]>
Commit | Line | Data |
---|---|---|
801c135c AB |
1 | /* |
2 | * Copyright (c) International Business Machines Corp., 2006 | |
3 | * | |
4 | * This program is free software; you can redistribute it and/or modify | |
5 | * it under the terms of the GNU General Public License as published by | |
6 | * the Free Software Foundation; either version 2 of the License, or | |
7 | * (at your option) any later version. | |
8 | * | |
9 | * This program is distributed in the hope that it will be useful, | |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | |
12 | * the GNU General Public License for more details. | |
13 | * | |
14 | * You should have received a copy of the GNU General Public License | |
15 | * along with this program; if not, write to the Free Software | |
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
17 | * | |
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | |
19 | */ | |
20 | ||
21 | /* | |
85c6e6e2 | 22 | * UBI scanning sub-system. |
801c135c | 23 | * |
85c6e6e2 | 24 | * This sub-system is responsible for scanning the flash media, checking UBI |
801c135c AB |
25 | * headers and providing complete information about the UBI flash image. |
26 | * | |
78d87c95 | 27 | * The scanning information is represented by a &struct ubi_scan_info' object. |
801c135c AB |
28 | * Information about found volumes is represented by &struct ubi_scan_volume |
29 | * objects which are kept in volume RB-tree with root at the @volumes field. | |
30 | * The RB-tree is indexed by the volume ID. | |
31 | * | |
32 | * Found logical eraseblocks are represented by &struct ubi_scan_leb objects. | |
33 | * These objects are kept in per-volume RB-trees with the root at the | |
34 | * corresponding &struct ubi_scan_volume object. To put it differently, we keep | |
35 | * an RB-tree of per-volume objects and each of these objects is the root of | |
36 | * RB-tree of per-eraseblock objects. | |
37 | * | |
38 | * Corrupted physical eraseblocks are put to the @corr list, free physical | |
39 | * eraseblocks are put to the @free list and the physical eraseblock to be | |
40 | * erased are put to the @erase list. | |
41 | */ | |
42 | ||
43 | #include <linux/err.h> | |
44 | #include <linux/crc32.h> | |
3013ee31 | 45 | #include <linux/math64.h> |
801c135c AB |
46 | #include "ubi.h" |
47 | ||
48 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | |
e88d6e10 | 49 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si); |
801c135c AB |
50 | #else |
51 | #define paranoid_check_si(ubi, si) 0 | |
52 | #endif | |
53 | ||
54 | /* Temporary variables used during scanning */ | |
55 | static struct ubi_ec_hdr *ech; | |
56 | static struct ubi_vid_hdr *vidh; | |
57 | ||
941dfb07 | 58 | /** |
78d87c95 AB |
59 | * add_to_list - add physical eraseblock to a list. |
60 | * @si: scanning information | |
61 | * @pnum: physical eraseblock number to add | |
62 | * @ec: erase counter of the physical eraseblock | |
63 | * @list: the list to add to | |
64 | * | |
65 | * This function adds physical eraseblock @pnum to free, erase, corrupted or | |
66 | * alien lists. Returns zero in case of success and a negative error code in | |
67 | * case of failure. | |
68 | */ | |
69 | static int add_to_list(struct ubi_scan_info *si, int pnum, int ec, | |
70 | struct list_head *list) | |
801c135c AB |
71 | { |
72 | struct ubi_scan_leb *seb; | |
73 | ||
74 | if (list == &si->free) | |
75 | dbg_bld("add to free: PEB %d, EC %d", pnum, ec); | |
76 | else if (list == &si->erase) | |
77 | dbg_bld("add to erase: PEB %d, EC %d", pnum, ec); | |
4a406856 | 78 | else if (list == &si->corr) { |
801c135c | 79 | dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec); |
4a406856 AB |
80 | si->corr_count += 1; |
81 | } else if (list == &si->alien) | |
801c135c AB |
82 | dbg_bld("add to alien: PEB %d, EC %d", pnum, ec); |
83 | else | |
84 | BUG(); | |
85 | ||
86 | seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); | |
87 | if (!seb) | |
88 | return -ENOMEM; | |
89 | ||
90 | seb->pnum = pnum; | |
91 | seb->ec = ec; | |
92 | list_add_tail(&seb->u.list, list); | |
93 | return 0; | |
94 | } | |
95 | ||
801c135c | 96 | /** |
ebaaf1af | 97 | * validate_vid_hdr - check volume identifier header. |
801c135c AB |
98 | * @vid_hdr: the volume identifier header to check |
99 | * @sv: information about the volume this logical eraseblock belongs to | |
100 | * @pnum: physical eraseblock number the VID header came from | |
101 | * | |
102 | * This function checks that data stored in @vid_hdr is consistent. Returns | |
103 | * non-zero if an inconsistency was found and zero if not. | |
104 | * | |
105 | * Note, UBI does sanity check of everything it reads from the flash media. | |
85c6e6e2 | 106 | * Most of the checks are done in the I/O sub-system. Here we check that the |
801c135c AB |
107 | * information in the VID header is consistent to the information in other VID |
108 | * headers of the same volume. | |
109 | */ | |
110 | static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr, | |
111 | const struct ubi_scan_volume *sv, int pnum) | |
112 | { | |
113 | int vol_type = vid_hdr->vol_type; | |
3261ebd7 CH |
114 | int vol_id = be32_to_cpu(vid_hdr->vol_id); |
115 | int used_ebs = be32_to_cpu(vid_hdr->used_ebs); | |
116 | int data_pad = be32_to_cpu(vid_hdr->data_pad); | |
801c135c AB |
117 | |
118 | if (sv->leb_count != 0) { | |
119 | int sv_vol_type; | |
120 | ||
121 | /* | |
122 | * This is not the first logical eraseblock belonging to this | |
123 | * volume. Ensure that the data in its VID header is consistent | |
124 | * to the data in previous logical eraseblock headers. | |
125 | */ | |
126 | ||
127 | if (vol_id != sv->vol_id) { | |
128 | dbg_err("inconsistent vol_id"); | |
129 | goto bad; | |
130 | } | |
131 | ||
132 | if (sv->vol_type == UBI_STATIC_VOLUME) | |
133 | sv_vol_type = UBI_VID_STATIC; | |
134 | else | |
135 | sv_vol_type = UBI_VID_DYNAMIC; | |
136 | ||
137 | if (vol_type != sv_vol_type) { | |
138 | dbg_err("inconsistent vol_type"); | |
139 | goto bad; | |
140 | } | |
141 | ||
142 | if (used_ebs != sv->used_ebs) { | |
143 | dbg_err("inconsistent used_ebs"); | |
144 | goto bad; | |
145 | } | |
146 | ||
147 | if (data_pad != sv->data_pad) { | |
148 | dbg_err("inconsistent data_pad"); | |
149 | goto bad; | |
150 | } | |
151 | } | |
152 | ||
153 | return 0; | |
154 | ||
155 | bad: | |
156 | ubi_err("inconsistent VID header at PEB %d", pnum); | |
157 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
158 | ubi_dbg_dump_sv(sv); | |
159 | return -EINVAL; | |
160 | } | |
161 | ||
162 | /** | |
163 | * add_volume - add volume to the scanning information. | |
164 | * @si: scanning information | |
165 | * @vol_id: ID of the volume to add | |
166 | * @pnum: physical eraseblock number | |
167 | * @vid_hdr: volume identifier header | |
168 | * | |
169 | * If the volume corresponding to the @vid_hdr logical eraseblock is already | |
170 | * present in the scanning information, this function does nothing. Otherwise | |
171 | * it adds corresponding volume to the scanning information. Returns a pointer | |
172 | * to the scanning volume object in case of success and a negative error code | |
173 | * in case of failure. | |
174 | */ | |
175 | static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id, | |
176 | int pnum, | |
177 | const struct ubi_vid_hdr *vid_hdr) | |
178 | { | |
179 | struct ubi_scan_volume *sv; | |
180 | struct rb_node **p = &si->volumes.rb_node, *parent = NULL; | |
181 | ||
3261ebd7 | 182 | ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id)); |
801c135c AB |
183 | |
184 | /* Walk the volume RB-tree to look if this volume is already present */ | |
185 | while (*p) { | |
186 | parent = *p; | |
187 | sv = rb_entry(parent, struct ubi_scan_volume, rb); | |
188 | ||
189 | if (vol_id == sv->vol_id) | |
190 | return sv; | |
191 | ||
192 | if (vol_id > sv->vol_id) | |
193 | p = &(*p)->rb_left; | |
194 | else | |
195 | p = &(*p)->rb_right; | |
196 | } | |
197 | ||
198 | /* The volume is absent - add it */ | |
199 | sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL); | |
200 | if (!sv) | |
201 | return ERR_PTR(-ENOMEM); | |
202 | ||
203 | sv->highest_lnum = sv->leb_count = 0; | |
801c135c AB |
204 | sv->vol_id = vol_id; |
205 | sv->root = RB_ROOT; | |
3261ebd7 CH |
206 | sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs); |
207 | sv->data_pad = be32_to_cpu(vid_hdr->data_pad); | |
801c135c AB |
208 | sv->compat = vid_hdr->compat; |
209 | sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME | |
210 | : UBI_STATIC_VOLUME; | |
211 | if (vol_id > si->highest_vol_id) | |
212 | si->highest_vol_id = vol_id; | |
213 | ||
214 | rb_link_node(&sv->rb, parent, p); | |
215 | rb_insert_color(&sv->rb, &si->volumes); | |
216 | si->vols_found += 1; | |
217 | dbg_bld("added volume %d", vol_id); | |
218 | return sv; | |
219 | } | |
220 | ||
221 | /** | |
222 | * compare_lebs - find out which logical eraseblock is newer. | |
223 | * @ubi: UBI device description object | |
224 | * @seb: first logical eraseblock to compare | |
225 | * @pnum: physical eraseblock number of the second logical eraseblock to | |
226 | * compare | |
227 | * @vid_hdr: volume identifier header of the second logical eraseblock | |
228 | * | |
229 | * This function compares 2 copies of a LEB and informs which one is newer. In | |
230 | * case of success this function returns a positive value, in case of failure, a | |
231 | * negative error code is returned. The success return codes use the following | |
232 | * bits: | |
233 | * o bit 0 is cleared: the first PEB (described by @seb) is newer then the | |
234 | * second PEB (described by @pnum and @vid_hdr); | |
235 | * o bit 0 is set: the second PEB is newer; | |
236 | * o bit 1 is cleared: no bit-flips were detected in the newer LEB; | |
237 | * o bit 1 is set: bit-flips were detected in the newer LEB; | |
238 | * o bit 2 is cleared: the older LEB is not corrupted; | |
239 | * o bit 2 is set: the older LEB is corrupted. | |
240 | */ | |
e88d6e10 AB |
241 | static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb, |
242 | int pnum, const struct ubi_vid_hdr *vid_hdr) | |
801c135c AB |
243 | { |
244 | void *buf; | |
245 | int len, err, second_is_newer, bitflips = 0, corrupted = 0; | |
246 | uint32_t data_crc, crc; | |
8bc22961 | 247 | struct ubi_vid_hdr *vh = NULL; |
3261ebd7 | 248 | unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum); |
801c135c | 249 | |
9869cd80 | 250 | if (sqnum2 == seb->sqnum) { |
801c135c | 251 | /* |
9869cd80 AB |
252 | * This must be a really ancient UBI image which has been |
253 | * created before sequence numbers support has been added. At | |
254 | * that times we used 32-bit LEB versions stored in logical | |
255 | * eraseblocks. That was before UBI got into mainline. We do not | |
256 | * support these images anymore. Well, those images will work | |
257 | * still work, but only if no unclean reboots happened. | |
801c135c | 258 | */ |
9869cd80 AB |
259 | ubi_err("unsupported on-flash UBI format\n"); |
260 | return -EINVAL; | |
261 | } | |
64203195 | 262 | |
9869cd80 AB |
263 | /* Obviously the LEB with lower sequence counter is older */ |
264 | second_is_newer = !!(sqnum2 > seb->sqnum); | |
801c135c AB |
265 | |
266 | /* | |
267 | * Now we know which copy is newer. If the copy flag of the PEB with | |
268 | * newer version is not set, then we just return, otherwise we have to | |
269 | * check data CRC. For the second PEB we already have the VID header, | |
270 | * for the first one - we'll need to re-read it from flash. | |
271 | * | |
9869cd80 | 272 | * Note: this may be optimized so that we wouldn't read twice. |
801c135c AB |
273 | */ |
274 | ||
275 | if (second_is_newer) { | |
276 | if (!vid_hdr->copy_flag) { | |
277 | /* It is not a copy, so it is newer */ | |
278 | dbg_bld("second PEB %d is newer, copy_flag is unset", | |
279 | pnum); | |
280 | return 1; | |
281 | } | |
282 | } else { | |
283 | pnum = seb->pnum; | |
284 | ||
33818bbb | 285 | vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
8bc22961 | 286 | if (!vh) |
801c135c AB |
287 | return -ENOMEM; |
288 | ||
8bc22961 | 289 | err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0); |
801c135c AB |
290 | if (err) { |
291 | if (err == UBI_IO_BITFLIPS) | |
292 | bitflips = 1; | |
293 | else { | |
294 | dbg_err("VID of PEB %d header is bad, but it " | |
295 | "was OK earlier", pnum); | |
296 | if (err > 0) | |
297 | err = -EIO; | |
298 | ||
299 | goto out_free_vidh; | |
300 | } | |
301 | } | |
302 | ||
8bc22961 | 303 | if (!vh->copy_flag) { |
801c135c AB |
304 | /* It is not a copy, so it is newer */ |
305 | dbg_bld("first PEB %d is newer, copy_flag is unset", | |
306 | pnum); | |
307 | err = bitflips << 1; | |
308 | goto out_free_vidh; | |
309 | } | |
310 | ||
8bc22961 | 311 | vid_hdr = vh; |
801c135c AB |
312 | } |
313 | ||
314 | /* Read the data of the copy and check the CRC */ | |
315 | ||
3261ebd7 | 316 | len = be32_to_cpu(vid_hdr->data_size); |
92ad8f37 | 317 | buf = vmalloc(len); |
801c135c AB |
318 | if (!buf) { |
319 | err = -ENOMEM; | |
320 | goto out_free_vidh; | |
321 | } | |
322 | ||
323 | err = ubi_io_read_data(ubi, buf, pnum, 0, len); | |
b77bcb07 | 324 | if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG) |
801c135c AB |
325 | goto out_free_buf; |
326 | ||
3261ebd7 | 327 | data_crc = be32_to_cpu(vid_hdr->data_crc); |
801c135c AB |
328 | crc = crc32(UBI_CRC32_INIT, buf, len); |
329 | if (crc != data_crc) { | |
330 | dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x", | |
331 | pnum, crc, data_crc); | |
332 | corrupted = 1; | |
333 | bitflips = 0; | |
334 | second_is_newer = !second_is_newer; | |
335 | } else { | |
336 | dbg_bld("PEB %d CRC is OK", pnum); | |
337 | bitflips = !!err; | |
338 | } | |
339 | ||
92ad8f37 | 340 | vfree(buf); |
8bc22961 | 341 | ubi_free_vid_hdr(ubi, vh); |
801c135c AB |
342 | |
343 | if (second_is_newer) | |
344 | dbg_bld("second PEB %d is newer, copy_flag is set", pnum); | |
345 | else | |
346 | dbg_bld("first PEB %d is newer, copy_flag is set", pnum); | |
347 | ||
348 | return second_is_newer | (bitflips << 1) | (corrupted << 2); | |
349 | ||
350 | out_free_buf: | |
92ad8f37 | 351 | vfree(buf); |
801c135c | 352 | out_free_vidh: |
8bc22961 | 353 | ubi_free_vid_hdr(ubi, vh); |
801c135c AB |
354 | return err; |
355 | } | |
356 | ||
357 | /** | |
ebaaf1af | 358 | * ubi_scan_add_used - add physical eraseblock to the scanning information. |
801c135c AB |
359 | * @ubi: UBI device description object |
360 | * @si: scanning information | |
361 | * @pnum: the physical eraseblock number | |
362 | * @ec: erase counter | |
363 | * @vid_hdr: the volume identifier header | |
364 | * @bitflips: if bit-flips were detected when this physical eraseblock was read | |
365 | * | |
79b510c0 AB |
366 | * This function adds information about a used physical eraseblock to the |
367 | * 'used' tree of the corresponding volume. The function is rather complex | |
368 | * because it has to handle cases when this is not the first physical | |
369 | * eraseblock belonging to the same logical eraseblock, and the newer one has | |
370 | * to be picked, while the older one has to be dropped. This function returns | |
371 | * zero in case of success and a negative error code in case of failure. | |
801c135c | 372 | */ |
e88d6e10 | 373 | int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si, |
801c135c AB |
374 | int pnum, int ec, const struct ubi_vid_hdr *vid_hdr, |
375 | int bitflips) | |
376 | { | |
377 | int err, vol_id, lnum; | |
801c135c AB |
378 | unsigned long long sqnum; |
379 | struct ubi_scan_volume *sv; | |
380 | struct ubi_scan_leb *seb; | |
381 | struct rb_node **p, *parent = NULL; | |
382 | ||
3261ebd7 CH |
383 | vol_id = be32_to_cpu(vid_hdr->vol_id); |
384 | lnum = be32_to_cpu(vid_hdr->lnum); | |
385 | sqnum = be64_to_cpu(vid_hdr->sqnum); | |
801c135c | 386 | |
9869cd80 AB |
387 | dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d", |
388 | pnum, vol_id, lnum, ec, sqnum, bitflips); | |
801c135c AB |
389 | |
390 | sv = add_volume(si, vol_id, pnum, vid_hdr); | |
0e4a008a | 391 | if (IS_ERR(sv)) |
801c135c AB |
392 | return PTR_ERR(sv); |
393 | ||
76eafe47 BS |
394 | if (si->max_sqnum < sqnum) |
395 | si->max_sqnum = sqnum; | |
396 | ||
801c135c AB |
397 | /* |
398 | * Walk the RB-tree of logical eraseblocks of volume @vol_id to look | |
399 | * if this is the first instance of this logical eraseblock or not. | |
400 | */ | |
401 | p = &sv->root.rb_node; | |
402 | while (*p) { | |
403 | int cmp_res; | |
404 | ||
405 | parent = *p; | |
406 | seb = rb_entry(parent, struct ubi_scan_leb, u.rb); | |
407 | if (lnum != seb->lnum) { | |
408 | if (lnum < seb->lnum) | |
409 | p = &(*p)->rb_left; | |
410 | else | |
411 | p = &(*p)->rb_right; | |
412 | continue; | |
413 | } | |
414 | ||
415 | /* | |
416 | * There is already a physical eraseblock describing the same | |
417 | * logical eraseblock present. | |
418 | */ | |
419 | ||
420 | dbg_bld("this LEB already exists: PEB %d, sqnum %llu, " | |
9869cd80 | 421 | "EC %d", seb->pnum, seb->sqnum, seb->ec); |
801c135c AB |
422 | |
423 | /* | |
424 | * Make sure that the logical eraseblocks have different | |
425 | * sequence numbers. Otherwise the image is bad. | |
426 | * | |
9869cd80 AB |
427 | * However, if the sequence number is zero, we assume it must |
428 | * be an ancient UBI image from the era when UBI did not have | |
429 | * sequence numbers. We still can attach these images, unless | |
430 | * there is a need to distinguish between old and new | |
431 | * eraseblocks, in which case we'll refuse the image in | |
432 | * 'compare_lebs()'. In other words, we attach old clean | |
433 | * images, but refuse attaching old images with duplicated | |
434 | * logical eraseblocks because there was an unclean reboot. | |
801c135c AB |
435 | */ |
436 | if (seb->sqnum == sqnum && sqnum != 0) { | |
437 | ubi_err("two LEBs with same sequence number %llu", | |
438 | sqnum); | |
439 | ubi_dbg_dump_seb(seb, 0); | |
440 | ubi_dbg_dump_vid_hdr(vid_hdr); | |
441 | return -EINVAL; | |
442 | } | |
443 | ||
444 | /* | |
445 | * Now we have to drop the older one and preserve the newer | |
446 | * one. | |
447 | */ | |
448 | cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr); | |
449 | if (cmp_res < 0) | |
450 | return cmp_res; | |
451 | ||
452 | if (cmp_res & 1) { | |
453 | /* | |
454 | * This logical eraseblock is newer then the one | |
455 | * found earlier. | |
456 | */ | |
457 | err = validate_vid_hdr(vid_hdr, sv, pnum); | |
458 | if (err) | |
459 | return err; | |
460 | ||
461 | if (cmp_res & 4) | |
78d87c95 AB |
462 | err = add_to_list(si, seb->pnum, seb->ec, |
463 | &si->corr); | |
801c135c | 464 | else |
78d87c95 AB |
465 | err = add_to_list(si, seb->pnum, seb->ec, |
466 | &si->erase); | |
801c135c AB |
467 | if (err) |
468 | return err; | |
469 | ||
470 | seb->ec = ec; | |
471 | seb->pnum = pnum; | |
472 | seb->scrub = ((cmp_res & 2) || bitflips); | |
473 | seb->sqnum = sqnum; | |
801c135c AB |
474 | |
475 | if (sv->highest_lnum == lnum) | |
476 | sv->last_data_size = | |
3261ebd7 | 477 | be32_to_cpu(vid_hdr->data_size); |
801c135c AB |
478 | |
479 | return 0; | |
480 | } else { | |
481 | /* | |
025dfdaf | 482 | * This logical eraseblock is older than the one found |
801c135c AB |
483 | * previously. |
484 | */ | |
485 | if (cmp_res & 4) | |
78d87c95 | 486 | return add_to_list(si, pnum, ec, &si->corr); |
801c135c | 487 | else |
78d87c95 | 488 | return add_to_list(si, pnum, ec, &si->erase); |
801c135c AB |
489 | } |
490 | } | |
491 | ||
492 | /* | |
493 | * We've met this logical eraseblock for the first time, add it to the | |
494 | * scanning information. | |
495 | */ | |
496 | ||
497 | err = validate_vid_hdr(vid_hdr, sv, pnum); | |
498 | if (err) | |
499 | return err; | |
500 | ||
501 | seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL); | |
502 | if (!seb) | |
503 | return -ENOMEM; | |
504 | ||
505 | seb->ec = ec; | |
506 | seb->pnum = pnum; | |
507 | seb->lnum = lnum; | |
508 | seb->sqnum = sqnum; | |
509 | seb->scrub = bitflips; | |
801c135c AB |
510 | |
511 | if (sv->highest_lnum <= lnum) { | |
512 | sv->highest_lnum = lnum; | |
3261ebd7 | 513 | sv->last_data_size = be32_to_cpu(vid_hdr->data_size); |
801c135c AB |
514 | } |
515 | ||
801c135c AB |
516 | sv->leb_count += 1; |
517 | rb_link_node(&seb->u.rb, parent, p); | |
518 | rb_insert_color(&seb->u.rb, &sv->root); | |
519 | return 0; | |
520 | } | |
521 | ||
522 | /** | |
ebaaf1af | 523 | * ubi_scan_find_sv - find volume in the scanning information. |
801c135c AB |
524 | * @si: scanning information |
525 | * @vol_id: the requested volume ID | |
526 | * | |
527 | * This function returns a pointer to the volume description or %NULL if there | |
528 | * are no data about this volume in the scanning information. | |
529 | */ | |
530 | struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si, | |
531 | int vol_id) | |
532 | { | |
533 | struct ubi_scan_volume *sv; | |
534 | struct rb_node *p = si->volumes.rb_node; | |
535 | ||
536 | while (p) { | |
537 | sv = rb_entry(p, struct ubi_scan_volume, rb); | |
538 | ||
539 | if (vol_id == sv->vol_id) | |
540 | return sv; | |
541 | ||
542 | if (vol_id > sv->vol_id) | |
543 | p = p->rb_left; | |
544 | else | |
545 | p = p->rb_right; | |
546 | } | |
547 | ||
548 | return NULL; | |
549 | } | |
550 | ||
551 | /** | |
ebaaf1af | 552 | * ubi_scan_find_seb - find LEB in the volume scanning information. |
801c135c AB |
553 | * @sv: a pointer to the volume scanning information |
554 | * @lnum: the requested logical eraseblock | |
555 | * | |
556 | * This function returns a pointer to the scanning logical eraseblock or %NULL | |
557 | * if there are no data about it in the scanning volume information. | |
558 | */ | |
559 | struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv, | |
560 | int lnum) | |
561 | { | |
562 | struct ubi_scan_leb *seb; | |
563 | struct rb_node *p = sv->root.rb_node; | |
564 | ||
565 | while (p) { | |
566 | seb = rb_entry(p, struct ubi_scan_leb, u.rb); | |
567 | ||
568 | if (lnum == seb->lnum) | |
569 | return seb; | |
570 | ||
571 | if (lnum > seb->lnum) | |
572 | p = p->rb_left; | |
573 | else | |
574 | p = p->rb_right; | |
575 | } | |
576 | ||
577 | return NULL; | |
578 | } | |
579 | ||
580 | /** | |
581 | * ubi_scan_rm_volume - delete scanning information about a volume. | |
582 | * @si: scanning information | |
583 | * @sv: the volume scanning information to delete | |
584 | */ | |
585 | void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv) | |
586 | { | |
587 | struct rb_node *rb; | |
588 | struct ubi_scan_leb *seb; | |
589 | ||
590 | dbg_bld("remove scanning information about volume %d", sv->vol_id); | |
591 | ||
592 | while ((rb = rb_first(&sv->root))) { | |
593 | seb = rb_entry(rb, struct ubi_scan_leb, u.rb); | |
594 | rb_erase(&seb->u.rb, &sv->root); | |
595 | list_add_tail(&seb->u.list, &si->erase); | |
596 | } | |
597 | ||
598 | rb_erase(&sv->rb, &si->volumes); | |
599 | kfree(sv); | |
600 | si->vols_found -= 1; | |
601 | } | |
602 | ||
603 | /** | |
604 | * ubi_scan_erase_peb - erase a physical eraseblock. | |
605 | * @ubi: UBI device description object | |
606 | * @si: scanning information | |
607 | * @pnum: physical eraseblock number to erase; | |
608 | * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown) | |
609 | * | |
610 | * This function erases physical eraseblock 'pnum', and writes the erase | |
611 | * counter header to it. This function should only be used on UBI device | |
85c6e6e2 AB |
612 | * initialization stages, when the EBA sub-system had not been yet initialized. |
613 | * This function returns zero in case of success and a negative error code in | |
614 | * case of failure. | |
801c135c | 615 | */ |
e88d6e10 AB |
616 | int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si, |
617 | int pnum, int ec) | |
801c135c AB |
618 | { |
619 | int err; | |
620 | struct ubi_ec_hdr *ec_hdr; | |
621 | ||
801c135c AB |
622 | if ((long long)ec >= UBI_MAX_ERASECOUNTER) { |
623 | /* | |
624 | * Erase counter overflow. Upgrade UBI and use 64-bit | |
625 | * erase counters internally. | |
626 | */ | |
627 | ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec); | |
628 | return -EINVAL; | |
629 | } | |
630 | ||
dcec4c3b FM |
631 | ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); |
632 | if (!ec_hdr) | |
633 | return -ENOMEM; | |
634 | ||
3261ebd7 | 635 | ec_hdr->ec = cpu_to_be64(ec); |
801c135c AB |
636 | |
637 | err = ubi_io_sync_erase(ubi, pnum, 0); | |
638 | if (err < 0) | |
639 | goto out_free; | |
640 | ||
641 | err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr); | |
642 | ||
643 | out_free: | |
644 | kfree(ec_hdr); | |
645 | return err; | |
646 | } | |
647 | ||
648 | /** | |
649 | * ubi_scan_get_free_peb - get a free physical eraseblock. | |
650 | * @ubi: UBI device description object | |
651 | * @si: scanning information | |
652 | * | |
653 | * This function returns a free physical eraseblock. It is supposed to be | |
85c6e6e2 AB |
654 | * called on the UBI initialization stages when the wear-leveling sub-system is |
655 | * not initialized yet. This function picks a physical eraseblocks from one of | |
656 | * the lists, writes the EC header if it is needed, and removes it from the | |
657 | * list. | |
801c135c AB |
658 | * |
659 | * This function returns scanning physical eraseblock information in case of | |
660 | * success and an error code in case of failure. | |
661 | */ | |
e88d6e10 | 662 | struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi, |
801c135c AB |
663 | struct ubi_scan_info *si) |
664 | { | |
665 | int err = 0, i; | |
666 | struct ubi_scan_leb *seb; | |
667 | ||
668 | if (!list_empty(&si->free)) { | |
669 | seb = list_entry(si->free.next, struct ubi_scan_leb, u.list); | |
670 | list_del(&seb->u.list); | |
671 | dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec); | |
672 | return seb; | |
673 | } | |
674 | ||
675 | for (i = 0; i < 2; i++) { | |
676 | struct list_head *head; | |
677 | struct ubi_scan_leb *tmp_seb; | |
678 | ||
679 | if (i == 0) | |
680 | head = &si->erase; | |
681 | else | |
682 | head = &si->corr; | |
683 | ||
684 | /* | |
685 | * We try to erase the first physical eraseblock from the @head | |
686 | * list and pick it if we succeed, or try to erase the | |
687 | * next one if not. And so forth. We don't want to take care | |
688 | * about bad eraseblocks here - they'll be handled later. | |
689 | */ | |
690 | list_for_each_entry_safe(seb, tmp_seb, head, u.list) { | |
691 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
692 | seb->ec = si->mean_ec; | |
693 | ||
694 | err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1); | |
695 | if (err) | |
696 | continue; | |
697 | ||
698 | seb->ec += 1; | |
699 | list_del(&seb->u.list); | |
700 | dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec); | |
701 | return seb; | |
702 | } | |
703 | } | |
704 | ||
705 | ubi_err("no eraseblocks found"); | |
706 | return ERR_PTR(-ENOSPC); | |
707 | } | |
708 | ||
709 | /** | |
ebaaf1af | 710 | * process_eb - read, check UBI headers, and add them to scanning information. |
801c135c AB |
711 | * @ubi: UBI device description object |
712 | * @si: scanning information | |
713 | * @pnum: the physical eraseblock number | |
714 | * | |
78d87c95 | 715 | * This function returns a zero if the physical eraseblock was successfully |
801c135c AB |
716 | * handled and a negative error code in case of failure. |
717 | */ | |
9c9ec147 AB |
718 | static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si, |
719 | int pnum) | |
801c135c | 720 | { |
c18a8418 | 721 | long long uninitialized_var(ec); |
801c135c AB |
722 | int err, bitflips = 0, vol_id, ec_corr = 0; |
723 | ||
724 | dbg_bld("scan PEB %d", pnum); | |
725 | ||
726 | /* Skip bad physical eraseblocks */ | |
727 | err = ubi_io_is_bad(ubi, pnum); | |
728 | if (err < 0) | |
729 | return err; | |
730 | else if (err) { | |
731 | /* | |
85c6e6e2 AB |
732 | * FIXME: this is actually duty of the I/O sub-system to |
733 | * initialize this, but MTD does not provide enough | |
734 | * information. | |
801c135c AB |
735 | */ |
736 | si->bad_peb_count += 1; | |
737 | return 0; | |
738 | } | |
739 | ||
740 | err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0); | |
741 | if (err < 0) | |
742 | return err; | |
743 | else if (err == UBI_IO_BITFLIPS) | |
744 | bitflips = 1; | |
745 | else if (err == UBI_IO_PEB_EMPTY) | |
78d87c95 | 746 | return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase); |
801c135c AB |
747 | else if (err == UBI_IO_BAD_EC_HDR) { |
748 | /* | |
749 | * We have to also look at the VID header, possibly it is not | |
750 | * corrupted. Set %bitflips flag in order to make this PEB be | |
751 | * moved and EC be re-created. | |
752 | */ | |
753 | ec_corr = 1; | |
754 | ec = UBI_SCAN_UNKNOWN_EC; | |
755 | bitflips = 1; | |
756 | } | |
757 | ||
758 | si->is_empty = 0; | |
759 | ||
760 | if (!ec_corr) { | |
fe96efc1 AB |
761 | int image_seq; |
762 | ||
801c135c AB |
763 | /* Make sure UBI version is OK */ |
764 | if (ech->version != UBI_VERSION) { | |
765 | ubi_err("this UBI version is %d, image version is %d", | |
766 | UBI_VERSION, (int)ech->version); | |
767 | return -EINVAL; | |
768 | } | |
769 | ||
3261ebd7 | 770 | ec = be64_to_cpu(ech->ec); |
801c135c AB |
771 | if (ec > UBI_MAX_ERASECOUNTER) { |
772 | /* | |
773 | * Erase counter overflow. The EC headers have 64 bits | |
774 | * reserved, but we anyway make use of only 31 bit | |
775 | * values, as this seems to be enough for any existing | |
776 | * flash. Upgrade UBI and use 64-bit erase counters | |
777 | * internally. | |
778 | */ | |
779 | ubi_err("erase counter overflow, max is %d", | |
780 | UBI_MAX_ERASECOUNTER); | |
781 | ubi_dbg_dump_ec_hdr(ech); | |
782 | return -EINVAL; | |
783 | } | |
fe96efc1 | 784 | |
32bc4820 AH |
785 | /* |
786 | * Make sure that all PEBs have the same image sequence number. | |
787 | * This allows us to detect situations when users flash UBI | |
788 | * images incorrectly, so that the flash has the new UBI image | |
789 | * and leftovers from the old one. This feature was added | |
790 | * relatively recently, and the sequence number was always | |
791 | * zero, because old UBI implementations always set it to zero. | |
792 | * For this reasons, we do not panic if some PEBs have zero | |
793 | * sequence number, while other PEBs have non-zero sequence | |
794 | * number. | |
795 | */ | |
3dc948da | 796 | image_seq = be32_to_cpu(ech->image_seq); |
2eadaad6 | 797 | if (!ubi->image_seq && image_seq) |
fe96efc1 | 798 | ubi->image_seq = image_seq; |
2eadaad6 AB |
799 | if (ubi->image_seq && image_seq && |
800 | ubi->image_seq != image_seq) { | |
fe96efc1 AB |
801 | ubi_err("bad image sequence number %d in PEB %d, " |
802 | "expected %d", image_seq, pnum, ubi->image_seq); | |
803 | ubi_dbg_dump_ec_hdr(ech); | |
804 | return -EINVAL; | |
805 | } | |
801c135c AB |
806 | } |
807 | ||
808 | /* OK, we've done with the EC header, let's look at the VID header */ | |
809 | ||
810 | err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0); | |
811 | if (err < 0) | |
812 | return err; | |
813 | else if (err == UBI_IO_BITFLIPS) | |
814 | bitflips = 1; | |
815 | else if (err == UBI_IO_BAD_VID_HDR || | |
816 | (err == UBI_IO_PEB_FREE && ec_corr)) { | |
817 | /* VID header is corrupted */ | |
78d87c95 | 818 | err = add_to_list(si, pnum, ec, &si->corr); |
801c135c AB |
819 | if (err) |
820 | return err; | |
821 | goto adjust_mean_ec; | |
822 | } else if (err == UBI_IO_PEB_FREE) { | |
823 | /* No VID header - the physical eraseblock is free */ | |
78d87c95 | 824 | err = add_to_list(si, pnum, ec, &si->free); |
801c135c AB |
825 | if (err) |
826 | return err; | |
827 | goto adjust_mean_ec; | |
828 | } | |
829 | ||
3261ebd7 | 830 | vol_id = be32_to_cpu(vidh->vol_id); |
91f2d53c | 831 | if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) { |
3261ebd7 | 832 | int lnum = be32_to_cpu(vidh->lnum); |
801c135c AB |
833 | |
834 | /* Unsupported internal volume */ | |
835 | switch (vidh->compat) { | |
836 | case UBI_COMPAT_DELETE: | |
837 | ubi_msg("\"delete\" compatible internal volume %d:%d" | |
838 | " found, remove it", vol_id, lnum); | |
78d87c95 | 839 | err = add_to_list(si, pnum, ec, &si->corr); |
801c135c AB |
840 | if (err) |
841 | return err; | |
842 | break; | |
843 | ||
844 | case UBI_COMPAT_RO: | |
845 | ubi_msg("read-only compatible internal volume %d:%d" | |
846 | " found, switch to read-only mode", | |
847 | vol_id, lnum); | |
848 | ubi->ro_mode = 1; | |
849 | break; | |
850 | ||
851 | case UBI_COMPAT_PRESERVE: | |
852 | ubi_msg("\"preserve\" compatible internal volume %d:%d" | |
853 | " found", vol_id, lnum); | |
78d87c95 | 854 | err = add_to_list(si, pnum, ec, &si->alien); |
801c135c AB |
855 | if (err) |
856 | return err; | |
857 | si->alien_peb_count += 1; | |
858 | return 0; | |
859 | ||
860 | case UBI_COMPAT_REJECT: | |
861 | ubi_err("incompatible internal volume %d:%d found", | |
862 | vol_id, lnum); | |
863 | return -EINVAL; | |
864 | } | |
865 | } | |
866 | ||
29a88c99 AB |
867 | if (ec_corr) |
868 | ubi_warn("valid VID header but corrupted EC header at PEB %d", | |
869 | pnum); | |
801c135c AB |
870 | err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips); |
871 | if (err) | |
872 | return err; | |
873 | ||
874 | adjust_mean_ec: | |
875 | if (!ec_corr) { | |
4bc1dca4 AB |
876 | si->ec_sum += ec; |
877 | si->ec_count += 1; | |
801c135c AB |
878 | if (ec > si->max_ec) |
879 | si->max_ec = ec; | |
880 | if (ec < si->min_ec) | |
881 | si->min_ec = ec; | |
882 | } | |
883 | ||
884 | return 0; | |
885 | } | |
886 | ||
887 | /** | |
888 | * ubi_scan - scan an MTD device. | |
889 | * @ubi: UBI device description object | |
890 | * | |
891 | * This function does full scanning of an MTD device and returns complete | |
892 | * information about it. In case of failure, an error code is returned. | |
893 | */ | |
894 | struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) | |
895 | { | |
896 | int err, pnum; | |
897 | struct rb_node *rb1, *rb2; | |
898 | struct ubi_scan_volume *sv; | |
899 | struct ubi_scan_leb *seb; | |
900 | struct ubi_scan_info *si; | |
901 | ||
902 | si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL); | |
903 | if (!si) | |
904 | return ERR_PTR(-ENOMEM); | |
905 | ||
906 | INIT_LIST_HEAD(&si->corr); | |
907 | INIT_LIST_HEAD(&si->free); | |
908 | INIT_LIST_HEAD(&si->erase); | |
909 | INIT_LIST_HEAD(&si->alien); | |
910 | si->volumes = RB_ROOT; | |
911 | si->is_empty = 1; | |
912 | ||
913 | err = -ENOMEM; | |
914 | ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); | |
915 | if (!ech) | |
916 | goto out_si; | |
917 | ||
33818bbb | 918 | vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); |
801c135c AB |
919 | if (!vidh) |
920 | goto out_ech; | |
921 | ||
922 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { | |
923 | cond_resched(); | |
924 | ||
c8566350 | 925 | dbg_gen("process PEB %d", pnum); |
801c135c AB |
926 | err = process_eb(ubi, si, pnum); |
927 | if (err < 0) | |
928 | goto out_vidh; | |
929 | } | |
930 | ||
931 | dbg_msg("scanning is finished"); | |
932 | ||
4bc1dca4 | 933 | /* Calculate mean erase counter */ |
3013ee31 AB |
934 | if (si->ec_count) |
935 | si->mean_ec = div_u64(si->ec_sum, si->ec_count); | |
801c135c AB |
936 | |
937 | if (si->is_empty) | |
938 | ubi_msg("empty MTD device detected"); | |
939 | ||
4a406856 AB |
940 | /* |
941 | * Few corrupted PEBs are not a problem and may be just a result of | |
942 | * unclean reboots. However, many of them may indicate some problems | |
943 | * with the flash HW or driver. Print a warning in this case. | |
944 | */ | |
945 | if (si->corr_count >= 8 || si->corr_count >= ubi->peb_count / 4) { | |
946 | ubi_warn("%d PEBs are corrupted", si->corr_count); | |
947 | printk(KERN_WARNING "corrupted PEBs are:"); | |
948 | list_for_each_entry(seb, &si->corr, u.list) | |
949 | printk(KERN_CONT " %d", seb->pnum); | |
950 | printk(KERN_CONT "\n"); | |
951 | } | |
952 | ||
801c135c AB |
953 | /* |
954 | * In case of unknown erase counter we use the mean erase counter | |
955 | * value. | |
956 | */ | |
957 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | |
958 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | |
959 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
960 | seb->ec = si->mean_ec; | |
961 | } | |
962 | ||
963 | list_for_each_entry(seb, &si->free, u.list) { | |
964 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
965 | seb->ec = si->mean_ec; | |
966 | } | |
967 | ||
968 | list_for_each_entry(seb, &si->corr, u.list) | |
969 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
970 | seb->ec = si->mean_ec; | |
971 | ||
972 | list_for_each_entry(seb, &si->erase, u.list) | |
973 | if (seb->ec == UBI_SCAN_UNKNOWN_EC) | |
974 | seb->ec = si->mean_ec; | |
975 | ||
976 | err = paranoid_check_si(ubi, si); | |
977 | if (err) { | |
978 | if (err > 0) | |
979 | err = -EINVAL; | |
980 | goto out_vidh; | |
981 | } | |
982 | ||
983 | ubi_free_vid_hdr(ubi, vidh); | |
984 | kfree(ech); | |
985 | ||
986 | return si; | |
987 | ||
988 | out_vidh: | |
989 | ubi_free_vid_hdr(ubi, vidh); | |
990 | out_ech: | |
991 | kfree(ech); | |
992 | out_si: | |
993 | ubi_scan_destroy_si(si); | |
994 | return ERR_PTR(err); | |
995 | } | |
996 | ||
997 | /** | |
998 | * destroy_sv - free the scanning volume information | |
999 | * @sv: scanning volume information | |
1000 | * | |
1001 | * This function destroys the volume RB-tree (@sv->root) and the scanning | |
1002 | * volume information. | |
1003 | */ | |
1004 | static void destroy_sv(struct ubi_scan_volume *sv) | |
1005 | { | |
1006 | struct ubi_scan_leb *seb; | |
1007 | struct rb_node *this = sv->root.rb_node; | |
1008 | ||
1009 | while (this) { | |
1010 | if (this->rb_left) | |
1011 | this = this->rb_left; | |
1012 | else if (this->rb_right) | |
1013 | this = this->rb_right; | |
1014 | else { | |
1015 | seb = rb_entry(this, struct ubi_scan_leb, u.rb); | |
1016 | this = rb_parent(this); | |
1017 | if (this) { | |
1018 | if (this->rb_left == &seb->u.rb) | |
1019 | this->rb_left = NULL; | |
1020 | else | |
1021 | this->rb_right = NULL; | |
1022 | } | |
1023 | ||
1024 | kfree(seb); | |
1025 | } | |
1026 | } | |
1027 | kfree(sv); | |
1028 | } | |
1029 | ||
1030 | /** | |
1031 | * ubi_scan_destroy_si - destroy scanning information. | |
1032 | * @si: scanning information | |
1033 | */ | |
1034 | void ubi_scan_destroy_si(struct ubi_scan_info *si) | |
1035 | { | |
1036 | struct ubi_scan_leb *seb, *seb_tmp; | |
1037 | struct ubi_scan_volume *sv; | |
1038 | struct rb_node *rb; | |
1039 | ||
1040 | list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) { | |
1041 | list_del(&seb->u.list); | |
1042 | kfree(seb); | |
1043 | } | |
1044 | list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) { | |
1045 | list_del(&seb->u.list); | |
1046 | kfree(seb); | |
1047 | } | |
1048 | list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) { | |
1049 | list_del(&seb->u.list); | |
1050 | kfree(seb); | |
1051 | } | |
1052 | list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) { | |
1053 | list_del(&seb->u.list); | |
1054 | kfree(seb); | |
1055 | } | |
1056 | ||
1057 | /* Destroy the volume RB-tree */ | |
1058 | rb = si->volumes.rb_node; | |
1059 | while (rb) { | |
1060 | if (rb->rb_left) | |
1061 | rb = rb->rb_left; | |
1062 | else if (rb->rb_right) | |
1063 | rb = rb->rb_right; | |
1064 | else { | |
1065 | sv = rb_entry(rb, struct ubi_scan_volume, rb); | |
1066 | ||
1067 | rb = rb_parent(rb); | |
1068 | if (rb) { | |
1069 | if (rb->rb_left == &sv->rb) | |
1070 | rb->rb_left = NULL; | |
1071 | else | |
1072 | rb->rb_right = NULL; | |
1073 | } | |
1074 | ||
1075 | destroy_sv(sv); | |
1076 | } | |
1077 | } | |
1078 | ||
1079 | kfree(si); | |
1080 | } | |
1081 | ||
1082 | #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID | |
1083 | ||
1084 | /** | |
ebaaf1af | 1085 | * paranoid_check_si - check the scanning information. |
801c135c AB |
1086 | * @ubi: UBI device description object |
1087 | * @si: scanning information | |
1088 | * | |
1089 | * This function returns zero if the scanning information is all right, %1 if | |
1090 | * not and a negative error code if an error occurred. | |
1091 | */ | |
e88d6e10 | 1092 | static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si) |
801c135c AB |
1093 | { |
1094 | int pnum, err, vols_found = 0; | |
1095 | struct rb_node *rb1, *rb2; | |
1096 | struct ubi_scan_volume *sv; | |
1097 | struct ubi_scan_leb *seb, *last_seb; | |
1098 | uint8_t *buf; | |
1099 | ||
1100 | /* | |
78d87c95 | 1101 | * At first, check that scanning information is OK. |
801c135c AB |
1102 | */ |
1103 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | |
1104 | int leb_count = 0; | |
1105 | ||
1106 | cond_resched(); | |
1107 | ||
1108 | vols_found += 1; | |
1109 | ||
1110 | if (si->is_empty) { | |
1111 | ubi_err("bad is_empty flag"); | |
1112 | goto bad_sv; | |
1113 | } | |
1114 | ||
1115 | if (sv->vol_id < 0 || sv->highest_lnum < 0 || | |
1116 | sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 || | |
1117 | sv->data_pad < 0 || sv->last_data_size < 0) { | |
1118 | ubi_err("negative values"); | |
1119 | goto bad_sv; | |
1120 | } | |
1121 | ||
1122 | if (sv->vol_id >= UBI_MAX_VOLUMES && | |
1123 | sv->vol_id < UBI_INTERNAL_VOL_START) { | |
1124 | ubi_err("bad vol_id"); | |
1125 | goto bad_sv; | |
1126 | } | |
1127 | ||
1128 | if (sv->vol_id > si->highest_vol_id) { | |
1129 | ubi_err("highest_vol_id is %d, but vol_id %d is there", | |
1130 | si->highest_vol_id, sv->vol_id); | |
1131 | goto out; | |
1132 | } | |
1133 | ||
1134 | if (sv->vol_type != UBI_DYNAMIC_VOLUME && | |
1135 | sv->vol_type != UBI_STATIC_VOLUME) { | |
1136 | ubi_err("bad vol_type"); | |
1137 | goto bad_sv; | |
1138 | } | |
1139 | ||
1140 | if (sv->data_pad > ubi->leb_size / 2) { | |
1141 | ubi_err("bad data_pad"); | |
1142 | goto bad_sv; | |
1143 | } | |
1144 | ||
1145 | last_seb = NULL; | |
1146 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | |
1147 | cond_resched(); | |
1148 | ||
1149 | last_seb = seb; | |
1150 | leb_count += 1; | |
1151 | ||
1152 | if (seb->pnum < 0 || seb->ec < 0) { | |
1153 | ubi_err("negative values"); | |
1154 | goto bad_seb; | |
1155 | } | |
1156 | ||
1157 | if (seb->ec < si->min_ec) { | |
1158 | ubi_err("bad si->min_ec (%d), %d found", | |
1159 | si->min_ec, seb->ec); | |
1160 | goto bad_seb; | |
1161 | } | |
1162 | ||
1163 | if (seb->ec > si->max_ec) { | |
1164 | ubi_err("bad si->max_ec (%d), %d found", | |
1165 | si->max_ec, seb->ec); | |
1166 | goto bad_seb; | |
1167 | } | |
1168 | ||
1169 | if (seb->pnum >= ubi->peb_count) { | |
1170 | ubi_err("too high PEB number %d, total PEBs %d", | |
1171 | seb->pnum, ubi->peb_count); | |
1172 | goto bad_seb; | |
1173 | } | |
1174 | ||
1175 | if (sv->vol_type == UBI_STATIC_VOLUME) { | |
1176 | if (seb->lnum >= sv->used_ebs) { | |
1177 | ubi_err("bad lnum or used_ebs"); | |
1178 | goto bad_seb; | |
1179 | } | |
1180 | } else { | |
1181 | if (sv->used_ebs != 0) { | |
1182 | ubi_err("non-zero used_ebs"); | |
1183 | goto bad_seb; | |
1184 | } | |
1185 | } | |
1186 | ||
1187 | if (seb->lnum > sv->highest_lnum) { | |
1188 | ubi_err("incorrect highest_lnum or lnum"); | |
1189 | goto bad_seb; | |
1190 | } | |
1191 | } | |
1192 | ||
1193 | if (sv->leb_count != leb_count) { | |
1194 | ubi_err("bad leb_count, %d objects in the tree", | |
1195 | leb_count); | |
1196 | goto bad_sv; | |
1197 | } | |
1198 | ||
1199 | if (!last_seb) | |
1200 | continue; | |
1201 | ||
1202 | seb = last_seb; | |
1203 | ||
1204 | if (seb->lnum != sv->highest_lnum) { | |
1205 | ubi_err("bad highest_lnum"); | |
1206 | goto bad_seb; | |
1207 | } | |
1208 | } | |
1209 | ||
1210 | if (vols_found != si->vols_found) { | |
1211 | ubi_err("bad si->vols_found %d, should be %d", | |
1212 | si->vols_found, vols_found); | |
1213 | goto out; | |
1214 | } | |
1215 | ||
1216 | /* Check that scanning information is correct */ | |
1217 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { | |
1218 | last_seb = NULL; | |
1219 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { | |
1220 | int vol_type; | |
1221 | ||
1222 | cond_resched(); | |
1223 | ||
1224 | last_seb = seb; | |
1225 | ||
1226 | err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1); | |
1227 | if (err && err != UBI_IO_BITFLIPS) { | |
1228 | ubi_err("VID header is not OK (%d)", err); | |
1229 | if (err > 0) | |
1230 | err = -EIO; | |
1231 | return err; | |
1232 | } | |
1233 | ||
1234 | vol_type = vidh->vol_type == UBI_VID_DYNAMIC ? | |
1235 | UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME; | |
1236 | if (sv->vol_type != vol_type) { | |
1237 | ubi_err("bad vol_type"); | |
1238 | goto bad_vid_hdr; | |
1239 | } | |
1240 | ||
3261ebd7 | 1241 | if (seb->sqnum != be64_to_cpu(vidh->sqnum)) { |
801c135c AB |
1242 | ubi_err("bad sqnum %llu", seb->sqnum); |
1243 | goto bad_vid_hdr; | |
1244 | } | |
1245 | ||
3261ebd7 | 1246 | if (sv->vol_id != be32_to_cpu(vidh->vol_id)) { |
801c135c AB |
1247 | ubi_err("bad vol_id %d", sv->vol_id); |
1248 | goto bad_vid_hdr; | |
1249 | } | |
1250 | ||
1251 | if (sv->compat != vidh->compat) { | |
1252 | ubi_err("bad compat %d", vidh->compat); | |
1253 | goto bad_vid_hdr; | |
1254 | } | |
1255 | ||
3261ebd7 | 1256 | if (seb->lnum != be32_to_cpu(vidh->lnum)) { |
801c135c AB |
1257 | ubi_err("bad lnum %d", seb->lnum); |
1258 | goto bad_vid_hdr; | |
1259 | } | |
1260 | ||
3261ebd7 | 1261 | if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) { |
801c135c AB |
1262 | ubi_err("bad used_ebs %d", sv->used_ebs); |
1263 | goto bad_vid_hdr; | |
1264 | } | |
1265 | ||
3261ebd7 | 1266 | if (sv->data_pad != be32_to_cpu(vidh->data_pad)) { |
801c135c AB |
1267 | ubi_err("bad data_pad %d", sv->data_pad); |
1268 | goto bad_vid_hdr; | |
1269 | } | |
801c135c AB |
1270 | } |
1271 | ||
1272 | if (!last_seb) | |
1273 | continue; | |
1274 | ||
3261ebd7 | 1275 | if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) { |
801c135c AB |
1276 | ubi_err("bad highest_lnum %d", sv->highest_lnum); |
1277 | goto bad_vid_hdr; | |
1278 | } | |
1279 | ||
3261ebd7 | 1280 | if (sv->last_data_size != be32_to_cpu(vidh->data_size)) { |
801c135c AB |
1281 | ubi_err("bad last_data_size %d", sv->last_data_size); |
1282 | goto bad_vid_hdr; | |
1283 | } | |
1284 | } | |
1285 | ||
1286 | /* | |
1287 | * Make sure that all the physical eraseblocks are in one of the lists | |
1288 | * or trees. | |
1289 | */ | |
d9b0744d | 1290 | buf = kzalloc(ubi->peb_count, GFP_KERNEL); |
801c135c AB |
1291 | if (!buf) |
1292 | return -ENOMEM; | |
1293 | ||
801c135c AB |
1294 | for (pnum = 0; pnum < ubi->peb_count; pnum++) { |
1295 | err = ubi_io_is_bad(ubi, pnum); | |
341e1a0c AB |
1296 | if (err < 0) { |
1297 | kfree(buf); | |
801c135c | 1298 | return err; |
9c9ec147 | 1299 | } else if (err) |
d9b0744d | 1300 | buf[pnum] = 1; |
801c135c AB |
1301 | } |
1302 | ||
1303 | ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) | |
1304 | ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) | |
d9b0744d | 1305 | buf[seb->pnum] = 1; |
801c135c AB |
1306 | |
1307 | list_for_each_entry(seb, &si->free, u.list) | |
d9b0744d | 1308 | buf[seb->pnum] = 1; |
801c135c AB |
1309 | |
1310 | list_for_each_entry(seb, &si->corr, u.list) | |
d9b0744d | 1311 | buf[seb->pnum] = 1; |
801c135c AB |
1312 | |
1313 | list_for_each_entry(seb, &si->erase, u.list) | |
d9b0744d | 1314 | buf[seb->pnum] = 1; |
801c135c AB |
1315 | |
1316 | list_for_each_entry(seb, &si->alien, u.list) | |
d9b0744d | 1317 | buf[seb->pnum] = 1; |
801c135c AB |
1318 | |
1319 | err = 0; | |
1320 | for (pnum = 0; pnum < ubi->peb_count; pnum++) | |
d9b0744d | 1321 | if (!buf[pnum]) { |
801c135c AB |
1322 | ubi_err("PEB %d is not referred", pnum); |
1323 | err = 1; | |
1324 | } | |
1325 | ||
1326 | kfree(buf); | |
1327 | if (err) | |
1328 | goto out; | |
1329 | return 0; | |
1330 | ||
1331 | bad_seb: | |
1332 | ubi_err("bad scanning information about LEB %d", seb->lnum); | |
1333 | ubi_dbg_dump_seb(seb, 0); | |
1334 | ubi_dbg_dump_sv(sv); | |
1335 | goto out; | |
1336 | ||
1337 | bad_sv: | |
1338 | ubi_err("bad scanning information about volume %d", sv->vol_id); | |
1339 | ubi_dbg_dump_sv(sv); | |
1340 | goto out; | |
1341 | ||
1342 | bad_vid_hdr: | |
1343 | ubi_err("bad scanning information about volume %d", sv->vol_id); | |
1344 | ubi_dbg_dump_sv(sv); | |
1345 | ubi_dbg_dump_vid_hdr(vidh); | |
1346 | ||
1347 | out: | |
1348 | ubi_dbg_dump_stack(); | |
1349 | return 1; | |
1350 | } | |
1351 | ||
1352 | #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ |