]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/vmscan.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
5 | * | |
6 | * Swap reorganised 29.12.95, Stephen Tweedie. | |
7 | * kswapd added: 7.1.96 sct | |
8 | * Removed kswapd_ctl limits, and swap out as many pages as needed | |
9 | * to bring the system back to freepages.high: 2.4.97, Rik van Riel. | |
10 | * Zone aware kswapd started 02/00, Kanoj Sarcar ([email protected]). | |
11 | * Multiqueue VM started 5.8.00, Rik van Riel. | |
12 | */ | |
13 | ||
14 | #include <linux/mm.h> | |
15 | #include <linux/module.h> | |
5a0e3ad6 | 16 | #include <linux/gfp.h> |
1da177e4 LT |
17 | #include <linux/kernel_stat.h> |
18 | #include <linux/swap.h> | |
19 | #include <linux/pagemap.h> | |
20 | #include <linux/init.h> | |
21 | #include <linux/highmem.h> | |
e129b5c2 | 22 | #include <linux/vmstat.h> |
1da177e4 LT |
23 | #include <linux/file.h> |
24 | #include <linux/writeback.h> | |
25 | #include <linux/blkdev.h> | |
26 | #include <linux/buffer_head.h> /* for try_to_release_page(), | |
27 | buffer_heads_over_limit */ | |
28 | #include <linux/mm_inline.h> | |
1da177e4 LT |
29 | #include <linux/backing-dev.h> |
30 | #include <linux/rmap.h> | |
31 | #include <linux/topology.h> | |
32 | #include <linux/cpu.h> | |
33 | #include <linux/cpuset.h> | |
3e7d3449 | 34 | #include <linux/compaction.h> |
1da177e4 LT |
35 | #include <linux/notifier.h> |
36 | #include <linux/rwsem.h> | |
248a0301 | 37 | #include <linux/delay.h> |
3218ae14 | 38 | #include <linux/kthread.h> |
7dfb7103 | 39 | #include <linux/freezer.h> |
66e1707b | 40 | #include <linux/memcontrol.h> |
873b4771 | 41 | #include <linux/delayacct.h> |
af936a16 | 42 | #include <linux/sysctl.h> |
929bea7c | 43 | #include <linux/oom.h> |
268bb0ce | 44 | #include <linux/prefetch.h> |
1da177e4 LT |
45 | |
46 | #include <asm/tlbflush.h> | |
47 | #include <asm/div64.h> | |
48 | ||
49 | #include <linux/swapops.h> | |
50 | ||
0f8053a5 NP |
51 | #include "internal.h" |
52 | ||
33906bc5 MG |
53 | #define CREATE_TRACE_POINTS |
54 | #include <trace/events/vmscan.h> | |
55 | ||
1da177e4 | 56 | struct scan_control { |
1da177e4 LT |
57 | /* Incremented by the number of inactive pages that were scanned */ |
58 | unsigned long nr_scanned; | |
59 | ||
a79311c1 RR |
60 | /* Number of pages freed so far during a call to shrink_zones() */ |
61 | unsigned long nr_reclaimed; | |
62 | ||
22fba335 KM |
63 | /* How many pages shrink_list() should reclaim */ |
64 | unsigned long nr_to_reclaim; | |
65 | ||
7b51755c KM |
66 | unsigned long hibernation_mode; |
67 | ||
1da177e4 | 68 | /* This context's GFP mask */ |
6daa0e28 | 69 | gfp_t gfp_mask; |
1da177e4 LT |
70 | |
71 | int may_writepage; | |
72 | ||
a6dc60f8 JW |
73 | /* Can mapped pages be reclaimed? */ |
74 | int may_unmap; | |
f1fd1067 | 75 | |
2e2e4259 KM |
76 | /* Can pages be swapped as part of reclaim? */ |
77 | int may_swap; | |
78 | ||
5ad333eb | 79 | int order; |
66e1707b | 80 | |
9e3b2f8c KK |
81 | /* Scan (total_size >> priority) pages at once */ |
82 | int priority; | |
83 | ||
f16015fb JW |
84 | /* |
85 | * The memory cgroup that hit its limit and as a result is the | |
86 | * primary target of this reclaim invocation. | |
87 | */ | |
88 | struct mem_cgroup *target_mem_cgroup; | |
66e1707b | 89 | |
327c0e96 KH |
90 | /* |
91 | * Nodemask of nodes allowed by the caller. If NULL, all nodes | |
92 | * are scanned. | |
93 | */ | |
94 | nodemask_t *nodemask; | |
1da177e4 LT |
95 | }; |
96 | ||
1da177e4 LT |
97 | #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru)) |
98 | ||
99 | #ifdef ARCH_HAS_PREFETCH | |
100 | #define prefetch_prev_lru_page(_page, _base, _field) \ | |
101 | do { \ | |
102 | if ((_page)->lru.prev != _base) { \ | |
103 | struct page *prev; \ | |
104 | \ | |
105 | prev = lru_to_page(&(_page->lru)); \ | |
106 | prefetch(&prev->_field); \ | |
107 | } \ | |
108 | } while (0) | |
109 | #else | |
110 | #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0) | |
111 | #endif | |
112 | ||
113 | #ifdef ARCH_HAS_PREFETCHW | |
114 | #define prefetchw_prev_lru_page(_page, _base, _field) \ | |
115 | do { \ | |
116 | if ((_page)->lru.prev != _base) { \ | |
117 | struct page *prev; \ | |
118 | \ | |
119 | prev = lru_to_page(&(_page->lru)); \ | |
120 | prefetchw(&prev->_field); \ | |
121 | } \ | |
122 | } while (0) | |
123 | #else | |
124 | #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0) | |
125 | #endif | |
126 | ||
127 | /* | |
128 | * From 0 .. 100. Higher means more swappy. | |
129 | */ | |
130 | int vm_swappiness = 60; | |
bd1e22b8 | 131 | long vm_total_pages; /* The total number of pages which the VM controls */ |
1da177e4 LT |
132 | |
133 | static LIST_HEAD(shrinker_list); | |
134 | static DECLARE_RWSEM(shrinker_rwsem); | |
135 | ||
c255a458 | 136 | #ifdef CONFIG_MEMCG |
89b5fae5 JW |
137 | static bool global_reclaim(struct scan_control *sc) |
138 | { | |
f16015fb | 139 | return !sc->target_mem_cgroup; |
89b5fae5 | 140 | } |
91a45470 | 141 | #else |
89b5fae5 JW |
142 | static bool global_reclaim(struct scan_control *sc) |
143 | { | |
144 | return true; | |
145 | } | |
91a45470 KH |
146 | #endif |
147 | ||
4d7dcca2 | 148 | static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
c9f299d9 | 149 | { |
c3c787e8 | 150 | if (!mem_cgroup_disabled()) |
4d7dcca2 | 151 | return mem_cgroup_get_lru_size(lruvec, lru); |
a3d8e054 | 152 | |
074291fe | 153 | return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru); |
c9f299d9 KM |
154 | } |
155 | ||
1da177e4 LT |
156 | /* |
157 | * Add a shrinker callback to be called from the vm | |
158 | */ | |
8e1f936b | 159 | void register_shrinker(struct shrinker *shrinker) |
1da177e4 | 160 | { |
83aeeada | 161 | atomic_long_set(&shrinker->nr_in_batch, 0); |
8e1f936b RR |
162 | down_write(&shrinker_rwsem); |
163 | list_add_tail(&shrinker->list, &shrinker_list); | |
164 | up_write(&shrinker_rwsem); | |
1da177e4 | 165 | } |
8e1f936b | 166 | EXPORT_SYMBOL(register_shrinker); |
1da177e4 LT |
167 | |
168 | /* | |
169 | * Remove one | |
170 | */ | |
8e1f936b | 171 | void unregister_shrinker(struct shrinker *shrinker) |
1da177e4 LT |
172 | { |
173 | down_write(&shrinker_rwsem); | |
174 | list_del(&shrinker->list); | |
175 | up_write(&shrinker_rwsem); | |
1da177e4 | 176 | } |
8e1f936b | 177 | EXPORT_SYMBOL(unregister_shrinker); |
1da177e4 | 178 | |
1495f230 YH |
179 | static inline int do_shrinker_shrink(struct shrinker *shrinker, |
180 | struct shrink_control *sc, | |
181 | unsigned long nr_to_scan) | |
182 | { | |
183 | sc->nr_to_scan = nr_to_scan; | |
184 | return (*shrinker->shrink)(shrinker, sc); | |
185 | } | |
186 | ||
1da177e4 LT |
187 | #define SHRINK_BATCH 128 |
188 | /* | |
189 | * Call the shrink functions to age shrinkable caches | |
190 | * | |
191 | * Here we assume it costs one seek to replace a lru page and that it also | |
192 | * takes a seek to recreate a cache object. With this in mind we age equal | |
193 | * percentages of the lru and ageable caches. This should balance the seeks | |
194 | * generated by these structures. | |
195 | * | |
183ff22b | 196 | * If the vm encountered mapped pages on the LRU it increase the pressure on |
1da177e4 LT |
197 | * slab to avoid swapping. |
198 | * | |
199 | * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits. | |
200 | * | |
201 | * `lru_pages' represents the number of on-LRU pages in all the zones which | |
202 | * are eligible for the caller's allocation attempt. It is used for balancing | |
203 | * slab reclaim versus page reclaim. | |
b15e0905 | 204 | * |
205 | * Returns the number of slab objects which we shrunk. | |
1da177e4 | 206 | */ |
a09ed5e0 | 207 | unsigned long shrink_slab(struct shrink_control *shrink, |
1495f230 | 208 | unsigned long nr_pages_scanned, |
a09ed5e0 | 209 | unsigned long lru_pages) |
1da177e4 LT |
210 | { |
211 | struct shrinker *shrinker; | |
69e05944 | 212 | unsigned long ret = 0; |
1da177e4 | 213 | |
1495f230 YH |
214 | if (nr_pages_scanned == 0) |
215 | nr_pages_scanned = SWAP_CLUSTER_MAX; | |
1da177e4 | 216 | |
f06590bd MK |
217 | if (!down_read_trylock(&shrinker_rwsem)) { |
218 | /* Assume we'll be able to shrink next time */ | |
219 | ret = 1; | |
220 | goto out; | |
221 | } | |
1da177e4 LT |
222 | |
223 | list_for_each_entry(shrinker, &shrinker_list, list) { | |
224 | unsigned long long delta; | |
635697c6 KK |
225 | long total_scan; |
226 | long max_pass; | |
09576073 | 227 | int shrink_ret = 0; |
acf92b48 DC |
228 | long nr; |
229 | long new_nr; | |
e9299f50 DC |
230 | long batch_size = shrinker->batch ? shrinker->batch |
231 | : SHRINK_BATCH; | |
1da177e4 | 232 | |
635697c6 KK |
233 | max_pass = do_shrinker_shrink(shrinker, shrink, 0); |
234 | if (max_pass <= 0) | |
235 | continue; | |
236 | ||
acf92b48 DC |
237 | /* |
238 | * copy the current shrinker scan count into a local variable | |
239 | * and zero it so that other concurrent shrinker invocations | |
240 | * don't also do this scanning work. | |
241 | */ | |
83aeeada | 242 | nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); |
acf92b48 DC |
243 | |
244 | total_scan = nr; | |
1495f230 | 245 | delta = (4 * nr_pages_scanned) / shrinker->seeks; |
ea164d73 | 246 | delta *= max_pass; |
1da177e4 | 247 | do_div(delta, lru_pages + 1); |
acf92b48 DC |
248 | total_scan += delta; |
249 | if (total_scan < 0) { | |
88c3bd70 DR |
250 | printk(KERN_ERR "shrink_slab: %pF negative objects to " |
251 | "delete nr=%ld\n", | |
acf92b48 DC |
252 | shrinker->shrink, total_scan); |
253 | total_scan = max_pass; | |
ea164d73 AA |
254 | } |
255 | ||
3567b59a DC |
256 | /* |
257 | * We need to avoid excessive windup on filesystem shrinkers | |
258 | * due to large numbers of GFP_NOFS allocations causing the | |
259 | * shrinkers to return -1 all the time. This results in a large | |
260 | * nr being built up so when a shrink that can do some work | |
261 | * comes along it empties the entire cache due to nr >>> | |
262 | * max_pass. This is bad for sustaining a working set in | |
263 | * memory. | |
264 | * | |
265 | * Hence only allow the shrinker to scan the entire cache when | |
266 | * a large delta change is calculated directly. | |
267 | */ | |
268 | if (delta < max_pass / 4) | |
269 | total_scan = min(total_scan, max_pass / 2); | |
270 | ||
ea164d73 AA |
271 | /* |
272 | * Avoid risking looping forever due to too large nr value: | |
273 | * never try to free more than twice the estimate number of | |
274 | * freeable entries. | |
275 | */ | |
acf92b48 DC |
276 | if (total_scan > max_pass * 2) |
277 | total_scan = max_pass * 2; | |
1da177e4 | 278 | |
acf92b48 | 279 | trace_mm_shrink_slab_start(shrinker, shrink, nr, |
09576073 DC |
280 | nr_pages_scanned, lru_pages, |
281 | max_pass, delta, total_scan); | |
282 | ||
e9299f50 | 283 | while (total_scan >= batch_size) { |
b15e0905 | 284 | int nr_before; |
1da177e4 | 285 | |
1495f230 YH |
286 | nr_before = do_shrinker_shrink(shrinker, shrink, 0); |
287 | shrink_ret = do_shrinker_shrink(shrinker, shrink, | |
e9299f50 | 288 | batch_size); |
1da177e4 LT |
289 | if (shrink_ret == -1) |
290 | break; | |
b15e0905 | 291 | if (shrink_ret < nr_before) |
292 | ret += nr_before - shrink_ret; | |
e9299f50 DC |
293 | count_vm_events(SLABS_SCANNED, batch_size); |
294 | total_scan -= batch_size; | |
1da177e4 LT |
295 | |
296 | cond_resched(); | |
297 | } | |
298 | ||
acf92b48 DC |
299 | /* |
300 | * move the unused scan count back into the shrinker in a | |
301 | * manner that handles concurrent updates. If we exhausted the | |
302 | * scan, there is no need to do an update. | |
303 | */ | |
83aeeada KK |
304 | if (total_scan > 0) |
305 | new_nr = atomic_long_add_return(total_scan, | |
306 | &shrinker->nr_in_batch); | |
307 | else | |
308 | new_nr = atomic_long_read(&shrinker->nr_in_batch); | |
acf92b48 DC |
309 | |
310 | trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); | |
1da177e4 LT |
311 | } |
312 | up_read(&shrinker_rwsem); | |
f06590bd MK |
313 | out: |
314 | cond_resched(); | |
b15e0905 | 315 | return ret; |
1da177e4 LT |
316 | } |
317 | ||
1da177e4 LT |
318 | static inline int is_page_cache_freeable(struct page *page) |
319 | { | |
ceddc3a5 JW |
320 | /* |
321 | * A freeable page cache page is referenced only by the caller | |
322 | * that isolated the page, the page cache radix tree and | |
323 | * optional buffer heads at page->private. | |
324 | */ | |
edcf4748 | 325 | return page_count(page) - page_has_private(page) == 2; |
1da177e4 LT |
326 | } |
327 | ||
7d3579e8 KM |
328 | static int may_write_to_queue(struct backing_dev_info *bdi, |
329 | struct scan_control *sc) | |
1da177e4 | 330 | { |
930d9152 | 331 | if (current->flags & PF_SWAPWRITE) |
1da177e4 LT |
332 | return 1; |
333 | if (!bdi_write_congested(bdi)) | |
334 | return 1; | |
335 | if (bdi == current->backing_dev_info) | |
336 | return 1; | |
337 | return 0; | |
338 | } | |
339 | ||
340 | /* | |
341 | * We detected a synchronous write error writing a page out. Probably | |
342 | * -ENOSPC. We need to propagate that into the address_space for a subsequent | |
343 | * fsync(), msync() or close(). | |
344 | * | |
345 | * The tricky part is that after writepage we cannot touch the mapping: nothing | |
346 | * prevents it from being freed up. But we have a ref on the page and once | |
347 | * that page is locked, the mapping is pinned. | |
348 | * | |
349 | * We're allowed to run sleeping lock_page() here because we know the caller has | |
350 | * __GFP_FS. | |
351 | */ | |
352 | static void handle_write_error(struct address_space *mapping, | |
353 | struct page *page, int error) | |
354 | { | |
7eaceacc | 355 | lock_page(page); |
3e9f45bd GC |
356 | if (page_mapping(page) == mapping) |
357 | mapping_set_error(mapping, error); | |
1da177e4 LT |
358 | unlock_page(page); |
359 | } | |
360 | ||
04e62a29 CL |
361 | /* possible outcome of pageout() */ |
362 | typedef enum { | |
363 | /* failed to write page out, page is locked */ | |
364 | PAGE_KEEP, | |
365 | /* move page to the active list, page is locked */ | |
366 | PAGE_ACTIVATE, | |
367 | /* page has been sent to the disk successfully, page is unlocked */ | |
368 | PAGE_SUCCESS, | |
369 | /* page is clean and locked */ | |
370 | PAGE_CLEAN, | |
371 | } pageout_t; | |
372 | ||
1da177e4 | 373 | /* |
1742f19f AM |
374 | * pageout is called by shrink_page_list() for each dirty page. |
375 | * Calls ->writepage(). | |
1da177e4 | 376 | */ |
c661b078 | 377 | static pageout_t pageout(struct page *page, struct address_space *mapping, |
7d3579e8 | 378 | struct scan_control *sc) |
1da177e4 LT |
379 | { |
380 | /* | |
381 | * If the page is dirty, only perform writeback if that write | |
382 | * will be non-blocking. To prevent this allocation from being | |
383 | * stalled by pagecache activity. But note that there may be | |
384 | * stalls if we need to run get_block(). We could test | |
385 | * PagePrivate for that. | |
386 | * | |
6aceb53b | 387 | * If this process is currently in __generic_file_aio_write() against |
1da177e4 LT |
388 | * this page's queue, we can perform writeback even if that |
389 | * will block. | |
390 | * | |
391 | * If the page is swapcache, write it back even if that would | |
392 | * block, for some throttling. This happens by accident, because | |
393 | * swap_backing_dev_info is bust: it doesn't reflect the | |
394 | * congestion state of the swapdevs. Easy to fix, if needed. | |
1da177e4 LT |
395 | */ |
396 | if (!is_page_cache_freeable(page)) | |
397 | return PAGE_KEEP; | |
398 | if (!mapping) { | |
399 | /* | |
400 | * Some data journaling orphaned pages can have | |
401 | * page->mapping == NULL while being dirty with clean buffers. | |
402 | */ | |
266cf658 | 403 | if (page_has_private(page)) { |
1da177e4 LT |
404 | if (try_to_free_buffers(page)) { |
405 | ClearPageDirty(page); | |
d40cee24 | 406 | printk("%s: orphaned page\n", __func__); |
1da177e4 LT |
407 | return PAGE_CLEAN; |
408 | } | |
409 | } | |
410 | return PAGE_KEEP; | |
411 | } | |
412 | if (mapping->a_ops->writepage == NULL) | |
413 | return PAGE_ACTIVATE; | |
0e093d99 | 414 | if (!may_write_to_queue(mapping->backing_dev_info, sc)) |
1da177e4 LT |
415 | return PAGE_KEEP; |
416 | ||
417 | if (clear_page_dirty_for_io(page)) { | |
418 | int res; | |
419 | struct writeback_control wbc = { | |
420 | .sync_mode = WB_SYNC_NONE, | |
421 | .nr_to_write = SWAP_CLUSTER_MAX, | |
111ebb6e OH |
422 | .range_start = 0, |
423 | .range_end = LLONG_MAX, | |
1da177e4 LT |
424 | .for_reclaim = 1, |
425 | }; | |
426 | ||
427 | SetPageReclaim(page); | |
428 | res = mapping->a_ops->writepage(page, &wbc); | |
429 | if (res < 0) | |
430 | handle_write_error(mapping, page, res); | |
994fc28c | 431 | if (res == AOP_WRITEPAGE_ACTIVATE) { |
1da177e4 LT |
432 | ClearPageReclaim(page); |
433 | return PAGE_ACTIVATE; | |
434 | } | |
c661b078 | 435 | |
1da177e4 LT |
436 | if (!PageWriteback(page)) { |
437 | /* synchronous write or broken a_ops? */ | |
438 | ClearPageReclaim(page); | |
439 | } | |
23b9da55 | 440 | trace_mm_vmscan_writepage(page, trace_reclaim_flags(page)); |
e129b5c2 | 441 | inc_zone_page_state(page, NR_VMSCAN_WRITE); |
1da177e4 LT |
442 | return PAGE_SUCCESS; |
443 | } | |
444 | ||
445 | return PAGE_CLEAN; | |
446 | } | |
447 | ||
a649fd92 | 448 | /* |
e286781d NP |
449 | * Same as remove_mapping, but if the page is removed from the mapping, it |
450 | * gets returned with a refcount of 0. | |
a649fd92 | 451 | */ |
e286781d | 452 | static int __remove_mapping(struct address_space *mapping, struct page *page) |
49d2e9cc | 453 | { |
28e4d965 NP |
454 | BUG_ON(!PageLocked(page)); |
455 | BUG_ON(mapping != page_mapping(page)); | |
49d2e9cc | 456 | |
19fd6231 | 457 | spin_lock_irq(&mapping->tree_lock); |
49d2e9cc | 458 | /* |
0fd0e6b0 NP |
459 | * The non racy check for a busy page. |
460 | * | |
461 | * Must be careful with the order of the tests. When someone has | |
462 | * a ref to the page, it may be possible that they dirty it then | |
463 | * drop the reference. So if PageDirty is tested before page_count | |
464 | * here, then the following race may occur: | |
465 | * | |
466 | * get_user_pages(&page); | |
467 | * [user mapping goes away] | |
468 | * write_to(page); | |
469 | * !PageDirty(page) [good] | |
470 | * SetPageDirty(page); | |
471 | * put_page(page); | |
472 | * !page_count(page) [good, discard it] | |
473 | * | |
474 | * [oops, our write_to data is lost] | |
475 | * | |
476 | * Reversing the order of the tests ensures such a situation cannot | |
477 | * escape unnoticed. The smp_rmb is needed to ensure the page->flags | |
478 | * load is not satisfied before that of page->_count. | |
479 | * | |
480 | * Note that if SetPageDirty is always performed via set_page_dirty, | |
481 | * and thus under tree_lock, then this ordering is not required. | |
49d2e9cc | 482 | */ |
e286781d | 483 | if (!page_freeze_refs(page, 2)) |
49d2e9cc | 484 | goto cannot_free; |
e286781d NP |
485 | /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */ |
486 | if (unlikely(PageDirty(page))) { | |
487 | page_unfreeze_refs(page, 2); | |
49d2e9cc | 488 | goto cannot_free; |
e286781d | 489 | } |
49d2e9cc CL |
490 | |
491 | if (PageSwapCache(page)) { | |
492 | swp_entry_t swap = { .val = page_private(page) }; | |
493 | __delete_from_swap_cache(page); | |
19fd6231 | 494 | spin_unlock_irq(&mapping->tree_lock); |
cb4b86ba | 495 | swapcache_free(swap, page); |
e286781d | 496 | } else { |
6072d13c LT |
497 | void (*freepage)(struct page *); |
498 | ||
499 | freepage = mapping->a_ops->freepage; | |
500 | ||
e64a782f | 501 | __delete_from_page_cache(page); |
19fd6231 | 502 | spin_unlock_irq(&mapping->tree_lock); |
e767e056 | 503 | mem_cgroup_uncharge_cache_page(page); |
6072d13c LT |
504 | |
505 | if (freepage != NULL) | |
506 | freepage(page); | |
49d2e9cc CL |
507 | } |
508 | ||
49d2e9cc CL |
509 | return 1; |
510 | ||
511 | cannot_free: | |
19fd6231 | 512 | spin_unlock_irq(&mapping->tree_lock); |
49d2e9cc CL |
513 | return 0; |
514 | } | |
515 | ||
e286781d NP |
516 | /* |
517 | * Attempt to detach a locked page from its ->mapping. If it is dirty or if | |
518 | * someone else has a ref on the page, abort and return 0. If it was | |
519 | * successfully detached, return 1. Assumes the caller has a single ref on | |
520 | * this page. | |
521 | */ | |
522 | int remove_mapping(struct address_space *mapping, struct page *page) | |
523 | { | |
524 | if (__remove_mapping(mapping, page)) { | |
525 | /* | |
526 | * Unfreezing the refcount with 1 rather than 2 effectively | |
527 | * drops the pagecache ref for us without requiring another | |
528 | * atomic operation. | |
529 | */ | |
530 | page_unfreeze_refs(page, 1); | |
531 | return 1; | |
532 | } | |
533 | return 0; | |
534 | } | |
535 | ||
894bc310 LS |
536 | /** |
537 | * putback_lru_page - put previously isolated page onto appropriate LRU list | |
538 | * @page: page to be put back to appropriate lru list | |
539 | * | |
540 | * Add previously isolated @page to appropriate LRU list. | |
541 | * Page may still be unevictable for other reasons. | |
542 | * | |
543 | * lru_lock must not be held, interrupts must be enabled. | |
544 | */ | |
894bc310 LS |
545 | void putback_lru_page(struct page *page) |
546 | { | |
547 | int lru; | |
548 | int active = !!TestClearPageActive(page); | |
bbfd28ee | 549 | int was_unevictable = PageUnevictable(page); |
894bc310 LS |
550 | |
551 | VM_BUG_ON(PageLRU(page)); | |
552 | ||
553 | redo: | |
554 | ClearPageUnevictable(page); | |
555 | ||
556 | if (page_evictable(page, NULL)) { | |
557 | /* | |
558 | * For evictable pages, we can use the cache. | |
559 | * In event of a race, worst case is we end up with an | |
560 | * unevictable page on [in]active list. | |
561 | * We know how to handle that. | |
562 | */ | |
401a8e1c | 563 | lru = active + page_lru_base_type(page); |
894bc310 LS |
564 | lru_cache_add_lru(page, lru); |
565 | } else { | |
566 | /* | |
567 | * Put unevictable pages directly on zone's unevictable | |
568 | * list. | |
569 | */ | |
570 | lru = LRU_UNEVICTABLE; | |
571 | add_page_to_unevictable_list(page); | |
6a7b9548 | 572 | /* |
21ee9f39 MK |
573 | * When racing with an mlock or AS_UNEVICTABLE clearing |
574 | * (page is unlocked) make sure that if the other thread | |
575 | * does not observe our setting of PG_lru and fails | |
24513264 | 576 | * isolation/check_move_unevictable_pages, |
21ee9f39 | 577 | * we see PG_mlocked/AS_UNEVICTABLE cleared below and move |
6a7b9548 JW |
578 | * the page back to the evictable list. |
579 | * | |
21ee9f39 | 580 | * The other side is TestClearPageMlocked() or shmem_lock(). |
6a7b9548 JW |
581 | */ |
582 | smp_mb(); | |
894bc310 | 583 | } |
894bc310 LS |
584 | |
585 | /* | |
586 | * page's status can change while we move it among lru. If an evictable | |
587 | * page is on unevictable list, it never be freed. To avoid that, | |
588 | * check after we added it to the list, again. | |
589 | */ | |
590 | if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) { | |
591 | if (!isolate_lru_page(page)) { | |
592 | put_page(page); | |
593 | goto redo; | |
594 | } | |
595 | /* This means someone else dropped this page from LRU | |
596 | * So, it will be freed or putback to LRU again. There is | |
597 | * nothing to do here. | |
598 | */ | |
599 | } | |
600 | ||
bbfd28ee LS |
601 | if (was_unevictable && lru != LRU_UNEVICTABLE) |
602 | count_vm_event(UNEVICTABLE_PGRESCUED); | |
603 | else if (!was_unevictable && lru == LRU_UNEVICTABLE) | |
604 | count_vm_event(UNEVICTABLE_PGCULLED); | |
605 | ||
894bc310 LS |
606 | put_page(page); /* drop ref from isolate */ |
607 | } | |
608 | ||
dfc8d636 JW |
609 | enum page_references { |
610 | PAGEREF_RECLAIM, | |
611 | PAGEREF_RECLAIM_CLEAN, | |
64574746 | 612 | PAGEREF_KEEP, |
dfc8d636 JW |
613 | PAGEREF_ACTIVATE, |
614 | }; | |
615 | ||
616 | static enum page_references page_check_references(struct page *page, | |
617 | struct scan_control *sc) | |
618 | { | |
64574746 | 619 | int referenced_ptes, referenced_page; |
dfc8d636 | 620 | unsigned long vm_flags; |
dfc8d636 | 621 | |
c3ac9a8a JW |
622 | referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup, |
623 | &vm_flags); | |
64574746 | 624 | referenced_page = TestClearPageReferenced(page); |
dfc8d636 | 625 | |
dfc8d636 JW |
626 | /* |
627 | * Mlock lost the isolation race with us. Let try_to_unmap() | |
628 | * move the page to the unevictable list. | |
629 | */ | |
630 | if (vm_flags & VM_LOCKED) | |
631 | return PAGEREF_RECLAIM; | |
632 | ||
64574746 | 633 | if (referenced_ptes) { |
e4898273 | 634 | if (PageSwapBacked(page)) |
64574746 JW |
635 | return PAGEREF_ACTIVATE; |
636 | /* | |
637 | * All mapped pages start out with page table | |
638 | * references from the instantiating fault, so we need | |
639 | * to look twice if a mapped file page is used more | |
640 | * than once. | |
641 | * | |
642 | * Mark it and spare it for another trip around the | |
643 | * inactive list. Another page table reference will | |
644 | * lead to its activation. | |
645 | * | |
646 | * Note: the mark is set for activated pages as well | |
647 | * so that recently deactivated but used pages are | |
648 | * quickly recovered. | |
649 | */ | |
650 | SetPageReferenced(page); | |
651 | ||
34dbc67a | 652 | if (referenced_page || referenced_ptes > 1) |
64574746 JW |
653 | return PAGEREF_ACTIVATE; |
654 | ||
c909e993 KK |
655 | /* |
656 | * Activate file-backed executable pages after first usage. | |
657 | */ | |
658 | if (vm_flags & VM_EXEC) | |
659 | return PAGEREF_ACTIVATE; | |
660 | ||
64574746 JW |
661 | return PAGEREF_KEEP; |
662 | } | |
dfc8d636 JW |
663 | |
664 | /* Reclaim if clean, defer dirty pages to writeback */ | |
2e30244a | 665 | if (referenced_page && !PageSwapBacked(page)) |
64574746 JW |
666 | return PAGEREF_RECLAIM_CLEAN; |
667 | ||
668 | return PAGEREF_RECLAIM; | |
dfc8d636 JW |
669 | } |
670 | ||
1da177e4 | 671 | /* |
1742f19f | 672 | * shrink_page_list() returns the number of reclaimed pages |
1da177e4 | 673 | */ |
1742f19f | 674 | static unsigned long shrink_page_list(struct list_head *page_list, |
6a18adb3 | 675 | struct zone *zone, |
f84f6e2b | 676 | struct scan_control *sc, |
92df3a72 MG |
677 | unsigned long *ret_nr_dirty, |
678 | unsigned long *ret_nr_writeback) | |
1da177e4 LT |
679 | { |
680 | LIST_HEAD(ret_pages); | |
abe4c3b5 | 681 | LIST_HEAD(free_pages); |
1da177e4 | 682 | int pgactivate = 0; |
0e093d99 MG |
683 | unsigned long nr_dirty = 0; |
684 | unsigned long nr_congested = 0; | |
05ff5137 | 685 | unsigned long nr_reclaimed = 0; |
92df3a72 | 686 | unsigned long nr_writeback = 0; |
1da177e4 LT |
687 | |
688 | cond_resched(); | |
689 | ||
69980e31 | 690 | mem_cgroup_uncharge_start(); |
1da177e4 | 691 | while (!list_empty(page_list)) { |
dfc8d636 | 692 | enum page_references references; |
1da177e4 LT |
693 | struct address_space *mapping; |
694 | struct page *page; | |
695 | int may_enter_fs; | |
1da177e4 LT |
696 | |
697 | cond_resched(); | |
698 | ||
699 | page = lru_to_page(page_list); | |
700 | list_del(&page->lru); | |
701 | ||
529ae9aa | 702 | if (!trylock_page(page)) |
1da177e4 LT |
703 | goto keep; |
704 | ||
725d704e | 705 | VM_BUG_ON(PageActive(page)); |
6a18adb3 | 706 | VM_BUG_ON(page_zone(page) != zone); |
1da177e4 LT |
707 | |
708 | sc->nr_scanned++; | |
80e43426 | 709 | |
b291f000 NP |
710 | if (unlikely(!page_evictable(page, NULL))) |
711 | goto cull_mlocked; | |
894bc310 | 712 | |
a6dc60f8 | 713 | if (!sc->may_unmap && page_mapped(page)) |
80e43426 CL |
714 | goto keep_locked; |
715 | ||
1da177e4 LT |
716 | /* Double the slab pressure for mapped and swapcache pages */ |
717 | if (page_mapped(page) || PageSwapCache(page)) | |
718 | sc->nr_scanned++; | |
719 | ||
c661b078 AW |
720 | may_enter_fs = (sc->gfp_mask & __GFP_FS) || |
721 | (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO)); | |
722 | ||
723 | if (PageWriteback(page)) { | |
e62e384e MH |
724 | /* |
725 | * memcg doesn't have any dirty pages throttling so we | |
726 | * could easily OOM just because too many pages are in | |
c3b94f44 | 727 | * writeback and there is nothing else to reclaim. |
e62e384e | 728 | * |
c3b94f44 | 729 | * Check __GFP_IO, certainly because a loop driver |
e62e384e MH |
730 | * thread might enter reclaim, and deadlock if it waits |
731 | * on a page for which it is needed to do the write | |
732 | * (loop masks off __GFP_IO|__GFP_FS for this reason); | |
733 | * but more thought would probably show more reasons. | |
c3b94f44 HD |
734 | * |
735 | * Don't require __GFP_FS, since we're not going into | |
736 | * the FS, just waiting on its writeback completion. | |
737 | * Worryingly, ext4 gfs2 and xfs allocate pages with | |
738 | * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so | |
739 | * testing may_enter_fs here is liable to OOM on them. | |
e62e384e | 740 | */ |
c3b94f44 HD |
741 | if (global_reclaim(sc) || |
742 | !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) { | |
743 | /* | |
744 | * This is slightly racy - end_page_writeback() | |
745 | * might have just cleared PageReclaim, then | |
746 | * setting PageReclaim here end up interpreted | |
747 | * as PageReadahead - but that does not matter | |
748 | * enough to care. What we do want is for this | |
749 | * page to have PageReclaim set next time memcg | |
750 | * reclaim reaches the tests above, so it will | |
751 | * then wait_on_page_writeback() to avoid OOM; | |
752 | * and it's also appropriate in global reclaim. | |
753 | */ | |
754 | SetPageReclaim(page); | |
e62e384e | 755 | nr_writeback++; |
c3b94f44 | 756 | goto keep_locked; |
e62e384e | 757 | } |
c3b94f44 | 758 | wait_on_page_writeback(page); |
c661b078 | 759 | } |
1da177e4 | 760 | |
6a18adb3 | 761 | references = page_check_references(page, sc); |
dfc8d636 JW |
762 | switch (references) { |
763 | case PAGEREF_ACTIVATE: | |
1da177e4 | 764 | goto activate_locked; |
64574746 JW |
765 | case PAGEREF_KEEP: |
766 | goto keep_locked; | |
dfc8d636 JW |
767 | case PAGEREF_RECLAIM: |
768 | case PAGEREF_RECLAIM_CLEAN: | |
769 | ; /* try to reclaim the page below */ | |
770 | } | |
1da177e4 | 771 | |
1da177e4 LT |
772 | /* |
773 | * Anonymous process memory has backing store? | |
774 | * Try to allocate it some swap space here. | |
775 | */ | |
b291f000 | 776 | if (PageAnon(page) && !PageSwapCache(page)) { |
63eb6b93 HD |
777 | if (!(sc->gfp_mask & __GFP_IO)) |
778 | goto keep_locked; | |
ac47b003 | 779 | if (!add_to_swap(page)) |
1da177e4 | 780 | goto activate_locked; |
63eb6b93 | 781 | may_enter_fs = 1; |
b291f000 | 782 | } |
1da177e4 LT |
783 | |
784 | mapping = page_mapping(page); | |
1da177e4 LT |
785 | |
786 | /* | |
787 | * The page is mapped into the page tables of one or more | |
788 | * processes. Try to unmap it here. | |
789 | */ | |
790 | if (page_mapped(page) && mapping) { | |
14fa31b8 | 791 | switch (try_to_unmap(page, TTU_UNMAP)) { |
1da177e4 LT |
792 | case SWAP_FAIL: |
793 | goto activate_locked; | |
794 | case SWAP_AGAIN: | |
795 | goto keep_locked; | |
b291f000 NP |
796 | case SWAP_MLOCK: |
797 | goto cull_mlocked; | |
1da177e4 LT |
798 | case SWAP_SUCCESS: |
799 | ; /* try to free the page below */ | |
800 | } | |
801 | } | |
802 | ||
803 | if (PageDirty(page)) { | |
0e093d99 MG |
804 | nr_dirty++; |
805 | ||
ee72886d MG |
806 | /* |
807 | * Only kswapd can writeback filesystem pages to | |
f84f6e2b MG |
808 | * avoid risk of stack overflow but do not writeback |
809 | * unless under significant pressure. | |
ee72886d | 810 | */ |
f84f6e2b | 811 | if (page_is_file_cache(page) && |
9e3b2f8c KK |
812 | (!current_is_kswapd() || |
813 | sc->priority >= DEF_PRIORITY - 2)) { | |
49ea7eb6 MG |
814 | /* |
815 | * Immediately reclaim when written back. | |
816 | * Similar in principal to deactivate_page() | |
817 | * except we already have the page isolated | |
818 | * and know it's dirty | |
819 | */ | |
820 | inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE); | |
821 | SetPageReclaim(page); | |
822 | ||
ee72886d MG |
823 | goto keep_locked; |
824 | } | |
825 | ||
dfc8d636 | 826 | if (references == PAGEREF_RECLAIM_CLEAN) |
1da177e4 | 827 | goto keep_locked; |
4dd4b920 | 828 | if (!may_enter_fs) |
1da177e4 | 829 | goto keep_locked; |
52a8363e | 830 | if (!sc->may_writepage) |
1da177e4 LT |
831 | goto keep_locked; |
832 | ||
833 | /* Page is dirty, try to write it out here */ | |
7d3579e8 | 834 | switch (pageout(page, mapping, sc)) { |
1da177e4 | 835 | case PAGE_KEEP: |
0e093d99 | 836 | nr_congested++; |
1da177e4 LT |
837 | goto keep_locked; |
838 | case PAGE_ACTIVATE: | |
839 | goto activate_locked; | |
840 | case PAGE_SUCCESS: | |
7d3579e8 | 841 | if (PageWriteback(page)) |
41ac1999 | 842 | goto keep; |
7d3579e8 | 843 | if (PageDirty(page)) |
1da177e4 | 844 | goto keep; |
7d3579e8 | 845 | |
1da177e4 LT |
846 | /* |
847 | * A synchronous write - probably a ramdisk. Go | |
848 | * ahead and try to reclaim the page. | |
849 | */ | |
529ae9aa | 850 | if (!trylock_page(page)) |
1da177e4 LT |
851 | goto keep; |
852 | if (PageDirty(page) || PageWriteback(page)) | |
853 | goto keep_locked; | |
854 | mapping = page_mapping(page); | |
855 | case PAGE_CLEAN: | |
856 | ; /* try to free the page below */ | |
857 | } | |
858 | } | |
859 | ||
860 | /* | |
861 | * If the page has buffers, try to free the buffer mappings | |
862 | * associated with this page. If we succeed we try to free | |
863 | * the page as well. | |
864 | * | |
865 | * We do this even if the page is PageDirty(). | |
866 | * try_to_release_page() does not perform I/O, but it is | |
867 | * possible for a page to have PageDirty set, but it is actually | |
868 | * clean (all its buffers are clean). This happens if the | |
869 | * buffers were written out directly, with submit_bh(). ext3 | |
894bc310 | 870 | * will do this, as well as the blockdev mapping. |
1da177e4 LT |
871 | * try_to_release_page() will discover that cleanness and will |
872 | * drop the buffers and mark the page clean - it can be freed. | |
873 | * | |
874 | * Rarely, pages can have buffers and no ->mapping. These are | |
875 | * the pages which were not successfully invalidated in | |
876 | * truncate_complete_page(). We try to drop those buffers here | |
877 | * and if that worked, and the page is no longer mapped into | |
878 | * process address space (page_count == 1) it can be freed. | |
879 | * Otherwise, leave the page on the LRU so it is swappable. | |
880 | */ | |
266cf658 | 881 | if (page_has_private(page)) { |
1da177e4 LT |
882 | if (!try_to_release_page(page, sc->gfp_mask)) |
883 | goto activate_locked; | |
e286781d NP |
884 | if (!mapping && page_count(page) == 1) { |
885 | unlock_page(page); | |
886 | if (put_page_testzero(page)) | |
887 | goto free_it; | |
888 | else { | |
889 | /* | |
890 | * rare race with speculative reference. | |
891 | * the speculative reference will free | |
892 | * this page shortly, so we may | |
893 | * increment nr_reclaimed here (and | |
894 | * leave it off the LRU). | |
895 | */ | |
896 | nr_reclaimed++; | |
897 | continue; | |
898 | } | |
899 | } | |
1da177e4 LT |
900 | } |
901 | ||
e286781d | 902 | if (!mapping || !__remove_mapping(mapping, page)) |
49d2e9cc | 903 | goto keep_locked; |
1da177e4 | 904 | |
a978d6f5 NP |
905 | /* |
906 | * At this point, we have no other references and there is | |
907 | * no way to pick any more up (removed from LRU, removed | |
908 | * from pagecache). Can use non-atomic bitops now (and | |
909 | * we obviously don't have to worry about waking up a process | |
910 | * waiting on the page lock, because there are no references. | |
911 | */ | |
912 | __clear_page_locked(page); | |
e286781d | 913 | free_it: |
05ff5137 | 914 | nr_reclaimed++; |
abe4c3b5 MG |
915 | |
916 | /* | |
917 | * Is there need to periodically free_page_list? It would | |
918 | * appear not as the counts should be low | |
919 | */ | |
920 | list_add(&page->lru, &free_pages); | |
1da177e4 LT |
921 | continue; |
922 | ||
b291f000 | 923 | cull_mlocked: |
63d6c5ad HD |
924 | if (PageSwapCache(page)) |
925 | try_to_free_swap(page); | |
b291f000 NP |
926 | unlock_page(page); |
927 | putback_lru_page(page); | |
928 | continue; | |
929 | ||
1da177e4 | 930 | activate_locked: |
68a22394 RR |
931 | /* Not a candidate for swapping, so reclaim swap space. */ |
932 | if (PageSwapCache(page) && vm_swap_full()) | |
a2c43eed | 933 | try_to_free_swap(page); |
894bc310 | 934 | VM_BUG_ON(PageActive(page)); |
1da177e4 LT |
935 | SetPageActive(page); |
936 | pgactivate++; | |
937 | keep_locked: | |
938 | unlock_page(page); | |
939 | keep: | |
940 | list_add(&page->lru, &ret_pages); | |
b291f000 | 941 | VM_BUG_ON(PageLRU(page) || PageUnevictable(page)); |
1da177e4 | 942 | } |
abe4c3b5 | 943 | |
0e093d99 MG |
944 | /* |
945 | * Tag a zone as congested if all the dirty pages encountered were | |
946 | * backed by a congested BDI. In this case, reclaimers should just | |
947 | * back off and wait for congestion to clear because further reclaim | |
948 | * will encounter the same problem | |
949 | */ | |
89b5fae5 | 950 | if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc)) |
6a18adb3 | 951 | zone_set_flag(zone, ZONE_CONGESTED); |
0e093d99 | 952 | |
cc59850e | 953 | free_hot_cold_page_list(&free_pages, 1); |
abe4c3b5 | 954 | |
1da177e4 | 955 | list_splice(&ret_pages, page_list); |
f8891e5e | 956 | count_vm_events(PGACTIVATE, pgactivate); |
69980e31 | 957 | mem_cgroup_uncharge_end(); |
92df3a72 MG |
958 | *ret_nr_dirty += nr_dirty; |
959 | *ret_nr_writeback += nr_writeback; | |
05ff5137 | 960 | return nr_reclaimed; |
1da177e4 LT |
961 | } |
962 | ||
5ad333eb AW |
963 | /* |
964 | * Attempt to remove the specified page from its LRU. Only take this page | |
965 | * if it is of the appropriate PageActive status. Pages which are being | |
966 | * freed elsewhere are also ignored. | |
967 | * | |
968 | * page: page to consider | |
969 | * mode: one of the LRU isolation modes defined above | |
970 | * | |
971 | * returns 0 on success, -ve errno on failure. | |
972 | */ | |
f3fd4a61 | 973 | int __isolate_lru_page(struct page *page, isolate_mode_t mode) |
5ad333eb AW |
974 | { |
975 | int ret = -EINVAL; | |
976 | ||
977 | /* Only take pages on the LRU. */ | |
978 | if (!PageLRU(page)) | |
979 | return ret; | |
980 | ||
c53919ad | 981 | /* Do not give back unevictable pages for compaction */ |
894bc310 LS |
982 | if (PageUnevictable(page)) |
983 | return ret; | |
984 | ||
5ad333eb | 985 | ret = -EBUSY; |
08e552c6 | 986 | |
c8244935 MG |
987 | /* |
988 | * To minimise LRU disruption, the caller can indicate that it only | |
989 | * wants to isolate pages it will be able to operate on without | |
990 | * blocking - clean pages for the most part. | |
991 | * | |
992 | * ISOLATE_CLEAN means that only clean pages should be isolated. This | |
993 | * is used by reclaim when it is cannot write to backing storage | |
994 | * | |
995 | * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages | |
996 | * that it is possible to migrate without blocking | |
997 | */ | |
998 | if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) { | |
999 | /* All the caller can do on PageWriteback is block */ | |
1000 | if (PageWriteback(page)) | |
1001 | return ret; | |
1002 | ||
1003 | if (PageDirty(page)) { | |
1004 | struct address_space *mapping; | |
1005 | ||
1006 | /* ISOLATE_CLEAN means only clean pages */ | |
1007 | if (mode & ISOLATE_CLEAN) | |
1008 | return ret; | |
1009 | ||
1010 | /* | |
1011 | * Only pages without mappings or that have a | |
1012 | * ->migratepage callback are possible to migrate | |
1013 | * without blocking | |
1014 | */ | |
1015 | mapping = page_mapping(page); | |
1016 | if (mapping && !mapping->a_ops->migratepage) | |
1017 | return ret; | |
1018 | } | |
1019 | } | |
39deaf85 | 1020 | |
f80c0673 MK |
1021 | if ((mode & ISOLATE_UNMAPPED) && page_mapped(page)) |
1022 | return ret; | |
1023 | ||
5ad333eb AW |
1024 | if (likely(get_page_unless_zero(page))) { |
1025 | /* | |
1026 | * Be careful not to clear PageLRU until after we're | |
1027 | * sure the page is not being freed elsewhere -- the | |
1028 | * page release code relies on it. | |
1029 | */ | |
1030 | ClearPageLRU(page); | |
1031 | ret = 0; | |
1032 | } | |
1033 | ||
1034 | return ret; | |
1035 | } | |
1036 | ||
1da177e4 LT |
1037 | /* |
1038 | * zone->lru_lock is heavily contended. Some of the functions that | |
1039 | * shrink the lists perform better by taking out a batch of pages | |
1040 | * and working on them outside the LRU lock. | |
1041 | * | |
1042 | * For pagecache intensive workloads, this function is the hottest | |
1043 | * spot in the kernel (apart from copy_*_user functions). | |
1044 | * | |
1045 | * Appropriate locks must be held before calling this function. | |
1046 | * | |
1047 | * @nr_to_scan: The number of pages to look through on the list. | |
5dc35979 | 1048 | * @lruvec: The LRU vector to pull pages from. |
1da177e4 | 1049 | * @dst: The temp list to put pages on to. |
f626012d | 1050 | * @nr_scanned: The number of pages that were scanned. |
fe2c2a10 | 1051 | * @sc: The scan_control struct for this reclaim session |
5ad333eb | 1052 | * @mode: One of the LRU isolation modes |
3cb99451 | 1053 | * @lru: LRU list id for isolating |
1da177e4 LT |
1054 | * |
1055 | * returns how many pages were moved onto *@dst. | |
1056 | */ | |
69e05944 | 1057 | static unsigned long isolate_lru_pages(unsigned long nr_to_scan, |
5dc35979 | 1058 | struct lruvec *lruvec, struct list_head *dst, |
fe2c2a10 | 1059 | unsigned long *nr_scanned, struct scan_control *sc, |
3cb99451 | 1060 | isolate_mode_t mode, enum lru_list lru) |
1da177e4 | 1061 | { |
75b00af7 | 1062 | struct list_head *src = &lruvec->lists[lru]; |
69e05944 | 1063 | unsigned long nr_taken = 0; |
c9b02d97 | 1064 | unsigned long scan; |
1da177e4 | 1065 | |
c9b02d97 | 1066 | for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) { |
5ad333eb | 1067 | struct page *page; |
fa9add64 | 1068 | int nr_pages; |
5ad333eb | 1069 | |
1da177e4 LT |
1070 | page = lru_to_page(src); |
1071 | prefetchw_prev_lru_page(page, src, flags); | |
1072 | ||
725d704e | 1073 | VM_BUG_ON(!PageLRU(page)); |
8d438f96 | 1074 | |
f3fd4a61 | 1075 | switch (__isolate_lru_page(page, mode)) { |
5ad333eb | 1076 | case 0: |
fa9add64 HD |
1077 | nr_pages = hpage_nr_pages(page); |
1078 | mem_cgroup_update_lru_size(lruvec, lru, -nr_pages); | |
5ad333eb | 1079 | list_move(&page->lru, dst); |
fa9add64 | 1080 | nr_taken += nr_pages; |
5ad333eb AW |
1081 | break; |
1082 | ||
1083 | case -EBUSY: | |
1084 | /* else it is being freed elsewhere */ | |
1085 | list_move(&page->lru, src); | |
1086 | continue; | |
46453a6e | 1087 | |
5ad333eb AW |
1088 | default: |
1089 | BUG(); | |
1090 | } | |
1da177e4 LT |
1091 | } |
1092 | ||
f626012d | 1093 | *nr_scanned = scan; |
75b00af7 HD |
1094 | trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan, |
1095 | nr_taken, mode, is_file_lru(lru)); | |
1da177e4 LT |
1096 | return nr_taken; |
1097 | } | |
1098 | ||
62695a84 NP |
1099 | /** |
1100 | * isolate_lru_page - tries to isolate a page from its LRU list | |
1101 | * @page: page to isolate from its LRU list | |
1102 | * | |
1103 | * Isolates a @page from an LRU list, clears PageLRU and adjusts the | |
1104 | * vmstat statistic corresponding to whatever LRU list the page was on. | |
1105 | * | |
1106 | * Returns 0 if the page was removed from an LRU list. | |
1107 | * Returns -EBUSY if the page was not on an LRU list. | |
1108 | * | |
1109 | * The returned page will have PageLRU() cleared. If it was found on | |
894bc310 LS |
1110 | * the active list, it will have PageActive set. If it was found on |
1111 | * the unevictable list, it will have the PageUnevictable bit set. That flag | |
1112 | * may need to be cleared by the caller before letting the page go. | |
62695a84 NP |
1113 | * |
1114 | * The vmstat statistic corresponding to the list on which the page was | |
1115 | * found will be decremented. | |
1116 | * | |
1117 | * Restrictions: | |
1118 | * (1) Must be called with an elevated refcount on the page. This is a | |
1119 | * fundamentnal difference from isolate_lru_pages (which is called | |
1120 | * without a stable reference). | |
1121 | * (2) the lru_lock must not be held. | |
1122 | * (3) interrupts must be enabled. | |
1123 | */ | |
1124 | int isolate_lru_page(struct page *page) | |
1125 | { | |
1126 | int ret = -EBUSY; | |
1127 | ||
0c917313 KK |
1128 | VM_BUG_ON(!page_count(page)); |
1129 | ||
62695a84 NP |
1130 | if (PageLRU(page)) { |
1131 | struct zone *zone = page_zone(page); | |
fa9add64 | 1132 | struct lruvec *lruvec; |
62695a84 NP |
1133 | |
1134 | spin_lock_irq(&zone->lru_lock); | |
fa9add64 | 1135 | lruvec = mem_cgroup_page_lruvec(page, zone); |
0c917313 | 1136 | if (PageLRU(page)) { |
894bc310 | 1137 | int lru = page_lru(page); |
0c917313 | 1138 | get_page(page); |
62695a84 | 1139 | ClearPageLRU(page); |
fa9add64 HD |
1140 | del_page_from_lru_list(page, lruvec, lru); |
1141 | ret = 0; | |
62695a84 NP |
1142 | } |
1143 | spin_unlock_irq(&zone->lru_lock); | |
1144 | } | |
1145 | return ret; | |
1146 | } | |
1147 | ||
35cd7815 RR |
1148 | /* |
1149 | * Are there way too many processes in the direct reclaim path already? | |
1150 | */ | |
1151 | static int too_many_isolated(struct zone *zone, int file, | |
1152 | struct scan_control *sc) | |
1153 | { | |
1154 | unsigned long inactive, isolated; | |
1155 | ||
1156 | if (current_is_kswapd()) | |
1157 | return 0; | |
1158 | ||
89b5fae5 | 1159 | if (!global_reclaim(sc)) |
35cd7815 RR |
1160 | return 0; |
1161 | ||
1162 | if (file) { | |
1163 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); | |
1164 | isolated = zone_page_state(zone, NR_ISOLATED_FILE); | |
1165 | } else { | |
1166 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1167 | isolated = zone_page_state(zone, NR_ISOLATED_ANON); | |
1168 | } | |
1169 | ||
1170 | return isolated > inactive; | |
1171 | } | |
1172 | ||
66635629 | 1173 | static noinline_for_stack void |
75b00af7 | 1174 | putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list) |
66635629 | 1175 | { |
27ac81d8 KK |
1176 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
1177 | struct zone *zone = lruvec_zone(lruvec); | |
3f79768f | 1178 | LIST_HEAD(pages_to_free); |
66635629 | 1179 | |
66635629 MG |
1180 | /* |
1181 | * Put back any unfreeable pages. | |
1182 | */ | |
66635629 | 1183 | while (!list_empty(page_list)) { |
3f79768f | 1184 | struct page *page = lru_to_page(page_list); |
66635629 | 1185 | int lru; |
3f79768f | 1186 | |
66635629 MG |
1187 | VM_BUG_ON(PageLRU(page)); |
1188 | list_del(&page->lru); | |
1189 | if (unlikely(!page_evictable(page, NULL))) { | |
1190 | spin_unlock_irq(&zone->lru_lock); | |
1191 | putback_lru_page(page); | |
1192 | spin_lock_irq(&zone->lru_lock); | |
1193 | continue; | |
1194 | } | |
fa9add64 HD |
1195 | |
1196 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
1197 | ||
7a608572 | 1198 | SetPageLRU(page); |
66635629 | 1199 | lru = page_lru(page); |
fa9add64 HD |
1200 | add_page_to_lru_list(page, lruvec, lru); |
1201 | ||
66635629 MG |
1202 | if (is_active_lru(lru)) { |
1203 | int file = is_file_lru(lru); | |
9992af10 RR |
1204 | int numpages = hpage_nr_pages(page); |
1205 | reclaim_stat->recent_rotated[file] += numpages; | |
66635629 | 1206 | } |
2bcf8879 HD |
1207 | if (put_page_testzero(page)) { |
1208 | __ClearPageLRU(page); | |
1209 | __ClearPageActive(page); | |
fa9add64 | 1210 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1211 | |
1212 | if (unlikely(PageCompound(page))) { | |
1213 | spin_unlock_irq(&zone->lru_lock); | |
1214 | (*get_compound_page_dtor(page))(page); | |
1215 | spin_lock_irq(&zone->lru_lock); | |
1216 | } else | |
1217 | list_add(&page->lru, &pages_to_free); | |
66635629 MG |
1218 | } |
1219 | } | |
66635629 | 1220 | |
3f79768f HD |
1221 | /* |
1222 | * To save our caller's stack, now use input list for pages to free. | |
1223 | */ | |
1224 | list_splice(&pages_to_free, page_list); | |
66635629 MG |
1225 | } |
1226 | ||
1da177e4 | 1227 | /* |
1742f19f AM |
1228 | * shrink_inactive_list() is a helper for shrink_zone(). It returns the number |
1229 | * of reclaimed pages | |
1da177e4 | 1230 | */ |
66635629 | 1231 | static noinline_for_stack unsigned long |
1a93be0e | 1232 | shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec, |
9e3b2f8c | 1233 | struct scan_control *sc, enum lru_list lru) |
1da177e4 LT |
1234 | { |
1235 | LIST_HEAD(page_list); | |
e247dbce | 1236 | unsigned long nr_scanned; |
05ff5137 | 1237 | unsigned long nr_reclaimed = 0; |
e247dbce | 1238 | unsigned long nr_taken; |
92df3a72 MG |
1239 | unsigned long nr_dirty = 0; |
1240 | unsigned long nr_writeback = 0; | |
f3fd4a61 | 1241 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1242 | int file = is_file_lru(lru); |
1a93be0e KK |
1243 | struct zone *zone = lruvec_zone(lruvec); |
1244 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; | |
78dc583d | 1245 | |
35cd7815 | 1246 | while (unlikely(too_many_isolated(zone, file, sc))) { |
58355c78 | 1247 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
35cd7815 RR |
1248 | |
1249 | /* We are about to die and free our memory. Return now. */ | |
1250 | if (fatal_signal_pending(current)) | |
1251 | return SWAP_CLUSTER_MAX; | |
1252 | } | |
1253 | ||
1da177e4 | 1254 | lru_add_drain(); |
f80c0673 MK |
1255 | |
1256 | if (!sc->may_unmap) | |
61317289 | 1257 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1258 | if (!sc->may_writepage) |
61317289 | 1259 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1260 | |
1da177e4 | 1261 | spin_lock_irq(&zone->lru_lock); |
b35ea17b | 1262 | |
5dc35979 KK |
1263 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list, |
1264 | &nr_scanned, sc, isolate_mode, lru); | |
95d918fc KK |
1265 | |
1266 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); | |
1267 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); | |
1268 | ||
89b5fae5 | 1269 | if (global_reclaim(sc)) { |
e247dbce KM |
1270 | zone->pages_scanned += nr_scanned; |
1271 | if (current_is_kswapd()) | |
75b00af7 | 1272 | __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned); |
e247dbce | 1273 | else |
75b00af7 | 1274 | __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned); |
e247dbce | 1275 | } |
d563c050 | 1276 | spin_unlock_irq(&zone->lru_lock); |
b35ea17b | 1277 | |
d563c050 | 1278 | if (nr_taken == 0) |
66635629 | 1279 | return 0; |
5ad333eb | 1280 | |
6a18adb3 | 1281 | nr_reclaimed = shrink_page_list(&page_list, zone, sc, |
92df3a72 | 1282 | &nr_dirty, &nr_writeback); |
c661b078 | 1283 | |
3f79768f HD |
1284 | spin_lock_irq(&zone->lru_lock); |
1285 | ||
95d918fc | 1286 | reclaim_stat->recent_scanned[file] += nr_taken; |
d563c050 | 1287 | |
904249aa YH |
1288 | if (global_reclaim(sc)) { |
1289 | if (current_is_kswapd()) | |
1290 | __count_zone_vm_events(PGSTEAL_KSWAPD, zone, | |
1291 | nr_reclaimed); | |
1292 | else | |
1293 | __count_zone_vm_events(PGSTEAL_DIRECT, zone, | |
1294 | nr_reclaimed); | |
1295 | } | |
a74609fa | 1296 | |
27ac81d8 | 1297 | putback_inactive_pages(lruvec, &page_list); |
3f79768f | 1298 | |
95d918fc | 1299 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
3f79768f HD |
1300 | |
1301 | spin_unlock_irq(&zone->lru_lock); | |
1302 | ||
1303 | free_hot_cold_page_list(&page_list, 1); | |
e11da5b4 | 1304 | |
92df3a72 MG |
1305 | /* |
1306 | * If reclaim is isolating dirty pages under writeback, it implies | |
1307 | * that the long-lived page allocation rate is exceeding the page | |
1308 | * laundering rate. Either the global limits are not being effective | |
1309 | * at throttling processes due to the page distribution throughout | |
1310 | * zones or there is heavy usage of a slow backing device. The | |
1311 | * only option is to throttle from reclaim context which is not ideal | |
1312 | * as there is no guarantee the dirtying process is throttled in the | |
1313 | * same way balance_dirty_pages() manages. | |
1314 | * | |
1315 | * This scales the number of dirty pages that must be under writeback | |
1316 | * before throttling depending on priority. It is a simple backoff | |
1317 | * function that has the most effect in the range DEF_PRIORITY to | |
1318 | * DEF_PRIORITY-2 which is the priority reclaim is considered to be | |
1319 | * in trouble and reclaim is considered to be in trouble. | |
1320 | * | |
1321 | * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle | |
1322 | * DEF_PRIORITY-1 50% must be PageWriteback | |
1323 | * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble | |
1324 | * ... | |
1325 | * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any | |
1326 | * isolated page is PageWriteback | |
1327 | */ | |
9e3b2f8c KK |
1328 | if (nr_writeback && nr_writeback >= |
1329 | (nr_taken >> (DEF_PRIORITY - sc->priority))) | |
92df3a72 MG |
1330 | wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10); |
1331 | ||
e11da5b4 MG |
1332 | trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id, |
1333 | zone_idx(zone), | |
1334 | nr_scanned, nr_reclaimed, | |
9e3b2f8c | 1335 | sc->priority, |
23b9da55 | 1336 | trace_shrink_flags(file)); |
05ff5137 | 1337 | return nr_reclaimed; |
1da177e4 LT |
1338 | } |
1339 | ||
1340 | /* | |
1341 | * This moves pages from the active list to the inactive list. | |
1342 | * | |
1343 | * We move them the other way if the page is referenced by one or more | |
1344 | * processes, from rmap. | |
1345 | * | |
1346 | * If the pages are mostly unmapped, the processing is fast and it is | |
1347 | * appropriate to hold zone->lru_lock across the whole operation. But if | |
1348 | * the pages are mapped, the processing is slow (page_referenced()) so we | |
1349 | * should drop zone->lru_lock around each page. It's impossible to balance | |
1350 | * this, so instead we remove the pages from the LRU while processing them. | |
1351 | * It is safe to rely on PG_active against the non-LRU pages in here because | |
1352 | * nobody will play with that bit on a non-LRU page. | |
1353 | * | |
1354 | * The downside is that we have to touch page->_count against each page. | |
1355 | * But we had to alter page->flags anyway. | |
1356 | */ | |
1cfb419b | 1357 | |
fa9add64 | 1358 | static void move_active_pages_to_lru(struct lruvec *lruvec, |
3eb4140f | 1359 | struct list_head *list, |
2bcf8879 | 1360 | struct list_head *pages_to_free, |
3eb4140f WF |
1361 | enum lru_list lru) |
1362 | { | |
fa9add64 | 1363 | struct zone *zone = lruvec_zone(lruvec); |
3eb4140f | 1364 | unsigned long pgmoved = 0; |
3eb4140f | 1365 | struct page *page; |
fa9add64 | 1366 | int nr_pages; |
3eb4140f | 1367 | |
3eb4140f WF |
1368 | while (!list_empty(list)) { |
1369 | page = lru_to_page(list); | |
fa9add64 | 1370 | lruvec = mem_cgroup_page_lruvec(page, zone); |
3eb4140f WF |
1371 | |
1372 | VM_BUG_ON(PageLRU(page)); | |
1373 | SetPageLRU(page); | |
1374 | ||
fa9add64 HD |
1375 | nr_pages = hpage_nr_pages(page); |
1376 | mem_cgroup_update_lru_size(lruvec, lru, nr_pages); | |
925b7673 | 1377 | list_move(&page->lru, &lruvec->lists[lru]); |
fa9add64 | 1378 | pgmoved += nr_pages; |
3eb4140f | 1379 | |
2bcf8879 HD |
1380 | if (put_page_testzero(page)) { |
1381 | __ClearPageLRU(page); | |
1382 | __ClearPageActive(page); | |
fa9add64 | 1383 | del_page_from_lru_list(page, lruvec, lru); |
2bcf8879 HD |
1384 | |
1385 | if (unlikely(PageCompound(page))) { | |
1386 | spin_unlock_irq(&zone->lru_lock); | |
1387 | (*get_compound_page_dtor(page))(page); | |
1388 | spin_lock_irq(&zone->lru_lock); | |
1389 | } else | |
1390 | list_add(&page->lru, pages_to_free); | |
3eb4140f WF |
1391 | } |
1392 | } | |
1393 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved); | |
1394 | if (!is_active_lru(lru)) | |
1395 | __count_vm_events(PGDEACTIVATE, pgmoved); | |
1396 | } | |
1cfb419b | 1397 | |
f626012d | 1398 | static void shrink_active_list(unsigned long nr_to_scan, |
1a93be0e | 1399 | struct lruvec *lruvec, |
f16015fb | 1400 | struct scan_control *sc, |
9e3b2f8c | 1401 | enum lru_list lru) |
1da177e4 | 1402 | { |
44c241f1 | 1403 | unsigned long nr_taken; |
f626012d | 1404 | unsigned long nr_scanned; |
6fe6b7e3 | 1405 | unsigned long vm_flags; |
1da177e4 | 1406 | LIST_HEAD(l_hold); /* The pages which were snipped off */ |
8cab4754 | 1407 | LIST_HEAD(l_active); |
b69408e8 | 1408 | LIST_HEAD(l_inactive); |
1da177e4 | 1409 | struct page *page; |
1a93be0e | 1410 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
44c241f1 | 1411 | unsigned long nr_rotated = 0; |
f3fd4a61 | 1412 | isolate_mode_t isolate_mode = 0; |
3cb99451 | 1413 | int file = is_file_lru(lru); |
1a93be0e | 1414 | struct zone *zone = lruvec_zone(lruvec); |
1da177e4 LT |
1415 | |
1416 | lru_add_drain(); | |
f80c0673 MK |
1417 | |
1418 | if (!sc->may_unmap) | |
61317289 | 1419 | isolate_mode |= ISOLATE_UNMAPPED; |
f80c0673 | 1420 | if (!sc->may_writepage) |
61317289 | 1421 | isolate_mode |= ISOLATE_CLEAN; |
f80c0673 | 1422 | |
1da177e4 | 1423 | spin_lock_irq(&zone->lru_lock); |
925b7673 | 1424 | |
5dc35979 KK |
1425 | nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold, |
1426 | &nr_scanned, sc, isolate_mode, lru); | |
89b5fae5 | 1427 | if (global_reclaim(sc)) |
f626012d | 1428 | zone->pages_scanned += nr_scanned; |
89b5fae5 | 1429 | |
b7c46d15 | 1430 | reclaim_stat->recent_scanned[file] += nr_taken; |
1cfb419b | 1431 | |
f626012d | 1432 | __count_zone_vm_events(PGREFILL, zone, nr_scanned); |
3cb99451 | 1433 | __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken); |
a731286d | 1434 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken); |
1da177e4 LT |
1435 | spin_unlock_irq(&zone->lru_lock); |
1436 | ||
1da177e4 LT |
1437 | while (!list_empty(&l_hold)) { |
1438 | cond_resched(); | |
1439 | page = lru_to_page(&l_hold); | |
1440 | list_del(&page->lru); | |
7e9cd484 | 1441 | |
894bc310 LS |
1442 | if (unlikely(!page_evictable(page, NULL))) { |
1443 | putback_lru_page(page); | |
1444 | continue; | |
1445 | } | |
1446 | ||
cc715d99 MG |
1447 | if (unlikely(buffer_heads_over_limit)) { |
1448 | if (page_has_private(page) && trylock_page(page)) { | |
1449 | if (page_has_private(page)) | |
1450 | try_to_release_page(page, 0); | |
1451 | unlock_page(page); | |
1452 | } | |
1453 | } | |
1454 | ||
c3ac9a8a JW |
1455 | if (page_referenced(page, 0, sc->target_mem_cgroup, |
1456 | &vm_flags)) { | |
9992af10 | 1457 | nr_rotated += hpage_nr_pages(page); |
8cab4754 WF |
1458 | /* |
1459 | * Identify referenced, file-backed active pages and | |
1460 | * give them one more trip around the active list. So | |
1461 | * that executable code get better chances to stay in | |
1462 | * memory under moderate memory pressure. Anon pages | |
1463 | * are not likely to be evicted by use-once streaming | |
1464 | * IO, plus JVM can create lots of anon VM_EXEC pages, | |
1465 | * so we ignore them here. | |
1466 | */ | |
41e20983 | 1467 | if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) { |
8cab4754 WF |
1468 | list_add(&page->lru, &l_active); |
1469 | continue; | |
1470 | } | |
1471 | } | |
7e9cd484 | 1472 | |
5205e56e | 1473 | ClearPageActive(page); /* we are de-activating */ |
1da177e4 LT |
1474 | list_add(&page->lru, &l_inactive); |
1475 | } | |
1476 | ||
b555749a | 1477 | /* |
8cab4754 | 1478 | * Move pages back to the lru list. |
b555749a | 1479 | */ |
2a1dc509 | 1480 | spin_lock_irq(&zone->lru_lock); |
556adecb | 1481 | /* |
8cab4754 WF |
1482 | * Count referenced pages from currently used mappings as rotated, |
1483 | * even though only some of them are actually re-activated. This | |
1484 | * helps balance scan pressure between file and anonymous pages in | |
1485 | * get_scan_ratio. | |
7e9cd484 | 1486 | */ |
b7c46d15 | 1487 | reclaim_stat->recent_rotated[file] += nr_rotated; |
556adecb | 1488 | |
fa9add64 HD |
1489 | move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru); |
1490 | move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE); | |
a731286d | 1491 | __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken); |
f8891e5e | 1492 | spin_unlock_irq(&zone->lru_lock); |
2bcf8879 HD |
1493 | |
1494 | free_hot_cold_page_list(&l_hold, 1); | |
1da177e4 LT |
1495 | } |
1496 | ||
74e3f3c3 | 1497 | #ifdef CONFIG_SWAP |
14797e23 | 1498 | static int inactive_anon_is_low_global(struct zone *zone) |
f89eb90e KM |
1499 | { |
1500 | unsigned long active, inactive; | |
1501 | ||
1502 | active = zone_page_state(zone, NR_ACTIVE_ANON); | |
1503 | inactive = zone_page_state(zone, NR_INACTIVE_ANON); | |
1504 | ||
1505 | if (inactive * zone->inactive_ratio < active) | |
1506 | return 1; | |
1507 | ||
1508 | return 0; | |
1509 | } | |
1510 | ||
14797e23 KM |
1511 | /** |
1512 | * inactive_anon_is_low - check if anonymous pages need to be deactivated | |
c56d5c7d | 1513 | * @lruvec: LRU vector to check |
14797e23 KM |
1514 | * |
1515 | * Returns true if the zone does not have enough inactive anon pages, | |
1516 | * meaning some active anon pages need to be deactivated. | |
1517 | */ | |
c56d5c7d | 1518 | static int inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1519 | { |
74e3f3c3 MK |
1520 | /* |
1521 | * If we don't have swap space, anonymous page deactivation | |
1522 | * is pointless. | |
1523 | */ | |
1524 | if (!total_swap_pages) | |
1525 | return 0; | |
1526 | ||
c3c787e8 | 1527 | if (!mem_cgroup_disabled()) |
c56d5c7d | 1528 | return mem_cgroup_inactive_anon_is_low(lruvec); |
f16015fb | 1529 | |
c56d5c7d | 1530 | return inactive_anon_is_low_global(lruvec_zone(lruvec)); |
14797e23 | 1531 | } |
74e3f3c3 | 1532 | #else |
c56d5c7d | 1533 | static inline int inactive_anon_is_low(struct lruvec *lruvec) |
74e3f3c3 MK |
1534 | { |
1535 | return 0; | |
1536 | } | |
1537 | #endif | |
14797e23 | 1538 | |
56e49d21 RR |
1539 | static int inactive_file_is_low_global(struct zone *zone) |
1540 | { | |
1541 | unsigned long active, inactive; | |
1542 | ||
1543 | active = zone_page_state(zone, NR_ACTIVE_FILE); | |
1544 | inactive = zone_page_state(zone, NR_INACTIVE_FILE); | |
1545 | ||
1546 | return (active > inactive); | |
1547 | } | |
1548 | ||
1549 | /** | |
1550 | * inactive_file_is_low - check if file pages need to be deactivated | |
c56d5c7d | 1551 | * @lruvec: LRU vector to check |
56e49d21 RR |
1552 | * |
1553 | * When the system is doing streaming IO, memory pressure here | |
1554 | * ensures that active file pages get deactivated, until more | |
1555 | * than half of the file pages are on the inactive list. | |
1556 | * | |
1557 | * Once we get to that situation, protect the system's working | |
1558 | * set from being evicted by disabling active file page aging. | |
1559 | * | |
1560 | * This uses a different ratio than the anonymous pages, because | |
1561 | * the page cache uses a use-once replacement algorithm. | |
1562 | */ | |
c56d5c7d | 1563 | static int inactive_file_is_low(struct lruvec *lruvec) |
56e49d21 | 1564 | { |
c3c787e8 | 1565 | if (!mem_cgroup_disabled()) |
c56d5c7d | 1566 | return mem_cgroup_inactive_file_is_low(lruvec); |
56e49d21 | 1567 | |
c56d5c7d | 1568 | return inactive_file_is_low_global(lruvec_zone(lruvec)); |
56e49d21 RR |
1569 | } |
1570 | ||
75b00af7 | 1571 | static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru) |
b39415b2 | 1572 | { |
75b00af7 | 1573 | if (is_file_lru(lru)) |
c56d5c7d | 1574 | return inactive_file_is_low(lruvec); |
b39415b2 | 1575 | else |
c56d5c7d | 1576 | return inactive_anon_is_low(lruvec); |
b39415b2 RR |
1577 | } |
1578 | ||
4f98a2fe | 1579 | static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan, |
1a93be0e | 1580 | struct lruvec *lruvec, struct scan_control *sc) |
b69408e8 | 1581 | { |
b39415b2 | 1582 | if (is_active_lru(lru)) { |
75b00af7 | 1583 | if (inactive_list_is_low(lruvec, lru)) |
1a93be0e | 1584 | shrink_active_list(nr_to_scan, lruvec, sc, lru); |
556adecb RR |
1585 | return 0; |
1586 | } | |
1587 | ||
1a93be0e | 1588 | return shrink_inactive_list(nr_to_scan, lruvec, sc, lru); |
4f98a2fe RR |
1589 | } |
1590 | ||
3d58ab5c | 1591 | static int vmscan_swappiness(struct scan_control *sc) |
1f4c025b | 1592 | { |
89b5fae5 | 1593 | if (global_reclaim(sc)) |
1f4c025b | 1594 | return vm_swappiness; |
3d58ab5c | 1595 | return mem_cgroup_swappiness(sc->target_mem_cgroup); |
1f4c025b KH |
1596 | } |
1597 | ||
4f98a2fe RR |
1598 | /* |
1599 | * Determine how aggressively the anon and file LRU lists should be | |
1600 | * scanned. The relative value of each set of LRU lists is determined | |
1601 | * by looking at the fraction of the pages scanned we did rotate back | |
1602 | * onto the active list instead of evict. | |
1603 | * | |
be7bd59d WL |
1604 | * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan |
1605 | * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan | |
4f98a2fe | 1606 | */ |
90126375 | 1607 | static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, |
9e3b2f8c | 1608 | unsigned long *nr) |
4f98a2fe RR |
1609 | { |
1610 | unsigned long anon, file, free; | |
1611 | unsigned long anon_prio, file_prio; | |
1612 | unsigned long ap, fp; | |
90126375 | 1613 | struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat; |
76a33fc3 | 1614 | u64 fraction[2], denominator; |
4111304d | 1615 | enum lru_list lru; |
76a33fc3 | 1616 | int noswap = 0; |
a4d3e9e7 | 1617 | bool force_scan = false; |
90126375 | 1618 | struct zone *zone = lruvec_zone(lruvec); |
246e87a9 | 1619 | |
f11c0ca5 JW |
1620 | /* |
1621 | * If the zone or memcg is small, nr[l] can be 0. This | |
1622 | * results in no scanning on this priority and a potential | |
1623 | * priority drop. Global direct reclaim can go to the next | |
1624 | * zone and tends to have no problems. Global kswapd is for | |
1625 | * zone balancing and it needs to scan a minimum amount. When | |
1626 | * reclaiming for a memcg, a priority drop can cause high | |
1627 | * latencies, so it's better to scan a minimum amount there as | |
1628 | * well. | |
1629 | */ | |
90126375 | 1630 | if (current_is_kswapd() && zone->all_unreclaimable) |
a4d3e9e7 | 1631 | force_scan = true; |
89b5fae5 | 1632 | if (!global_reclaim(sc)) |
a4d3e9e7 | 1633 | force_scan = true; |
76a33fc3 SL |
1634 | |
1635 | /* If we have no swap space, do not bother scanning anon pages. */ | |
1636 | if (!sc->may_swap || (nr_swap_pages <= 0)) { | |
1637 | noswap = 1; | |
1638 | fraction[0] = 0; | |
1639 | fraction[1] = 1; | |
1640 | denominator = 1; | |
1641 | goto out; | |
1642 | } | |
4f98a2fe | 1643 | |
4d7dcca2 HD |
1644 | anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) + |
1645 | get_lru_size(lruvec, LRU_INACTIVE_ANON); | |
1646 | file = get_lru_size(lruvec, LRU_ACTIVE_FILE) + | |
1647 | get_lru_size(lruvec, LRU_INACTIVE_FILE); | |
a4d3e9e7 | 1648 | |
89b5fae5 | 1649 | if (global_reclaim(sc)) { |
90126375 | 1650 | free = zone_page_state(zone, NR_FREE_PAGES); |
eeee9a8c KM |
1651 | /* If we have very few page cache pages, |
1652 | force-scan anon pages. */ | |
90126375 | 1653 | if (unlikely(file + free <= high_wmark_pages(zone))) { |
76a33fc3 SL |
1654 | fraction[0] = 1; |
1655 | fraction[1] = 0; | |
1656 | denominator = 1; | |
1657 | goto out; | |
eeee9a8c | 1658 | } |
4f98a2fe RR |
1659 | } |
1660 | ||
58c37f6e KM |
1661 | /* |
1662 | * With swappiness at 100, anonymous and file have the same priority. | |
1663 | * This scanning priority is essentially the inverse of IO cost. | |
1664 | */ | |
3d58ab5c | 1665 | anon_prio = vmscan_swappiness(sc); |
75b00af7 | 1666 | file_prio = 200 - anon_prio; |
58c37f6e | 1667 | |
4f98a2fe RR |
1668 | /* |
1669 | * OK, so we have swap space and a fair amount of page cache | |
1670 | * pages. We use the recently rotated / recently scanned | |
1671 | * ratios to determine how valuable each cache is. | |
1672 | * | |
1673 | * Because workloads change over time (and to avoid overflow) | |
1674 | * we keep these statistics as a floating average, which ends | |
1675 | * up weighing recent references more than old ones. | |
1676 | * | |
1677 | * anon in [0], file in [1] | |
1678 | */ | |
90126375 | 1679 | spin_lock_irq(&zone->lru_lock); |
6e901571 | 1680 | if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) { |
6e901571 KM |
1681 | reclaim_stat->recent_scanned[0] /= 2; |
1682 | reclaim_stat->recent_rotated[0] /= 2; | |
4f98a2fe RR |
1683 | } |
1684 | ||
6e901571 | 1685 | if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) { |
6e901571 KM |
1686 | reclaim_stat->recent_scanned[1] /= 2; |
1687 | reclaim_stat->recent_rotated[1] /= 2; | |
4f98a2fe RR |
1688 | } |
1689 | ||
4f98a2fe | 1690 | /* |
00d8089c RR |
1691 | * The amount of pressure on anon vs file pages is inversely |
1692 | * proportional to the fraction of recently scanned pages on | |
1693 | * each list that were recently referenced and in active use. | |
4f98a2fe | 1694 | */ |
fe35004f | 1695 | ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1); |
6e901571 | 1696 | ap /= reclaim_stat->recent_rotated[0] + 1; |
4f98a2fe | 1697 | |
fe35004f | 1698 | fp = file_prio * (reclaim_stat->recent_scanned[1] + 1); |
6e901571 | 1699 | fp /= reclaim_stat->recent_rotated[1] + 1; |
90126375 | 1700 | spin_unlock_irq(&zone->lru_lock); |
4f98a2fe | 1701 | |
76a33fc3 SL |
1702 | fraction[0] = ap; |
1703 | fraction[1] = fp; | |
1704 | denominator = ap + fp + 1; | |
1705 | out: | |
4111304d HD |
1706 | for_each_evictable_lru(lru) { |
1707 | int file = is_file_lru(lru); | |
76a33fc3 | 1708 | unsigned long scan; |
6e08a369 | 1709 | |
4d7dcca2 | 1710 | scan = get_lru_size(lruvec, lru); |
9e3b2f8c KK |
1711 | if (sc->priority || noswap || !vmscan_swappiness(sc)) { |
1712 | scan >>= sc->priority; | |
f11c0ca5 JW |
1713 | if (!scan && force_scan) |
1714 | scan = SWAP_CLUSTER_MAX; | |
76a33fc3 SL |
1715 | scan = div64_u64(scan * fraction[file], denominator); |
1716 | } | |
4111304d | 1717 | nr[lru] = scan; |
76a33fc3 | 1718 | } |
6e08a369 | 1719 | } |
4f98a2fe | 1720 | |
23b9da55 | 1721 | /* Use reclaim/compaction for costly allocs or under memory pressure */ |
9e3b2f8c | 1722 | static bool in_reclaim_compaction(struct scan_control *sc) |
23b9da55 MG |
1723 | { |
1724 | if (COMPACTION_BUILD && sc->order && | |
1725 | (sc->order > PAGE_ALLOC_COSTLY_ORDER || | |
9e3b2f8c | 1726 | sc->priority < DEF_PRIORITY - 2)) |
23b9da55 MG |
1727 | return true; |
1728 | ||
1729 | return false; | |
1730 | } | |
1731 | ||
3e7d3449 | 1732 | /* |
23b9da55 MG |
1733 | * Reclaim/compaction is used for high-order allocation requests. It reclaims |
1734 | * order-0 pages before compacting the zone. should_continue_reclaim() returns | |
1735 | * true if more pages should be reclaimed such that when the page allocator | |
1736 | * calls try_to_compact_zone() that it will have enough free pages to succeed. | |
1737 | * It will give up earlier than that if there is difficulty reclaiming pages. | |
3e7d3449 | 1738 | */ |
90bdcfaf | 1739 | static inline bool should_continue_reclaim(struct lruvec *lruvec, |
3e7d3449 MG |
1740 | unsigned long nr_reclaimed, |
1741 | unsigned long nr_scanned, | |
1742 | struct scan_control *sc) | |
1743 | { | |
1744 | unsigned long pages_for_compaction; | |
1745 | unsigned long inactive_lru_pages; | |
1746 | ||
1747 | /* If not in reclaim/compaction mode, stop */ | |
9e3b2f8c | 1748 | if (!in_reclaim_compaction(sc)) |
3e7d3449 MG |
1749 | return false; |
1750 | ||
2876592f MG |
1751 | /* Consider stopping depending on scan and reclaim activity */ |
1752 | if (sc->gfp_mask & __GFP_REPEAT) { | |
1753 | /* | |
1754 | * For __GFP_REPEAT allocations, stop reclaiming if the | |
1755 | * full LRU list has been scanned and we are still failing | |
1756 | * to reclaim pages. This full LRU scan is potentially | |
1757 | * expensive but a __GFP_REPEAT caller really wants to succeed | |
1758 | */ | |
1759 | if (!nr_reclaimed && !nr_scanned) | |
1760 | return false; | |
1761 | } else { | |
1762 | /* | |
1763 | * For non-__GFP_REPEAT allocations which can presumably | |
1764 | * fail without consequence, stop if we failed to reclaim | |
1765 | * any pages from the last SWAP_CLUSTER_MAX number of | |
1766 | * pages that were scanned. This will return to the | |
1767 | * caller faster at the risk reclaim/compaction and | |
1768 | * the resulting allocation attempt fails | |
1769 | */ | |
1770 | if (!nr_reclaimed) | |
1771 | return false; | |
1772 | } | |
3e7d3449 MG |
1773 | |
1774 | /* | |
1775 | * If we have not reclaimed enough pages for compaction and the | |
1776 | * inactive lists are large enough, continue reclaiming | |
1777 | */ | |
1778 | pages_for_compaction = (2UL << sc->order); | |
4d7dcca2 | 1779 | inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE); |
86cfd3a4 | 1780 | if (nr_swap_pages > 0) |
4d7dcca2 | 1781 | inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON); |
3e7d3449 MG |
1782 | if (sc->nr_reclaimed < pages_for_compaction && |
1783 | inactive_lru_pages > pages_for_compaction) | |
1784 | return true; | |
1785 | ||
1786 | /* If compaction would go ahead or the allocation would succeed, stop */ | |
90bdcfaf | 1787 | switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) { |
3e7d3449 MG |
1788 | case COMPACT_PARTIAL: |
1789 | case COMPACT_CONTINUE: | |
1790 | return false; | |
1791 | default: | |
1792 | return true; | |
1793 | } | |
1794 | } | |
1795 | ||
1da177e4 LT |
1796 | /* |
1797 | * This is a basic per-zone page freer. Used by both kswapd and direct reclaim. | |
1798 | */ | |
f9be23d6 | 1799 | static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc) |
1da177e4 | 1800 | { |
b69408e8 | 1801 | unsigned long nr[NR_LRU_LISTS]; |
8695949a | 1802 | unsigned long nr_to_scan; |
4111304d | 1803 | enum lru_list lru; |
f0fdc5e8 | 1804 | unsigned long nr_reclaimed, nr_scanned; |
22fba335 | 1805 | unsigned long nr_to_reclaim = sc->nr_to_reclaim; |
3da367c3 | 1806 | struct blk_plug plug; |
e0f79b8f | 1807 | |
3e7d3449 MG |
1808 | restart: |
1809 | nr_reclaimed = 0; | |
f0fdc5e8 | 1810 | nr_scanned = sc->nr_scanned; |
90126375 | 1811 | get_scan_count(lruvec, sc, nr); |
1da177e4 | 1812 | |
3da367c3 | 1813 | blk_start_plug(&plug); |
556adecb RR |
1814 | while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] || |
1815 | nr[LRU_INACTIVE_FILE]) { | |
4111304d HD |
1816 | for_each_evictable_lru(lru) { |
1817 | if (nr[lru]) { | |
ece74b2e | 1818 | nr_to_scan = min_t(unsigned long, |
4111304d HD |
1819 | nr[lru], SWAP_CLUSTER_MAX); |
1820 | nr[lru] -= nr_to_scan; | |
1da177e4 | 1821 | |
4111304d | 1822 | nr_reclaimed += shrink_list(lru, nr_to_scan, |
1a93be0e | 1823 | lruvec, sc); |
b69408e8 | 1824 | } |
1da177e4 | 1825 | } |
a79311c1 RR |
1826 | /* |
1827 | * On large memory systems, scan >> priority can become | |
1828 | * really large. This is fine for the starting priority; | |
1829 | * we want to put equal scanning pressure on each zone. | |
1830 | * However, if the VM has a harder time of freeing pages, | |
1831 | * with multiple processes reclaiming pages, the total | |
1832 | * freeing target can get unreasonably large. | |
1833 | */ | |
9e3b2f8c KK |
1834 | if (nr_reclaimed >= nr_to_reclaim && |
1835 | sc->priority < DEF_PRIORITY) | |
a79311c1 | 1836 | break; |
1da177e4 | 1837 | } |
3da367c3 | 1838 | blk_finish_plug(&plug); |
3e7d3449 | 1839 | sc->nr_reclaimed += nr_reclaimed; |
01dbe5c9 | 1840 | |
556adecb RR |
1841 | /* |
1842 | * Even if we did not try to evict anon pages at all, we want to | |
1843 | * rebalance the anon lru active/inactive ratio. | |
1844 | */ | |
c56d5c7d | 1845 | if (inactive_anon_is_low(lruvec)) |
1a93be0e | 1846 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
9e3b2f8c | 1847 | sc, LRU_ACTIVE_ANON); |
556adecb | 1848 | |
3e7d3449 | 1849 | /* reclaim/compaction might need reclaim to continue */ |
90bdcfaf | 1850 | if (should_continue_reclaim(lruvec, nr_reclaimed, |
9e3b2f8c | 1851 | sc->nr_scanned - nr_scanned, sc)) |
3e7d3449 MG |
1852 | goto restart; |
1853 | ||
232ea4d6 | 1854 | throttle_vm_writeout(sc->gfp_mask); |
1da177e4 LT |
1855 | } |
1856 | ||
9e3b2f8c | 1857 | static void shrink_zone(struct zone *zone, struct scan_control *sc) |
f16015fb | 1858 | { |
5660048c JW |
1859 | struct mem_cgroup *root = sc->target_mem_cgroup; |
1860 | struct mem_cgroup_reclaim_cookie reclaim = { | |
f16015fb | 1861 | .zone = zone, |
9e3b2f8c | 1862 | .priority = sc->priority, |
f16015fb | 1863 | }; |
5660048c JW |
1864 | struct mem_cgroup *memcg; |
1865 | ||
5660048c JW |
1866 | memcg = mem_cgroup_iter(root, NULL, &reclaim); |
1867 | do { | |
f9be23d6 KK |
1868 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
1869 | ||
1870 | shrink_lruvec(lruvec, sc); | |
f16015fb | 1871 | |
5660048c JW |
1872 | /* |
1873 | * Limit reclaim has historically picked one memcg and | |
1874 | * scanned it with decreasing priority levels until | |
1875 | * nr_to_reclaim had been reclaimed. This priority | |
1876 | * cycle is thus over after a single memcg. | |
b95a2f2d JW |
1877 | * |
1878 | * Direct reclaim and kswapd, on the other hand, have | |
1879 | * to scan all memory cgroups to fulfill the overall | |
1880 | * scan target for the zone. | |
5660048c JW |
1881 | */ |
1882 | if (!global_reclaim(sc)) { | |
1883 | mem_cgroup_iter_break(root, memcg); | |
1884 | break; | |
1885 | } | |
1886 | memcg = mem_cgroup_iter(root, memcg, &reclaim); | |
1887 | } while (memcg); | |
f16015fb JW |
1888 | } |
1889 | ||
fe4b1b24 MG |
1890 | /* Returns true if compaction should go ahead for a high-order request */ |
1891 | static inline bool compaction_ready(struct zone *zone, struct scan_control *sc) | |
1892 | { | |
1893 | unsigned long balance_gap, watermark; | |
1894 | bool watermark_ok; | |
1895 | ||
1896 | /* Do not consider compaction for orders reclaim is meant to satisfy */ | |
1897 | if (sc->order <= PAGE_ALLOC_COSTLY_ORDER) | |
1898 | return false; | |
1899 | ||
1900 | /* | |
1901 | * Compaction takes time to run and there are potentially other | |
1902 | * callers using the pages just freed. Continue reclaiming until | |
1903 | * there is a buffer of free pages available to give compaction | |
1904 | * a reasonable chance of completing and allocating the page | |
1905 | */ | |
1906 | balance_gap = min(low_wmark_pages(zone), | |
1907 | (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / | |
1908 | KSWAPD_ZONE_BALANCE_GAP_RATIO); | |
1909 | watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order); | |
1910 | watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0); | |
1911 | ||
1912 | /* | |
1913 | * If compaction is deferred, reclaim up to a point where | |
1914 | * compaction will have a chance of success when re-enabled | |
1915 | */ | |
aff62249 | 1916 | if (compaction_deferred(zone, sc->order)) |
fe4b1b24 MG |
1917 | return watermark_ok; |
1918 | ||
1919 | /* If compaction is not ready to start, keep reclaiming */ | |
1920 | if (!compaction_suitable(zone, sc->order)) | |
1921 | return false; | |
1922 | ||
1923 | return watermark_ok; | |
1924 | } | |
1925 | ||
1da177e4 LT |
1926 | /* |
1927 | * This is the direct reclaim path, for page-allocating processes. We only | |
1928 | * try to reclaim pages from zones which will satisfy the caller's allocation | |
1929 | * request. | |
1930 | * | |
41858966 MG |
1931 | * We reclaim from a zone even if that zone is over high_wmark_pages(zone). |
1932 | * Because: | |
1da177e4 LT |
1933 | * a) The caller may be trying to free *extra* pages to satisfy a higher-order |
1934 | * allocation or | |
41858966 MG |
1935 | * b) The target zone may be at high_wmark_pages(zone) but the lower zones |
1936 | * must go *over* high_wmark_pages(zone) to satisfy the `incremental min' | |
1937 | * zone defense algorithm. | |
1da177e4 | 1938 | * |
1da177e4 LT |
1939 | * If a zone is deemed to be full of pinned pages then just give it a light |
1940 | * scan then give up on it. | |
e0c23279 MG |
1941 | * |
1942 | * This function returns true if a zone is being reclaimed for a costly | |
fe4b1b24 | 1943 | * high-order allocation and compaction is ready to begin. This indicates to |
0cee34fd MG |
1944 | * the caller that it should consider retrying the allocation instead of |
1945 | * further reclaim. | |
1da177e4 | 1946 | */ |
9e3b2f8c | 1947 | static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) |
1da177e4 | 1948 | { |
dd1a239f | 1949 | struct zoneref *z; |
54a6eb5c | 1950 | struct zone *zone; |
d149e3b2 YH |
1951 | unsigned long nr_soft_reclaimed; |
1952 | unsigned long nr_soft_scanned; | |
0cee34fd | 1953 | bool aborted_reclaim = false; |
1cfb419b | 1954 | |
cc715d99 MG |
1955 | /* |
1956 | * If the number of buffer_heads in the machine exceeds the maximum | |
1957 | * allowed level, force direct reclaim to scan the highmem zone as | |
1958 | * highmem pages could be pinning lowmem pages storing buffer_heads | |
1959 | */ | |
1960 | if (buffer_heads_over_limit) | |
1961 | sc->gfp_mask |= __GFP_HIGHMEM; | |
1962 | ||
d4debc66 MG |
1963 | for_each_zone_zonelist_nodemask(zone, z, zonelist, |
1964 | gfp_zone(sc->gfp_mask), sc->nodemask) { | |
f3fe6512 | 1965 | if (!populated_zone(zone)) |
1da177e4 | 1966 | continue; |
1cfb419b KH |
1967 | /* |
1968 | * Take care memory controller reclaiming has small influence | |
1969 | * to global LRU. | |
1970 | */ | |
89b5fae5 | 1971 | if (global_reclaim(sc)) { |
1cfb419b KH |
1972 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1973 | continue; | |
9e3b2f8c KK |
1974 | if (zone->all_unreclaimable && |
1975 | sc->priority != DEF_PRIORITY) | |
1cfb419b | 1976 | continue; /* Let kswapd poll it */ |
e0887c19 RR |
1977 | if (COMPACTION_BUILD) { |
1978 | /* | |
e0c23279 MG |
1979 | * If we already have plenty of memory free for |
1980 | * compaction in this zone, don't free any more. | |
1981 | * Even though compaction is invoked for any | |
1982 | * non-zero order, only frequent costly order | |
1983 | * reclamation is disruptive enough to become a | |
c7cfa37b CA |
1984 | * noticeable problem, like transparent huge |
1985 | * page allocations. | |
e0887c19 | 1986 | */ |
fe4b1b24 | 1987 | if (compaction_ready(zone, sc)) { |
0cee34fd | 1988 | aborted_reclaim = true; |
e0887c19 | 1989 | continue; |
e0c23279 | 1990 | } |
e0887c19 | 1991 | } |
ac34a1a3 KH |
1992 | /* |
1993 | * This steals pages from memory cgroups over softlimit | |
1994 | * and returns the number of reclaimed pages and | |
1995 | * scanned pages. This works for global memory pressure | |
1996 | * and balancing, not for a memcg's limit. | |
1997 | */ | |
1998 | nr_soft_scanned = 0; | |
1999 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, | |
2000 | sc->order, sc->gfp_mask, | |
2001 | &nr_soft_scanned); | |
2002 | sc->nr_reclaimed += nr_soft_reclaimed; | |
2003 | sc->nr_scanned += nr_soft_scanned; | |
2004 | /* need some check for avoid more shrink_zone() */ | |
1cfb419b | 2005 | } |
408d8544 | 2006 | |
9e3b2f8c | 2007 | shrink_zone(zone, sc); |
1da177e4 | 2008 | } |
e0c23279 | 2009 | |
0cee34fd | 2010 | return aborted_reclaim; |
d1908362 MK |
2011 | } |
2012 | ||
2013 | static bool zone_reclaimable(struct zone *zone) | |
2014 | { | |
2015 | return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; | |
2016 | } | |
2017 | ||
929bea7c | 2018 | /* All zones in zonelist are unreclaimable? */ |
d1908362 MK |
2019 | static bool all_unreclaimable(struct zonelist *zonelist, |
2020 | struct scan_control *sc) | |
2021 | { | |
2022 | struct zoneref *z; | |
2023 | struct zone *zone; | |
d1908362 MK |
2024 | |
2025 | for_each_zone_zonelist_nodemask(zone, z, zonelist, | |
2026 | gfp_zone(sc->gfp_mask), sc->nodemask) { | |
2027 | if (!populated_zone(zone)) | |
2028 | continue; | |
2029 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) | |
2030 | continue; | |
929bea7c KM |
2031 | if (!zone->all_unreclaimable) |
2032 | return false; | |
d1908362 MK |
2033 | } |
2034 | ||
929bea7c | 2035 | return true; |
1da177e4 | 2036 | } |
4f98a2fe | 2037 | |
1da177e4 LT |
2038 | /* |
2039 | * This is the main entry point to direct page reclaim. | |
2040 | * | |
2041 | * If a full scan of the inactive list fails to free enough memory then we | |
2042 | * are "out of memory" and something needs to be killed. | |
2043 | * | |
2044 | * If the caller is !__GFP_FS then the probability of a failure is reasonably | |
2045 | * high - the zone may be full of dirty or under-writeback pages, which this | |
5b0830cb JA |
2046 | * caller can't do much about. We kick the writeback threads and take explicit |
2047 | * naps in the hope that some of these pages can be written. But if the | |
2048 | * allocating task holds filesystem locks which prevent writeout this might not | |
2049 | * work, and the allocation attempt will fail. | |
a41f24ea NA |
2050 | * |
2051 | * returns: 0, if no pages reclaimed | |
2052 | * else, the number of pages reclaimed | |
1da177e4 | 2053 | */ |
dac1d27b | 2054 | static unsigned long do_try_to_free_pages(struct zonelist *zonelist, |
a09ed5e0 YH |
2055 | struct scan_control *sc, |
2056 | struct shrink_control *shrink) | |
1da177e4 | 2057 | { |
69e05944 | 2058 | unsigned long total_scanned = 0; |
1da177e4 | 2059 | struct reclaim_state *reclaim_state = current->reclaim_state; |
dd1a239f | 2060 | struct zoneref *z; |
54a6eb5c | 2061 | struct zone *zone; |
22fba335 | 2062 | unsigned long writeback_threshold; |
0cee34fd | 2063 | bool aborted_reclaim; |
1da177e4 | 2064 | |
873b4771 KK |
2065 | delayacct_freepages_start(); |
2066 | ||
89b5fae5 | 2067 | if (global_reclaim(sc)) |
1cfb419b | 2068 | count_vm_event(ALLOCSTALL); |
1da177e4 | 2069 | |
9e3b2f8c | 2070 | do { |
66e1707b | 2071 | sc->nr_scanned = 0; |
9e3b2f8c | 2072 | aborted_reclaim = shrink_zones(zonelist, sc); |
e0c23279 | 2073 | |
66e1707b BS |
2074 | /* |
2075 | * Don't shrink slabs when reclaiming memory from | |
2076 | * over limit cgroups | |
2077 | */ | |
89b5fae5 | 2078 | if (global_reclaim(sc)) { |
c6a8a8c5 | 2079 | unsigned long lru_pages = 0; |
d4debc66 MG |
2080 | for_each_zone_zonelist(zone, z, zonelist, |
2081 | gfp_zone(sc->gfp_mask)) { | |
c6a8a8c5 KM |
2082 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
2083 | continue; | |
2084 | ||
2085 | lru_pages += zone_reclaimable_pages(zone); | |
2086 | } | |
2087 | ||
1495f230 | 2088 | shrink_slab(shrink, sc->nr_scanned, lru_pages); |
91a45470 | 2089 | if (reclaim_state) { |
a79311c1 | 2090 | sc->nr_reclaimed += reclaim_state->reclaimed_slab; |
91a45470 KH |
2091 | reclaim_state->reclaimed_slab = 0; |
2092 | } | |
1da177e4 | 2093 | } |
66e1707b | 2094 | total_scanned += sc->nr_scanned; |
bb21c7ce | 2095 | if (sc->nr_reclaimed >= sc->nr_to_reclaim) |
1da177e4 | 2096 | goto out; |
1da177e4 LT |
2097 | |
2098 | /* | |
2099 | * Try to write back as many pages as we just scanned. This | |
2100 | * tends to cause slow streaming writers to write data to the | |
2101 | * disk smoothly, at the dirtying rate, which is nice. But | |
2102 | * that's undesirable in laptop mode, where we *want* lumpy | |
2103 | * writeout. So in laptop mode, write out the whole world. | |
2104 | */ | |
22fba335 KM |
2105 | writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2; |
2106 | if (total_scanned > writeback_threshold) { | |
0e175a18 CW |
2107 | wakeup_flusher_threads(laptop_mode ? 0 : total_scanned, |
2108 | WB_REASON_TRY_TO_FREE_PAGES); | |
66e1707b | 2109 | sc->may_writepage = 1; |
1da177e4 LT |
2110 | } |
2111 | ||
2112 | /* Take a nap, wait for some writeback to complete */ | |
7b51755c | 2113 | if (!sc->hibernation_mode && sc->nr_scanned && |
9e3b2f8c | 2114 | sc->priority < DEF_PRIORITY - 2) { |
0e093d99 MG |
2115 | struct zone *preferred_zone; |
2116 | ||
2117 | first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask), | |
f33261d7 DR |
2118 | &cpuset_current_mems_allowed, |
2119 | &preferred_zone); | |
0e093d99 MG |
2120 | wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10); |
2121 | } | |
9e3b2f8c | 2122 | } while (--sc->priority >= 0); |
bb21c7ce | 2123 | |
1da177e4 | 2124 | out: |
873b4771 KK |
2125 | delayacct_freepages_end(); |
2126 | ||
bb21c7ce KM |
2127 | if (sc->nr_reclaimed) |
2128 | return sc->nr_reclaimed; | |
2129 | ||
929bea7c KM |
2130 | /* |
2131 | * As hibernation is going on, kswapd is freezed so that it can't mark | |
2132 | * the zone into all_unreclaimable. Thus bypassing all_unreclaimable | |
2133 | * check. | |
2134 | */ | |
2135 | if (oom_killer_disabled) | |
2136 | return 0; | |
2137 | ||
0cee34fd MG |
2138 | /* Aborted reclaim to try compaction? don't OOM, then */ |
2139 | if (aborted_reclaim) | |
7335084d MG |
2140 | return 1; |
2141 | ||
bb21c7ce | 2142 | /* top priority shrink_zones still had more to do? don't OOM, then */ |
89b5fae5 | 2143 | if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc)) |
bb21c7ce KM |
2144 | return 1; |
2145 | ||
2146 | return 0; | |
1da177e4 LT |
2147 | } |
2148 | ||
5515061d MG |
2149 | static bool pfmemalloc_watermark_ok(pg_data_t *pgdat) |
2150 | { | |
2151 | struct zone *zone; | |
2152 | unsigned long pfmemalloc_reserve = 0; | |
2153 | unsigned long free_pages = 0; | |
2154 | int i; | |
2155 | bool wmark_ok; | |
2156 | ||
2157 | for (i = 0; i <= ZONE_NORMAL; i++) { | |
2158 | zone = &pgdat->node_zones[i]; | |
2159 | pfmemalloc_reserve += min_wmark_pages(zone); | |
2160 | free_pages += zone_page_state(zone, NR_FREE_PAGES); | |
2161 | } | |
2162 | ||
2163 | wmark_ok = free_pages > pfmemalloc_reserve / 2; | |
2164 | ||
2165 | /* kswapd must be awake if processes are being throttled */ | |
2166 | if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) { | |
2167 | pgdat->classzone_idx = min(pgdat->classzone_idx, | |
2168 | (enum zone_type)ZONE_NORMAL); | |
2169 | wake_up_interruptible(&pgdat->kswapd_wait); | |
2170 | } | |
2171 | ||
2172 | return wmark_ok; | |
2173 | } | |
2174 | ||
2175 | /* | |
2176 | * Throttle direct reclaimers if backing storage is backed by the network | |
2177 | * and the PFMEMALLOC reserve for the preferred node is getting dangerously | |
2178 | * depleted. kswapd will continue to make progress and wake the processes | |
2179 | * when the low watermark is reached | |
2180 | */ | |
2181 | static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist, | |
2182 | nodemask_t *nodemask) | |
2183 | { | |
2184 | struct zone *zone; | |
2185 | int high_zoneidx = gfp_zone(gfp_mask); | |
2186 | pg_data_t *pgdat; | |
2187 | ||
2188 | /* | |
2189 | * Kernel threads should not be throttled as they may be indirectly | |
2190 | * responsible for cleaning pages necessary for reclaim to make forward | |
2191 | * progress. kjournald for example may enter direct reclaim while | |
2192 | * committing a transaction where throttling it could forcing other | |
2193 | * processes to block on log_wait_commit(). | |
2194 | */ | |
2195 | if (current->flags & PF_KTHREAD) | |
2196 | return; | |
2197 | ||
2198 | /* Check if the pfmemalloc reserves are ok */ | |
2199 | first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone); | |
2200 | pgdat = zone->zone_pgdat; | |
2201 | if (pfmemalloc_watermark_ok(pgdat)) | |
2202 | return; | |
2203 | ||
68243e76 MG |
2204 | /* Account for the throttling */ |
2205 | count_vm_event(PGSCAN_DIRECT_THROTTLE); | |
2206 | ||
5515061d MG |
2207 | /* |
2208 | * If the caller cannot enter the filesystem, it's possible that it | |
2209 | * is due to the caller holding an FS lock or performing a journal | |
2210 | * transaction in the case of a filesystem like ext[3|4]. In this case, | |
2211 | * it is not safe to block on pfmemalloc_wait as kswapd could be | |
2212 | * blocked waiting on the same lock. Instead, throttle for up to a | |
2213 | * second before continuing. | |
2214 | */ | |
2215 | if (!(gfp_mask & __GFP_FS)) { | |
2216 | wait_event_interruptible_timeout(pgdat->pfmemalloc_wait, | |
2217 | pfmemalloc_watermark_ok(pgdat), HZ); | |
2218 | return; | |
2219 | } | |
2220 | ||
2221 | /* Throttle until kswapd wakes the process */ | |
2222 | wait_event_killable(zone->zone_pgdat->pfmemalloc_wait, | |
2223 | pfmemalloc_watermark_ok(pgdat)); | |
2224 | } | |
2225 | ||
dac1d27b | 2226 | unsigned long try_to_free_pages(struct zonelist *zonelist, int order, |
327c0e96 | 2227 | gfp_t gfp_mask, nodemask_t *nodemask) |
66e1707b | 2228 | { |
33906bc5 | 2229 | unsigned long nr_reclaimed; |
66e1707b BS |
2230 | struct scan_control sc = { |
2231 | .gfp_mask = gfp_mask, | |
2232 | .may_writepage = !laptop_mode, | |
22fba335 | 2233 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
a6dc60f8 | 2234 | .may_unmap = 1, |
2e2e4259 | 2235 | .may_swap = 1, |
66e1707b | 2236 | .order = order, |
9e3b2f8c | 2237 | .priority = DEF_PRIORITY, |
f16015fb | 2238 | .target_mem_cgroup = NULL, |
327c0e96 | 2239 | .nodemask = nodemask, |
66e1707b | 2240 | }; |
a09ed5e0 YH |
2241 | struct shrink_control shrink = { |
2242 | .gfp_mask = sc.gfp_mask, | |
2243 | }; | |
66e1707b | 2244 | |
5515061d MG |
2245 | throttle_direct_reclaim(gfp_mask, zonelist, nodemask); |
2246 | ||
2247 | /* | |
2248 | * Do not enter reclaim if fatal signal is pending. 1 is returned so | |
2249 | * that the page allocator does not consider triggering OOM | |
2250 | */ | |
2251 | if (fatal_signal_pending(current)) | |
2252 | return 1; | |
2253 | ||
33906bc5 MG |
2254 | trace_mm_vmscan_direct_reclaim_begin(order, |
2255 | sc.may_writepage, | |
2256 | gfp_mask); | |
2257 | ||
a09ed5e0 | 2258 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
33906bc5 MG |
2259 | |
2260 | trace_mm_vmscan_direct_reclaim_end(nr_reclaimed); | |
2261 | ||
2262 | return nr_reclaimed; | |
66e1707b BS |
2263 | } |
2264 | ||
c255a458 | 2265 | #ifdef CONFIG_MEMCG |
66e1707b | 2266 | |
72835c86 | 2267 | unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg, |
4e416953 | 2268 | gfp_t gfp_mask, bool noswap, |
0ae5e89c YH |
2269 | struct zone *zone, |
2270 | unsigned long *nr_scanned) | |
4e416953 BS |
2271 | { |
2272 | struct scan_control sc = { | |
0ae5e89c | 2273 | .nr_scanned = 0, |
b8f5c566 | 2274 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
4e416953 BS |
2275 | .may_writepage = !laptop_mode, |
2276 | .may_unmap = 1, | |
2277 | .may_swap = !noswap, | |
4e416953 | 2278 | .order = 0, |
9e3b2f8c | 2279 | .priority = 0, |
72835c86 | 2280 | .target_mem_cgroup = memcg, |
4e416953 | 2281 | }; |
f9be23d6 | 2282 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
0ae5e89c | 2283 | |
4e416953 BS |
2284 | sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2285 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK); | |
bdce6d9e | 2286 | |
9e3b2f8c | 2287 | trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order, |
bdce6d9e KM |
2288 | sc.may_writepage, |
2289 | sc.gfp_mask); | |
2290 | ||
4e416953 BS |
2291 | /* |
2292 | * NOTE: Although we can get the priority field, using it | |
2293 | * here is not a good idea, since it limits the pages we can scan. | |
2294 | * if we don't reclaim here, the shrink_zone from balance_pgdat | |
2295 | * will pick up pages from other mem cgroup's as well. We hack | |
2296 | * the priority and make it zero. | |
2297 | */ | |
f9be23d6 | 2298 | shrink_lruvec(lruvec, &sc); |
bdce6d9e KM |
2299 | |
2300 | trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed); | |
2301 | ||
0ae5e89c | 2302 | *nr_scanned = sc.nr_scanned; |
4e416953 BS |
2303 | return sc.nr_reclaimed; |
2304 | } | |
2305 | ||
72835c86 | 2306 | unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg, |
a7885eb8 | 2307 | gfp_t gfp_mask, |
185efc0f | 2308 | bool noswap) |
66e1707b | 2309 | { |
4e416953 | 2310 | struct zonelist *zonelist; |
bdce6d9e | 2311 | unsigned long nr_reclaimed; |
889976db | 2312 | int nid; |
66e1707b | 2313 | struct scan_control sc = { |
66e1707b | 2314 | .may_writepage = !laptop_mode, |
a6dc60f8 | 2315 | .may_unmap = 1, |
2e2e4259 | 2316 | .may_swap = !noswap, |
22fba335 | 2317 | .nr_to_reclaim = SWAP_CLUSTER_MAX, |
66e1707b | 2318 | .order = 0, |
9e3b2f8c | 2319 | .priority = DEF_PRIORITY, |
72835c86 | 2320 | .target_mem_cgroup = memcg, |
327c0e96 | 2321 | .nodemask = NULL, /* we don't care the placement */ |
a09ed5e0 YH |
2322 | .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) | |
2323 | (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK), | |
2324 | }; | |
2325 | struct shrink_control shrink = { | |
2326 | .gfp_mask = sc.gfp_mask, | |
66e1707b | 2327 | }; |
66e1707b | 2328 | |
889976db YH |
2329 | /* |
2330 | * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't | |
2331 | * take care of from where we get pages. So the node where we start the | |
2332 | * scan does not need to be the current node. | |
2333 | */ | |
72835c86 | 2334 | nid = mem_cgroup_select_victim_node(memcg); |
889976db YH |
2335 | |
2336 | zonelist = NODE_DATA(nid)->node_zonelists; | |
bdce6d9e KM |
2337 | |
2338 | trace_mm_vmscan_memcg_reclaim_begin(0, | |
2339 | sc.may_writepage, | |
2340 | sc.gfp_mask); | |
2341 | ||
a09ed5e0 | 2342 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
bdce6d9e KM |
2343 | |
2344 | trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed); | |
2345 | ||
2346 | return nr_reclaimed; | |
66e1707b BS |
2347 | } |
2348 | #endif | |
2349 | ||
9e3b2f8c | 2350 | static void age_active_anon(struct zone *zone, struct scan_control *sc) |
f16015fb | 2351 | { |
b95a2f2d | 2352 | struct mem_cgroup *memcg; |
f16015fb | 2353 | |
b95a2f2d JW |
2354 | if (!total_swap_pages) |
2355 | return; | |
2356 | ||
2357 | memcg = mem_cgroup_iter(NULL, NULL, NULL); | |
2358 | do { | |
c56d5c7d | 2359 | struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg); |
b95a2f2d | 2360 | |
c56d5c7d | 2361 | if (inactive_anon_is_low(lruvec)) |
1a93be0e | 2362 | shrink_active_list(SWAP_CLUSTER_MAX, lruvec, |
9e3b2f8c | 2363 | sc, LRU_ACTIVE_ANON); |
b95a2f2d JW |
2364 | |
2365 | memcg = mem_cgroup_iter(NULL, memcg, NULL); | |
2366 | } while (memcg); | |
f16015fb JW |
2367 | } |
2368 | ||
1741c877 MG |
2369 | /* |
2370 | * pgdat_balanced is used when checking if a node is balanced for high-order | |
2371 | * allocations. Only zones that meet watermarks and are in a zone allowed | |
2372 | * by the callers classzone_idx are added to balanced_pages. The total of | |
2373 | * balanced pages must be at least 25% of the zones allowed by classzone_idx | |
2374 | * for the node to be considered balanced. Forcing all zones to be balanced | |
2375 | * for high orders can cause excessive reclaim when there are imbalanced zones. | |
2376 | * The choice of 25% is due to | |
2377 | * o a 16M DMA zone that is balanced will not balance a zone on any | |
2378 | * reasonable sized machine | |
2379 | * o On all other machines, the top zone must be at least a reasonable | |
25985edc | 2380 | * percentage of the middle zones. For example, on 32-bit x86, highmem |
1741c877 MG |
2381 | * would need to be at least 256M for it to be balance a whole node. |
2382 | * Similarly, on x86-64 the Normal zone would need to be at least 1G | |
2383 | * to balance a node on its own. These seemed like reasonable ratios. | |
2384 | */ | |
2385 | static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages, | |
2386 | int classzone_idx) | |
2387 | { | |
2388 | unsigned long present_pages = 0; | |
2389 | int i; | |
2390 | ||
2391 | for (i = 0; i <= classzone_idx; i++) | |
2392 | present_pages += pgdat->node_zones[i].present_pages; | |
2393 | ||
4746efde SL |
2394 | /* A special case here: if zone has no page, we think it's balanced */ |
2395 | return balanced_pages >= (present_pages >> 2); | |
1741c877 MG |
2396 | } |
2397 | ||
5515061d MG |
2398 | /* |
2399 | * Prepare kswapd for sleeping. This verifies that there are no processes | |
2400 | * waiting in throttle_direct_reclaim() and that watermarks have been met. | |
2401 | * | |
2402 | * Returns true if kswapd is ready to sleep | |
2403 | */ | |
2404 | static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining, | |
dc83edd9 | 2405 | int classzone_idx) |
f50de2d3 | 2406 | { |
bb3ab596 | 2407 | int i; |
1741c877 MG |
2408 | unsigned long balanced = 0; |
2409 | bool all_zones_ok = true; | |
f50de2d3 MG |
2410 | |
2411 | /* If a direct reclaimer woke kswapd within HZ/10, it's premature */ | |
2412 | if (remaining) | |
5515061d MG |
2413 | return false; |
2414 | ||
2415 | /* | |
2416 | * There is a potential race between when kswapd checks its watermarks | |
2417 | * and a process gets throttled. There is also a potential race if | |
2418 | * processes get throttled, kswapd wakes, a large process exits therby | |
2419 | * balancing the zones that causes kswapd to miss a wakeup. If kswapd | |
2420 | * is going to sleep, no process should be sleeping on pfmemalloc_wait | |
2421 | * so wake them now if necessary. If necessary, processes will wake | |
2422 | * kswapd and get throttled again | |
2423 | */ | |
2424 | if (waitqueue_active(&pgdat->pfmemalloc_wait)) { | |
2425 | wake_up(&pgdat->pfmemalloc_wait); | |
2426 | return false; | |
2427 | } | |
f50de2d3 | 2428 | |
0abdee2b | 2429 | /* Check the watermark levels */ |
08951e54 | 2430 | for (i = 0; i <= classzone_idx; i++) { |
bb3ab596 KM |
2431 | struct zone *zone = pgdat->node_zones + i; |
2432 | ||
2433 | if (!populated_zone(zone)) | |
2434 | continue; | |
2435 | ||
355b09c4 MG |
2436 | /* |
2437 | * balance_pgdat() skips over all_unreclaimable after | |
2438 | * DEF_PRIORITY. Effectively, it considers them balanced so | |
2439 | * they must be considered balanced here as well if kswapd | |
2440 | * is to sleep | |
2441 | */ | |
2442 | if (zone->all_unreclaimable) { | |
2443 | balanced += zone->present_pages; | |
de3fab39 | 2444 | continue; |
355b09c4 | 2445 | } |
de3fab39 | 2446 | |
88f5acf8 | 2447 | if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone), |
da175d06 | 2448 | i, 0)) |
1741c877 MG |
2449 | all_zones_ok = false; |
2450 | else | |
2451 | balanced += zone->present_pages; | |
bb3ab596 | 2452 | } |
f50de2d3 | 2453 | |
1741c877 MG |
2454 | /* |
2455 | * For high-order requests, the balanced zones must contain at least | |
2456 | * 25% of the nodes pages for kswapd to sleep. For order-0, all zones | |
2457 | * must be balanced | |
2458 | */ | |
2459 | if (order) | |
5515061d | 2460 | return pgdat_balanced(pgdat, balanced, classzone_idx); |
1741c877 | 2461 | else |
5515061d | 2462 | return all_zones_ok; |
f50de2d3 MG |
2463 | } |
2464 | ||
1da177e4 LT |
2465 | /* |
2466 | * For kswapd, balance_pgdat() will work across all this node's zones until | |
41858966 | 2467 | * they are all at high_wmark_pages(zone). |
1da177e4 | 2468 | * |
0abdee2b | 2469 | * Returns the final order kswapd was reclaiming at |
1da177e4 LT |
2470 | * |
2471 | * There is special handling here for zones which are full of pinned pages. | |
2472 | * This can happen if the pages are all mlocked, or if they are all used by | |
2473 | * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb. | |
2474 | * What we do is to detect the case where all pages in the zone have been | |
2475 | * scanned twice and there has been zero successful reclaim. Mark the zone as | |
2476 | * dead and from now on, only perform a short scan. Basically we're polling | |
2477 | * the zone for when the problem goes away. | |
2478 | * | |
2479 | * kswapd scans the zones in the highmem->normal->dma direction. It skips | |
41858966 MG |
2480 | * zones which have free_pages > high_wmark_pages(zone), but once a zone is |
2481 | * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the | |
2482 | * lower zones regardless of the number of free pages in the lower zones. This | |
2483 | * interoperates with the page allocator fallback scheme to ensure that aging | |
2484 | * of pages is balanced across the zones. | |
1da177e4 | 2485 | */ |
99504748 | 2486 | static unsigned long balance_pgdat(pg_data_t *pgdat, int order, |
dc83edd9 | 2487 | int *classzone_idx) |
1da177e4 | 2488 | { |
1da177e4 | 2489 | int all_zones_ok; |
1741c877 | 2490 | unsigned long balanced; |
1da177e4 | 2491 | int i; |
99504748 | 2492 | int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ |
69e05944 | 2493 | unsigned long total_scanned; |
1da177e4 | 2494 | struct reclaim_state *reclaim_state = current->reclaim_state; |
0ae5e89c YH |
2495 | unsigned long nr_soft_reclaimed; |
2496 | unsigned long nr_soft_scanned; | |
179e9639 AM |
2497 | struct scan_control sc = { |
2498 | .gfp_mask = GFP_KERNEL, | |
a6dc60f8 | 2499 | .may_unmap = 1, |
2e2e4259 | 2500 | .may_swap = 1, |
22fba335 KM |
2501 | /* |
2502 | * kswapd doesn't want to be bailed out while reclaim. because | |
2503 | * we want to put equal scanning pressure on each zone. | |
2504 | */ | |
2505 | .nr_to_reclaim = ULONG_MAX, | |
5ad333eb | 2506 | .order = order, |
f16015fb | 2507 | .target_mem_cgroup = NULL, |
179e9639 | 2508 | }; |
a09ed5e0 YH |
2509 | struct shrink_control shrink = { |
2510 | .gfp_mask = sc.gfp_mask, | |
2511 | }; | |
1da177e4 LT |
2512 | loop_again: |
2513 | total_scanned = 0; | |
9e3b2f8c | 2514 | sc.priority = DEF_PRIORITY; |
a79311c1 | 2515 | sc.nr_reclaimed = 0; |
c0bbbc73 | 2516 | sc.may_writepage = !laptop_mode; |
f8891e5e | 2517 | count_vm_event(PAGEOUTRUN); |
1da177e4 | 2518 | |
9e3b2f8c | 2519 | do { |
1da177e4 | 2520 | unsigned long lru_pages = 0; |
bb3ab596 | 2521 | int has_under_min_watermark_zone = 0; |
1da177e4 LT |
2522 | |
2523 | all_zones_ok = 1; | |
1741c877 | 2524 | balanced = 0; |
1da177e4 | 2525 | |
d6277db4 RW |
2526 | /* |
2527 | * Scan in the highmem->dma direction for the highest | |
2528 | * zone which needs scanning | |
2529 | */ | |
2530 | for (i = pgdat->nr_zones - 1; i >= 0; i--) { | |
2531 | struct zone *zone = pgdat->node_zones + i; | |
1da177e4 | 2532 | |
d6277db4 RW |
2533 | if (!populated_zone(zone)) |
2534 | continue; | |
1da177e4 | 2535 | |
9e3b2f8c KK |
2536 | if (zone->all_unreclaimable && |
2537 | sc.priority != DEF_PRIORITY) | |
d6277db4 | 2538 | continue; |
1da177e4 | 2539 | |
556adecb RR |
2540 | /* |
2541 | * Do some background aging of the anon list, to give | |
2542 | * pages a chance to be referenced before reclaiming. | |
2543 | */ | |
9e3b2f8c | 2544 | age_active_anon(zone, &sc); |
556adecb | 2545 | |
cc715d99 MG |
2546 | /* |
2547 | * If the number of buffer_heads in the machine | |
2548 | * exceeds the maximum allowed level and this node | |
2549 | * has a highmem zone, force kswapd to reclaim from | |
2550 | * it to relieve lowmem pressure. | |
2551 | */ | |
2552 | if (buffer_heads_over_limit && is_highmem_idx(i)) { | |
2553 | end_zone = i; | |
2554 | break; | |
2555 | } | |
2556 | ||
88f5acf8 | 2557 | if (!zone_watermark_ok_safe(zone, order, |
41858966 | 2558 | high_wmark_pages(zone), 0, 0)) { |
d6277db4 | 2559 | end_zone = i; |
e1dbeda6 | 2560 | break; |
439423f6 SL |
2561 | } else { |
2562 | /* If balanced, clear the congested flag */ | |
2563 | zone_clear_flag(zone, ZONE_CONGESTED); | |
1da177e4 | 2564 | } |
1da177e4 | 2565 | } |
e1dbeda6 AM |
2566 | if (i < 0) |
2567 | goto out; | |
2568 | ||
1da177e4 LT |
2569 | for (i = 0; i <= end_zone; i++) { |
2570 | struct zone *zone = pgdat->node_zones + i; | |
2571 | ||
adea02a1 | 2572 | lru_pages += zone_reclaimable_pages(zone); |
1da177e4 LT |
2573 | } |
2574 | ||
2575 | /* | |
2576 | * Now scan the zone in the dma->highmem direction, stopping | |
2577 | * at the last zone which needs scanning. | |
2578 | * | |
2579 | * We do this because the page allocator works in the opposite | |
2580 | * direction. This prevents the page allocator from allocating | |
2581 | * pages behind kswapd's direction of progress, which would | |
2582 | * cause too much scanning of the lower zones. | |
2583 | */ | |
2584 | for (i = 0; i <= end_zone; i++) { | |
2585 | struct zone *zone = pgdat->node_zones + i; | |
fe2c2a10 | 2586 | int nr_slab, testorder; |
8afdcece | 2587 | unsigned long balance_gap; |
1da177e4 | 2588 | |
f3fe6512 | 2589 | if (!populated_zone(zone)) |
1da177e4 LT |
2590 | continue; |
2591 | ||
9e3b2f8c KK |
2592 | if (zone->all_unreclaimable && |
2593 | sc.priority != DEF_PRIORITY) | |
1da177e4 LT |
2594 | continue; |
2595 | ||
1da177e4 | 2596 | sc.nr_scanned = 0; |
4e416953 | 2597 | |
0ae5e89c | 2598 | nr_soft_scanned = 0; |
4e416953 BS |
2599 | /* |
2600 | * Call soft limit reclaim before calling shrink_zone. | |
4e416953 | 2601 | */ |
0ae5e89c YH |
2602 | nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, |
2603 | order, sc.gfp_mask, | |
2604 | &nr_soft_scanned); | |
2605 | sc.nr_reclaimed += nr_soft_reclaimed; | |
2606 | total_scanned += nr_soft_scanned; | |
00918b6a | 2607 | |
32a4330d | 2608 | /* |
8afdcece MG |
2609 | * We put equal pressure on every zone, unless |
2610 | * one zone has way too many pages free | |
2611 | * already. The "too many pages" is defined | |
2612 | * as the high wmark plus a "gap" where the | |
2613 | * gap is either the low watermark or 1% | |
2614 | * of the zone, whichever is smaller. | |
32a4330d | 2615 | */ |
8afdcece MG |
2616 | balance_gap = min(low_wmark_pages(zone), |
2617 | (zone->present_pages + | |
2618 | KSWAPD_ZONE_BALANCE_GAP_RATIO-1) / | |
2619 | KSWAPD_ZONE_BALANCE_GAP_RATIO); | |
fe2c2a10 RR |
2620 | /* |
2621 | * Kswapd reclaims only single pages with compaction | |
2622 | * enabled. Trying too hard to reclaim until contiguous | |
2623 | * free pages have become available can hurt performance | |
2624 | * by evicting too much useful data from memory. | |
2625 | * Do not reclaim more than needed for compaction. | |
2626 | */ | |
2627 | testorder = order; | |
2628 | if (COMPACTION_BUILD && order && | |
2629 | compaction_suitable(zone, order) != | |
2630 | COMPACT_SKIPPED) | |
2631 | testorder = 0; | |
2632 | ||
cc715d99 | 2633 | if ((buffer_heads_over_limit && is_highmem_idx(i)) || |
643ac9fc | 2634 | !zone_watermark_ok_safe(zone, testorder, |
8afdcece | 2635 | high_wmark_pages(zone) + balance_gap, |
d7868dae | 2636 | end_zone, 0)) { |
9e3b2f8c | 2637 | shrink_zone(zone, &sc); |
5a03b051 | 2638 | |
d7868dae MG |
2639 | reclaim_state->reclaimed_slab = 0; |
2640 | nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages); | |
2641 | sc.nr_reclaimed += reclaim_state->reclaimed_slab; | |
2642 | total_scanned += sc.nr_scanned; | |
2643 | ||
2644 | if (nr_slab == 0 && !zone_reclaimable(zone)) | |
2645 | zone->all_unreclaimable = 1; | |
2646 | } | |
2647 | ||
1da177e4 LT |
2648 | /* |
2649 | * If we've done a decent amount of scanning and | |
2650 | * the reclaim ratio is low, start doing writepage | |
2651 | * even in laptop mode | |
2652 | */ | |
2653 | if (total_scanned > SWAP_CLUSTER_MAX * 2 && | |
a79311c1 | 2654 | total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2) |
1da177e4 | 2655 | sc.may_writepage = 1; |
bb3ab596 | 2656 | |
215ddd66 MG |
2657 | if (zone->all_unreclaimable) { |
2658 | if (end_zone && end_zone == i) | |
2659 | end_zone--; | |
d7868dae | 2660 | continue; |
215ddd66 | 2661 | } |
d7868dae | 2662 | |
fe2c2a10 | 2663 | if (!zone_watermark_ok_safe(zone, testorder, |
45973d74 MK |
2664 | high_wmark_pages(zone), end_zone, 0)) { |
2665 | all_zones_ok = 0; | |
2666 | /* | |
2667 | * We are still under min water mark. This | |
2668 | * means that we have a GFP_ATOMIC allocation | |
2669 | * failure risk. Hurry up! | |
2670 | */ | |
88f5acf8 | 2671 | if (!zone_watermark_ok_safe(zone, order, |
45973d74 MK |
2672 | min_wmark_pages(zone), end_zone, 0)) |
2673 | has_under_min_watermark_zone = 1; | |
0e093d99 MG |
2674 | } else { |
2675 | /* | |
2676 | * If a zone reaches its high watermark, | |
2677 | * consider it to be no longer congested. It's | |
2678 | * possible there are dirty pages backed by | |
2679 | * congested BDIs but as pressure is relieved, | |
ab8704b8 | 2680 | * speculatively avoid congestion waits |
0e093d99 MG |
2681 | */ |
2682 | zone_clear_flag(zone, ZONE_CONGESTED); | |
dc83edd9 | 2683 | if (i <= *classzone_idx) |
1741c877 | 2684 | balanced += zone->present_pages; |
45973d74 | 2685 | } |
bb3ab596 | 2686 | |
1da177e4 | 2687 | } |
5515061d MG |
2688 | |
2689 | /* | |
2690 | * If the low watermark is met there is no need for processes | |
2691 | * to be throttled on pfmemalloc_wait as they should not be | |
2692 | * able to safely make forward progress. Wake them | |
2693 | */ | |
2694 | if (waitqueue_active(&pgdat->pfmemalloc_wait) && | |
2695 | pfmemalloc_watermark_ok(pgdat)) | |
2696 | wake_up(&pgdat->pfmemalloc_wait); | |
2697 | ||
dc83edd9 | 2698 | if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx))) |
1da177e4 LT |
2699 | break; /* kswapd: all done */ |
2700 | /* | |
2701 | * OK, kswapd is getting into trouble. Take a nap, then take | |
2702 | * another pass across the zones. | |
2703 | */ | |
9e3b2f8c | 2704 | if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) { |
bb3ab596 KM |
2705 | if (has_under_min_watermark_zone) |
2706 | count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT); | |
2707 | else | |
2708 | congestion_wait(BLK_RW_ASYNC, HZ/10); | |
2709 | } | |
1da177e4 LT |
2710 | |
2711 | /* | |
2712 | * We do this so kswapd doesn't build up large priorities for | |
2713 | * example when it is freeing in parallel with allocators. It | |
2714 | * matches the direct reclaim path behaviour in terms of impact | |
2715 | * on zone->*_priority. | |
2716 | */ | |
a79311c1 | 2717 | if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX) |
1da177e4 | 2718 | break; |
9e3b2f8c | 2719 | } while (--sc.priority >= 0); |
1da177e4 | 2720 | out: |
99504748 MG |
2721 | |
2722 | /* | |
2723 | * order-0: All zones must meet high watermark for a balanced node | |
1741c877 MG |
2724 | * high-order: Balanced zones must make up at least 25% of the node |
2725 | * for the node to be balanced | |
99504748 | 2726 | */ |
dc83edd9 | 2727 | if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) { |
1da177e4 | 2728 | cond_resched(); |
8357376d RW |
2729 | |
2730 | try_to_freeze(); | |
2731 | ||
73ce02e9 KM |
2732 | /* |
2733 | * Fragmentation may mean that the system cannot be | |
2734 | * rebalanced for high-order allocations in all zones. | |
2735 | * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX, | |
2736 | * it means the zones have been fully scanned and are still | |
2737 | * not balanced. For high-order allocations, there is | |
2738 | * little point trying all over again as kswapd may | |
2739 | * infinite loop. | |
2740 | * | |
2741 | * Instead, recheck all watermarks at order-0 as they | |
2742 | * are the most important. If watermarks are ok, kswapd will go | |
2743 | * back to sleep. High-order users can still perform direct | |
2744 | * reclaim if they wish. | |
2745 | */ | |
2746 | if (sc.nr_reclaimed < SWAP_CLUSTER_MAX) | |
2747 | order = sc.order = 0; | |
2748 | ||
1da177e4 LT |
2749 | goto loop_again; |
2750 | } | |
2751 | ||
99504748 MG |
2752 | /* |
2753 | * If kswapd was reclaiming at a higher order, it has the option of | |
2754 | * sleeping without all zones being balanced. Before it does, it must | |
2755 | * ensure that the watermarks for order-0 on *all* zones are met and | |
2756 | * that the congestion flags are cleared. The congestion flag must | |
2757 | * be cleared as kswapd is the only mechanism that clears the flag | |
2758 | * and it is potentially going to sleep here. | |
2759 | */ | |
2760 | if (order) { | |
7be62de9 RR |
2761 | int zones_need_compaction = 1; |
2762 | ||
99504748 MG |
2763 | for (i = 0; i <= end_zone; i++) { |
2764 | struct zone *zone = pgdat->node_zones + i; | |
2765 | ||
2766 | if (!populated_zone(zone)) | |
2767 | continue; | |
2768 | ||
9e3b2f8c KK |
2769 | if (zone->all_unreclaimable && |
2770 | sc.priority != DEF_PRIORITY) | |
99504748 MG |
2771 | continue; |
2772 | ||
fe2c2a10 | 2773 | /* Would compaction fail due to lack of free memory? */ |
496b919b RR |
2774 | if (COMPACTION_BUILD && |
2775 | compaction_suitable(zone, order) == COMPACT_SKIPPED) | |
fe2c2a10 RR |
2776 | goto loop_again; |
2777 | ||
99504748 MG |
2778 | /* Confirm the zone is balanced for order-0 */ |
2779 | if (!zone_watermark_ok(zone, 0, | |
2780 | high_wmark_pages(zone), 0, 0)) { | |
2781 | order = sc.order = 0; | |
2782 | goto loop_again; | |
2783 | } | |
2784 | ||
7be62de9 RR |
2785 | /* Check if the memory needs to be defragmented. */ |
2786 | if (zone_watermark_ok(zone, order, | |
2787 | low_wmark_pages(zone), *classzone_idx, 0)) | |
2788 | zones_need_compaction = 0; | |
2789 | ||
99504748 MG |
2790 | /* If balanced, clear the congested flag */ |
2791 | zone_clear_flag(zone, ZONE_CONGESTED); | |
2792 | } | |
7be62de9 RR |
2793 | |
2794 | if (zones_need_compaction) | |
2795 | compact_pgdat(pgdat, order); | |
99504748 MG |
2796 | } |
2797 | ||
0abdee2b | 2798 | /* |
5515061d | 2799 | * Return the order we were reclaiming at so prepare_kswapd_sleep() |
0abdee2b MG |
2800 | * makes a decision on the order we were last reclaiming at. However, |
2801 | * if another caller entered the allocator slow path while kswapd | |
2802 | * was awake, order will remain at the higher level | |
2803 | */ | |
dc83edd9 | 2804 | *classzone_idx = end_zone; |
0abdee2b | 2805 | return order; |
1da177e4 LT |
2806 | } |
2807 | ||
dc83edd9 | 2808 | static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx) |
f0bc0a60 KM |
2809 | { |
2810 | long remaining = 0; | |
2811 | DEFINE_WAIT(wait); | |
2812 | ||
2813 | if (freezing(current) || kthread_should_stop()) | |
2814 | return; | |
2815 | ||
2816 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
2817 | ||
2818 | /* Try to sleep for a short interval */ | |
5515061d | 2819 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
f0bc0a60 KM |
2820 | remaining = schedule_timeout(HZ/10); |
2821 | finish_wait(&pgdat->kswapd_wait, &wait); | |
2822 | prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE); | |
2823 | } | |
2824 | ||
2825 | /* | |
2826 | * After a short sleep, check if it was a premature sleep. If not, then | |
2827 | * go fully to sleep until explicitly woken up. | |
2828 | */ | |
5515061d | 2829 | if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) { |
f0bc0a60 KM |
2830 | trace_mm_vmscan_kswapd_sleep(pgdat->node_id); |
2831 | ||
2832 | /* | |
2833 | * vmstat counters are not perfectly accurate and the estimated | |
2834 | * value for counters such as NR_FREE_PAGES can deviate from the | |
2835 | * true value by nr_online_cpus * threshold. To avoid the zone | |
2836 | * watermarks being breached while under pressure, we reduce the | |
2837 | * per-cpu vmstat threshold while kswapd is awake and restore | |
2838 | * them before going back to sleep. | |
2839 | */ | |
2840 | set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold); | |
1c7e7f6c AK |
2841 | |
2842 | if (!kthread_should_stop()) | |
2843 | schedule(); | |
2844 | ||
f0bc0a60 KM |
2845 | set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold); |
2846 | } else { | |
2847 | if (remaining) | |
2848 | count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY); | |
2849 | else | |
2850 | count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY); | |
2851 | } | |
2852 | finish_wait(&pgdat->kswapd_wait, &wait); | |
2853 | } | |
2854 | ||
1da177e4 LT |
2855 | /* |
2856 | * The background pageout daemon, started as a kernel thread | |
4f98a2fe | 2857 | * from the init process. |
1da177e4 LT |
2858 | * |
2859 | * This basically trickles out pages so that we have _some_ | |
2860 | * free memory available even if there is no other activity | |
2861 | * that frees anything up. This is needed for things like routing | |
2862 | * etc, where we otherwise might have all activity going on in | |
2863 | * asynchronous contexts that cannot page things out. | |
2864 | * | |
2865 | * If there are applications that are active memory-allocators | |
2866 | * (most normal use), this basically shouldn't matter. | |
2867 | */ | |
2868 | static int kswapd(void *p) | |
2869 | { | |
215ddd66 | 2870 | unsigned long order, new_order; |
d2ebd0f6 | 2871 | unsigned balanced_order; |
215ddd66 | 2872 | int classzone_idx, new_classzone_idx; |
d2ebd0f6 | 2873 | int balanced_classzone_idx; |
1da177e4 LT |
2874 | pg_data_t *pgdat = (pg_data_t*)p; |
2875 | struct task_struct *tsk = current; | |
f0bc0a60 | 2876 | |
1da177e4 LT |
2877 | struct reclaim_state reclaim_state = { |
2878 | .reclaimed_slab = 0, | |
2879 | }; | |
a70f7302 | 2880 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
1da177e4 | 2881 | |
cf40bd16 NP |
2882 | lockdep_set_current_reclaim_state(GFP_KERNEL); |
2883 | ||
174596a0 | 2884 | if (!cpumask_empty(cpumask)) |
c5f59f08 | 2885 | set_cpus_allowed_ptr(tsk, cpumask); |
1da177e4 LT |
2886 | current->reclaim_state = &reclaim_state; |
2887 | ||
2888 | /* | |
2889 | * Tell the memory management that we're a "memory allocator", | |
2890 | * and that if we need more memory we should get access to it | |
2891 | * regardless (see "__alloc_pages()"). "kswapd" should | |
2892 | * never get caught in the normal page freeing logic. | |
2893 | * | |
2894 | * (Kswapd normally doesn't need memory anyway, but sometimes | |
2895 | * you need a small amount of memory in order to be able to | |
2896 | * page out something else, and this flag essentially protects | |
2897 | * us from recursively trying to free more memory as we're | |
2898 | * trying to free the first piece of memory in the first place). | |
2899 | */ | |
930d9152 | 2900 | tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; |
83144186 | 2901 | set_freezable(); |
1da177e4 | 2902 | |
215ddd66 | 2903 | order = new_order = 0; |
d2ebd0f6 | 2904 | balanced_order = 0; |
215ddd66 | 2905 | classzone_idx = new_classzone_idx = pgdat->nr_zones - 1; |
d2ebd0f6 | 2906 | balanced_classzone_idx = classzone_idx; |
1da177e4 | 2907 | for ( ; ; ) { |
8fe23e05 | 2908 | int ret; |
3e1d1d28 | 2909 | |
215ddd66 MG |
2910 | /* |
2911 | * If the last balance_pgdat was unsuccessful it's unlikely a | |
2912 | * new request of a similar or harder type will succeed soon | |
2913 | * so consider going to sleep on the basis we reclaimed at | |
2914 | */ | |
d2ebd0f6 AS |
2915 | if (balanced_classzone_idx >= new_classzone_idx && |
2916 | balanced_order == new_order) { | |
215ddd66 MG |
2917 | new_order = pgdat->kswapd_max_order; |
2918 | new_classzone_idx = pgdat->classzone_idx; | |
2919 | pgdat->kswapd_max_order = 0; | |
2920 | pgdat->classzone_idx = pgdat->nr_zones - 1; | |
2921 | } | |
2922 | ||
99504748 | 2923 | if (order < new_order || classzone_idx > new_classzone_idx) { |
1da177e4 LT |
2924 | /* |
2925 | * Don't sleep if someone wants a larger 'order' | |
99504748 | 2926 | * allocation or has tigher zone constraints |
1da177e4 LT |
2927 | */ |
2928 | order = new_order; | |
99504748 | 2929 | classzone_idx = new_classzone_idx; |
1da177e4 | 2930 | } else { |
d2ebd0f6 AS |
2931 | kswapd_try_to_sleep(pgdat, balanced_order, |
2932 | balanced_classzone_idx); | |
1da177e4 | 2933 | order = pgdat->kswapd_max_order; |
99504748 | 2934 | classzone_idx = pgdat->classzone_idx; |
f0dfcde0 AS |
2935 | new_order = order; |
2936 | new_classzone_idx = classzone_idx; | |
4d40502e | 2937 | pgdat->kswapd_max_order = 0; |
215ddd66 | 2938 | pgdat->classzone_idx = pgdat->nr_zones - 1; |
1da177e4 | 2939 | } |
1da177e4 | 2940 | |
8fe23e05 DR |
2941 | ret = try_to_freeze(); |
2942 | if (kthread_should_stop()) | |
2943 | break; | |
2944 | ||
2945 | /* | |
2946 | * We can speed up thawing tasks if we don't call balance_pgdat | |
2947 | * after returning from the refrigerator | |
2948 | */ | |
33906bc5 MG |
2949 | if (!ret) { |
2950 | trace_mm_vmscan_kswapd_wake(pgdat->node_id, order); | |
d2ebd0f6 AS |
2951 | balanced_classzone_idx = classzone_idx; |
2952 | balanced_order = balance_pgdat(pgdat, order, | |
2953 | &balanced_classzone_idx); | |
33906bc5 | 2954 | } |
1da177e4 LT |
2955 | } |
2956 | return 0; | |
2957 | } | |
2958 | ||
2959 | /* | |
2960 | * A zone is low on free memory, so wake its kswapd task to service it. | |
2961 | */ | |
99504748 | 2962 | void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) |
1da177e4 LT |
2963 | { |
2964 | pg_data_t *pgdat; | |
2965 | ||
f3fe6512 | 2966 | if (!populated_zone(zone)) |
1da177e4 LT |
2967 | return; |
2968 | ||
88f5acf8 | 2969 | if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) |
1da177e4 | 2970 | return; |
88f5acf8 | 2971 | pgdat = zone->zone_pgdat; |
99504748 | 2972 | if (pgdat->kswapd_max_order < order) { |
1da177e4 | 2973 | pgdat->kswapd_max_order = order; |
99504748 MG |
2974 | pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx); |
2975 | } | |
8d0986e2 | 2976 | if (!waitqueue_active(&pgdat->kswapd_wait)) |
1da177e4 | 2977 | return; |
88f5acf8 MG |
2978 | if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) |
2979 | return; | |
2980 | ||
2981 | trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); | |
8d0986e2 | 2982 | wake_up_interruptible(&pgdat->kswapd_wait); |
1da177e4 LT |
2983 | } |
2984 | ||
adea02a1 WF |
2985 | /* |
2986 | * The reclaimable count would be mostly accurate. | |
2987 | * The less reclaimable pages may be | |
2988 | * - mlocked pages, which will be moved to unevictable list when encountered | |
2989 | * - mapped pages, which may require several travels to be reclaimed | |
2990 | * - dirty pages, which is not "instantly" reclaimable | |
2991 | */ | |
2992 | unsigned long global_reclaimable_pages(void) | |
4f98a2fe | 2993 | { |
adea02a1 WF |
2994 | int nr; |
2995 | ||
2996 | nr = global_page_state(NR_ACTIVE_FILE) + | |
2997 | global_page_state(NR_INACTIVE_FILE); | |
2998 | ||
2999 | if (nr_swap_pages > 0) | |
3000 | nr += global_page_state(NR_ACTIVE_ANON) + | |
3001 | global_page_state(NR_INACTIVE_ANON); | |
3002 | ||
3003 | return nr; | |
3004 | } | |
3005 | ||
3006 | unsigned long zone_reclaimable_pages(struct zone *zone) | |
3007 | { | |
3008 | int nr; | |
3009 | ||
3010 | nr = zone_page_state(zone, NR_ACTIVE_FILE) + | |
3011 | zone_page_state(zone, NR_INACTIVE_FILE); | |
3012 | ||
3013 | if (nr_swap_pages > 0) | |
3014 | nr += zone_page_state(zone, NR_ACTIVE_ANON) + | |
3015 | zone_page_state(zone, NR_INACTIVE_ANON); | |
3016 | ||
3017 | return nr; | |
4f98a2fe RR |
3018 | } |
3019 | ||
c6f37f12 | 3020 | #ifdef CONFIG_HIBERNATION |
1da177e4 | 3021 | /* |
7b51755c | 3022 | * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of |
d6277db4 RW |
3023 | * freed pages. |
3024 | * | |
3025 | * Rather than trying to age LRUs the aim is to preserve the overall | |
3026 | * LRU order by reclaiming preferentially | |
3027 | * inactive > active > active referenced > active mapped | |
1da177e4 | 3028 | */ |
7b51755c | 3029 | unsigned long shrink_all_memory(unsigned long nr_to_reclaim) |
1da177e4 | 3030 | { |
d6277db4 | 3031 | struct reclaim_state reclaim_state; |
d6277db4 | 3032 | struct scan_control sc = { |
7b51755c KM |
3033 | .gfp_mask = GFP_HIGHUSER_MOVABLE, |
3034 | .may_swap = 1, | |
3035 | .may_unmap = 1, | |
d6277db4 | 3036 | .may_writepage = 1, |
7b51755c KM |
3037 | .nr_to_reclaim = nr_to_reclaim, |
3038 | .hibernation_mode = 1, | |
7b51755c | 3039 | .order = 0, |
9e3b2f8c | 3040 | .priority = DEF_PRIORITY, |
1da177e4 | 3041 | }; |
a09ed5e0 YH |
3042 | struct shrink_control shrink = { |
3043 | .gfp_mask = sc.gfp_mask, | |
3044 | }; | |
3045 | struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask); | |
7b51755c KM |
3046 | struct task_struct *p = current; |
3047 | unsigned long nr_reclaimed; | |
1da177e4 | 3048 | |
7b51755c KM |
3049 | p->flags |= PF_MEMALLOC; |
3050 | lockdep_set_current_reclaim_state(sc.gfp_mask); | |
3051 | reclaim_state.reclaimed_slab = 0; | |
3052 | p->reclaim_state = &reclaim_state; | |
d6277db4 | 3053 | |
a09ed5e0 | 3054 | nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink); |
d979677c | 3055 | |
7b51755c KM |
3056 | p->reclaim_state = NULL; |
3057 | lockdep_clear_current_reclaim_state(); | |
3058 | p->flags &= ~PF_MEMALLOC; | |
d6277db4 | 3059 | |
7b51755c | 3060 | return nr_reclaimed; |
1da177e4 | 3061 | } |
c6f37f12 | 3062 | #endif /* CONFIG_HIBERNATION */ |
1da177e4 | 3063 | |
1da177e4 LT |
3064 | /* It's optimal to keep kswapds on the same CPUs as their memory, but |
3065 | not required for correctness. So if the last cpu in a node goes | |
3066 | away, we get changed to run anywhere: as the first one comes back, | |
3067 | restore their cpu bindings. */ | |
9c7b216d | 3068 | static int __devinit cpu_callback(struct notifier_block *nfb, |
69e05944 | 3069 | unsigned long action, void *hcpu) |
1da177e4 | 3070 | { |
58c0a4a7 | 3071 | int nid; |
1da177e4 | 3072 | |
8bb78442 | 3073 | if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) { |
58c0a4a7 | 3074 | for_each_node_state(nid, N_HIGH_MEMORY) { |
c5f59f08 | 3075 | pg_data_t *pgdat = NODE_DATA(nid); |
a70f7302 RR |
3076 | const struct cpumask *mask; |
3077 | ||
3078 | mask = cpumask_of_node(pgdat->node_id); | |
c5f59f08 | 3079 | |
3e597945 | 3080 | if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids) |
1da177e4 | 3081 | /* One of our CPUs online: restore mask */ |
c5f59f08 | 3082 | set_cpus_allowed_ptr(pgdat->kswapd, mask); |
1da177e4 LT |
3083 | } |
3084 | } | |
3085 | return NOTIFY_OK; | |
3086 | } | |
1da177e4 | 3087 | |
3218ae14 YG |
3088 | /* |
3089 | * This kswapd start function will be called by init and node-hot-add. | |
3090 | * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added. | |
3091 | */ | |
3092 | int kswapd_run(int nid) | |
3093 | { | |
3094 | pg_data_t *pgdat = NODE_DATA(nid); | |
3095 | int ret = 0; | |
3096 | ||
3097 | if (pgdat->kswapd) | |
3098 | return 0; | |
3099 | ||
3100 | pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid); | |
3101 | if (IS_ERR(pgdat->kswapd)) { | |
3102 | /* failure at boot is fatal */ | |
3103 | BUG_ON(system_state == SYSTEM_BOOTING); | |
3104 | printk("Failed to start kswapd on node %d\n",nid); | |
18b48d58 | 3105 | pgdat->kswapd = NULL; |
3218ae14 YG |
3106 | ret = -1; |
3107 | } | |
3108 | return ret; | |
3109 | } | |
3110 | ||
8fe23e05 | 3111 | /* |
d8adde17 JL |
3112 | * Called by memory hotplug when all memory in a node is offlined. Caller must |
3113 | * hold lock_memory_hotplug(). | |
8fe23e05 DR |
3114 | */ |
3115 | void kswapd_stop(int nid) | |
3116 | { | |
3117 | struct task_struct *kswapd = NODE_DATA(nid)->kswapd; | |
3118 | ||
d8adde17 | 3119 | if (kswapd) { |
8fe23e05 | 3120 | kthread_stop(kswapd); |
d8adde17 JL |
3121 | NODE_DATA(nid)->kswapd = NULL; |
3122 | } | |
8fe23e05 DR |
3123 | } |
3124 | ||
1da177e4 LT |
3125 | static int __init kswapd_init(void) |
3126 | { | |
3218ae14 | 3127 | int nid; |
69e05944 | 3128 | |
1da177e4 | 3129 | swap_setup(); |
9422ffba | 3130 | for_each_node_state(nid, N_HIGH_MEMORY) |
3218ae14 | 3131 | kswapd_run(nid); |
1da177e4 LT |
3132 | hotcpu_notifier(cpu_callback, 0); |
3133 | return 0; | |
3134 | } | |
3135 | ||
3136 | module_init(kswapd_init) | |
9eeff239 CL |
3137 | |
3138 | #ifdef CONFIG_NUMA | |
3139 | /* | |
3140 | * Zone reclaim mode | |
3141 | * | |
3142 | * If non-zero call zone_reclaim when the number of free pages falls below | |
3143 | * the watermarks. | |
9eeff239 CL |
3144 | */ |
3145 | int zone_reclaim_mode __read_mostly; | |
3146 | ||
1b2ffb78 | 3147 | #define RECLAIM_OFF 0 |
7d03431c | 3148 | #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */ |
1b2ffb78 CL |
3149 | #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */ |
3150 | #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */ | |
3151 | ||
a92f7126 CL |
3152 | /* |
3153 | * Priority for ZONE_RECLAIM. This determines the fraction of pages | |
3154 | * of a node considered for each zone_reclaim. 4 scans 1/16th of | |
3155 | * a zone. | |
3156 | */ | |
3157 | #define ZONE_RECLAIM_PRIORITY 4 | |
3158 | ||
9614634f CL |
3159 | /* |
3160 | * Percentage of pages in a zone that must be unmapped for zone_reclaim to | |
3161 | * occur. | |
3162 | */ | |
3163 | int sysctl_min_unmapped_ratio = 1; | |
3164 | ||
0ff38490 CL |
3165 | /* |
3166 | * If the number of slab pages in a zone grows beyond this percentage then | |
3167 | * slab reclaim needs to occur. | |
3168 | */ | |
3169 | int sysctl_min_slab_ratio = 5; | |
3170 | ||
90afa5de MG |
3171 | static inline unsigned long zone_unmapped_file_pages(struct zone *zone) |
3172 | { | |
3173 | unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED); | |
3174 | unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) + | |
3175 | zone_page_state(zone, NR_ACTIVE_FILE); | |
3176 | ||
3177 | /* | |
3178 | * It's possible for there to be more file mapped pages than | |
3179 | * accounted for by the pages on the file LRU lists because | |
3180 | * tmpfs pages accounted for as ANON can also be FILE_MAPPED | |
3181 | */ | |
3182 | return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0; | |
3183 | } | |
3184 | ||
3185 | /* Work out how many page cache pages we can reclaim in this reclaim_mode */ | |
3186 | static long zone_pagecache_reclaimable(struct zone *zone) | |
3187 | { | |
3188 | long nr_pagecache_reclaimable; | |
3189 | long delta = 0; | |
3190 | ||
3191 | /* | |
3192 | * If RECLAIM_SWAP is set, then all file pages are considered | |
3193 | * potentially reclaimable. Otherwise, we have to worry about | |
3194 | * pages like swapcache and zone_unmapped_file_pages() provides | |
3195 | * a better estimate | |
3196 | */ | |
3197 | if (zone_reclaim_mode & RECLAIM_SWAP) | |
3198 | nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES); | |
3199 | else | |
3200 | nr_pagecache_reclaimable = zone_unmapped_file_pages(zone); | |
3201 | ||
3202 | /* If we can't clean pages, remove dirty pages from consideration */ | |
3203 | if (!(zone_reclaim_mode & RECLAIM_WRITE)) | |
3204 | delta += zone_page_state(zone, NR_FILE_DIRTY); | |
3205 | ||
3206 | /* Watch for any possible underflows due to delta */ | |
3207 | if (unlikely(delta > nr_pagecache_reclaimable)) | |
3208 | delta = nr_pagecache_reclaimable; | |
3209 | ||
3210 | return nr_pagecache_reclaimable - delta; | |
3211 | } | |
3212 | ||
9eeff239 CL |
3213 | /* |
3214 | * Try to free up some pages from this zone through reclaim. | |
3215 | */ | |
179e9639 | 3216 | static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) |
9eeff239 | 3217 | { |
7fb2d46d | 3218 | /* Minimum pages needed in order to stay on node */ |
69e05944 | 3219 | const unsigned long nr_pages = 1 << order; |
9eeff239 CL |
3220 | struct task_struct *p = current; |
3221 | struct reclaim_state reclaim_state; | |
179e9639 AM |
3222 | struct scan_control sc = { |
3223 | .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE), | |
a6dc60f8 | 3224 | .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP), |
2e2e4259 | 3225 | .may_swap = 1, |
22fba335 KM |
3226 | .nr_to_reclaim = max_t(unsigned long, nr_pages, |
3227 | SWAP_CLUSTER_MAX), | |
179e9639 | 3228 | .gfp_mask = gfp_mask, |
bd2f6199 | 3229 | .order = order, |
9e3b2f8c | 3230 | .priority = ZONE_RECLAIM_PRIORITY, |
179e9639 | 3231 | }; |
a09ed5e0 YH |
3232 | struct shrink_control shrink = { |
3233 | .gfp_mask = sc.gfp_mask, | |
3234 | }; | |
15748048 | 3235 | unsigned long nr_slab_pages0, nr_slab_pages1; |
9eeff239 | 3236 | |
9eeff239 | 3237 | cond_resched(); |
d4f7796e CL |
3238 | /* |
3239 | * We need to be able to allocate from the reserves for RECLAIM_SWAP | |
3240 | * and we also need to be able to write out pages for RECLAIM_WRITE | |
3241 | * and RECLAIM_SWAP. | |
3242 | */ | |
3243 | p->flags |= PF_MEMALLOC | PF_SWAPWRITE; | |
76ca542d | 3244 | lockdep_set_current_reclaim_state(gfp_mask); |
9eeff239 CL |
3245 | reclaim_state.reclaimed_slab = 0; |
3246 | p->reclaim_state = &reclaim_state; | |
c84db23c | 3247 | |
90afa5de | 3248 | if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) { |
0ff38490 CL |
3249 | /* |
3250 | * Free memory by calling shrink zone with increasing | |
3251 | * priorities until we have enough memory freed. | |
3252 | */ | |
0ff38490 | 3253 | do { |
9e3b2f8c KK |
3254 | shrink_zone(zone, &sc); |
3255 | } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0); | |
0ff38490 | 3256 | } |
c84db23c | 3257 | |
15748048 KM |
3258 | nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3259 | if (nr_slab_pages0 > zone->min_slab_pages) { | |
2a16e3f4 | 3260 | /* |
7fb2d46d | 3261 | * shrink_slab() does not currently allow us to determine how |
0ff38490 CL |
3262 | * many pages were freed in this zone. So we take the current |
3263 | * number of slab pages and shake the slab until it is reduced | |
3264 | * by the same nr_pages that we used for reclaiming unmapped | |
3265 | * pages. | |
2a16e3f4 | 3266 | * |
0ff38490 CL |
3267 | * Note that shrink_slab will free memory on all zones and may |
3268 | * take a long time. | |
2a16e3f4 | 3269 | */ |
4dc4b3d9 KM |
3270 | for (;;) { |
3271 | unsigned long lru_pages = zone_reclaimable_pages(zone); | |
3272 | ||
3273 | /* No reclaimable slab or very low memory pressure */ | |
1495f230 | 3274 | if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages)) |
4dc4b3d9 KM |
3275 | break; |
3276 | ||
3277 | /* Freed enough memory */ | |
3278 | nr_slab_pages1 = zone_page_state(zone, | |
3279 | NR_SLAB_RECLAIMABLE); | |
3280 | if (nr_slab_pages1 + nr_pages <= nr_slab_pages0) | |
3281 | break; | |
3282 | } | |
83e33a47 CL |
3283 | |
3284 | /* | |
3285 | * Update nr_reclaimed by the number of slab pages we | |
3286 | * reclaimed from this zone. | |
3287 | */ | |
15748048 KM |
3288 | nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE); |
3289 | if (nr_slab_pages1 < nr_slab_pages0) | |
3290 | sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1; | |
2a16e3f4 CL |
3291 | } |
3292 | ||
9eeff239 | 3293 | p->reclaim_state = NULL; |
d4f7796e | 3294 | current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE); |
76ca542d | 3295 | lockdep_clear_current_reclaim_state(); |
a79311c1 | 3296 | return sc.nr_reclaimed >= nr_pages; |
9eeff239 | 3297 | } |
179e9639 AM |
3298 | |
3299 | int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) | |
3300 | { | |
179e9639 | 3301 | int node_id; |
d773ed6b | 3302 | int ret; |
179e9639 AM |
3303 | |
3304 | /* | |
0ff38490 CL |
3305 | * Zone reclaim reclaims unmapped file backed pages and |
3306 | * slab pages if we are over the defined limits. | |
34aa1330 | 3307 | * |
9614634f CL |
3308 | * A small portion of unmapped file backed pages is needed for |
3309 | * file I/O otherwise pages read by file I/O will be immediately | |
3310 | * thrown out if the zone is overallocated. So we do not reclaim | |
3311 | * if less than a specified percentage of the zone is used by | |
3312 | * unmapped file backed pages. | |
179e9639 | 3313 | */ |
90afa5de MG |
3314 | if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages && |
3315 | zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) | |
fa5e084e | 3316 | return ZONE_RECLAIM_FULL; |
179e9639 | 3317 | |
93e4a89a | 3318 | if (zone->all_unreclaimable) |
fa5e084e | 3319 | return ZONE_RECLAIM_FULL; |
d773ed6b | 3320 | |
179e9639 | 3321 | /* |
d773ed6b | 3322 | * Do not scan if the allocation should not be delayed. |
179e9639 | 3323 | */ |
d773ed6b | 3324 | if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC)) |
fa5e084e | 3325 | return ZONE_RECLAIM_NOSCAN; |
179e9639 AM |
3326 | |
3327 | /* | |
3328 | * Only run zone reclaim on the local zone or on zones that do not | |
3329 | * have associated processors. This will favor the local processor | |
3330 | * over remote processors and spread off node memory allocations | |
3331 | * as wide as possible. | |
3332 | */ | |
89fa3024 | 3333 | node_id = zone_to_nid(zone); |
37c0708d | 3334 | if (node_state(node_id, N_CPU) && node_id != numa_node_id()) |
fa5e084e | 3335 | return ZONE_RECLAIM_NOSCAN; |
d773ed6b DR |
3336 | |
3337 | if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED)) | |
fa5e084e MG |
3338 | return ZONE_RECLAIM_NOSCAN; |
3339 | ||
d773ed6b DR |
3340 | ret = __zone_reclaim(zone, gfp_mask, order); |
3341 | zone_clear_flag(zone, ZONE_RECLAIM_LOCKED); | |
3342 | ||
24cf7251 MG |
3343 | if (!ret) |
3344 | count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED); | |
3345 | ||
d773ed6b | 3346 | return ret; |
179e9639 | 3347 | } |
9eeff239 | 3348 | #endif |
894bc310 | 3349 | |
894bc310 LS |
3350 | /* |
3351 | * page_evictable - test whether a page is evictable | |
3352 | * @page: the page to test | |
3353 | * @vma: the VMA in which the page is or will be mapped, may be NULL | |
3354 | * | |
3355 | * Test whether page is evictable--i.e., should be placed on active/inactive | |
b291f000 NP |
3356 | * lists vs unevictable list. The vma argument is !NULL when called from the |
3357 | * fault path to determine how to instantate a new page. | |
894bc310 LS |
3358 | * |
3359 | * Reasons page might not be evictable: | |
ba9ddf49 | 3360 | * (1) page's mapping marked unevictable |
b291f000 | 3361 | * (2) page is part of an mlocked VMA |
ba9ddf49 | 3362 | * |
894bc310 LS |
3363 | */ |
3364 | int page_evictable(struct page *page, struct vm_area_struct *vma) | |
3365 | { | |
3366 | ||
ba9ddf49 LS |
3367 | if (mapping_unevictable(page_mapping(page))) |
3368 | return 0; | |
3369 | ||
096a7cf4 | 3370 | if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page))) |
b291f000 | 3371 | return 0; |
894bc310 LS |
3372 | |
3373 | return 1; | |
3374 | } | |
89e004ea | 3375 | |
85046579 | 3376 | #ifdef CONFIG_SHMEM |
89e004ea | 3377 | /** |
24513264 HD |
3378 | * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list |
3379 | * @pages: array of pages to check | |
3380 | * @nr_pages: number of pages to check | |
89e004ea | 3381 | * |
24513264 | 3382 | * Checks pages for evictability and moves them to the appropriate lru list. |
85046579 HD |
3383 | * |
3384 | * This function is only used for SysV IPC SHM_UNLOCK. | |
89e004ea | 3385 | */ |
24513264 | 3386 | void check_move_unevictable_pages(struct page **pages, int nr_pages) |
89e004ea | 3387 | { |
925b7673 | 3388 | struct lruvec *lruvec; |
24513264 HD |
3389 | struct zone *zone = NULL; |
3390 | int pgscanned = 0; | |
3391 | int pgrescued = 0; | |
3392 | int i; | |
89e004ea | 3393 | |
24513264 HD |
3394 | for (i = 0; i < nr_pages; i++) { |
3395 | struct page *page = pages[i]; | |
3396 | struct zone *pagezone; | |
89e004ea | 3397 | |
24513264 HD |
3398 | pgscanned++; |
3399 | pagezone = page_zone(page); | |
3400 | if (pagezone != zone) { | |
3401 | if (zone) | |
3402 | spin_unlock_irq(&zone->lru_lock); | |
3403 | zone = pagezone; | |
3404 | spin_lock_irq(&zone->lru_lock); | |
3405 | } | |
fa9add64 | 3406 | lruvec = mem_cgroup_page_lruvec(page, zone); |
89e004ea | 3407 | |
24513264 HD |
3408 | if (!PageLRU(page) || !PageUnevictable(page)) |
3409 | continue; | |
89e004ea | 3410 | |
24513264 HD |
3411 | if (page_evictable(page, NULL)) { |
3412 | enum lru_list lru = page_lru_base_type(page); | |
3413 | ||
3414 | VM_BUG_ON(PageActive(page)); | |
3415 | ClearPageUnevictable(page); | |
fa9add64 HD |
3416 | del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE); |
3417 | add_page_to_lru_list(page, lruvec, lru); | |
24513264 | 3418 | pgrescued++; |
89e004ea | 3419 | } |
24513264 | 3420 | } |
89e004ea | 3421 | |
24513264 HD |
3422 | if (zone) { |
3423 | __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); | |
3424 | __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned); | |
3425 | spin_unlock_irq(&zone->lru_lock); | |
89e004ea | 3426 | } |
89e004ea | 3427 | } |
85046579 | 3428 | #endif /* CONFIG_SHMEM */ |
af936a16 | 3429 | |
264e56d8 | 3430 | static void warn_scan_unevictable_pages(void) |
af936a16 | 3431 | { |
264e56d8 | 3432 | printk_once(KERN_WARNING |
25bd91bd | 3433 | "%s: The scan_unevictable_pages sysctl/node-interface has been " |
264e56d8 | 3434 | "disabled for lack of a legitimate use case. If you have " |
25bd91bd KM |
3435 | "one, please send an email to [email protected].\n", |
3436 | current->comm); | |
af936a16 LS |
3437 | } |
3438 | ||
3439 | /* | |
3440 | * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of | |
3441 | * all nodes' unevictable lists for evictable pages | |
3442 | */ | |
3443 | unsigned long scan_unevictable_pages; | |
3444 | ||
3445 | int scan_unevictable_handler(struct ctl_table *table, int write, | |
8d65af78 | 3446 | void __user *buffer, |
af936a16 LS |
3447 | size_t *length, loff_t *ppos) |
3448 | { | |
264e56d8 | 3449 | warn_scan_unevictable_pages(); |
8d65af78 | 3450 | proc_doulongvec_minmax(table, write, buffer, length, ppos); |
af936a16 LS |
3451 | scan_unevictable_pages = 0; |
3452 | return 0; | |
3453 | } | |
3454 | ||
e4455abb | 3455 | #ifdef CONFIG_NUMA |
af936a16 LS |
3456 | /* |
3457 | * per node 'scan_unevictable_pages' attribute. On demand re-scan of | |
3458 | * a specified node's per zone unevictable lists for evictable pages. | |
3459 | */ | |
3460 | ||
10fbcf4c KS |
3461 | static ssize_t read_scan_unevictable_node(struct device *dev, |
3462 | struct device_attribute *attr, | |
af936a16 LS |
3463 | char *buf) |
3464 | { | |
264e56d8 | 3465 | warn_scan_unevictable_pages(); |
af936a16 LS |
3466 | return sprintf(buf, "0\n"); /* always zero; should fit... */ |
3467 | } | |
3468 | ||
10fbcf4c KS |
3469 | static ssize_t write_scan_unevictable_node(struct device *dev, |
3470 | struct device_attribute *attr, | |
af936a16 LS |
3471 | const char *buf, size_t count) |
3472 | { | |
264e56d8 | 3473 | warn_scan_unevictable_pages(); |
af936a16 LS |
3474 | return 1; |
3475 | } | |
3476 | ||
3477 | ||
10fbcf4c | 3478 | static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR, |
af936a16 LS |
3479 | read_scan_unevictable_node, |
3480 | write_scan_unevictable_node); | |
3481 | ||
3482 | int scan_unevictable_register_node(struct node *node) | |
3483 | { | |
10fbcf4c | 3484 | return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages); |
af936a16 LS |
3485 | } |
3486 | ||
3487 | void scan_unevictable_unregister_node(struct node *node) | |
3488 | { | |
10fbcf4c | 3489 | device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages); |
af936a16 | 3490 | } |
e4455abb | 3491 | #endif |