]> Git Repo - linux.git/blame - mm/slab.h
PCI/portdrv: Don't disable AER reporting in get_port_device_capability()
[linux.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
d122019b
MWO
8/* Reuses the bits in struct page */
9struct slab {
10 unsigned long __page_flags;
401fb12c
VB
11
12#if defined(CONFIG_SLAB)
13
d122019b
MWO
14 union {
15 struct list_head slab_list;
401fb12c
VB
16 struct rcu_head rcu_head;
17 };
18 struct kmem_cache *slab_cache;
19 void *freelist; /* array of free object indexes */
20 void *s_mem; /* first object */
21 unsigned int active;
22
23#elif defined(CONFIG_SLUB)
24
25 union {
26 struct list_head slab_list;
27 struct rcu_head rcu_head;
9c01e9af 28#ifdef CONFIG_SLUB_CPU_PARTIAL
401fb12c 29 struct {
d122019b 30 struct slab *next;
d122019b 31 int slabs; /* Nr of slabs left */
d122019b 32 };
9c01e9af 33#endif
d122019b 34 };
401fb12c 35 struct kmem_cache *slab_cache;
d122019b
MWO
36 /* Double-word boundary */
37 void *freelist; /* first free object */
38 union {
401fb12c
VB
39 unsigned long counters;
40 struct {
d122019b
MWO
41 unsigned inuse:16;
42 unsigned objects:15;
43 unsigned frozen:1;
44 };
45 };
401fb12c
VB
46 unsigned int __unused;
47
48#elif defined(CONFIG_SLOB)
49
50 struct list_head slab_list;
51 void *__unused_1;
52 void *freelist; /* first free block */
b01af5c0
HY
53 long units;
54 unsigned int __unused_2;
401fb12c
VB
55
56#else
57#error "Unexpected slab allocator configured"
58#endif
d122019b 59
d122019b
MWO
60 atomic_t __page_refcount;
61#ifdef CONFIG_MEMCG
62 unsigned long memcg_data;
63#endif
64};
65
66#define SLAB_MATCH(pg, sl) \
67 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
68SLAB_MATCH(flags, __page_flags);
69SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
401fb12c 70#ifndef CONFIG_SLOB
d122019b 71SLAB_MATCH(rcu_head, rcu_head);
401fb12c 72#endif
d122019b
MWO
73SLAB_MATCH(_refcount, __page_refcount);
74#ifdef CONFIG_MEMCG
75SLAB_MATCH(memcg_data, memcg_data);
76#endif
77#undef SLAB_MATCH
78static_assert(sizeof(struct slab) <= sizeof(struct page));
79
80/**
81 * folio_slab - Converts from folio to slab.
82 * @folio: The folio.
83 *
84 * Currently struct slab is a different representation of a folio where
85 * folio_test_slab() is true.
86 *
87 * Return: The slab which contains this folio.
88 */
89#define folio_slab(folio) (_Generic((folio), \
90 const struct folio *: (const struct slab *)(folio), \
91 struct folio *: (struct slab *)(folio)))
92
93/**
94 * slab_folio - The folio allocated for a slab
95 * @slab: The slab.
96 *
97 * Slabs are allocated as folios that contain the individual objects and are
98 * using some fields in the first struct page of the folio - those fields are
99 * now accessed by struct slab. It is occasionally necessary to convert back to
100 * a folio in order to communicate with the rest of the mm. Please use this
101 * helper function instead of casting yourself, as the implementation may change
102 * in the future.
103 */
104#define slab_folio(s) (_Generic((s), \
105 const struct slab *: (const struct folio *)s, \
106 struct slab *: (struct folio *)s))
107
108/**
109 * page_slab - Converts from first struct page to slab.
110 * @p: The first (either head of compound or single) page of slab.
111 *
112 * A temporary wrapper to convert struct page to struct slab in situations where
113 * we know the page is the compound head, or single order-0 page.
114 *
115 * Long-term ideally everything would work with struct slab directly or go
116 * through folio to struct slab.
117 *
118 * Return: The slab which contains this page
119 */
120#define page_slab(p) (_Generic((p), \
121 const struct page *: (const struct slab *)(p), \
122 struct page *: (struct slab *)(p)))
123
124/**
125 * slab_page - The first struct page allocated for a slab
126 * @slab: The slab.
127 *
128 * A convenience wrapper for converting slab to the first struct page of the
129 * underlying folio, to communicate with code not yet converted to folio or
130 * struct slab.
131 */
132#define slab_page(s) folio_page(slab_folio(s), 0)
133
134/*
135 * If network-based swap is enabled, sl*b must keep track of whether pages
136 * were allocated from pfmemalloc reserves.
137 */
138static inline bool slab_test_pfmemalloc(const struct slab *slab)
139{
140 return folio_test_active((struct folio *)slab_folio(slab));
141}
142
143static inline void slab_set_pfmemalloc(struct slab *slab)
144{
145 folio_set_active(slab_folio(slab));
146}
147
148static inline void slab_clear_pfmemalloc(struct slab *slab)
149{
150 folio_clear_active(slab_folio(slab));
151}
152
153static inline void __slab_clear_pfmemalloc(struct slab *slab)
154{
155 __folio_clear_active(slab_folio(slab));
156}
157
158static inline void *slab_address(const struct slab *slab)
159{
160 return folio_address(slab_folio(slab));
161}
162
163static inline int slab_nid(const struct slab *slab)
164{
165 return folio_nid(slab_folio(slab));
166}
167
168static inline pg_data_t *slab_pgdat(const struct slab *slab)
169{
170 return folio_pgdat(slab_folio(slab));
171}
172
173static inline struct slab *virt_to_slab(const void *addr)
174{
175 struct folio *folio = virt_to_folio(addr);
176
177 if (!folio_test_slab(folio))
178 return NULL;
179
180 return folio_slab(folio);
181}
182
183static inline int slab_order(const struct slab *slab)
184{
185 return folio_order((struct folio *)slab_folio(slab));
186}
187
188static inline size_t slab_size(const struct slab *slab)
189{
190 return PAGE_SIZE << slab_order(slab);
191}
192
07f361b2
JK
193#ifdef CONFIG_SLOB
194/*
195 * Common fields provided in kmem_cache by all slab allocators
196 * This struct is either used directly by the allocator (SLOB)
197 * or the allocator must include definitions for all fields
198 * provided in kmem_cache_common in their definition of kmem_cache.
199 *
200 * Once we can do anonymous structs (C11 standard) we could put a
201 * anonymous struct definition in these allocators so that the
202 * separate allocations in the kmem_cache structure of SLAB and
203 * SLUB is no longer needed.
204 */
205struct kmem_cache {
206 unsigned int object_size;/* The original size of the object */
207 unsigned int size; /* The aligned/padded/added on size */
208 unsigned int align; /* Alignment as calculated */
d50112ed 209 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
210 unsigned int useroffset;/* Usercopy region offset */
211 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
212 const char *name; /* Slab name for sysfs */
213 int refcount; /* Use counter */
214 void (*ctor)(void *); /* Called on object slot creation */
215 struct list_head list; /* List of all slab caches on the system */
216};
217
218#endif /* CONFIG_SLOB */
219
220#ifdef CONFIG_SLAB
221#include <linux/slab_def.h>
222#endif
223
224#ifdef CONFIG_SLUB
225#include <linux/slub_def.h>
226#endif
227
228#include <linux/memcontrol.h>
11c7aec2 229#include <linux/fault-inject.h>
11c7aec2
JDB
230#include <linux/kasan.h>
231#include <linux/kmemleak.h>
7c00fce9 232#include <linux/random.h>
d92a8cfc 233#include <linux/sched/mm.h>
88f2ef73 234#include <linux/list_lru.h>
07f361b2 235
97d06609
CL
236/*
237 * State of the slab allocator.
238 *
239 * This is used to describe the states of the allocator during bootup.
240 * Allocators use this to gradually bootstrap themselves. Most allocators
241 * have the problem that the structures used for managing slab caches are
242 * allocated from slab caches themselves.
243 */
244enum slab_state {
245 DOWN, /* No slab functionality yet */
246 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 247 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
248 UP, /* Slab caches usable but not all extras yet */
249 FULL /* Everything is working */
250};
251
252extern enum slab_state slab_state;
253
18004c5d
CL
254/* The slab cache mutex protects the management structures during changes */
255extern struct mutex slab_mutex;
9b030cb8
CL
256
257/* The list of all slab caches on the system */
18004c5d
CL
258extern struct list_head slab_caches;
259
9b030cb8
CL
260/* The slab cache that manages slab cache information */
261extern struct kmem_cache *kmem_cache;
262
af3b5f87
VB
263/* A table of kmalloc cache names and sizes */
264extern const struct kmalloc_info_struct {
cb5d9fb3 265 const char *name[NR_KMALLOC_TYPES];
55de8b9c 266 unsigned int size;
af3b5f87
VB
267} kmalloc_info[];
268
f97d5f63
CL
269#ifndef CONFIG_SLOB
270/* Kmalloc array related functions */
34cc6990 271void setup_kmalloc_cache_index_table(void);
d50112ed 272void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
273
274/* Find the kmalloc slab corresponding for a certain size */
275struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
276#endif
277
44405099 278gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 279
9b030cb8 280/* Functions provided by the slab allocators */
d50112ed 281int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 282
55de8b9c
AD
283struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
284 slab_flags_t flags, unsigned int useroffset,
285 unsigned int usersize);
45530c44 286extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
287 unsigned int size, slab_flags_t flags,
288 unsigned int useroffset, unsigned int usersize);
45530c44 289
423c929c 290int slab_unmergeable(struct kmem_cache *s);
f4957d5b 291struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 292 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 293#ifndef CONFIG_SLOB
2633d7a0 294struct kmem_cache *
f4957d5b 295__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 296 slab_flags_t flags, void (*ctor)(void *));
423c929c 297
0293d1fd 298slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 299 slab_flags_t flags, const char *name);
cbb79694 300#else
2633d7a0 301static inline struct kmem_cache *
f4957d5b 302__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 303 slab_flags_t flags, void (*ctor)(void *))
cbb79694 304{ return NULL; }
423c929c 305
0293d1fd 306static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 307 slab_flags_t flags, const char *name)
423c929c
JK
308{
309 return flags;
310}
cbb79694
CL
311#endif
312
313
d8843922 314/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
315#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
316 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 317 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
318
319#if defined(CONFIG_DEBUG_SLAB)
320#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
321#elif defined(CONFIG_SLUB_DEBUG)
322#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 323 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
324#else
325#define SLAB_DEBUG_FLAGS (0)
326#endif
327
328#if defined(CONFIG_SLAB)
329#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 330 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 331 SLAB_ACCOUNT)
d8843922
GC
332#elif defined(CONFIG_SLUB)
333#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
a285909f 334 SLAB_TEMPORARY | SLAB_ACCOUNT | SLAB_NO_USER_FLAGS)
d8843922 335#else
34dbc3aa 336#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
d8843922
GC
337#endif
338
e70954fd 339/* Common flags available with current configuration */
d8843922
GC
340#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
341
e70954fd
TG
342/* Common flags permitted for kmem_cache_create */
343#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
344 SLAB_RED_ZONE | \
345 SLAB_POISON | \
346 SLAB_STORE_USER | \
347 SLAB_TRACE | \
348 SLAB_CONSISTENCY_CHECKS | \
349 SLAB_MEM_SPREAD | \
350 SLAB_NOLEAKTRACE | \
351 SLAB_RECLAIM_ACCOUNT | \
352 SLAB_TEMPORARY | \
a285909f
HY
353 SLAB_ACCOUNT | \
354 SLAB_NO_USER_FLAGS)
e70954fd 355
f9e13c0a 356bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 357int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 358void __kmem_cache_release(struct kmem_cache *);
c9fc5864 359int __kmem_cache_shrink(struct kmem_cache *);
41a21285 360void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 361
b7454ad3
GC
362struct seq_file;
363struct file;
b7454ad3 364
0d7561c6
GC
365struct slabinfo {
366 unsigned long active_objs;
367 unsigned long num_objs;
368 unsigned long active_slabs;
369 unsigned long num_slabs;
370 unsigned long shared_avail;
371 unsigned int limit;
372 unsigned int batchcount;
373 unsigned int shared;
374 unsigned int objects_per_slab;
375 unsigned int cache_order;
376};
377
378void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
379void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
380ssize_t slabinfo_write(struct file *file, const char __user *buffer,
381 size_t count, loff_t *ppos);
ba6c496e 382
484748f0
CL
383/*
384 * Generic implementation of bulk operations
385 * These are useful for situations in which the allocator cannot
9f706d68 386 * perform optimizations. In that case segments of the object listed
484748f0
CL
387 * may be allocated or freed using these operations.
388 */
389void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 390int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 391
1a984c4e 392static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
6cea1d56
RG
393{
394 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 395 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
396}
397
e42f174e
VB
398#ifdef CONFIG_SLUB_DEBUG
399#ifdef CONFIG_SLUB_DEBUG_ON
400DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
401#else
402DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
403#endif
404extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 405long validate_slab_cache(struct kmem_cache *s);
0d4a062a
ME
406static inline bool __slub_debug_enabled(void)
407{
408 return static_branch_unlikely(&slub_debug_enabled);
409}
e42f174e
VB
410#else
411static inline void print_tracking(struct kmem_cache *s, void *object)
412{
413}
0d4a062a
ME
414static inline bool __slub_debug_enabled(void)
415{
416 return false;
417}
e42f174e
VB
418#endif
419
420/*
421 * Returns true if any of the specified slub_debug flags is enabled for the
422 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
423 * the static key.
424 */
425static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
426{
0d4a062a
ME
427 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
428 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
429 if (__slub_debug_enabled())
e42f174e 430 return s->flags & flags;
e42f174e
VB
431 return false;
432}
433
84c07d11 434#ifdef CONFIG_MEMCG_KMEM
4b5f8d9a
VB
435/*
436 * slab_objcgs - get the object cgroups vector associated with a slab
437 * @slab: a pointer to the slab struct
438 *
439 * Returns a pointer to the object cgroups vector associated with the slab,
440 * or NULL if no such vector has been associated yet.
441 */
442static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
443{
444 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
445
446 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
447 slab_page(slab));
448 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
449
450 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
451}
452
453int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
454 gfp_t gfp, bool new_slab);
fdbcb2a6
WL
455void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
456 enum node_stat_item idx, int nr);
286e04b8 457
4b5f8d9a 458static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8 459{
4b5f8d9a
VB
460 kfree(slab_objcgs(slab));
461 slab->memcg_data = 0;
286e04b8
RG
462}
463
f2fe7b09
RG
464static inline size_t obj_full_size(struct kmem_cache *s)
465{
466 /*
467 * For each accounted object there is an extra space which is used
468 * to store obj_cgroup membership. Charge it too.
469 */
470 return s->size + sizeof(struct obj_cgroup *);
471}
472
becaba65
RG
473/*
474 * Returns false if the allocation should fail.
475 */
476static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 477 struct list_lru *lru,
becaba65
RG
478 struct obj_cgroup **objcgp,
479 size_t objects, gfp_t flags)
f2fe7b09 480{
9855609b
RG
481 struct obj_cgroup *objcg;
482
becaba65
RG
483 if (!memcg_kmem_enabled())
484 return true;
485
486 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
487 return true;
488
9855609b
RG
489 objcg = get_obj_cgroup_from_current();
490 if (!objcg)
becaba65 491 return true;
9855609b 492
88f2ef73
MS
493 if (lru) {
494 int ret;
495 struct mem_cgroup *memcg;
496
497 memcg = get_mem_cgroup_from_objcg(objcg);
498 ret = memcg_list_lru_alloc(memcg, lru, flags);
499 css_put(&memcg->css);
500
501 if (ret)
502 goto out;
f2fe7b09
RG
503 }
504
88f2ef73
MS
505 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
506 goto out;
507
becaba65
RG
508 *objcgp = objcg;
509 return true;
88f2ef73
MS
510out:
511 obj_cgroup_put(objcg);
512 return false;
f2fe7b09
RG
513}
514
964d4bd3
RG
515static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
516 struct obj_cgroup *objcg,
10befea9
RG
517 gfp_t flags, size_t size,
518 void **p)
964d4bd3 519{
4b5f8d9a 520 struct slab *slab;
964d4bd3
RG
521 unsigned long off;
522 size_t i;
523
becaba65 524 if (!memcg_kmem_enabled() || !objcg)
10befea9
RG
525 return;
526
964d4bd3
RG
527 for (i = 0; i < size; i++) {
528 if (likely(p[i])) {
4b5f8d9a 529 slab = virt_to_slab(p[i]);
10befea9 530
4b5f8d9a
VB
531 if (!slab_objcgs(slab) &&
532 memcg_alloc_slab_cgroups(slab, s, flags,
2e9bd483 533 false)) {
10befea9
RG
534 obj_cgroup_uncharge(objcg, obj_full_size(s));
535 continue;
536 }
537
4b5f8d9a 538 off = obj_to_index(s, slab, p[i]);
964d4bd3 539 obj_cgroup_get(objcg);
4b5f8d9a
VB
540 slab_objcgs(slab)[off] = objcg;
541 mod_objcg_state(objcg, slab_pgdat(slab),
f2fe7b09
RG
542 cache_vmstat_idx(s), obj_full_size(s));
543 } else {
544 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
545 }
546 }
547 obj_cgroup_put(objcg);
964d4bd3
RG
548}
549
d1b2cf6c
BR
550static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
551 void **p, int objects)
964d4bd3 552{
d1b2cf6c 553 struct kmem_cache *s;
270c6a71 554 struct obj_cgroup **objcgs;
964d4bd3 555 struct obj_cgroup *objcg;
4b5f8d9a 556 struct slab *slab;
964d4bd3 557 unsigned int off;
d1b2cf6c 558 int i;
964d4bd3 559
10befea9
RG
560 if (!memcg_kmem_enabled())
561 return;
562
d1b2cf6c
BR
563 for (i = 0; i < objects; i++) {
564 if (unlikely(!p[i]))
565 continue;
964d4bd3 566
4b5f8d9a
VB
567 slab = virt_to_slab(p[i]);
568 /* we could be given a kmalloc_large() object, skip those */
569 if (!slab)
570 continue;
571
572 objcgs = slab_objcgs(slab);
270c6a71 573 if (!objcgs)
d1b2cf6c 574 continue;
f2fe7b09 575
d1b2cf6c 576 if (!s_orig)
4b5f8d9a 577 s = slab->slab_cache;
d1b2cf6c
BR
578 else
579 s = s_orig;
10befea9 580
4b5f8d9a 581 off = obj_to_index(s, slab, p[i]);
270c6a71 582 objcg = objcgs[off];
d1b2cf6c
BR
583 if (!objcg)
584 continue;
f2fe7b09 585
270c6a71 586 objcgs[off] = NULL;
d1b2cf6c 587 obj_cgroup_uncharge(objcg, obj_full_size(s));
4b5f8d9a 588 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
d1b2cf6c
BR
589 -obj_full_size(s));
590 obj_cgroup_put(objcg);
591 }
964d4bd3
RG
592}
593
84c07d11 594#else /* CONFIG_MEMCG_KMEM */
4b5f8d9a
VB
595static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
596{
597 return NULL;
598}
599
9855609b 600static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
601{
602 return NULL;
603}
604
4b5f8d9a 605static inline int memcg_alloc_slab_cgroups(struct slab *slab,
2e9bd483 606 struct kmem_cache *s, gfp_t gfp,
4b5f8d9a 607 bool new_slab)
286e04b8
RG
608{
609 return 0;
610}
611
4b5f8d9a 612static inline void memcg_free_slab_cgroups(struct slab *slab)
286e04b8
RG
613{
614}
615
becaba65 616static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 617 struct list_lru *lru,
becaba65
RG
618 struct obj_cgroup **objcgp,
619 size_t objects, gfp_t flags)
f2fe7b09 620{
becaba65 621 return true;
f2fe7b09
RG
622}
623
964d4bd3
RG
624static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
625 struct obj_cgroup *objcg,
10befea9
RG
626 gfp_t flags, size_t size,
627 void **p)
964d4bd3
RG
628{
629}
630
d1b2cf6c
BR
631static inline void memcg_slab_free_hook(struct kmem_cache *s,
632 void **p, int objects)
964d4bd3
RG
633{
634}
84c07d11 635#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 636
401fb12c 637#ifndef CONFIG_SLOB
a64b5378
KC
638static inline struct kmem_cache *virt_to_cache(const void *obj)
639{
82c1775d 640 struct slab *slab;
a64b5378 641
82c1775d
MWO
642 slab = virt_to_slab(obj);
643 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
a64b5378
KC
644 __func__))
645 return NULL;
82c1775d 646 return slab->slab_cache;
a64b5378
KC
647}
648
b918653b
MWO
649static __always_inline void account_slab(struct slab *slab, int order,
650 struct kmem_cache *s, gfp_t gfp)
6cea1d56 651{
2e9bd483 652 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
4b5f8d9a 653 memcg_alloc_slab_cgroups(slab, s, gfp, true);
2e9bd483 654
b918653b 655 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 656 PAGE_SIZE << order);
6cea1d56
RG
657}
658
b918653b
MWO
659static __always_inline void unaccount_slab(struct slab *slab, int order,
660 struct kmem_cache *s)
6cea1d56 661{
10befea9 662 if (memcg_kmem_enabled())
4b5f8d9a 663 memcg_free_slab_cgroups(slab);
9855609b 664
b918653b 665 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
f2fe7b09 666 -(PAGE_SIZE << order));
6cea1d56
RG
667}
668
e42f174e
VB
669static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
670{
671 struct kmem_cache *cachep;
672
673 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
674 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
675 return s;
676
677 cachep = virt_to_cache(x);
10befea9 678 if (WARN(cachep && cachep != s,
e42f174e
VB
679 "%s: Wrong slab cache. %s but object is from %s\n",
680 __func__, s->name, cachep->name))
681 print_tracking(cachep, x);
682 return cachep;
683}
401fb12c 684#endif /* CONFIG_SLOB */
e42f174e 685
11c7aec2
JDB
686static inline size_t slab_ksize(const struct kmem_cache *s)
687{
688#ifndef CONFIG_SLUB
689 return s->object_size;
690
691#else /* CONFIG_SLUB */
692# ifdef CONFIG_SLUB_DEBUG
693 /*
694 * Debugging requires use of the padding between object
695 * and whatever may come after it.
696 */
697 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
698 return s->object_size;
699# endif
80a9201a
AP
700 if (s->flags & SLAB_KASAN)
701 return s->object_size;
11c7aec2
JDB
702 /*
703 * If we have the need to store the freelist pointer
704 * back there or track user information then we can
705 * only use the space before that information.
706 */
5f0d5a3a 707 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
708 return s->inuse;
709 /*
710 * Else we can use all the padding etc for the allocation
711 */
712 return s->size;
713#endif
714}
715
716static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
88f2ef73 717 struct list_lru *lru,
964d4bd3
RG
718 struct obj_cgroup **objcgp,
719 size_t size, gfp_t flags)
11c7aec2
JDB
720{
721 flags &= gfp_allowed_mask;
d92a8cfc 722
95d6c701 723 might_alloc(flags);
11c7aec2 724
fab9963a 725 if (should_failslab(s, flags))
11c7aec2
JDB
726 return NULL;
727
88f2ef73 728 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
becaba65 729 return NULL;
45264778
VD
730
731 return s;
11c7aec2
JDB
732}
733
964d4bd3 734static inline void slab_post_alloc_hook(struct kmem_cache *s,
da844b78
AK
735 struct obj_cgroup *objcg, gfp_t flags,
736 size_t size, void **p, bool init)
11c7aec2
JDB
737{
738 size_t i;
739
740 flags &= gfp_allowed_mask;
da844b78
AK
741
742 /*
743 * As memory initialization might be integrated into KASAN,
744 * kasan_slab_alloc and initialization memset must be
745 * kept together to avoid discrepancies in behavior.
746 *
747 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
748 */
11c7aec2 749 for (i = 0; i < size; i++) {
da844b78
AK
750 p[i] = kasan_slab_alloc(s, p[i], flags, init);
751 if (p[i] && init && !kasan_has_integrated_init())
752 memset(p[i], 0, s->object_size);
53128245 753 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 754 s->flags, flags);
11c7aec2 755 }
45264778 756
becaba65 757 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
758}
759
44c5356f 760#ifndef CONFIG_SLOB
ca34956b
CL
761/*
762 * The slab lists for all objects.
763 */
764struct kmem_cache_node {
765 spinlock_t list_lock;
766
767#ifdef CONFIG_SLAB
768 struct list_head slabs_partial; /* partial list first, better asm code */
769 struct list_head slabs_full;
770 struct list_head slabs_free;
bf00bd34
DR
771 unsigned long total_slabs; /* length of all slab lists */
772 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
773 unsigned long free_objects;
774 unsigned int free_limit;
775 unsigned int colour_next; /* Per-node cache coloring */
776 struct array_cache *shared; /* shared per node */
c8522a3a 777 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
778 unsigned long next_reap; /* updated without locking */
779 int free_touched; /* updated without locking */
780#endif
781
782#ifdef CONFIG_SLUB
783 unsigned long nr_partial;
784 struct list_head partial;
785#ifdef CONFIG_SLUB_DEBUG
786 atomic_long_t nr_slabs;
787 atomic_long_t total_objects;
788 struct list_head full;
789#endif
790#endif
791
792};
e25839f6 793
44c5356f
CL
794static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
795{
796 return s->node[node];
797}
798
799/*
800 * Iterator over all nodes. The body will be executed for each node that has
801 * a kmem_cache_node structure allocated (which is true for all online nodes)
802 */
803#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
804 for (__node = 0; __node < nr_node_ids; __node++) \
805 if ((__n = get_node(__s, __node)))
44c5356f
CL
806
807#endif
808
852d8be0
YS
809#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
810void dump_unreclaimable_slab(void);
811#else
812static inline void dump_unreclaimable_slab(void)
813{
814}
815#endif
816
55834c59
AP
817void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
818
7c00fce9
TG
819#ifdef CONFIG_SLAB_FREELIST_RANDOM
820int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
821 gfp_t gfp);
822void cache_random_seq_destroy(struct kmem_cache *cachep);
823#else
824static inline int cache_random_seq_create(struct kmem_cache *cachep,
825 unsigned int count, gfp_t gfp)
826{
827 return 0;
828}
829static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
830#endif /* CONFIG_SLAB_FREELIST_RANDOM */
831
6471384a
AP
832static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
833{
51cba1eb
KC
834 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
835 &init_on_alloc)) {
6471384a
AP
836 if (c->ctor)
837 return false;
838 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
839 return flags & __GFP_ZERO;
840 return true;
841 }
842 return flags & __GFP_ZERO;
843}
844
845static inline bool slab_want_init_on_free(struct kmem_cache *c)
846{
51cba1eb
KC
847 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
848 &init_on_free))
6471384a
AP
849 return !(c->ctor ||
850 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
851 return false;
852}
853
64dd6849
FM
854#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
855void debugfs_slab_release(struct kmem_cache *);
856#else
857static inline void debugfs_slab_release(struct kmem_cache *s) { }
858#endif
859
5bb1bb35 860#ifdef CONFIG_PRINTK
8e7f37f2
PM
861#define KS_ADDRS_COUNT 16
862struct kmem_obj_info {
863 void *kp_ptr;
7213230a 864 struct slab *kp_slab;
8e7f37f2
PM
865 void *kp_objp;
866 unsigned long kp_data_offset;
867 struct kmem_cache *kp_slab_cache;
868 void *kp_ret;
869 void *kp_stack[KS_ADDRS_COUNT];
e548eaa1 870 void *kp_free_stack[KS_ADDRS_COUNT];
8e7f37f2 871};
2dfe63e6 872void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
5bb1bb35 873#endif
8e7f37f2 874
0b3eb091
MWO
875#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
876void __check_heap_object(const void *ptr, unsigned long n,
877 const struct slab *slab, bool to_user);
878#else
879static inline
880void __check_heap_object(const void *ptr, unsigned long n,
881 const struct slab *slab, bool to_user)
882{
883}
884#endif
885
5240ab40 886#endif /* MM_SLAB_H */
This page took 0.666017 seconds and 4 git commands to generate.