]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
c8c06efa | 26 | * mapping->i_mmap_rwsem |
5a505085 | 27 | * anon_vma->rwsem |
82591e6e NP |
28 | * mm->page_table_lock or pte_lock |
29 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
30 | * swap_lock (in swap_duplicate, swap_info_get) | |
31 | * mmlist_lock (in mmput, drain_mmlist and others) | |
32 | * mapping->private_lock (in __set_page_dirty_buffers) | |
250df6ed | 33 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
f758eeab | 34 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) |
82591e6e NP |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
f758eeab | 38 | * within bdi.wb->list_lock in __sync_single_inode) |
6a46079c | 39 | * |
5a505085 | 40 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 41 | * ->tasklist_lock |
6a46079c | 42 | * pte map lock |
1da177e4 LT |
43 | */ |
44 | ||
45 | #include <linux/mm.h> | |
46 | #include <linux/pagemap.h> | |
47 | #include <linux/swap.h> | |
48 | #include <linux/swapops.h> | |
49 | #include <linux/slab.h> | |
50 | #include <linux/init.h> | |
5ad64688 | 51 | #include <linux/ksm.h> |
1da177e4 LT |
52 | #include <linux/rmap.h> |
53 | #include <linux/rcupdate.h> | |
b95f1b31 | 54 | #include <linux/export.h> |
8a9f3ccd | 55 | #include <linux/memcontrol.h> |
cddb8a5c | 56 | #include <linux/mmu_notifier.h> |
64cdd548 | 57 | #include <linux/migrate.h> |
0fe6e20b | 58 | #include <linux/hugetlb.h> |
ef5d437f | 59 | #include <linux/backing-dev.h> |
1da177e4 LT |
60 | |
61 | #include <asm/tlbflush.h> | |
62 | ||
b291f000 NP |
63 | #include "internal.h" |
64 | ||
fdd2e5f8 | 65 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 66 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
67 | |
68 | static inline struct anon_vma *anon_vma_alloc(void) | |
69 | { | |
01d8b20d PZ |
70 | struct anon_vma *anon_vma; |
71 | ||
72 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
73 | if (anon_vma) { | |
74 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
75 | anon_vma->degree = 1; /* Reference for first vma */ |
76 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
77 | /* |
78 | * Initialise the anon_vma root to point to itself. If called | |
79 | * from fork, the root will be reset to the parents anon_vma. | |
80 | */ | |
81 | anon_vma->root = anon_vma; | |
82 | } | |
83 | ||
84 | return anon_vma; | |
fdd2e5f8 AB |
85 | } |
86 | ||
01d8b20d | 87 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 88 | { |
01d8b20d | 89 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
90 | |
91 | /* | |
4fc3f1d6 | 92 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
93 | * we can safely hold the lock without the anon_vma getting |
94 | * freed. | |
95 | * | |
96 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
97 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 98 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 99 | * |
4fc3f1d6 IM |
100 | * page_lock_anon_vma_read() VS put_anon_vma() |
101 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 102 | * LOCK MB |
4fc3f1d6 | 103 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
104 | * |
105 | * LOCK should suffice since the actual taking of the lock must | |
106 | * happen _before_ what follows. | |
107 | */ | |
7f39dda9 | 108 | might_sleep(); |
5a505085 | 109 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 110 | anon_vma_lock_write(anon_vma); |
08b52706 | 111 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
112 | } |
113 | ||
fdd2e5f8 AB |
114 | kmem_cache_free(anon_vma_cachep, anon_vma); |
115 | } | |
1da177e4 | 116 | |
dd34739c | 117 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 118 | { |
dd34739c | 119 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
120 | } |
121 | ||
e574b5fd | 122 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
123 | { |
124 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
125 | } | |
126 | ||
6583a843 KC |
127 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
128 | struct anon_vma_chain *avc, | |
129 | struct anon_vma *anon_vma) | |
130 | { | |
131 | avc->vma = vma; | |
132 | avc->anon_vma = anon_vma; | |
133 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 134 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
135 | } |
136 | ||
d9d332e0 LT |
137 | /** |
138 | * anon_vma_prepare - attach an anon_vma to a memory region | |
139 | * @vma: the memory region in question | |
140 | * | |
141 | * This makes sure the memory mapping described by 'vma' has | |
142 | * an 'anon_vma' attached to it, so that we can associate the | |
143 | * anonymous pages mapped into it with that anon_vma. | |
144 | * | |
145 | * The common case will be that we already have one, but if | |
23a0790a | 146 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
147 | * can re-use the anon_vma from (very common when the only |
148 | * reason for splitting a vma has been mprotect()), or we | |
149 | * allocate a new one. | |
150 | * | |
151 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 152 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
153 | * and that may actually touch the spinlock even in the newly |
154 | * allocated vma (it depends on RCU to make sure that the | |
155 | * anon_vma isn't actually destroyed). | |
156 | * | |
157 | * As a result, we need to do proper anon_vma locking even | |
158 | * for the new allocation. At the same time, we do not want | |
159 | * to do any locking for the common case of already having | |
160 | * an anon_vma. | |
161 | * | |
162 | * This must be called with the mmap_sem held for reading. | |
163 | */ | |
1da177e4 LT |
164 | int anon_vma_prepare(struct vm_area_struct *vma) |
165 | { | |
166 | struct anon_vma *anon_vma = vma->anon_vma; | |
5beb4930 | 167 | struct anon_vma_chain *avc; |
1da177e4 LT |
168 | |
169 | might_sleep(); | |
170 | if (unlikely(!anon_vma)) { | |
171 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 172 | struct anon_vma *allocated; |
1da177e4 | 173 | |
dd34739c | 174 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
175 | if (!avc) |
176 | goto out_enomem; | |
177 | ||
1da177e4 | 178 | anon_vma = find_mergeable_anon_vma(vma); |
d9d332e0 LT |
179 | allocated = NULL; |
180 | if (!anon_vma) { | |
1da177e4 LT |
181 | anon_vma = anon_vma_alloc(); |
182 | if (unlikely(!anon_vma)) | |
5beb4930 | 183 | goto out_enomem_free_avc; |
1da177e4 | 184 | allocated = anon_vma; |
1da177e4 LT |
185 | } |
186 | ||
4fc3f1d6 | 187 | anon_vma_lock_write(anon_vma); |
1da177e4 LT |
188 | /* page_table_lock to protect against threads */ |
189 | spin_lock(&mm->page_table_lock); | |
190 | if (likely(!vma->anon_vma)) { | |
191 | vma->anon_vma = anon_vma; | |
6583a843 | 192 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 KK |
193 | /* vma reference or self-parent link for new root */ |
194 | anon_vma->degree++; | |
1da177e4 | 195 | allocated = NULL; |
31f2b0eb | 196 | avc = NULL; |
1da177e4 LT |
197 | } |
198 | spin_unlock(&mm->page_table_lock); | |
08b52706 | 199 | anon_vma_unlock_write(anon_vma); |
31f2b0eb ON |
200 | |
201 | if (unlikely(allocated)) | |
01d8b20d | 202 | put_anon_vma(allocated); |
31f2b0eb | 203 | if (unlikely(avc)) |
5beb4930 | 204 | anon_vma_chain_free(avc); |
1da177e4 LT |
205 | } |
206 | return 0; | |
5beb4930 RR |
207 | |
208 | out_enomem_free_avc: | |
209 | anon_vma_chain_free(avc); | |
210 | out_enomem: | |
211 | return -ENOMEM; | |
1da177e4 LT |
212 | } |
213 | ||
bb4aa396 LT |
214 | /* |
215 | * This is a useful helper function for locking the anon_vma root as | |
216 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
217 | * have the same vma. | |
218 | * | |
219 | * Such anon_vma's should have the same root, so you'd expect to see | |
220 | * just a single mutex_lock for the whole traversal. | |
221 | */ | |
222 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
223 | { | |
224 | struct anon_vma *new_root = anon_vma->root; | |
225 | if (new_root != root) { | |
226 | if (WARN_ON_ONCE(root)) | |
5a505085 | 227 | up_write(&root->rwsem); |
bb4aa396 | 228 | root = new_root; |
5a505085 | 229 | down_write(&root->rwsem); |
bb4aa396 LT |
230 | } |
231 | return root; | |
232 | } | |
233 | ||
234 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
235 | { | |
236 | if (root) | |
5a505085 | 237 | up_write(&root->rwsem); |
bb4aa396 LT |
238 | } |
239 | ||
5beb4930 RR |
240 | /* |
241 | * Attach the anon_vmas from src to dst. | |
242 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
243 | * |
244 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
245 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
246 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
247 | * constantly forking task. On the other hand, an anon_vma with more than one | |
248 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
249 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
250 | * page is mapped. | |
5beb4930 RR |
251 | */ |
252 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 253 | { |
5beb4930 | 254 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 255 | struct anon_vma *root = NULL; |
5beb4930 | 256 | |
646d87b4 | 257 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
258 | struct anon_vma *anon_vma; |
259 | ||
dd34739c LT |
260 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
261 | if (unlikely(!avc)) { | |
262 | unlock_anon_vma_root(root); | |
263 | root = NULL; | |
264 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
265 | if (!avc) | |
266 | goto enomem_failure; | |
267 | } | |
bb4aa396 LT |
268 | anon_vma = pavc->anon_vma; |
269 | root = lock_anon_vma_root(root, anon_vma); | |
270 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
271 | |
272 | /* | |
273 | * Reuse existing anon_vma if its degree lower than two, | |
274 | * that means it has no vma and only one anon_vma child. | |
275 | * | |
276 | * Do not chose parent anon_vma, otherwise first child | |
277 | * will always reuse it. Root anon_vma is never reused: | |
278 | * it has self-parent reference and at least one child. | |
279 | */ | |
280 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
281 | anon_vma->degree < 2) | |
282 | dst->anon_vma = anon_vma; | |
5beb4930 | 283 | } |
7a3ef208 KK |
284 | if (dst->anon_vma) |
285 | dst->anon_vma->degree++; | |
bb4aa396 | 286 | unlock_anon_vma_root(root); |
5beb4930 | 287 | return 0; |
1da177e4 | 288 | |
5beb4930 RR |
289 | enomem_failure: |
290 | unlink_anon_vmas(dst); | |
291 | return -ENOMEM; | |
1da177e4 LT |
292 | } |
293 | ||
5beb4930 RR |
294 | /* |
295 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
296 | * the corresponding VMA in the parent process is attached to. | |
297 | * Returns 0 on success, non-zero on failure. | |
298 | */ | |
299 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 300 | { |
5beb4930 RR |
301 | struct anon_vma_chain *avc; |
302 | struct anon_vma *anon_vma; | |
c4ea95d7 | 303 | int error; |
1da177e4 | 304 | |
5beb4930 RR |
305 | /* Don't bother if the parent process has no anon_vma here. */ |
306 | if (!pvma->anon_vma) | |
307 | return 0; | |
308 | ||
7a3ef208 KK |
309 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
310 | vma->anon_vma = NULL; | |
311 | ||
5beb4930 RR |
312 | /* |
313 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
314 | * so rmap can find non-COWed pages in child processes. | |
315 | */ | |
c4ea95d7 DF |
316 | error = anon_vma_clone(vma, pvma); |
317 | if (error) | |
318 | return error; | |
5beb4930 | 319 | |
7a3ef208 KK |
320 | /* An existing anon_vma has been reused, all done then. */ |
321 | if (vma->anon_vma) | |
322 | return 0; | |
323 | ||
5beb4930 RR |
324 | /* Then add our own anon_vma. */ |
325 | anon_vma = anon_vma_alloc(); | |
326 | if (!anon_vma) | |
327 | goto out_error; | |
dd34739c | 328 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
329 | if (!avc) |
330 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
331 | |
332 | /* | |
333 | * The root anon_vma's spinlock is the lock actually used when we | |
334 | * lock any of the anon_vmas in this anon_vma tree. | |
335 | */ | |
336 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 337 | anon_vma->parent = pvma->anon_vma; |
76545066 | 338 | /* |
01d8b20d PZ |
339 | * With refcounts, an anon_vma can stay around longer than the |
340 | * process it belongs to. The root anon_vma needs to be pinned until | |
341 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
342 | */ |
343 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
344 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
345 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 346 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 347 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 348 | anon_vma->parent->degree++; |
08b52706 | 349 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
350 | |
351 | return 0; | |
352 | ||
353 | out_error_free_anon_vma: | |
01d8b20d | 354 | put_anon_vma(anon_vma); |
5beb4930 | 355 | out_error: |
4946d54c | 356 | unlink_anon_vmas(vma); |
5beb4930 | 357 | return -ENOMEM; |
1da177e4 LT |
358 | } |
359 | ||
5beb4930 RR |
360 | void unlink_anon_vmas(struct vm_area_struct *vma) |
361 | { | |
362 | struct anon_vma_chain *avc, *next; | |
eee2acba | 363 | struct anon_vma *root = NULL; |
5beb4930 | 364 | |
5c341ee1 RR |
365 | /* |
366 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
367 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
368 | */ | |
5beb4930 | 369 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
370 | struct anon_vma *anon_vma = avc->anon_vma; |
371 | ||
372 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 373 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
374 | |
375 | /* | |
376 | * Leave empty anon_vmas on the list - we'll need | |
377 | * to free them outside the lock. | |
378 | */ | |
7a3ef208 KK |
379 | if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { |
380 | anon_vma->parent->degree--; | |
eee2acba | 381 | continue; |
7a3ef208 | 382 | } |
eee2acba PZ |
383 | |
384 | list_del(&avc->same_vma); | |
385 | anon_vma_chain_free(avc); | |
386 | } | |
7a3ef208 KK |
387 | if (vma->anon_vma) |
388 | vma->anon_vma->degree--; | |
eee2acba PZ |
389 | unlock_anon_vma_root(root); |
390 | ||
391 | /* | |
392 | * Iterate the list once more, it now only contains empty and unlinked | |
393 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 394 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
395 | */ |
396 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
397 | struct anon_vma *anon_vma = avc->anon_vma; | |
398 | ||
7a3ef208 | 399 | BUG_ON(anon_vma->degree); |
eee2acba PZ |
400 | put_anon_vma(anon_vma); |
401 | ||
5beb4930 RR |
402 | list_del(&avc->same_vma); |
403 | anon_vma_chain_free(avc); | |
404 | } | |
405 | } | |
406 | ||
51cc5068 | 407 | static void anon_vma_ctor(void *data) |
1da177e4 | 408 | { |
a35afb83 | 409 | struct anon_vma *anon_vma = data; |
1da177e4 | 410 | |
5a505085 | 411 | init_rwsem(&anon_vma->rwsem); |
83813267 | 412 | atomic_set(&anon_vma->refcount, 0); |
bf181b9f | 413 | anon_vma->rb_root = RB_ROOT; |
1da177e4 LT |
414 | } |
415 | ||
416 | void __init anon_vma_init(void) | |
417 | { | |
418 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 419 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
5beb4930 | 420 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); |
1da177e4 LT |
421 | } |
422 | ||
423 | /* | |
6111e4ca PZ |
424 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
425 | * | |
426 | * Since there is no serialization what so ever against page_remove_rmap() | |
427 | * the best this function can do is return a locked anon_vma that might | |
428 | * have been relevant to this page. | |
429 | * | |
430 | * The page might have been remapped to a different anon_vma or the anon_vma | |
431 | * returned may already be freed (and even reused). | |
432 | * | |
bc658c96 PZ |
433 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
434 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
435 | * ensure that any anon_vma obtained from the page will still be valid for as | |
436 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
437 | * | |
6111e4ca PZ |
438 | * All users of this function must be very careful when walking the anon_vma |
439 | * chain and verify that the page in question is indeed mapped in it | |
440 | * [ something equivalent to page_mapped_in_vma() ]. | |
441 | * | |
442 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
443 | * that the anon_vma pointer from page->mapping is valid if there is a | |
444 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 445 | */ |
746b18d4 | 446 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 447 | { |
746b18d4 | 448 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
449 | unsigned long anon_mapping; |
450 | ||
451 | rcu_read_lock(); | |
80e14822 | 452 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
3ca7b3c5 | 453 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
454 | goto out; |
455 | if (!page_mapped(page)) | |
456 | goto out; | |
457 | ||
458 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
459 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
460 | anon_vma = NULL; | |
461 | goto out; | |
462 | } | |
f1819427 HD |
463 | |
464 | /* | |
465 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
466 | * freed. But if it has been unmapped, we have no security against the |
467 | * anon_vma structure being freed and reused (for another anon_vma: | |
468 | * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() | |
469 | * above cannot corrupt). | |
f1819427 | 470 | */ |
746b18d4 | 471 | if (!page_mapped(page)) { |
7f39dda9 | 472 | rcu_read_unlock(); |
746b18d4 | 473 | put_anon_vma(anon_vma); |
7f39dda9 | 474 | return NULL; |
746b18d4 | 475 | } |
1da177e4 LT |
476 | out: |
477 | rcu_read_unlock(); | |
746b18d4 PZ |
478 | |
479 | return anon_vma; | |
480 | } | |
481 | ||
88c22088 PZ |
482 | /* |
483 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
484 | * | |
485 | * Its a little more complex as it tries to keep the fast path to a single | |
486 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
487 | * reference like with page_get_anon_vma() and then block on the mutex. | |
488 | */ | |
4fc3f1d6 | 489 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 490 | { |
88c22088 | 491 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 492 | struct anon_vma *root_anon_vma; |
88c22088 | 493 | unsigned long anon_mapping; |
746b18d4 | 494 | |
88c22088 PZ |
495 | rcu_read_lock(); |
496 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); | |
497 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | |
498 | goto out; | |
499 | if (!page_mapped(page)) | |
500 | goto out; | |
501 | ||
502 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
eee0f252 | 503 | root_anon_vma = ACCESS_ONCE(anon_vma->root); |
4fc3f1d6 | 504 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 505 | /* |
eee0f252 HD |
506 | * If the page is still mapped, then this anon_vma is still |
507 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 508 | * not go away, see anon_vma_free(). |
88c22088 | 509 | */ |
eee0f252 | 510 | if (!page_mapped(page)) { |
4fc3f1d6 | 511 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
512 | anon_vma = NULL; |
513 | } | |
514 | goto out; | |
515 | } | |
746b18d4 | 516 | |
88c22088 PZ |
517 | /* trylock failed, we got to sleep */ |
518 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
519 | anon_vma = NULL; | |
520 | goto out; | |
521 | } | |
522 | ||
523 | if (!page_mapped(page)) { | |
7f39dda9 | 524 | rcu_read_unlock(); |
88c22088 | 525 | put_anon_vma(anon_vma); |
7f39dda9 | 526 | return NULL; |
88c22088 PZ |
527 | } |
528 | ||
529 | /* we pinned the anon_vma, its safe to sleep */ | |
530 | rcu_read_unlock(); | |
4fc3f1d6 | 531 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
532 | |
533 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
534 | /* | |
535 | * Oops, we held the last refcount, release the lock | |
536 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 537 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 538 | */ |
4fc3f1d6 | 539 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
540 | __put_anon_vma(anon_vma); |
541 | anon_vma = NULL; | |
542 | } | |
543 | ||
544 | return anon_vma; | |
545 | ||
546 | out: | |
547 | rcu_read_unlock(); | |
746b18d4 | 548 | return anon_vma; |
34bbd704 ON |
549 | } |
550 | ||
4fc3f1d6 | 551 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 552 | { |
4fc3f1d6 | 553 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
554 | } |
555 | ||
556 | /* | |
3ad33b24 | 557 | * At what user virtual address is page expected in @vma? |
1da177e4 | 558 | */ |
86c2ad19 ML |
559 | static inline unsigned long |
560 | __vma_address(struct page *page, struct vm_area_struct *vma) | |
1da177e4 | 561 | { |
a0f7a756 | 562 | pgoff_t pgoff = page_to_pgoff(page); |
86c2ad19 ML |
563 | return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
564 | } | |
565 | ||
566 | inline unsigned long | |
567 | vma_address(struct page *page, struct vm_area_struct *vma) | |
568 | { | |
569 | unsigned long address = __vma_address(page, vma); | |
570 | ||
571 | /* page should be within @vma mapping range */ | |
81d1b09c | 572 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
86c2ad19 | 573 | |
1da177e4 LT |
574 | return address; |
575 | } | |
576 | ||
577 | /* | |
bf89c8c8 | 578 | * At what user virtual address is page expected in vma? |
ab941e0f | 579 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
580 | */ |
581 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
582 | { | |
86c2ad19 | 583 | unsigned long address; |
21d0d443 | 584 | if (PageAnon(page)) { |
4829b906 HD |
585 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
586 | /* | |
587 | * Note: swapoff's unuse_vma() is more efficient with this | |
588 | * check, and needs it to match anon_vma when KSM is active. | |
589 | */ | |
590 | if (!vma->anon_vma || !page__anon_vma || | |
591 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 AA |
592 | return -EFAULT; |
593 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
594 | if (!vma->vm_file || |
595 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
596 | return -EFAULT; |
597 | } else | |
598 | return -EFAULT; | |
86c2ad19 ML |
599 | address = __vma_address(page, vma); |
600 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
601 | return -EFAULT; | |
602 | return address; | |
1da177e4 LT |
603 | } |
604 | ||
6219049a BL |
605 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
606 | { | |
607 | pgd_t *pgd; | |
608 | pud_t *pud; | |
609 | pmd_t *pmd = NULL; | |
f72e7dcd | 610 | pmd_t pmde; |
6219049a BL |
611 | |
612 | pgd = pgd_offset(mm, address); | |
613 | if (!pgd_present(*pgd)) | |
614 | goto out; | |
615 | ||
616 | pud = pud_offset(pgd, address); | |
617 | if (!pud_present(*pud)) | |
618 | goto out; | |
619 | ||
620 | pmd = pmd_offset(pud, address); | |
f72e7dcd HD |
621 | /* |
622 | * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at() | |
623 | * without holding anon_vma lock for write. So when looking for a | |
624 | * genuine pmde (in which to find pte), test present and !THP together. | |
625 | */ | |
e37c6982 CB |
626 | pmde = *pmd; |
627 | barrier(); | |
f72e7dcd | 628 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
629 | pmd = NULL; |
630 | out: | |
631 | return pmd; | |
632 | } | |
633 | ||
81b4082d ND |
634 | /* |
635 | * Check that @page is mapped at @address into @mm. | |
636 | * | |
479db0bf NP |
637 | * If @sync is false, page_check_address may perform a racy check to avoid |
638 | * the page table lock when the pte is not present (helpful when reclaiming | |
639 | * highly shared pages). | |
640 | * | |
b8072f09 | 641 | * On success returns with pte mapped and locked. |
81b4082d | 642 | */ |
e9a81a82 | 643 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 644 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d | 645 | { |
81b4082d ND |
646 | pmd_t *pmd; |
647 | pte_t *pte; | |
c0718806 | 648 | spinlock_t *ptl; |
81b4082d | 649 | |
0fe6e20b | 650 | if (unlikely(PageHuge(page))) { |
98398c32 | 651 | /* when pud is not present, pte will be NULL */ |
0fe6e20b | 652 | pte = huge_pte_offset(mm, address); |
98398c32 JW |
653 | if (!pte) |
654 | return NULL; | |
655 | ||
cb900f41 | 656 | ptl = huge_pte_lockptr(page_hstate(page), mm, pte); |
0fe6e20b NH |
657 | goto check; |
658 | } | |
659 | ||
6219049a BL |
660 | pmd = mm_find_pmd(mm, address); |
661 | if (!pmd) | |
c0718806 HD |
662 | return NULL; |
663 | ||
c0718806 HD |
664 | pte = pte_offset_map(pmd, address); |
665 | /* Make a quick check before getting the lock */ | |
479db0bf | 666 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
667 | pte_unmap(pte); |
668 | return NULL; | |
669 | } | |
670 | ||
4c21e2f2 | 671 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 672 | check: |
c0718806 HD |
673 | spin_lock(ptl); |
674 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
675 | *ptlp = ptl; | |
676 | return pte; | |
81b4082d | 677 | } |
c0718806 HD |
678 | pte_unmap_unlock(pte, ptl); |
679 | return NULL; | |
81b4082d ND |
680 | } |
681 | ||
b291f000 NP |
682 | /** |
683 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
684 | * @page: the page to test | |
685 | * @vma: the VMA to test | |
686 | * | |
687 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
688 | * if the page is not mapped into the page tables of this VMA. Only | |
689 | * valid for normal file or anonymous VMAs. | |
690 | */ | |
6a46079c | 691 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
692 | { |
693 | unsigned long address; | |
694 | pte_t *pte; | |
695 | spinlock_t *ptl; | |
696 | ||
86c2ad19 ML |
697 | address = __vma_address(page, vma); |
698 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
b291f000 NP |
699 | return 0; |
700 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
701 | if (!pte) /* the page is not in this mm */ | |
702 | return 0; | |
703 | pte_unmap_unlock(pte, ptl); | |
704 | ||
705 | return 1; | |
706 | } | |
707 | ||
9f32624b JK |
708 | struct page_referenced_arg { |
709 | int mapcount; | |
710 | int referenced; | |
711 | unsigned long vm_flags; | |
712 | struct mem_cgroup *memcg; | |
713 | }; | |
1da177e4 | 714 | /* |
9f32624b | 715 | * arg: page_referenced_arg will be passed |
1da177e4 | 716 | */ |
ac769501 | 717 | static int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
9f32624b | 718 | unsigned long address, void *arg) |
1da177e4 LT |
719 | { |
720 | struct mm_struct *mm = vma->vm_mm; | |
117b0791 | 721 | spinlock_t *ptl; |
1da177e4 | 722 | int referenced = 0; |
9f32624b | 723 | struct page_referenced_arg *pra = arg; |
1da177e4 | 724 | |
71e3aac0 AA |
725 | if (unlikely(PageTransHuge(page))) { |
726 | pmd_t *pmd; | |
727 | ||
2da28bfd AA |
728 | /* |
729 | * rmap might return false positives; we must filter | |
730 | * these out using page_check_address_pmd(). | |
731 | */ | |
71e3aac0 | 732 | pmd = page_check_address_pmd(page, mm, address, |
117b0791 KS |
733 | PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); |
734 | if (!pmd) | |
9f32624b | 735 | return SWAP_AGAIN; |
2da28bfd AA |
736 | |
737 | if (vma->vm_flags & VM_LOCKED) { | |
117b0791 | 738 | spin_unlock(ptl); |
9f32624b JK |
739 | pra->vm_flags |= VM_LOCKED; |
740 | return SWAP_FAIL; /* To break the loop */ | |
2da28bfd AA |
741 | } |
742 | ||
743 | /* go ahead even if the pmd is pmd_trans_splitting() */ | |
744 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) | |
71e3aac0 | 745 | referenced++; |
117b0791 | 746 | spin_unlock(ptl); |
71e3aac0 AA |
747 | } else { |
748 | pte_t *pte; | |
71e3aac0 | 749 | |
2da28bfd AA |
750 | /* |
751 | * rmap might return false positives; we must filter | |
752 | * these out using page_check_address(). | |
753 | */ | |
71e3aac0 AA |
754 | pte = page_check_address(page, mm, address, &ptl, 0); |
755 | if (!pte) | |
9f32624b | 756 | return SWAP_AGAIN; |
71e3aac0 | 757 | |
2da28bfd AA |
758 | if (vma->vm_flags & VM_LOCKED) { |
759 | pte_unmap_unlock(pte, ptl); | |
9f32624b JK |
760 | pra->vm_flags |= VM_LOCKED; |
761 | return SWAP_FAIL; /* To break the loop */ | |
2da28bfd AA |
762 | } |
763 | ||
71e3aac0 AA |
764 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
765 | /* | |
766 | * Don't treat a reference through a sequentially read | |
767 | * mapping as such. If the page has been used in | |
768 | * another mapping, we will catch it; if this other | |
769 | * mapping is already gone, the unmap path will have | |
770 | * set PG_referenced or activated the page. | |
771 | */ | |
64363aad | 772 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) |
71e3aac0 AA |
773 | referenced++; |
774 | } | |
775 | pte_unmap_unlock(pte, ptl); | |
776 | } | |
777 | ||
9f32624b JK |
778 | if (referenced) { |
779 | pra->referenced++; | |
780 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 781 | } |
34bbd704 | 782 | |
9f32624b JK |
783 | pra->mapcount--; |
784 | if (!pra->mapcount) | |
785 | return SWAP_SUCCESS; /* To break the loop */ | |
786 | ||
787 | return SWAP_AGAIN; | |
1da177e4 LT |
788 | } |
789 | ||
9f32624b | 790 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 791 | { |
9f32624b JK |
792 | struct page_referenced_arg *pra = arg; |
793 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 794 | |
9f32624b JK |
795 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
796 | return true; | |
1da177e4 | 797 | |
9f32624b | 798 | return false; |
1da177e4 LT |
799 | } |
800 | ||
801 | /** | |
802 | * page_referenced - test if the page was referenced | |
803 | * @page: the page to test | |
804 | * @is_locked: caller holds lock on the page | |
72835c86 | 805 | * @memcg: target memory cgroup |
6fe6b7e3 | 806 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
807 | * |
808 | * Quick test_and_clear_referenced for all mappings to a page, | |
809 | * returns the number of ptes which referenced the page. | |
810 | */ | |
6fe6b7e3 WF |
811 | int page_referenced(struct page *page, |
812 | int is_locked, | |
72835c86 | 813 | struct mem_cgroup *memcg, |
6fe6b7e3 | 814 | unsigned long *vm_flags) |
1da177e4 | 815 | { |
9f32624b | 816 | int ret; |
5ad64688 | 817 | int we_locked = 0; |
9f32624b JK |
818 | struct page_referenced_arg pra = { |
819 | .mapcount = page_mapcount(page), | |
820 | .memcg = memcg, | |
821 | }; | |
822 | struct rmap_walk_control rwc = { | |
823 | .rmap_one = page_referenced_one, | |
824 | .arg = (void *)&pra, | |
825 | .anon_lock = page_lock_anon_vma_read, | |
826 | }; | |
1da177e4 | 827 | |
6fe6b7e3 | 828 | *vm_flags = 0; |
9f32624b JK |
829 | if (!page_mapped(page)) |
830 | return 0; | |
831 | ||
832 | if (!page_rmapping(page)) | |
833 | return 0; | |
834 | ||
835 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
836 | we_locked = trylock_page(page); | |
837 | if (!we_locked) | |
838 | return 1; | |
1da177e4 | 839 | } |
9f32624b JK |
840 | |
841 | /* | |
842 | * If we are reclaiming on behalf of a cgroup, skip | |
843 | * counting on behalf of references from different | |
844 | * cgroups | |
845 | */ | |
846 | if (memcg) { | |
847 | rwc.invalid_vma = invalid_page_referenced_vma; | |
848 | } | |
849 | ||
850 | ret = rmap_walk(page, &rwc); | |
851 | *vm_flags = pra.vm_flags; | |
852 | ||
853 | if (we_locked) | |
854 | unlock_page(page); | |
855 | ||
856 | return pra.referenced; | |
1da177e4 LT |
857 | } |
858 | ||
1cb1729b | 859 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 860 | unsigned long address, void *arg) |
d08b3851 PZ |
861 | { |
862 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 863 | pte_t *pte; |
d08b3851 PZ |
864 | spinlock_t *ptl; |
865 | int ret = 0; | |
9853a407 | 866 | int *cleaned = arg; |
d08b3851 | 867 | |
479db0bf | 868 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
869 | if (!pte) |
870 | goto out; | |
871 | ||
c2fda5fe PZ |
872 | if (pte_dirty(*pte) || pte_write(*pte)) { |
873 | pte_t entry; | |
d08b3851 | 874 | |
c2fda5fe | 875 | flush_cache_page(vma, address, pte_pfn(*pte)); |
2ec74c3e | 876 | entry = ptep_clear_flush(vma, address, pte); |
c2fda5fe PZ |
877 | entry = pte_wrprotect(entry); |
878 | entry = pte_mkclean(entry); | |
d6e88e67 | 879 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
880 | ret = 1; |
881 | } | |
d08b3851 | 882 | |
d08b3851 | 883 | pte_unmap_unlock(pte, ptl); |
2ec74c3e | 884 | |
9853a407 | 885 | if (ret) { |
2ec74c3e | 886 | mmu_notifier_invalidate_page(mm, address); |
9853a407 JK |
887 | (*cleaned)++; |
888 | } | |
d08b3851 | 889 | out: |
9853a407 | 890 | return SWAP_AGAIN; |
d08b3851 PZ |
891 | } |
892 | ||
9853a407 | 893 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 894 | { |
9853a407 | 895 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 896 | return false; |
d08b3851 | 897 | |
871beb8c | 898 | return true; |
d08b3851 PZ |
899 | } |
900 | ||
901 | int page_mkclean(struct page *page) | |
902 | { | |
9853a407 JK |
903 | int cleaned = 0; |
904 | struct address_space *mapping; | |
905 | struct rmap_walk_control rwc = { | |
906 | .arg = (void *)&cleaned, | |
907 | .rmap_one = page_mkclean_one, | |
908 | .invalid_vma = invalid_mkclean_vma, | |
909 | }; | |
d08b3851 PZ |
910 | |
911 | BUG_ON(!PageLocked(page)); | |
912 | ||
9853a407 JK |
913 | if (!page_mapped(page)) |
914 | return 0; | |
915 | ||
916 | mapping = page_mapping(page); | |
917 | if (!mapping) | |
918 | return 0; | |
919 | ||
920 | rmap_walk(page, &rwc); | |
d08b3851 | 921 | |
9853a407 | 922 | return cleaned; |
d08b3851 | 923 | } |
60b59bea | 924 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 925 | |
c44b6743 RR |
926 | /** |
927 | * page_move_anon_rmap - move a page to our anon_vma | |
928 | * @page: the page to move to our anon_vma | |
929 | * @vma: the vma the page belongs to | |
930 | * @address: the user virtual address mapped | |
931 | * | |
932 | * When a page belongs exclusively to one process after a COW event, | |
933 | * that page can be moved into the anon_vma that belongs to just that | |
934 | * process, so the rmap code will not search the parent or sibling | |
935 | * processes. | |
936 | */ | |
937 | void page_move_anon_rmap(struct page *page, | |
938 | struct vm_area_struct *vma, unsigned long address) | |
939 | { | |
940 | struct anon_vma *anon_vma = vma->anon_vma; | |
941 | ||
309381fe | 942 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 943 | VM_BUG_ON_VMA(!anon_vma, vma); |
309381fe | 944 | VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); |
c44b6743 RR |
945 | |
946 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
947 | page->mapping = (struct address_space *) anon_vma; | |
948 | } | |
949 | ||
9617d95e | 950 | /** |
4e1c1975 AK |
951 | * __page_set_anon_rmap - set up new anonymous rmap |
952 | * @page: Page to add to rmap | |
953 | * @vma: VM area to add page to. | |
954 | * @address: User virtual address of the mapping | |
e8a03feb | 955 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
956 | */ |
957 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 958 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 959 | { |
e8a03feb | 960 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 961 | |
e8a03feb | 962 | BUG_ON(!anon_vma); |
ea90002b | 963 | |
4e1c1975 AK |
964 | if (PageAnon(page)) |
965 | return; | |
966 | ||
ea90002b | 967 | /* |
e8a03feb RR |
968 | * If the page isn't exclusively mapped into this vma, |
969 | * we must use the _oldest_ possible anon_vma for the | |
970 | * page mapping! | |
ea90002b | 971 | */ |
4e1c1975 | 972 | if (!exclusive) |
288468c3 | 973 | anon_vma = anon_vma->root; |
9617d95e | 974 | |
9617d95e NP |
975 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
976 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 977 | page->index = linear_page_index(vma, address); |
9617d95e NP |
978 | } |
979 | ||
c97a9e10 | 980 | /** |
43d8eac4 | 981 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
982 | * @page: the page to add the mapping to |
983 | * @vma: the vm area in which the mapping is added | |
984 | * @address: the user virtual address mapped | |
985 | */ | |
986 | static void __page_check_anon_rmap(struct page *page, | |
987 | struct vm_area_struct *vma, unsigned long address) | |
988 | { | |
989 | #ifdef CONFIG_DEBUG_VM | |
990 | /* | |
991 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
992 | * be set up correctly at this point. | |
993 | * | |
994 | * We have exclusion against page_add_anon_rmap because the caller | |
995 | * always holds the page locked, except if called from page_dup_rmap, | |
996 | * in which case the page is already known to be setup. | |
997 | * | |
998 | * We have exclusion against page_add_new_anon_rmap because those pages | |
999 | * are initially only visible via the pagetables, and the pte is locked | |
1000 | * over the call to page_add_new_anon_rmap. | |
1001 | */ | |
44ab57a0 | 1002 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
c97a9e10 NP |
1003 | BUG_ON(page->index != linear_page_index(vma, address)); |
1004 | #endif | |
1005 | } | |
1006 | ||
1da177e4 LT |
1007 | /** |
1008 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1009 | * @page: the page to add the mapping to | |
1010 | * @vma: the vm area in which the mapping is added | |
1011 | * @address: the user virtual address mapped | |
1012 | * | |
5ad64688 | 1013 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1014 | * the anon_vma case: to serialize mapping,index checking after setting, |
1015 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1016 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1017 | */ |
1018 | void page_add_anon_rmap(struct page *page, | |
1019 | struct vm_area_struct *vma, unsigned long address) | |
ad8c2ee8 RR |
1020 | { |
1021 | do_page_add_anon_rmap(page, vma, address, 0); | |
1022 | } | |
1023 | ||
1024 | /* | |
1025 | * Special version of the above for do_swap_page, which often runs | |
1026 | * into pages that are exclusively owned by the current process. | |
1027 | * Everybody else should continue to use page_add_anon_rmap above. | |
1028 | */ | |
1029 | void do_page_add_anon_rmap(struct page *page, | |
1030 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1da177e4 | 1031 | { |
5ad64688 | 1032 | int first = atomic_inc_and_test(&page->_mapcount); |
79134171 | 1033 | if (first) { |
bea04b07 JZ |
1034 | /* |
1035 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1036 | * these counters are not modified in interrupt context, and | |
1037 | * pte lock(a spinlock) is held, which implies preemption | |
1038 | * disabled. | |
1039 | */ | |
3cd14fcd | 1040 | if (PageTransHuge(page)) |
79134171 AA |
1041 | __inc_zone_page_state(page, |
1042 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
3cd14fcd KS |
1043 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1044 | hpage_nr_pages(page)); | |
79134171 | 1045 | } |
5ad64688 HD |
1046 | if (unlikely(PageKsm(page))) |
1047 | return; | |
1048 | ||
309381fe | 1049 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
5dbe0af4 | 1050 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1051 | if (first) |
ad8c2ee8 | 1052 | __page_set_anon_rmap(page, vma, address, exclusive); |
69029cd5 | 1053 | else |
c97a9e10 | 1054 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1055 | } |
1056 | ||
43d8eac4 | 1057 | /** |
9617d95e NP |
1058 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1059 | * @page: the page to add the mapping to | |
1060 | * @vma: the vm area in which the mapping is added | |
1061 | * @address: the user virtual address mapped | |
1062 | * | |
1063 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1064 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1065 | * Page does not have to be locked. |
9617d95e NP |
1066 | */ |
1067 | void page_add_new_anon_rmap(struct page *page, | |
1068 | struct vm_area_struct *vma, unsigned long address) | |
1069 | { | |
81d1b09c | 1070 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
cbf84b7a HD |
1071 | SetPageSwapBacked(page); |
1072 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
3cd14fcd | 1073 | if (PageTransHuge(page)) |
79134171 | 1074 | __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); |
3cd14fcd KS |
1075 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1076 | hpage_nr_pages(page)); | |
e8a03feb | 1077 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1078 | } |
1079 | ||
1da177e4 LT |
1080 | /** |
1081 | * page_add_file_rmap - add pte mapping to a file page | |
1082 | * @page: the page to add the mapping to | |
1083 | * | |
b8072f09 | 1084 | * The caller needs to hold the pte lock. |
1da177e4 LT |
1085 | */ |
1086 | void page_add_file_rmap(struct page *page) | |
1087 | { | |
d7365e78 | 1088 | struct mem_cgroup *memcg; |
89c06bd5 | 1089 | unsigned long flags; |
d7365e78 | 1090 | bool locked; |
89c06bd5 | 1091 | |
d7365e78 | 1092 | memcg = mem_cgroup_begin_page_stat(page, &locked, &flags); |
d69b042f | 1093 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 1094 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
d7365e78 | 1095 | mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); |
d69b042f | 1096 | } |
e4bd6a02 | 1097 | mem_cgroup_end_page_stat(memcg, &locked, &flags); |
1da177e4 LT |
1098 | } |
1099 | ||
8186eb6a JW |
1100 | static void page_remove_file_rmap(struct page *page) |
1101 | { | |
1102 | struct mem_cgroup *memcg; | |
1103 | unsigned long flags; | |
1104 | bool locked; | |
1105 | ||
1106 | memcg = mem_cgroup_begin_page_stat(page, &locked, &flags); | |
1107 | ||
1108 | /* page still mapped by someone else? */ | |
1109 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1110 | goto out; | |
1111 | ||
1112 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ | |
1113 | if (unlikely(PageHuge(page))) | |
1114 | goto out; | |
1115 | ||
1116 | /* | |
1117 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1118 | * these counters are not modified in interrupt context, and | |
1119 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1120 | */ | |
1121 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
1122 | mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); | |
1123 | ||
1124 | if (unlikely(PageMlocked(page))) | |
1125 | clear_page_mlock(page); | |
1126 | out: | |
e4bd6a02 | 1127 | mem_cgroup_end_page_stat(memcg, &locked, &flags); |
8186eb6a JW |
1128 | } |
1129 | ||
1da177e4 LT |
1130 | /** |
1131 | * page_remove_rmap - take down pte mapping from a page | |
1132 | * @page: page to remove mapping from | |
1133 | * | |
b8072f09 | 1134 | * The caller needs to hold the pte lock. |
1da177e4 | 1135 | */ |
edc315fd | 1136 | void page_remove_rmap(struct page *page) |
1da177e4 | 1137 | { |
8186eb6a JW |
1138 | if (!PageAnon(page)) { |
1139 | page_remove_file_rmap(page); | |
1140 | return; | |
1141 | } | |
89c06bd5 | 1142 | |
b904dcfe KM |
1143 | /* page still mapped by someone else? */ |
1144 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1145 | return; |
1146 | ||
1147 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1148 | if (unlikely(PageHuge(page))) | |
1149 | return; | |
b904dcfe | 1150 | |
0fe6e20b | 1151 | /* |
bea04b07 JZ |
1152 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1153 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1154 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1155 | */ |
8186eb6a JW |
1156 | if (PageTransHuge(page)) |
1157 | __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); | |
1158 | ||
1159 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, | |
1160 | -hpage_nr_pages(page)); | |
1161 | ||
e6c509f8 HD |
1162 | if (unlikely(PageMlocked(page))) |
1163 | clear_page_mlock(page); | |
8186eb6a | 1164 | |
b904dcfe KM |
1165 | /* |
1166 | * It would be tidy to reset the PageAnon mapping here, | |
1167 | * but that might overwrite a racing page_add_anon_rmap | |
1168 | * which increments mapcount after us but sets mapping | |
1169 | * before us: so leave the reset to free_hot_cold_page, | |
1170 | * and remember that it's only reliable while mapped. | |
1171 | * Leaving it set also helps swapoff to reinstate ptes | |
1172 | * faster for those pages still in swapcache. | |
1173 | */ | |
1da177e4 LT |
1174 | } |
1175 | ||
1176 | /* | |
52629506 | 1177 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1178 | */ |
ac769501 | 1179 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1180 | unsigned long address, void *arg) |
1da177e4 LT |
1181 | { |
1182 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
1183 | pte_t *pte; |
1184 | pte_t pteval; | |
c0718806 | 1185 | spinlock_t *ptl; |
1da177e4 | 1186 | int ret = SWAP_AGAIN; |
52629506 | 1187 | enum ttu_flags flags = (enum ttu_flags)arg; |
1da177e4 | 1188 | |
479db0bf | 1189 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 1190 | if (!pte) |
81b4082d | 1191 | goto out; |
1da177e4 LT |
1192 | |
1193 | /* | |
1194 | * If the page is mlock()d, we cannot swap it out. | |
1195 | * If it's recently referenced (perhaps page_referenced | |
1196 | * skipped over this mm) then we should reactivate it. | |
1197 | */ | |
14fa31b8 | 1198 | if (!(flags & TTU_IGNORE_MLOCK)) { |
caed0f48 KM |
1199 | if (vma->vm_flags & VM_LOCKED) |
1200 | goto out_mlock; | |
1201 | ||
daa5ba76 | 1202 | if (flags & TTU_MUNLOCK) |
53f79acb | 1203 | goto out_unmap; |
14fa31b8 AK |
1204 | } |
1205 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
1206 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1207 | ret = SWAP_FAIL; | |
1208 | goto out_unmap; | |
1209 | } | |
1210 | } | |
1da177e4 | 1211 | |
1da177e4 LT |
1212 | /* Nuke the page table entry. */ |
1213 | flush_cache_page(vma, address, page_to_pfn(page)); | |
2ec74c3e | 1214 | pteval = ptep_clear_flush(vma, address, pte); |
1da177e4 LT |
1215 | |
1216 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1217 | if (pte_dirty(pteval)) | |
1218 | set_page_dirty(page); | |
1219 | ||
365e9c87 HD |
1220 | /* Update high watermark before we lower rss */ |
1221 | update_hiwater_rss(mm); | |
1222 | ||
888b9f7c | 1223 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5f24ae58 NH |
1224 | if (!PageHuge(page)) { |
1225 | if (PageAnon(page)) | |
1226 | dec_mm_counter(mm, MM_ANONPAGES); | |
1227 | else | |
1228 | dec_mm_counter(mm, MM_FILEPAGES); | |
1229 | } | |
888b9f7c | 1230 | set_pte_at(mm, address, pte, |
5f24ae58 | 1231 | swp_entry_to_pte(make_hwpoison_entry(page))); |
45961722 KW |
1232 | } else if (pte_unused(pteval)) { |
1233 | /* | |
1234 | * The guest indicated that the page content is of no | |
1235 | * interest anymore. Simply discard the pte, vmscan | |
1236 | * will take care of the rest. | |
1237 | */ | |
1238 | if (PageAnon(page)) | |
1239 | dec_mm_counter(mm, MM_ANONPAGES); | |
1240 | else | |
1241 | dec_mm_counter(mm, MM_FILEPAGES); | |
888b9f7c | 1242 | } else if (PageAnon(page)) { |
4c21e2f2 | 1243 | swp_entry_t entry = { .val = page_private(page) }; |
179ef71c | 1244 | pte_t swp_pte; |
0697212a CL |
1245 | |
1246 | if (PageSwapCache(page)) { | |
1247 | /* | |
1248 | * Store the swap location in the pte. | |
1249 | * See handle_pte_fault() ... | |
1250 | */ | |
570a335b HD |
1251 | if (swap_duplicate(entry) < 0) { |
1252 | set_pte_at(mm, address, pte, pteval); | |
1253 | ret = SWAP_FAIL; | |
1254 | goto out_unmap; | |
1255 | } | |
0697212a CL |
1256 | if (list_empty(&mm->mmlist)) { |
1257 | spin_lock(&mmlist_lock); | |
1258 | if (list_empty(&mm->mmlist)) | |
1259 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1260 | spin_unlock(&mmlist_lock); | |
1261 | } | |
d559db08 | 1262 | dec_mm_counter(mm, MM_ANONPAGES); |
b084d435 | 1263 | inc_mm_counter(mm, MM_SWAPENTS); |
ce1744f4 | 1264 | } else if (IS_ENABLED(CONFIG_MIGRATION)) { |
0697212a CL |
1265 | /* |
1266 | * Store the pfn of the page in a special migration | |
1267 | * pte. do_swap_page() will wait until the migration | |
1268 | * pte is removed and then restart fault handling. | |
1269 | */ | |
daa5ba76 | 1270 | BUG_ON(!(flags & TTU_MIGRATION)); |
0697212a | 1271 | entry = make_migration_entry(page, pte_write(pteval)); |
1da177e4 | 1272 | } |
179ef71c CG |
1273 | swp_pte = swp_entry_to_pte(entry); |
1274 | if (pte_soft_dirty(pteval)) | |
1275 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1276 | set_pte_at(mm, address, pte, swp_pte); | |
1da177e4 | 1277 | BUG_ON(pte_file(*pte)); |
ce1744f4 | 1278 | } else if (IS_ENABLED(CONFIG_MIGRATION) && |
daa5ba76 | 1279 | (flags & TTU_MIGRATION)) { |
04e62a29 CL |
1280 | /* Establish migration entry for a file page */ |
1281 | swp_entry_t entry; | |
1282 | entry = make_migration_entry(page, pte_write(pteval)); | |
1283 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1284 | } else | |
d559db08 | 1285 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 | 1286 | |
edc315fd | 1287 | page_remove_rmap(page); |
1da177e4 LT |
1288 | page_cache_release(page); |
1289 | ||
1290 | out_unmap: | |
c0718806 | 1291 | pte_unmap_unlock(pte, ptl); |
daa5ba76 | 1292 | if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK)) |
2ec74c3e | 1293 | mmu_notifier_invalidate_page(mm, address); |
caed0f48 KM |
1294 | out: |
1295 | return ret; | |
53f79acb | 1296 | |
caed0f48 KM |
1297 | out_mlock: |
1298 | pte_unmap_unlock(pte, ptl); | |
1299 | ||
1300 | ||
1301 | /* | |
1302 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | |
1303 | * unstable result and race. Plus, We can't wait here because | |
c8c06efa | 1304 | * we now hold anon_vma->rwsem or mapping->i_mmap_rwsem. |
caed0f48 KM |
1305 | * if trylock failed, the page remain in evictable lru and later |
1306 | * vmscan could retry to move the page to unevictable lru if the | |
1307 | * page is actually mlocked. | |
1308 | */ | |
1309 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
1310 | if (vma->vm_flags & VM_LOCKED) { | |
1311 | mlock_vma_page(page); | |
1312 | ret = SWAP_MLOCK; | |
53f79acb | 1313 | } |
caed0f48 | 1314 | up_read(&vma->vm_mm->mmap_sem); |
53f79acb | 1315 | } |
1da177e4 LT |
1316 | return ret; |
1317 | } | |
1318 | ||
1319 | /* | |
1320 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
1321 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
1322 | * Consequently, given a particular page and its ->index, we cannot locate the | |
1323 | * ptes which are mapping that page without an exhaustive linear search. | |
1324 | * | |
1325 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
1326 | * maps the file to which the target page belongs. The ->vm_private_data field | |
1327 | * holds the current cursor into that scan. Successive searches will circulate | |
1328 | * around the vma's virtual address space. | |
1329 | * | |
1330 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
1331 | * more scanning pressure is placed against them as well. Eventually pages | |
1332 | * will become fully unmapped and are eligible for eviction. | |
1333 | * | |
1334 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
1335 | * there there won't be many ptes located within the scan cluster. In this case | |
1336 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
1337 | * |
1338 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
1339 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
1340 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
1341 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
1342 | */ |
1343 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
1344 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
1345 | ||
b291f000 NP |
1346 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
1347 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
1348 | { |
1349 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 | 1350 | pmd_t *pmd; |
c0718806 | 1351 | pte_t *pte; |
1da177e4 | 1352 | pte_t pteval; |
c0718806 | 1353 | spinlock_t *ptl; |
1da177e4 LT |
1354 | struct page *page; |
1355 | unsigned long address; | |
2ec74c3e SG |
1356 | unsigned long mmun_start; /* For mmu_notifiers */ |
1357 | unsigned long mmun_end; /* For mmu_notifiers */ | |
1da177e4 | 1358 | unsigned long end; |
b291f000 NP |
1359 | int ret = SWAP_AGAIN; |
1360 | int locked_vma = 0; | |
1da177e4 | 1361 | |
1da177e4 LT |
1362 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
1363 | end = address + CLUSTER_SIZE; | |
1364 | if (address < vma->vm_start) | |
1365 | address = vma->vm_start; | |
1366 | if (end > vma->vm_end) | |
1367 | end = vma->vm_end; | |
1368 | ||
6219049a BL |
1369 | pmd = mm_find_pmd(mm, address); |
1370 | if (!pmd) | |
b291f000 NP |
1371 | return ret; |
1372 | ||
2ec74c3e SG |
1373 | mmun_start = address; |
1374 | mmun_end = end; | |
1375 | mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); | |
1376 | ||
b291f000 | 1377 | /* |
af8e3354 | 1378 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, |
b291f000 NP |
1379 | * keep the sem while scanning the cluster for mlocking pages. |
1380 | */ | |
af8e3354 | 1381 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
b291f000 NP |
1382 | locked_vma = (vma->vm_flags & VM_LOCKED); |
1383 | if (!locked_vma) | |
1384 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
1385 | } | |
c0718806 HD |
1386 | |
1387 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 1388 | |
365e9c87 HD |
1389 | /* Update high watermark before we lower rss */ |
1390 | update_hiwater_rss(mm); | |
1391 | ||
c0718806 | 1392 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
1393 | if (!pte_present(*pte)) |
1394 | continue; | |
6aab341e LT |
1395 | page = vm_normal_page(vma, address, *pte); |
1396 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 1397 | |
b291f000 | 1398 | if (locked_vma) { |
57e68e9c VB |
1399 | if (page == check_page) { |
1400 | /* we know we have check_page locked */ | |
1401 | mlock_vma_page(page); | |
b291f000 | 1402 | ret = SWAP_MLOCK; |
57e68e9c VB |
1403 | } else if (trylock_page(page)) { |
1404 | /* | |
1405 | * If we can lock the page, perform mlock. | |
1406 | * Otherwise leave the page alone, it will be | |
1407 | * eventually encountered again later. | |
1408 | */ | |
1409 | mlock_vma_page(page); | |
1410 | unlock_page(page); | |
1411 | } | |
b291f000 NP |
1412 | continue; /* don't unmap */ |
1413 | } | |
1414 | ||
57128468 ALC |
1415 | /* |
1416 | * No need for _notify because we're within an | |
1417 | * mmu_notifier_invalidate_range_ {start|end} scope. | |
1418 | */ | |
1419 | if (ptep_clear_flush_young(vma, address, pte)) | |
1da177e4 LT |
1420 | continue; |
1421 | ||
1422 | /* Nuke the page table entry. */ | |
eca35133 | 1423 | flush_cache_page(vma, address, pte_pfn(*pte)); |
34ee645e | 1424 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
1425 | |
1426 | /* If nonlinear, store the file page offset in the pte. */ | |
41bb3476 CG |
1427 | if (page->index != linear_page_index(vma, address)) { |
1428 | pte_t ptfile = pgoff_to_pte(page->index); | |
1429 | if (pte_soft_dirty(pteval)) | |
b43790ee | 1430 | ptfile = pte_file_mksoft_dirty(ptfile); |
41bb3476 CG |
1431 | set_pte_at(mm, address, pte, ptfile); |
1432 | } | |
1da177e4 LT |
1433 | |
1434 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1435 | if (pte_dirty(pteval)) | |
1436 | set_page_dirty(page); | |
1437 | ||
edc315fd | 1438 | page_remove_rmap(page); |
1da177e4 | 1439 | page_cache_release(page); |
d559db08 | 1440 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 LT |
1441 | (*mapcount)--; |
1442 | } | |
c0718806 | 1443 | pte_unmap_unlock(pte - 1, ptl); |
2ec74c3e | 1444 | mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); |
b291f000 NP |
1445 | if (locked_vma) |
1446 | up_read(&vma->vm_mm->mmap_sem); | |
1447 | return ret; | |
1da177e4 LT |
1448 | } |
1449 | ||
0f843c6a | 1450 | static int try_to_unmap_nonlinear(struct page *page, |
7e09e738 | 1451 | struct address_space *mapping, void *arg) |
0f843c6a | 1452 | { |
7e09e738 | 1453 | struct vm_area_struct *vma; |
0f843c6a JK |
1454 | int ret = SWAP_AGAIN; |
1455 | unsigned long cursor; | |
1456 | unsigned long max_nl_cursor = 0; | |
1457 | unsigned long max_nl_size = 0; | |
1458 | unsigned int mapcount; | |
1459 | ||
1460 | list_for_each_entry(vma, | |
1461 | &mapping->i_mmap_nonlinear, shared.nonlinear) { | |
1462 | ||
1463 | cursor = (unsigned long) vma->vm_private_data; | |
1464 | if (cursor > max_nl_cursor) | |
1465 | max_nl_cursor = cursor; | |
1466 | cursor = vma->vm_end - vma->vm_start; | |
1467 | if (cursor > max_nl_size) | |
1468 | max_nl_size = cursor; | |
1469 | } | |
1470 | ||
1471 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ | |
1472 | return SWAP_FAIL; | |
1473 | } | |
1474 | ||
1475 | /* | |
1476 | * We don't try to search for this page in the nonlinear vmas, | |
1477 | * and page_referenced wouldn't have found it anyway. Instead | |
1478 | * just walk the nonlinear vmas trying to age and unmap some. | |
1479 | * The mapcount of the page we came in with is irrelevant, | |
1480 | * but even so use it as a guide to how hard we should try? | |
1481 | */ | |
1482 | mapcount = page_mapcount(page); | |
1483 | if (!mapcount) | |
1484 | return ret; | |
1485 | ||
1486 | cond_resched(); | |
1487 | ||
1488 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1489 | if (max_nl_cursor == 0) | |
1490 | max_nl_cursor = CLUSTER_SIZE; | |
1491 | ||
1492 | do { | |
1493 | list_for_each_entry(vma, | |
1494 | &mapping->i_mmap_nonlinear, shared.nonlinear) { | |
1495 | ||
1496 | cursor = (unsigned long) vma->vm_private_data; | |
1497 | while (cursor < max_nl_cursor && | |
1498 | cursor < vma->vm_end - vma->vm_start) { | |
1499 | if (try_to_unmap_cluster(cursor, &mapcount, | |
1500 | vma, page) == SWAP_MLOCK) | |
1501 | ret = SWAP_MLOCK; | |
1502 | cursor += CLUSTER_SIZE; | |
1503 | vma->vm_private_data = (void *) cursor; | |
1504 | if ((int)mapcount <= 0) | |
1505 | return ret; | |
1506 | } | |
1507 | vma->vm_private_data = (void *) max_nl_cursor; | |
1508 | } | |
1509 | cond_resched(); | |
1510 | max_nl_cursor += CLUSTER_SIZE; | |
1511 | } while (max_nl_cursor <= max_nl_size); | |
1512 | ||
1513 | /* | |
1514 | * Don't loop forever (perhaps all the remaining pages are | |
1515 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1516 | * vmas, now forgetting on which ones it had fallen behind. | |
1517 | */ | |
1518 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear) | |
1519 | vma->vm_private_data = NULL; | |
1520 | ||
1521 | return ret; | |
1522 | } | |
1523 | ||
71e3aac0 | 1524 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1525 | { |
1526 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1527 | ||
1528 | if (!maybe_stack) | |
1529 | return false; | |
1530 | ||
1531 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1532 | VM_STACK_INCOMPLETE_SETUP) | |
1533 | return true; | |
1534 | ||
1535 | return false; | |
1536 | } | |
1537 | ||
52629506 JK |
1538 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1539 | { | |
1540 | return is_vma_temporary_stack(vma); | |
1541 | } | |
1542 | ||
52629506 JK |
1543 | static int page_not_mapped(struct page *page) |
1544 | { | |
1545 | return !page_mapped(page); | |
1546 | }; | |
1547 | ||
1da177e4 LT |
1548 | /** |
1549 | * try_to_unmap - try to remove all page table mappings to a page | |
1550 | * @page: the page to get unmapped | |
14fa31b8 | 1551 | * @flags: action and flags |
1da177e4 LT |
1552 | * |
1553 | * Tries to remove all the page table entries which are mapping this | |
1554 | * page, used in the pageout path. Caller must hold the page lock. | |
1555 | * Return values are: | |
1556 | * | |
1557 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1558 | * SWAP_AGAIN - we missed a mapping, try again later | |
1559 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1560 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1561 | */ |
14fa31b8 | 1562 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1563 | { |
1564 | int ret; | |
52629506 JK |
1565 | struct rmap_walk_control rwc = { |
1566 | .rmap_one = try_to_unmap_one, | |
1567 | .arg = (void *)flags, | |
1568 | .done = page_not_mapped, | |
1569 | .file_nonlinear = try_to_unmap_nonlinear, | |
1570 | .anon_lock = page_lock_anon_vma_read, | |
1571 | }; | |
1da177e4 | 1572 | |
309381fe | 1573 | VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); |
1da177e4 | 1574 | |
52629506 JK |
1575 | /* |
1576 | * During exec, a temporary VMA is setup and later moved. | |
1577 | * The VMA is moved under the anon_vma lock but not the | |
1578 | * page tables leading to a race where migration cannot | |
1579 | * find the migration ptes. Rather than increasing the | |
1580 | * locking requirements of exec(), migration skips | |
1581 | * temporary VMAs until after exec() completes. | |
1582 | */ | |
daa5ba76 | 1583 | if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) |
52629506 JK |
1584 | rwc.invalid_vma = invalid_migration_vma; |
1585 | ||
1586 | ret = rmap_walk(page, &rwc); | |
1587 | ||
b291f000 | 1588 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1da177e4 LT |
1589 | ret = SWAP_SUCCESS; |
1590 | return ret; | |
1591 | } | |
81b4082d | 1592 | |
b291f000 NP |
1593 | /** |
1594 | * try_to_munlock - try to munlock a page | |
1595 | * @page: the page to be munlocked | |
1596 | * | |
1597 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1598 | * to make sure nobody else has this page mlocked. The page will be | |
1599 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1600 | * | |
1601 | * Return values are: | |
1602 | * | |
53f79acb | 1603 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1604 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1605 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1606 | * SWAP_MLOCK - page is now mlocked. |
1607 | */ | |
1608 | int try_to_munlock(struct page *page) | |
1609 | { | |
e8351ac9 JK |
1610 | int ret; |
1611 | struct rmap_walk_control rwc = { | |
1612 | .rmap_one = try_to_unmap_one, | |
1613 | .arg = (void *)TTU_MUNLOCK, | |
1614 | .done = page_not_mapped, | |
1615 | /* | |
1616 | * We don't bother to try to find the munlocked page in | |
1617 | * nonlinears. It's costly. Instead, later, page reclaim logic | |
1618 | * may call try_to_unmap() and recover PG_mlocked lazily. | |
1619 | */ | |
1620 | .file_nonlinear = NULL, | |
1621 | .anon_lock = page_lock_anon_vma_read, | |
1622 | ||
1623 | }; | |
1624 | ||
309381fe | 1625 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
b291f000 | 1626 | |
e8351ac9 JK |
1627 | ret = rmap_walk(page, &rwc); |
1628 | return ret; | |
b291f000 | 1629 | } |
e9995ef9 | 1630 | |
01d8b20d | 1631 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1632 | { |
01d8b20d | 1633 | struct anon_vma *root = anon_vma->root; |
76545066 | 1634 | |
624483f3 | 1635 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1636 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1637 | anon_vma_free(root); | |
76545066 | 1638 | } |
76545066 | 1639 | |
0dd1c7bb JK |
1640 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1641 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1642 | { |
1643 | struct anon_vma *anon_vma; | |
1644 | ||
0dd1c7bb JK |
1645 | if (rwc->anon_lock) |
1646 | return rwc->anon_lock(page); | |
1647 | ||
faecd8dd JK |
1648 | /* |
1649 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1650 | * because that depends on page_mapped(); but not all its usages | |
1651 | * are holding mmap_sem. Users without mmap_sem are required to | |
1652 | * take a reference count to prevent the anon_vma disappearing | |
1653 | */ | |
1654 | anon_vma = page_anon_vma(page); | |
1655 | if (!anon_vma) | |
1656 | return NULL; | |
1657 | ||
1658 | anon_vma_lock_read(anon_vma); | |
1659 | return anon_vma; | |
1660 | } | |
1661 | ||
e9995ef9 | 1662 | /* |
e8351ac9 JK |
1663 | * rmap_walk_anon - do something to anonymous page using the object-based |
1664 | * rmap method | |
1665 | * @page: the page to be handled | |
1666 | * @rwc: control variable according to each walk type | |
1667 | * | |
1668 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1669 | * contained in the anon_vma struct it points to. | |
1670 | * | |
1671 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1672 | * where the page was found will be held for write. So, we won't recheck | |
1673 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1674 | * LOCKED. | |
e9995ef9 | 1675 | */ |
051ac83a | 1676 | static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1677 | { |
1678 | struct anon_vma *anon_vma; | |
b258d860 | 1679 | pgoff_t pgoff; |
5beb4930 | 1680 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1681 | int ret = SWAP_AGAIN; |
1682 | ||
0dd1c7bb | 1683 | anon_vma = rmap_walk_anon_lock(page, rwc); |
e9995ef9 HD |
1684 | if (!anon_vma) |
1685 | return ret; | |
faecd8dd | 1686 | |
b258d860 | 1687 | pgoff = page_to_pgoff(page); |
bf181b9f | 1688 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
5beb4930 | 1689 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1690 | unsigned long address = vma_address(page, vma); |
0dd1c7bb JK |
1691 | |
1692 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | |
1693 | continue; | |
1694 | ||
051ac83a | 1695 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 HD |
1696 | if (ret != SWAP_AGAIN) |
1697 | break; | |
0dd1c7bb JK |
1698 | if (rwc->done && rwc->done(page)) |
1699 | break; | |
e9995ef9 | 1700 | } |
4fc3f1d6 | 1701 | anon_vma_unlock_read(anon_vma); |
e9995ef9 HD |
1702 | return ret; |
1703 | } | |
1704 | ||
e8351ac9 JK |
1705 | /* |
1706 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1707 | * @page: the page to be handled | |
1708 | * @rwc: control variable according to each walk type | |
1709 | * | |
1710 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1711 | * contained in the address_space struct it points to. | |
1712 | * | |
1713 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1714 | * where the page was found will be held for write. So, we won't recheck | |
1715 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1716 | * LOCKED. | |
1717 | */ | |
051ac83a | 1718 | static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1719 | { |
1720 | struct address_space *mapping = page->mapping; | |
b258d860 | 1721 | pgoff_t pgoff; |
e9995ef9 | 1722 | struct vm_area_struct *vma; |
e9995ef9 HD |
1723 | int ret = SWAP_AGAIN; |
1724 | ||
9f32624b JK |
1725 | /* |
1726 | * The page lock not only makes sure that page->mapping cannot | |
1727 | * suddenly be NULLified by truncation, it makes sure that the | |
1728 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1729 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1730 | */ |
81d1b09c | 1731 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1732 | |
e9995ef9 HD |
1733 | if (!mapping) |
1734 | return ret; | |
3dec0ba0 | 1735 | |
b258d860 | 1736 | pgoff = page_to_pgoff(page); |
3dec0ba0 | 1737 | i_mmap_lock_read(mapping); |
6b2dbba8 | 1738 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
e9995ef9 | 1739 | unsigned long address = vma_address(page, vma); |
0dd1c7bb JK |
1740 | |
1741 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) | |
1742 | continue; | |
1743 | ||
051ac83a | 1744 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 | 1745 | if (ret != SWAP_AGAIN) |
0dd1c7bb JK |
1746 | goto done; |
1747 | if (rwc->done && rwc->done(page)) | |
1748 | goto done; | |
e9995ef9 | 1749 | } |
0dd1c7bb JK |
1750 | |
1751 | if (!rwc->file_nonlinear) | |
1752 | goto done; | |
1753 | ||
1754 | if (list_empty(&mapping->i_mmap_nonlinear)) | |
1755 | goto done; | |
1756 | ||
7e09e738 | 1757 | ret = rwc->file_nonlinear(page, mapping, rwc->arg); |
0dd1c7bb | 1758 | done: |
3dec0ba0 | 1759 | i_mmap_unlock_read(mapping); |
e9995ef9 HD |
1760 | return ret; |
1761 | } | |
1762 | ||
051ac83a | 1763 | int rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1764 | { |
e9995ef9 | 1765 | if (unlikely(PageKsm(page))) |
051ac83a | 1766 | return rmap_walk_ksm(page, rwc); |
e9995ef9 | 1767 | else if (PageAnon(page)) |
051ac83a | 1768 | return rmap_walk_anon(page, rwc); |
e9995ef9 | 1769 | else |
051ac83a | 1770 | return rmap_walk_file(page, rwc); |
e9995ef9 | 1771 | } |
0fe6e20b | 1772 | |
e3390f67 | 1773 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1774 | /* |
1775 | * The following three functions are for anonymous (private mapped) hugepages. | |
1776 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1777 | * and no lru code, because we handle hugepages differently from common pages. | |
1778 | */ | |
1779 | static void __hugepage_set_anon_rmap(struct page *page, | |
1780 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1781 | { | |
1782 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1783 | |
0fe6e20b | 1784 | BUG_ON(!anon_vma); |
433abed6 NH |
1785 | |
1786 | if (PageAnon(page)) | |
1787 | return; | |
1788 | if (!exclusive) | |
1789 | anon_vma = anon_vma->root; | |
1790 | ||
0fe6e20b NH |
1791 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1792 | page->mapping = (struct address_space *) anon_vma; | |
1793 | page->index = linear_page_index(vma, address); | |
1794 | } | |
1795 | ||
1796 | void hugepage_add_anon_rmap(struct page *page, | |
1797 | struct vm_area_struct *vma, unsigned long address) | |
1798 | { | |
1799 | struct anon_vma *anon_vma = vma->anon_vma; | |
1800 | int first; | |
a850ea30 NH |
1801 | |
1802 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1803 | BUG_ON(!anon_vma); |
5dbe0af4 | 1804 | /* address might be in next vma when migration races vma_adjust */ |
0fe6e20b NH |
1805 | first = atomic_inc_and_test(&page->_mapcount); |
1806 | if (first) | |
1807 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1808 | } | |
1809 | ||
1810 | void hugepage_add_new_anon_rmap(struct page *page, | |
1811 | struct vm_area_struct *vma, unsigned long address) | |
1812 | { | |
1813 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1814 | atomic_set(&page->_mapcount, 0); | |
1815 | __hugepage_set_anon_rmap(page, vma, address, 1); | |
1816 | } | |
e3390f67 | 1817 | #endif /* CONFIG_HUGETLB_PAGE */ |