | |
1284 | split_huge_page_to_list(page, | |
1285 | page_list)) | |
1286 | goto activate_locked; | |
1287 | } | |
1288 | if (!add_to_swap(page)) { | |
1289 | if (!PageTransHuge(page)) | |
1290 | goto activate_locked; | |
1291 | /* Fallback to swap normal pages */ | |
1292 | if (split_huge_page_to_list(page, | |
1293 | page_list)) | |
1294 | goto activate_locked; | |
fe490cc0 YH |
1295 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
1296 | count_vm_event(THP_SWPOUT_FALLBACK); | |
1297 | #endif | |
bd4c82c2 YH |
1298 | if (!add_to_swap(page)) |
1299 | goto activate_locked; | |
1300 | } | |
0f074658 | 1301 | |
bd4c82c2 | 1302 | may_enter_fs = 1; |
1da177e4 | 1303 | |
bd4c82c2 YH |
1304 | /* Adding to swap updated mapping */ |
1305 | mapping = page_mapping(page); | |
1306 | } | |
7751b2da KS |
1307 | } else if (unlikely(PageTransHuge(page))) { |
1308 | /* Split file THP */ | |
1309 | if (split_huge_page_to_list(page, page_list)) | |
1310 | goto keep_locked; | |
e2be15f6 | 1311 | } |
1da177e4 LT |
1312 | |
1313 | /* | |
1314 | * The page is mapped into the page tables of one or more | |
1315 | * processes. Try to unmap it here. | |
1316 | */ | |
802a3a92 | 1317 | if (page_mapped(page)) { |
bd4c82c2 YH |
1318 | enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH; |
1319 | ||
1320 | if (unlikely(PageTransHuge(page))) | |
1321 | flags |= TTU_SPLIT_HUGE_PMD; | |
1322 | if (!try_to_unmap(page, flags)) { | |
060f005f | 1323 | stat->nr_unmap_fail++; |
1da177e4 | 1324 | goto activate_locked; |
1da177e4 LT |
1325 | } |
1326 | } | |
1327 | ||
1328 | if (PageDirty(page)) { | |
ee72886d | 1329 | /* |
4eda4823 JW |
1330 | * Only kswapd can writeback filesystem pages |
1331 | * to avoid risk of stack overflow. But avoid | |
1332 | * injecting inefficient single-page IO into | |
1333 | * flusher writeback as much as possible: only | |
1334 | * write pages when we've encountered many | |
1335 | * dirty pages, and when we've already scanned | |
1336 | * the rest of the LRU for clean pages and see | |
1337 | * the same dirty pages again (PageReclaim). | |
ee72886d | 1338 | */ |
f84f6e2b | 1339 | if (page_is_file_cache(page) && |
4eda4823 JW |
1340 | (!current_is_kswapd() || !PageReclaim(page) || |
1341 | !test_bit(PGDAT_DIRTY, &pgdat->flags))) { | |
49ea7eb6 MG |
1342 | /* |
1343 | * Immediately reclaim when written back. | |
1344 | * Similar in principal to deactivate_page() | |
1345 | * except we already have the page isolated | |
1346 | * and know it's dirty | |
1347 | */ | |
c4a25635 | 1348 | inc_node_page_state(page, NR_VMSCAN_IMMEDIATE); |
49ea7eb6 MG |
1349 | SetPageReclaim(page); |
1350 | ||
c55e8d03 | 1351 | goto activate_locked; |
ee72886d MG |
1352 | } |
1353 | ||
dfc8d636 | 1354 | if (references == PAGEREF_RECLAIM_CLEAN) |
1da177e4 | 1355 | goto keep_locked; |
4dd4b920 | 1356 | if (!may_enter_fs) |
1da177e4 | 1357 | goto keep_locked; |
52a8363e | 1358 | if (!sc->may_writepage) |
1da177e4 LT |
1359 | goto keep_locked; |
1360 | ||
d950c947 MG |
1361 | /* |
1362 | * Page is dirty. Flush the TLB if a writable entry | |
1363 | * potentially exists to avoid CPU writes after IO | |
1364 | * starts and then write it out here. | |
1365 | */ | |
1366 | try_to_unmap_flush_dirty(); | |
7d3579e8 | 1367 | switch (pageout(page, mapping, sc)) { |
1da177e4 LT |
1368 | case PAGE_KEEP: |
1369 | goto keep_locked; | |
1370 | case PAGE_ACTIVATE: | |
1371 | goto activate_locked; | |
1372 | case PAGE_SUCCESS: | |
7d3579e8 | 1373 | if (PageWriteback(page)) |
41ac1999 | 1374 | goto keep; |
7d3579e8 | 1375 | if (PageDirty(page)) |
1da177e4 | 1376 | goto keep; |
7d3579e8 | 1377 | |
1da177e4 LT |
1378 | /* |
1379 | * A synchronous write - probably a ramdisk. Go | |
1380 | * ahead and try to reclaim the page. | |
1381 | */ | |
529ae9aa | 1382 | if (!trylock_page(page)) |
1da177e4 LT |
1383 | goto keep; |
1384 | if (PageDirty(page) || PageWriteback(page)) | |
1385 | goto keep_locked; | |
1386 | mapping = page_mapping(page); | |
1387 | case PAGE_CLEAN: | |
1388 | ; /* try to free the page below */ | |
1389 | } | |
1390 | } | |
1391 | ||
1392 | /* | |
1393 | * If the page has buffers, try to free the buffer mappings | |
1394 | * associated with this page. If we succeed we try to free | |
1395 | * the page as well. | |
1396 | * | |
1397 | * We do this even if the page is PageDirty(). | |
1398 | * try_to_release_page() does not perform I/O, but it is | |
1399 | * possible for a page to have PageDirty set, but it is actually | |
1400 | * clean (all its buffers are clean). This happens if the | |
1401 | * buffers were written out directly, with submit_bh(). ext3 | |
894bc310 | 1402 | * will do this, as well as the blockdev mapping. |
1da177e4 LT |
1403 | * try_to_release_page() will discover that cleanness and will |
1404 | * drop the buffers and mark the page clean - it can be freed. | |
1405 | * | |
1406 | * Rarely, pages can have buffers and no ->mapping. These are | |
1407 | * the pages which were not successfully invalidated in | |
1408 | * truncate_complete_page(). We try to drop those buffers here | |
1409 | * and if that worked, and the page is no longer mapped into | |
1410 | * process address space (page_count == 1) it can be freed. | |
1411 | * Otherwise, leave the page on the LRU so it is swappable. | |
1412 | */ | |
266cf658 | 1413 | if (page_has_private(page)) { |
1da177e4 LT |
1414 | if (!try_to_release_page(page, sc->gfp_mask)) |
1415 | goto activate_locked; | |
e286781d NP |
1416 | if (!mapping && page_count(page) == 1) { |
1417 | unlock_page(page); | |
1418 | if (put_page_testzero(page)) | |
1419 | goto free_it; | |
1420 | else { | |
1421 | /* | |
1422 | * rare race with speculative reference. | |
1423 | * the speculative reference will free | |
1424 | * this page shortly, so we may | |
1425 | * increment nr_reclaimed here (and | |
1426 | * leave it off the LRU). | |
1427 | */ | |
1428 | nr_reclaimed++; | |
1429 | continue; | |
1430 | } | |
1431 | } | |
1da177e4 LT |
1432 | } |
1433 | ||
802a3a92 SL |
1434 | if (PageAnon(page) && !PageSwapBacked(page)) { |
1435 | /* follow __remove_mapping for reference */ | |
1436 | if (!page_ref_freeze(page, 1)) | |
1437 | goto keep_locked; | |
1438 | if (PageDirty(page)) { | |
1439 | page_ref_unfreeze(page, 1); | |
1440 | goto keep_locked; | |
1441 | } | |
1da177e4 | 1442 | |
802a3a92 | 1443 | count_vm_event(PGLAZYFREED); |
2262185c | 1444 | count_memcg_page_event(page, PGLAZYFREED); |
802a3a92 SL |
1445 | } else if (!mapping || !__remove_mapping(mapping, page, true)) |
1446 | goto keep_locked; | |
9a1ea439 HD |
1447 | |
1448 | unlock_page(page); | |
e286781d | 1449 | free_it: |
05ff5137 | 1450 | nr_reclaimed++; |
abe4c3b5 MG |
1451 | |
1452 | /* | |
1453 | * Is there need to periodically free_page_list? It would | |
1454 | * appear not as the counts should be low | |
1455 | */ | |
bd4c82c2 YH |
1456 | if (unlikely(PageTransHuge(page))) { |
1457 | mem_cgroup_uncharge(page); | |
1458 | (*get_compound_page_dtor(page))(page); | |
1459 | } else | |
1460 | list_add(&page->lru, &free_pages); | |
1da177e4 LT |
1461 | continue; |
1462 | ||
1463 | activate_locked: | |
68a22394 | 1464 | /* Not a candidate for swapping, so reclaim swap space. */ |
ad6b6704 MK |
1465 | if (PageSwapCache(page) && (mem_cgroup_swap_full(page) || |
1466 | PageMlocked(page))) | |
a2c43eed | 1467 | try_to_free_swap(page); |
309381fe | 1468 | VM_BUG_ON_PAGE(PageActive(page), page); |
ad6b6704 | 1469 | if (!PageMlocked(page)) { |
886cf190 | 1470 | int type = page_is_file_cache(page); |
ad6b6704 | 1471 | SetPageActive(page); |
886cf190 KT |
1472 | pgactivate++; |
1473 | stat->nr_activate[type] += hpage_nr_pages(page); | |
2262185c | 1474 | count_memcg_page_event(page, PGACTIVATE); |
ad6b6704 | 1475 | } |
1da177e4 LT |
1476 | keep_locked: |
1477 | unlock_page(page); | |
1478 | keep: | |
1479 | list_add(&page->lru, &ret_pages); | |
309381fe | 1480 | VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page); |
1da177e4 | 1481 | } |
abe4c3b5 | 1482 | |
747db954 | 1483 | mem_cgroup_uncharge_list(&free_pages); |
72b252ae | 1484 | try_to_unmap_flush(); |
2d4894b5 | 1485 | free_unref_page_list(&free_pages); |
abe4c3b5 | 1486 | |
1da177e4 | 1487 | list_splice(&ret_pages, page_list); |
886cf190 | 1488 | count_vm_events(PGACTIVATE, pgactivate); |
060f005f | 1489 | |
05ff5137 | 1490 | return nr_reclaimed; |
1da177e4 LT |
1491 | } |
1492 | ||
02c6de8d MK |
1493 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
1494 | struct list_head *page_list) | |
1495 | { | |
1496 | struct scan_control sc = { | |
1497 | .gfp_mask = GFP_KERNEL, | |
1498 | .priority = DEF_PRIORITY, | |
1499 | .may_unmap = 1, | |
1500 | }; | |
060f005f | 1501 | struct reclaim_stat dummy_stat; |
3c710c1a | 1502 | unsigned long ret; |
02c6de8d MK |
1503 | struct page *page, *next; |
1504 | LIST_HEAD(clean_pages); | |
1505 | ||
1506 | list_for_each_entry_safe(page, next, page_list, lru) { | |
117aad1e | 1507 | if (page_is_file_cache(page) && !PageDirty(page) && |
b1123ea6 | 1508 | !__PageMovable(page)) { |
02c6de8d MK |
1509 | ClearPageActive(page); |
1510 | list_move(&page->lru, &clean_pages); | |
1511 | } | |
1512 | } | |
1513 | ||
599d0c95 | 1514 | ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc, |
060f005f | 1515 | TTU_IGNORE_ACCESS, &dummy_stat, true); |
02c6de8d | 1516 | list_splice(&clean_pages, page_list); |
599d0c95 | 1517 | mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret); |
02c6de8d MK |
1518 | return ret; |
1519 | } | |
1520 | ||
5ad333eb AW |
1521 | /* |
1522 | * Attempt to remove the specified page from its LRU. Only take this page | |
1523 | * if it is of the appropriate PageActive status. Pages which are being | |
1524 | * freed elsewhere are also ignored. | |
1525 | * | |
1526 | * page: page to consider | |
1527 | * mode: one of the LRU isolation modes defined above | |
1528 | * | |
1529 | * returns 0 on success, -ve errno on failure. | |
1530 | */ | |
f3fd4a61 | 1531 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
5ad333eb AW |
1532 | { |
1533 | int ret = -EINVAL; | |
1534 | ||
1535 | /* Only take pages on the LRU. */ | |
1536 | if (!PageLRU(page)) | |
1537 | return ret; | |
1538 | ||
e46a2879 MK |
1539 | /* Compaction should not handle unevictable pages but CMA can do so */ |
1540 | if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE)) | |
894bc310 LS |
1541 | return ret; |
1542 | ||
5ad333eb | 1543 | ret = -EBUSY; |
08e552c6 | 1544 | |
c8244935 MG |
1545 | /* |
1546 | * To minimise LRU disruption, the caller can indicate that it only | |
1547 | * wants to isolate pages it will be able to operate on without | |
1548 | * blocking - clean pages for the most part. | |
1549 | * | |
c8244935 MG |
1550 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages |
1551 | * that it is possible to migrate without blocking | |
1552 | */ | |
1276ad68 | 1553 | if (mode & ISOLATE_ASYNC_MIGRATE) { |
c8244935 MG |
1554 | /* All the caller can do on PageWriteback is block */ |
1555 | if (PageWriteback(page)) | |
1556 | return ret; | |
1557 | ||
1558 | if (PageDirty(page)) { | |
1559 | struct address_space *mapping; | |
69d763fc | 1560 | bool migrate_dirty; |
c8244935 | 1561 | |
c8244935 MG |
1562 | /* |
1563 | * Only pages without mappings or that have a | |
1564 | * ->migratepage callback are possible to migrate | |
69d763fc MG |
1565 | * without blocking. However, we can be racing with |
1566 | * truncation so it's necessary to lock the page | |
1567 | * to stabilise the mapping as truncation holds | |
1568 | * the page lock until after the page is removed | |
1569 | * from the page cache. | |
c8244935 | 1570 | */ |
69d763fc MG |
1571 | if (!trylock_page(page)) |
1572 | return ret; | |
1573 | ||
c8244935 | 1574 | mapping = page_mapping(page); |
145e1a71 | 1575 | migrate_dirty = !mapping || mapping->a_ops->migratepage; |
69d763fc MG |
1576 | unlock_page(page); |
1577 | if (!migrate_dirty) | |
c8244935 MG |
1578 | return ret; |
1579 | } | |
1580 | } | |
39deaf85 | 1581 | |
f80c0673 MK |
1582 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1583 | return ret; | |
1584 | ||
5ad333eb AW |
1585 | if (likely(get_page_unless_zero(page))) { |
1586 | /* | |
1587 | * Be careful not to clear PageLRU until after we're | |
1588 | * sure the page is not being freed elsewhere -- the | |
1589 | * page release code relies on it. | |
1590 | */ | |
1591 | ClearPageLRU(page); | |
1592 | ret = 0; | |
1593 | } | |
1594 | ||
1595 | return ret; | |
1596 | } | |
1597 | ||
7ee36a14 MG |
1598 | |
1599 | /* | |
1600 | * Update LRU sizes after isolating pages. The LRU size updates must | |
1601 | * be complete before mem_cgroup_update_lru_size due to a santity check. | |
1602 | */ | |
1603 | static __always_inline void update_lru_sizes(struct lruvec *lruvec, | |
b4536f0c | 1604 | enum lru_list lru, unsigned long *nr_zone_taken) |
7ee36a14 | 1605 | { |
7ee36a14 MG |
1606 | int zid; |
1607 | ||
7ee36a14 MG |
1608 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
1609 | if (!nr_zone_taken[zid]) | |
1610 | continue; | |
1611 | ||
1612 | __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); | |
7ee36a14 | 1613 | #ifdef CONFIG_MEMCG |
b4536f0c | 1614 | mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]); |
7ee36a14 | 1615 | #endif |
b4536f0c MH |
1616 | } |
1617 | ||
7ee36a14 MG |
1618 | } |
1619 | ||
f4b7e272 AR |
1620 | /** |
1621 | * pgdat->lru_lock is heavily contended. Some of the functions that | |
1da177e4 LT |
1622 | * shrink the lists perform better by taking out a batch of pages |
1623 | * and working on them outside the LRU lock. | |
1624 | * | |
1625 | * For pagecache intensive workloads, this function is the hottest | |
1626 | * spot in the kernel (apart from copy_*_user functions). | |
1627 | * | |
1628 | * Appropriate locks must be held before calling this function. | |
1629 | * | |
791b48b6 | 1630 | * @nr_to_scan: The number of eligible pages to look through on the list. |
5dc35979 | 1631 | * @lruvec: The LRU vector to pull pages from. |
1da177e4 | 1632 | * @dst: The temp list to put pages on to. |
f626012d | 1633 | * @nr_scanned: The number of pages that were scanned. |
fe2c2a10 | 1634 | * @sc: The scan_control struct for this reclaim session |
5ad333eb | 1635 | * @mode: One of the LRU isolation modes |
3cb99451 | 1636 | * @lru: LRU list id for isolating |
1da177e4 LT |
1637 | * |
1638 | * returns how many pages were moved onto *@dst. | |
1639 | */ | |
69e05944 | 1640 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
5dc35979 | 1641 | struct lruvec *lruvec, struct list_head *dst, |
fe2c2a10 | 1642 | unsigned long *nr_scanned, struct scan_control *sc, |
a9e7c39f | 1643 | enum lru_list lru) |
1da177e4 | 1644 | { |
75b00af7 | 1645 | struct list_head *src = &lruvec->lists[lru]; |
69e05944 | 1646 | unsigned long nr_taken = 0; |
599d0c95 | 1647 | unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 }; |
7cc30fcf | 1648 | unsigned long nr_skipped[MAX_NR_ZONES] = { 0, }; |
3db65812 | 1649 | unsigned long skipped = 0; |
791b48b6 | 1650 | unsigned long scan, total_scan, nr_pages; |
b2e18757 | 1651 | LIST_HEAD(pages_skipped); |
a9e7c39f | 1652 | isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED); |
1da177e4 | 1653 | |
791b48b6 MK |
1654 | scan = 0; |
1655 | for (total_scan = 0; | |
1656 | scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src); | |
1657 | total_scan++) { | |
5ad333eb | 1658 | struct page *page; |
5ad333eb | 1659 | |
1da177e4 LT |
1660 | page = lru_to_page(src); |
1661 | prefetchw_prev_lru_page(page, src, flags); | |
1662 | ||
309381fe | 1663 | VM_BUG_ON_PAGE(!PageLRU(page), page); |
8d438f96 | 1664 | |
b2e18757 MG |
1665 | if (page_zonenum(page) > sc->reclaim_idx) { |
1666 | list_move(&page->lru, &pages_skipped); | |
7cc30fcf | 1667 | nr_skipped[page_zonenum(page)]++; |
b2e18757 MG |
1668 | continue; |
1669 | } | |
1670 | ||
791b48b6 MK |
1671 | /* |
1672 | * Do not count skipped pages because that makes the function | |
1673 | * return with no isolated pages if the LRU mostly contains | |
1674 | * ineligible pages. This causes the VM to not reclaim any | |
1675 | * pages, triggering a premature OOM. | |
1676 | */ | |
1677 | scan++; | |
f3fd4a61 | 1678 | switch (__isolate_lru_page(page, mode)) { |
5ad333eb | 1679 | case 0: |
599d0c95 MG |
1680 | nr_pages = hpage_nr_pages(page); |
1681 | nr_taken += nr_pages; | |
1682 | nr_zone_taken[page_zonenum(page)] += nr_pages; | |
5ad333eb | 1683 | list_move(&page->lru, dst); |
5ad333eb AW |
1684 | break; |
1685 | ||
1686 | case -EBUSY: | |
1687 | /* else it is being freed elsewhere */ | |
1688 | list_move(&page->lru, src); | |
1689 | continue; | |
46453a6e | 1690 | |
5ad333eb AW |
1691 | default: |
1692 | BUG(); | |
1693 | } | |
1da177e4 LT |
1694 | } |
1695 | ||
b2e18757 MG |
1696 | /* |
1697 | * Splice any skipped pages to the start of the LRU list. Note that | |
1698 | * this disrupts the LRU order when reclaiming for lower zones but | |
1699 | * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX | |
1700 | * scanning would soon rescan the same pages to skip and put the | |
1701 | * system at risk of premature OOM. | |
1702 | */ | |
7cc30fcf MG |
1703 | if (!list_empty(&pages_skipped)) { |
1704 | int zid; | |
1705 | ||
3db65812 | 1706 | list_splice(&pages_skipped, src); |
7cc30fcf MG |
1707 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
1708 | if (!nr_skipped[zid]) | |
1709 | continue; | |
1710 | ||
1711 | __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]); | |
1265e3a6 | 1712 | skipped += nr_skipped[zid]; |
7cc30fcf MG |
1713 | } |
1714 | } | |
791b48b6 | 1715 | *nr_scanned = total_scan; |
1265e3a6 | 1716 | trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, |
791b48b6 | 1717 | total_scan, skipped, nr_taken, mode, lru); |
b4536f0c | 1718 | update_lru_sizes(lruvec, lru, nr_zone_taken); |
1da177e4 LT |
1719 | return nr_taken; |
1720 | } | |
1721 | ||
62695a84 NP |
1722 | /** |
1723 | * isolate_lru_page - tries to isolate a page from its LRU list | |
1724 | * @page: page to isolate from its LRU list | |
1725 | * | |
1726 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
1727 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
1728 | * | |
1729 | * Returns 0 if the page was removed from an LRU list. | |
1730 | * Returns -EBUSY if the page was not on an LRU list. | |
1731 | * | |
1732 | * The returned page will have PageLRU() cleared. If it was found on | |
894bc310 LS |
1733 | * the active list, it will have PageActive set. If it was found on |
1734 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
1735 | * may need to be cleared by the caller before letting the page go. | |
62695a84 NP |
1736 | * |
1737 | * The vmstat statistic corresponding to the list on which the page was | |
1738 | * found will be decremented. | |
1739 | * | |
1740 | * Restrictions: | |
a5d09bed | 1741 | * |
62695a84 NP |
1742 | * (1) Must be called with an elevated refcount on the page. This is a |
1743 | * fundamentnal difference from isolate_lru_pages (which is called | |
1744 | * without a stable reference). | |
1745 | * (2) the lru_lock must not be held. | |
1746 | * (3) interrupts must be enabled. | |
1747 | */ | |
1748 | int isolate_lru_page(struct page *page) | |
1749 | { | |
1750 | int ret = -EBUSY; | |
1751 | ||
309381fe | 1752 | VM_BUG_ON_PAGE(!page_count(page), page); |
cf2a82ee | 1753 | WARN_RATELIMIT(PageTail(page), "trying to isolate tail page"); |
0c917313 | 1754 | |
62695a84 | 1755 | if (PageLRU(page)) { |
f4b7e272 | 1756 | pg_data_t *pgdat = page_pgdat(page); |
fa9add64 | 1757 | struct lruvec *lruvec; |
62695a84 | 1758 | |
f4b7e272 AR |
1759 | spin_lock_irq(&pgdat->lru_lock); |
1760 | lruvec = mem_cgroup_page_lruvec(page, pgdat); | |
0c917313 | 1761 | if (PageLRU(page)) { |
894bc310 | 1762 | int lru = page_lru(page); |
0c917313 | 1763 | get_page(page); |
62695a84 | 1764 | ClearPageLRU(page); |
fa9add64 HD |
1765 | del_page_from_lru_list(page, lruvec, lru); |
1766 | ret = 0; | |
62695a84 | 1767 | } |
f4b7e272 | 1768 | spin_unlock_irq(&pgdat->lru_lock); |
62695a84 NP |
1769 | } |
1770 | return ret; | |
1771 | } | |
1772 | ||
35cd7815 | 1773 | /* |
d37dd5dc FW |
1774 | * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and |
1775 | * then get resheduled. When there are massive number of tasks doing page | |
1776 | * allocation, such sleeping direct reclaimers may keep piling up on each CPU, | |
1777 | * the LRU list will go small and be scanned faster than necessary, leading to | |
1778 | * unnecessary swapping, thrashing and OOM. | |
35cd7815 | 1779 | */ |
599d0c95 | 1780 | static int too_many_isolated(struct pglist_data *pgdat, int file, |
35cd7815 RR |
1781 | struct scan_control *sc) |
1782 | { | |
1783 | unsigned long inactive, isolated; | |
1784 | ||
1785 | if (current_is_kswapd()) | |
1786 | return 0; | |
1787 | ||
97c9341f | 1788 | if (!sane_reclaim(sc)) |
35cd7815 RR |
1789 | return 0; |
1790 | ||
1791 | if (file) { | |
599d0c95 MG |
1792 | inactive = node_page_state(pgdat, NR_INACTIVE_FILE); |
1793 | isolated = node_page_state(pgdat, NR_ISOLATED_FILE); | |
35cd7815 | 1794 | } else { |
599d0c95 MG |
1795 | inactive = node_page_state(pgdat, NR_INACTIVE_ANON); |
1796 | isolated = node_page_state(pgdat, NR_ISOLATED_ANON); | |
35cd7815 RR |
1797 | } |
1798 | ||
3cf23841 FW |
1799 | /* |
1800 | * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they | |
1801 | * won't get blocked by normal direct-reclaimers, forming a circular | |
1802 | * deadlock. | |
1803 | */ | |
d0164adc | 1804 | if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
3cf23841 FW |
1805 | inactive >>= 3; |
1806 | ||
35cd7815 RR |
1807 | return isolated > inactive; |
1808 | } | |
1809 | ||
66635629 | 1810 | static noinline_for_stack void |
75b00af7 | 1811 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
66635629 | 1812 | { |
599d0c95 | 1813 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
3f79768f | 1814 | LIST_HEAD(pages_to_free); |
66635629 | 1815 | |
66635629 MG |
1816 | /* |
1817 | * Put back any unfreeable pages. | |
1818 | */ | |
66635629 | 1819 | while (!list_empty(page_list)) { |
3f79768f | 1820 | struct page *page = lru_to_page(page_list); |
66635629 | 1821 | int lru; |
3f79768f | 1822 | |
309381fe | 1823 | VM_BUG_ON_PAGE(PageLRU(page), page); |
66635629 | 1824 | list_del(&page->lru); |
39b5f29a | 1825 | if (unlikely(!page_evictable(page))) { |
599d0c95 | 1826 | spin_unlock_irq(&pgdat->lru_lock); |
66635629 | 1827 | putback_lru_page(page); |
599d0c95 | 1828 | spin_lock_irq(&pgdat->lru_lock); |
66635629 MG |
1829 | continue; |
1830 | } | |
fa9add64 | 1831 | |
599d0c95 | 1832 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
fa9add64 | 1833 | |
7a608572 | 1834 | SetPageLRU(page); |
66635629 | 1835 | lru = page_lru(page); |
fa9add64 HD |
1836 | add_page_to_lru_list(page, lruvec, lru); |
1837 | ||
2bcf8879 HD |
1838 | if (put_page_testzero(page)) { |
1839 | __ClearPageLRU(page); | |
1840 | __ClearPageActive(page); | |
fa9add64 | 1841 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1842 | |
1843 | if (unlikely(PageCompound(page))) { | |
599d0c95 | 1844 | spin_unlock_irq(&pgdat->lru_lock); |
747db954 | 1845 | mem_cgroup_uncharge(page); |
2bcf8879 | 1846 | (*get_compound_page_dtor(page))(page); |
599d0c95 | 1847 | spin_lock_irq(&pgdat->lru_lock); |
2bcf8879 HD |
1848 | } else |
1849 | list_add(&page->lru, &pages_to_free); | |
66635629 MG |
1850 | } |
1851 | } | |
66635629 | 1852 | |
3f79768f HD |
1853 | /* |
1854 | * To save our caller's stack, now use input list for pages to free. | |
1855 | */ | |
1856 | list_splice(&pages_to_free, page_list); | |
66635629 MG |
1857 | } |
1858 | ||
399ba0b9 N |
1859 | /* |
1860 | * If a kernel thread (such as nfsd for loop-back mounts) services | |
1861 | * a backing device by writing to the page cache it sets PF_LESS_THROTTLE. | |
1862 | * In that case we should only throttle if the backing device it is | |
1863 | * writing to is congested. In other cases it is safe to throttle. | |
1864 | */ | |
1865 | static int current_may_throttle(void) | |
1866 | { | |
1867 | return !(current->flags & PF_LESS_THROTTLE) || | |
1868 | current->backing_dev_info == NULL || | |
1869 | bdi_write_congested(current->backing_dev_info); | |
1870 | } | |
1871 | ||
1da177e4 | 1872 | /* |
b2e18757 | 1873 | * shrink_inactive_list() is a helper for shrink_node(). It returns the number |
1742f19f | 1874 | * of reclaimed pages |
1da177e4 | 1875 | */ |
66635629 | 1876 | static noinline_for_stack unsigned long |
1a93be0e | 1877 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
9e3b2f8c | 1878 | struct scan_control *sc, enum lru_list lru) |
1da177e4 LT |
1879 | { |
1880 | LIST_HEAD(page_list); | |
e247dbce | 1881 | unsigned long nr_scanned; |
05ff5137 | 1882 | unsigned long nr_reclaimed = 0; |
e247dbce | 1883 | unsigned long nr_taken; |
060f005f | 1884 | struct reclaim_stat stat; |
3cb99451 | 1885 | int file = is_file_lru(lru); |
599d0c95 | 1886 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
1a93be0e | 1887 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
db73ee0d | 1888 | bool stalled = false; |
78dc583d | 1889 | |
599d0c95 | 1890 | while (unlikely(too_many_isolated(pgdat, file, sc))) { |
db73ee0d MH |
1891 | if (stalled) |
1892 | return 0; | |
1893 | ||
1894 | /* wait a bit for the reclaimer. */ | |
1895 | msleep(100); | |
1896 | stalled = true; | |
35cd7815 RR |
1897 | |
1898 | /* We are about to die and free our memory. Return now. */ | |
1899 | if (fatal_signal_pending(current)) | |
1900 | return SWAP_CLUSTER_MAX; | |
1901 | } | |
1902 | ||
1da177e4 | 1903 | lru_add_drain(); |
f80c0673 | 1904 | |
599d0c95 | 1905 | spin_lock_irq(&pgdat->lru_lock); |
b35ea17b | 1906 | |
5dc35979 | 1907 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
a9e7c39f | 1908 | &nr_scanned, sc, lru); |
95d918fc | 1909 | |
599d0c95 | 1910 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
9d5e6a9f | 1911 | reclaim_stat->recent_scanned[file] += nr_taken; |
95d918fc | 1912 | |
2262185c RG |
1913 | if (current_is_kswapd()) { |
1914 | if (global_reclaim(sc)) | |
599d0c95 | 1915 | __count_vm_events(PGSCAN_KSWAPD, nr_scanned); |
2262185c RG |
1916 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD, |
1917 | nr_scanned); | |
1918 | } else { | |
1919 | if (global_reclaim(sc)) | |
599d0c95 | 1920 | __count_vm_events(PGSCAN_DIRECT, nr_scanned); |
2262185c RG |
1921 | count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT, |
1922 | nr_scanned); | |
e247dbce | 1923 | } |
599d0c95 | 1924 | spin_unlock_irq(&pgdat->lru_lock); |
b35ea17b | 1925 | |
d563c050 | 1926 | if (nr_taken == 0) |
66635629 | 1927 | return 0; |
5ad333eb | 1928 | |
a128ca71 | 1929 | nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0, |
3c710c1a | 1930 | &stat, false); |
c661b078 | 1931 | |
599d0c95 | 1932 | spin_lock_irq(&pgdat->lru_lock); |
3f79768f | 1933 | |
2262185c RG |
1934 | if (current_is_kswapd()) { |
1935 | if (global_reclaim(sc)) | |
599d0c95 | 1936 | __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed); |
2262185c RG |
1937 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD, |
1938 | nr_reclaimed); | |
1939 | } else { | |
1940 | if (global_reclaim(sc)) | |
599d0c95 | 1941 | __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed); |
2262185c RG |
1942 | count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT, |
1943 | nr_reclaimed); | |
904249aa | 1944 | } |
886cf190 KT |
1945 | reclaim_stat->recent_rotated[0] = stat.nr_activate[0]; |
1946 | reclaim_stat->recent_rotated[1] = stat.nr_activate[1]; | |
a74609fa | 1947 | |
27ac81d8 | 1948 | putback_inactive_pages(lruvec, &page_list); |
3f79768f | 1949 | |
599d0c95 | 1950 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); |
3f79768f | 1951 | |
599d0c95 | 1952 | spin_unlock_irq(&pgdat->lru_lock); |
3f79768f | 1953 | |
747db954 | 1954 | mem_cgroup_uncharge_list(&page_list); |
2d4894b5 | 1955 | free_unref_page_list(&page_list); |
e11da5b4 | 1956 | |
1c610d5f AR |
1957 | /* |
1958 | * If dirty pages are scanned that are not queued for IO, it | |
1959 | * implies that flushers are not doing their job. This can | |
1960 | * happen when memory pressure pushes dirty pages to the end of | |
1961 | * the LRU before the dirty limits are breached and the dirty | |
1962 | * data has expired. It can also happen when the proportion of | |
1963 | * dirty pages grows not through writes but through memory | |
1964 | * pressure reclaiming all the clean cache. And in some cases, | |
1965 | * the flushers simply cannot keep up with the allocation | |
1966 | * rate. Nudge the flusher threads in case they are asleep. | |
1967 | */ | |
1968 | if (stat.nr_unqueued_dirty == nr_taken) | |
1969 | wakeup_flusher_threads(WB_REASON_VMSCAN); | |
1970 | ||
d108c772 AR |
1971 | sc->nr.dirty += stat.nr_dirty; |
1972 | sc->nr.congested += stat.nr_congested; | |
1973 | sc->nr.unqueued_dirty += stat.nr_unqueued_dirty; | |
1974 | sc->nr.writeback += stat.nr_writeback; | |
1975 | sc->nr.immediate += stat.nr_immediate; | |
1976 | sc->nr.taken += nr_taken; | |
1977 | if (file) | |
1978 | sc->nr.file_taken += nr_taken; | |
8e950282 | 1979 | |
599d0c95 | 1980 | trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id, |
d51d1e64 | 1981 | nr_scanned, nr_reclaimed, &stat, sc->priority, file); |
05ff5137 | 1982 | return nr_reclaimed; |
1da177e4 LT |
1983 | } |
1984 | ||
1985 | /* | |
1986 | * This moves pages from the active list to the inactive list. | |
1987 | * | |
1988 | * We move them the other way if the page is referenced by one or more | |
1989 | * processes, from rmap. | |
1990 | * | |
1991 | * If the pages are mostly unmapped, the processing is fast and it is | |
f4b7e272 | 1992 | * appropriate to hold pgdat->lru_lock across the whole operation. But if |
1da177e4 | 1993 | * the pages are mapped, the processing is slow (page_referenced()) so we |
f4b7e272 | 1994 | * should drop pgdat->lru_lock around each page. It's impossible to balance |
1da177e4 LT |
1995 | * this, so instead we remove the pages from the LRU while processing them. |
1996 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1997 | * nobody will play with that bit on a non-LRU page. | |
1998 | * | |
0139aa7b | 1999 | * The downside is that we have to touch page->_refcount against each page. |
1da177e4 | 2000 | * But we had to alter page->flags anyway. |
9d998b4f MH |
2001 | * |
2002 | * Returns the number of pages moved to the given lru. | |
1da177e4 | 2003 | */ |
1cfb419b | 2004 | |
9d998b4f | 2005 | static unsigned move_active_pages_to_lru(struct lruvec *lruvec, |
3eb4140f | 2006 | struct list_head *list, |
2bcf8879 | 2007 | struct list_head *pages_to_free, |
3eb4140f WF |
2008 | enum lru_list lru) |
2009 | { | |
599d0c95 | 2010 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
3eb4140f | 2011 | struct page *page; |
fa9add64 | 2012 | int nr_pages; |
9d998b4f | 2013 | int nr_moved = 0; |
3eb4140f | 2014 | |
3eb4140f WF |
2015 | while (!list_empty(list)) { |
2016 | page = lru_to_page(list); | |
599d0c95 | 2017 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
3eb4140f | 2018 | |
309381fe | 2019 | VM_BUG_ON_PAGE(PageLRU(page), page); |
3eb4140f WF |
2020 | SetPageLRU(page); |
2021 | ||
fa9add64 | 2022 | nr_pages = hpage_nr_pages(page); |
599d0c95 | 2023 | update_lru_size(lruvec, lru, page_zonenum(page), nr_pages); |
925b7673 | 2024 | list_move(&page->lru, &lruvec->lists[lru]); |
3eb4140f | 2025 | |
2bcf8879 HD |
2026 | if (put_page_testzero(page)) { |
2027 | __ClearPageLRU(page); | |
2028 | __ClearPageActive(page); | |
fa9add64 | 2029 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
2030 | |
2031 | if (unlikely(PageCompound(page))) { | |
599d0c95 | 2032 | spin_unlock_irq(&pgdat->lru_lock); |
747db954 | 2033 | mem_cgroup_uncharge(page); |
2bcf8879 | 2034 | (*get_compound_page_dtor(page))(page); |
599d0c95 | 2035 | spin_lock_irq(&pgdat->lru_lock); |
2bcf8879 HD |
2036 | } else |
2037 | list_add(&page->lru, pages_to_free); | |
9d998b4f MH |
2038 | } else { |
2039 | nr_moved += nr_pages; | |
3eb4140f WF |
2040 | } |
2041 | } | |
9d5e6a9f | 2042 | |
2262185c | 2043 | if (!is_active_lru(lru)) { |
f0958906 | 2044 | __count_vm_events(PGDEACTIVATE, nr_moved); |
2262185c RG |
2045 | count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, |
2046 | nr_moved); | |
2047 | } | |
9d998b4f MH |
2048 | |
2049 | return nr_moved; | |
3eb4140f | 2050 | } |
1cfb419b | 2051 | |
f626012d | 2052 | static void shrink_active_list(unsigned long nr_to_scan, |
1a93be0e | 2053 | struct lruvec *lruvec, |
f16015fb | 2054 | struct scan_control *sc, |
9e3b2f8c | 2055 | enum lru_list lru) |
1da177e4 | 2056 | { |
44c241f1 | 2057 | unsigned long nr_taken; |
f626012d | 2058 | unsigned long nr_scanned; |
6fe6b7e3 | 2059 | unsigned long vm_flags; |
1da177e4 | 2060 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
8cab4754 | 2061 | LIST_HEAD(l_active); |
b69408e8 | 2062 | LIST_HEAD(l_inactive); |
1da177e4 | 2063 | struct page *page; |
1a93be0e | 2064 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
9d998b4f MH |
2065 | unsigned nr_deactivate, nr_activate; |
2066 | unsigned nr_rotated = 0; | |
3cb99451 | 2067 | int file = is_file_lru(lru); |
599d0c95 | 2068 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
1da177e4 LT |
2069 | |
2070 | lru_add_drain(); | |
f80c0673 | 2071 | |
599d0c95 | 2072 | spin_lock_irq(&pgdat->lru_lock); |
925b7673 | 2073 | |
5dc35979 | 2074 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
a9e7c39f | 2075 | &nr_scanned, sc, lru); |
89b5fae5 | 2076 | |
599d0c95 | 2077 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken); |
b7c46d15 | 2078 | reclaim_stat->recent_scanned[file] += nr_taken; |
1cfb419b | 2079 | |
599d0c95 | 2080 | __count_vm_events(PGREFILL, nr_scanned); |
2262185c | 2081 | count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned); |
9d5e6a9f | 2082 | |
599d0c95 | 2083 | spin_unlock_irq(&pgdat->lru_lock); |
1da177e4 | 2084 | |
1da177e4 LT |
2085 | while (!list_empty(&l_hold)) { |
2086 | cond_resched(); | |
2087 | page = lru_to_page(&l_hold); | |
2088 | list_del(&page->lru); | |
7e9cd484 | 2089 | |
39b5f29a | 2090 | if (unlikely(!page_evictable(page))) { |
894bc310 LS |
2091 | putback_lru_page(page); |
2092 | continue; | |
2093 | } | |
2094 | ||
cc715d99 MG |
2095 | if (unlikely(buffer_heads_over_limit)) { |
2096 | if (page_has_private(page) && trylock_page(page)) { | |
2097 | if (page_has_private(page)) | |
2098 | try_to_release_page(page, 0); | |
2099 | unlock_page(page); | |
2100 | } | |
2101 | } | |
2102 | ||
c3ac9a8a JW |
2103 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
2104 | &vm_flags)) { | |
9992af10 | 2105 | nr_rotated += hpage_nr_pages(page); |
8cab4754 WF |
2106 | /* |
2107 | * Identify referenced, file-backed active pages and | |
2108 | * give them one more trip around the active list. So | |
2109 | * that executable code get better chances to stay in | |
2110 | * memory under moderate memory pressure. Anon pages | |
2111 | * are not likely to be evicted by use-once streaming | |
2112 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
2113 | * so we ignore them here. | |
2114 | */ | |
41e20983 | 2115 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
8cab4754 WF |
2116 | list_add(&page->lru, &l_active); |
2117 | continue; | |
2118 | } | |
2119 | } | |
7e9cd484 | 2120 | |
5205e56e | 2121 | ClearPageActive(page); /* we are de-activating */ |
1899ad18 | 2122 | SetPageWorkingset(page); |
1da177e4 LT |
2123 | list_add(&page->lru, &l_inactive); |
2124 | } | |
2125 | ||
b555749a | 2126 | /* |
8cab4754 | 2127 | * Move pages back to the lru list. |
b555749a | 2128 | */ |
599d0c95 | 2129 | spin_lock_irq(&pgdat->lru_lock); |
556adecb | 2130 | /* |
8cab4754 WF |
2131 | * Count referenced pages from currently used mappings as rotated, |
2132 | * even though only some of them are actually re-activated. This | |
2133 | * helps balance scan pressure between file and anonymous pages in | |
7c0db9e9 | 2134 | * get_scan_count. |
7e9cd484 | 2135 | */ |
b7c46d15 | 2136 | reclaim_stat->recent_rotated[file] += nr_rotated; |
556adecb | 2137 | |
9d998b4f MH |
2138 | nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
2139 | nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | |
599d0c95 MG |
2140 | __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken); |
2141 | spin_unlock_irq(&pgdat->lru_lock); | |
2bcf8879 | 2142 | |
747db954 | 2143 | mem_cgroup_uncharge_list(&l_hold); |
2d4894b5 | 2144 | free_unref_page_list(&l_hold); |
9d998b4f MH |
2145 | trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate, |
2146 | nr_deactivate, nr_rotated, sc->priority, file); | |
1da177e4 LT |
2147 | } |
2148 | ||
59dc76b0 RR |
2149 | /* |
2150 | * The inactive anon list should be small enough that the VM never has | |
2151 | * to do too much work. | |
14797e23 | 2152 | * |
59dc76b0 RR |
2153 | * The inactive file list should be small enough to leave most memory |
2154 | * to the established workingset on the scan-resistant active list, | |
2155 | * but large enough to avoid thrashing the aggregate readahead window. | |
56e49d21 | 2156 | * |
59dc76b0 RR |
2157 | * Both inactive lists should also be large enough that each inactive |
2158 | * page has a chance to be referenced again before it is reclaimed. | |
56e49d21 | 2159 | * |
2a2e4885 JW |
2160 | * If that fails and refaulting is observed, the inactive list grows. |
2161 | * | |
59dc76b0 | 2162 | * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages |
3a50d14d | 2163 | * on this LRU, maintained by the pageout code. An inactive_ratio |
59dc76b0 | 2164 | * of 3 means 3:1 or 25% of the pages are kept on the inactive list. |
56e49d21 | 2165 | * |
59dc76b0 RR |
2166 | * total target max |
2167 | * memory ratio inactive | |
2168 | * ------------------------------------- | |
2169 | * 10MB 1 5MB | |
2170 | * 100MB 1 50MB | |
2171 | * 1GB 3 250MB | |
2172 | * 10GB 10 0.9GB | |
2173 | * 100GB 31 3GB | |
2174 | * 1TB 101 10GB | |
2175 | * 10TB 320 32GB | |
56e49d21 | 2176 | */ |
f8d1a311 | 2177 | static bool inactive_list_is_low(struct lruvec *lruvec, bool file, |
2a2e4885 | 2178 | struct scan_control *sc, bool actual_reclaim) |
56e49d21 | 2179 | { |
fd538803 | 2180 | enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE; |
2a2e4885 JW |
2181 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
2182 | enum lru_list inactive_lru = file * LRU_FILE; | |
2183 | unsigned long inactive, active; | |
2184 | unsigned long inactive_ratio; | |
2185 | unsigned long refaults; | |
59dc76b0 | 2186 | unsigned long gb; |
e3790144 | 2187 | |
59dc76b0 RR |
2188 | /* |
2189 | * If we don't have swap space, anonymous page deactivation | |
2190 | * is pointless. | |
2191 | */ | |
2192 | if (!file && !total_swap_pages) | |
2193 | return false; | |
56e49d21 | 2194 | |
fd538803 MH |
2195 | inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx); |
2196 | active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx); | |
f8d1a311 | 2197 | |
2a2e4885 JW |
2198 | /* |
2199 | * When refaults are being observed, it means a new workingset | |
2200 | * is being established. Disable active list protection to get | |
2201 | * rid of the stale workingset quickly. | |
2202 | */ | |
3b991208 | 2203 | refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE); |
2a2e4885 JW |
2204 | if (file && actual_reclaim && lruvec->refaults != refaults) { |
2205 | inactive_ratio = 0; | |
2206 | } else { | |
2207 | gb = (inactive + active) >> (30 - PAGE_SHIFT); | |
2208 | if (gb) | |
2209 | inactive_ratio = int_sqrt(10 * gb); | |
2210 | else | |
2211 | inactive_ratio = 1; | |
2212 | } | |
59dc76b0 | 2213 | |
2a2e4885 JW |
2214 | if (actual_reclaim) |
2215 | trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx, | |
2216 | lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive, | |
2217 | lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active, | |
2218 | inactive_ratio, file); | |
fd538803 | 2219 | |
59dc76b0 | 2220 | return inactive * inactive_ratio < active; |
b39415b2 RR |
2221 | } |
2222 | ||
4f98a2fe | 2223 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
3b991208 | 2224 | struct lruvec *lruvec, struct scan_control *sc) |
b69408e8 | 2225 | { |
b39415b2 | 2226 | if (is_active_lru(lru)) { |
3b991208 | 2227 | if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true)) |
1a93be0e | 2228 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
556adecb RR |
2229 | return 0; |
2230 | } | |
2231 | ||
1a93be0e | 2232 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
4f98a2fe RR |
2233 | } |
2234 | ||
9a265114 JW |
2235 | enum scan_balance { |
2236 | SCAN_EQUAL, | |
2237 | SCAN_FRACT, | |
2238 | SCAN_ANON, | |
2239 | SCAN_FILE, | |
2240 | }; | |
2241 | ||
4f98a2fe RR |
2242 | /* |
2243 | * Determine how aggressively the anon and file LRU lists should be | |
2244 | * scanned. The relative value of each set of LRU lists is determined | |
2245 | * by looking at the fraction of the pages scanned we did rotate back | |
2246 | * onto the active list instead of evict. | |
2247 | * | |
be7bd59d WL |
2248 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
2249 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
4f98a2fe | 2250 | */ |
33377678 | 2251 | static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg, |
6b4f7799 JW |
2252 | struct scan_control *sc, unsigned long *nr, |
2253 | unsigned long *lru_pages) | |
4f98a2fe | 2254 | { |
33377678 | 2255 | int swappiness = mem_cgroup_swappiness(memcg); |
9a265114 JW |
2256 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
2257 | u64 fraction[2]; | |
2258 | u64 denominator = 0; /* gcc */ | |
599d0c95 | 2259 | struct pglist_data *pgdat = lruvec_pgdat(lruvec); |
4f98a2fe | 2260 | unsigned long anon_prio, file_prio; |
9a265114 | 2261 | enum scan_balance scan_balance; |
0bf1457f | 2262 | unsigned long anon, file; |
4f98a2fe | 2263 | unsigned long ap, fp; |
4111304d | 2264 | enum lru_list lru; |
76a33fc3 SL |
2265 | |
2266 | /* If we have no swap space, do not bother scanning anon pages. */ | |
d8b38438 | 2267 | if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) { |
9a265114 | 2268 | scan_balance = SCAN_FILE; |
76a33fc3 SL |
2269 | goto out; |
2270 | } | |
4f98a2fe | 2271 | |
10316b31 JW |
2272 | /* |
2273 | * Global reclaim will swap to prevent OOM even with no | |
2274 | * swappiness, but memcg users want to use this knob to | |
2275 | * disable swapping for individual groups completely when | |
2276 | * using the memory controller's swap limit feature would be | |
2277 | * too expensive. | |
2278 | */ | |
02695175 | 2279 | if (!global_reclaim(sc) && !swappiness) { |
9a265114 | 2280 | scan_balance = SCAN_FILE; |
10316b31 JW |
2281 | goto out; |
2282 | } | |
2283 | ||
2284 | /* | |
2285 | * Do not apply any pressure balancing cleverness when the | |
2286 | * system is close to OOM, scan both anon and file equally | |
2287 | * (unless the swappiness setting disagrees with swapping). | |
2288 | */ | |
02695175 | 2289 | if (!sc->priority && swappiness) { |
9a265114 | 2290 | scan_balance = SCAN_EQUAL; |
10316b31 JW |
2291 | goto out; |
2292 | } | |
2293 | ||
62376251 JW |
2294 | /* |
2295 | * Prevent the reclaimer from falling into the cache trap: as | |
2296 | * cache pages start out inactive, every cache fault will tip | |
2297 | * the scan balance towards the file LRU. And as the file LRU | |
2298 | * shrinks, so does the window for rotation from references. | |
2299 | * This means we have a runaway feedback loop where a tiny | |
2300 | * thrashing file LRU becomes infinitely more attractive than | |
2301 | * anon pages. Try to detect this based on file LRU size. | |
2302 | */ | |
2303 | if (global_reclaim(sc)) { | |
599d0c95 MG |
2304 | unsigned long pgdatfile; |
2305 | unsigned long pgdatfree; | |
2306 | int z; | |
2307 | unsigned long total_high_wmark = 0; | |
2ab051e1 | 2308 | |
599d0c95 MG |
2309 | pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES); |
2310 | pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) + | |
2311 | node_page_state(pgdat, NR_INACTIVE_FILE); | |
2312 | ||
2313 | for (z = 0; z < MAX_NR_ZONES; z++) { | |
2314 | struct zone *zone = &pgdat->node_zones[z]; | |
6aa303de | 2315 | if (!managed_zone(zone)) |
599d0c95 MG |
2316 | continue; |
2317 | ||
2318 | total_high_wmark += high_wmark_pages(zone); | |
2319 | } | |
62376251 | 2320 | |
599d0c95 | 2321 | if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) { |
06226226 DR |
2322 | /* |
2323 | * Force SCAN_ANON if there are enough inactive | |
2324 | * anonymous pages on the LRU in eligible zones. | |
2325 | * Otherwise, the small LRU gets thrashed. | |
2326 | */ | |
3b991208 | 2327 | if (!inactive_list_is_low(lruvec, false, sc, false) && |
06226226 DR |
2328 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx) |
2329 | >> sc->priority) { | |
2330 | scan_balance = SCAN_ANON; | |
2331 | goto out; | |
2332 | } | |
62376251 JW |
2333 | } |
2334 | } | |
2335 | ||
7c5bd705 | 2336 | /* |
316bda0e VD |
2337 | * If there is enough inactive page cache, i.e. if the size of the |
2338 | * inactive list is greater than that of the active list *and* the | |
2339 | * inactive list actually has some pages to scan on this priority, we | |
2340 | * do not reclaim anything from the anonymous working set right now. | |
2341 | * Without the second condition we could end up never scanning an | |
2342 | * lruvec even if it has plenty of old anonymous pages unless the | |
2343 | * system is under heavy pressure. | |
7c5bd705 | 2344 | */ |
3b991208 | 2345 | if (!inactive_list_is_low(lruvec, true, sc, false) && |
71ab6cfe | 2346 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) { |
9a265114 | 2347 | scan_balance = SCAN_FILE; |
7c5bd705 JW |
2348 | goto out; |
2349 | } | |
2350 | ||
9a265114 JW |
2351 | scan_balance = SCAN_FRACT; |
2352 | ||
58c37f6e KM |
2353 | /* |
2354 | * With swappiness at 100, anonymous and file have the same priority. | |
2355 | * This scanning priority is essentially the inverse of IO cost. | |
2356 | */ | |
02695175 | 2357 | anon_prio = swappiness; |
75b00af7 | 2358 | file_prio = 200 - anon_prio; |
58c37f6e | 2359 | |
4f98a2fe RR |
2360 | /* |
2361 | * OK, so we have swap space and a fair amount of page cache | |
2362 | * pages. We use the recently rotated / recently scanned | |
2363 | * ratios to determine how valuable each cache is. | |
2364 | * | |
2365 | * Because workloads change over time (and to avoid overflow) | |
2366 | * we keep these statistics as a floating average, which ends | |
2367 | * up weighing recent references more than old ones. | |
2368 | * | |
2369 | * anon in [0], file in [1] | |
2370 | */ | |
2ab051e1 | 2371 | |
fd538803 MH |
2372 | anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) + |
2373 | lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES); | |
2374 | file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) + | |
2375 | lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES); | |
2ab051e1 | 2376 | |
599d0c95 | 2377 | spin_lock_irq(&pgdat->lru_lock); |
6e901571 | 2378 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
6e901571 KM |
2379 | reclaim_stat->recent_scanned[0] /= 2; |
2380 | reclaim_stat->recent_rotated[0] /= 2; | |
4f98a2fe RR |
2381 | } |
2382 | ||
6e901571 | 2383 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
6e901571 KM |
2384 | reclaim_stat->recent_scanned[1] /= 2; |
2385 | reclaim_stat->recent_rotated[1] /= 2; | |
4f98a2fe RR |
2386 | } |
2387 | ||
4f98a2fe | 2388 | /* |
00d8089c RR |
2389 | * The amount of pressure on anon vs file pages is inversely |
2390 | * proportional to the fraction of recently scanned pages on | |
2391 | * each list that were recently referenced and in active use. | |
4f98a2fe | 2392 | */ |
fe35004f | 2393 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
6e901571 | 2394 | ap /= reclaim_stat->recent_rotated[0] + 1; |
4f98a2fe | 2395 | |
fe35004f | 2396 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
6e901571 | 2397 | fp /= reclaim_stat->recent_rotated[1] + 1; |
599d0c95 | 2398 | spin_unlock_irq(&pgdat->lru_lock); |
4f98a2fe | 2399 | |
76a33fc3 SL |
2400 | fraction[0] = ap; |
2401 | fraction[1] = fp; | |
2402 | denominator = ap + fp + 1; | |
2403 | out: | |
688035f7 JW |
2404 | *lru_pages = 0; |
2405 | for_each_evictable_lru(lru) { | |
2406 | int file = is_file_lru(lru); | |
2407 | unsigned long size; | |
2408 | unsigned long scan; | |
6b4f7799 | 2409 | |
688035f7 JW |
2410 | size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx); |
2411 | scan = size >> sc->priority; | |
2412 | /* | |
2413 | * If the cgroup's already been deleted, make sure to | |
2414 | * scrape out the remaining cache. | |
2415 | */ | |
2416 | if (!scan && !mem_cgroup_online(memcg)) | |
2417 | scan = min(size, SWAP_CLUSTER_MAX); | |
6b4f7799 | 2418 | |
688035f7 JW |
2419 | switch (scan_balance) { |
2420 | case SCAN_EQUAL: | |
2421 | /* Scan lists relative to size */ | |
2422 | break; | |
2423 | case SCAN_FRACT: | |
9a265114 | 2424 | /* |
688035f7 JW |
2425 | * Scan types proportional to swappiness and |
2426 | * their relative recent reclaim efficiency. | |
68600f62 RG |
2427 | * Make sure we don't miss the last page |
2428 | * because of a round-off error. | |
9a265114 | 2429 | */ |
68600f62 RG |
2430 | scan = DIV64_U64_ROUND_UP(scan * fraction[file], |
2431 | denominator); | |
688035f7 JW |
2432 | break; |
2433 | case SCAN_FILE: | |
2434 | case SCAN_ANON: | |
2435 | /* Scan one type exclusively */ | |
2436 | if ((scan_balance == SCAN_FILE) != file) { | |
2437 | size = 0; | |
2438 | scan = 0; | |
2439 | } | |
2440 | break; | |
2441 | default: | |
2442 | /* Look ma, no brain */ | |
2443 | BUG(); | |
9a265114 | 2444 | } |
688035f7 JW |
2445 | |
2446 | *lru_pages += size; | |
2447 | nr[lru] = scan; | |
76a33fc3 | 2448 | } |
6e08a369 | 2449 | } |
4f98a2fe | 2450 | |
9b4f98cd | 2451 | /* |
a9dd0a83 | 2452 | * This is a basic per-node page freer. Used by both kswapd and direct reclaim. |
9b4f98cd | 2453 | */ |
a9dd0a83 | 2454 | static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg, |
33377678 | 2455 | struct scan_control *sc, unsigned long *lru_pages) |
9b4f98cd | 2456 | { |
ef8f2327 | 2457 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); |
9b4f98cd | 2458 | unsigned long nr[NR_LRU_LISTS]; |
e82e0561 | 2459 | unsigned long targets[NR_LRU_LISTS]; |
9b4f98cd JW |
2460 | unsigned long nr_to_scan; |
2461 | enum lru_list lru; | |
2462 | unsigned long nr_reclaimed = 0; | |
2463 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; | |
2464 | struct blk_plug plug; | |
1a501907 | 2465 | bool scan_adjusted; |
9b4f98cd | 2466 | |
33377678 | 2467 | get_scan_count(lruvec, memcg, sc, nr, lru_pages); |
9b4f98cd | 2468 | |
e82e0561 MG |
2469 | /* Record the original scan target for proportional adjustments later */ |
2470 | memcpy(targets, nr, sizeof(nr)); | |
2471 | ||
1a501907 MG |
2472 | /* |
2473 | * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal | |
2474 | * event that can occur when there is little memory pressure e.g. | |
2475 | * multiple streaming readers/writers. Hence, we do not abort scanning | |
2476 | * when the requested number of pages are reclaimed when scanning at | |
2477 | * DEF_PRIORITY on the assumption that the fact we are direct | |
2478 | * reclaiming implies that kswapd is not keeping up and it is best to | |
2479 | * do a batch of work at once. For memcg reclaim one check is made to | |
2480 | * abort proportional reclaim if either the file or anon lru has already | |
2481 | * dropped to zero at the first pass. | |
2482 | */ | |
2483 | scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() && | |
2484 | sc->priority == DEF_PRIORITY); | |
2485 | ||
9b4f98cd JW |
2486 | blk_start_plug(&plug); |
2487 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || | |
2488 | nr[LRU_INACTIVE_FILE]) { | |
e82e0561 MG |
2489 | unsigned long nr_anon, nr_file, percentage; |
2490 | unsigned long nr_scanned; | |
2491 | ||
9b4f98cd JW |
2492 | for_each_evictable_lru(lru) { |
2493 | if (nr[lru]) { | |
2494 | nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX); | |
2495 | nr[lru] -= nr_to_scan; | |
2496 | ||
2497 | nr_reclaimed += shrink_list(lru, nr_to_scan, | |
3b991208 | 2498 | lruvec, sc); |
9b4f98cd JW |
2499 | } |
2500 | } | |
e82e0561 | 2501 | |
bd041733 MH |
2502 | cond_resched(); |
2503 | ||
e82e0561 MG |
2504 | if (nr_reclaimed < nr_to_reclaim || scan_adjusted) |
2505 | continue; | |
2506 | ||
e82e0561 MG |
2507 | /* |
2508 | * For kswapd and memcg, reclaim at least the number of pages | |
1a501907 | 2509 | * requested. Ensure that the anon and file LRUs are scanned |
e82e0561 MG |
2510 | * proportionally what was requested by get_scan_count(). We |
2511 | * stop reclaiming one LRU and reduce the amount scanning | |
2512 | * proportional to the original scan target. | |
2513 | */ | |
2514 | nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE]; | |
2515 | nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON]; | |
2516 | ||
1a501907 MG |
2517 | /* |
2518 | * It's just vindictive to attack the larger once the smaller | |
2519 | * has gone to zero. And given the way we stop scanning the | |
2520 | * smaller below, this makes sure that we only make one nudge | |
2521 | * towards proportionality once we've got nr_to_reclaim. | |
2522 | */ | |
2523 | if (!nr_file || !nr_anon) | |
2524 | break; | |
2525 | ||
e82e0561 MG |
2526 | if (nr_file > nr_anon) { |
2527 | unsigned long scan_target = targets[LRU_INACTIVE_ANON] + | |
2528 | targets[LRU_ACTIVE_ANON] + 1; | |
2529 | lru = LRU_BASE; | |
2530 | percentage = nr_anon * 100 / scan_target; | |
2531 | } else { | |
2532 | unsigned long scan_target = targets[LRU_INACTIVE_FILE] + | |
2533 | targets[LRU_ACTIVE_FILE] + 1; | |
2534 | lru = LRU_FILE; | |
2535 | percentage = nr_file * 100 / scan_target; | |
2536 | } | |
2537 | ||
2538 | /* Stop scanning the smaller of the LRU */ | |
2539 | nr[lru] = 0; | |
2540 | nr[lru + LRU_ACTIVE] = 0; | |
2541 | ||
2542 | /* | |
2543 | * Recalculate the other LRU scan count based on its original | |
2544 | * scan target and the percentage scanning already complete | |
2545 | */ | |
2546 | lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE; | |
2547 | nr_scanned = targets[lru] - nr[lru]; | |
2548 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2549 | nr[lru] -= min(nr[lru], nr_scanned); | |
2550 | ||
2551 | lru += LRU_ACTIVE; | |
2552 | nr_scanned = targets[lru] - nr[lru]; | |
2553 | nr[lru] = targets[lru] * (100 - percentage) / 100; | |
2554 | nr[lru] -= min(nr[lru], nr_scanned); | |
2555 | ||
2556 | scan_adjusted = true; | |
9b4f98cd JW |
2557 | } |
2558 | blk_finish_plug(&plug); | |
2559 | sc->nr_reclaimed += nr_reclaimed; | |
2560 | ||
2561 | /* | |
2562 | * Even if we did not try to evict anon pages at all, we want to | |
2563 | * rebalance the anon lru active/inactive ratio. | |
2564 | */ | |
3b991208 | 2565 | if (inactive_list_is_low(lruvec, false, sc, true)) |
9b4f98cd JW |
2566 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
2567 | sc, LRU_ACTIVE_ANON); | |
9b4f98cd JW |
2568 | } |
2569 | ||
23b9da55 | 2570 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
9e3b2f8c | 2571 | static bool in_reclaim_compaction(struct scan_control *sc) |
23b9da55 | 2572 | { |
d84da3f9 | 2573 | if (IS_ENABLED(CONFIG_COMPACTION) && sc->order && |
23b9da55 | 2574 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || |
9e3b2f8c | 2575 | sc->priority < DEF_PRIORITY - 2)) |
23b9da55 MG |
2576 | return true; |
2577 | ||
2578 | return false; | |
2579 | } | |
2580 | ||
3e7d3449 | 2581 | /* |
23b9da55 MG |
2582 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
2583 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
2584 | * true if more pages should be reclaimed such that when the page allocator | |
2585 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | |
2586 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
3e7d3449 | 2587 | */ |
a9dd0a83 | 2588 | static inline bool should_continue_reclaim(struct pglist_data *pgdat, |
3e7d3449 MG |
2589 | unsigned long nr_reclaimed, |
2590 | unsigned long nr_scanned, | |
2591 | struct scan_control *sc) | |
2592 | { | |
2593 | unsigned long pages_for_compaction; | |
2594 | unsigned long inactive_lru_pages; | |
a9dd0a83 | 2595 | int z; |
3e7d3449 MG |
2596 | |
2597 | /* If not in reclaim/compaction mode, stop */ | |
9e3b2f8c | 2598 | if (!in_reclaim_compaction(sc)) |
3e7d3449 MG |
2599 | return false; |
2600 | ||
2876592f | 2601 | /* Consider stopping depending on scan and reclaim activity */ |
dcda9b04 | 2602 | if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) { |
2876592f | 2603 | /* |
dcda9b04 | 2604 | * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the |
2876592f MG |
2605 | * full LRU list has been scanned and we are still failing |
2606 | * to reclaim pages. This full LRU scan is potentially | |
dcda9b04 | 2607 | * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed |
2876592f MG |
2608 | */ |
2609 | if (!nr_reclaimed && !nr_scanned) | |
2610 | return false; | |
2611 | } else { | |
2612 | /* | |
dcda9b04 | 2613 | * For non-__GFP_RETRY_MAYFAIL allocations which can presumably |
2876592f MG |
2614 | * fail without consequence, stop if we failed to reclaim |
2615 | * any pages from the last SWAP_CLUSTER_MAX number of | |
2616 | * pages that were scanned. This will return to the | |
2617 | * caller faster at the risk reclaim/compaction and | |
2618 | * the resulting allocation attempt fails | |
2619 | */ | |
2620 | if (!nr_reclaimed) | |
2621 | return false; | |
2622 | } | |
3e7d3449 MG |
2623 | |
2624 | /* | |
2625 | * If we have not reclaimed enough pages for compaction and the | |
2626 | * inactive lists are large enough, continue reclaiming | |
2627 | */ | |
9861a62c | 2628 | pages_for_compaction = compact_gap(sc->order); |
a9dd0a83 | 2629 | inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE); |
ec8acf20 | 2630 | if (get_nr_swap_pages() > 0) |
a9dd0a83 | 2631 | inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON); |
3e7d3449 MG |
2632 | if (sc->nr_reclaimed < pages_for_compaction && |
2633 | inactive_lru_pages > pages_for_compaction) | |
2634 | return true; | |
2635 | ||
2636 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
a9dd0a83 MG |
2637 | for (z = 0; z <= sc->reclaim_idx; z++) { |
2638 | struct zone *zone = &pgdat->node_zones[z]; | |
6aa303de | 2639 | if (!managed_zone(zone)) |
a9dd0a83 MG |
2640 | continue; |
2641 | ||
2642 | switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) { | |
cf378319 | 2643 | case COMPACT_SUCCESS: |
a9dd0a83 MG |
2644 | case COMPACT_CONTINUE: |
2645 | return false; | |
2646 | default: | |
2647 | /* check next zone */ | |
2648 | ; | |
2649 | } | |
3e7d3449 | 2650 | } |
a9dd0a83 | 2651 | return true; |
3e7d3449 MG |
2652 | } |
2653 | ||
e3c1ac58 AR |
2654 | static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg) |
2655 | { | |
2656 | return test_bit(PGDAT_CONGESTED, &pgdat->flags) || | |
2657 | (memcg && memcg_congested(pgdat, memcg)); | |
2658 | } | |
2659 | ||
970a39a3 | 2660 | static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc) |
1da177e4 | 2661 | { |
cb731d6c | 2662 | struct reclaim_state *reclaim_state = current->reclaim_state; |
f0fdc5e8 | 2663 | unsigned long nr_reclaimed, nr_scanned; |
2344d7e4 | 2664 | bool reclaimable = false; |
1da177e4 | 2665 | |
9b4f98cd JW |
2666 | do { |
2667 | struct mem_cgroup *root = sc->target_mem_cgroup; | |
2668 | struct mem_cgroup_reclaim_cookie reclaim = { | |
ef8f2327 | 2669 | .pgdat = pgdat, |
9b4f98cd JW |
2670 | .priority = sc->priority, |
2671 | }; | |
a9dd0a83 | 2672 | unsigned long node_lru_pages = 0; |
694fbc0f | 2673 | struct mem_cgroup *memcg; |
3e7d3449 | 2674 | |
d108c772 AR |
2675 | memset(&sc->nr, 0, sizeof(sc->nr)); |
2676 | ||
9b4f98cd JW |
2677 | nr_reclaimed = sc->nr_reclaimed; |
2678 | nr_scanned = sc->nr_scanned; | |
1da177e4 | 2679 | |
694fbc0f AM |
2680 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
2681 | do { | |
6b4f7799 | 2682 | unsigned long lru_pages; |
8e8ae645 | 2683 | unsigned long reclaimed; |
cb731d6c | 2684 | unsigned long scanned; |
5660048c | 2685 | |
bf8d5d52 RG |
2686 | switch (mem_cgroup_protected(root, memcg)) { |
2687 | case MEMCG_PROT_MIN: | |
2688 | /* | |
2689 | * Hard protection. | |
2690 | * If there is no reclaimable memory, OOM. | |
2691 | */ | |
2692 | continue; | |
2693 | case MEMCG_PROT_LOW: | |
2694 | /* | |
2695 | * Soft protection. | |
2696 | * Respect the protection only as long as | |
2697 | * there is an unprotected supply | |
2698 | * of reclaimable memory from other cgroups. | |
2699 | */ | |
d6622f63 YX |
2700 | if (!sc->memcg_low_reclaim) { |
2701 | sc->memcg_low_skipped = 1; | |
241994ed | 2702 | continue; |
d6622f63 | 2703 | } |
e27be240 | 2704 | memcg_memory_event(memcg, MEMCG_LOW); |
bf8d5d52 RG |
2705 | break; |
2706 | case MEMCG_PROT_NONE: | |
2707 | break; | |
241994ed JW |
2708 | } |
2709 | ||
8e8ae645 | 2710 | reclaimed = sc->nr_reclaimed; |
cb731d6c | 2711 | scanned = sc->nr_scanned; |
a9dd0a83 MG |
2712 | shrink_node_memcg(pgdat, memcg, sc, &lru_pages); |
2713 | node_lru_pages += lru_pages; | |
f16015fb | 2714 | |
1c30844d MG |
2715 | if (sc->may_shrinkslab) { |
2716 | shrink_slab(sc->gfp_mask, pgdat->node_id, | |
aeed1d32 | 2717 | memcg, sc->priority); |
1c30844d | 2718 | } |
cb731d6c | 2719 | |
8e8ae645 JW |
2720 | /* Record the group's reclaim efficiency */ |
2721 | vmpressure(sc->gfp_mask, memcg, false, | |
2722 | sc->nr_scanned - scanned, | |
2723 | sc->nr_reclaimed - reclaimed); | |
2724 | ||
9b4f98cd | 2725 | /* |
2bb0f34f YS |
2726 | * Kswapd have to scan all memory cgroups to fulfill |
2727 | * the overall scan target for the node. | |
a394cb8e MH |
2728 | * |
2729 | * Limit reclaim, on the other hand, only cares about | |
2730 | * nr_to_reclaim pages to be reclaimed and it will | |
2731 | * retry with decreasing priority if one round over the | |
2732 | * whole hierarchy is not sufficient. | |
9b4f98cd | 2733 | */ |
2bb0f34f | 2734 | if (!current_is_kswapd() && |
a394cb8e | 2735 | sc->nr_reclaimed >= sc->nr_to_reclaim) { |
9b4f98cd JW |
2736 | mem_cgroup_iter_break(root, memcg); |
2737 | break; | |
2738 | } | |
241994ed | 2739 | } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim))); |
70ddf637 | 2740 | |
cb731d6c VD |
2741 | if (reclaim_state) { |
2742 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; | |
2743 | reclaim_state->reclaimed_slab = 0; | |
6b4f7799 JW |
2744 | } |
2745 | ||
8e8ae645 JW |
2746 | /* Record the subtree's reclaim efficiency */ |
2747 | vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true, | |
70ddf637 AV |
2748 | sc->nr_scanned - nr_scanned, |
2749 | sc->nr_reclaimed - nr_reclaimed); | |
2750 | ||
2344d7e4 JW |
2751 | if (sc->nr_reclaimed - nr_reclaimed) |
2752 | reclaimable = true; | |
2753 | ||
e3c1ac58 AR |
2754 | if (current_is_kswapd()) { |
2755 | /* | |
2756 | * If reclaim is isolating dirty pages under writeback, | |
2757 | * it implies that the long-lived page allocation rate | |
2758 | * is exceeding the page laundering rate. Either the | |
2759 | * global limits are not being effective at throttling | |
2760 | * processes due to the page distribution throughout | |
2761 | * zones or there is heavy usage of a slow backing | |
2762 | * device. The only option is to throttle from reclaim | |
2763 | * context which is not ideal as there is no guarantee | |
2764 | * the dirtying process is throttled in the same way | |
2765 | * balance_dirty_pages() manages. | |
2766 | * | |
2767 | * Once a node is flagged PGDAT_WRITEBACK, kswapd will | |
2768 | * count the number of pages under pages flagged for | |
2769 | * immediate reclaim and stall if any are encountered | |
2770 | * in the nr_immediate check below. | |
2771 | */ | |
2772 | if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken) | |
2773 | set_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
d108c772 | 2774 | |
d108c772 AR |
2775 | /* |
2776 | * Tag a node as congested if all the dirty pages | |
2777 | * scanned were backed by a congested BDI and | |
2778 | * wait_iff_congested will stall. | |
2779 | */ | |
2780 | if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) | |
2781 | set_bit(PGDAT_CONGESTED, &pgdat->flags); | |
2782 | ||
2783 | /* Allow kswapd to start writing pages during reclaim.*/ | |
2784 | if (sc->nr.unqueued_dirty == sc->nr.file_taken) | |
2785 | set_bit(PGDAT_DIRTY, &pgdat->flags); | |
2786 | ||
2787 | /* | |
2788 | * If kswapd scans pages marked marked for immediate | |
2789 | * reclaim and under writeback (nr_immediate), it | |
2790 | * implies that pages are cycling through the LRU | |
2791 | * faster than they are written so also forcibly stall. | |
2792 | */ | |
2793 | if (sc->nr.immediate) | |
2794 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
2795 | } | |
2796 | ||
e3c1ac58 AR |
2797 | /* |
2798 | * Legacy memcg will stall in page writeback so avoid forcibly | |
2799 | * stalling in wait_iff_congested(). | |
2800 | */ | |
2801 | if (!global_reclaim(sc) && sane_reclaim(sc) && | |
2802 | sc->nr.dirty && sc->nr.dirty == sc->nr.congested) | |
2803 | set_memcg_congestion(pgdat, root, true); | |
2804 | ||
d108c772 AR |
2805 | /* |
2806 | * Stall direct reclaim for IO completions if underlying BDIs | |
2807 | * and node is congested. Allow kswapd to continue until it | |
2808 | * starts encountering unqueued dirty pages or cycling through | |
2809 | * the LRU too quickly. | |
2810 | */ | |
2811 | if (!sc->hibernation_mode && !current_is_kswapd() && | |
e3c1ac58 AR |
2812 | current_may_throttle() && pgdat_memcg_congested(pgdat, root)) |
2813 | wait_iff_congested(BLK_RW_ASYNC, HZ/10); | |
d108c772 | 2814 | |
a9dd0a83 | 2815 | } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed, |
9b4f98cd | 2816 | sc->nr_scanned - nr_scanned, sc)); |
2344d7e4 | 2817 | |
c73322d0 JW |
2818 | /* |
2819 | * Kswapd gives up on balancing particular nodes after too | |
2820 | * many failures to reclaim anything from them and goes to | |
2821 | * sleep. On reclaim progress, reset the failure counter. A | |
2822 | * successful direct reclaim run will revive a dormant kswapd. | |
2823 | */ | |
2824 | if (reclaimable) | |
2825 | pgdat->kswapd_failures = 0; | |
2826 | ||
2344d7e4 | 2827 | return reclaimable; |
f16015fb JW |
2828 | } |
2829 | ||
53853e2d | 2830 | /* |
fdd4c614 VB |
2831 | * Returns true if compaction should go ahead for a costly-order request, or |
2832 | * the allocation would already succeed without compaction. Return false if we | |
2833 | * should reclaim first. | |
53853e2d | 2834 | */ |
4f588331 | 2835 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) |
fe4b1b24 | 2836 | { |
31483b6a | 2837 | unsigned long watermark; |
fdd4c614 | 2838 | enum compact_result suitable; |
fe4b1b24 | 2839 | |
fdd4c614 VB |
2840 | suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx); |
2841 | if (suitable == COMPACT_SUCCESS) | |
2842 | /* Allocation should succeed already. Don't reclaim. */ | |
2843 | return true; | |
2844 | if (suitable == COMPACT_SKIPPED) | |
2845 | /* Compaction cannot yet proceed. Do reclaim. */ | |
2846 | return false; | |
fe4b1b24 | 2847 | |
53853e2d | 2848 | /* |
fdd4c614 VB |
2849 | * Compaction is already possible, but it takes time to run and there |
2850 | * are potentially other callers using the pages just freed. So proceed | |
2851 | * with reclaim to make a buffer of free pages available to give | |
2852 | * compaction a reasonable chance of completing and allocating the page. | |
2853 | * Note that we won't actually reclaim the whole buffer in one attempt | |
2854 | * as the target watermark in should_continue_reclaim() is lower. But if | |
2855 | * we are already above the high+gap watermark, don't reclaim at all. | |
53853e2d | 2856 | */ |
fdd4c614 | 2857 | watermark = high_wmark_pages(zone) + compact_gap(sc->order); |
fe4b1b24 | 2858 | |
fdd4c614 | 2859 | return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx); |
fe4b1b24 MG |
2860 | } |
2861 | ||
1da177e4 LT |
2862 | /* |
2863 | * This is the direct reclaim path, for page-allocating processes. We only | |
2864 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
2865 | * request. | |
2866 | * | |
1da177e4 LT |
2867 | * If a zone is deemed to be full of pinned pages then just give it a light |
2868 | * scan then give up on it. | |
2869 | */ | |
0a0337e0 | 2870 | static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1da177e4 | 2871 | { |
dd1a239f | 2872 | struct zoneref *z; |
54a6eb5c | 2873 | struct zone *zone; |
0608f43d AM |
2874 | unsigned long nr_soft_reclaimed; |
2875 | unsigned long nr_soft_scanned; | |
619d0d76 | 2876 | gfp_t orig_mask; |
79dafcdc | 2877 | pg_data_t *last_pgdat = NULL; |
1cfb419b | 2878 | |
cc715d99 MG |
2879 | /* |
2880 | * If the number of buffer_heads in the machine exceeds the maximum | |
2881 | * allowed level, force direct reclaim to scan the highmem zone as | |
2882 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
2883 | */ | |
619d0d76 | 2884 | orig_mask = sc->gfp_mask; |
b2e18757 | 2885 | if (buffer_heads_over_limit) { |
cc715d99 | 2886 | sc->gfp_mask |= __GFP_HIGHMEM; |
4f588331 | 2887 | sc->reclaim_idx = gfp_zone(sc->gfp_mask); |
b2e18757 | 2888 | } |
cc715d99 | 2889 | |
d4debc66 | 2890 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
b2e18757 | 2891 | sc->reclaim_idx, sc->nodemask) { |
1cfb419b KH |
2892 | /* |
2893 | * Take care memory controller reclaiming has small influence | |
2894 | * to global LRU. | |
2895 | */ | |
89b5fae5 | 2896 | if (global_reclaim(sc)) { |
344736f2 VD |
2897 | if (!cpuset_zone_allowed(zone, |
2898 | GFP_KERNEL | __GFP_HARDWALL)) | |
1cfb419b | 2899 | continue; |
65ec02cb | 2900 | |
0b06496a JW |
2901 | /* |
2902 | * If we already have plenty of memory free for | |
2903 | * compaction in this zone, don't free any more. | |
2904 | * Even though compaction is invoked for any | |
2905 | * non-zero order, only frequent costly order | |
2906 | * reclamation is disruptive enough to become a | |
2907 | * noticeable problem, like transparent huge | |
2908 | * page allocations. | |
2909 | */ | |
2910 | if (IS_ENABLED(CONFIG_COMPACTION) && | |
2911 | sc->order > PAGE_ALLOC_COSTLY_ORDER && | |
4f588331 | 2912 | compaction_ready(zone, sc)) { |
0b06496a JW |
2913 | sc->compaction_ready = true; |
2914 | continue; | |
e0887c19 | 2915 | } |
0b06496a | 2916 | |
79dafcdc MG |
2917 | /* |
2918 | * Shrink each node in the zonelist once. If the | |
2919 | * zonelist is ordered by zone (not the default) then a | |
2920 | * node may be shrunk multiple times but in that case | |
2921 | * the user prefers lower zones being preserved. | |
2922 | */ | |
2923 | if (zone->zone_pgdat == last_pgdat) | |
2924 | continue; | |
2925 | ||
0608f43d AM |
2926 | /* |
2927 | * This steals pages from memory cgroups over softlimit | |
2928 | * and returns the number of reclaimed pages and | |
2929 | * scanned pages. This works for global memory pressure | |
2930 | * and balancing, not for a memcg's limit. | |
2931 | */ | |
2932 | nr_soft_scanned = 0; | |
ef8f2327 | 2933 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat, |
0608f43d AM |
2934 | sc->order, sc->gfp_mask, |
2935 | &nr_soft_scanned); | |
2936 | sc->nr_reclaimed += nr_soft_reclaimed; | |
2937 | sc->nr_scanned += nr_soft_scanned; | |
ac34a1a3 | 2938 | /* need some check for avoid more shrink_zone() */ |
1cfb419b | 2939 | } |
408d8544 | 2940 | |
79dafcdc MG |
2941 | /* See comment about same check for global reclaim above */ |
2942 | if (zone->zone_pgdat == last_pgdat) | |
2943 | continue; | |
2944 | last_pgdat = zone->zone_pgdat; | |
970a39a3 | 2945 | shrink_node(zone->zone_pgdat, sc); |
1da177e4 | 2946 | } |
e0c23279 | 2947 | |
619d0d76 WY |
2948 | /* |
2949 | * Restore to original mask to avoid the impact on the caller if we | |
2950 | * promoted it to __GFP_HIGHMEM. | |
2951 | */ | |
2952 | sc->gfp_mask = orig_mask; | |
1da177e4 | 2953 | } |
4f98a2fe | 2954 | |
2a2e4885 JW |
2955 | static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat) |
2956 | { | |
2957 | struct mem_cgroup *memcg; | |
2958 | ||
2959 | memcg = mem_cgroup_iter(root_memcg, NULL, NULL); | |
2960 | do { | |
2961 | unsigned long refaults; | |
2962 | struct lruvec *lruvec; | |
2963 | ||
2a2e4885 | 2964 | lruvec = mem_cgroup_lruvec(pgdat, memcg); |
3b991208 | 2965 | refaults = lruvec_page_state(lruvec, WORKINGSET_ACTIVATE); |
2a2e4885 JW |
2966 | lruvec->refaults = refaults; |
2967 | } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL))); | |
2968 | } | |
2969 | ||
1da177e4 LT |
2970 | /* |
2971 | * This is the main entry point to direct page reclaim. | |
2972 | * | |
2973 | * If a full scan of the inactive list fails to free enough memory then we | |
2974 | * are "out of memory" and something needs to be killed. | |
2975 | * | |
2976 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
2977 | * high - the zone may be full of dirty or under-writeback pages, which this | |
5b0830cb JA |
2978 | * caller can't do much about. We kick the writeback threads and take explicit |
2979 | * naps in the hope that some of these pages can be written. But if the | |
2980 | * allocating task holds filesystem locks which prevent writeout this might not | |
2981 | * work, and the allocation attempt will fail. | |
a41f24ea NA |
2982 | * |
2983 | * returns: 0, if no pages reclaimed | |
2984 | * else, the number of pages reclaimed | |
1da177e4 | 2985 | */ |
dac1d27b | 2986 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
3115cd91 | 2987 | struct scan_control *sc) |
1da177e4 | 2988 | { |
241994ed | 2989 | int initial_priority = sc->priority; |
2a2e4885 JW |
2990 | pg_data_t *last_pgdat; |
2991 | struct zoneref *z; | |
2992 | struct zone *zone; | |
241994ed | 2993 | retry: |
873b4771 KK |
2994 | delayacct_freepages_start(); |
2995 | ||
89b5fae5 | 2996 | if (global_reclaim(sc)) |
7cc30fcf | 2997 | __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1); |
1da177e4 | 2998 | |
9e3b2f8c | 2999 | do { |
70ddf637 AV |
3000 | vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup, |
3001 | sc->priority); | |
66e1707b | 3002 | sc->nr_scanned = 0; |
0a0337e0 | 3003 | shrink_zones(zonelist, sc); |
c6a8a8c5 | 3004 | |
bb21c7ce | 3005 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
0b06496a JW |
3006 | break; |
3007 | ||
3008 | if (sc->compaction_ready) | |
3009 | break; | |
1da177e4 | 3010 | |
0e50ce3b MK |
3011 | /* |
3012 | * If we're getting trouble reclaiming, start doing | |
3013 | * writepage even in laptop mode. | |
3014 | */ | |
3015 | if (sc->priority < DEF_PRIORITY - 2) | |
3016 | sc->may_writepage = 1; | |
0b06496a | 3017 | } while (--sc->priority >= 0); |
bb21c7ce | 3018 | |
2a2e4885 JW |
3019 | last_pgdat = NULL; |
3020 | for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx, | |
3021 | sc->nodemask) { | |
3022 | if (zone->zone_pgdat == last_pgdat) | |
3023 | continue; | |
3024 | last_pgdat = zone->zone_pgdat; | |
3025 | snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat); | |
e3c1ac58 | 3026 | set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false); |
2a2e4885 JW |
3027 | } |
3028 | ||
873b4771 KK |
3029 | delayacct_freepages_end(); |
3030 | ||
bb21c7ce KM |
3031 | if (sc->nr_reclaimed) |
3032 | return sc->nr_reclaimed; | |
3033 | ||
0cee34fd | 3034 | /* Aborted reclaim to try compaction? don't OOM, then */ |
0b06496a | 3035 | if (sc->compaction_ready) |
7335084d MG |
3036 | return 1; |
3037 | ||
241994ed | 3038 | /* Untapped cgroup reserves? Don't OOM, retry. */ |
d6622f63 | 3039 | if (sc->memcg_low_skipped) { |
241994ed | 3040 | sc->priority = initial_priority; |
d6622f63 YX |
3041 | sc->memcg_low_reclaim = 1; |
3042 | sc->memcg_low_skipped = 0; | |
241994ed JW |
3043 | goto retry; |
3044 | } | |
3045 | ||
bb21c7ce | 3046 | return 0; |
1da177e4 LT |
3047 | } |
3048 | ||
c73322d0 | 3049 | static bool allow_direct_reclaim(pg_data_t *pgdat) |
5515061d MG |
3050 | { |
3051 | struct zone *zone; | |
3052 | unsigned long pfmemalloc_reserve = 0; | |
3053 | unsigned long free_pages = 0; | |
3054 | int i; | |
3055 | bool wmark_ok; | |
3056 | ||
c73322d0 JW |
3057 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) |
3058 | return true; | |
3059 | ||
5515061d MG |
3060 | for (i = 0; i <= ZONE_NORMAL; i++) { |
3061 | zone = &pgdat->node_zones[i]; | |
d450abd8 JW |
3062 | if (!managed_zone(zone)) |
3063 | continue; | |
3064 | ||
3065 | if (!zone_reclaimable_pages(zone)) | |
675becce MG |
3066 | continue; |
3067 | ||
5515061d MG |
3068 | pfmemalloc_reserve += min_wmark_pages(zone); |
3069 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
3070 | } | |
3071 | ||
675becce MG |
3072 | /* If there are no reserves (unexpected config) then do not throttle */ |
3073 | if (!pfmemalloc_reserve) | |
3074 | return true; | |
3075 | ||
5515061d MG |
3076 | wmark_ok = free_pages > pfmemalloc_reserve / 2; |
3077 | ||
3078 | /* kswapd must be awake if processes are being throttled */ | |
3079 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
38087d9b | 3080 | pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx, |
5515061d MG |
3081 | (enum zone_type)ZONE_NORMAL); |
3082 | wake_up_interruptible(&pgdat->kswapd_wait); | |
3083 | } | |
3084 | ||
3085 | return wmark_ok; | |
3086 | } | |
3087 | ||
3088 | /* | |
3089 | * Throttle direct reclaimers if backing storage is backed by the network | |
3090 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
3091 | * depleted. kswapd will continue to make progress and wake the processes | |
50694c28 MG |
3092 | * when the low watermark is reached. |
3093 | * | |
3094 | * Returns true if a fatal signal was delivered during throttling. If this | |
3095 | * happens, the page allocator should not consider triggering the OOM killer. | |
5515061d | 3096 | */ |
50694c28 | 3097 | static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, |
5515061d MG |
3098 | nodemask_t *nodemask) |
3099 | { | |
675becce | 3100 | struct zoneref *z; |
5515061d | 3101 | struct zone *zone; |
675becce | 3102 | pg_data_t *pgdat = NULL; |
5515061d MG |
3103 | |
3104 | /* | |
3105 | * Kernel threads should not be throttled as they may be indirectly | |
3106 | * responsible for cleaning pages necessary for reclaim to make forward | |
3107 | * progress. kjournald for example may enter direct reclaim while | |
3108 | * committing a transaction where throttling it could forcing other | |
3109 | * processes to block on log_wait_commit(). | |
3110 | */ | |
3111 | if (current->flags & PF_KTHREAD) | |
50694c28 MG |
3112 | goto out; |
3113 | ||
3114 | /* | |
3115 | * If a fatal signal is pending, this process should not throttle. | |
3116 | * It should return quickly so it can exit and free its memory | |
3117 | */ | |
3118 | if (fatal_signal_pending(current)) | |
3119 | goto out; | |
5515061d | 3120 | |
675becce MG |
3121 | /* |
3122 | * Check if the pfmemalloc reserves are ok by finding the first node | |
3123 | * with a usable ZONE_NORMAL or lower zone. The expectation is that | |
3124 | * GFP_KERNEL will be required for allocating network buffers when | |
3125 | * swapping over the network so ZONE_HIGHMEM is unusable. | |
3126 | * | |
3127 | * Throttling is based on the first usable node and throttled processes | |
3128 | * wait on a queue until kswapd makes progress and wakes them. There | |
3129 | * is an affinity then between processes waking up and where reclaim | |
3130 | * progress has been made assuming the process wakes on the same node. | |
3131 | * More importantly, processes running on remote nodes will not compete | |
3132 | * for remote pfmemalloc reserves and processes on different nodes | |
3133 | * should make reasonable progress. | |
3134 | */ | |
3135 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
17636faa | 3136 | gfp_zone(gfp_mask), nodemask) { |
675becce MG |
3137 | if (zone_idx(zone) > ZONE_NORMAL) |
3138 | continue; | |
3139 | ||
3140 | /* Throttle based on the first usable node */ | |
3141 | pgdat = zone->zone_pgdat; | |
c73322d0 | 3142 | if (allow_direct_reclaim(pgdat)) |
675becce MG |
3143 | goto out; |
3144 | break; | |
3145 | } | |
3146 | ||
3147 | /* If no zone was usable by the allocation flags then do not throttle */ | |
3148 | if (!pgdat) | |
50694c28 | 3149 | goto out; |
5515061d | 3150 | |
68243e76 MG |
3151 | /* Account for the throttling */ |
3152 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
3153 | ||
5515061d MG |
3154 | /* |
3155 | * If the caller cannot enter the filesystem, it's possible that it | |
3156 | * is due to the caller holding an FS lock or performing a journal | |
3157 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
3158 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
3159 | * blocked waiting on the same lock. Instead, throttle for up to a | |
3160 | * second before continuing. | |
3161 | */ | |
3162 | if (!(gfp_mask & __GFP_FS)) { | |
3163 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
c73322d0 | 3164 | allow_direct_reclaim(pgdat), HZ); |
50694c28 MG |
3165 | |
3166 | goto check_pending; | |
5515061d MG |
3167 | } |
3168 | ||
3169 | /* Throttle until kswapd wakes the process */ | |
3170 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
c73322d0 | 3171 | allow_direct_reclaim(pgdat)); |
50694c28 MG |
3172 | |
3173 | check_pending: | |
3174 | if (fatal_signal_pending(current)) | |
3175 | return true; | |
3176 | ||
3177 | out: | |
3178 | return false; | |
5515061d MG |
3179 | } |
3180 | ||
dac1d27b | 3181 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
327c0e96 | 3182 | gfp_t gfp_mask, nodemask_t *nodemask) |
66e1707b | 3183 | { |
33906bc5 | 3184 | unsigned long nr_reclaimed; |
66e1707b | 3185 | struct scan_control sc = { |
ee814fe2 | 3186 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
f2f43e56 | 3187 | .gfp_mask = current_gfp_context(gfp_mask), |
b2e18757 | 3188 | .reclaim_idx = gfp_zone(gfp_mask), |
ee814fe2 JW |
3189 | .order = order, |
3190 | .nodemask = nodemask, | |
3191 | .priority = DEF_PRIORITY, | |
66e1707b | 3192 | .may_writepage = !laptop_mode, |
a6dc60f8 | 3193 | .may_unmap = 1, |
2e2e4259 | 3194 | .may_swap = 1, |
1c30844d | 3195 | .may_shrinkslab = 1, |
66e1707b BS |
3196 | }; |
3197 | ||
bb451fdf GT |
3198 | /* |
3199 | * scan_control uses s8 fields for order, priority, and reclaim_idx. | |
3200 | * Confirm they are large enough for max values. | |
3201 | */ | |
3202 | BUILD_BUG_ON(MAX_ORDER > S8_MAX); | |
3203 | BUILD_BUG_ON(DEF_PRIORITY > S8_MAX); | |
3204 | BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX); | |
3205 | ||
5515061d | 3206 | /* |
50694c28 MG |
3207 | * Do not enter reclaim if fatal signal was delivered while throttled. |
3208 | * 1 is returned so that the page allocator does not OOM kill at this | |
3209 | * point. | |
5515061d | 3210 | */ |
f2f43e56 | 3211 | if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask)) |
5515061d MG |
3212 | return 1; |
3213 | ||
33906bc5 MG |
3214 | trace_mm_vmscan_direct_reclaim_begin(order, |
3215 | sc.may_writepage, | |
f2f43e56 | 3216 | sc.gfp_mask, |
e5146b12 | 3217 | sc.reclaim_idx); |
33906bc5 | 3218 | |
3115cd91 | 3219 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
33906bc5 MG |
3220 | |
3221 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
3222 | ||
3223 | return nr_reclaimed; | |
66e1707b BS |
3224 | } |
3225 | ||
c255a458 | 3226 | #ifdef CONFIG_MEMCG |
66e1707b | 3227 | |
a9dd0a83 | 3228 | unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg, |
4e416953 | 3229 | gfp_t gfp_mask, bool noswap, |
ef8f2327 | 3230 | pg_data_t *pgdat, |
0ae5e89c | 3231 | unsigned long *nr_scanned) |
4e416953 BS |
3232 | { |
3233 | struct scan_control sc = { | |
b8f5c566 | 3234 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
ee814fe2 | 3235 | .target_mem_cgroup = memcg, |
4e416953 BS |
3236 | .may_writepage = !laptop_mode, |
3237 | .may_unmap = 1, | |
b2e18757 | 3238 | .reclaim_idx = MAX_NR_ZONES - 1, |
4e416953 | 3239 | .may_swap = !noswap, |
1c30844d | 3240 | .may_shrinkslab = 1, |
4e416953 | 3241 | }; |
6b4f7799 | 3242 | unsigned long lru_pages; |
0ae5e89c | 3243 | |
4e416953 BS |
3244 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
3245 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
bdce6d9e | 3246 | |
9e3b2f8c | 3247 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
bdce6d9e | 3248 | sc.may_writepage, |
e5146b12 MG |
3249 | sc.gfp_mask, |
3250 | sc.reclaim_idx); | |
bdce6d9e | 3251 | |
4e416953 BS |
3252 | /* |
3253 | * NOTE: Although we can get the priority field, using it | |
3254 | * here is not a good idea, since it limits the pages we can scan. | |
a9dd0a83 | 3255 | * if we don't reclaim here, the shrink_node from balance_pgdat |
4e416953 BS |
3256 | * will pick up pages from other mem cgroup's as well. We hack |
3257 | * the priority and make it zero. | |
3258 | */ | |
ef8f2327 | 3259 | shrink_node_memcg(pgdat, memcg, &sc, &lru_pages); |
bdce6d9e KM |
3260 | |
3261 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
3262 | ||
0ae5e89c | 3263 | *nr_scanned = sc.nr_scanned; |
4e416953 BS |
3264 | return sc.nr_reclaimed; |
3265 | } | |
3266 | ||
72835c86 | 3267 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
b70a2a21 | 3268 | unsigned long nr_pages, |
a7885eb8 | 3269 | gfp_t gfp_mask, |
b70a2a21 | 3270 | bool may_swap) |
66e1707b | 3271 | { |
4e416953 | 3272 | struct zonelist *zonelist; |
bdce6d9e | 3273 | unsigned long nr_reclaimed; |
eb414681 | 3274 | unsigned long pflags; |
889976db | 3275 | int nid; |
499118e9 | 3276 | unsigned int noreclaim_flag; |
66e1707b | 3277 | struct scan_control sc = { |
b70a2a21 | 3278 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
7dea19f9 | 3279 | .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) | |
a09ed5e0 | 3280 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), |
b2e18757 | 3281 | .reclaim_idx = MAX_NR_ZONES - 1, |
ee814fe2 JW |
3282 | .target_mem_cgroup = memcg, |
3283 | .priority = DEF_PRIORITY, | |
3284 | .may_writepage = !laptop_mode, | |
3285 | .may_unmap = 1, | |
b70a2a21 | 3286 | .may_swap = may_swap, |
1c30844d | 3287 | .may_shrinkslab = 1, |
a09ed5e0 | 3288 | }; |
66e1707b | 3289 | |
889976db YH |
3290 | /* |
3291 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | |
3292 | * take care of from where we get pages. So the node where we start the | |
3293 | * scan does not need to be the current node. | |
3294 | */ | |
72835c86 | 3295 | nid = mem_cgroup_select_victim_node(memcg); |
889976db | 3296 | |
c9634cf0 | 3297 | zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; |
bdce6d9e KM |
3298 | |
3299 | trace_mm_vmscan_memcg_reclaim_begin(0, | |
3300 | sc.may_writepage, | |
e5146b12 MG |
3301 | sc.gfp_mask, |
3302 | sc.reclaim_idx); | |
bdce6d9e | 3303 | |
eb414681 | 3304 | psi_memstall_enter(&pflags); |
499118e9 | 3305 | noreclaim_flag = memalloc_noreclaim_save(); |
eb414681 | 3306 | |
3115cd91 | 3307 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
eb414681 | 3308 | |
499118e9 | 3309 | memalloc_noreclaim_restore(noreclaim_flag); |
eb414681 | 3310 | psi_memstall_leave(&pflags); |
bdce6d9e KM |
3311 | |
3312 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
3313 | ||
3314 | return nr_reclaimed; | |
66e1707b BS |
3315 | } |
3316 | #endif | |
3317 | ||
1d82de61 | 3318 | static void age_active_anon(struct pglist_data *pgdat, |
ef8f2327 | 3319 | struct scan_control *sc) |
f16015fb | 3320 | { |
b95a2f2d | 3321 | struct mem_cgroup *memcg; |
f16015fb | 3322 | |
b95a2f2d JW |
3323 | if (!total_swap_pages) |
3324 | return; | |
3325 | ||
3326 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
3327 | do { | |
ef8f2327 | 3328 | struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg); |
b95a2f2d | 3329 | |
3b991208 | 3330 | if (inactive_list_is_low(lruvec, false, sc, true)) |
1a93be0e | 3331 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
9e3b2f8c | 3332 | sc, LRU_ACTIVE_ANON); |
b95a2f2d JW |
3333 | |
3334 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
3335 | } while (memcg); | |
f16015fb JW |
3336 | } |
3337 | ||
1c30844d MG |
3338 | static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx) |
3339 | { | |
3340 | int i; | |
3341 | struct zone *zone; | |
3342 | ||
3343 | /* | |
3344 | * Check for watermark boosts top-down as the higher zones | |
3345 | * are more likely to be boosted. Both watermarks and boosts | |
3346 | * should not be checked at the time time as reclaim would | |
3347 | * start prematurely when there is no boosting and a lower | |
3348 | * zone is balanced. | |
3349 | */ | |
3350 | for (i = classzone_idx; i >= 0; i--) { | |
3351 | zone = pgdat->node_zones + i; | |
3352 | if (!managed_zone(zone)) | |
3353 | continue; | |
3354 | ||
3355 | if (zone->watermark_boost) | |
3356 | return true; | |
3357 | } | |
3358 | ||
3359 | return false; | |
3360 | } | |
3361 | ||
e716f2eb MG |
3362 | /* |
3363 | * Returns true if there is an eligible zone balanced for the request order | |
3364 | * and classzone_idx | |
3365 | */ | |
3366 | static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) | |
60cefed4 | 3367 | { |
e716f2eb MG |
3368 | int i; |
3369 | unsigned long mark = -1; | |
3370 | struct zone *zone; | |
60cefed4 | 3371 | |
1c30844d MG |
3372 | /* |
3373 | * Check watermarks bottom-up as lower zones are more likely to | |
3374 | * meet watermarks. | |
3375 | */ | |
e716f2eb MG |
3376 | for (i = 0; i <= classzone_idx; i++) { |
3377 | zone = pgdat->node_zones + i; | |
6256c6b4 | 3378 | |
e716f2eb MG |
3379 | if (!managed_zone(zone)) |
3380 | continue; | |
3381 | ||
3382 | mark = high_wmark_pages(zone); | |
3383 | if (zone_watermark_ok_safe(zone, order, mark, classzone_idx)) | |
3384 | return true; | |
3385 | } | |
3386 | ||
3387 | /* | |
3388 | * If a node has no populated zone within classzone_idx, it does not | |
3389 | * need balancing by definition. This can happen if a zone-restricted | |
3390 | * allocation tries to wake a remote kswapd. | |
3391 | */ | |
3392 | if (mark == -1) | |
3393 | return true; | |
3394 | ||
3395 | return false; | |
60cefed4 JW |
3396 | } |
3397 | ||
631b6e08 MG |
3398 | /* Clear pgdat state for congested, dirty or under writeback. */ |
3399 | static void clear_pgdat_congested(pg_data_t *pgdat) | |
3400 | { | |
3401 | clear_bit(PGDAT_CONGESTED, &pgdat->flags); | |
3402 | clear_bit(PGDAT_DIRTY, &pgdat->flags); | |
3403 | clear_bit(PGDAT_WRITEBACK, &pgdat->flags); | |
3404 | } | |
3405 | ||
5515061d MG |
3406 | /* |
3407 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
3408 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
3409 | * | |
3410 | * Returns true if kswapd is ready to sleep | |
3411 | */ | |
d9f21d42 | 3412 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
f50de2d3 | 3413 | { |
5515061d | 3414 | /* |
9e5e3661 | 3415 | * The throttled processes are normally woken up in balance_pgdat() as |
c73322d0 | 3416 | * soon as allow_direct_reclaim() is true. But there is a potential |
9e5e3661 VB |
3417 | * race between when kswapd checks the watermarks and a process gets |
3418 | * throttled. There is also a potential race if processes get | |
3419 | * throttled, kswapd wakes, a large process exits thereby balancing the | |
3420 | * zones, which causes kswapd to exit balance_pgdat() before reaching | |
3421 | * the wake up checks. If kswapd is going to sleep, no process should | |
3422 | * be sleeping on pfmemalloc_wait, so wake them now if necessary. If | |
3423 | * the wake up is premature, processes will wake kswapd and get | |
3424 | * throttled again. The difference from wake ups in balance_pgdat() is | |
3425 | * that here we are under prepare_to_wait(). | |
5515061d | 3426 | */ |
9e5e3661 VB |
3427 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) |
3428 | wake_up_all(&pgdat->pfmemalloc_wait); | |
f50de2d3 | 3429 | |
c73322d0 JW |
3430 | /* Hopeless node, leave it to direct reclaim */ |
3431 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES) | |
3432 | return true; | |
3433 | ||
e716f2eb MG |
3434 | if (pgdat_balanced(pgdat, order, classzone_idx)) { |
3435 | clear_pgdat_congested(pgdat); | |
3436 | return true; | |
1d82de61 MG |
3437 | } |
3438 | ||
333b0a45 | 3439 | return false; |
f50de2d3 MG |
3440 | } |
3441 | ||
75485363 | 3442 | /* |
1d82de61 MG |
3443 | * kswapd shrinks a node of pages that are at or below the highest usable |
3444 | * zone that is currently unbalanced. | |
b8e83b94 MG |
3445 | * |
3446 | * Returns true if kswapd scanned at least the requested number of pages to | |
283aba9f MG |
3447 | * reclaim or if the lack of progress was due to pages under writeback. |
3448 | * This is used to determine if the scanning priority needs to be raised. | |
75485363 | 3449 | */ |
1d82de61 | 3450 | static bool kswapd_shrink_node(pg_data_t *pgdat, |
accf6242 | 3451 | struct scan_control *sc) |
75485363 | 3452 | { |
1d82de61 MG |
3453 | struct zone *zone; |
3454 | int z; | |
75485363 | 3455 | |
1d82de61 MG |
3456 | /* Reclaim a number of pages proportional to the number of zones */ |
3457 | sc->nr_to_reclaim = 0; | |
970a39a3 | 3458 | for (z = 0; z <= sc->reclaim_idx; z++) { |
1d82de61 | 3459 | zone = pgdat->node_zones + z; |
6aa303de | 3460 | if (!managed_zone(zone)) |
1d82de61 | 3461 | continue; |
7c954f6d | 3462 | |
1d82de61 MG |
3463 | sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX); |
3464 | } | |
7c954f6d MG |
3465 | |
3466 | /* | |
1d82de61 MG |
3467 | * Historically care was taken to put equal pressure on all zones but |
3468 | * now pressure is applied based on node LRU order. | |
7c954f6d | 3469 | */ |
970a39a3 | 3470 | shrink_node(pgdat, sc); |
283aba9f | 3471 | |
7c954f6d | 3472 | /* |
1d82de61 MG |
3473 | * Fragmentation may mean that the system cannot be rebalanced for |
3474 | * high-order allocations. If twice the allocation size has been | |
3475 | * reclaimed then recheck watermarks only at order-0 to prevent | |
3476 | * excessive reclaim. Assume that a process requested a high-order | |
3477 | * can direct reclaim/compact. | |
7c954f6d | 3478 | */ |
9861a62c | 3479 | if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order)) |
1d82de61 | 3480 | sc->order = 0; |
7c954f6d | 3481 | |
b8e83b94 | 3482 | return sc->nr_scanned >= sc->nr_to_reclaim; |
75485363 MG |
3483 | } |
3484 | ||
1da177e4 | 3485 | /* |
1d82de61 MG |
3486 | * For kswapd, balance_pgdat() will reclaim pages across a node from zones |
3487 | * that are eligible for use by the caller until at least one zone is | |
3488 | * balanced. | |
1da177e4 | 3489 | * |
1d82de61 | 3490 | * Returns the order kswapd finished reclaiming at. |
1da177e4 LT |
3491 | * |
3492 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
41858966 | 3493 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
8bb4e7a2 | 3494 | * found to have free_pages <= high_wmark_pages(zone), any page in that zone |
1d82de61 MG |
3495 | * or lower is eligible for reclaim until at least one usable zone is |
3496 | * balanced. | |
1da177e4 | 3497 | */ |
accf6242 | 3498 | static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx) |
1da177e4 | 3499 | { |
1da177e4 | 3500 | int i; |
0608f43d AM |
3501 | unsigned long nr_soft_reclaimed; |
3502 | unsigned long nr_soft_scanned; | |
eb414681 | 3503 | unsigned long pflags; |
1c30844d MG |
3504 | unsigned long nr_boost_reclaim; |
3505 | unsigned long zone_boosts[MAX_NR_ZONES] = { 0, }; | |
3506 | bool boosted; | |
1d82de61 | 3507 | struct zone *zone; |
179e9639 AM |
3508 | struct scan_control sc = { |
3509 | .gfp_mask = GFP_KERNEL, | |
ee814fe2 | 3510 | .order = order, |
a6dc60f8 | 3511 | .may_unmap = 1, |
179e9639 | 3512 | }; |
93781325 | 3513 | |
eb414681 | 3514 | psi_memstall_enter(&pflags); |
93781325 OS |
3515 | __fs_reclaim_acquire(); |
3516 | ||
f8891e5e | 3517 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 3518 | |
1c30844d MG |
3519 | /* |
3520 | * Account for the reclaim boost. Note that the zone boost is left in | |
3521 | * place so that parallel allocations that are near the watermark will | |
3522 | * stall or direct reclaim until kswapd is finished. | |
3523 | */ | |
3524 | nr_boost_reclaim = 0; | |
3525 | for (i = 0; i <= classzone_idx; i++) { | |
3526 | zone = pgdat->node_zones + i; | |
3527 | if (!managed_zone(zone)) | |
3528 | continue; | |
3529 | ||
3530 | nr_boost_reclaim += zone->watermark_boost; | |
3531 | zone_boosts[i] = zone->watermark_boost; | |
3532 | } | |
3533 | boosted = nr_boost_reclaim; | |
3534 | ||
3535 | restart: | |
3536 | sc.priority = DEF_PRIORITY; | |
9e3b2f8c | 3537 | do { |
c73322d0 | 3538 | unsigned long nr_reclaimed = sc.nr_reclaimed; |
b8e83b94 | 3539 | bool raise_priority = true; |
1c30844d | 3540 | bool balanced; |
93781325 | 3541 | bool ret; |
b8e83b94 | 3542 | |
84c7a777 | 3543 | sc.reclaim_idx = classzone_idx; |
1da177e4 | 3544 | |
86c79f6b | 3545 | /* |
84c7a777 MG |
3546 | * If the number of buffer_heads exceeds the maximum allowed |
3547 | * then consider reclaiming from all zones. This has a dual | |
3548 | * purpose -- on 64-bit systems it is expected that | |
3549 | * buffer_heads are stripped during active rotation. On 32-bit | |
3550 | * systems, highmem pages can pin lowmem memory and shrinking | |
3551 | * buffers can relieve lowmem pressure. Reclaim may still not | |
3552 | * go ahead if all eligible zones for the original allocation | |
3553 | * request are balanced to avoid excessive reclaim from kswapd. | |
86c79f6b MG |
3554 | */ |
3555 | if (buffer_heads_over_limit) { | |
3556 | for (i = MAX_NR_ZONES - 1; i >= 0; i--) { | |
3557 | zone = pgdat->node_zones + i; | |
6aa303de | 3558 | if (!managed_zone(zone)) |
86c79f6b | 3559 | continue; |
cc715d99 | 3560 | |
970a39a3 | 3561 | sc.reclaim_idx = i; |
e1dbeda6 | 3562 | break; |
1da177e4 | 3563 | } |
1da177e4 | 3564 | } |
dafcb73e | 3565 | |
86c79f6b | 3566 | /* |
1c30844d MG |
3567 | * If the pgdat is imbalanced then ignore boosting and preserve |
3568 | * the watermarks for a later time and restart. Note that the | |
3569 | * zone watermarks will be still reset at the end of balancing | |
3570 | * on the grounds that the normal reclaim should be enough to | |
3571 | * re-evaluate if boosting is required when kswapd next wakes. | |
3572 | */ | |
3573 | balanced = pgdat_balanced(pgdat, sc.order, classzone_idx); | |
3574 | if (!balanced && nr_boost_reclaim) { | |
3575 | nr_boost_reclaim = 0; | |
3576 | goto restart; | |
3577 | } | |
3578 | ||
3579 | /* | |
3580 | * If boosting is not active then only reclaim if there are no | |
3581 | * eligible zones. Note that sc.reclaim_idx is not used as | |
3582 | * buffer_heads_over_limit may have adjusted it. | |
86c79f6b | 3583 | */ |
1c30844d | 3584 | if (!nr_boost_reclaim && balanced) |
e716f2eb | 3585 | goto out; |
e1dbeda6 | 3586 | |
1c30844d MG |
3587 | /* Limit the priority of boosting to avoid reclaim writeback */ |
3588 | if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2) | |
3589 | raise_priority = false; | |
3590 | ||
3591 | /* | |
3592 | * Do not writeback or swap pages for boosted reclaim. The | |
3593 | * intent is to relieve pressure not issue sub-optimal IO | |
3594 | * from reclaim context. If no pages are reclaimed, the | |
3595 | * reclaim will be aborted. | |
3596 | */ | |
3597 | sc.may_writepage = !laptop_mode && !nr_boost_reclaim; | |
3598 | sc.may_swap = !nr_boost_reclaim; | |
3599 | sc.may_shrinkslab = !nr_boost_reclaim; | |
3600 | ||
1d82de61 MG |
3601 | /* |
3602 | * Do some background aging of the anon list, to give | |
3603 | * pages a chance to be referenced before reclaiming. All | |
3604 | * pages are rotated regardless of classzone as this is | |
3605 | * about consistent aging. | |
3606 | */ | |
ef8f2327 | 3607 | age_active_anon(pgdat, &sc); |
1d82de61 | 3608 | |
b7ea3c41 MG |
3609 | /* |
3610 | * If we're getting trouble reclaiming, start doing writepage | |
3611 | * even in laptop mode. | |
3612 | */ | |
047d72c3 | 3613 | if (sc.priority < DEF_PRIORITY - 2) |
b7ea3c41 MG |
3614 | sc.may_writepage = 1; |
3615 | ||
1d82de61 MG |
3616 | /* Call soft limit reclaim before calling shrink_node. */ |
3617 | sc.nr_scanned = 0; | |
3618 | nr_soft_scanned = 0; | |
ef8f2327 | 3619 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order, |
1d82de61 MG |
3620 | sc.gfp_mask, &nr_soft_scanned); |
3621 | sc.nr_reclaimed += nr_soft_reclaimed; | |
3622 | ||
1da177e4 | 3623 | /* |
1d82de61 MG |
3624 | * There should be no need to raise the scanning priority if |
3625 | * enough pages are already being scanned that that high | |
3626 | * watermark would be met at 100% efficiency. | |
1da177e4 | 3627 | */ |
970a39a3 | 3628 | if (kswapd_shrink_node(pgdat, &sc)) |
1d82de61 | 3629 | raise_priority = false; |
5515061d MG |
3630 | |
3631 | /* | |
3632 | * If the low watermark is met there is no need for processes | |
3633 | * to be throttled on pfmemalloc_wait as they should not be | |
3634 | * able to safely make forward progress. Wake them | |
3635 | */ | |
3636 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
c73322d0 | 3637 | allow_direct_reclaim(pgdat)) |
cfc51155 | 3638 | wake_up_all(&pgdat->pfmemalloc_wait); |
5515061d | 3639 | |
b8e83b94 | 3640 | /* Check if kswapd should be suspending */ |
93781325 OS |
3641 | __fs_reclaim_release(); |
3642 | ret = try_to_freeze(); | |
3643 | __fs_reclaim_acquire(); | |
3644 | if (ret || kthread_should_stop()) | |
b8e83b94 | 3645 | break; |
8357376d | 3646 | |
73ce02e9 | 3647 | /* |
b8e83b94 MG |
3648 | * Raise priority if scanning rate is too low or there was no |
3649 | * progress in reclaiming pages | |
73ce02e9 | 3650 | */ |
c73322d0 | 3651 | nr_reclaimed = sc.nr_reclaimed - nr_reclaimed; |
1c30844d MG |
3652 | nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed); |
3653 | ||
3654 | /* | |
3655 | * If reclaim made no progress for a boost, stop reclaim as | |
3656 | * IO cannot be queued and it could be an infinite loop in | |
3657 | * extreme circumstances. | |
3658 | */ | |
3659 | if (nr_boost_reclaim && !nr_reclaimed) | |
3660 | break; | |
3661 | ||
c73322d0 | 3662 | if (raise_priority || !nr_reclaimed) |
b8e83b94 | 3663 | sc.priority--; |
1d82de61 | 3664 | } while (sc.priority >= 1); |
1da177e4 | 3665 | |
c73322d0 JW |
3666 | if (!sc.nr_reclaimed) |
3667 | pgdat->kswapd_failures++; | |
3668 | ||
b8e83b94 | 3669 | out: |
1c30844d MG |
3670 | /* If reclaim was boosted, account for the reclaim done in this pass */ |
3671 | if (boosted) { | |
3672 | unsigned long flags; | |
3673 | ||
3674 | for (i = 0; i <= classzone_idx; i++) { | |
3675 | if (!zone_boosts[i]) | |
3676 | continue; | |
3677 | ||
3678 | /* Increments are under the zone lock */ | |
3679 | zone = pgdat->node_zones + i; | |
3680 | spin_lock_irqsave(&zone->lock, flags); | |
3681 | zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]); | |
3682 | spin_unlock_irqrestore(&zone->lock, flags); | |
3683 | } | |
3684 | ||
3685 | /* | |
3686 | * As there is now likely space, wakeup kcompact to defragment | |
3687 | * pageblocks. | |
3688 | */ | |
3689 | wakeup_kcompactd(pgdat, pageblock_order, classzone_idx); | |
3690 | } | |
3691 | ||
2a2e4885 | 3692 | snapshot_refaults(NULL, pgdat); |
93781325 | 3693 | __fs_reclaim_release(); |
eb414681 | 3694 | psi_memstall_leave(&pflags); |
0abdee2b | 3695 | /* |
1d82de61 MG |
3696 | * Return the order kswapd stopped reclaiming at as |
3697 | * prepare_kswapd_sleep() takes it into account. If another caller | |
3698 | * entered the allocator slow path while kswapd was awake, order will | |
3699 | * remain at the higher level. | |
0abdee2b | 3700 | */ |
1d82de61 | 3701 | return sc.order; |
1da177e4 LT |
3702 | } |
3703 | ||
e716f2eb MG |
3704 | /* |
3705 | * pgdat->kswapd_classzone_idx is the highest zone index that a recent | |
3706 | * allocation request woke kswapd for. When kswapd has not woken recently, | |
3707 | * the value is MAX_NR_ZONES which is not a valid index. This compares a | |
3708 | * given classzone and returns it or the highest classzone index kswapd | |
3709 | * was recently woke for. | |
3710 | */ | |
3711 | static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat, | |
3712 | enum zone_type classzone_idx) | |
3713 | { | |
3714 | if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES) | |
3715 | return classzone_idx; | |
3716 | ||
3717 | return max(pgdat->kswapd_classzone_idx, classzone_idx); | |
3718 | } | |
3719 | ||
38087d9b MG |
3720 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order, |
3721 | unsigned int classzone_idx) | |
f0bc0a60 KM |
3722 | { |
3723 | long remaining = 0; | |
3724 | DEFINE_WAIT(wait); | |
3725 | ||
3726 | if (freezing(current) || kthread_should_stop()) | |
3727 | return; | |
3728 | ||
3729 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3730 | ||
333b0a45 SG |
3731 | /* |
3732 | * Try to sleep for a short interval. Note that kcompactd will only be | |
3733 | * woken if it is possible to sleep for a short interval. This is | |
3734 | * deliberate on the assumption that if reclaim cannot keep an | |
3735 | * eligible zone balanced that it's also unlikely that compaction will | |
3736 | * succeed. | |
3737 | */ | |
d9f21d42 | 3738 | if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { |
fd901c95 VB |
3739 | /* |
3740 | * Compaction records what page blocks it recently failed to | |
3741 | * isolate pages from and skips them in the future scanning. | |
3742 | * When kswapd is going to sleep, it is reasonable to assume | |
3743 | * that pages and compaction may succeed so reset the cache. | |
3744 | */ | |
3745 | reset_isolation_suitable(pgdat); | |
3746 | ||
3747 | /* | |
3748 | * We have freed the memory, now we should compact it to make | |
3749 | * allocation of the requested order possible. | |
3750 | */ | |
38087d9b | 3751 | wakeup_kcompactd(pgdat, alloc_order, classzone_idx); |
fd901c95 | 3752 | |
f0bc0a60 | 3753 | remaining = schedule_timeout(HZ/10); |
38087d9b MG |
3754 | |
3755 | /* | |
3756 | * If woken prematurely then reset kswapd_classzone_idx and | |
3757 | * order. The values will either be from a wakeup request or | |
3758 | * the previous request that slept prematurely. | |
3759 | */ | |
3760 | if (remaining) { | |
e716f2eb | 3761 | pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); |
38087d9b MG |
3762 | pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order); |
3763 | } | |
3764 | ||
f0bc0a60 KM |
3765 | finish_wait(&pgdat->kswapd_wait, &wait); |
3766 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
3767 | } | |
3768 | ||
3769 | /* | |
3770 | * After a short sleep, check if it was a premature sleep. If not, then | |
3771 | * go fully to sleep until explicitly woken up. | |
3772 | */ | |
d9f21d42 MG |
3773 | if (!remaining && |
3774 | prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) { | |
f0bc0a60 KM |
3775 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
3776 | ||
3777 | /* | |
3778 | * vmstat counters are not perfectly accurate and the estimated | |
3779 | * value for counters such as NR_FREE_PAGES can deviate from the | |
3780 | * true value by nr_online_cpus * threshold. To avoid the zone | |
3781 | * watermarks being breached while under pressure, we reduce the | |
3782 | * per-cpu vmstat threshold while kswapd is awake and restore | |
3783 | * them before going back to sleep. | |
3784 | */ | |
3785 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
1c7e7f6c AK |
3786 | |
3787 | if (!kthread_should_stop()) | |
3788 | schedule(); | |
3789 | ||
f0bc0a60 KM |
3790 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
3791 | } else { | |
3792 | if (remaining) | |
3793 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
3794 | else | |
3795 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
3796 | } | |
3797 | finish_wait(&pgdat->kswapd_wait, &wait); | |
3798 | } | |
3799 | ||
1da177e4 LT |
3800 | /* |
3801 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 3802 | * from the init process. |
1da177e4 LT |
3803 | * |
3804 | * This basically trickles out pages so that we have _some_ | |
3805 | * free memory available even if there is no other activity | |
3806 | * that frees anything up. This is needed for things like routing | |
3807 | * etc, where we otherwise might have all activity going on in | |
3808 | * asynchronous contexts that cannot page things out. | |
3809 | * | |
3810 | * If there are applications that are active memory-allocators | |
3811 | * (most normal use), this basically shouldn't matter. | |
3812 | */ | |
3813 | static int kswapd(void *p) | |
3814 | { | |
e716f2eb MG |
3815 | unsigned int alloc_order, reclaim_order; |
3816 | unsigned int classzone_idx = MAX_NR_ZONES - 1; | |
1da177e4 LT |
3817 | pg_data_t *pgdat = (pg_data_t*)p; |
3818 | struct task_struct *tsk = current; | |
f0bc0a60 | 3819 | |
1da177e4 LT |
3820 | struct reclaim_state reclaim_state = { |
3821 | .reclaimed_slab = 0, | |
3822 | }; | |
a70f7302 | 3823 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1da177e4 | 3824 | |
174596a0 | 3825 | if (!cpumask_empty(cpumask)) |
c5f59f08 | 3826 | set_cpus_allowed_ptr(tsk, cpumask); |
1da177e4 LT |
3827 | current->reclaim_state = &reclaim_state; |
3828 | ||
3829 | /* | |
3830 | * Tell the memory management that we're a "memory allocator", | |
3831 | * and that if we need more memory we should get access to it | |
3832 | * regardless (see "__alloc_pages()"). "kswapd" should | |
3833 | * never get caught in the normal page freeing logic. | |
3834 | * | |
3835 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
3836 | * you need a small amount of memory in order to be able to | |
3837 | * page out something else, and this flag essentially protects | |
3838 | * us from recursively trying to free more memory as we're | |
3839 | * trying to free the first piece of memory in the first place). | |
3840 | */ | |
930d9152 | 3841 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 3842 | set_freezable(); |
1da177e4 | 3843 | |
e716f2eb MG |
3844 | pgdat->kswapd_order = 0; |
3845 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; | |
1da177e4 | 3846 | for ( ; ; ) { |
6f6313d4 | 3847 | bool ret; |
3e1d1d28 | 3848 | |
e716f2eb MG |
3849 | alloc_order = reclaim_order = pgdat->kswapd_order; |
3850 | classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx); | |
3851 | ||
38087d9b MG |
3852 | kswapd_try_sleep: |
3853 | kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order, | |
3854 | classzone_idx); | |
215ddd66 | 3855 | |
38087d9b MG |
3856 | /* Read the new order and classzone_idx */ |
3857 | alloc_order = reclaim_order = pgdat->kswapd_order; | |
e716f2eb | 3858 | classzone_idx = kswapd_classzone_idx(pgdat, 0); |
38087d9b | 3859 | pgdat->kswapd_order = 0; |
e716f2eb | 3860 | pgdat->kswapd_classzone_idx = MAX_NR_ZONES; |
1da177e4 | 3861 | |
8fe23e05 DR |
3862 | ret = try_to_freeze(); |
3863 | if (kthread_should_stop()) | |
3864 | break; | |
3865 | ||
3866 | /* | |
3867 | * We can speed up thawing tasks if we don't call balance_pgdat | |
3868 | * after returning from the refrigerator | |
3869 | */ | |
38087d9b MG |
3870 | if (ret) |
3871 | continue; | |
3872 | ||
3873 | /* | |
3874 | * Reclaim begins at the requested order but if a high-order | |
3875 | * reclaim fails then kswapd falls back to reclaiming for | |
3876 | * order-0. If that happens, kswapd will consider sleeping | |
3877 | * for the order it finished reclaiming at (reclaim_order) | |
3878 | * but kcompactd is woken to compact for the original | |
3879 | * request (alloc_order). | |
3880 | */ | |
e5146b12 MG |
3881 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx, |
3882 | alloc_order); | |
38087d9b MG |
3883 | reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx); |
3884 | if (reclaim_order < alloc_order) | |
3885 | goto kswapd_try_sleep; | |
1da177e4 | 3886 | } |
b0a8cc58 | 3887 | |
71abdc15 | 3888 | tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD); |
b0a8cc58 | 3889 | current->reclaim_state = NULL; |
71abdc15 | 3890 | |
1da177e4 LT |
3891 | return 0; |
3892 | } | |
3893 | ||
3894 | /* | |
5ecd9d40 DR |
3895 | * A zone is low on free memory or too fragmented for high-order memory. If |
3896 | * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's | |
3897 | * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim | |
3898 | * has failed or is not needed, still wake up kcompactd if only compaction is | |
3899 | * needed. | |
1da177e4 | 3900 | */ |
5ecd9d40 DR |
3901 | void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order, |
3902 | enum zone_type classzone_idx) | |
1da177e4 LT |
3903 | { |
3904 | pg_data_t *pgdat; | |
3905 | ||
6aa303de | 3906 | if (!managed_zone(zone)) |
1da177e4 LT |
3907 | return; |
3908 | ||
5ecd9d40 | 3909 | if (!cpuset_zone_allowed(zone, gfp_flags)) |
1da177e4 | 3910 | return; |
88f5acf8 | 3911 | pgdat = zone->zone_pgdat; |
e716f2eb MG |
3912 | pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, |
3913 | classzone_idx); | |
38087d9b | 3914 | pgdat->kswapd_order = max(pgdat->kswapd_order, order); |
8d0986e2 | 3915 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 3916 | return; |
e1a55637 | 3917 | |
5ecd9d40 DR |
3918 | /* Hopeless node, leave it to direct reclaim if possible */ |
3919 | if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES || | |
1c30844d MG |
3920 | (pgdat_balanced(pgdat, order, classzone_idx) && |
3921 | !pgdat_watermark_boosted(pgdat, classzone_idx))) { | |
5ecd9d40 DR |
3922 | /* |
3923 | * There may be plenty of free memory available, but it's too | |
3924 | * fragmented for high-order allocations. Wake up kcompactd | |
3925 | * and rely on compaction_suitable() to determine if it's | |
3926 | * needed. If it fails, it will defer subsequent attempts to | |
3927 | * ratelimit its work. | |
3928 | */ | |
3929 | if (!(gfp_flags & __GFP_DIRECT_RECLAIM)) | |
3930 | wakeup_kcompactd(pgdat, order, classzone_idx); | |
e716f2eb | 3931 | return; |
5ecd9d40 | 3932 | } |
88f5acf8 | 3933 | |
5ecd9d40 DR |
3934 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order, |
3935 | gfp_flags); | |
8d0986e2 | 3936 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
3937 | } |
3938 | ||
c6f37f12 | 3939 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 3940 | /* |
7b51755c | 3941 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
d6277db4 RW |
3942 | * freed pages. |
3943 | * | |
3944 | * Rather than trying to age LRUs the aim is to preserve the overall | |
3945 | * LRU order by reclaiming preferentially | |
3946 | * inactive > active > active referenced > active mapped | |
1da177e4 | 3947 | */ |
7b51755c | 3948 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
1da177e4 | 3949 | { |
d6277db4 | 3950 | struct reclaim_state reclaim_state; |
d6277db4 | 3951 | struct scan_control sc = { |
ee814fe2 | 3952 | .nr_to_reclaim = nr_to_reclaim, |
7b51755c | 3953 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
b2e18757 | 3954 | .reclaim_idx = MAX_NR_ZONES - 1, |
ee814fe2 | 3955 | .priority = DEF_PRIORITY, |
d6277db4 | 3956 | .may_writepage = 1, |
ee814fe2 JW |
3957 | .may_unmap = 1, |
3958 | .may_swap = 1, | |
7b51755c | 3959 | .hibernation_mode = 1, |
1da177e4 | 3960 | }; |
a09ed5e0 | 3961 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); |
7b51755c KM |
3962 | struct task_struct *p = current; |
3963 | unsigned long nr_reclaimed; | |
499118e9 | 3964 | unsigned int noreclaim_flag; |
1da177e4 | 3965 | |
d92a8cfc | 3966 | fs_reclaim_acquire(sc.gfp_mask); |
93781325 | 3967 | noreclaim_flag = memalloc_noreclaim_save(); |
7b51755c KM |
3968 | reclaim_state.reclaimed_slab = 0; |
3969 | p->reclaim_state = &reclaim_state; | |
d6277db4 | 3970 | |
3115cd91 | 3971 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc); |
d979677c | 3972 | |
7b51755c | 3973 | p->reclaim_state = NULL; |
499118e9 | 3974 | memalloc_noreclaim_restore(noreclaim_flag); |
93781325 | 3975 | fs_reclaim_release(sc.gfp_mask); |
d6277db4 | 3976 | |
7b51755c | 3977 | return nr_reclaimed; |
1da177e4 | 3978 | } |
c6f37f12 | 3979 | #endif /* CONFIG_HIBERNATION */ |
1da177e4 | 3980 | |
1da177e4 LT |
3981 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3982 | not required for correctness. So if the last cpu in a node goes | |
3983 | away, we get changed to run anywhere: as the first one comes back, | |
3984 | restore their cpu bindings. */ | |
517bbed9 | 3985 | static int kswapd_cpu_online(unsigned int cpu) |
1da177e4 | 3986 | { |
58c0a4a7 | 3987 | int nid; |
1da177e4 | 3988 | |
517bbed9 SAS |
3989 | for_each_node_state(nid, N_MEMORY) { |
3990 | pg_data_t *pgdat = NODE_DATA(nid); | |
3991 | const struct cpumask *mask; | |
a70f7302 | 3992 | |
517bbed9 | 3993 | mask = cpumask_of_node(pgdat->node_id); |
c5f59f08 | 3994 | |
517bbed9 SAS |
3995 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
3996 | /* One of our CPUs online: restore mask */ | |
3997 | set_cpus_allowed_ptr(pgdat->kswapd, mask); | |
1da177e4 | 3998 | } |
517bbed9 | 3999 | return 0; |
1da177e4 | 4000 | } |
1da177e4 | 4001 | |
3218ae14 YG |
4002 | /* |
4003 | * This kswapd start function will be called by init and node-hot-add. | |
4004 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
4005 | */ | |
4006 | int kswapd_run(int nid) | |
4007 | { | |
4008 | pg_data_t *pgdat = NODE_DATA(nid); | |
4009 | int ret = 0; | |
4010 | ||
4011 | if (pgdat->kswapd) | |
4012 | return 0; | |
4013 | ||
4014 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
4015 | if (IS_ERR(pgdat->kswapd)) { | |
4016 | /* failure at boot is fatal */ | |
c6202adf | 4017 | BUG_ON(system_state < SYSTEM_RUNNING); |
d5dc0ad9 GS |
4018 | pr_err("Failed to start kswapd on node %d\n", nid); |
4019 | ret = PTR_ERR(pgdat->kswapd); | |
d72515b8 | 4020 | pgdat->kswapd = NULL; |
3218ae14 YG |
4021 | } |
4022 | return ret; | |
4023 | } | |
4024 | ||
8fe23e05 | 4025 | /* |
d8adde17 | 4026 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
bfc8c901 | 4027 | * hold mem_hotplug_begin/end(). |
8fe23e05 DR |
4028 | */ |
4029 | void kswapd_stop(int nid) | |
4030 | { | |
4031 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
4032 | ||
d8adde17 | 4033 | if (kswapd) { |
8fe23e05 | 4034 | kthread_stop(kswapd); |
d8adde17 JL |
4035 | NODE_DATA(nid)->kswapd = NULL; |
4036 | } | |
8fe23e05 DR |
4037 | } |
4038 | ||
1da177e4 LT |
4039 | static int __init kswapd_init(void) |
4040 | { | |
517bbed9 | 4041 | int nid, ret; |
69e05944 | 4042 | |
1da177e4 | 4043 | swap_setup(); |
48fb2e24 | 4044 | for_each_node_state(nid, N_MEMORY) |
3218ae14 | 4045 | kswapd_run(nid); |
517bbed9 SAS |
4046 | ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, |
4047 | "mm/vmscan:online", kswapd_cpu_online, | |
4048 | NULL); | |
4049 | WARN_ON(ret < 0); | |
1da177e4 LT |
4050 | return 0; |
4051 | } | |
4052 | ||
4053 | module_init(kswapd_init) | |
9eeff239 CL |
4054 | |
4055 | #ifdef CONFIG_NUMA | |
4056 | /* | |
a5f5f91d | 4057 | * Node reclaim mode |
9eeff239 | 4058 | * |
a5f5f91d | 4059 | * If non-zero call node_reclaim when the number of free pages falls below |
9eeff239 | 4060 | * the watermarks. |
9eeff239 | 4061 | */ |
a5f5f91d | 4062 | int node_reclaim_mode __read_mostly; |
9eeff239 | 4063 | |
1b2ffb78 | 4064 | #define RECLAIM_OFF 0 |
7d03431c | 4065 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1b2ffb78 | 4066 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
95bbc0c7 | 4067 | #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */ |
1b2ffb78 | 4068 | |
a92f7126 | 4069 | /* |
a5f5f91d | 4070 | * Priority for NODE_RECLAIM. This determines the fraction of pages |
a92f7126 CL |
4071 | * of a node considered for each zone_reclaim. 4 scans 1/16th of |
4072 | * a zone. | |
4073 | */ | |
a5f5f91d | 4074 | #define NODE_RECLAIM_PRIORITY 4 |
a92f7126 | 4075 | |
9614634f | 4076 | /* |
a5f5f91d | 4077 | * Percentage of pages in a zone that must be unmapped for node_reclaim to |
9614634f CL |
4078 | * occur. |
4079 | */ | |
4080 | int sysctl_min_unmapped_ratio = 1; | |
4081 | ||
0ff38490 CL |
4082 | /* |
4083 | * If the number of slab pages in a zone grows beyond this percentage then | |
4084 | * slab reclaim needs to occur. | |
4085 | */ | |
4086 | int sysctl_min_slab_ratio = 5; | |
4087 | ||
11fb9989 | 4088 | static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat) |
90afa5de | 4089 | { |
11fb9989 MG |
4090 | unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED); |
4091 | unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) + | |
4092 | node_page_state(pgdat, NR_ACTIVE_FILE); | |
90afa5de MG |
4093 | |
4094 | /* | |
4095 | * It's possible for there to be more file mapped pages than | |
4096 | * accounted for by the pages on the file LRU lists because | |
4097 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
4098 | */ | |
4099 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
4100 | } | |
4101 | ||
4102 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
a5f5f91d | 4103 | static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat) |
90afa5de | 4104 | { |
d031a157 AM |
4105 | unsigned long nr_pagecache_reclaimable; |
4106 | unsigned long delta = 0; | |
90afa5de MG |
4107 | |
4108 | /* | |
95bbc0c7 | 4109 | * If RECLAIM_UNMAP is set, then all file pages are considered |
90afa5de | 4110 | * potentially reclaimable. Otherwise, we have to worry about |
11fb9989 | 4111 | * pages like swapcache and node_unmapped_file_pages() provides |
90afa5de MG |
4112 | * a better estimate |
4113 | */ | |
a5f5f91d MG |
4114 | if (node_reclaim_mode & RECLAIM_UNMAP) |
4115 | nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES); | |
90afa5de | 4116 | else |
a5f5f91d | 4117 | nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat); |
90afa5de MG |
4118 | |
4119 | /* If we can't clean pages, remove dirty pages from consideration */ | |
a5f5f91d MG |
4120 | if (!(node_reclaim_mode & RECLAIM_WRITE)) |
4121 | delta += node_page_state(pgdat, NR_FILE_DIRTY); | |
90afa5de MG |
4122 | |
4123 | /* Watch for any possible underflows due to delta */ | |
4124 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
4125 | delta = nr_pagecache_reclaimable; | |
4126 | ||
4127 | return nr_pagecache_reclaimable - delta; | |
4128 | } | |
4129 | ||
9eeff239 | 4130 | /* |
a5f5f91d | 4131 | * Try to free up some pages from this node through reclaim. |
9eeff239 | 4132 | */ |
a5f5f91d | 4133 | static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 4134 | { |
7fb2d46d | 4135 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 4136 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
4137 | struct task_struct *p = current; |
4138 | struct reclaim_state reclaim_state; | |
499118e9 | 4139 | unsigned int noreclaim_flag; |
179e9639 | 4140 | struct scan_control sc = { |
62b726c1 | 4141 | .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX), |
f2f43e56 | 4142 | .gfp_mask = current_gfp_context(gfp_mask), |
bd2f6199 | 4143 | .order = order, |
a5f5f91d MG |
4144 | .priority = NODE_RECLAIM_PRIORITY, |
4145 | .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE), | |
4146 | .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP), | |
ee814fe2 | 4147 | .may_swap = 1, |
f2f43e56 | 4148 | .reclaim_idx = gfp_zone(gfp_mask), |
179e9639 | 4149 | }; |
9eeff239 | 4150 | |
9eeff239 | 4151 | cond_resched(); |
93781325 | 4152 | fs_reclaim_acquire(sc.gfp_mask); |
d4f7796e | 4153 | /* |
95bbc0c7 | 4154 | * We need to be able to allocate from the reserves for RECLAIM_UNMAP |
d4f7796e | 4155 | * and we also need to be able to write out pages for RECLAIM_WRITE |
95bbc0c7 | 4156 | * and RECLAIM_UNMAP. |
d4f7796e | 4157 | */ |
499118e9 VB |
4158 | noreclaim_flag = memalloc_noreclaim_save(); |
4159 | p->flags |= PF_SWAPWRITE; | |
9eeff239 CL |
4160 | reclaim_state.reclaimed_slab = 0; |
4161 | p->reclaim_state = &reclaim_state; | |
c84db23c | 4162 | |
a5f5f91d | 4163 | if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) { |
0ff38490 | 4164 | /* |
894befec | 4165 | * Free memory by calling shrink node with increasing |
0ff38490 CL |
4166 | * priorities until we have enough memory freed. |
4167 | */ | |
0ff38490 | 4168 | do { |
970a39a3 | 4169 | shrink_node(pgdat, &sc); |
9e3b2f8c | 4170 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); |
0ff38490 | 4171 | } |
c84db23c | 4172 | |
9eeff239 | 4173 | p->reclaim_state = NULL; |
499118e9 VB |
4174 | current->flags &= ~PF_SWAPWRITE; |
4175 | memalloc_noreclaim_restore(noreclaim_flag); | |
93781325 | 4176 | fs_reclaim_release(sc.gfp_mask); |
a79311c1 | 4177 | return sc.nr_reclaimed >= nr_pages; |
9eeff239 | 4178 | } |
179e9639 | 4179 | |
a5f5f91d | 4180 | int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order) |
179e9639 | 4181 | { |
d773ed6b | 4182 | int ret; |
179e9639 AM |
4183 | |
4184 | /* | |
a5f5f91d | 4185 | * Node reclaim reclaims unmapped file backed pages and |
0ff38490 | 4186 | * slab pages if we are over the defined limits. |
34aa1330 | 4187 | * |
9614634f CL |
4188 | * A small portion of unmapped file backed pages is needed for |
4189 | * file I/O otherwise pages read by file I/O will be immediately | |
a5f5f91d MG |
4190 | * thrown out if the node is overallocated. So we do not reclaim |
4191 | * if less than a specified percentage of the node is used by | |
9614634f | 4192 | * unmapped file backed pages. |
179e9639 | 4193 | */ |
a5f5f91d | 4194 | if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages && |
385386cf | 4195 | node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages) |
a5f5f91d | 4196 | return NODE_RECLAIM_FULL; |
179e9639 AM |
4197 | |
4198 | /* | |
d773ed6b | 4199 | * Do not scan if the allocation should not be delayed. |
179e9639 | 4200 | */ |
d0164adc | 4201 | if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC)) |
a5f5f91d | 4202 | return NODE_RECLAIM_NOSCAN; |
179e9639 AM |
4203 | |
4204 | /* | |
a5f5f91d | 4205 | * Only run node reclaim on the local node or on nodes that do not |
179e9639 AM |
4206 | * have associated processors. This will favor the local processor |
4207 | * over remote processors and spread off node memory allocations | |
4208 | * as wide as possible. | |
4209 | */ | |
a5f5f91d MG |
4210 | if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id()) |
4211 | return NODE_RECLAIM_NOSCAN; | |
d773ed6b | 4212 | |
a5f5f91d MG |
4213 | if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags)) |
4214 | return NODE_RECLAIM_NOSCAN; | |
fa5e084e | 4215 | |
a5f5f91d MG |
4216 | ret = __node_reclaim(pgdat, gfp_mask, order); |
4217 | clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags); | |
d773ed6b | 4218 | |
24cf7251 MG |
4219 | if (!ret) |
4220 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
4221 | ||
d773ed6b | 4222 | return ret; |
179e9639 | 4223 | } |
9eeff239 | 4224 | #endif |
894bc310 | 4225 | |
894bc310 LS |
4226 | /* |
4227 | * page_evictable - test whether a page is evictable | |
4228 | * @page: the page to test | |
894bc310 LS |
4229 | * |
4230 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
39b5f29a | 4231 | * lists vs unevictable list. |
894bc310 LS |
4232 | * |
4233 | * Reasons page might not be evictable: | |
ba9ddf49 | 4234 | * (1) page's mapping marked unevictable |
b291f000 | 4235 | * (2) page is part of an mlocked VMA |
ba9ddf49 | 4236 | * |
894bc310 | 4237 | */ |
39b5f29a | 4238 | int page_evictable(struct page *page) |
894bc310 | 4239 | { |
e92bb4dd YH |
4240 | int ret; |
4241 | ||
4242 | /* Prevent address_space of inode and swap cache from being freed */ | |
4243 | rcu_read_lock(); | |
4244 | ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); | |
4245 | rcu_read_unlock(); | |
4246 | return ret; | |
894bc310 | 4247 | } |
89e004ea LS |
4248 | |
4249 | /** | |
64e3d12f KHY |
4250 | * check_move_unevictable_pages - check pages for evictability and move to |
4251 | * appropriate zone lru list | |
4252 | * @pvec: pagevec with lru pages to check | |
89e004ea | 4253 | * |
64e3d12f KHY |
4254 | * Checks pages for evictability, if an evictable page is in the unevictable |
4255 | * lru list, moves it to the appropriate evictable lru list. This function | |
4256 | * should be only used for lru pages. | |
89e004ea | 4257 | */ |
64e3d12f | 4258 | void check_move_unevictable_pages(struct pagevec *pvec) |
89e004ea | 4259 | { |
925b7673 | 4260 | struct lruvec *lruvec; |
785b99fe | 4261 | struct pglist_data *pgdat = NULL; |
24513264 HD |
4262 | int pgscanned = 0; |
4263 | int pgrescued = 0; | |
4264 | int i; | |
89e004ea | 4265 | |
64e3d12f KHY |
4266 | for (i = 0; i < pvec->nr; i++) { |
4267 | struct page *page = pvec->pages[i]; | |
785b99fe | 4268 | struct pglist_data *pagepgdat = page_pgdat(page); |
89e004ea | 4269 | |
24513264 | 4270 | pgscanned++; |
785b99fe MG |
4271 | if (pagepgdat != pgdat) { |
4272 | if (pgdat) | |
4273 | spin_unlock_irq(&pgdat->lru_lock); | |
4274 | pgdat = pagepgdat; | |
4275 | spin_lock_irq(&pgdat->lru_lock); | |
24513264 | 4276 | } |
785b99fe | 4277 | lruvec = mem_cgroup_page_lruvec(page, pgdat); |
89e004ea | 4278 | |
24513264 HD |
4279 | if (!PageLRU(page) || !PageUnevictable(page)) |
4280 | continue; | |
89e004ea | 4281 | |
39b5f29a | 4282 | if (page_evictable(page)) { |
24513264 HD |
4283 | enum lru_list lru = page_lru_base_type(page); |
4284 | ||
309381fe | 4285 | VM_BUG_ON_PAGE(PageActive(page), page); |
24513264 | 4286 | ClearPageUnevictable(page); |
fa9add64 HD |
4287 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
4288 | add_page_to_lru_list(page, lruvec, lru); | |
24513264 | 4289 | pgrescued++; |
89e004ea | 4290 | } |
24513264 | 4291 | } |
89e004ea | 4292 | |
785b99fe | 4293 | if (pgdat) { |
24513264 HD |
4294 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); |
4295 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
785b99fe | 4296 | spin_unlock_irq(&pgdat->lru_lock); |
89e004ea | 4297 | } |
89e004ea | 4298 | } |
64e3d12f | 4299 | EXPORT_SYMBOL_GPL(check_move_unevictable_pages); |