]> Git Repo - linux.git/blame - mm/slab.h
swap: check mapping_empty() for swap cache before being freed
[linux.git] / mm / slab.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97d06609
CL
2#ifndef MM_SLAB_H
3#define MM_SLAB_H
4/*
5 * Internal slab definitions
6 */
7
07f361b2
JK
8#ifdef CONFIG_SLOB
9/*
10 * Common fields provided in kmem_cache by all slab allocators
11 * This struct is either used directly by the allocator (SLOB)
12 * or the allocator must include definitions for all fields
13 * provided in kmem_cache_common in their definition of kmem_cache.
14 *
15 * Once we can do anonymous structs (C11 standard) we could put a
16 * anonymous struct definition in these allocators so that the
17 * separate allocations in the kmem_cache structure of SLAB and
18 * SLUB is no longer needed.
19 */
20struct kmem_cache {
21 unsigned int object_size;/* The original size of the object */
22 unsigned int size; /* The aligned/padded/added on size */
23 unsigned int align; /* Alignment as calculated */
d50112ed 24 slab_flags_t flags; /* Active flags on the slab */
7bbdb81e
AD
25 unsigned int useroffset;/* Usercopy region offset */
26 unsigned int usersize; /* Usercopy region size */
07f361b2
JK
27 const char *name; /* Slab name for sysfs */
28 int refcount; /* Use counter */
29 void (*ctor)(void *); /* Called on object slot creation */
30 struct list_head list; /* List of all slab caches on the system */
31};
32
33#endif /* CONFIG_SLOB */
34
35#ifdef CONFIG_SLAB
36#include <linux/slab_def.h>
37#endif
38
39#ifdef CONFIG_SLUB
40#include <linux/slub_def.h>
41#endif
42
43#include <linux/memcontrol.h>
11c7aec2 44#include <linux/fault-inject.h>
11c7aec2
JDB
45#include <linux/kasan.h>
46#include <linux/kmemleak.h>
7c00fce9 47#include <linux/random.h>
d92a8cfc 48#include <linux/sched/mm.h>
07f361b2 49
97d06609
CL
50/*
51 * State of the slab allocator.
52 *
53 * This is used to describe the states of the allocator during bootup.
54 * Allocators use this to gradually bootstrap themselves. Most allocators
55 * have the problem that the structures used for managing slab caches are
56 * allocated from slab caches themselves.
57 */
58enum slab_state {
59 DOWN, /* No slab functionality yet */
60 PARTIAL, /* SLUB: kmem_cache_node available */
ce8eb6c4 61 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
97d06609
CL
62 UP, /* Slab caches usable but not all extras yet */
63 FULL /* Everything is working */
64};
65
66extern enum slab_state slab_state;
67
18004c5d
CL
68/* The slab cache mutex protects the management structures during changes */
69extern struct mutex slab_mutex;
9b030cb8
CL
70
71/* The list of all slab caches on the system */
18004c5d
CL
72extern struct list_head slab_caches;
73
9b030cb8
CL
74/* The slab cache that manages slab cache information */
75extern struct kmem_cache *kmem_cache;
76
af3b5f87
VB
77/* A table of kmalloc cache names and sizes */
78extern const struct kmalloc_info_struct {
cb5d9fb3 79 const char *name[NR_KMALLOC_TYPES];
55de8b9c 80 unsigned int size;
af3b5f87
VB
81} kmalloc_info[];
82
f97d5f63
CL
83#ifndef CONFIG_SLOB
84/* Kmalloc array related functions */
34cc6990 85void setup_kmalloc_cache_index_table(void);
d50112ed 86void create_kmalloc_caches(slab_flags_t);
2c59dd65
CL
87
88/* Find the kmalloc slab corresponding for a certain size */
89struct kmem_cache *kmalloc_slab(size_t, gfp_t);
f97d5f63
CL
90#endif
91
44405099 92gfp_t kmalloc_fix_flags(gfp_t flags);
f97d5f63 93
9b030cb8 94/* Functions provided by the slab allocators */
d50112ed 95int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
97d06609 96
55de8b9c
AD
97struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
98 slab_flags_t flags, unsigned int useroffset,
99 unsigned int usersize);
45530c44 100extern void create_boot_cache(struct kmem_cache *, const char *name,
361d575e
AD
101 unsigned int size, slab_flags_t flags,
102 unsigned int useroffset, unsigned int usersize);
45530c44 103
423c929c 104int slab_unmergeable(struct kmem_cache *s);
f4957d5b 105struct kmem_cache *find_mergeable(unsigned size, unsigned align,
d50112ed 106 slab_flags_t flags, const char *name, void (*ctor)(void *));
12220dea 107#ifndef CONFIG_SLOB
2633d7a0 108struct kmem_cache *
f4957d5b 109__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 110 slab_flags_t flags, void (*ctor)(void *));
423c929c 111
0293d1fd 112slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 113 slab_flags_t flags, const char *name);
cbb79694 114#else
2633d7a0 115static inline struct kmem_cache *
f4957d5b 116__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
d50112ed 117 slab_flags_t flags, void (*ctor)(void *))
cbb79694 118{ return NULL; }
423c929c 119
0293d1fd 120static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
37540008 121 slab_flags_t flags, const char *name)
423c929c
JK
122{
123 return flags;
124}
cbb79694
CL
125#endif
126
127
d8843922 128/* Legal flag mask for kmem_cache_create(), for various configurations */
6d6ea1e9
NB
129#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
130 SLAB_CACHE_DMA32 | SLAB_PANIC | \
5f0d5a3a 131 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
d8843922
GC
132
133#if defined(CONFIG_DEBUG_SLAB)
134#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
135#elif defined(CONFIG_SLUB_DEBUG)
136#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
becfda68 137 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
d8843922
GC
138#else
139#define SLAB_DEBUG_FLAGS (0)
140#endif
141
142#if defined(CONFIG_SLAB)
143#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
230e9fc2 144 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
75f296d9 145 SLAB_ACCOUNT)
d8843922
GC
146#elif defined(CONFIG_SLUB)
147#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
75f296d9 148 SLAB_TEMPORARY | SLAB_ACCOUNT)
d8843922
GC
149#else
150#define SLAB_CACHE_FLAGS (0)
151#endif
152
e70954fd 153/* Common flags available with current configuration */
d8843922
GC
154#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
155
e70954fd
TG
156/* Common flags permitted for kmem_cache_create */
157#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
158 SLAB_RED_ZONE | \
159 SLAB_POISON | \
160 SLAB_STORE_USER | \
161 SLAB_TRACE | \
162 SLAB_CONSISTENCY_CHECKS | \
163 SLAB_MEM_SPREAD | \
164 SLAB_NOLEAKTRACE | \
165 SLAB_RECLAIM_ACCOUNT | \
166 SLAB_TEMPORARY | \
e70954fd
TG
167 SLAB_ACCOUNT)
168
f9e13c0a 169bool __kmem_cache_empty(struct kmem_cache *);
945cf2b6 170int __kmem_cache_shutdown(struct kmem_cache *);
52b4b950 171void __kmem_cache_release(struct kmem_cache *);
c9fc5864 172int __kmem_cache_shrink(struct kmem_cache *);
41a21285 173void slab_kmem_cache_release(struct kmem_cache *);
945cf2b6 174
b7454ad3
GC
175struct seq_file;
176struct file;
b7454ad3 177
0d7561c6
GC
178struct slabinfo {
179 unsigned long active_objs;
180 unsigned long num_objs;
181 unsigned long active_slabs;
182 unsigned long num_slabs;
183 unsigned long shared_avail;
184 unsigned int limit;
185 unsigned int batchcount;
186 unsigned int shared;
187 unsigned int objects_per_slab;
188 unsigned int cache_order;
189};
190
191void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
192void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
b7454ad3
GC
193ssize_t slabinfo_write(struct file *file, const char __user *buffer,
194 size_t count, loff_t *ppos);
ba6c496e 195
484748f0
CL
196/*
197 * Generic implementation of bulk operations
198 * These are useful for situations in which the allocator cannot
9f706d68 199 * perform optimizations. In that case segments of the object listed
484748f0
CL
200 * may be allocated or freed using these operations.
201 */
202void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
865762a8 203int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
484748f0 204
1a984c4e 205static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
6cea1d56
RG
206{
207 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
d42f3245 208 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
6cea1d56
RG
209}
210
e42f174e
VB
211#ifdef CONFIG_SLUB_DEBUG
212#ifdef CONFIG_SLUB_DEBUG_ON
213DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
214#else
215DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
216#endif
217extern void print_tracking(struct kmem_cache *s, void *object);
1f9f78b1 218long validate_slab_cache(struct kmem_cache *s);
e42f174e
VB
219#else
220static inline void print_tracking(struct kmem_cache *s, void *object)
221{
222}
223#endif
224
225/*
226 * Returns true if any of the specified slub_debug flags is enabled for the
227 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
228 * the static key.
229 */
230static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
231{
232#ifdef CONFIG_SLUB_DEBUG
233 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
234 if (static_branch_unlikely(&slub_debug_enabled))
235 return s->flags & flags;
236#endif
237 return false;
238}
239
84c07d11 240#ifdef CONFIG_MEMCG_KMEM
10befea9 241int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 242 gfp_t gfp, bool new_page);
286e04b8
RG
243
244static inline void memcg_free_page_obj_cgroups(struct page *page)
245{
270c6a71 246 kfree(page_objcgs(page));
bcfe06bf 247 page->memcg_data = 0;
286e04b8
RG
248}
249
f2fe7b09
RG
250static inline size_t obj_full_size(struct kmem_cache *s)
251{
252 /*
253 * For each accounted object there is an extra space which is used
254 * to store obj_cgroup membership. Charge it too.
255 */
256 return s->size + sizeof(struct obj_cgroup *);
257}
258
becaba65
RG
259/*
260 * Returns false if the allocation should fail.
261 */
262static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
263 struct obj_cgroup **objcgp,
264 size_t objects, gfp_t flags)
f2fe7b09 265{
9855609b
RG
266 struct obj_cgroup *objcg;
267
becaba65
RG
268 if (!memcg_kmem_enabled())
269 return true;
270
271 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
272 return true;
273
9855609b
RG
274 objcg = get_obj_cgroup_from_current();
275 if (!objcg)
becaba65 276 return true;
9855609b
RG
277
278 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s))) {
279 obj_cgroup_put(objcg);
becaba65 280 return false;
f2fe7b09
RG
281 }
282
becaba65
RG
283 *objcgp = objcg;
284 return true;
f2fe7b09
RG
285}
286
287static inline void mod_objcg_state(struct obj_cgroup *objcg,
288 struct pglist_data *pgdat,
1a984c4e 289 enum node_stat_item idx, int nr)
f2fe7b09
RG
290{
291 struct mem_cgroup *memcg;
292 struct lruvec *lruvec;
293
294 rcu_read_lock();
295 memcg = obj_cgroup_memcg(objcg);
296 lruvec = mem_cgroup_lruvec(memcg, pgdat);
297 mod_memcg_lruvec_state(lruvec, idx, nr);
298 rcu_read_unlock();
299}
300
964d4bd3
RG
301static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
302 struct obj_cgroup *objcg,
10befea9
RG
303 gfp_t flags, size_t size,
304 void **p)
964d4bd3
RG
305{
306 struct page *page;
307 unsigned long off;
308 size_t i;
309
becaba65 310 if (!memcg_kmem_enabled() || !objcg)
10befea9
RG
311 return;
312
313 flags &= ~__GFP_ACCOUNT;
964d4bd3
RG
314 for (i = 0; i < size; i++) {
315 if (likely(p[i])) {
316 page = virt_to_head_page(p[i]);
10befea9 317
270c6a71 318 if (!page_objcgs(page) &&
2e9bd483
RG
319 memcg_alloc_page_obj_cgroups(page, s, flags,
320 false)) {
10befea9
RG
321 obj_cgroup_uncharge(objcg, obj_full_size(s));
322 continue;
323 }
324
964d4bd3
RG
325 off = obj_to_index(s, page, p[i]);
326 obj_cgroup_get(objcg);
270c6a71 327 page_objcgs(page)[off] = objcg;
f2fe7b09
RG
328 mod_objcg_state(objcg, page_pgdat(page),
329 cache_vmstat_idx(s), obj_full_size(s));
330 } else {
331 obj_cgroup_uncharge(objcg, obj_full_size(s));
964d4bd3
RG
332 }
333 }
334 obj_cgroup_put(objcg);
964d4bd3
RG
335}
336
d1b2cf6c
BR
337static inline void memcg_slab_free_hook(struct kmem_cache *s_orig,
338 void **p, int objects)
964d4bd3 339{
d1b2cf6c 340 struct kmem_cache *s;
270c6a71 341 struct obj_cgroup **objcgs;
964d4bd3 342 struct obj_cgroup *objcg;
d1b2cf6c 343 struct page *page;
964d4bd3 344 unsigned int off;
d1b2cf6c 345 int i;
964d4bd3 346
10befea9
RG
347 if (!memcg_kmem_enabled())
348 return;
349
d1b2cf6c
BR
350 for (i = 0; i < objects; i++) {
351 if (unlikely(!p[i]))
352 continue;
964d4bd3 353
d1b2cf6c 354 page = virt_to_head_page(p[i]);
270c6a71
RG
355 objcgs = page_objcgs(page);
356 if (!objcgs)
d1b2cf6c 357 continue;
f2fe7b09 358
d1b2cf6c
BR
359 if (!s_orig)
360 s = page->slab_cache;
361 else
362 s = s_orig;
10befea9 363
d1b2cf6c 364 off = obj_to_index(s, page, p[i]);
270c6a71 365 objcg = objcgs[off];
d1b2cf6c
BR
366 if (!objcg)
367 continue;
f2fe7b09 368
270c6a71 369 objcgs[off] = NULL;
d1b2cf6c
BR
370 obj_cgroup_uncharge(objcg, obj_full_size(s));
371 mod_objcg_state(objcg, page_pgdat(page), cache_vmstat_idx(s),
372 -obj_full_size(s));
373 obj_cgroup_put(objcg);
374 }
964d4bd3
RG
375}
376
84c07d11 377#else /* CONFIG_MEMCG_KMEM */
9855609b 378static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
4d96ba35
RG
379{
380 return NULL;
381}
382
286e04b8 383static inline int memcg_alloc_page_obj_cgroups(struct page *page,
2e9bd483
RG
384 struct kmem_cache *s, gfp_t gfp,
385 bool new_page)
286e04b8
RG
386{
387 return 0;
388}
389
390static inline void memcg_free_page_obj_cgroups(struct page *page)
391{
392}
393
becaba65
RG
394static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
395 struct obj_cgroup **objcgp,
396 size_t objects, gfp_t flags)
f2fe7b09 397{
becaba65 398 return true;
f2fe7b09
RG
399}
400
964d4bd3
RG
401static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
402 struct obj_cgroup *objcg,
10befea9
RG
403 gfp_t flags, size_t size,
404 void **p)
964d4bd3
RG
405{
406}
407
d1b2cf6c
BR
408static inline void memcg_slab_free_hook(struct kmem_cache *s,
409 void **p, int objects)
964d4bd3
RG
410{
411}
84c07d11 412#endif /* CONFIG_MEMCG_KMEM */
b9ce5ef4 413
a64b5378
KC
414static inline struct kmem_cache *virt_to_cache(const void *obj)
415{
416 struct page *page;
417
418 page = virt_to_head_page(obj);
419 if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
420 __func__))
421 return NULL;
422 return page->slab_cache;
423}
424
74d555be 425static __always_inline void account_slab_page(struct page *page, int order,
2e9bd483
RG
426 struct kmem_cache *s,
427 gfp_t gfp)
6cea1d56 428{
2e9bd483
RG
429 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
430 memcg_alloc_page_obj_cgroups(page, s, gfp, true);
431
f2fe7b09
RG
432 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
433 PAGE_SIZE << order);
6cea1d56
RG
434}
435
74d555be
RG
436static __always_inline void unaccount_slab_page(struct page *page, int order,
437 struct kmem_cache *s)
6cea1d56 438{
10befea9 439 if (memcg_kmem_enabled())
f2fe7b09 440 memcg_free_page_obj_cgroups(page);
9855609b 441
f2fe7b09
RG
442 mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
443 -(PAGE_SIZE << order));
6cea1d56
RG
444}
445
e42f174e
VB
446static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
447{
448 struct kmem_cache *cachep;
449
450 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
e42f174e
VB
451 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
452 return s;
453
454 cachep = virt_to_cache(x);
10befea9 455 if (WARN(cachep && cachep != s,
e42f174e
VB
456 "%s: Wrong slab cache. %s but object is from %s\n",
457 __func__, s->name, cachep->name))
458 print_tracking(cachep, x);
459 return cachep;
460}
461
11c7aec2
JDB
462static inline size_t slab_ksize(const struct kmem_cache *s)
463{
464#ifndef CONFIG_SLUB
465 return s->object_size;
466
467#else /* CONFIG_SLUB */
468# ifdef CONFIG_SLUB_DEBUG
469 /*
470 * Debugging requires use of the padding between object
471 * and whatever may come after it.
472 */
473 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
474 return s->object_size;
475# endif
80a9201a
AP
476 if (s->flags & SLAB_KASAN)
477 return s->object_size;
11c7aec2
JDB
478 /*
479 * If we have the need to store the freelist pointer
480 * back there or track user information then we can
481 * only use the space before that information.
482 */
5f0d5a3a 483 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
11c7aec2
JDB
484 return s->inuse;
485 /*
486 * Else we can use all the padding etc for the allocation
487 */
488 return s->size;
489#endif
490}
491
492static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
964d4bd3
RG
493 struct obj_cgroup **objcgp,
494 size_t size, gfp_t flags)
11c7aec2
JDB
495{
496 flags &= gfp_allowed_mask;
d92a8cfc 497
95d6c701 498 might_alloc(flags);
11c7aec2 499
fab9963a 500 if (should_failslab(s, flags))
11c7aec2
JDB
501 return NULL;
502
becaba65
RG
503 if (!memcg_slab_pre_alloc_hook(s, objcgp, size, flags))
504 return NULL;
45264778
VD
505
506 return s;
11c7aec2
JDB
507}
508
964d4bd3 509static inline void slab_post_alloc_hook(struct kmem_cache *s,
da844b78
AK
510 struct obj_cgroup *objcg, gfp_t flags,
511 size_t size, void **p, bool init)
11c7aec2
JDB
512{
513 size_t i;
514
515 flags &= gfp_allowed_mask;
da844b78
AK
516
517 /*
518 * As memory initialization might be integrated into KASAN,
519 * kasan_slab_alloc and initialization memset must be
520 * kept together to avoid discrepancies in behavior.
521 *
522 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
523 */
11c7aec2 524 for (i = 0; i < size; i++) {
da844b78
AK
525 p[i] = kasan_slab_alloc(s, p[i], flags, init);
526 if (p[i] && init && !kasan_has_integrated_init())
527 memset(p[i], 0, s->object_size);
53128245 528 kmemleak_alloc_recursive(p[i], s->object_size, 1,
11c7aec2 529 s->flags, flags);
11c7aec2 530 }
45264778 531
becaba65 532 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
11c7aec2
JDB
533}
534
44c5356f 535#ifndef CONFIG_SLOB
ca34956b
CL
536/*
537 * The slab lists for all objects.
538 */
539struct kmem_cache_node {
540 spinlock_t list_lock;
541
542#ifdef CONFIG_SLAB
543 struct list_head slabs_partial; /* partial list first, better asm code */
544 struct list_head slabs_full;
545 struct list_head slabs_free;
bf00bd34
DR
546 unsigned long total_slabs; /* length of all slab lists */
547 unsigned long free_slabs; /* length of free slab list only */
ca34956b
CL
548 unsigned long free_objects;
549 unsigned int free_limit;
550 unsigned int colour_next; /* Per-node cache coloring */
551 struct array_cache *shared; /* shared per node */
c8522a3a 552 struct alien_cache **alien; /* on other nodes */
ca34956b
CL
553 unsigned long next_reap; /* updated without locking */
554 int free_touched; /* updated without locking */
555#endif
556
557#ifdef CONFIG_SLUB
558 unsigned long nr_partial;
559 struct list_head partial;
560#ifdef CONFIG_SLUB_DEBUG
561 atomic_long_t nr_slabs;
562 atomic_long_t total_objects;
563 struct list_head full;
564#endif
565#endif
566
567};
e25839f6 568
44c5356f
CL
569static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
570{
571 return s->node[node];
572}
573
574/*
575 * Iterator over all nodes. The body will be executed for each node that has
576 * a kmem_cache_node structure allocated (which is true for all online nodes)
577 */
578#define for_each_kmem_cache_node(__s, __node, __n) \
9163582c
MP
579 for (__node = 0; __node < nr_node_ids; __node++) \
580 if ((__n = get_node(__s, __node)))
44c5356f
CL
581
582#endif
583
1df3b26f 584void *slab_start(struct seq_file *m, loff_t *pos);
276a2439
WL
585void *slab_next(struct seq_file *m, void *p, loff_t *pos);
586void slab_stop(struct seq_file *m, void *p);
b047501c 587int memcg_slab_show(struct seq_file *m, void *p);
5240ab40 588
852d8be0
YS
589#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
590void dump_unreclaimable_slab(void);
591#else
592static inline void dump_unreclaimable_slab(void)
593{
594}
595#endif
596
55834c59
AP
597void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
598
7c00fce9
TG
599#ifdef CONFIG_SLAB_FREELIST_RANDOM
600int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
601 gfp_t gfp);
602void cache_random_seq_destroy(struct kmem_cache *cachep);
603#else
604static inline int cache_random_seq_create(struct kmem_cache *cachep,
605 unsigned int count, gfp_t gfp)
606{
607 return 0;
608}
609static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
610#endif /* CONFIG_SLAB_FREELIST_RANDOM */
611
6471384a
AP
612static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
613{
51cba1eb
KC
614 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
615 &init_on_alloc)) {
6471384a
AP
616 if (c->ctor)
617 return false;
618 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
619 return flags & __GFP_ZERO;
620 return true;
621 }
622 return flags & __GFP_ZERO;
623}
624
625static inline bool slab_want_init_on_free(struct kmem_cache *c)
626{
51cba1eb
KC
627 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
628 &init_on_free))
6471384a
AP
629 return !(c->ctor ||
630 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
631 return false;
632}
633
64dd6849
FM
634#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
635void debugfs_slab_release(struct kmem_cache *);
636#else
637static inline void debugfs_slab_release(struct kmem_cache *s) { }
638#endif
639
5bb1bb35 640#ifdef CONFIG_PRINTK
8e7f37f2
PM
641#define KS_ADDRS_COUNT 16
642struct kmem_obj_info {
643 void *kp_ptr;
644 struct page *kp_page;
645 void *kp_objp;
646 unsigned long kp_data_offset;
647 struct kmem_cache *kp_slab_cache;
648 void *kp_ret;
649 void *kp_stack[KS_ADDRS_COUNT];
650};
651void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page);
5bb1bb35 652#endif
8e7f37f2 653
5240ab40 654#endif /* MM_SLAB_H */
This page took 0.671184 seconds and 4 git commands to generate.