]>
Commit | Line | Data |
---|---|---|
801c135c AB |
1 | /* |
2 | * Copyright (c) International Business Machines Corp., 2006 | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License as published by | |
6 | * the Free Software Foundation; either version 2 of the License, or | |
7 | * (at your option) any later version. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | |
12 | * the GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write to the Free Software | |
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
17 | * | |
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | |
19 | */ | |
20 | ||
21 | /* | |
85c6e6e2 | 22 | * UBI scanning sub-system. |
801c135c | 23 | * |
85c6e6e2 | 24 | * This sub-system is responsible for scanning the flash media, checking UBI |
801c135c AB |
25 | * headers and providing complete information about the UBI flash image. |
26 | * | |
78d87c95 | 27 | * The scanning information is represented by a &struct ubi_scan_info' object. |
801c135c AB |
28 | * Information about found volumes is represented by &struct ubi_scan_volume |
29 | * objects which are kept in volume RB-tree with root at the @volumes field. | |
30 | * The RB-tree is indexed by the volume ID. | |
31 | * | |
32 | * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. | |
33 | * These objects are kept in per-volume RB-trees with the root at the | |
34 | * corresponding &struct ubi_scan_volume object. To put it differently, we keep | |
35 | * an RB-tree of per-volume objects and each of these objects is the root of | |
36 | * RB-tree of per-eraseblock objects. | |
37 | * | |
38 | * Corrupted physical eraseblocks are put to the @corr list, free physical | |
39 | * eraseblocks are put to the @free list and the physical eraseblock to be | |
40 | * erased are put to the @erase list. | |
41 | */ | |
42 | ||
43 | #include <linux/err.h> | |
5a0e3ad6 | 44 | #include <linux/slab.h> |
801c135c | 45 | #include <linux/crc32.h> |
3013ee31 | 46 | #include <linux/math64.h> |
801c135c AB |
47 | #include "ubi.h" |
48 | ||
49 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | |
e88d6e10 | 50 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); |
801c135c AB |
51 | #else |
52 | #define paranoid_check_si(ubi, si) 0 | |
53 | #endif | |
54 | ||
55 | /* Temporary variables used during scanning */ | |
56 | static struct ubi_ec_hdr *ech; | |
57 | static struct ubi_vid_hdr *vidh; | |
58 | ||
941dfb07 | 59 | /** |
78d87c95 AB |
60 | * add_to_list - add physical eraseblock to a list. |
61 | * @si: scanning information | |
62 | * @pnum: physical eraseblock number to add | |
63 | * @ec: erase counter of the physical eraseblock | |
64 | * @list: the list to add to | |
65 | * | |
66 | * This function adds physical eraseblock @pnum to free, erase, corrupted or | |
67 | * alien lists. Returns zero in case of success and a negative error code in | |
68 | * case of failure. | |
69 | */ | |
70 | static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, | |
71 | struct list_head *list) | |
801c135c AB |
72 | { |
73 | struct ubi_scan_leb *seb; | |
74 | ||
75 | if (list == &si->free) | |
76 | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | |
77 | else if (list == &si->erase) | |
78 | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | |
4a406856 | 79 | else if (list == &si->corr) { |
801c135c | 80 | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); |
4a406856 AB |
81 | si->corr_count += 1; |
82 | } else if (list == &si->alien) | |
801c135c AB |
83 | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); |
84 | else | |
85 | BUG(); | |
86 | ||
87 | seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); | |
88 | if (!seb) | |
89 | return -ENOMEM; | |
90 | ||
91 | seb->pnum = pnum; | |
92 | seb->ec = ec; | |
93 | list_add_tail(&seb->u.list, list); | |
94 | return 0; | |
95 | } | |
96 | ||
801c135c | 97 | /** |
ebaaf1af | 98 | * validate_vid_hdr - check volume identifier header. |
801c135c AB |
99 | * @vid_hdr: the volume identifier header to check |
100 | * @sv: information about the volume this logical eraseblock belongs to | |
101 | * @pnum: physical eraseblock number the VID header came from | |
102 | * | |
103 | * This function checks that data stored in @vid_hdr is consistent. Returns | |
104 | * non-zero if an inconsistency was found and zero if not. | |
105 | * | |
106 | * Note, UBI does sanity check of everything it reads from the flash media. | |
85c6e6e2 | 107 | * Most of the checks are done in the I/O sub-system. Here we check that the |
801c135c AB |
108 | * information in the VID header is consistent to the information in other VID |
109 | * headers of the same volume. | |
110 | */ | |
111 | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, | |
112 | const struct ubi_scan_volume *sv, int pnum) | |
113 | { | |
114 | int vol_type = vid_hdr->vol_type; | |
3261ebd7 CH |
115 | int vol_id = be32_to_cpu(vid_hdr->vol_id); |
116 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | |
117 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | |
801c135c AB |
118 | |
119 | if (sv->leb_count != 0) { | |
120 | int sv_vol_type; | |
121 | ||
122 | /* | |
123 | * This is not the first logical eraseblock belonging to this | |
124 | * volume. Ensure that the data in its VID header is consistent | |
125 | * to the data in previous logical eraseblock headers. | |
126 | */ | |
127 | ||
128 | if (vol_id != sv->vol_id) { | |
129 | dbg_err("inconsistent vol_id"); | |
130 | goto bad; | |
131 | } | |
132 | ||
133 | if (sv->vol_type == UBI_STATIC_VOLUME) | |
134 | sv_vol_type = UBI_VID_STATIC; | |
135 | else | |
136 | sv_vol_type = UBI_VID_DYNAMIC; | |
137 | ||
138 | if (vol_type != sv_vol_type) { | |
139 | dbg_err("inconsistent vol_type"); | |
140 | goto bad; | |
141 | } | |
142 | ||
143 | if (used_ebs != sv->used_ebs) { | |
144 | dbg_err("inconsistent used_ebs"); | |
145 | goto bad; | |
146 | } | |
147 | ||
148 | if (data_pad != sv->data_pad) { | |
149 | dbg_err("inconsistent data_pad"); | |
150 | goto bad; | |
151 | } | |
152 | } | |
153 | ||
154 | return 0; | |
155 | ||
156 | bad: | |
157 | ubi_err("inconsistent VID header at PEB %d", pnum); | |
158 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
159 | ubi_dbg_dump_sv(sv); | |
160 | return -EINVAL; | |
161 | } | |
162 | ||
163 | /** | |
164 | * add_volume - add volume to the scanning information. | |
165 | * @si: scanning information | |
166 | * @vol_id: ID of the volume to add | |
167 | * @pnum: physical eraseblock number | |
168 | * @vid_hdr: volume identifier header | |
169 | * | |
170 | * If the volume corresponding to the @vid_hdr logical eraseblock is already | |
171 | * present in the scanning information, this function does nothing. Otherwise | |
172 | * it adds corresponding volume to the scanning information. Returns a pointer | |
173 | * to the scanning volume object in case of success and a negative error code | |
174 | * in case of failure. | |
175 | */ | |
176 | static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, | |
177 | int pnum, | |
178 | const struct ubi_vid_hdr *vid_hdr) | |
179 | { | |
180 | struct ubi_scan_volume *sv; | |
181 | struct rb_node **p = &si->volumes.rb_node, *parent = NULL; | |
182 | ||
3261ebd7 | 183 | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); |
801c135c AB |
184 | |
185 | /* Walk the volume RB-tree to look if this volume is already present */ | |
186 | while (*p) { | |
187 | parent = *p; | |
188 | sv = rb_entry(parent, struct ubi_scan_volume, rb); | |
189 | ||
190 | if (vol_id == sv->vol_id) | |
191 | return sv; | |
192 | ||
193 | if (vol_id > sv->vol_id) | |
194 | p = &(*p)->rb_left; | |
195 | else | |
196 | p = &(*p)->rb_right; | |
197 | } | |
198 | ||
199 | /* The volume is absent - add it */ | |
200 | sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); | |
201 | if (!sv) | |
202 | return ERR_PTR(-ENOMEM); | |
203 | ||
204 | sv->highest_lnum = sv->leb_count = 0; | |
801c135c AB |
205 | sv->vol_id = vol_id; |
206 | sv->root = RB_ROOT; | |
3261ebd7 CH |
207 | sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); |
208 | sv->data_pad = be32_to_cpu(vid_hdr->data_pad); | |
801c135c AB |
209 | sv->compat = vid_hdr->compat; |
210 | sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | |
211 | : UBI_STATIC_VOLUME; | |
212 | if (vol_id > si->highest_vol_id) | |
213 | si->highest_vol_id = vol_id; | |
214 | ||
215 | rb_link_node(&sv->rb, parent, p); | |
216 | rb_insert_color(&sv->rb, &si->volumes); | |
217 | si->vols_found += 1; | |
218 | dbg_bld("added volume %d", vol_id); | |
219 | return sv; | |
220 | } | |
221 | ||
222 | /** | |
223 | * compare_lebs - find out which logical eraseblock is newer. | |
224 | * @ubi: UBI device description object | |
225 | * @seb: first logical eraseblock to compare | |
226 | * @pnum: physical eraseblock number of the second logical eraseblock to | |
227 | * compare | |
228 | * @vid_hdr: volume identifier header of the second logical eraseblock | |
229 | * | |
230 | * This function compares 2 copies of a LEB and informs which one is newer. In | |
231 | * case of success this function returns a positive value, in case of failure, a | |
232 | * negative error code is returned. The success return codes use the following | |
233 | * bits: | |
3f502622 | 234 | * o bit 0 is cleared: the first PEB (described by @seb) is newer than the |
801c135c AB |
235 | * second PEB (described by @pnum and @vid_hdr); |
236 | * o bit 0 is set: the second PEB is newer; | |
237 | * o bit 1 is cleared: no bit-flips were detected in the newer LEB; | |
238 | * o bit 1 is set: bit-flips were detected in the newer LEB; | |
239 | * o bit 2 is cleared: the older LEB is not corrupted; | |
240 | * o bit 2 is set: the older LEB is corrupted. | |
241 | */ | |
e88d6e10 AB |
242 | static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, |
243 | int pnum, const struct ubi_vid_hdr *vid_hdr) | |
801c135c AB |
244 | { |
245 | void *buf; | |
246 | int len, err, second_is_newer, bitflips = 0, corrupted = 0; | |
247 | uint32_t data_crc, crc; | |
8bc22961 | 248 | struct ubi_vid_hdr *vh = NULL; |
3261ebd7 | 249 | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); |
801c135c | 250 | |
9869cd80 | 251 | if (sqnum2 == seb->sqnum) { |
801c135c | 252 | /* |
9869cd80 AB |
253 | * This must be a really ancient UBI image which has been |
254 | * created before sequence numbers support has been added. At | |
255 | * that times we used 32-bit LEB versions stored in logical | |
256 | * eraseblocks. That was before UBI got into mainline. We do not | |
257 | * support these images anymore. Well, those images will work | |
258 | * still work, but only if no unclean reboots happened. | |
801c135c | 259 | */ |
9869cd80 AB |
260 | ubi_err("unsupported on-flash UBI format\n"); |
261 | return -EINVAL; | |
262 | } | |
64203195 | 263 | |
9869cd80 AB |
264 | /* Obviously the LEB with lower sequence counter is older */ |
265 | second_is_newer = !!(sqnum2 > seb->sqnum); | |
801c135c AB |
266 | |
267 | /* | |
268 | * Now we know which copy is newer. If the copy flag of the PEB with | |
269 | * newer version is not set, then we just return, otherwise we have to | |
270 | * check data CRC. For the second PEB we already have the VID header, | |
271 | * for the first one - we'll need to re-read it from flash. | |
272 | * | |
9869cd80 | 273 | * Note: this may be optimized so that we wouldn't read twice. |
801c135c AB |
274 | */ |
275 | ||
276 | if (second_is_newer) { | |
277 | if (!vid_hdr->copy_flag) { | |
278 | /* It is not a copy, so it is newer */ | |
279 | dbg_bld("second PEB %d is newer, copy_flag is unset", | |
280 | pnum); | |
281 | return 1; | |
282 | } | |
283 | } else { | |
284 | pnum = seb->pnum; | |
285 | ||
33818bbb | 286 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
8bc22961 | 287 | if (!vh) |
801c135c AB |
288 | return -ENOMEM; |
289 | ||
8bc22961 | 290 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
801c135c AB |
291 | if (err) { |
292 | if (err == UBI_IO_BITFLIPS) | |
293 | bitflips = 1; | |
294 | else { | |
295 | dbg_err("VID of PEB %d header is bad, but it " | |
296 | "was OK earlier", pnum); | |
297 | if (err > 0) | |
298 | err = -EIO; | |
299 | ||
300 | goto out_free_vidh; | |
301 | } | |
302 | } | |
303 | ||
8bc22961 | 304 | if (!vh->copy_flag) { |
801c135c AB |
305 | /* It is not a copy, so it is newer */ |
306 | dbg_bld("first PEB %d is newer, copy_flag is unset", | |
307 | pnum); | |
308 | err = bitflips << 1; | |
309 | goto out_free_vidh; | |
310 | } | |
311 | ||
8bc22961 | 312 | vid_hdr = vh; |
801c135c AB |
313 | } |
314 | ||
315 | /* Read the data of the copy and check the CRC */ | |
316 | ||
3261ebd7 | 317 | len = be32_to_cpu(vid_hdr->data_size); |
92ad8f37 | 318 | buf = vmalloc(len); |
801c135c AB |
319 | if (!buf) { |
320 | err = -ENOMEM; | |
321 | goto out_free_vidh; | |
322 | } | |
323 | ||
324 | err = ubi_io_read_data(ubi, buf, pnum, 0, len); | |
b77bcb07 | 325 | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) |
801c135c AB |
326 | goto out_free_buf; |
327 | ||
3261ebd7 | 328 | data_crc = be32_to_cpu(vid_hdr->data_crc); |
801c135c AB |
329 | crc = crc32(UBI_CRC32_INIT, buf, len); |
330 | if (crc != data_crc) { | |
331 | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | |
332 | pnum, crc, data_crc); | |
333 | corrupted = 1; | |
334 | bitflips = 0; | |
335 | second_is_newer = !second_is_newer; | |
336 | } else { | |
337 | dbg_bld("PEB %d CRC is OK", pnum); | |
338 | bitflips = !!err; | |
339 | } | |
340 | ||
92ad8f37 | 341 | vfree(buf); |
8bc22961 | 342 | ubi_free_vid_hdr(ubi, vh); |
801c135c AB |
343 | |
344 | if (second_is_newer) | |
345 | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | |
346 | else | |
347 | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | |
348 | ||
349 | return second_is_newer | (bitflips << 1) | (corrupted << 2); | |
350 | ||
351 | out_free_buf: | |
92ad8f37 | 352 | vfree(buf); |
801c135c | 353 | out_free_vidh: |
8bc22961 | 354 | ubi_free_vid_hdr(ubi, vh); |
801c135c AB |
355 | return err; |
356 | } | |
357 | ||
358 | /** | |
ebaaf1af | 359 | * ubi_scan_add_used - add physical eraseblock to the scanning information. |
801c135c AB |
360 | * @ubi: UBI device description object |
361 | * @si: scanning information | |
362 | * @pnum: the physical eraseblock number | |
363 | * @ec: erase counter | |
364 | * @vid_hdr: the volume identifier header | |
365 | * @bitflips: if bit-flips were detected when this physical eraseblock was read | |
366 | * | |
79b510c0 AB |
367 | * This function adds information about a used physical eraseblock to the |
368 | * 'used' tree of the corresponding volume. The function is rather complex | |
369 | * because it has to handle cases when this is not the first physical | |
370 | * eraseblock belonging to the same logical eraseblock, and the newer one has | |
371 | * to be picked, while the older one has to be dropped. This function returns | |
372 | * zero in case of success and a negative error code in case of failure. | |
801c135c | 373 | */ |
e88d6e10 | 374 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, |
801c135c AB |
375 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, |
376 | int bitflips) | |
377 | { | |
378 | int err, vol_id, lnum; | |
801c135c AB |
379 | unsigned long long sqnum; |
380 | struct ubi_scan_volume *sv; | |
381 | struct ubi_scan_leb *seb; | |
382 | struct rb_node **p, *parent = NULL; | |
383 | ||
3261ebd7 CH |
384 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
385 | lnum = be32_to_cpu(vid_hdr->lnum); | |
386 | sqnum = be64_to_cpu(vid_hdr->sqnum); | |
801c135c | 387 | |
9869cd80 AB |
388 | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", |
389 | pnum, vol_id, lnum, ec, sqnum, bitflips); | |
801c135c AB |
390 | |
391 | sv = add_volume(si, vol_id, pnum, vid_hdr); | |
0e4a008a | 392 | if (IS_ERR(sv)) |
801c135c AB |
393 | return PTR_ERR(sv); |
394 | ||
76eafe47 BS |
395 | if (si->max_sqnum < sqnum) |
396 | si->max_sqnum = sqnum; | |
397 | ||
801c135c AB |
398 | /* |
399 | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | |
400 | * if this is the first instance of this logical eraseblock or not. | |
401 | */ | |
402 | p = &sv->root.rb_node; | |
403 | while (*p) { | |
404 | int cmp_res; | |
405 | ||
406 | parent = *p; | |
407 | seb = rb_entry(parent, struct ubi_scan_leb, u.rb); | |
408 | if (lnum != seb->lnum) { | |
409 | if (lnum < seb->lnum) | |
410 | p = &(*p)->rb_left; | |
411 | else | |
412 | p = &(*p)->rb_right; | |
413 | continue; | |
414 | } | |
415 | ||
416 | /* | |
417 | * There is already a physical eraseblock describing the same | |
418 | * logical eraseblock present. | |
419 | */ | |
420 | ||
421 | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " | |
9869cd80 | 422 | "EC %d", seb->pnum, seb->sqnum, seb->ec); |
801c135c AB |
423 | |
424 | /* | |
425 | * Make sure that the logical eraseblocks have different | |
426 | * sequence numbers. Otherwise the image is bad. | |
427 | * | |
9869cd80 AB |
428 | * However, if the sequence number is zero, we assume it must |
429 | * be an ancient UBI image from the era when UBI did not have | |
430 | * sequence numbers. We still can attach these images, unless | |
431 | * there is a need to distinguish between old and new | |
432 | * eraseblocks, in which case we'll refuse the image in | |
433 | * 'compare_lebs()'. In other words, we attach old clean | |
434 | * images, but refuse attaching old images with duplicated | |
435 | * logical eraseblocks because there was an unclean reboot. | |
801c135c AB |
436 | */ |
437 | if (seb->sqnum == sqnum && sqnum != 0) { | |
438 | ubi_err("two LEBs with same sequence number %llu", | |
439 | sqnum); | |
440 | ubi_dbg_dump_seb(seb, 0); | |
441 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
442 | return -EINVAL; | |
443 | } | |
444 | ||
445 | /* | |
446 | * Now we have to drop the older one and preserve the newer | |
447 | * one. | |
448 | */ | |
449 | cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); | |
450 | if (cmp_res < 0) | |
451 | return cmp_res; | |
452 | ||
453 | if (cmp_res & 1) { | |
454 | /* | |
3f502622 | 455 | * This logical eraseblock is newer than the one |
801c135c AB |
456 | * found earlier. |
457 | */ | |
458 | err = validate_vid_hdr(vid_hdr, sv, pnum); | |
459 | if (err) | |
460 | return err; | |
461 | ||
462 | if (cmp_res & 4) | |
78d87c95 AB |
463 | err = add_to_list(si, seb->pnum, seb->ec, |
464 | &si->corr); | |
801c135c | 465 | else |
78d87c95 AB |
466 | err = add_to_list(si, seb->pnum, seb->ec, |
467 | &si->erase); | |
801c135c AB |
468 | if (err) |
469 | return err; | |
470 | ||
471 | seb->ec = ec; | |
472 | seb->pnum = pnum; | |
473 | seb->scrub = ((cmp_res & 2) || bitflips); | |
474 | seb->sqnum = sqnum; | |
801c135c AB |
475 | |
476 | if (sv->highest_lnum == lnum) | |
477 | sv->last_data_size = | |
3261ebd7 | 478 | be32_to_cpu(vid_hdr->data_size); |
801c135c AB |
479 | |
480 | return 0; | |
481 | } else { | |
482 | /* | |
025dfdaf | 483 | * This logical eraseblock is older than the one found |
801c135c AB |
484 | * previously. |
485 | */ | |
486 | if (cmp_res & 4) | |
78d87c95 | 487 | return add_to_list(si, pnum, ec, &si->corr); |
801c135c | 488 | else |
78d87c95 | 489 | return add_to_list(si, pnum, ec, &si->erase); |
801c135c AB |
490 | } |
491 | } | |
492 | ||
493 | /* | |
494 | * We've met this logical eraseblock for the first time, add it to the | |
495 | * scanning information. | |
496 | */ | |
497 | ||
498 | err = validate_vid_hdr(vid_hdr, sv, pnum); | |
499 | if (err) | |
500 | return err; | |
501 | ||
502 | seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); | |
503 | if (!seb) | |
504 | return -ENOMEM; | |
505 | ||
506 | seb->ec = ec; | |
507 | seb->pnum = pnum; | |
508 | seb->lnum = lnum; | |
509 | seb->sqnum = sqnum; | |
510 | seb->scrub = bitflips; | |
801c135c AB |
511 | |
512 | if (sv->highest_lnum <= lnum) { | |
513 | sv->highest_lnum = lnum; | |
3261ebd7 | 514 | sv->last_data_size = be32_to_cpu(vid_hdr->data_size); |
801c135c AB |
515 | } |
516 | ||
801c135c AB |
517 | sv->leb_count += 1; |
518 | rb_link_node(&seb->u.rb, parent, p); | |
519 | rb_insert_color(&seb->u.rb, &sv->root); | |
520 | return 0; | |
521 | } | |
522 | ||
523 | /** | |
ebaaf1af | 524 | * ubi_scan_find_sv - find volume in the scanning information. |
801c135c AB |
525 | * @si: scanning information |
526 | * @vol_id: the requested volume ID | |
527 | * | |
528 | * This function returns a pointer to the volume description or %NULL if there | |
529 | * are no data about this volume in the scanning information. | |
530 | */ | |
531 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | |
532 | int vol_id) | |
533 | { | |
534 | struct ubi_scan_volume *sv; | |
535 | struct rb_node *p = si->volumes.rb_node; | |
536 | ||
537 | while (p) { | |
538 | sv = rb_entry(p, struct ubi_scan_volume, rb); | |
539 | ||
540 | if (vol_id == sv->vol_id) | |
541 | return sv; | |
542 | ||
543 | if (vol_id > sv->vol_id) | |
544 | p = p->rb_left; | |
545 | else | |
546 | p = p->rb_right; | |
547 | } | |
548 | ||
549 | return NULL; | |
550 | } | |
551 | ||
552 | /** | |
ebaaf1af | 553 | * ubi_scan_find_seb - find LEB in the volume scanning information. |
801c135c AB |
554 | * @sv: a pointer to the volume scanning information |
555 | * @lnum: the requested logical eraseblock | |
556 | * | |
557 | * This function returns a pointer to the scanning logical eraseblock or %NULL | |
558 | * if there are no data about it in the scanning volume information. | |
559 | */ | |
560 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | |
561 | int lnum) | |
562 | { | |
563 | struct ubi_scan_leb *seb; | |
564 | struct rb_node *p = sv->root.rb_node; | |
565 | ||
566 | while (p) { | |
567 | seb = rb_entry(p, struct ubi_scan_leb, u.rb); | |
568 | ||
569 | if (lnum == seb->lnum) | |
570 | return seb; | |
571 | ||
572 | if (lnum > seb->lnum) | |
573 | p = p->rb_left; | |
574 | else | |
575 | p = p->rb_right; | |
576 | } | |
577 | ||
578 | return NULL; | |
579 | } | |
580 | ||
581 | /** | |
582 | * ubi_scan_rm_volume - delete scanning information about a volume. | |
583 | * @si: scanning information | |
584 | * @sv: the volume scanning information to delete | |
585 | */ | |
586 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | |
587 | { | |
588 | struct rb_node *rb; | |
589 | struct ubi_scan_leb *seb; | |
590 | ||
591 | dbg_bld("remove scanning information about volume %d", sv->vol_id); | |
592 | ||
593 | while ((rb = rb_first(&sv->root))) { | |
594 | seb = rb_entry(rb, struct ubi_scan_leb, u.rb); | |
595 | rb_erase(&seb->u.rb, &sv->root); | |
596 | list_add_tail(&seb->u.list, &si->erase); | |
597 | } | |
598 | ||
599 | rb_erase(&sv->rb, &si->volumes); | |
600 | kfree(sv); | |
601 | si->vols_found -= 1; | |
602 | } | |
603 | ||
604 | /** | |
605 | * ubi_scan_erase_peb - erase a physical eraseblock. | |
606 | * @ubi: UBI device description object | |
607 | * @si: scanning information | |
608 | * @pnum: physical eraseblock number to erase; | |
609 | * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) | |
610 | * | |
611 | * This function erases physical eraseblock 'pnum', and writes the erase | |
612 | * counter header to it. This function should only be used on UBI device | |
85c6e6e2 AB |
613 | * initialization stages, when the EBA sub-system had not been yet initialized. |
614 | * This function returns zero in case of success and a negative error code in | |
615 | * case of failure. | |
801c135c | 616 | */ |
e88d6e10 AB |
617 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, |
618 | int pnum, int ec) | |
801c135c AB |
619 | { |
620 | int err; | |
621 | struct ubi_ec_hdr *ec_hdr; | |
622 | ||
801c135c AB |
623 | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { |
624 | /* | |
625 | * Erase counter overflow. Upgrade UBI and use 64-bit | |
626 | * erase counters internally. | |
627 | */ | |
628 | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); | |
629 | return -EINVAL; | |
630 | } | |
631 | ||
dcec4c3b FM |
632 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
633 | if (!ec_hdr) | |
634 | return -ENOMEM; | |
635 | ||
3261ebd7 | 636 | ec_hdr->ec = cpu_to_be64(ec); |
801c135c AB |
637 | |
638 | err = ubi_io_sync_erase(ubi, pnum, 0); | |
639 | if (err < 0) | |
640 | goto out_free; | |
641 | ||
642 | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | |
643 | ||
644 | out_free: | |
645 | kfree(ec_hdr); | |
646 | return err; | |
647 | } | |
648 | ||
649 | /** | |
650 | * ubi_scan_get_free_peb - get a free physical eraseblock. | |
651 | * @ubi: UBI device description object | |
652 | * @si: scanning information | |
653 | * | |
654 | * This function returns a free physical eraseblock. It is supposed to be | |
85c6e6e2 AB |
655 | * called on the UBI initialization stages when the wear-leveling sub-system is |
656 | * not initialized yet. This function picks a physical eraseblocks from one of | |
657 | * the lists, writes the EC header if it is needed, and removes it from the | |
658 | * list. | |
801c135c AB |
659 | * |
660 | * This function returns scanning physical eraseblock information in case of | |
661 | * success and an error code in case of failure. | |
662 | */ | |
e88d6e10 | 663 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, |
801c135c AB |
664 | struct ubi_scan_info *si) |
665 | { | |
666 | int err = 0, i; | |
667 | struct ubi_scan_leb *seb; | |
668 | ||
669 | if (!list_empty(&si->free)) { | |
670 | seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); | |
671 | list_del(&seb->u.list); | |
672 | dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); | |
673 | return seb; | |
674 | } | |
675 | ||
676 | for (i = 0; i < 2; i++) { | |
677 | struct list_head *head; | |
678 | struct ubi_scan_leb *tmp_seb; | |
679 | ||
680 | if (i == 0) | |
681 | head = &si->erase; | |
682 | else | |
683 | head = &si->corr; | |
684 | ||
685 | /* | |
686 | * We try to erase the first physical eraseblock from the @head | |
687 | * list and pick it if we succeed, or try to erase the | |
688 | * next one if not. And so forth. We don't want to take care | |
689 | * about bad eraseblocks here - they'll be handled later. | |
690 | */ | |
691 | list_for_each_entry_safe(seb, tmp_seb, head, u.list) { | |
692 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
693 | seb->ec = si->mean_ec; | |
694 | ||
695 | err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); | |
696 | if (err) | |
697 | continue; | |
698 | ||
699 | seb->ec += 1; | |
700 | list_del(&seb->u.list); | |
701 | dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); | |
702 | return seb; | |
703 | } | |
704 | } | |
705 | ||
706 | ubi_err("no eraseblocks found"); | |
707 | return ERR_PTR(-ENOSPC); | |
708 | } | |
709 | ||
710 | /** | |
ebaaf1af | 711 | * process_eb - read, check UBI headers, and add them to scanning information. |
801c135c AB |
712 | * @ubi: UBI device description object |
713 | * @si: scanning information | |
714 | * @pnum: the physical eraseblock number | |
715 | * | |
78d87c95 | 716 | * This function returns a zero if the physical eraseblock was successfully |
801c135c AB |
717 | * handled and a negative error code in case of failure. |
718 | */ | |
9c9ec147 AB |
719 | static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, |
720 | int pnum) | |
801c135c | 721 | { |
c18a8418 | 722 | long long uninitialized_var(ec); |
801c135c AB |
723 | int err, bitflips = 0, vol_id, ec_corr = 0; |
724 | ||
725 | dbg_bld("scan PEB %d", pnum); | |
726 | ||
727 | /* Skip bad physical eraseblocks */ | |
728 | err = ubi_io_is_bad(ubi, pnum); | |
729 | if (err < 0) | |
730 | return err; | |
731 | else if (err) { | |
732 | /* | |
85c6e6e2 AB |
733 | * FIXME: this is actually duty of the I/O sub-system to |
734 | * initialize this, but MTD does not provide enough | |
735 | * information. | |
801c135c AB |
736 | */ |
737 | si->bad_peb_count += 1; | |
738 | return 0; | |
739 | } | |
740 | ||
741 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | |
742 | if (err < 0) | |
743 | return err; | |
744 | else if (err == UBI_IO_BITFLIPS) | |
745 | bitflips = 1; | |
746 | else if (err == UBI_IO_PEB_EMPTY) | |
78d87c95 | 747 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); |
786d7831 | 748 | else if (err == UBI_IO_BAD_HDR) { |
801c135c AB |
749 | /* |
750 | * We have to also look at the VID header, possibly it is not | |
751 | * corrupted. Set %bitflips flag in order to make this PEB be | |
752 | * moved and EC be re-created. | |
753 | */ | |
754 | ec_corr = 1; | |
755 | ec = UBI_SCAN_UNKNOWN_EC; | |
756 | bitflips = 1; | |
757 | } | |
758 | ||
759 | si->is_empty = 0; | |
760 | ||
761 | if (!ec_corr) { | |
fe96efc1 AB |
762 | int image_seq; |
763 | ||
801c135c AB |
764 | /* Make sure UBI version is OK */ |
765 | if (ech->version != UBI_VERSION) { | |
766 | ubi_err("this UBI version is %d, image version is %d", | |
767 | UBI_VERSION, (int)ech->version); | |
768 | return -EINVAL; | |
769 | } | |
770 | ||
3261ebd7 | 771 | ec = be64_to_cpu(ech->ec); |
801c135c AB |
772 | if (ec > UBI_MAX_ERASECOUNTER) { |
773 | /* | |
774 | * Erase counter overflow. The EC headers have 64 bits | |
775 | * reserved, but we anyway make use of only 31 bit | |
776 | * values, as this seems to be enough for any existing | |
777 | * flash. Upgrade UBI and use 64-bit erase counters | |
778 | * internally. | |
779 | */ | |
780 | ubi_err("erase counter overflow, max is %d", | |
781 | UBI_MAX_ERASECOUNTER); | |
782 | ubi_dbg_dump_ec_hdr(ech); | |
783 | return -EINVAL; | |
784 | } | |
fe96efc1 | 785 | |
32bc4820 AH |
786 | /* |
787 | * Make sure that all PEBs have the same image sequence number. | |
788 | * This allows us to detect situations when users flash UBI | |
789 | * images incorrectly, so that the flash has the new UBI image | |
790 | * and leftovers from the old one. This feature was added | |
791 | * relatively recently, and the sequence number was always | |
792 | * zero, because old UBI implementations always set it to zero. | |
793 | * For this reasons, we do not panic if some PEBs have zero | |
794 | * sequence number, while other PEBs have non-zero sequence | |
795 | * number. | |
796 | */ | |
3dc948da | 797 | image_seq = be32_to_cpu(ech->image_seq); |
2eadaad6 | 798 | if (!ubi->image_seq && image_seq) |
fe96efc1 | 799 | ubi->image_seq = image_seq; |
2eadaad6 AB |
800 | if (ubi->image_seq && image_seq && |
801 | ubi->image_seq != image_seq) { | |
fe96efc1 AB |
802 | ubi_err("bad image sequence number %d in PEB %d, " |
803 | "expected %d", image_seq, pnum, ubi->image_seq); | |
804 | ubi_dbg_dump_ec_hdr(ech); | |
805 | return -EINVAL; | |
806 | } | |
801c135c AB |
807 | } |
808 | ||
809 | /* OK, we've done with the EC header, let's look at the VID header */ | |
810 | ||
811 | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); | |
812 | if (err < 0) | |
813 | return err; | |
814 | else if (err == UBI_IO_BITFLIPS) | |
815 | bitflips = 1; | |
786d7831 | 816 | else if (err == UBI_IO_BAD_HDR || |
801c135c AB |
817 | (err == UBI_IO_PEB_FREE && ec_corr)) { |
818 | /* VID header is corrupted */ | |
78d87c95 | 819 | err = add_to_list(si, pnum, ec, &si->corr); |
801c135c AB |
820 | if (err) |
821 | return err; | |
822 | goto adjust_mean_ec; | |
823 | } else if (err == UBI_IO_PEB_FREE) { | |
824 | /* No VID header - the physical eraseblock is free */ | |
78d87c95 | 825 | err = add_to_list(si, pnum, ec, &si->free); |
801c135c AB |
826 | if (err) |
827 | return err; | |
828 | goto adjust_mean_ec; | |
829 | } | |
830 | ||
3261ebd7 | 831 | vol_id = be32_to_cpu(vidh->vol_id); |
91f2d53c | 832 | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { |
3261ebd7 | 833 | int lnum = be32_to_cpu(vidh->lnum); |
801c135c AB |
834 | |
835 | /* Unsupported internal volume */ | |
836 | switch (vidh->compat) { | |
837 | case UBI_COMPAT_DELETE: | |
838 | ubi_msg("\"delete\" compatible internal volume %d:%d" | |
839 | " found, remove it", vol_id, lnum); | |
78d87c95 | 840 | err = add_to_list(si, pnum, ec, &si->corr); |
801c135c AB |
841 | if (err) |
842 | return err; | |
843 | break; | |
844 | ||
845 | case UBI_COMPAT_RO: | |
846 | ubi_msg("read-only compatible internal volume %d:%d" | |
847 | " found, switch to read-only mode", | |
848 | vol_id, lnum); | |
849 | ubi->ro_mode = 1; | |
850 | break; | |
851 | ||
852 | case UBI_COMPAT_PRESERVE: | |
853 | ubi_msg("\"preserve\" compatible internal volume %d:%d" | |
854 | " found", vol_id, lnum); | |
78d87c95 | 855 | err = add_to_list(si, pnum, ec, &si->alien); |
801c135c AB |
856 | if (err) |
857 | return err; | |
858 | si->alien_peb_count += 1; | |
859 | return 0; | |
860 | ||
861 | case UBI_COMPAT_REJECT: | |
862 | ubi_err("incompatible internal volume %d:%d found", | |
863 | vol_id, lnum); | |
864 | return -EINVAL; | |
865 | } | |
866 | } | |
867 | ||
29a88c99 AB |
868 | if (ec_corr) |
869 | ubi_warn("valid VID header but corrupted EC header at PEB %d", | |
870 | pnum); | |
801c135c AB |
871 | err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); |
872 | if (err) | |
873 | return err; | |
874 | ||
875 | adjust_mean_ec: | |
876 | if (!ec_corr) { | |
4bc1dca4 AB |
877 | si->ec_sum += ec; |
878 | si->ec_count += 1; | |
801c135c AB |
879 | if (ec > si->max_ec) |
880 | si->max_ec = ec; | |
881 | if (ec < si->min_ec) | |
882 | si->min_ec = ec; | |
883 | } | |
884 | ||
885 | return 0; | |
886 | } | |
887 | ||
888 | /** | |
889 | * ubi_scan - scan an MTD device. | |
890 | * @ubi: UBI device description object | |
891 | * | |
892 | * This function does full scanning of an MTD device and returns complete | |
893 | * information about it. In case of failure, an error code is returned. | |
894 | */ | |
895 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) | |
896 | { | |
897 | int err, pnum; | |
898 | struct rb_node *rb1, *rb2; | |
899 | struct ubi_scan_volume *sv; | |
900 | struct ubi_scan_leb *seb; | |
901 | struct ubi_scan_info *si; | |
902 | ||
903 | si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); | |
904 | if (!si) | |
905 | return ERR_PTR(-ENOMEM); | |
906 | ||
907 | INIT_LIST_HEAD(&si->corr); | |
908 | INIT_LIST_HEAD(&si->free); | |
909 | INIT_LIST_HEAD(&si->erase); | |
910 | INIT_LIST_HEAD(&si->alien); | |
911 | si->volumes = RB_ROOT; | |
912 | si->is_empty = 1; | |
913 | ||
914 | err = -ENOMEM; | |
915 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | |
916 | if (!ech) | |
917 | goto out_si; | |
918 | ||
33818bbb | 919 | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
801c135c AB |
920 | if (!vidh) |
921 | goto out_ech; | |
922 | ||
923 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | |
924 | cond_resched(); | |
925 | ||
c8566350 | 926 | dbg_gen("process PEB %d", pnum); |
801c135c AB |
927 | err = process_eb(ubi, si, pnum); |
928 | if (err < 0) | |
929 | goto out_vidh; | |
930 | } | |
931 | ||
932 | dbg_msg("scanning is finished"); | |
933 | ||
4bc1dca4 | 934 | /* Calculate mean erase counter */ |
3013ee31 AB |
935 | if (si->ec_count) |
936 | si->mean_ec = div_u64(si->ec_sum, si->ec_count); | |
801c135c AB |
937 | |
938 | if (si->is_empty) | |
939 | ubi_msg("empty MTD device detected"); | |
940 | ||
4a406856 AB |
941 | /* |
942 | * Few corrupted PEBs are not a problem and may be just a result of | |
943 | * unclean reboots. However, many of them may indicate some problems | |
944 | * with the flash HW or driver. Print a warning in this case. | |
945 | */ | |
946 | if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) { | |
947 | ubi_warn("%d PEBs are corrupted", si->corr_count); | |
948 | printk(KERN_WARNING "corrupted PEBs are:"); | |
949 | list_for_each_entry(seb, &si->corr, u.list) | |
950 | printk(KERN_CONT " %d", seb->pnum); | |
951 | printk(KERN_CONT "\n"); | |
952 | } | |
953 | ||
801c135c AB |
954 | /* |
955 | * In case of unknown erase counter we use the mean erase counter | |
956 | * value. | |
957 | */ | |
958 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | |
959 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | |
960 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
961 | seb->ec = si->mean_ec; | |
962 | } | |
963 | ||
964 | list_for_each_entry(seb, &si->free, u.list) { | |
965 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
966 | seb->ec = si->mean_ec; | |
967 | } | |
968 | ||
969 | list_for_each_entry(seb, &si->corr, u.list) | |
970 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
971 | seb->ec = si->mean_ec; | |
972 | ||
973 | list_for_each_entry(seb, &si->erase, u.list) | |
974 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
975 | seb->ec = si->mean_ec; | |
976 | ||
977 | err = paranoid_check_si(ubi, si); | |
adbf05e3 | 978 | if (err) |
801c135c | 979 | goto out_vidh; |
801c135c AB |
980 | |
981 | ubi_free_vid_hdr(ubi, vidh); | |
982 | kfree(ech); | |
983 | ||
984 | return si; | |
985 | ||
986 | out_vidh: | |
987 | ubi_free_vid_hdr(ubi, vidh); | |
988 | out_ech: | |
989 | kfree(ech); | |
990 | out_si: | |
991 | ubi_scan_destroy_si(si); | |
992 | return ERR_PTR(err); | |
993 | } | |
994 | ||
995 | /** | |
996 | * destroy_sv - free the scanning volume information | |
997 | * @sv: scanning volume information | |
998 | * | |
999 | * This function destroys the volume RB-tree (@sv->root) and the scanning | |
1000 | * volume information. | |
1001 | */ | |
1002 | static void destroy_sv(struct ubi_scan_volume *sv) | |
1003 | { | |
1004 | struct ubi_scan_leb *seb; | |
1005 | struct rb_node *this = sv->root.rb_node; | |
1006 | ||
1007 | while (this) { | |
1008 | if (this->rb_left) | |
1009 | this = this->rb_left; | |
1010 | else if (this->rb_right) | |
1011 | this = this->rb_right; | |
1012 | else { | |
1013 | seb = rb_entry(this, struct ubi_scan_leb, u.rb); | |
1014 | this = rb_parent(this); | |
1015 | if (this) { | |
1016 | if (this->rb_left == &seb->u.rb) | |
1017 | this->rb_left = NULL; | |
1018 | else | |
1019 | this->rb_right = NULL; | |
1020 | } | |
1021 | ||
1022 | kfree(seb); | |
1023 | } | |
1024 | } | |
1025 | kfree(sv); | |
1026 | } | |
1027 | ||
1028 | /** | |
1029 | * ubi_scan_destroy_si - destroy scanning information. | |
1030 | * @si: scanning information | |
1031 | */ | |
1032 | void ubi_scan_destroy_si(struct ubi_scan_info *si) | |
1033 | { | |
1034 | struct ubi_scan_leb *seb, *seb_tmp; | |
1035 | struct ubi_scan_volume *sv; | |
1036 | struct rb_node *rb; | |
1037 | ||
1038 | list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { | |
1039 | list_del(&seb->u.list); | |
1040 | kfree(seb); | |
1041 | } | |
1042 | list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { | |
1043 | list_del(&seb->u.list); | |
1044 | kfree(seb); | |
1045 | } | |
1046 | list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { | |
1047 | list_del(&seb->u.list); | |
1048 | kfree(seb); | |
1049 | } | |
1050 | list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { | |
1051 | list_del(&seb->u.list); | |
1052 | kfree(seb); | |
1053 | } | |
1054 | ||
1055 | /* Destroy the volume RB-tree */ | |
1056 | rb = si->volumes.rb_node; | |
1057 | while (rb) { | |
1058 | if (rb->rb_left) | |
1059 | rb = rb->rb_left; | |
1060 | else if (rb->rb_right) | |
1061 | rb = rb->rb_right; | |
1062 | else { | |
1063 | sv = rb_entry(rb, struct ubi_scan_volume, rb); | |
1064 | ||
1065 | rb = rb_parent(rb); | |
1066 | if (rb) { | |
1067 | if (rb->rb_left == &sv->rb) | |
1068 | rb->rb_left = NULL; | |
1069 | else | |
1070 | rb->rb_right = NULL; | |
1071 | } | |
1072 | ||
1073 | destroy_sv(sv); | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | kfree(si); | |
1078 | } | |
1079 | ||
1080 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | |
1081 | ||
1082 | /** | |
ebaaf1af | 1083 | * paranoid_check_si - check the scanning information. |
801c135c AB |
1084 | * @ubi: UBI device description object |
1085 | * @si: scanning information | |
1086 | * | |
adbf05e3 AB |
1087 | * This function returns zero if the scanning information is all right, and a |
1088 | * negative error code if not or if an error occurred. | |
801c135c | 1089 | */ |
e88d6e10 | 1090 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) |
801c135c AB |
1091 | { |
1092 | int pnum, err, vols_found = 0; | |
1093 | struct rb_node *rb1, *rb2; | |
1094 | struct ubi_scan_volume *sv; | |
1095 | struct ubi_scan_leb *seb, *last_seb; | |
1096 | uint8_t *buf; | |
1097 | ||
1098 | /* | |
78d87c95 | 1099 | * At first, check that scanning information is OK. |
801c135c AB |
1100 | */ |
1101 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | |
1102 | int leb_count = 0; | |
1103 | ||
1104 | cond_resched(); | |
1105 | ||
1106 | vols_found += 1; | |
1107 | ||
1108 | if (si->is_empty) { | |
1109 | ubi_err("bad is_empty flag"); | |
1110 | goto bad_sv; | |
1111 | } | |
1112 | ||
1113 | if (sv->vol_id < 0 || sv->highest_lnum < 0 || | |
1114 | sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || | |
1115 | sv->data_pad < 0 || sv->last_data_size < 0) { | |
1116 | ubi_err("negative values"); | |
1117 | goto bad_sv; | |
1118 | } | |
1119 | ||
1120 | if (sv->vol_id >= UBI_MAX_VOLUMES && | |
1121 | sv->vol_id < UBI_INTERNAL_VOL_START) { | |
1122 | ubi_err("bad vol_id"); | |
1123 | goto bad_sv; | |
1124 | } | |
1125 | ||
1126 | if (sv->vol_id > si->highest_vol_id) { | |
1127 | ubi_err("highest_vol_id is %d, but vol_id %d is there", | |
1128 | si->highest_vol_id, sv->vol_id); | |
1129 | goto out; | |
1130 | } | |
1131 | ||
1132 | if (sv->vol_type != UBI_DYNAMIC_VOLUME && | |
1133 | sv->vol_type != UBI_STATIC_VOLUME) { | |
1134 | ubi_err("bad vol_type"); | |
1135 | goto bad_sv; | |
1136 | } | |
1137 | ||
1138 | if (sv->data_pad > ubi->leb_size / 2) { | |
1139 | ubi_err("bad data_pad"); | |
1140 | goto bad_sv; | |
1141 | } | |
1142 | ||
1143 | last_seb = NULL; | |
1144 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | |
1145 | cond_resched(); | |
1146 | ||
1147 | last_seb = seb; | |
1148 | leb_count += 1; | |
1149 | ||
1150 | if (seb->pnum < 0 || seb->ec < 0) { | |
1151 | ubi_err("negative values"); | |
1152 | goto bad_seb; | |
1153 | } | |
1154 | ||
1155 | if (seb->ec < si->min_ec) { | |
1156 | ubi_err("bad si->min_ec (%d), %d found", | |
1157 | si->min_ec, seb->ec); | |
1158 | goto bad_seb; | |
1159 | } | |
1160 | ||
1161 | if (seb->ec > si->max_ec) { | |
1162 | ubi_err("bad si->max_ec (%d), %d found", | |
1163 | si->max_ec, seb->ec); | |
1164 | goto bad_seb; | |
1165 | } | |
1166 | ||
1167 | if (seb->pnum >= ubi->peb_count) { | |
1168 | ubi_err("too high PEB number %d, total PEBs %d", | |
1169 | seb->pnum, ubi->peb_count); | |
1170 | goto bad_seb; | |
1171 | } | |
1172 | ||
1173 | if (sv->vol_type == UBI_STATIC_VOLUME) { | |
1174 | if (seb->lnum >= sv->used_ebs) { | |
1175 | ubi_err("bad lnum or used_ebs"); | |
1176 | goto bad_seb; | |
1177 | } | |
1178 | } else { | |
1179 | if (sv->used_ebs != 0) { | |
1180 | ubi_err("non-zero used_ebs"); | |
1181 | goto bad_seb; | |
1182 | } | |
1183 | } | |
1184 | ||
1185 | if (seb->lnum > sv->highest_lnum) { | |
1186 | ubi_err("incorrect highest_lnum or lnum"); | |
1187 | goto bad_seb; | |
1188 | } | |
1189 | } | |
1190 | ||
1191 | if (sv->leb_count != leb_count) { | |
1192 | ubi_err("bad leb_count, %d objects in the tree", | |
1193 | leb_count); | |
1194 | goto bad_sv; | |
1195 | } | |
1196 | ||
1197 | if (!last_seb) | |
1198 | continue; | |
1199 | ||
1200 | seb = last_seb; | |
1201 | ||
1202 | if (seb->lnum != sv->highest_lnum) { | |
1203 | ubi_err("bad highest_lnum"); | |
1204 | goto bad_seb; | |
1205 | } | |
1206 | } | |
1207 | ||
1208 | if (vols_found != si->vols_found) { | |
1209 | ubi_err("bad si->vols_found %d, should be %d", | |
1210 | si->vols_found, vols_found); | |
1211 | goto out; | |
1212 | } | |
1213 | ||
1214 | /* Check that scanning information is correct */ | |
1215 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | |
1216 | last_seb = NULL; | |
1217 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | |
1218 | int vol_type; | |
1219 | ||
1220 | cond_resched(); | |
1221 | ||
1222 | last_seb = seb; | |
1223 | ||
1224 | err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); | |
1225 | if (err && err != UBI_IO_BITFLIPS) { | |
1226 | ubi_err("VID header is not OK (%d)", err); | |
1227 | if (err > 0) | |
1228 | err = -EIO; | |
1229 | return err; | |
1230 | } | |
1231 | ||
1232 | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | |
1233 | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | |
1234 | if (sv->vol_type != vol_type) { | |
1235 | ubi_err("bad vol_type"); | |
1236 | goto bad_vid_hdr; | |
1237 | } | |
1238 | ||
3261ebd7 | 1239 | if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { |
801c135c AB |
1240 | ubi_err("bad sqnum %llu", seb->sqnum); |
1241 | goto bad_vid_hdr; | |
1242 | } | |
1243 | ||
3261ebd7 | 1244 | if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { |
801c135c AB |
1245 | ubi_err("bad vol_id %d", sv->vol_id); |
1246 | goto bad_vid_hdr; | |
1247 | } | |
1248 | ||
1249 | if (sv->compat != vidh->compat) { | |
1250 | ubi_err("bad compat %d", vidh->compat); | |
1251 | goto bad_vid_hdr; | |
1252 | } | |
1253 | ||
3261ebd7 | 1254 | if (seb->lnum != be32_to_cpu(vidh->lnum)) { |
801c135c AB |
1255 | ubi_err("bad lnum %d", seb->lnum); |
1256 | goto bad_vid_hdr; | |
1257 | } | |
1258 | ||
3261ebd7 | 1259 | if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { |
801c135c AB |
1260 | ubi_err("bad used_ebs %d", sv->used_ebs); |
1261 | goto bad_vid_hdr; | |
1262 | } | |
1263 | ||
3261ebd7 | 1264 | if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { |
801c135c AB |
1265 | ubi_err("bad data_pad %d", sv->data_pad); |
1266 | goto bad_vid_hdr; | |
1267 | } | |
801c135c AB |
1268 | } |
1269 | ||
1270 | if (!last_seb) | |
1271 | continue; | |
1272 | ||
3261ebd7 | 1273 | if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { |
801c135c AB |
1274 | ubi_err("bad highest_lnum %d", sv->highest_lnum); |
1275 | goto bad_vid_hdr; | |
1276 | } | |
1277 | ||
3261ebd7 | 1278 | if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { |
801c135c AB |
1279 | ubi_err("bad last_data_size %d", sv->last_data_size); |
1280 | goto bad_vid_hdr; | |
1281 | } | |
1282 | } | |
1283 | ||
1284 | /* | |
1285 | * Make sure that all the physical eraseblocks are in one of the lists | |
1286 | * or trees. | |
1287 | */ | |
d9b0744d | 1288 | buf = kzalloc(ubi->peb_count, GFP_KERNEL); |
801c135c AB |
1289 | if (!buf) |
1290 | return -ENOMEM; | |
1291 | ||
801c135c AB |
1292 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { |
1293 | err = ubi_io_is_bad(ubi, pnum); | |
341e1a0c AB |
1294 | if (err < 0) { |
1295 | kfree(buf); | |
801c135c | 1296 | return err; |
9c9ec147 | 1297 | } else if (err) |
d9b0744d | 1298 | buf[pnum] = 1; |
801c135c AB |
1299 | } |
1300 | ||
1301 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) | |
1302 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | |
d9b0744d | 1303 | buf[seb->pnum] = 1; |
801c135c AB |
1304 | |
1305 | list_for_each_entry(seb, &si->free, u.list) | |
d9b0744d | 1306 | buf[seb->pnum] = 1; |
801c135c AB |
1307 | |
1308 | list_for_each_entry(seb, &si->corr, u.list) | |
d9b0744d | 1309 | buf[seb->pnum] = 1; |
801c135c AB |
1310 | |
1311 | list_for_each_entry(seb, &si->erase, u.list) | |
d9b0744d | 1312 | buf[seb->pnum] = 1; |
801c135c AB |
1313 | |
1314 | list_for_each_entry(seb, &si->alien, u.list) | |
d9b0744d | 1315 | buf[seb->pnum] = 1; |
801c135c AB |
1316 | |
1317 | err = 0; | |
1318 | for (pnum = 0; pnum < ubi->peb_count; pnum++) | |
d9b0744d | 1319 | if (!buf[pnum]) { |
801c135c AB |
1320 | ubi_err("PEB %d is not referred", pnum); |
1321 | err = 1; | |
1322 | } | |
1323 | ||
1324 | kfree(buf); | |
1325 | if (err) | |
1326 | goto out; | |
1327 | return 0; | |
1328 | ||
1329 | bad_seb: | |
1330 | ubi_err("bad scanning information about LEB %d", seb->lnum); | |
1331 | ubi_dbg_dump_seb(seb, 0); | |
1332 | ubi_dbg_dump_sv(sv); | |
1333 | goto out; | |
1334 | ||
1335 | bad_sv: | |
1336 | ubi_err("bad scanning information about volume %d", sv->vol_id); | |
1337 | ubi_dbg_dump_sv(sv); | |
1338 | goto out; | |
1339 | ||
1340 | bad_vid_hdr: | |
1341 | ubi_err("bad scanning information about volume %d", sv->vol_id); | |
1342 | ubi_dbg_dump_sv(sv); | |
1343 | ubi_dbg_dump_vid_hdr(vidh); | |
1344 | ||
1345 | out: | |
1346 | ubi_dbg_dump_stack(); | |
adbf05e3 | 1347 | return -EINVAL; |
801c135c AB |
1348 | } |
1349 | ||
1350 | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |