]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
3d48ae45 | 26 | * mapping->i_mmap_mutex |
2b575eb6 | 27 | * anon_vma->mutex |
82591e6e NP |
28 | * mm->page_table_lock or pte_lock |
29 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
30 | * swap_lock (in swap_duplicate, swap_info_get) | |
31 | * mmlist_lock (in mmput, drain_mmlist and others) | |
32 | * mapping->private_lock (in __set_page_dirty_buffers) | |
250df6ed | 33 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
f758eeab | 34 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) |
82591e6e NP |
35 | * sb_lock (within inode_lock in fs/fs-writeback.c) |
36 | * mapping->tree_lock (widely used, in set_page_dirty, | |
37 | * in arch-dependent flush_dcache_mmap_lock, | |
f758eeab | 38 | * within bdi.wb->list_lock in __sync_single_inode) |
6a46079c | 39 | * |
9b679320 PZ |
40 | * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon) |
41 | * ->tasklist_lock | |
6a46079c | 42 | * pte map lock |
1da177e4 LT |
43 | */ |
44 | ||
45 | #include <linux/mm.h> | |
46 | #include <linux/pagemap.h> | |
47 | #include <linux/swap.h> | |
48 | #include <linux/swapops.h> | |
49 | #include <linux/slab.h> | |
50 | #include <linux/init.h> | |
5ad64688 | 51 | #include <linux/ksm.h> |
1da177e4 LT |
52 | #include <linux/rmap.h> |
53 | #include <linux/rcupdate.h> | |
a48d07af | 54 | #include <linux/module.h> |
8a9f3ccd | 55 | #include <linux/memcontrol.h> |
cddb8a5c | 56 | #include <linux/mmu_notifier.h> |
64cdd548 | 57 | #include <linux/migrate.h> |
0fe6e20b | 58 | #include <linux/hugetlb.h> |
1da177e4 LT |
59 | |
60 | #include <asm/tlbflush.h> | |
61 | ||
b291f000 NP |
62 | #include "internal.h" |
63 | ||
fdd2e5f8 | 64 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 65 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
66 | |
67 | static inline struct anon_vma *anon_vma_alloc(void) | |
68 | { | |
01d8b20d PZ |
69 | struct anon_vma *anon_vma; |
70 | ||
71 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
72 | if (anon_vma) { | |
73 | atomic_set(&anon_vma->refcount, 1); | |
74 | /* | |
75 | * Initialise the anon_vma root to point to itself. If called | |
76 | * from fork, the root will be reset to the parents anon_vma. | |
77 | */ | |
78 | anon_vma->root = anon_vma; | |
79 | } | |
80 | ||
81 | return anon_vma; | |
fdd2e5f8 AB |
82 | } |
83 | ||
01d8b20d | 84 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 85 | { |
01d8b20d | 86 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
87 | |
88 | /* | |
89 | * Synchronize against page_lock_anon_vma() such that | |
90 | * we can safely hold the lock without the anon_vma getting | |
91 | * freed. | |
92 | * | |
93 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
94 | * put_anon_vma() against the acquire barrier implied by | |
95 | * mutex_trylock() from page_lock_anon_vma(). This orders: | |
96 | * | |
97 | * page_lock_anon_vma() VS put_anon_vma() | |
98 | * mutex_trylock() atomic_dec_and_test() | |
99 | * LOCK MB | |
100 | * atomic_read() mutex_is_locked() | |
101 | * | |
102 | * LOCK should suffice since the actual taking of the lock must | |
103 | * happen _before_ what follows. | |
104 | */ | |
105 | if (mutex_is_locked(&anon_vma->root->mutex)) { | |
106 | anon_vma_lock(anon_vma); | |
107 | anon_vma_unlock(anon_vma); | |
108 | } | |
109 | ||
fdd2e5f8 AB |
110 | kmem_cache_free(anon_vma_cachep, anon_vma); |
111 | } | |
1da177e4 | 112 | |
dd34739c | 113 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 114 | { |
dd34739c | 115 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
116 | } |
117 | ||
e574b5fd | 118 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
119 | { |
120 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
121 | } | |
122 | ||
d9d332e0 LT |
123 | /** |
124 | * anon_vma_prepare - attach an anon_vma to a memory region | |
125 | * @vma: the memory region in question | |
126 | * | |
127 | * This makes sure the memory mapping described by 'vma' has | |
128 | * an 'anon_vma' attached to it, so that we can associate the | |
129 | * anonymous pages mapped into it with that anon_vma. | |
130 | * | |
131 | * The common case will be that we already have one, but if | |
23a0790a | 132 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
133 | * can re-use the anon_vma from (very common when the only |
134 | * reason for splitting a vma has been mprotect()), or we | |
135 | * allocate a new one. | |
136 | * | |
137 | * Anon-vma allocations are very subtle, because we may have | |
138 | * optimistically looked up an anon_vma in page_lock_anon_vma() | |
139 | * and that may actually touch the spinlock even in the newly | |
140 | * allocated vma (it depends on RCU to make sure that the | |
141 | * anon_vma isn't actually destroyed). | |
142 | * | |
143 | * As a result, we need to do proper anon_vma locking even | |
144 | * for the new allocation. At the same time, we do not want | |
145 | * to do any locking for the common case of already having | |
146 | * an anon_vma. | |
147 | * | |
148 | * This must be called with the mmap_sem held for reading. | |
149 | */ | |
1da177e4 LT |
150 | int anon_vma_prepare(struct vm_area_struct *vma) |
151 | { | |
152 | struct anon_vma *anon_vma = vma->anon_vma; | |
5beb4930 | 153 | struct anon_vma_chain *avc; |
1da177e4 LT |
154 | |
155 | might_sleep(); | |
156 | if (unlikely(!anon_vma)) { | |
157 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 158 | struct anon_vma *allocated; |
1da177e4 | 159 | |
dd34739c | 160 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
161 | if (!avc) |
162 | goto out_enomem; | |
163 | ||
1da177e4 | 164 | anon_vma = find_mergeable_anon_vma(vma); |
d9d332e0 LT |
165 | allocated = NULL; |
166 | if (!anon_vma) { | |
1da177e4 LT |
167 | anon_vma = anon_vma_alloc(); |
168 | if (unlikely(!anon_vma)) | |
5beb4930 | 169 | goto out_enomem_free_avc; |
1da177e4 | 170 | allocated = anon_vma; |
1da177e4 LT |
171 | } |
172 | ||
cba48b98 | 173 | anon_vma_lock(anon_vma); |
1da177e4 LT |
174 | /* page_table_lock to protect against threads */ |
175 | spin_lock(&mm->page_table_lock); | |
176 | if (likely(!vma->anon_vma)) { | |
177 | vma->anon_vma = anon_vma; | |
5beb4930 RR |
178 | avc->anon_vma = anon_vma; |
179 | avc->vma = vma; | |
180 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
26ba0cb6 | 181 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
1da177e4 | 182 | allocated = NULL; |
31f2b0eb | 183 | avc = NULL; |
1da177e4 LT |
184 | } |
185 | spin_unlock(&mm->page_table_lock); | |
cba48b98 | 186 | anon_vma_unlock(anon_vma); |
31f2b0eb ON |
187 | |
188 | if (unlikely(allocated)) | |
01d8b20d | 189 | put_anon_vma(allocated); |
31f2b0eb | 190 | if (unlikely(avc)) |
5beb4930 | 191 | anon_vma_chain_free(avc); |
1da177e4 LT |
192 | } |
193 | return 0; | |
5beb4930 RR |
194 | |
195 | out_enomem_free_avc: | |
196 | anon_vma_chain_free(avc); | |
197 | out_enomem: | |
198 | return -ENOMEM; | |
1da177e4 LT |
199 | } |
200 | ||
bb4aa396 LT |
201 | /* |
202 | * This is a useful helper function for locking the anon_vma root as | |
203 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
204 | * have the same vma. | |
205 | * | |
206 | * Such anon_vma's should have the same root, so you'd expect to see | |
207 | * just a single mutex_lock for the whole traversal. | |
208 | */ | |
209 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
210 | { | |
211 | struct anon_vma *new_root = anon_vma->root; | |
212 | if (new_root != root) { | |
213 | if (WARN_ON_ONCE(root)) | |
214 | mutex_unlock(&root->mutex); | |
215 | root = new_root; | |
216 | mutex_lock(&root->mutex); | |
217 | } | |
218 | return root; | |
219 | } | |
220 | ||
221 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
222 | { | |
223 | if (root) | |
224 | mutex_unlock(&root->mutex); | |
225 | } | |
226 | ||
5beb4930 RR |
227 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
228 | struct anon_vma_chain *avc, | |
229 | struct anon_vma *anon_vma) | |
1da177e4 | 230 | { |
5beb4930 RR |
231 | avc->vma = vma; |
232 | avc->anon_vma = anon_vma; | |
233 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
234 | ||
05759d38 AA |
235 | /* |
236 | * It's critical to add new vmas to the tail of the anon_vma, | |
237 | * see comment in huge_memory.c:__split_huge_page(). | |
238 | */ | |
5beb4930 | 239 | list_add_tail(&avc->same_anon_vma, &anon_vma->head); |
1da177e4 LT |
240 | } |
241 | ||
5beb4930 RR |
242 | /* |
243 | * Attach the anon_vmas from src to dst. | |
244 | * Returns 0 on success, -ENOMEM on failure. | |
245 | */ | |
246 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 247 | { |
5beb4930 | 248 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 249 | struct anon_vma *root = NULL; |
5beb4930 | 250 | |
646d87b4 | 251 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
252 | struct anon_vma *anon_vma; |
253 | ||
dd34739c LT |
254 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
255 | if (unlikely(!avc)) { | |
256 | unlock_anon_vma_root(root); | |
257 | root = NULL; | |
258 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
259 | if (!avc) | |
260 | goto enomem_failure; | |
261 | } | |
bb4aa396 LT |
262 | anon_vma = pavc->anon_vma; |
263 | root = lock_anon_vma_root(root, anon_vma); | |
264 | anon_vma_chain_link(dst, avc, anon_vma); | |
5beb4930 | 265 | } |
bb4aa396 | 266 | unlock_anon_vma_root(root); |
5beb4930 | 267 | return 0; |
1da177e4 | 268 | |
5beb4930 RR |
269 | enomem_failure: |
270 | unlink_anon_vmas(dst); | |
271 | return -ENOMEM; | |
1da177e4 LT |
272 | } |
273 | ||
5beb4930 RR |
274 | /* |
275 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
276 | * the corresponding VMA in the parent process is attached to. | |
277 | * Returns 0 on success, non-zero on failure. | |
278 | */ | |
279 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 280 | { |
5beb4930 RR |
281 | struct anon_vma_chain *avc; |
282 | struct anon_vma *anon_vma; | |
1da177e4 | 283 | |
5beb4930 RR |
284 | /* Don't bother if the parent process has no anon_vma here. */ |
285 | if (!pvma->anon_vma) | |
286 | return 0; | |
287 | ||
288 | /* | |
289 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
290 | * so rmap can find non-COWed pages in child processes. | |
291 | */ | |
292 | if (anon_vma_clone(vma, pvma)) | |
293 | return -ENOMEM; | |
294 | ||
295 | /* Then add our own anon_vma. */ | |
296 | anon_vma = anon_vma_alloc(); | |
297 | if (!anon_vma) | |
298 | goto out_error; | |
dd34739c | 299 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
300 | if (!avc) |
301 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
302 | |
303 | /* | |
304 | * The root anon_vma's spinlock is the lock actually used when we | |
305 | * lock any of the anon_vmas in this anon_vma tree. | |
306 | */ | |
307 | anon_vma->root = pvma->anon_vma->root; | |
76545066 | 308 | /* |
01d8b20d PZ |
309 | * With refcounts, an anon_vma can stay around longer than the |
310 | * process it belongs to. The root anon_vma needs to be pinned until | |
311 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
312 | */ |
313 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
314 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
315 | vma->anon_vma = anon_vma; | |
bb4aa396 | 316 | anon_vma_lock(anon_vma); |
5c341ee1 | 317 | anon_vma_chain_link(vma, avc, anon_vma); |
bb4aa396 | 318 | anon_vma_unlock(anon_vma); |
5beb4930 RR |
319 | |
320 | return 0; | |
321 | ||
322 | out_error_free_anon_vma: | |
01d8b20d | 323 | put_anon_vma(anon_vma); |
5beb4930 | 324 | out_error: |
4946d54c | 325 | unlink_anon_vmas(vma); |
5beb4930 | 326 | return -ENOMEM; |
1da177e4 LT |
327 | } |
328 | ||
5beb4930 RR |
329 | void unlink_anon_vmas(struct vm_area_struct *vma) |
330 | { | |
331 | struct anon_vma_chain *avc, *next; | |
eee2acba | 332 | struct anon_vma *root = NULL; |
5beb4930 | 333 | |
5c341ee1 RR |
334 | /* |
335 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
336 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
337 | */ | |
5beb4930 | 338 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
339 | struct anon_vma *anon_vma = avc->anon_vma; |
340 | ||
341 | root = lock_anon_vma_root(root, anon_vma); | |
342 | list_del(&avc->same_anon_vma); | |
343 | ||
344 | /* | |
345 | * Leave empty anon_vmas on the list - we'll need | |
346 | * to free them outside the lock. | |
347 | */ | |
348 | if (list_empty(&anon_vma->head)) | |
349 | continue; | |
350 | ||
351 | list_del(&avc->same_vma); | |
352 | anon_vma_chain_free(avc); | |
353 | } | |
354 | unlock_anon_vma_root(root); | |
355 | ||
356 | /* | |
357 | * Iterate the list once more, it now only contains empty and unlinked | |
358 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
359 | * needing to acquire the anon_vma->root->mutex. | |
360 | */ | |
361 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
362 | struct anon_vma *anon_vma = avc->anon_vma; | |
363 | ||
364 | put_anon_vma(anon_vma); | |
365 | ||
5beb4930 RR |
366 | list_del(&avc->same_vma); |
367 | anon_vma_chain_free(avc); | |
368 | } | |
369 | } | |
370 | ||
51cc5068 | 371 | static void anon_vma_ctor(void *data) |
1da177e4 | 372 | { |
a35afb83 | 373 | struct anon_vma *anon_vma = data; |
1da177e4 | 374 | |
2b575eb6 | 375 | mutex_init(&anon_vma->mutex); |
83813267 | 376 | atomic_set(&anon_vma->refcount, 0); |
a35afb83 | 377 | INIT_LIST_HEAD(&anon_vma->head); |
1da177e4 LT |
378 | } |
379 | ||
380 | void __init anon_vma_init(void) | |
381 | { | |
382 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
20c2df83 | 383 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor); |
5beb4930 | 384 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC); |
1da177e4 LT |
385 | } |
386 | ||
387 | /* | |
6111e4ca PZ |
388 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
389 | * | |
390 | * Since there is no serialization what so ever against page_remove_rmap() | |
391 | * the best this function can do is return a locked anon_vma that might | |
392 | * have been relevant to this page. | |
393 | * | |
394 | * The page might have been remapped to a different anon_vma or the anon_vma | |
395 | * returned may already be freed (and even reused). | |
396 | * | |
bc658c96 PZ |
397 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
398 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
399 | * ensure that any anon_vma obtained from the page will still be valid for as | |
400 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
401 | * | |
6111e4ca PZ |
402 | * All users of this function must be very careful when walking the anon_vma |
403 | * chain and verify that the page in question is indeed mapped in it | |
404 | * [ something equivalent to page_mapped_in_vma() ]. | |
405 | * | |
406 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
407 | * that the anon_vma pointer from page->mapping is valid if there is a | |
408 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 409 | */ |
746b18d4 | 410 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 411 | { |
746b18d4 | 412 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
413 | unsigned long anon_mapping; |
414 | ||
415 | rcu_read_lock(); | |
80e14822 | 416 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); |
3ca7b3c5 | 417 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
418 | goto out; |
419 | if (!page_mapped(page)) | |
420 | goto out; | |
421 | ||
422 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
423 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
424 | anon_vma = NULL; | |
425 | goto out; | |
426 | } | |
f1819427 HD |
427 | |
428 | /* | |
429 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
430 | * freed. But if it has been unmapped, we have no security against the |
431 | * anon_vma structure being freed and reused (for another anon_vma: | |
432 | * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() | |
433 | * above cannot corrupt). | |
f1819427 | 434 | */ |
746b18d4 PZ |
435 | if (!page_mapped(page)) { |
436 | put_anon_vma(anon_vma); | |
437 | anon_vma = NULL; | |
438 | } | |
1da177e4 LT |
439 | out: |
440 | rcu_read_unlock(); | |
746b18d4 PZ |
441 | |
442 | return anon_vma; | |
443 | } | |
444 | ||
88c22088 PZ |
445 | /* |
446 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
447 | * | |
448 | * Its a little more complex as it tries to keep the fast path to a single | |
449 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
450 | * reference like with page_get_anon_vma() and then block on the mutex. | |
451 | */ | |
746b18d4 PZ |
452 | struct anon_vma *page_lock_anon_vma(struct page *page) |
453 | { | |
88c22088 | 454 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 455 | struct anon_vma *root_anon_vma; |
88c22088 | 456 | unsigned long anon_mapping; |
746b18d4 | 457 | |
88c22088 PZ |
458 | rcu_read_lock(); |
459 | anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping); | |
460 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) | |
461 | goto out; | |
462 | if (!page_mapped(page)) | |
463 | goto out; | |
464 | ||
465 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
eee0f252 HD |
466 | root_anon_vma = ACCESS_ONCE(anon_vma->root); |
467 | if (mutex_trylock(&root_anon_vma->mutex)) { | |
88c22088 | 468 | /* |
eee0f252 HD |
469 | * If the page is still mapped, then this anon_vma is still |
470 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 471 | * not go away, see anon_vma_free(). |
88c22088 | 472 | */ |
eee0f252 HD |
473 | if (!page_mapped(page)) { |
474 | mutex_unlock(&root_anon_vma->mutex); | |
88c22088 PZ |
475 | anon_vma = NULL; |
476 | } | |
477 | goto out; | |
478 | } | |
746b18d4 | 479 | |
88c22088 PZ |
480 | /* trylock failed, we got to sleep */ |
481 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
482 | anon_vma = NULL; | |
483 | goto out; | |
484 | } | |
485 | ||
486 | if (!page_mapped(page)) { | |
487 | put_anon_vma(anon_vma); | |
488 | anon_vma = NULL; | |
489 | goto out; | |
490 | } | |
491 | ||
492 | /* we pinned the anon_vma, its safe to sleep */ | |
493 | rcu_read_unlock(); | |
494 | anon_vma_lock(anon_vma); | |
495 | ||
496 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
497 | /* | |
498 | * Oops, we held the last refcount, release the lock | |
499 | * and bail -- can't simply use put_anon_vma() because | |
500 | * we'll deadlock on the anon_vma_lock() recursion. | |
501 | */ | |
502 | anon_vma_unlock(anon_vma); | |
503 | __put_anon_vma(anon_vma); | |
504 | anon_vma = NULL; | |
505 | } | |
506 | ||
507 | return anon_vma; | |
508 | ||
509 | out: | |
510 | rcu_read_unlock(); | |
746b18d4 | 511 | return anon_vma; |
34bbd704 ON |
512 | } |
513 | ||
10be22df | 514 | void page_unlock_anon_vma(struct anon_vma *anon_vma) |
34bbd704 | 515 | { |
cba48b98 | 516 | anon_vma_unlock(anon_vma); |
1da177e4 LT |
517 | } |
518 | ||
519 | /* | |
3ad33b24 LS |
520 | * At what user virtual address is page expected in @vma? |
521 | * Returns virtual address or -EFAULT if page's index/offset is not | |
522 | * within the range mapped the @vma. | |
1da177e4 | 523 | */ |
71e3aac0 | 524 | inline unsigned long |
1da177e4 LT |
525 | vma_address(struct page *page, struct vm_area_struct *vma) |
526 | { | |
527 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
528 | unsigned long address; | |
529 | ||
0fe6e20b NH |
530 | if (unlikely(is_vm_hugetlb_page(vma))) |
531 | pgoff = page->index << huge_page_order(page_hstate(page)); | |
1da177e4 LT |
532 | address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
533 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | |
3ad33b24 | 534 | /* page should be within @vma mapping range */ |
1da177e4 LT |
535 | return -EFAULT; |
536 | } | |
537 | return address; | |
538 | } | |
539 | ||
540 | /* | |
bf89c8c8 | 541 | * At what user virtual address is page expected in vma? |
ab941e0f | 542 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
543 | */ |
544 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
545 | { | |
21d0d443 | 546 | if (PageAnon(page)) { |
4829b906 HD |
547 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
548 | /* | |
549 | * Note: swapoff's unuse_vma() is more efficient with this | |
550 | * check, and needs it to match anon_vma when KSM is active. | |
551 | */ | |
552 | if (!vma->anon_vma || !page__anon_vma || | |
553 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 AA |
554 | return -EFAULT; |
555 | } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | |
ee498ed7 HD |
556 | if (!vma->vm_file || |
557 | vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
558 | return -EFAULT; |
559 | } else | |
560 | return -EFAULT; | |
561 | return vma_address(page, vma); | |
562 | } | |
563 | ||
81b4082d ND |
564 | /* |
565 | * Check that @page is mapped at @address into @mm. | |
566 | * | |
479db0bf NP |
567 | * If @sync is false, page_check_address may perform a racy check to avoid |
568 | * the page table lock when the pte is not present (helpful when reclaiming | |
569 | * highly shared pages). | |
570 | * | |
b8072f09 | 571 | * On success returns with pte mapped and locked. |
81b4082d | 572 | */ |
e9a81a82 | 573 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 574 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d ND |
575 | { |
576 | pgd_t *pgd; | |
577 | pud_t *pud; | |
578 | pmd_t *pmd; | |
579 | pte_t *pte; | |
c0718806 | 580 | spinlock_t *ptl; |
81b4082d | 581 | |
0fe6e20b NH |
582 | if (unlikely(PageHuge(page))) { |
583 | pte = huge_pte_offset(mm, address); | |
584 | ptl = &mm->page_table_lock; | |
585 | goto check; | |
586 | } | |
587 | ||
81b4082d | 588 | pgd = pgd_offset(mm, address); |
c0718806 HD |
589 | if (!pgd_present(*pgd)) |
590 | return NULL; | |
591 | ||
592 | pud = pud_offset(pgd, address); | |
593 | if (!pud_present(*pud)) | |
594 | return NULL; | |
595 | ||
596 | pmd = pmd_offset(pud, address); | |
597 | if (!pmd_present(*pmd)) | |
598 | return NULL; | |
71e3aac0 AA |
599 | if (pmd_trans_huge(*pmd)) |
600 | return NULL; | |
c0718806 HD |
601 | |
602 | pte = pte_offset_map(pmd, address); | |
603 | /* Make a quick check before getting the lock */ | |
479db0bf | 604 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
605 | pte_unmap(pte); |
606 | return NULL; | |
607 | } | |
608 | ||
4c21e2f2 | 609 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 610 | check: |
c0718806 HD |
611 | spin_lock(ptl); |
612 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
613 | *ptlp = ptl; | |
614 | return pte; | |
81b4082d | 615 | } |
c0718806 HD |
616 | pte_unmap_unlock(pte, ptl); |
617 | return NULL; | |
81b4082d ND |
618 | } |
619 | ||
b291f000 NP |
620 | /** |
621 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
622 | * @page: the page to test | |
623 | * @vma: the VMA to test | |
624 | * | |
625 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
626 | * if the page is not mapped into the page tables of this VMA. Only | |
627 | * valid for normal file or anonymous VMAs. | |
628 | */ | |
6a46079c | 629 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
630 | { |
631 | unsigned long address; | |
632 | pte_t *pte; | |
633 | spinlock_t *ptl; | |
634 | ||
635 | address = vma_address(page, vma); | |
636 | if (address == -EFAULT) /* out of vma range */ | |
637 | return 0; | |
638 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
639 | if (!pte) /* the page is not in this mm */ | |
640 | return 0; | |
641 | pte_unmap_unlock(pte, ptl); | |
642 | ||
643 | return 1; | |
644 | } | |
645 | ||
1da177e4 LT |
646 | /* |
647 | * Subfunctions of page_referenced: page_referenced_one called | |
648 | * repeatedly from either page_referenced_anon or page_referenced_file. | |
649 | */ | |
5ad64688 HD |
650 | int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
651 | unsigned long address, unsigned int *mapcount, | |
652 | unsigned long *vm_flags) | |
1da177e4 LT |
653 | { |
654 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
655 | int referenced = 0; |
656 | ||
71e3aac0 AA |
657 | if (unlikely(PageTransHuge(page))) { |
658 | pmd_t *pmd; | |
659 | ||
660 | spin_lock(&mm->page_table_lock); | |
2da28bfd AA |
661 | /* |
662 | * rmap might return false positives; we must filter | |
663 | * these out using page_check_address_pmd(). | |
664 | */ | |
71e3aac0 AA |
665 | pmd = page_check_address_pmd(page, mm, address, |
666 | PAGE_CHECK_ADDRESS_PMD_FLAG); | |
2da28bfd AA |
667 | if (!pmd) { |
668 | spin_unlock(&mm->page_table_lock); | |
669 | goto out; | |
670 | } | |
671 | ||
672 | if (vma->vm_flags & VM_LOCKED) { | |
673 | spin_unlock(&mm->page_table_lock); | |
674 | *mapcount = 0; /* break early from loop */ | |
675 | *vm_flags |= VM_LOCKED; | |
676 | goto out; | |
677 | } | |
678 | ||
679 | /* go ahead even if the pmd is pmd_trans_splitting() */ | |
680 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) | |
71e3aac0 AA |
681 | referenced++; |
682 | spin_unlock(&mm->page_table_lock); | |
683 | } else { | |
684 | pte_t *pte; | |
685 | spinlock_t *ptl; | |
686 | ||
2da28bfd AA |
687 | /* |
688 | * rmap might return false positives; we must filter | |
689 | * these out using page_check_address(). | |
690 | */ | |
71e3aac0 AA |
691 | pte = page_check_address(page, mm, address, &ptl, 0); |
692 | if (!pte) | |
693 | goto out; | |
694 | ||
2da28bfd AA |
695 | if (vma->vm_flags & VM_LOCKED) { |
696 | pte_unmap_unlock(pte, ptl); | |
697 | *mapcount = 0; /* break early from loop */ | |
698 | *vm_flags |= VM_LOCKED; | |
699 | goto out; | |
700 | } | |
701 | ||
71e3aac0 AA |
702 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
703 | /* | |
704 | * Don't treat a reference through a sequentially read | |
705 | * mapping as such. If the page has been used in | |
706 | * another mapping, we will catch it; if this other | |
707 | * mapping is already gone, the unmap path will have | |
708 | * set PG_referenced or activated the page. | |
709 | */ | |
710 | if (likely(!VM_SequentialReadHint(vma))) | |
711 | referenced++; | |
712 | } | |
713 | pte_unmap_unlock(pte, ptl); | |
714 | } | |
715 | ||
2da28bfd AA |
716 | /* Pretend the page is referenced if the task has the |
717 | swap token and is in the middle of a page fault. */ | |
718 | if (mm != current->mm && has_swap_token(mm) && | |
719 | rwsem_is_locked(&mm->mmap_sem)) | |
720 | referenced++; | |
721 | ||
c0718806 | 722 | (*mapcount)--; |
273f047e | 723 | |
6fe6b7e3 WF |
724 | if (referenced) |
725 | *vm_flags |= vma->vm_flags; | |
273f047e | 726 | out: |
1da177e4 LT |
727 | return referenced; |
728 | } | |
729 | ||
bed7161a | 730 | static int page_referenced_anon(struct page *page, |
6fe6b7e3 WF |
731 | struct mem_cgroup *mem_cont, |
732 | unsigned long *vm_flags) | |
1da177e4 LT |
733 | { |
734 | unsigned int mapcount; | |
735 | struct anon_vma *anon_vma; | |
5beb4930 | 736 | struct anon_vma_chain *avc; |
1da177e4 LT |
737 | int referenced = 0; |
738 | ||
739 | anon_vma = page_lock_anon_vma(page); | |
740 | if (!anon_vma) | |
741 | return referenced; | |
742 | ||
743 | mapcount = page_mapcount(page); | |
5beb4930 RR |
744 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
745 | struct vm_area_struct *vma = avc->vma; | |
1cb1729b HD |
746 | unsigned long address = vma_address(page, vma); |
747 | if (address == -EFAULT) | |
748 | continue; | |
bed7161a BS |
749 | /* |
750 | * If we are reclaiming on behalf of a cgroup, skip | |
751 | * counting on behalf of references from different | |
752 | * cgroups | |
753 | */ | |
bd845e38 | 754 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 755 | continue; |
1cb1729b | 756 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 757 | &mapcount, vm_flags); |
1da177e4 LT |
758 | if (!mapcount) |
759 | break; | |
760 | } | |
34bbd704 ON |
761 | |
762 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
763 | return referenced; |
764 | } | |
765 | ||
766 | /** | |
767 | * page_referenced_file - referenced check for object-based rmap | |
768 | * @page: the page we're checking references on. | |
43d8eac4 | 769 | * @mem_cont: target memory controller |
6fe6b7e3 | 770 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
771 | * |
772 | * For an object-based mapped page, find all the places it is mapped and | |
773 | * check/clear the referenced flag. This is done by following the page->mapping | |
774 | * pointer, then walking the chain of vmas it holds. It returns the number | |
775 | * of references it found. | |
776 | * | |
777 | * This function is only called from page_referenced for object-based pages. | |
778 | */ | |
bed7161a | 779 | static int page_referenced_file(struct page *page, |
6fe6b7e3 WF |
780 | struct mem_cgroup *mem_cont, |
781 | unsigned long *vm_flags) | |
1da177e4 LT |
782 | { |
783 | unsigned int mapcount; | |
784 | struct address_space *mapping = page->mapping; | |
785 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
786 | struct vm_area_struct *vma; | |
787 | struct prio_tree_iter iter; | |
788 | int referenced = 0; | |
789 | ||
790 | /* | |
791 | * The caller's checks on page->mapping and !PageAnon have made | |
792 | * sure that this is a file page: the check for page->mapping | |
793 | * excludes the case just before it gets set on an anon page. | |
794 | */ | |
795 | BUG_ON(PageAnon(page)); | |
796 | ||
797 | /* | |
798 | * The page lock not only makes sure that page->mapping cannot | |
799 | * suddenly be NULLified by truncation, it makes sure that the | |
800 | * structure at mapping cannot be freed and reused yet, | |
3d48ae45 | 801 | * so we can safely take mapping->i_mmap_mutex. |
1da177e4 LT |
802 | */ |
803 | BUG_ON(!PageLocked(page)); | |
804 | ||
3d48ae45 | 805 | mutex_lock(&mapping->i_mmap_mutex); |
1da177e4 LT |
806 | |
807 | /* | |
3d48ae45 | 808 | * i_mmap_mutex does not stabilize mapcount at all, but mapcount |
1da177e4 LT |
809 | * is more likely to be accurate if we note it after spinning. |
810 | */ | |
811 | mapcount = page_mapcount(page); | |
812 | ||
813 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | |
1cb1729b HD |
814 | unsigned long address = vma_address(page, vma); |
815 | if (address == -EFAULT) | |
816 | continue; | |
bed7161a BS |
817 | /* |
818 | * If we are reclaiming on behalf of a cgroup, skip | |
819 | * counting on behalf of references from different | |
820 | * cgroups | |
821 | */ | |
bd845e38 | 822 | if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont)) |
bed7161a | 823 | continue; |
1cb1729b | 824 | referenced += page_referenced_one(page, vma, address, |
6fe6b7e3 | 825 | &mapcount, vm_flags); |
1da177e4 LT |
826 | if (!mapcount) |
827 | break; | |
828 | } | |
829 | ||
3d48ae45 | 830 | mutex_unlock(&mapping->i_mmap_mutex); |
1da177e4 LT |
831 | return referenced; |
832 | } | |
833 | ||
834 | /** | |
835 | * page_referenced - test if the page was referenced | |
836 | * @page: the page to test | |
837 | * @is_locked: caller holds lock on the page | |
43d8eac4 | 838 | * @mem_cont: target memory controller |
6fe6b7e3 | 839 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
840 | * |
841 | * Quick test_and_clear_referenced for all mappings to a page, | |
842 | * returns the number of ptes which referenced the page. | |
843 | */ | |
6fe6b7e3 WF |
844 | int page_referenced(struct page *page, |
845 | int is_locked, | |
846 | struct mem_cgroup *mem_cont, | |
847 | unsigned long *vm_flags) | |
1da177e4 LT |
848 | { |
849 | int referenced = 0; | |
5ad64688 | 850 | int we_locked = 0; |
1da177e4 | 851 | |
6fe6b7e3 | 852 | *vm_flags = 0; |
3ca7b3c5 | 853 | if (page_mapped(page) && page_rmapping(page)) { |
5ad64688 HD |
854 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { |
855 | we_locked = trylock_page(page); | |
856 | if (!we_locked) { | |
857 | referenced++; | |
858 | goto out; | |
859 | } | |
860 | } | |
861 | if (unlikely(PageKsm(page))) | |
862 | referenced += page_referenced_ksm(page, mem_cont, | |
863 | vm_flags); | |
864 | else if (PageAnon(page)) | |
6fe6b7e3 WF |
865 | referenced += page_referenced_anon(page, mem_cont, |
866 | vm_flags); | |
5ad64688 | 867 | else if (page->mapping) |
6fe6b7e3 WF |
868 | referenced += page_referenced_file(page, mem_cont, |
869 | vm_flags); | |
5ad64688 | 870 | if (we_locked) |
1da177e4 | 871 | unlock_page(page); |
50a15981 MS |
872 | |
873 | if (page_test_and_clear_young(page_to_pfn(page))) | |
874 | referenced++; | |
1da177e4 | 875 | } |
5ad64688 | 876 | out: |
1da177e4 LT |
877 | return referenced; |
878 | } | |
879 | ||
1cb1729b HD |
880 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
881 | unsigned long address) | |
d08b3851 PZ |
882 | { |
883 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 884 | pte_t *pte; |
d08b3851 PZ |
885 | spinlock_t *ptl; |
886 | int ret = 0; | |
887 | ||
479db0bf | 888 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
889 | if (!pte) |
890 | goto out; | |
891 | ||
c2fda5fe PZ |
892 | if (pte_dirty(*pte) || pte_write(*pte)) { |
893 | pte_t entry; | |
d08b3851 | 894 | |
c2fda5fe | 895 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 896 | entry = ptep_clear_flush_notify(vma, address, pte); |
c2fda5fe PZ |
897 | entry = pte_wrprotect(entry); |
898 | entry = pte_mkclean(entry); | |
d6e88e67 | 899 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
900 | ret = 1; |
901 | } | |
d08b3851 | 902 | |
d08b3851 PZ |
903 | pte_unmap_unlock(pte, ptl); |
904 | out: | |
905 | return ret; | |
906 | } | |
907 | ||
908 | static int page_mkclean_file(struct address_space *mapping, struct page *page) | |
909 | { | |
910 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
911 | struct vm_area_struct *vma; | |
912 | struct prio_tree_iter iter; | |
913 | int ret = 0; | |
914 | ||
915 | BUG_ON(PageAnon(page)); | |
916 | ||
3d48ae45 | 917 | mutex_lock(&mapping->i_mmap_mutex); |
d08b3851 | 918 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
1cb1729b HD |
919 | if (vma->vm_flags & VM_SHARED) { |
920 | unsigned long address = vma_address(page, vma); | |
921 | if (address == -EFAULT) | |
922 | continue; | |
923 | ret += page_mkclean_one(page, vma, address); | |
924 | } | |
d08b3851 | 925 | } |
3d48ae45 | 926 | mutex_unlock(&mapping->i_mmap_mutex); |
d08b3851 PZ |
927 | return ret; |
928 | } | |
929 | ||
930 | int page_mkclean(struct page *page) | |
931 | { | |
932 | int ret = 0; | |
933 | ||
934 | BUG_ON(!PageLocked(page)); | |
935 | ||
936 | if (page_mapped(page)) { | |
937 | struct address_space *mapping = page_mapping(page); | |
ce7e9fae | 938 | if (mapping) { |
d08b3851 | 939 | ret = page_mkclean_file(mapping, page); |
2d42552d | 940 | if (page_test_and_clear_dirty(page_to_pfn(page), 1)) |
ce7e9fae | 941 | ret = 1; |
6c210482 | 942 | } |
d08b3851 PZ |
943 | } |
944 | ||
945 | return ret; | |
946 | } | |
60b59bea | 947 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 948 | |
c44b6743 RR |
949 | /** |
950 | * page_move_anon_rmap - move a page to our anon_vma | |
951 | * @page: the page to move to our anon_vma | |
952 | * @vma: the vma the page belongs to | |
953 | * @address: the user virtual address mapped | |
954 | * | |
955 | * When a page belongs exclusively to one process after a COW event, | |
956 | * that page can be moved into the anon_vma that belongs to just that | |
957 | * process, so the rmap code will not search the parent or sibling | |
958 | * processes. | |
959 | */ | |
960 | void page_move_anon_rmap(struct page *page, | |
961 | struct vm_area_struct *vma, unsigned long address) | |
962 | { | |
963 | struct anon_vma *anon_vma = vma->anon_vma; | |
964 | ||
965 | VM_BUG_ON(!PageLocked(page)); | |
966 | VM_BUG_ON(!anon_vma); | |
967 | VM_BUG_ON(page->index != linear_page_index(vma, address)); | |
968 | ||
969 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
970 | page->mapping = (struct address_space *) anon_vma; | |
971 | } | |
972 | ||
9617d95e | 973 | /** |
4e1c1975 AK |
974 | * __page_set_anon_rmap - set up new anonymous rmap |
975 | * @page: Page to add to rmap | |
976 | * @vma: VM area to add page to. | |
977 | * @address: User virtual address of the mapping | |
e8a03feb | 978 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
979 | */ |
980 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 981 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 982 | { |
e8a03feb | 983 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 984 | |
e8a03feb | 985 | BUG_ON(!anon_vma); |
ea90002b | 986 | |
4e1c1975 AK |
987 | if (PageAnon(page)) |
988 | return; | |
989 | ||
ea90002b | 990 | /* |
e8a03feb RR |
991 | * If the page isn't exclusively mapped into this vma, |
992 | * we must use the _oldest_ possible anon_vma for the | |
993 | * page mapping! | |
ea90002b | 994 | */ |
4e1c1975 | 995 | if (!exclusive) |
288468c3 | 996 | anon_vma = anon_vma->root; |
9617d95e | 997 | |
9617d95e NP |
998 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
999 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1000 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1001 | } |
1002 | ||
c97a9e10 | 1003 | /** |
43d8eac4 | 1004 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1005 | * @page: the page to add the mapping to |
1006 | * @vma: the vm area in which the mapping is added | |
1007 | * @address: the user virtual address mapped | |
1008 | */ | |
1009 | static void __page_check_anon_rmap(struct page *page, | |
1010 | struct vm_area_struct *vma, unsigned long address) | |
1011 | { | |
1012 | #ifdef CONFIG_DEBUG_VM | |
1013 | /* | |
1014 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1015 | * be set up correctly at this point. | |
1016 | * | |
1017 | * We have exclusion against page_add_anon_rmap because the caller | |
1018 | * always holds the page locked, except if called from page_dup_rmap, | |
1019 | * in which case the page is already known to be setup. | |
1020 | * | |
1021 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1022 | * are initially only visible via the pagetables, and the pte is locked | |
1023 | * over the call to page_add_new_anon_rmap. | |
1024 | */ | |
44ab57a0 | 1025 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
c97a9e10 NP |
1026 | BUG_ON(page->index != linear_page_index(vma, address)); |
1027 | #endif | |
1028 | } | |
1029 | ||
1da177e4 LT |
1030 | /** |
1031 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1032 | * @page: the page to add the mapping to | |
1033 | * @vma: the vm area in which the mapping is added | |
1034 | * @address: the user virtual address mapped | |
1035 | * | |
5ad64688 | 1036 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1037 | * the anon_vma case: to serialize mapping,index checking after setting, |
1038 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1039 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1040 | */ |
1041 | void page_add_anon_rmap(struct page *page, | |
1042 | struct vm_area_struct *vma, unsigned long address) | |
ad8c2ee8 RR |
1043 | { |
1044 | do_page_add_anon_rmap(page, vma, address, 0); | |
1045 | } | |
1046 | ||
1047 | /* | |
1048 | * Special version of the above for do_swap_page, which often runs | |
1049 | * into pages that are exclusively owned by the current process. | |
1050 | * Everybody else should continue to use page_add_anon_rmap above. | |
1051 | */ | |
1052 | void do_page_add_anon_rmap(struct page *page, | |
1053 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1da177e4 | 1054 | { |
5ad64688 | 1055 | int first = atomic_inc_and_test(&page->_mapcount); |
79134171 AA |
1056 | if (first) { |
1057 | if (!PageTransHuge(page)) | |
1058 | __inc_zone_page_state(page, NR_ANON_PAGES); | |
1059 | else | |
1060 | __inc_zone_page_state(page, | |
1061 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
1062 | } | |
5ad64688 HD |
1063 | if (unlikely(PageKsm(page))) |
1064 | return; | |
1065 | ||
c97a9e10 | 1066 | VM_BUG_ON(!PageLocked(page)); |
5dbe0af4 | 1067 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1068 | if (first) |
ad8c2ee8 | 1069 | __page_set_anon_rmap(page, vma, address, exclusive); |
69029cd5 | 1070 | else |
c97a9e10 | 1071 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1072 | } |
1073 | ||
43d8eac4 | 1074 | /** |
9617d95e NP |
1075 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1076 | * @page: the page to add the mapping to | |
1077 | * @vma: the vm area in which the mapping is added | |
1078 | * @address: the user virtual address mapped | |
1079 | * | |
1080 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1081 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1082 | * Page does not have to be locked. |
9617d95e NP |
1083 | */ |
1084 | void page_add_new_anon_rmap(struct page *page, | |
1085 | struct vm_area_struct *vma, unsigned long address) | |
1086 | { | |
b5934c53 | 1087 | VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); |
cbf84b7a HD |
1088 | SetPageSwapBacked(page); |
1089 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
79134171 AA |
1090 | if (!PageTransHuge(page)) |
1091 | __inc_zone_page_state(page, NR_ANON_PAGES); | |
1092 | else | |
1093 | __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); | |
e8a03feb | 1094 | __page_set_anon_rmap(page, vma, address, 1); |
b5934c53 | 1095 | if (page_evictable(page, vma)) |
cbf84b7a | 1096 | lru_cache_add_lru(page, LRU_ACTIVE_ANON); |
b5934c53 HD |
1097 | else |
1098 | add_page_to_unevictable_list(page); | |
9617d95e NP |
1099 | } |
1100 | ||
1da177e4 LT |
1101 | /** |
1102 | * page_add_file_rmap - add pte mapping to a file page | |
1103 | * @page: the page to add the mapping to | |
1104 | * | |
b8072f09 | 1105 | * The caller needs to hold the pte lock. |
1da177e4 LT |
1106 | */ |
1107 | void page_add_file_rmap(struct page *page) | |
1108 | { | |
d69b042f | 1109 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 1110 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
2a7106f2 | 1111 | mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); |
d69b042f | 1112 | } |
1da177e4 LT |
1113 | } |
1114 | ||
1115 | /** | |
1116 | * page_remove_rmap - take down pte mapping from a page | |
1117 | * @page: page to remove mapping from | |
1118 | * | |
b8072f09 | 1119 | * The caller needs to hold the pte lock. |
1da177e4 | 1120 | */ |
edc315fd | 1121 | void page_remove_rmap(struct page *page) |
1da177e4 | 1122 | { |
b904dcfe KM |
1123 | /* page still mapped by someone else? */ |
1124 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1125 | return; | |
1126 | ||
1127 | /* | |
1128 | * Now that the last pte has gone, s390 must transfer dirty | |
1129 | * flag from storage key to struct page. We can usually skip | |
1130 | * this if the page is anon, so about to be freed; but perhaps | |
1131 | * not if it's in swapcache - there might be another pte slot | |
1132 | * containing the swap entry, but page not yet written to swap. | |
1133 | */ | |
2d42552d MS |
1134 | if ((!PageAnon(page) || PageSwapCache(page)) && |
1135 | page_test_and_clear_dirty(page_to_pfn(page), 1)) | |
b904dcfe | 1136 | set_page_dirty(page); |
0fe6e20b NH |
1137 | /* |
1138 | * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED | |
1139 | * and not charged by memcg for now. | |
1140 | */ | |
1141 | if (unlikely(PageHuge(page))) | |
1142 | return; | |
b904dcfe KM |
1143 | if (PageAnon(page)) { |
1144 | mem_cgroup_uncharge_page(page); | |
79134171 AA |
1145 | if (!PageTransHuge(page)) |
1146 | __dec_zone_page_state(page, NR_ANON_PAGES); | |
1147 | else | |
1148 | __dec_zone_page_state(page, | |
1149 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
b904dcfe KM |
1150 | } else { |
1151 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
2a7106f2 | 1152 | mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); |
b904dcfe | 1153 | } |
b904dcfe KM |
1154 | /* |
1155 | * It would be tidy to reset the PageAnon mapping here, | |
1156 | * but that might overwrite a racing page_add_anon_rmap | |
1157 | * which increments mapcount after us but sets mapping | |
1158 | * before us: so leave the reset to free_hot_cold_page, | |
1159 | * and remember that it's only reliable while mapped. | |
1160 | * Leaving it set also helps swapoff to reinstate ptes | |
1161 | * faster for those pages still in swapcache. | |
1162 | */ | |
1da177e4 LT |
1163 | } |
1164 | ||
1165 | /* | |
1166 | * Subfunctions of try_to_unmap: try_to_unmap_one called | |
1167 | * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | |
1168 | */ | |
5ad64688 HD |
1169 | int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
1170 | unsigned long address, enum ttu_flags flags) | |
1da177e4 LT |
1171 | { |
1172 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
1173 | pte_t *pte; |
1174 | pte_t pteval; | |
c0718806 | 1175 | spinlock_t *ptl; |
1da177e4 LT |
1176 | int ret = SWAP_AGAIN; |
1177 | ||
479db0bf | 1178 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 1179 | if (!pte) |
81b4082d | 1180 | goto out; |
1da177e4 LT |
1181 | |
1182 | /* | |
1183 | * If the page is mlock()d, we cannot swap it out. | |
1184 | * If it's recently referenced (perhaps page_referenced | |
1185 | * skipped over this mm) then we should reactivate it. | |
1186 | */ | |
14fa31b8 | 1187 | if (!(flags & TTU_IGNORE_MLOCK)) { |
caed0f48 KM |
1188 | if (vma->vm_flags & VM_LOCKED) |
1189 | goto out_mlock; | |
1190 | ||
af8e3354 | 1191 | if (TTU_ACTION(flags) == TTU_MUNLOCK) |
53f79acb | 1192 | goto out_unmap; |
14fa31b8 AK |
1193 | } |
1194 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
1195 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1196 | ret = SWAP_FAIL; | |
1197 | goto out_unmap; | |
1198 | } | |
1199 | } | |
1da177e4 | 1200 | |
1da177e4 LT |
1201 | /* Nuke the page table entry. */ |
1202 | flush_cache_page(vma, address, page_to_pfn(page)); | |
cddb8a5c | 1203 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
1204 | |
1205 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1206 | if (pte_dirty(pteval)) | |
1207 | set_page_dirty(page); | |
1208 | ||
365e9c87 HD |
1209 | /* Update high watermark before we lower rss */ |
1210 | update_hiwater_rss(mm); | |
1211 | ||
888b9f7c AK |
1212 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
1213 | if (PageAnon(page)) | |
d559db08 | 1214 | dec_mm_counter(mm, MM_ANONPAGES); |
888b9f7c | 1215 | else |
d559db08 | 1216 | dec_mm_counter(mm, MM_FILEPAGES); |
888b9f7c AK |
1217 | set_pte_at(mm, address, pte, |
1218 | swp_entry_to_pte(make_hwpoison_entry(page))); | |
1219 | } else if (PageAnon(page)) { | |
4c21e2f2 | 1220 | swp_entry_t entry = { .val = page_private(page) }; |
0697212a CL |
1221 | |
1222 | if (PageSwapCache(page)) { | |
1223 | /* | |
1224 | * Store the swap location in the pte. | |
1225 | * See handle_pte_fault() ... | |
1226 | */ | |
570a335b HD |
1227 | if (swap_duplicate(entry) < 0) { |
1228 | set_pte_at(mm, address, pte, pteval); | |
1229 | ret = SWAP_FAIL; | |
1230 | goto out_unmap; | |
1231 | } | |
0697212a CL |
1232 | if (list_empty(&mm->mmlist)) { |
1233 | spin_lock(&mmlist_lock); | |
1234 | if (list_empty(&mm->mmlist)) | |
1235 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1236 | spin_unlock(&mmlist_lock); | |
1237 | } | |
d559db08 | 1238 | dec_mm_counter(mm, MM_ANONPAGES); |
b084d435 | 1239 | inc_mm_counter(mm, MM_SWAPENTS); |
64cdd548 | 1240 | } else if (PAGE_MIGRATION) { |
0697212a CL |
1241 | /* |
1242 | * Store the pfn of the page in a special migration | |
1243 | * pte. do_swap_page() will wait until the migration | |
1244 | * pte is removed and then restart fault handling. | |
1245 | */ | |
14fa31b8 | 1246 | BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); |
0697212a | 1247 | entry = make_migration_entry(page, pte_write(pteval)); |
1da177e4 LT |
1248 | } |
1249 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1250 | BUG_ON(pte_file(*pte)); | |
14fa31b8 | 1251 | } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) { |
04e62a29 CL |
1252 | /* Establish migration entry for a file page */ |
1253 | swp_entry_t entry; | |
1254 | entry = make_migration_entry(page, pte_write(pteval)); | |
1255 | set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | |
1256 | } else | |
d559db08 | 1257 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 | 1258 | |
edc315fd | 1259 | page_remove_rmap(page); |
1da177e4 LT |
1260 | page_cache_release(page); |
1261 | ||
1262 | out_unmap: | |
c0718806 | 1263 | pte_unmap_unlock(pte, ptl); |
caed0f48 KM |
1264 | out: |
1265 | return ret; | |
53f79acb | 1266 | |
caed0f48 KM |
1267 | out_mlock: |
1268 | pte_unmap_unlock(pte, ptl); | |
1269 | ||
1270 | ||
1271 | /* | |
1272 | * We need mmap_sem locking, Otherwise VM_LOCKED check makes | |
1273 | * unstable result and race. Plus, We can't wait here because | |
2b575eb6 | 1274 | * we now hold anon_vma->mutex or mapping->i_mmap_mutex. |
caed0f48 KM |
1275 | * if trylock failed, the page remain in evictable lru and later |
1276 | * vmscan could retry to move the page to unevictable lru if the | |
1277 | * page is actually mlocked. | |
1278 | */ | |
1279 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { | |
1280 | if (vma->vm_flags & VM_LOCKED) { | |
1281 | mlock_vma_page(page); | |
1282 | ret = SWAP_MLOCK; | |
53f79acb | 1283 | } |
caed0f48 | 1284 | up_read(&vma->vm_mm->mmap_sem); |
53f79acb | 1285 | } |
1da177e4 LT |
1286 | return ret; |
1287 | } | |
1288 | ||
1289 | /* | |
1290 | * objrmap doesn't work for nonlinear VMAs because the assumption that | |
1291 | * offset-into-file correlates with offset-into-virtual-addresses does not hold. | |
1292 | * Consequently, given a particular page and its ->index, we cannot locate the | |
1293 | * ptes which are mapping that page without an exhaustive linear search. | |
1294 | * | |
1295 | * So what this code does is a mini "virtual scan" of each nonlinear VMA which | |
1296 | * maps the file to which the target page belongs. The ->vm_private_data field | |
1297 | * holds the current cursor into that scan. Successive searches will circulate | |
1298 | * around the vma's virtual address space. | |
1299 | * | |
1300 | * So as more replacement pressure is applied to the pages in a nonlinear VMA, | |
1301 | * more scanning pressure is placed against them as well. Eventually pages | |
1302 | * will become fully unmapped and are eligible for eviction. | |
1303 | * | |
1304 | * For very sparsely populated VMAs this is a little inefficient - chances are | |
1305 | * there there won't be many ptes located within the scan cluster. In this case | |
1306 | * maybe we could scan further - to the end of the pte page, perhaps. | |
b291f000 NP |
1307 | * |
1308 | * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can | |
1309 | * acquire it without blocking. If vma locked, mlock the pages in the cluster, | |
1310 | * rather than unmapping them. If we encounter the "check_page" that vmscan is | |
1311 | * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN. | |
1da177e4 LT |
1312 | */ |
1313 | #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) | |
1314 | #define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) | |
1315 | ||
b291f000 NP |
1316 | static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, |
1317 | struct vm_area_struct *vma, struct page *check_page) | |
1da177e4 LT |
1318 | { |
1319 | struct mm_struct *mm = vma->vm_mm; | |
1320 | pgd_t *pgd; | |
1321 | pud_t *pud; | |
1322 | pmd_t *pmd; | |
c0718806 | 1323 | pte_t *pte; |
1da177e4 | 1324 | pte_t pteval; |
c0718806 | 1325 | spinlock_t *ptl; |
1da177e4 LT |
1326 | struct page *page; |
1327 | unsigned long address; | |
1328 | unsigned long end; | |
b291f000 NP |
1329 | int ret = SWAP_AGAIN; |
1330 | int locked_vma = 0; | |
1da177e4 | 1331 | |
1da177e4 LT |
1332 | address = (vma->vm_start + cursor) & CLUSTER_MASK; |
1333 | end = address + CLUSTER_SIZE; | |
1334 | if (address < vma->vm_start) | |
1335 | address = vma->vm_start; | |
1336 | if (end > vma->vm_end) | |
1337 | end = vma->vm_end; | |
1338 | ||
1339 | pgd = pgd_offset(mm, address); | |
1340 | if (!pgd_present(*pgd)) | |
b291f000 | 1341 | return ret; |
1da177e4 LT |
1342 | |
1343 | pud = pud_offset(pgd, address); | |
1344 | if (!pud_present(*pud)) | |
b291f000 | 1345 | return ret; |
1da177e4 LT |
1346 | |
1347 | pmd = pmd_offset(pud, address); | |
1348 | if (!pmd_present(*pmd)) | |
b291f000 NP |
1349 | return ret; |
1350 | ||
1351 | /* | |
af8e3354 | 1352 | * If we can acquire the mmap_sem for read, and vma is VM_LOCKED, |
b291f000 NP |
1353 | * keep the sem while scanning the cluster for mlocking pages. |
1354 | */ | |
af8e3354 | 1355 | if (down_read_trylock(&vma->vm_mm->mmap_sem)) { |
b291f000 NP |
1356 | locked_vma = (vma->vm_flags & VM_LOCKED); |
1357 | if (!locked_vma) | |
1358 | up_read(&vma->vm_mm->mmap_sem); /* don't need it */ | |
1359 | } | |
c0718806 HD |
1360 | |
1361 | pte = pte_offset_map_lock(mm, pmd, address, &ptl); | |
1da177e4 | 1362 | |
365e9c87 HD |
1363 | /* Update high watermark before we lower rss */ |
1364 | update_hiwater_rss(mm); | |
1365 | ||
c0718806 | 1366 | for (; address < end; pte++, address += PAGE_SIZE) { |
1da177e4 LT |
1367 | if (!pte_present(*pte)) |
1368 | continue; | |
6aab341e LT |
1369 | page = vm_normal_page(vma, address, *pte); |
1370 | BUG_ON(!page || PageAnon(page)); | |
1da177e4 | 1371 | |
b291f000 NP |
1372 | if (locked_vma) { |
1373 | mlock_vma_page(page); /* no-op if already mlocked */ | |
1374 | if (page == check_page) | |
1375 | ret = SWAP_MLOCK; | |
1376 | continue; /* don't unmap */ | |
1377 | } | |
1378 | ||
cddb8a5c | 1379 | if (ptep_clear_flush_young_notify(vma, address, pte)) |
1da177e4 LT |
1380 | continue; |
1381 | ||
1382 | /* Nuke the page table entry. */ | |
eca35133 | 1383 | flush_cache_page(vma, address, pte_pfn(*pte)); |
cddb8a5c | 1384 | pteval = ptep_clear_flush_notify(vma, address, pte); |
1da177e4 LT |
1385 | |
1386 | /* If nonlinear, store the file page offset in the pte. */ | |
1387 | if (page->index != linear_page_index(vma, address)) | |
1388 | set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | |
1389 | ||
1390 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1391 | if (pte_dirty(pteval)) | |
1392 | set_page_dirty(page); | |
1393 | ||
edc315fd | 1394 | page_remove_rmap(page); |
1da177e4 | 1395 | page_cache_release(page); |
d559db08 | 1396 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 LT |
1397 | (*mapcount)--; |
1398 | } | |
c0718806 | 1399 | pte_unmap_unlock(pte - 1, ptl); |
b291f000 NP |
1400 | if (locked_vma) |
1401 | up_read(&vma->vm_mm->mmap_sem); | |
1402 | return ret; | |
1da177e4 LT |
1403 | } |
1404 | ||
71e3aac0 | 1405 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1406 | { |
1407 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1408 | ||
1409 | if (!maybe_stack) | |
1410 | return false; | |
1411 | ||
1412 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1413 | VM_STACK_INCOMPLETE_SETUP) | |
1414 | return true; | |
1415 | ||
1416 | return false; | |
1417 | } | |
1418 | ||
b291f000 NP |
1419 | /** |
1420 | * try_to_unmap_anon - unmap or unlock anonymous page using the object-based | |
1421 | * rmap method | |
1422 | * @page: the page to unmap/unlock | |
8051be5e | 1423 | * @flags: action and flags |
b291f000 NP |
1424 | * |
1425 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1426 | * contained in the anon_vma struct it points to. | |
1427 | * | |
1428 | * This function is only called from try_to_unmap/try_to_munlock for | |
1429 | * anonymous pages. | |
1430 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1431 | * where the page was found will be held for write. So, we won't recheck | |
1432 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1433 | * 'LOCKED. | |
1434 | */ | |
14fa31b8 | 1435 | static int try_to_unmap_anon(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1436 | { |
1437 | struct anon_vma *anon_vma; | |
5beb4930 | 1438 | struct anon_vma_chain *avc; |
1da177e4 | 1439 | int ret = SWAP_AGAIN; |
b291f000 | 1440 | |
1da177e4 LT |
1441 | anon_vma = page_lock_anon_vma(page); |
1442 | if (!anon_vma) | |
1443 | return ret; | |
1444 | ||
5beb4930 RR |
1445 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1446 | struct vm_area_struct *vma = avc->vma; | |
a8bef8ff MG |
1447 | unsigned long address; |
1448 | ||
1449 | /* | |
1450 | * During exec, a temporary VMA is setup and later moved. | |
1451 | * The VMA is moved under the anon_vma lock but not the | |
1452 | * page tables leading to a race where migration cannot | |
1453 | * find the migration ptes. Rather than increasing the | |
1454 | * locking requirements of exec(), migration skips | |
1455 | * temporary VMAs until after exec() completes. | |
1456 | */ | |
1457 | if (PAGE_MIGRATION && (flags & TTU_MIGRATION) && | |
1458 | is_vma_temporary_stack(vma)) | |
1459 | continue; | |
1460 | ||
1461 | address = vma_address(page, vma); | |
1cb1729b HD |
1462 | if (address == -EFAULT) |
1463 | continue; | |
1464 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1465 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1466 | break; | |
1da177e4 | 1467 | } |
34bbd704 ON |
1468 | |
1469 | page_unlock_anon_vma(anon_vma); | |
1da177e4 LT |
1470 | return ret; |
1471 | } | |
1472 | ||
1473 | /** | |
b291f000 NP |
1474 | * try_to_unmap_file - unmap/unlock file page using the object-based rmap method |
1475 | * @page: the page to unmap/unlock | |
14fa31b8 | 1476 | * @flags: action and flags |
1da177e4 LT |
1477 | * |
1478 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1479 | * contained in the address_space struct it points to. | |
1480 | * | |
b291f000 NP |
1481 | * This function is only called from try_to_unmap/try_to_munlock for |
1482 | * object-based pages. | |
1483 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1484 | * where the page was found will be held for write. So, we won't recheck | |
1485 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1486 | * 'LOCKED. | |
1da177e4 | 1487 | */ |
14fa31b8 | 1488 | static int try_to_unmap_file(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1489 | { |
1490 | struct address_space *mapping = page->mapping; | |
1491 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1492 | struct vm_area_struct *vma; | |
1493 | struct prio_tree_iter iter; | |
1494 | int ret = SWAP_AGAIN; | |
1495 | unsigned long cursor; | |
1496 | unsigned long max_nl_cursor = 0; | |
1497 | unsigned long max_nl_size = 0; | |
1498 | unsigned int mapcount; | |
1499 | ||
3d48ae45 | 1500 | mutex_lock(&mapping->i_mmap_mutex); |
1da177e4 | 1501 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
1cb1729b HD |
1502 | unsigned long address = vma_address(page, vma); |
1503 | if (address == -EFAULT) | |
1504 | continue; | |
1505 | ret = try_to_unmap_one(page, vma, address, flags); | |
53f79acb HD |
1506 | if (ret != SWAP_AGAIN || !page_mapped(page)) |
1507 | goto out; | |
1da177e4 LT |
1508 | } |
1509 | ||
1510 | if (list_empty(&mapping->i_mmap_nonlinear)) | |
1511 | goto out; | |
1512 | ||
53f79acb HD |
1513 | /* |
1514 | * We don't bother to try to find the munlocked page in nonlinears. | |
1515 | * It's costly. Instead, later, page reclaim logic may call | |
1516 | * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily. | |
1517 | */ | |
1518 | if (TTU_ACTION(flags) == TTU_MUNLOCK) | |
1519 | goto out; | |
1520 | ||
1da177e4 LT |
1521 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, |
1522 | shared.vm_set.list) { | |
1da177e4 LT |
1523 | cursor = (unsigned long) vma->vm_private_data; |
1524 | if (cursor > max_nl_cursor) | |
1525 | max_nl_cursor = cursor; | |
1526 | cursor = vma->vm_end - vma->vm_start; | |
1527 | if (cursor > max_nl_size) | |
1528 | max_nl_size = cursor; | |
1529 | } | |
1530 | ||
b291f000 | 1531 | if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */ |
1da177e4 LT |
1532 | ret = SWAP_FAIL; |
1533 | goto out; | |
1534 | } | |
1535 | ||
1536 | /* | |
1537 | * We don't try to search for this page in the nonlinear vmas, | |
1538 | * and page_referenced wouldn't have found it anyway. Instead | |
1539 | * just walk the nonlinear vmas trying to age and unmap some. | |
1540 | * The mapcount of the page we came in with is irrelevant, | |
1541 | * but even so use it as a guide to how hard we should try? | |
1542 | */ | |
1543 | mapcount = page_mapcount(page); | |
1544 | if (!mapcount) | |
1545 | goto out; | |
3d48ae45 | 1546 | cond_resched(); |
1da177e4 LT |
1547 | |
1548 | max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | |
1549 | if (max_nl_cursor == 0) | |
1550 | max_nl_cursor = CLUSTER_SIZE; | |
1551 | ||
1552 | do { | |
1553 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | |
1554 | shared.vm_set.list) { | |
1da177e4 | 1555 | cursor = (unsigned long) vma->vm_private_data; |
839b9685 | 1556 | while ( cursor < max_nl_cursor && |
1da177e4 | 1557 | cursor < vma->vm_end - vma->vm_start) { |
53f79acb HD |
1558 | if (try_to_unmap_cluster(cursor, &mapcount, |
1559 | vma, page) == SWAP_MLOCK) | |
1560 | ret = SWAP_MLOCK; | |
1da177e4 LT |
1561 | cursor += CLUSTER_SIZE; |
1562 | vma->vm_private_data = (void *) cursor; | |
1563 | if ((int)mapcount <= 0) | |
1564 | goto out; | |
1565 | } | |
1566 | vma->vm_private_data = (void *) max_nl_cursor; | |
1567 | } | |
3d48ae45 | 1568 | cond_resched(); |
1da177e4 LT |
1569 | max_nl_cursor += CLUSTER_SIZE; |
1570 | } while (max_nl_cursor <= max_nl_size); | |
1571 | ||
1572 | /* | |
1573 | * Don't loop forever (perhaps all the remaining pages are | |
1574 | * in locked vmas). Reset cursor on all unreserved nonlinear | |
1575 | * vmas, now forgetting on which ones it had fallen behind. | |
1576 | */ | |
101d2be7 HD |
1577 | list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) |
1578 | vma->vm_private_data = NULL; | |
1da177e4 | 1579 | out: |
3d48ae45 | 1580 | mutex_unlock(&mapping->i_mmap_mutex); |
1da177e4 LT |
1581 | return ret; |
1582 | } | |
1583 | ||
1584 | /** | |
1585 | * try_to_unmap - try to remove all page table mappings to a page | |
1586 | * @page: the page to get unmapped | |
14fa31b8 | 1587 | * @flags: action and flags |
1da177e4 LT |
1588 | * |
1589 | * Tries to remove all the page table entries which are mapping this | |
1590 | * page, used in the pageout path. Caller must hold the page lock. | |
1591 | * Return values are: | |
1592 | * | |
1593 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1594 | * SWAP_AGAIN - we missed a mapping, try again later | |
1595 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1596 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1597 | */ |
14fa31b8 | 1598 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1599 | { |
1600 | int ret; | |
1601 | ||
1da177e4 | 1602 | BUG_ON(!PageLocked(page)); |
91600e9e | 1603 | VM_BUG_ON(!PageHuge(page) && PageTransHuge(page)); |
1da177e4 | 1604 | |
5ad64688 HD |
1605 | if (unlikely(PageKsm(page))) |
1606 | ret = try_to_unmap_ksm(page, flags); | |
1607 | else if (PageAnon(page)) | |
14fa31b8 | 1608 | ret = try_to_unmap_anon(page, flags); |
1da177e4 | 1609 | else |
14fa31b8 | 1610 | ret = try_to_unmap_file(page, flags); |
b291f000 | 1611 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1da177e4 LT |
1612 | ret = SWAP_SUCCESS; |
1613 | return ret; | |
1614 | } | |
81b4082d | 1615 | |
b291f000 NP |
1616 | /** |
1617 | * try_to_munlock - try to munlock a page | |
1618 | * @page: the page to be munlocked | |
1619 | * | |
1620 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1621 | * to make sure nobody else has this page mlocked. The page will be | |
1622 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1623 | * | |
1624 | * Return values are: | |
1625 | * | |
53f79acb | 1626 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1627 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1628 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1629 | * SWAP_MLOCK - page is now mlocked. |
1630 | */ | |
1631 | int try_to_munlock(struct page *page) | |
1632 | { | |
1633 | VM_BUG_ON(!PageLocked(page) || PageLRU(page)); | |
1634 | ||
5ad64688 HD |
1635 | if (unlikely(PageKsm(page))) |
1636 | return try_to_unmap_ksm(page, TTU_MUNLOCK); | |
1637 | else if (PageAnon(page)) | |
14fa31b8 | 1638 | return try_to_unmap_anon(page, TTU_MUNLOCK); |
b291f000 | 1639 | else |
14fa31b8 | 1640 | return try_to_unmap_file(page, TTU_MUNLOCK); |
b291f000 | 1641 | } |
e9995ef9 | 1642 | |
01d8b20d | 1643 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1644 | { |
01d8b20d | 1645 | struct anon_vma *root = anon_vma->root; |
76545066 | 1646 | |
01d8b20d PZ |
1647 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1648 | anon_vma_free(root); | |
76545066 | 1649 | |
01d8b20d | 1650 | anon_vma_free(anon_vma); |
76545066 | 1651 | } |
76545066 | 1652 | |
e9995ef9 HD |
1653 | #ifdef CONFIG_MIGRATION |
1654 | /* | |
1655 | * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file(): | |
1656 | * Called by migrate.c to remove migration ptes, but might be used more later. | |
1657 | */ | |
1658 | static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *, | |
1659 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1660 | { | |
1661 | struct anon_vma *anon_vma; | |
5beb4930 | 1662 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1663 | int ret = SWAP_AGAIN; |
1664 | ||
1665 | /* | |
1666 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma() | |
1667 | * because that depends on page_mapped(); but not all its usages | |
3f6c8272 MG |
1668 | * are holding mmap_sem. Users without mmap_sem are required to |
1669 | * take a reference count to prevent the anon_vma disappearing | |
e9995ef9 HD |
1670 | */ |
1671 | anon_vma = page_anon_vma(page); | |
1672 | if (!anon_vma) | |
1673 | return ret; | |
cba48b98 | 1674 | anon_vma_lock(anon_vma); |
5beb4930 RR |
1675 | list_for_each_entry(avc, &anon_vma->head, same_anon_vma) { |
1676 | struct vm_area_struct *vma = avc->vma; | |
e9995ef9 HD |
1677 | unsigned long address = vma_address(page, vma); |
1678 | if (address == -EFAULT) | |
1679 | continue; | |
1680 | ret = rmap_one(page, vma, address, arg); | |
1681 | if (ret != SWAP_AGAIN) | |
1682 | break; | |
1683 | } | |
cba48b98 | 1684 | anon_vma_unlock(anon_vma); |
e9995ef9 HD |
1685 | return ret; |
1686 | } | |
1687 | ||
1688 | static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *, | |
1689 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1690 | { | |
1691 | struct address_space *mapping = page->mapping; | |
1692 | pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | |
1693 | struct vm_area_struct *vma; | |
1694 | struct prio_tree_iter iter; | |
1695 | int ret = SWAP_AGAIN; | |
1696 | ||
1697 | if (!mapping) | |
1698 | return ret; | |
3d48ae45 | 1699 | mutex_lock(&mapping->i_mmap_mutex); |
e9995ef9 HD |
1700 | vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { |
1701 | unsigned long address = vma_address(page, vma); | |
1702 | if (address == -EFAULT) | |
1703 | continue; | |
1704 | ret = rmap_one(page, vma, address, arg); | |
1705 | if (ret != SWAP_AGAIN) | |
1706 | break; | |
1707 | } | |
1708 | /* | |
1709 | * No nonlinear handling: being always shared, nonlinear vmas | |
1710 | * never contain migration ptes. Decide what to do about this | |
1711 | * limitation to linear when we need rmap_walk() on nonlinear. | |
1712 | */ | |
3d48ae45 | 1713 | mutex_unlock(&mapping->i_mmap_mutex); |
e9995ef9 HD |
1714 | return ret; |
1715 | } | |
1716 | ||
1717 | int rmap_walk(struct page *page, int (*rmap_one)(struct page *, | |
1718 | struct vm_area_struct *, unsigned long, void *), void *arg) | |
1719 | { | |
1720 | VM_BUG_ON(!PageLocked(page)); | |
1721 | ||
1722 | if (unlikely(PageKsm(page))) | |
1723 | return rmap_walk_ksm(page, rmap_one, arg); | |
1724 | else if (PageAnon(page)) | |
1725 | return rmap_walk_anon(page, rmap_one, arg); | |
1726 | else | |
1727 | return rmap_walk_file(page, rmap_one, arg); | |
1728 | } | |
1729 | #endif /* CONFIG_MIGRATION */ | |
0fe6e20b | 1730 | |
e3390f67 | 1731 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1732 | /* |
1733 | * The following three functions are for anonymous (private mapped) hugepages. | |
1734 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1735 | * and no lru code, because we handle hugepages differently from common pages. | |
1736 | */ | |
1737 | static void __hugepage_set_anon_rmap(struct page *page, | |
1738 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1739 | { | |
1740 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1741 | |
0fe6e20b | 1742 | BUG_ON(!anon_vma); |
433abed6 NH |
1743 | |
1744 | if (PageAnon(page)) | |
1745 | return; | |
1746 | if (!exclusive) | |
1747 | anon_vma = anon_vma->root; | |
1748 | ||
0fe6e20b NH |
1749 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1750 | page->mapping = (struct address_space *) anon_vma; | |
1751 | page->index = linear_page_index(vma, address); | |
1752 | } | |
1753 | ||
1754 | void hugepage_add_anon_rmap(struct page *page, | |
1755 | struct vm_area_struct *vma, unsigned long address) | |
1756 | { | |
1757 | struct anon_vma *anon_vma = vma->anon_vma; | |
1758 | int first; | |
a850ea30 NH |
1759 | |
1760 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1761 | BUG_ON(!anon_vma); |
5dbe0af4 | 1762 | /* address might be in next vma when migration races vma_adjust */ |
0fe6e20b NH |
1763 | first = atomic_inc_and_test(&page->_mapcount); |
1764 | if (first) | |
1765 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1766 | } | |
1767 | ||
1768 | void hugepage_add_new_anon_rmap(struct page *page, | |
1769 | struct vm_area_struct *vma, unsigned long address) | |
1770 | { | |
1771 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1772 | atomic_set(&page->_mapcount, 0); | |
1773 | __hugepage_set_anon_rmap(page, vma, address, 1); | |
1774 | } | |
e3390f67 | 1775 | #endif /* CONFIG_HUGETLB_PAGE */ |