]> Git Repo - linux.git/blame - fs/dcache.c
KVM: arm64: Sanitise ID_AA64MMFR3_EL1
[linux.git] / fs / dcache.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10/*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
7a5cf791 18#include <linux/ratelimit.h>
1da177e4
LT
19#include <linux/string.h>
20#include <linux/mm.h>
21#include <linux/fs.h>
0bf3d5c1 22#include <linux/fscrypt.h>
7a91bf7f 23#include <linux/fsnotify.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
1da177e4
LT
26#include <linux/hash.h>
27#include <linux/cache.h>
630d9c47 28#include <linux/export.h>
1da177e4
LT
29#include <linux/security.h>
30#include <linux/seqlock.h>
57c8a661 31#include <linux/memblock.h>
ceb5bdc2
NP
32#include <linux/bit_spinlock.h>
33#include <linux/rculist_bl.h>
f6041567 34#include <linux/list_lru.h>
07f3f05c 35#include "internal.h"
b2dba1af 36#include "mount.h"
1da177e4 37
e7829855
LT
38#include <asm/runtime-const.h>
39
789680d1
NP
40/*
41 * Usage:
873feea0 42 * dcache->d_inode->i_lock protects:
946e51f2 43 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
f1ee6162
N
46 * s_roots bl list spinlock protects:
47 * - the s_roots list (see __d_drop)
19156840 48 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
b7ab39f6 54 * - d_count
da502956 55 * - d_unhashed()
da549bdd
AV
56 * - d_parent and d_chilren
57 * - childrens' d_sib and d_parent
946e51f2 58 * - d_u.d_alias, d_inode
789680d1
NP
59 *
60 * Ordering:
873feea0 61 * dentry->d_inode->i_lock
b5c84bf6 62 * dentry->d_lock
19156840 63 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 64 * dcache_hash_bucket lock
f1ee6162 65 * s_roots lock
789680d1 66 *
da502956
NP
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
076515fc 74 * arbitrary, since it's serialized on rename_lock
789680d1 75 */
fa3536cc 76int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
77EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
78
74c3cbe3 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 80
949854d0 81EXPORT_SYMBOL(rename_lock);
1da177e4 82
68279f9c 83static struct kmem_cache *dentry_cache __ro_after_init;
1da177e4 84
cdf01226
DH
85const struct qstr empty_name = QSTR_INIT("", 0);
86EXPORT_SYMBOL(empty_name);
87const struct qstr slash_name = QSTR_INIT("/", 1);
88EXPORT_SYMBOL(slash_name);
80e5d1ff
AV
89const struct qstr dotdot_name = QSTR_INIT("..", 2);
90EXPORT_SYMBOL(dotdot_name);
cdf01226 91
1da177e4
LT
92/*
93 * This is the single most critical data structure when it comes
94 * to the dcache: the hashtable for lookups. Somebody should try
95 * to make this good - I've just made it work.
96 *
97 * This hash-function tries to avoid losing too many bits of hash
98 * information, yet avoid using a prime hash-size or similar.
99 */
1da177e4 100
68279f9c 101static unsigned int d_hash_shift __ro_after_init;
ceb5bdc2 102
68279f9c 103static struct hlist_bl_head *dentry_hashtable __ro_after_init;
ceb5bdc2 104
e60cc611 105static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
ceb5bdc2 106{
e7829855
LT
107 return runtime_const_ptr(dentry_hashtable) +
108 runtime_const_shift_right_32(hashlen, d_hash_shift);
ceb5bdc2
NP
109}
110
94bdd655
AV
111#define IN_LOOKUP_SHIFT 10
112static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
113
114static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
115 unsigned int hash)
116{
117 hash += (unsigned long) parent / L1_CACHE_BYTES;
118 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
119}
120
c8c0c239
LC
121struct dentry_stat_t {
122 long nr_dentry;
123 long nr_unused;
124 long age_limit; /* age in seconds */
125 long want_pages; /* pages requested by system */
126 long nr_negative; /* # of unused negative dentries */
127 long dummy; /* Reserved for future use */
1da177e4
LT
128};
129
3942c07c 130static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 131static DEFINE_PER_CPU(long, nr_dentry_unused);
af0c9af1 132static DEFINE_PER_CPU(long, nr_dentry_negative);
312d3ca8
CH
133
134#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
c8c0c239
LC
135/* Statistics gathering. */
136static struct dentry_stat_t dentry_stat = {
137 .age_limit = 45,
138};
62d36c77
DC
139
140/*
141 * Here we resort to our own counters instead of using generic per-cpu counters
142 * for consistency with what the vfs inode code does. We are expected to harvest
143 * better code and performance by having our own specialized counters.
144 *
145 * Please note that the loop is done over all possible CPUs, not over all online
146 * CPUs. The reason for this is that we don't want to play games with CPUs going
147 * on and off. If one of them goes off, we will just keep their counters.
148 *
149 * glommer: See cffbc8a for details, and if you ever intend to change this,
150 * please update all vfs counters to match.
151 */
3942c07c 152static long get_nr_dentry(void)
3e880fb5
NP
153{
154 int i;
3942c07c 155 long sum = 0;
3e880fb5
NP
156 for_each_possible_cpu(i)
157 sum += per_cpu(nr_dentry, i);
158 return sum < 0 ? 0 : sum;
159}
160
62d36c77
DC
161static long get_nr_dentry_unused(void)
162{
163 int i;
164 long sum = 0;
165 for_each_possible_cpu(i)
166 sum += per_cpu(nr_dentry_unused, i);
167 return sum < 0 ? 0 : sum;
168}
169
af0c9af1
WL
170static long get_nr_dentry_negative(void)
171{
172 int i;
173 long sum = 0;
174
175 for_each_possible_cpu(i)
176 sum += per_cpu(nr_dentry_negative, i);
177 return sum < 0 ? 0 : sum;
178}
179
78eb4ea2 180static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
c8c0c239 181 size_t *lenp, loff_t *ppos)
312d3ca8 182{
3e880fb5 183 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 184 dentry_stat.nr_unused = get_nr_dentry_unused();
af0c9af1 185 dentry_stat.nr_negative = get_nr_dentry_negative();
3942c07c 186 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8 187}
c8c0c239
LC
188
189static struct ctl_table fs_dcache_sysctls[] = {
190 {
191 .procname = "dentry-state",
192 .data = &dentry_stat,
193 .maxlen = 6*sizeof(long),
194 .mode = 0444,
195 .proc_handler = proc_nr_dentry,
196 },
c8c0c239
LC
197};
198
199static int __init init_fs_dcache_sysctls(void)
200{
201 register_sysctl_init("fs", fs_dcache_sysctls);
202 return 0;
203}
204fs_initcall(init_fs_dcache_sysctls);
312d3ca8
CH
205#endif
206
5483f18e
LT
207/*
208 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
209 * The strings are both count bytes long, and count is non-zero.
210 */
e419b4cc
LT
211#ifdef CONFIG_DCACHE_WORD_ACCESS
212
213#include <asm/word-at-a-time.h>
214/*
215 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
216 * aligned allocation for this particular component. We don't
217 * strictly need the load_unaligned_zeropad() safety, but it
218 * doesn't hurt either.
219 *
220 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
221 * need the careful unaligned handling.
222 */
94753db5 223static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 224{
bfcfaa77 225 unsigned long a,b,mask;
bfcfaa77
LT
226
227 for (;;) {
bfe7aa6c 228 a = read_word_at_a_time(cs);
e419b4cc 229 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
230 if (tcount < sizeof(unsigned long))
231 break;
232 if (unlikely(a != b))
233 return 1;
234 cs += sizeof(unsigned long);
235 ct += sizeof(unsigned long);
236 tcount -= sizeof(unsigned long);
237 if (!tcount)
238 return 0;
239 }
a5c21dce 240 mask = bytemask_from_count(tcount);
bfcfaa77 241 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
242}
243
bfcfaa77 244#else
e419b4cc 245
94753db5 246static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 247{
5483f18e
LT
248 do {
249 if (*cs != *ct)
250 return 1;
251 cs++;
252 ct++;
253 tcount--;
254 } while (tcount);
255 return 0;
256}
257
e419b4cc
LT
258#endif
259
94753db5
LT
260static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
261{
94753db5
LT
262 /*
263 * Be careful about RCU walk racing with rename:
506458ef 264 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
265 *
266 * NOTE! Even if a rename will mean that the length
267 * was not loaded atomically, we don't care. The
268 * RCU walk will check the sequence count eventually,
269 * and catch it. And we won't overrun the buffer,
270 * because we're reading the name pointer atomically,
271 * and a dentry name is guaranteed to be properly
272 * terminated with a NUL byte.
273 *
274 * End result: even if 'len' is wrong, we'll exit
275 * early because the data cannot match (there can
276 * be no NUL in the ct/tcount data)
277 */
506458ef 278 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 279
6326c71f 280 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
281}
282
8d85b484
AV
283struct external_name {
284 union {
285 atomic_t count;
286 struct rcu_head head;
287 } u;
288 unsigned char name[];
289};
290
291static inline struct external_name *external_name(struct dentry *dentry)
292{
293 return container_of(dentry->d_name.name, struct external_name, name[0]);
294}
295
9c82ab9c 296static void __d_free(struct rcu_head *head)
1da177e4 297{
9c82ab9c
CH
298 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
299
8d85b484
AV
300 kmem_cache_free(dentry_cache, dentry);
301}
302
303static void __d_free_external(struct rcu_head *head)
304{
305 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
2e03b4bc 306 kfree(external_name(dentry));
f1782c9b 307 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
308}
309
810bb172
AV
310static inline int dname_external(const struct dentry *dentry)
311{
312 return dentry->d_name.name != dentry->d_iname;
313}
314
49d31c2f
AV
315void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
316{
317 spin_lock(&dentry->d_lock);
230c6402 318 name->name = dentry->d_name;
49d31c2f 319 if (unlikely(dname_external(dentry))) {
230c6402 320 atomic_inc(&external_name(dentry)->u.count);
49d31c2f 321 } else {
6cd00a01
TH
322 memcpy(name->inline_name, dentry->d_iname,
323 dentry->d_name.len + 1);
230c6402 324 name->name.name = name->inline_name;
49d31c2f 325 }
230c6402 326 spin_unlock(&dentry->d_lock);
49d31c2f
AV
327}
328EXPORT_SYMBOL(take_dentry_name_snapshot);
329
330void release_dentry_name_snapshot(struct name_snapshot *name)
331{
230c6402 332 if (unlikely(name->name.name != name->inline_name)) {
49d31c2f 333 struct external_name *p;
230c6402 334 p = container_of(name->name.name, struct external_name, name[0]);
49d31c2f 335 if (unlikely(atomic_dec_and_test(&p->u.count)))
2e03b4bc 336 kfree_rcu(p, u.head);
49d31c2f
AV
337 }
338}
339EXPORT_SYMBOL(release_dentry_name_snapshot);
340
4bf46a27
DH
341static inline void __d_set_inode_and_type(struct dentry *dentry,
342 struct inode *inode,
343 unsigned type_flags)
344{
345 unsigned flags;
346
347 dentry->d_inode = inode;
4bf46a27 348 flags = READ_ONCE(dentry->d_flags);
8219cb58 349 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 350 flags |= type_flags;
2fa6b1e0 351 smp_store_release(&dentry->d_flags, flags);
4bf46a27
DH
352}
353
4bf46a27
DH
354static inline void __d_clear_type_and_inode(struct dentry *dentry)
355{
356 unsigned flags = READ_ONCE(dentry->d_flags);
357
8219cb58 358 flags &= ~DCACHE_ENTRY_TYPE;
4bf46a27 359 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27 360 dentry->d_inode = NULL;
aabfe57e
BF
361 /*
362 * The negative counter only tracks dentries on the LRU. Don't inc if
363 * d_lru is on another list.
364 */
365 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
af0c9af1 366 this_cpu_inc(nr_dentry_negative);
4bf46a27
DH
367}
368
b4f0354e
AV
369static void dentry_free(struct dentry *dentry)
370{
946e51f2 371 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
372 if (unlikely(dname_external(dentry))) {
373 struct external_name *p = external_name(dentry);
374 if (likely(atomic_dec_and_test(&p->u.count))) {
375 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
376 return;
377 }
378 }
b4f0354e 379 /* if dentry was never visible to RCU, immediate free is OK */
5467a68c 380 if (dentry->d_flags & DCACHE_NORCU)
b4f0354e
AV
381 __d_free(&dentry->d_u.d_rcu);
382 else
383 call_rcu(&dentry->d_u.d_rcu, __d_free);
384}
385
1da177e4
LT
386/*
387 * Release the dentry's inode, using the filesystem
550dce01 388 * d_iput() operation if defined.
31e6b01f
NP
389 */
390static void dentry_unlink_inode(struct dentry * dentry)
391 __releases(dentry->d_lock)
873feea0 392 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
393{
394 struct inode *inode = dentry->d_inode;
a528aca7 395
4c0d7cd5 396 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 397 __d_clear_type_and_inode(dentry);
946e51f2 398 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 399 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 400 spin_unlock(&dentry->d_lock);
873feea0 401 spin_unlock(&inode->i_lock);
31e6b01f
NP
402 if (!inode->i_nlink)
403 fsnotify_inoderemove(inode);
404 if (dentry->d_op && dentry->d_op->d_iput)
405 dentry->d_op->d_iput(dentry, inode);
406 else
407 iput(inode);
408}
409
89dc77bc
LT
410/*
411 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
412 * is in use - which includes both the "real" per-superblock
413 * LRU list _and_ the DCACHE_SHRINK_LIST use.
414 *
415 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
416 * on the shrink list (ie not on the superblock LRU list).
417 *
418 * The per-cpu "nr_dentry_unused" counters are updated with
419 * the DCACHE_LRU_LIST bit.
420 *
af0c9af1
WL
421 * The per-cpu "nr_dentry_negative" counters are only updated
422 * when deleted from or added to the per-superblock LRU list, not
423 * from/to the shrink list. That is to avoid an unneeded dec/inc
424 * pair when moving from LRU to shrink list in select_collect().
425 *
89dc77bc
LT
426 * These helper functions make sure we always follow the
427 * rules. d_lock must be held by the caller.
428 */
429#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
430static void d_lru_add(struct dentry *dentry)
431{
432 D_FLAG_VERIFY(dentry, 0);
433 dentry->d_flags |= DCACHE_LRU_LIST;
434 this_cpu_inc(nr_dentry_unused);
af0c9af1
WL
435 if (d_is_negative(dentry))
436 this_cpu_inc(nr_dentry_negative);
0a97c01c
NP
437 WARN_ON_ONCE(!list_lru_add_obj(
438 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
439}
440
441static void d_lru_del(struct dentry *dentry)
442{
443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 dentry->d_flags &= ~DCACHE_LRU_LIST;
445 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
446 if (d_is_negative(dentry))
447 this_cpu_dec(nr_dentry_negative);
0a97c01c
NP
448 WARN_ON_ONCE(!list_lru_del_obj(
449 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
89dc77bc
LT
450}
451
452static void d_shrink_del(struct dentry *dentry)
453{
454 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
455 list_del_init(&dentry->d_lru);
456 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
457 this_cpu_dec(nr_dentry_unused);
458}
459
460static void d_shrink_add(struct dentry *dentry, struct list_head *list)
461{
462 D_FLAG_VERIFY(dentry, 0);
463 list_add(&dentry->d_lru, list);
464 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
465 this_cpu_inc(nr_dentry_unused);
466}
467
468/*
469 * These can only be called under the global LRU lock, ie during the
470 * callback for freeing the LRU list. "isolate" removes it from the
471 * LRU lists entirely, while shrink_move moves it to the indicated
472 * private list.
473 */
3f97b163 474static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
475{
476 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
477 dentry->d_flags &= ~DCACHE_LRU_LIST;
478 this_cpu_dec(nr_dentry_unused);
af0c9af1
WL
479 if (d_is_negative(dentry))
480 this_cpu_dec(nr_dentry_negative);
3f97b163 481 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
482}
483
3f97b163
VD
484static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
485 struct list_head *list)
89dc77bc
LT
486{
487 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
488 dentry->d_flags |= DCACHE_SHRINK_LIST;
af0c9af1
WL
489 if (d_is_negative(dentry))
490 this_cpu_dec(nr_dentry_negative);
3f97b163 491 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
492}
493
61647823 494static void ___d_drop(struct dentry *dentry)
789680d1 495{
0632a9ac
AV
496 struct hlist_bl_head *b;
497 /*
498 * Hashed dentries are normally on the dentry hashtable,
499 * with the exception of those newly allocated by
500 * d_obtain_root, which are always IS_ROOT:
501 */
502 if (unlikely(IS_ROOT(dentry)))
503 b = &dentry->d_sb->s_roots;
504 else
505 b = d_hash(dentry->d_name.hash);
b61625d2 506
0632a9ac
AV
507 hlist_bl_lock(b);
508 __hlist_bl_del(&dentry->d_hash);
509 hlist_bl_unlock(b);
789680d1 510}
61647823
N
511
512void __d_drop(struct dentry *dentry)
513{
0632a9ac
AV
514 if (!d_unhashed(dentry)) {
515 ___d_drop(dentry);
516 dentry->d_hash.pprev = NULL;
517 write_seqcount_invalidate(&dentry->d_seq);
518 }
61647823 519}
789680d1
NP
520EXPORT_SYMBOL(__d_drop);
521
961f3c89
MCC
522/**
523 * d_drop - drop a dentry
524 * @dentry: dentry to drop
525 *
526 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
527 * be found through a VFS lookup any more. Note that this is different from
528 * deleting the dentry - d_delete will try to mark the dentry negative if
529 * possible, giving a successful _negative_ lookup, while d_drop will
530 * just make the cache lookup fail.
531 *
532 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
533 * reason (NFS timeouts or autofs deletes).
534 *
535 * __d_drop requires dentry->d_lock
536 *
537 * ___d_drop doesn't mark dentry as "unhashed"
538 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
539 */
789680d1
NP
540void d_drop(struct dentry *dentry)
541{
789680d1
NP
542 spin_lock(&dentry->d_lock);
543 __d_drop(dentry);
544 spin_unlock(&dentry->d_lock);
789680d1
NP
545}
546EXPORT_SYMBOL(d_drop);
547
da549bdd 548static inline void dentry_unlist(struct dentry *dentry)
ba65dc5e
AV
549{
550 struct dentry *next;
551 /*
552 * Inform d_walk() and shrink_dentry_list() that we are no longer
553 * attached to the dentry tree
554 */
555 dentry->d_flags |= DCACHE_DENTRY_KILLED;
da549bdd 556 if (unlikely(hlist_unhashed(&dentry->d_sib)))
ba65dc5e 557 return;
da549bdd 558 __hlist_del(&dentry->d_sib);
ba65dc5e
AV
559 /*
560 * Cursors can move around the list of children. While we'd been
da549bdd 561 * a normal list member, it didn't matter - ->d_sib.next would've
ba65dc5e
AV
562 * been updated. However, from now on it won't be and for the
563 * things like d_walk() it might end up with a nasty surprise.
564 * Normally d_walk() doesn't care about cursors moving around -
565 * ->d_lock on parent prevents that and since a cursor has no children
566 * of its own, we get through it without ever unlocking the parent.
567 * There is one exception, though - if we ascend from a child that
568 * gets killed as soon as we unlock it, the next sibling is found
da549bdd 569 * using the value left in its ->d_sib.next. And if _that_
ba65dc5e
AV
570 * pointed to a cursor, and cursor got moved (e.g. by lseek())
571 * before d_walk() regains parent->d_lock, we'll end up skipping
572 * everything the cursor had been moved past.
573 *
da549bdd 574 * Solution: make sure that the pointer left behind in ->d_sib.next
ba65dc5e
AV
575 * points to something that won't be moving around. I.e. skip the
576 * cursors.
577 */
da549bdd
AV
578 while (dentry->d_sib.next) {
579 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
ba65dc5e
AV
580 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
581 break;
da549bdd 582 dentry->d_sib.next = next->d_sib.next;
ba65dc5e
AV
583 }
584}
585
1c18edd1 586static struct dentry *__dentry_kill(struct dentry *dentry)
77812a1e 587{
41edf278
AV
588 struct dentry *parent = NULL;
589 bool can_free = true;
31e6b01f 590
0d98439e
LT
591 /*
592 * The dentry is now unrecoverably dead to the world.
593 */
594 lockref_mark_dead(&dentry->d_lockref);
595
f0023bc6 596 /*
f0023bc6
SW
597 * inform the fs via d_prune that this dentry is about to be
598 * unhashed and destroyed.
599 */
29266201 600 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
601 dentry->d_op->d_prune(dentry);
602
01b60351
AV
603 if (dentry->d_flags & DCACHE_LRU_LIST) {
604 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
605 d_lru_del(dentry);
01b60351 606 }
77812a1e
NP
607 /* if it was on the hash then remove it */
608 __d_drop(dentry);
550dce01
AV
609 if (dentry->d_inode)
610 dentry_unlink_inode(dentry);
611 else
612 spin_unlock(&dentry->d_lock);
03b3b889
AV
613 this_cpu_dec(nr_dentry);
614 if (dentry->d_op && dentry->d_op->d_release)
615 dentry->d_op->d_release(dentry);
616
1c18edd1
AV
617 cond_resched();
618 /* now that it's negative, ->d_parent is stable */
619 if (!IS_ROOT(dentry)) {
620 parent = dentry->d_parent;
621 spin_lock(&parent->d_lock);
41edf278 622 }
1c18edd1
AV
623 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
624 dentry_unlist(dentry);
1b327b5a 625 if (dentry->d_flags & DCACHE_SHRINK_LIST)
41edf278 626 can_free = false;
41edf278 627 spin_unlock(&dentry->d_lock);
41edf278
AV
628 if (likely(can_free))
629 dentry_free(dentry);
1c18edd1 630 if (parent && --parent->d_lockref.count) {
046b961b 631 spin_unlock(&parent->d_lock);
1c18edd1 632 return NULL;
046b961b 633 }
046b961b
AV
634 return parent;
635}
636
339e9e13
AV
637/*
638 * Lock a dentry for feeding it to __dentry_kill().
639 * Called under rcu_read_lock() and dentry->d_lock; the former
640 * guarantees that nothing we access will be freed under us.
641 * Note that dentry is *not* protected from concurrent dentry_kill(),
642 * d_delete(), etc.
643 *
644 * Return false if dentry is busy. Otherwise, return true and have
1c18edd1 645 * that dentry's inode locked.
339e9e13
AV
646 */
647
648static bool lock_for_kill(struct dentry *dentry)
8b987a46 649{
339e9e13 650 struct inode *inode = dentry->d_inode;
339e9e13
AV
651
652 if (unlikely(dentry->d_lockref.count))
653 return false;
654
1c18edd1 655 if (!inode || likely(spin_trylock(&inode->i_lock)))
339e9e13
AV
656 return true;
657
1c18edd1
AV
658 do {
659 spin_unlock(&dentry->d_lock);
660 spin_lock(&inode->i_lock);
661 spin_lock(&dentry->d_lock);
339e9e13
AV
662 if (likely(inode == dentry->d_inode))
663 break;
1c18edd1 664 spin_unlock(&inode->i_lock);
339e9e13 665 inode = dentry->d_inode;
1c18edd1 666 } while (inode);
339e9e13
AV
667 if (likely(!dentry->d_lockref.count))
668 return true;
669 if (inode)
670 spin_unlock(&inode->i_lock);
339e9e13 671 return false;
8b987a46
AV
672}
673
6367b491
AV
674/*
675 * Decide if dentry is worth retaining. Usually this is called with dentry
676 * locked; if not locked, we are more limited and might not be able to tell
677 * without a lock. False in this case means "punt to locked path and recheck".
678 *
679 * In case we aren't locked, these predicates are not "stable". However, it is
680 * sufficient that at some point after we dropped the reference the dentry was
681 * hashed and the flags had the proper value. Other dentry users may have
682 * re-gotten a reference to the dentry and change that, but our work is done -
683 * we can leave the dentry around with a zero refcount.
684 */
685static inline bool retain_dentry(struct dentry *dentry, bool locked)
a338579f 686{
6367b491 687 unsigned int d_flags;
a338579f 688
6367b491
AV
689 smp_rmb();
690 d_flags = READ_ONCE(dentry->d_flags);
a338579f 691
6367b491 692 // Unreachable? Nobody would be able to look it up, no point retaining
a338579f
AV
693 if (unlikely(d_unhashed(dentry)))
694 return false;
695
6367b491
AV
696 // Same if it's disconnected
697 if (unlikely(d_flags & DCACHE_DISCONNECTED))
a338579f
AV
698 return false;
699
6367b491
AV
700 // ->d_delete() might tell us not to bother, but that requires
701 // ->d_lock; can't decide without it
702 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
703 if (!locked || dentry->d_op->d_delete(dentry))
a338579f
AV
704 return false;
705 }
2c567af4 706
6367b491
AV
707 // Explicitly told not to bother
708 if (unlikely(d_flags & DCACHE_DONTCACHE))
2c567af4
IW
709 return false;
710
6367b491
AV
711 // At this point it looks like we ought to keep it. We also might
712 // need to do something - put it on LRU if it wasn't there already
713 // and mark it referenced if it was on LRU, but not marked yet.
714 // Unfortunately, both actions require ->d_lock, so in lockless
715 // case we'd have to punt rather than doing those.
716 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
717 if (!locked)
718 return false;
62d9956c 719 d_lru_add(dentry);
6367b491
AV
720 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
721 if (!locked)
722 return false;
62d9956c 723 dentry->d_flags |= DCACHE_REFERENCED;
6367b491 724 }
a338579f
AV
725 return true;
726}
727
2c567af4
IW
728void d_mark_dontcache(struct inode *inode)
729{
730 struct dentry *de;
731
732 spin_lock(&inode->i_lock);
733 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
734 spin_lock(&de->d_lock);
735 de->d_flags |= DCACHE_DONTCACHE;
736 spin_unlock(&de->d_lock);
737 }
738 inode->i_state |= I_DONTCACHE;
739 spin_unlock(&inode->i_lock);
740}
741EXPORT_SYMBOL(d_mark_dontcache);
742
360f5479
LT
743/*
744 * Try to do a lockless dput(), and return whether that was successful.
745 *
746 * If unsuccessful, we return false, having already taken the dentry lock.
f05441c7
AV
747 * In that case refcount is guaranteed to be zero and we have already
748 * decided that it's not worth keeping around.
360f5479
LT
749 *
750 * The caller needs to hold the RCU read lock, so that the dentry is
751 * guaranteed to stay around even if the refcount goes down to zero!
752 */
753static inline bool fast_dput(struct dentry *dentry)
754{
755 int ret;
360f5479
LT
756
757 /*
15220fbf 758 * try to decrement the lockref optimistically.
360f5479
LT
759 */
760 ret = lockref_put_return(&dentry->d_lockref);
761
762 /*
763 * If the lockref_put_return() failed due to the lock being held
764 * by somebody else, the fast path has failed. We will need to
765 * get the lock, and then check the count again.
766 */
767 if (unlikely(ret < 0)) {
768 spin_lock(&dentry->d_lock);
504e08ce 769 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
360f5479 770 spin_unlock(&dentry->d_lock);
7964410f 771 return true;
360f5479 772 }
504e08ce
AV
773 dentry->d_lockref.count--;
774 goto locked;
360f5479
LT
775 }
776
777 /*
778 * If we weren't the last ref, we're done.
779 */
780 if (ret)
7964410f 781 return true;
360f5479
LT
782
783 /*
6367b491
AV
784 * Can we decide that decrement of refcount is all we needed without
785 * taking the lock? There's a very common case when it's all we need -
786 * dentry looks like it ought to be retained and there's nothing else
787 * to do.
360f5479 788 */
6367b491 789 if (retain_dentry(dentry, false))
7964410f 790 return true;
360f5479
LT
791
792 /*
6367b491
AV
793 * Either not worth retaining or we can't tell without the lock.
794 * Get the lock, then. We've already decremented the refcount to 0,
795 * but we'll need to re-check the situation after getting the lock.
360f5479
LT
796 */
797 spin_lock(&dentry->d_lock);
798
799 /*
800 * Did somebody else grab a reference to it in the meantime, and
801 * we're no longer the last user after all? Alternatively, somebody
802 * else could have killed it and marked it dead. Either way, we
803 * don't need to do anything else.
804 */
504e08ce 805locked:
6367b491 806 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
360f5479 807 spin_unlock(&dentry->d_lock);
7964410f 808 return true;
360f5479 809 }
7964410f 810 return false;
360f5479
LT
811}
812
813
1da177e4
LT
814/*
815 * This is dput
816 *
817 * This is complicated by the fact that we do not want to put
818 * dentries that are no longer on any hash chain on the unused
819 * list: we'd much rather just get rid of them immediately.
820 *
821 * However, that implies that we have to traverse the dentry
822 * tree upwards to the parents which might _also_ now be
823 * scheduled for deletion (it may have been only waiting for
824 * its last child to go away).
825 *
826 * This tail recursion is done by hand as we don't want to depend
827 * on the compiler to always get this right (gcc generally doesn't).
828 * Real recursion would eat up our stack space.
829 */
830
831/*
832 * dput - release a dentry
833 * @dentry: dentry to release
834 *
835 * Release a dentry. This will drop the usage count and if appropriate
836 * call the dentry unlink method as well as removing it from the queues and
837 * releasing its resources. If the parent dentries were scheduled for release
838 * they too may now get deleted.
1da177e4 839 */
1da177e4
LT
840void dput(struct dentry *dentry)
841{
1c18edd1
AV
842 if (!dentry)
843 return;
844 might_sleep();
845 rcu_read_lock();
846 if (likely(fast_dput(dentry))) {
360f5479 847 rcu_read_unlock();
1c18edd1
AV
848 return;
849 }
850 while (lock_for_kill(dentry)) {
851 rcu_read_unlock();
852 dentry = __dentry_kill(dentry);
853 if (!dentry)
1088a640 854 return;
6367b491 855 if (retain_dentry(dentry, true)) {
1088a640
AV
856 spin_unlock(&dentry->d_lock);
857 return;
858 }
1c18edd1 859 rcu_read_lock();
47be6184 860 }
1c18edd1
AV
861 rcu_read_unlock();
862 spin_unlock(&dentry->d_lock);
1da177e4 863}
ec4f8605 864EXPORT_SYMBOL(dput);
1da177e4 865
6511f6be 866static void to_shrink_list(struct dentry *dentry, struct list_head *list)
9bdebc2b
AV
867__must_hold(&dentry->d_lock)
868{
6511f6be 869 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
9bdebc2b
AV
870 if (dentry->d_flags & DCACHE_LRU_LIST)
871 d_lru_del(dentry);
c2e5e29f 872 d_shrink_add(dentry, list);
9bdebc2b
AV
873 }
874}
875
876void dput_to_list(struct dentry *dentry, struct list_head *list)
877{
878 rcu_read_lock();
879 if (likely(fast_dput(dentry))) {
880 rcu_read_unlock();
881 return;
882 }
883 rcu_read_unlock();
f05441c7 884 to_shrink_list(dentry, list);
9bdebc2b
AV
885 spin_unlock(&dentry->d_lock);
886}
1da177e4 887
b7ab39f6
NP
888struct dentry *dget_parent(struct dentry *dentry)
889{
df3d0bbc 890 int gotref;
b7ab39f6 891 struct dentry *ret;
e8400933 892 unsigned seq;
b7ab39f6 893
df3d0bbc
WL
894 /*
895 * Do optimistic parent lookup without any
896 * locking.
897 */
898 rcu_read_lock();
e8400933 899 seq = raw_seqcount_begin(&dentry->d_seq);
66702eb5 900 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
901 gotref = lockref_get_not_zero(&ret->d_lockref);
902 rcu_read_unlock();
903 if (likely(gotref)) {
e8400933 904 if (!read_seqcount_retry(&dentry->d_seq, seq))
df3d0bbc
WL
905 return ret;
906 dput(ret);
907 }
908
b7ab39f6 909repeat:
a734eb45
NP
910 /*
911 * Don't need rcu_dereference because we re-check it was correct under
912 * the lock.
913 */
914 rcu_read_lock();
b7ab39f6 915 ret = dentry->d_parent;
a734eb45
NP
916 spin_lock(&ret->d_lock);
917 if (unlikely(ret != dentry->d_parent)) {
918 spin_unlock(&ret->d_lock);
919 rcu_read_unlock();
b7ab39f6
NP
920 goto repeat;
921 }
a734eb45 922 rcu_read_unlock();
98474236
WL
923 BUG_ON(!ret->d_lockref.count);
924 ret->d_lockref.count++;
b7ab39f6 925 spin_unlock(&ret->d_lock);
b7ab39f6
NP
926 return ret;
927}
928EXPORT_SYMBOL(dget_parent);
929
61fec493
AV
930static struct dentry * __d_find_any_alias(struct inode *inode)
931{
932 struct dentry *alias;
933
934 if (hlist_empty(&inode->i_dentry))
935 return NULL;
936 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
6d73c9ce 937 lockref_get(&alias->d_lockref);
61fec493
AV
938 return alias;
939}
940
941/**
942 * d_find_any_alias - find any alias for a given inode
943 * @inode: inode to find an alias for
944 *
945 * If any aliases exist for the given inode, take and return a
946 * reference for one of them. If no aliases exist, return %NULL.
947 */
948struct dentry *d_find_any_alias(struct inode *inode)
949{
950 struct dentry *de;
951
952 spin_lock(&inode->i_lock);
953 de = __d_find_any_alias(inode);
954 spin_unlock(&inode->i_lock);
955 return de;
956}
957EXPORT_SYMBOL(d_find_any_alias);
958
52ed46f0 959static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 960{
61fec493
AV
961 struct dentry *alias;
962
963 if (S_ISDIR(inode->i_mode))
964 return __d_find_any_alias(inode);
1da177e4 965
946e51f2 966 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 967 spin_lock(&alias->d_lock);
61fec493 968 if (!d_unhashed(alias)) {
1b6ae9f6 969 dget_dlock(alias);
8d80d7da
BF
970 spin_unlock(&alias->d_lock);
971 return alias;
1da177e4 972 }
da502956 973 spin_unlock(&alias->d_lock);
1da177e4 974 }
da502956 975 return NULL;
1da177e4
LT
976}
977
961f3c89
MCC
978/**
979 * d_find_alias - grab a hashed alias of inode
980 * @inode: inode in question
981 *
982 * If inode has a hashed alias, or is a directory and has any alias,
983 * acquire the reference to alias and return it. Otherwise return NULL.
984 * Notice that if inode is a directory there can be only one alias and
985 * it can be unhashed only if it has no children, or if it is the root
986 * of a filesystem, or if the directory was renamed and d_revalidate
987 * was the first vfs operation to notice.
988 *
989 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
990 * any other hashed alias over that one.
991 */
da502956 992struct dentry *d_find_alias(struct inode *inode)
1da177e4 993{
214fda1f
DH
994 struct dentry *de = NULL;
995
b3d9b7a3 996 if (!hlist_empty(&inode->i_dentry)) {
873feea0 997 spin_lock(&inode->i_lock);
52ed46f0 998 de = __d_find_alias(inode);
873feea0 999 spin_unlock(&inode->i_lock);
214fda1f 1000 }
1da177e4
LT
1001 return de;
1002}
ec4f8605 1003EXPORT_SYMBOL(d_find_alias);
1da177e4 1004
bca585d2
AV
1005/*
1006 * Caller MUST be holding rcu_read_lock() and be guaranteed
1007 * that inode won't get freed until rcu_read_unlock().
1008 */
1009struct dentry *d_find_alias_rcu(struct inode *inode)
1010{
1011 struct hlist_head *l = &inode->i_dentry;
1012 struct dentry *de = NULL;
1013
1014 spin_lock(&inode->i_lock);
1015 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1016 // used without having I_FREEING set, which means no aliases left
1017 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1018 if (S_ISDIR(inode->i_mode)) {
1019 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1020 } else {
1021 hlist_for_each_entry(de, l, d_u.d_alias)
1022 if (!d_unhashed(de))
1023 break;
1024 }
1025 }
1026 spin_unlock(&inode->i_lock);
1027 return de;
1028}
1029
1da177e4
LT
1030/*
1031 * Try to kill dentries associated with this inode.
1032 * WARNING: you must own a reference to inode.
1033 */
1034void d_prune_aliases(struct inode *inode)
1035{
b4cc0734 1036 LIST_HEAD(dispose);
0cdca3f9 1037 struct dentry *dentry;
b4cc0734 1038
873feea0 1039 spin_lock(&inode->i_lock);
946e51f2 1040 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 1041 spin_lock(&dentry->d_lock);
b4cc0734
AV
1042 if (!dentry->d_lockref.count)
1043 to_shrink_list(dentry, &dispose);
1da177e4
LT
1044 spin_unlock(&dentry->d_lock);
1045 }
873feea0 1046 spin_unlock(&inode->i_lock);
b4cc0734 1047 shrink_dentry_list(&dispose);
1da177e4 1048}
ec4f8605 1049EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1050
1c18edd1 1051static inline void shrink_kill(struct dentry *victim)
1da177e4 1052{
1c18edd1
AV
1053 do {
1054 rcu_read_unlock();
1055 victim = __dentry_kill(victim);
1056 rcu_read_lock();
1057 } while (victim && lock_for_kill(victim));
1058 rcu_read_unlock();
1059 if (victim)
1060 spin_unlock(&victim->d_lock);
3b3f09f4 1061}
77812a1e 1062
9bdebc2b 1063void shrink_dentry_list(struct list_head *list)
3b3f09f4
AV
1064{
1065 while (!list_empty(list)) {
3fcf5356 1066 struct dentry *dentry;
64fd72e0 1067
3b3f09f4
AV
1068 dentry = list_entry(list->prev, struct dentry, d_lru);
1069 spin_lock(&dentry->d_lock);
8f04da2a 1070 rcu_read_lock();
339e9e13 1071 if (!lock_for_kill(dentry)) {
cd9f84f3 1072 bool can_free;
8f04da2a 1073 rcu_read_unlock();
3b3f09f4 1074 d_shrink_del(dentry);
1b327b5a 1075 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
64fd72e0
AV
1076 spin_unlock(&dentry->d_lock);
1077 if (can_free)
1078 dentry_free(dentry);
1079 continue;
1080 }
3b3f09f4 1081 d_shrink_del(dentry);
1c18edd1 1082 shrink_kill(dentry);
da3bbdd4 1083 }
3049cfe2
CH
1084}
1085
3f97b163
VD
1086static enum lru_status dentry_lru_isolate(struct list_head *item,
1087 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1088{
1089 struct list_head *freeable = arg;
1090 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1091
1092
1093 /*
1094 * we are inverting the lru lock/dentry->d_lock here,
1095 * so use a trylock. If we fail to get the lock, just skip
1096 * it
1097 */
1098 if (!spin_trylock(&dentry->d_lock))
1099 return LRU_SKIP;
1100
1101 /*
1102 * Referenced dentries are still in use. If they have active
1103 * counts, just remove them from the LRU. Otherwise give them
1104 * another pass through the LRU.
1105 */
1106 if (dentry->d_lockref.count) {
3f97b163 1107 d_lru_isolate(lru, dentry);
f6041567
DC
1108 spin_unlock(&dentry->d_lock);
1109 return LRU_REMOVED;
1110 }
1111
1112 if (dentry->d_flags & DCACHE_REFERENCED) {
1113 dentry->d_flags &= ~DCACHE_REFERENCED;
1114 spin_unlock(&dentry->d_lock);
1115
1116 /*
1117 * The list move itself will be made by the common LRU code. At
1118 * this point, we've dropped the dentry->d_lock but keep the
1119 * lru lock. This is safe to do, since every list movement is
1120 * protected by the lru lock even if both locks are held.
1121 *
1122 * This is guaranteed by the fact that all LRU management
1123 * functions are intermediated by the LRU API calls like
0a97c01c 1124 * list_lru_add_obj and list_lru_del_obj. List movement in this file
f6041567
DC
1125 * only ever occur through this functions or through callbacks
1126 * like this one, that are called from the LRU API.
1127 *
1128 * The only exceptions to this are functions like
1129 * shrink_dentry_list, and code that first checks for the
1130 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1131 * operating only with stack provided lists after they are
1132 * properly isolated from the main list. It is thus, always a
1133 * local access.
1134 */
1135 return LRU_ROTATE;
1136 }
1137
3f97b163 1138 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1139 spin_unlock(&dentry->d_lock);
1140
1141 return LRU_REMOVED;
1142}
1143
3049cfe2 1144/**
b48f03b3
DC
1145 * prune_dcache_sb - shrink the dcache
1146 * @sb: superblock
503c358c 1147 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1148 *
503c358c
VD
1149 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1150 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1151 * function.
3049cfe2 1152 *
b48f03b3
DC
1153 * This function may fail to free any resources if all the dentries are in
1154 * use.
3049cfe2 1155 */
503c358c 1156long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1157{
f6041567
DC
1158 LIST_HEAD(dispose);
1159 long freed;
3049cfe2 1160
503c358c
VD
1161 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1162 dentry_lru_isolate, &dispose);
f6041567 1163 shrink_dentry_list(&dispose);
0a234c6d 1164 return freed;
da3bbdd4 1165}
23044507 1166
4e717f5c 1167static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1168 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1169{
4e717f5c
GC
1170 struct list_head *freeable = arg;
1171 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1172
4e717f5c
GC
1173 /*
1174 * we are inverting the lru lock/dentry->d_lock here,
1175 * so use a trylock. If we fail to get the lock, just skip
1176 * it
1177 */
1178 if (!spin_trylock(&dentry->d_lock))
1179 return LRU_SKIP;
1180
3f97b163 1181 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1182 spin_unlock(&dentry->d_lock);
ec33679d 1183
4e717f5c 1184 return LRU_REMOVED;
da3bbdd4
KM
1185}
1186
4e717f5c 1187
1da177e4
LT
1188/**
1189 * shrink_dcache_sb - shrink dcache for a superblock
1190 * @sb: superblock
1191 *
3049cfe2
CH
1192 * Shrink the dcache for the specified super block. This is used to free
1193 * the dcache before unmounting a file system.
1da177e4 1194 */
3049cfe2 1195void shrink_dcache_sb(struct super_block *sb)
1da177e4 1196{
4e717f5c
GC
1197 do {
1198 LIST_HEAD(dispose);
1199
1dbd449c 1200 list_lru_walk(&sb->s_dentry_lru,
b17c070f 1201 dentry_lru_isolate_shrink, &dispose, 1024);
4e717f5c 1202 shrink_dentry_list(&dispose);
b17c070f 1203 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1204}
ec4f8605 1205EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1206
db14fc3a
MS
1207/**
1208 * enum d_walk_ret - action to talke during tree walk
1209 * @D_WALK_CONTINUE: contrinue walk
1210 * @D_WALK_QUIT: quit walk
1211 * @D_WALK_NORETRY: quit when retry is needed
1212 * @D_WALK_SKIP: skip this dentry and its children
1213 */
1214enum d_walk_ret {
1215 D_WALK_CONTINUE,
1216 D_WALK_QUIT,
1217 D_WALK_NORETRY,
1218 D_WALK_SKIP,
1219};
c826cb7d 1220
1da177e4 1221/**
db14fc3a
MS
1222 * d_walk - walk the dentry tree
1223 * @parent: start of walk
1224 * @data: data passed to @enter() and @finish()
1225 * @enter: callback when first entering the dentry
1da177e4 1226 *
3a8e3611 1227 * The @enter() callbacks are called with d_lock held.
1da177e4 1228 */
db14fc3a 1229static void d_walk(struct dentry *parent, void *data,
3a8e3611 1230 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1231{
da549bdd 1232 struct dentry *this_parent, *dentry;
48f5ec21 1233 unsigned seq = 0;
db14fc3a
MS
1234 enum d_walk_ret ret;
1235 bool retry = true;
949854d0 1236
58db63d0 1237again:
48f5ec21 1238 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1239 this_parent = parent;
2fd6b7f5 1240 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1241
1242 ret = enter(data, this_parent);
1243 switch (ret) {
1244 case D_WALK_CONTINUE:
1245 break;
1246 case D_WALK_QUIT:
1247 case D_WALK_SKIP:
1248 goto out_unlock;
1249 case D_WALK_NORETRY:
1250 retry = false;
1251 break;
1252 }
1da177e4 1253repeat:
da549bdd 1254 dentry = d_first_child(this_parent);
1da177e4 1255resume:
da549bdd 1256 hlist_for_each_entry_from(dentry, d_sib) {
ba65dc5e
AV
1257 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1258 continue;
1259
2fd6b7f5 1260 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1261
1262 ret = enter(data, dentry);
1263 switch (ret) {
1264 case D_WALK_CONTINUE:
1265 break;
1266 case D_WALK_QUIT:
2fd6b7f5 1267 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1268 goto out_unlock;
1269 case D_WALK_NORETRY:
1270 retry = false;
1271 break;
1272 case D_WALK_SKIP:
1273 spin_unlock(&dentry->d_lock);
1274 continue;
2fd6b7f5 1275 }
db14fc3a 1276
da549bdd 1277 if (!hlist_empty(&dentry->d_children)) {
2fd6b7f5 1278 spin_unlock(&this_parent->d_lock);
5facae4f 1279 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1da177e4 1280 this_parent = dentry;
2fd6b7f5 1281 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1282 goto repeat;
1283 }
2fd6b7f5 1284 spin_unlock(&dentry->d_lock);
1da177e4
LT
1285 }
1286 /*
1287 * All done at this level ... ascend and resume the search.
1288 */
ca5358ef
AV
1289 rcu_read_lock();
1290ascend:
1da177e4 1291 if (this_parent != parent) {
da549bdd
AV
1292 dentry = this_parent;
1293 this_parent = dentry->d_parent;
31dec132 1294
da549bdd 1295 spin_unlock(&dentry->d_lock);
31dec132
AV
1296 spin_lock(&this_parent->d_lock);
1297
ca5358ef
AV
1298 /* might go back up the wrong parent if we have had a rename. */
1299 if (need_seqretry(&rename_lock, seq))
949854d0 1300 goto rename_retry;
2159184e 1301 /* go into the first sibling still alive */
da549bdd
AV
1302 hlist_for_each_entry_continue(dentry, d_sib) {
1303 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1304 rcu_read_unlock();
1305 goto resume;
1306 }
1307 }
1308 goto ascend;
1da177e4 1309 }
ca5358ef 1310 if (need_seqretry(&rename_lock, seq))
949854d0 1311 goto rename_retry;
ca5358ef 1312 rcu_read_unlock();
db14fc3a
MS
1313
1314out_unlock:
1315 spin_unlock(&this_parent->d_lock);
48f5ec21 1316 done_seqretry(&rename_lock, seq);
db14fc3a 1317 return;
58db63d0
NP
1318
1319rename_retry:
ca5358ef
AV
1320 spin_unlock(&this_parent->d_lock);
1321 rcu_read_unlock();
1322 BUG_ON(seq & 1);
db14fc3a
MS
1323 if (!retry)
1324 return;
48f5ec21 1325 seq = 1;
58db63d0 1326 goto again;
1da177e4 1327}
db14fc3a 1328
01619491
IK
1329struct check_mount {
1330 struct vfsmount *mnt;
1331 unsigned int mounted;
1332};
1333
1334static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1335{
1336 struct check_mount *info = data;
1337 struct path path = { .mnt = info->mnt, .dentry = dentry };
1338
1339 if (likely(!d_mountpoint(dentry)))
1340 return D_WALK_CONTINUE;
1341 if (__path_is_mountpoint(&path)) {
1342 info->mounted = 1;
1343 return D_WALK_QUIT;
1344 }
1345 return D_WALK_CONTINUE;
1346}
1347
1348/**
1349 * path_has_submounts - check for mounts over a dentry in the
1350 * current namespace.
1351 * @parent: path to check.
1352 *
1353 * Return true if the parent or its subdirectories contain
1354 * a mount point in the current namespace.
1355 */
1356int path_has_submounts(const struct path *parent)
1357{
1358 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1359
1360 read_seqlock_excl(&mount_lock);
3a8e3611 1361 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1362 read_sequnlock_excl(&mount_lock);
1363
1364 return data.mounted;
1365}
1366EXPORT_SYMBOL(path_has_submounts);
1367
eed81007
MS
1368/*
1369 * Called by mount code to set a mountpoint and check if the mountpoint is
1370 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1371 * subtree can become unreachable).
1372 *
1ffe46d1 1373 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1374 * this reason take rename_lock and d_lock on dentry and ancestors.
1375 */
1376int d_set_mounted(struct dentry *dentry)
1377{
1378 struct dentry *p;
1379 int ret = -ENOENT;
1380 write_seqlock(&rename_lock);
1381 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1382 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1383 spin_lock(&p->d_lock);
1384 if (unlikely(d_unhashed(p))) {
1385 spin_unlock(&p->d_lock);
1386 goto out;
1387 }
1388 spin_unlock(&p->d_lock);
1389 }
1390 spin_lock(&dentry->d_lock);
1391 if (!d_unlinked(dentry)) {
3895dbf8
EB
1392 ret = -EBUSY;
1393 if (!d_mountpoint(dentry)) {
1394 dentry->d_flags |= DCACHE_MOUNTED;
1395 ret = 0;
1396 }
eed81007
MS
1397 }
1398 spin_unlock(&dentry->d_lock);
1399out:
1400 write_sequnlock(&rename_lock);
1401 return ret;
1402}
1403
1da177e4 1404/*
fd517909 1405 * Search the dentry child list of the specified parent,
1da177e4
LT
1406 * and move any unused dentries to the end of the unused
1407 * list for prune_dcache(). We descend to the next level
da549bdd 1408 * whenever the d_children list is non-empty and continue
1da177e4
LT
1409 * searching.
1410 *
1411 * It returns zero iff there are no unused children,
1412 * otherwise it returns the number of children moved to
1413 * the end of the unused list. This may not be the total
1414 * number of unused children, because select_parent can
1415 * drop the lock and return early due to latency
1416 * constraints.
1417 */
1da177e4 1418
db14fc3a
MS
1419struct select_data {
1420 struct dentry *start;
9bdebc2b
AV
1421 union {
1422 long found;
1423 struct dentry *victim;
1424 };
db14fc3a 1425 struct list_head dispose;
db14fc3a 1426};
23044507 1427
db14fc3a
MS
1428static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1429{
1430 struct select_data *data = _data;
1431 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1432
db14fc3a
MS
1433 if (data->start == dentry)
1434 goto out;
2fd6b7f5 1435
fe91522a 1436 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1437 data->found++;
f5c8a8a4
AV
1438 } else if (!dentry->d_lockref.count) {
1439 to_shrink_list(dentry, &data->dispose);
1440 data->found++;
1c18edd1
AV
1441 } else if (dentry->d_lockref.count < 0) {
1442 data->found++;
1da177e4 1443 }
db14fc3a
MS
1444 /*
1445 * We can return to the caller if we have found some (this
1446 * ensures forward progress). We'll be coming back to find
1447 * the rest.
1448 */
fe91522a
AV
1449 if (!list_empty(&data->dispose))
1450 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1451out:
db14fc3a 1452 return ret;
1da177e4
LT
1453}
1454
9bdebc2b
AV
1455static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1456{
1457 struct select_data *data = _data;
1458 enum d_walk_ret ret = D_WALK_CONTINUE;
1459
1460 if (data->start == dentry)
1461 goto out;
1462
f5c8a8a4
AV
1463 if (!dentry->d_lockref.count) {
1464 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
9bdebc2b
AV
1465 rcu_read_lock();
1466 data->victim = dentry;
1467 return D_WALK_QUIT;
1468 }
f5c8a8a4 1469 to_shrink_list(dentry, &data->dispose);
9bdebc2b
AV
1470 }
1471 /*
1472 * We can return to the caller if we have found some (this
1473 * ensures forward progress). We'll be coming back to find
1474 * the rest.
1475 */
1476 if (!list_empty(&data->dispose))
1477 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1478out:
1479 return ret;
1480}
1481
1da177e4
LT
1482/**
1483 * shrink_dcache_parent - prune dcache
1484 * @parent: parent of entries to prune
1485 *
1486 * Prune the dcache to remove unused children of the parent dentry.
1487 */
db14fc3a 1488void shrink_dcache_parent(struct dentry *parent)
1da177e4 1489{
db14fc3a 1490 for (;;) {
9bdebc2b 1491 struct select_data data = {.start = parent};
1da177e4 1492
db14fc3a 1493 INIT_LIST_HEAD(&data.dispose);
3a8e3611 1494 d_walk(parent, &data, select_collect);
4fb48871
AV
1495
1496 if (!list_empty(&data.dispose)) {
1497 shrink_dentry_list(&data.dispose);
1498 continue;
1499 }
1500
1501 cond_resched();
db14fc3a
MS
1502 if (!data.found)
1503 break;
9bdebc2b
AV
1504 data.victim = NULL;
1505 d_walk(parent, &data, select_collect2);
1506 if (data.victim) {
9bdebc2b 1507 spin_lock(&data.victim->d_lock);
339e9e13 1508 if (!lock_for_kill(data.victim)) {
9bdebc2b
AV
1509 spin_unlock(&data.victim->d_lock);
1510 rcu_read_unlock();
1511 } else {
1c18edd1 1512 shrink_kill(data.victim);
9bdebc2b
AV
1513 }
1514 }
1515 if (!list_empty(&data.dispose))
1516 shrink_dentry_list(&data.dispose);
421348f1 1517 }
1da177e4 1518}
ec4f8605 1519EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1520
9c8c10e2 1521static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1522{
9c8c10e2 1523 /* it has busy descendents; complain about those instead */
da549bdd 1524 if (!hlist_empty(&dentry->d_children))
9c8c10e2 1525 return D_WALK_CONTINUE;
42c32608 1526
9c8c10e2
AV
1527 /* root with refcount 1 is fine */
1528 if (dentry == _data && dentry->d_lockref.count == 1)
1529 return D_WALK_CONTINUE;
1530
8c8e7dba 1531 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
9c8c10e2 1532 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1533 dentry,
1534 dentry->d_inode ?
1535 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1536 dentry,
42c32608
AV
1537 dentry->d_lockref.count,
1538 dentry->d_sb->s_type->name,
1539 dentry->d_sb->s_id);
9c8c10e2
AV
1540 return D_WALK_CONTINUE;
1541}
1542
1543static void do_one_tree(struct dentry *dentry)
1544{
1545 shrink_dcache_parent(dentry);
3a8e3611 1546 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1547 d_drop(dentry);
1548 dput(dentry);
42c32608
AV
1549}
1550
1551/*
1552 * destroy the dentries attached to a superblock on unmounting
1553 */
1554void shrink_dcache_for_umount(struct super_block *sb)
1555{
1556 struct dentry *dentry;
1557
54018131 1558 rwsem_assert_held_write(&sb->s_umount);
42c32608
AV
1559
1560 dentry = sb->s_root;
1561 sb->s_root = NULL;
9c8c10e2 1562 do_one_tree(dentry);
42c32608 1563
f1ee6162
N
1564 while (!hlist_bl_empty(&sb->s_roots)) {
1565 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1566 do_one_tree(dentry);
42c32608
AV
1567 }
1568}
1569
ff17fa56 1570static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1571{
ff17fa56 1572 struct dentry **victim = _data;
848ac114 1573 if (d_mountpoint(dentry)) {
1b6ae9f6 1574 *victim = dget_dlock(dentry);
848ac114
MS
1575 return D_WALK_QUIT;
1576 }
ff17fa56 1577 return D_WALK_CONTINUE;
848ac114
MS
1578}
1579
1580/**
1ffe46d1
EB
1581 * d_invalidate - detach submounts, prune dcache, and drop
1582 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1583 */
5542aa2f 1584void d_invalidate(struct dentry *dentry)
848ac114 1585{
ff17fa56 1586 bool had_submounts = false;
1ffe46d1
EB
1587 spin_lock(&dentry->d_lock);
1588 if (d_unhashed(dentry)) {
1589 spin_unlock(&dentry->d_lock);
5542aa2f 1590 return;
1ffe46d1 1591 }
ff17fa56 1592 __d_drop(dentry);
1ffe46d1
EB
1593 spin_unlock(&dentry->d_lock);
1594
848ac114 1595 /* Negative dentries can be dropped without further checks */
ff17fa56 1596 if (!dentry->d_inode)
5542aa2f 1597 return;
848ac114 1598
ff17fa56 1599 shrink_dcache_parent(dentry);
848ac114 1600 for (;;) {
ff17fa56 1601 struct dentry *victim = NULL;
3a8e3611 1602 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1603 if (!victim) {
1604 if (had_submounts)
1605 shrink_dcache_parent(dentry);
81be24d2 1606 return;
8ed936b5 1607 }
ff17fa56
AV
1608 had_submounts = true;
1609 detach_mounts(victim);
1610 dput(victim);
848ac114 1611 }
848ac114 1612}
1ffe46d1 1613EXPORT_SYMBOL(d_invalidate);
848ac114 1614
1da177e4 1615/**
a4464dbc
AV
1616 * __d_alloc - allocate a dcache entry
1617 * @sb: filesystem it will belong to
1da177e4
LT
1618 * @name: qstr of the name
1619 *
1620 * Allocates a dentry. It returns %NULL if there is insufficient memory
1621 * available. On a success the dentry is returned. The name passed in is
1622 * copied and the copy passed in may be reused after this call.
1623 */
1624
5c8b0dfc 1625static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1626{
1627 struct dentry *dentry;
1628 char *dname;
285b102d 1629 int err;
1da177e4 1630
f53bf711
MS
1631 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1632 GFP_KERNEL);
1da177e4
LT
1633 if (!dentry)
1634 return NULL;
1635
6326c71f
LT
1636 /*
1637 * We guarantee that the inline name is always NUL-terminated.
1638 * This way the memcpy() done by the name switching in rename
1639 * will still always have a NUL at the end, even if we might
1640 * be overwriting an internal NUL character
1641 */
1642 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1643 if (unlikely(!name)) {
cdf01226 1644 name = &slash_name;
798434bd
AV
1645 dname = dentry->d_iname;
1646 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1647 size_t size = offsetof(struct external_name, name[1]);
2e03b4bc
VB
1648 struct external_name *p = kmalloc(size + name->len,
1649 GFP_KERNEL_ACCOUNT |
1650 __GFP_RECLAIMABLE);
1651 if (!p) {
1da177e4
LT
1652 kmem_cache_free(dentry_cache, dentry);
1653 return NULL;
1654 }
2e03b4bc
VB
1655 atomic_set(&p->u.count, 1);
1656 dname = p->name;
1da177e4
LT
1657 } else {
1658 dname = dentry->d_iname;
1659 }
1da177e4
LT
1660
1661 dentry->d_name.len = name->len;
1662 dentry->d_name.hash = name->hash;
1663 memcpy(dname, name->name, name->len);
1664 dname[name->len] = 0;
1665
6326c71f 1666 /* Make sure we always see the terminating NUL character */
7088efa9 1667 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1668
98474236 1669 dentry->d_lockref.count = 1;
dea3667b 1670 dentry->d_flags = 0;
1da177e4 1671 spin_lock_init(&dentry->d_lock);
26475371 1672 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1da177e4 1673 dentry->d_inode = NULL;
a4464dbc
AV
1674 dentry->d_parent = dentry;
1675 dentry->d_sb = sb;
1da177e4
LT
1676 dentry->d_op = NULL;
1677 dentry->d_fsdata = NULL;
ceb5bdc2 1678 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4 1679 INIT_LIST_HEAD(&dentry->d_lru);
da549bdd 1680 INIT_HLIST_HEAD(&dentry->d_children);
946e51f2 1681 INIT_HLIST_NODE(&dentry->d_u.d_alias);
da549bdd 1682 INIT_HLIST_NODE(&dentry->d_sib);
a4464dbc 1683 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1684
285b102d
MS
1685 if (dentry->d_op && dentry->d_op->d_init) {
1686 err = dentry->d_op->d_init(dentry);
1687 if (err) {
1688 if (dname_external(dentry))
1689 kfree(external_name(dentry));
1690 kmem_cache_free(dentry_cache, dentry);
1691 return NULL;
1692 }
1693 }
1694
3e880fb5 1695 this_cpu_inc(nr_dentry);
312d3ca8 1696
1da177e4
LT
1697 return dentry;
1698}
a4464dbc
AV
1699
1700/**
1701 * d_alloc - allocate a dcache entry
1702 * @parent: parent of entry to allocate
1703 * @name: qstr of the name
1704 *
1705 * Allocates a dentry. It returns %NULL if there is insufficient memory
1706 * available. On a success the dentry is returned. The name passed in is
1707 * copied and the copy passed in may be reused after this call.
1708 */
1709struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1710{
1711 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1712 if (!dentry)
1713 return NULL;
a4464dbc
AV
1714 spin_lock(&parent->d_lock);
1715 /*
1716 * don't need child lock because it is not subject
1717 * to concurrency here
1718 */
1b6ae9f6 1719 dentry->d_parent = dget_dlock(parent);
da549bdd 1720 hlist_add_head(&dentry->d_sib, &parent->d_children);
a4464dbc
AV
1721 spin_unlock(&parent->d_lock);
1722
1723 return dentry;
1724}
ec4f8605 1725EXPORT_SYMBOL(d_alloc);
1da177e4 1726
f9c34674
MS
1727struct dentry *d_alloc_anon(struct super_block *sb)
1728{
1729 return __d_alloc(sb, NULL);
1730}
1731EXPORT_SYMBOL(d_alloc_anon);
1732
ba65dc5e
AV
1733struct dentry *d_alloc_cursor(struct dentry * parent)
1734{
f9c34674 1735 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e 1736 if (dentry) {
5467a68c 1737 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
ba65dc5e
AV
1738 dentry->d_parent = dget(parent);
1739 }
1740 return dentry;
1741}
1742
e1a24bb0
BF
1743/**
1744 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1745 * @sb: the superblock
1746 * @name: qstr of the name
1747 *
1748 * For a filesystem that just pins its dentries in memory and never
1749 * performs lookups at all, return an unhashed IS_ROOT dentry.
5467a68c
AV
1750 * This is used for pipes, sockets et.al. - the stuff that should
1751 * never be anyone's children or parents. Unlike all other
1752 * dentries, these will not have RCU delay between dropping the
1753 * last reference and freeing them.
ab1152dd
AV
1754 *
1755 * The only user is alloc_file_pseudo() and that's what should
1756 * be considered a public interface. Don't use directly.
e1a24bb0 1757 */
4b936885
NP
1758struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1759{
9024b4c9
AV
1760 static const struct dentry_operations anon_ops = {
1761 .d_dname = simple_dname
1762 };
5467a68c 1763 struct dentry *dentry = __d_alloc(sb, name);
9024b4c9 1764 if (likely(dentry)) {
5467a68c 1765 dentry->d_flags |= DCACHE_NORCU;
9024b4c9
AV
1766 if (!sb->s_d_op)
1767 d_set_d_op(dentry, &anon_ops);
1768 }
5467a68c 1769 return dentry;
4b936885 1770}
4b936885 1771
1da177e4
LT
1772struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1773{
1774 struct qstr q;
1775
1776 q.name = name;
8387ff25 1777 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1778 return d_alloc(parent, &q);
1779}
ef26ca97 1780EXPORT_SYMBOL(d_alloc_name);
1da177e4 1781
fb045adb
NP
1782void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1783{
6f7f7caa
LT
1784 WARN_ON_ONCE(dentry->d_op);
1785 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1786 DCACHE_OP_COMPARE |
1787 DCACHE_OP_REVALIDATE |
ecf3d1f1 1788 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1789 DCACHE_OP_DELETE |
d101a125 1790 DCACHE_OP_REAL));
fb045adb
NP
1791 dentry->d_op = op;
1792 if (!op)
1793 return;
1794 if (op->d_hash)
1795 dentry->d_flags |= DCACHE_OP_HASH;
1796 if (op->d_compare)
1797 dentry->d_flags |= DCACHE_OP_COMPARE;
1798 if (op->d_revalidate)
1799 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1800 if (op->d_weak_revalidate)
1801 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1802 if (op->d_delete)
1803 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1804 if (op->d_prune)
1805 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1806 if (op->d_real)
1807 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1808
1809}
1810EXPORT_SYMBOL(d_set_d_op);
1811
b18825a7
DH
1812static unsigned d_flags_for_inode(struct inode *inode)
1813{
44bdb5e5 1814 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1815
1816 if (!inode)
1817 return DCACHE_MISS_TYPE;
1818
1819 if (S_ISDIR(inode->i_mode)) {
1820 add_flags = DCACHE_DIRECTORY_TYPE;
1821 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1822 if (unlikely(!inode->i_op->lookup))
1823 add_flags = DCACHE_AUTODIR_TYPE;
1824 else
1825 inode->i_opflags |= IOP_LOOKUP;
1826 }
44bdb5e5
DH
1827 goto type_determined;
1828 }
1829
1830 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1831 if (unlikely(inode->i_op->get_link)) {
b18825a7 1832 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1833 goto type_determined;
1834 }
1835 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1836 }
1837
44bdb5e5
DH
1838 if (unlikely(!S_ISREG(inode->i_mode)))
1839 add_flags = DCACHE_SPECIAL_TYPE;
1840
1841type_determined:
b18825a7
DH
1842 if (unlikely(IS_AUTOMOUNT(inode)))
1843 add_flags |= DCACHE_NEED_AUTOMOUNT;
1844 return add_flags;
1845}
1846
360da900
OH
1847static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1848{
b18825a7 1849 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1850 WARN_ON(d_in_lookup(dentry));
b18825a7 1851
b23fb0a6 1852 spin_lock(&dentry->d_lock);
af0c9af1 1853 /*
aabfe57e
BF
1854 * The negative counter only tracks dentries on the LRU. Don't dec if
1855 * d_lru is on another list.
af0c9af1 1856 */
aabfe57e
BF
1857 if ((dentry->d_flags &
1858 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
af0c9af1 1859 this_cpu_dec(nr_dentry_negative);
de689f5e 1860 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1861 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1862 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1863 raw_write_seqcount_end(&dentry->d_seq);
affda484 1864 fsnotify_update_flags(dentry);
b23fb0a6 1865 spin_unlock(&dentry->d_lock);
360da900
OH
1866}
1867
1da177e4
LT
1868/**
1869 * d_instantiate - fill in inode information for a dentry
1870 * @entry: dentry to complete
1871 * @inode: inode to attach to this dentry
1872 *
1873 * Fill in inode information in the entry.
1874 *
1875 * This turns negative dentries into productive full members
1876 * of society.
1877 *
1878 * NOTE! This assumes that the inode count has been incremented
1879 * (or otherwise set) by the caller to indicate that it is now
1880 * in use by the dcache.
1881 */
1882
1883void d_instantiate(struct dentry *entry, struct inode * inode)
1884{
946e51f2 1885 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1886 if (inode) {
b9680917 1887 security_d_instantiate(entry, inode);
873feea0 1888 spin_lock(&inode->i_lock);
de689f5e 1889 __d_instantiate(entry, inode);
873feea0 1890 spin_unlock(&inode->i_lock);
de689f5e 1891 }
1da177e4 1892}
ec4f8605 1893EXPORT_SYMBOL(d_instantiate);
1da177e4 1894
1e2e547a
AV
1895/*
1896 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1897 * with lockdep-related part of unlock_new_inode() done before
1898 * anything else. Use that instead of open-coding d_instantiate()/
1899 * unlock_new_inode() combinations.
1900 */
1901void d_instantiate_new(struct dentry *entry, struct inode *inode)
1902{
1903 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1904 BUG_ON(!inode);
1905 lockdep_annotate_inode_mutex_key(inode);
1906 security_d_instantiate(entry, inode);
1907 spin_lock(&inode->i_lock);
1908 __d_instantiate(entry, inode);
1909 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1910 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1911 smp_mb();
1912 wake_up_bit(&inode->i_state, __I_NEW);
1913 spin_unlock(&inode->i_lock);
1914}
1915EXPORT_SYMBOL(d_instantiate_new);
1916
adc0e91a
AV
1917struct dentry *d_make_root(struct inode *root_inode)
1918{
1919 struct dentry *res = NULL;
1920
1921 if (root_inode) {
f9c34674 1922 res = d_alloc_anon(root_inode->i_sb);
5467a68c 1923 if (res)
adc0e91a 1924 d_instantiate(res, root_inode);
5467a68c 1925 else
adc0e91a
AV
1926 iput(root_inode);
1927 }
1928 return res;
1929}
1930EXPORT_SYMBOL(d_make_root);
1931
f9c34674
MS
1932static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1933{
f2824db1
AV
1934 struct super_block *sb;
1935 struct dentry *new, *res;
f9c34674
MS
1936
1937 if (!inode)
1938 return ERR_PTR(-ESTALE);
1939 if (IS_ERR(inode))
1940 return ERR_CAST(inode);
1941
f2824db1
AV
1942 sb = inode->i_sb;
1943
1944 res = d_find_any_alias(inode); /* existing alias? */
f9c34674 1945 if (res)
f2824db1 1946 goto out;
f9c34674 1947
f2824db1
AV
1948 new = d_alloc_anon(sb);
1949 if (!new) {
f9c34674 1950 res = ERR_PTR(-ENOMEM);
f2824db1 1951 goto out;
f9c34674
MS
1952 }
1953
f2824db1
AV
1954 security_d_instantiate(new, inode);
1955 spin_lock(&inode->i_lock);
1956 res = __d_find_any_alias(inode); /* recheck under lock */
1957 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1958 unsigned add_flags = d_flags_for_inode(inode);
1959
1960 if (disconnected)
1961 add_flags |= DCACHE_DISCONNECTED;
f9c34674 1962
f2824db1
AV
1963 spin_lock(&new->d_lock);
1964 __d_set_inode_and_type(new, inode, add_flags);
1965 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1966 if (!disconnected) {
1967 hlist_bl_lock(&sb->s_roots);
1968 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1969 hlist_bl_unlock(&sb->s_roots);
1970 }
1971 spin_unlock(&new->d_lock);
1972 spin_unlock(&inode->i_lock);
1973 inode = NULL; /* consumed by new->d_inode */
1974 res = new;
1975 } else {
1976 spin_unlock(&inode->i_lock);
1977 dput(new);
1978 }
f9c34674 1979
f2824db1 1980 out:
f9c34674
MS
1981 iput(inode);
1982 return res;
1983}
1984
1a0a397e
BF
1985/**
1986 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1987 * @inode: inode to allocate the dentry for
1988 *
1989 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1990 * similar open by handle operations. The returned dentry may be anonymous,
1991 * or may have a full name (if the inode was already in the cache).
1992 *
1993 * When called on a directory inode, we must ensure that the inode only ever
1994 * has one dentry. If a dentry is found, that is returned instead of
1995 * allocating a new one.
1996 *
1997 * On successful return, the reference to the inode has been transferred
1998 * to the dentry. In case of an error the reference on the inode is released.
1999 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2000 * be passed in and the error will be propagated to the return value,
2001 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2002 */
2003struct dentry *d_obtain_alias(struct inode *inode)
2004{
f9c34674 2005 return __d_obtain_alias(inode, true);
1a0a397e 2006}
adc48720 2007EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2008
1a0a397e
BF
2009/**
2010 * d_obtain_root - find or allocate a dentry for a given inode
2011 * @inode: inode to allocate the dentry for
2012 *
2013 * Obtain an IS_ROOT dentry for the root of a filesystem.
2014 *
2015 * We must ensure that directory inodes only ever have one dentry. If a
2016 * dentry is found, that is returned instead of allocating a new one.
2017 *
2018 * On successful return, the reference to the inode has been transferred
2019 * to the dentry. In case of an error the reference on the inode is
2020 * released. A %NULL or IS_ERR inode may be passed in and will be the
2021 * error will be propagate to the return value, with a %NULL @inode
2022 * replaced by ERR_PTR(-ESTALE).
2023 */
2024struct dentry *d_obtain_root(struct inode *inode)
2025{
f9c34674 2026 return __d_obtain_alias(inode, false);
1a0a397e
BF
2027}
2028EXPORT_SYMBOL(d_obtain_root);
2029
9403540c
BN
2030/**
2031 * d_add_ci - lookup or allocate new dentry with case-exact name
2032 * @inode: the inode case-insensitive lookup has found
2033 * @dentry: the negative dentry that was passed to the parent's lookup func
2034 * @name: the case-exact name to be associated with the returned dentry
2035 *
2036 * This is to avoid filling the dcache with case-insensitive names to the
2037 * same inode, only the actual correct case is stored in the dcache for
2038 * case-insensitive filesystems.
2039 *
3d742d4b
RD
2040 * For a case-insensitive lookup match and if the case-exact dentry
2041 * already exists in the dcache, use it and return it.
9403540c
BN
2042 *
2043 * If no entry exists with the exact case name, allocate new dentry with
2044 * the exact case, and return the spliced entry.
2045 */
e45b590b 2046struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2047 struct qstr *name)
2048{
d9171b93 2049 struct dentry *found, *res;
9403540c 2050
b6520c81
CH
2051 /*
2052 * First check if a dentry matching the name already exists,
2053 * if not go ahead and create it now.
2054 */
9403540c 2055 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2056 if (found) {
2057 iput(inode);
2058 return found;
2059 }
2060 if (d_in_lookup(dentry)) {
2061 found = d_alloc_parallel(dentry->d_parent, name,
2062 dentry->d_wait);
2063 if (IS_ERR(found) || !d_in_lookup(found)) {
2064 iput(inode);
2065 return found;
9403540c 2066 }
d9171b93
AV
2067 } else {
2068 found = d_alloc(dentry->d_parent, name);
2069 if (!found) {
2070 iput(inode);
2071 return ERR_PTR(-ENOMEM);
2072 }
2073 }
2074 res = d_splice_alias(inode, found);
2075 if (res) {
40a3cb0d 2076 d_lookup_done(found);
d9171b93
AV
2077 dput(found);
2078 return res;
9403540c 2079 }
4f522a24 2080 return found;
9403540c 2081}
ec4f8605 2082EXPORT_SYMBOL(d_add_ci);
1da177e4 2083
4f48d5da
XL
2084/**
2085 * d_same_name - compare dentry name with case-exact name
2086 * @parent: parent dentry
2087 * @dentry: the negative dentry that was passed to the parent's lookup func
2088 * @name: the case-exact name to be associated with the returned dentry
2089 *
2090 * Return: true if names are same, or false
2091 */
2092bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2093 const struct qstr *name)
12f8ad4b 2094{
d4c91a8f
AV
2095 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2096 if (dentry->d_name.len != name->len)
2097 return false;
2098 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2099 }
6fa67e70 2100 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2101 dentry->d_name.len, dentry->d_name.name,
2102 name) == 0;
12f8ad4b 2103}
4f48d5da 2104EXPORT_SYMBOL_GPL(d_same_name);
12f8ad4b 2105
ae2a8236
LT
2106/*
2107 * This is __d_lookup_rcu() when the parent dentry has
2108 * DCACHE_OP_COMPARE, which makes things much nastier.
2109 */
2110static noinline struct dentry *__d_lookup_rcu_op_compare(
2111 const struct dentry *parent,
2112 const struct qstr *name,
2113 unsigned *seqp)
2114{
2115 u64 hashlen = name->hash_len;
e60cc611 2116 struct hlist_bl_head *b = d_hash(hashlen);
ae2a8236
LT
2117 struct hlist_bl_node *node;
2118 struct dentry *dentry;
2119
2120 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2121 int tlen;
2122 const char *tname;
2123 unsigned seq;
2124
2125seqretry:
2126 seq = raw_seqcount_begin(&dentry->d_seq);
2127 if (dentry->d_parent != parent)
2128 continue;
2129 if (d_unhashed(dentry))
2130 continue;
2131 if (dentry->d_name.hash != hashlen_hash(hashlen))
2132 continue;
2133 tlen = dentry->d_name.len;
2134 tname = dentry->d_name.name;
2135 /* we want a consistent (name,len) pair */
2136 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2137 cpu_relax();
2138 goto seqretry;
2139 }
2140 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2141 continue;
2142 *seqp = seq;
2143 return dentry;
2144 }
2145 return NULL;
2146}
2147
31e6b01f
NP
2148/**
2149 * __d_lookup_rcu - search for a dentry (racy, store-free)
2150 * @parent: parent dentry
2151 * @name: qstr of name we wish to find
1f1e6e52 2152 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2153 * Returns: dentry, or NULL
2154 *
2155 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2156 * resolution (store-free path walking) design described in
2157 * Documentation/filesystems/path-lookup.txt.
2158 *
2159 * This is not to be used outside core vfs.
2160 *
2161 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2162 * held, and rcu_read_lock held. The returned dentry must not be stored into
2163 * without taking d_lock and checking d_seq sequence count against @seq
2164 * returned here.
2165 *
15570086 2166 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2167 * function.
2168 *
2169 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2170 * the returned dentry, so long as its parent's seqlock is checked after the
2171 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2172 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2173 *
2174 * NOTE! The caller *has* to check the resulting dentry against the sequence
2175 * number we've returned before using any of the resulting dentry state!
31e6b01f 2176 */
8966be90
LT
2177struct dentry *__d_lookup_rcu(const struct dentry *parent,
2178 const struct qstr *name,
da53be12 2179 unsigned *seqp)
31e6b01f 2180{
26fe5750 2181 u64 hashlen = name->hash_len;
31e6b01f 2182 const unsigned char *str = name->name;
e60cc611 2183 struct hlist_bl_head *b = d_hash(hashlen);
ceb5bdc2 2184 struct hlist_bl_node *node;
31e6b01f
NP
2185 struct dentry *dentry;
2186
2187 /*
2188 * Note: There is significant duplication with __d_lookup_rcu which is
2189 * required to prevent single threaded performance regressions
2190 * especially on architectures where smp_rmb (in seqcounts) are costly.
2191 * Keep the two functions in sync.
2192 */
2193
ae2a8236
LT
2194 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2195 return __d_lookup_rcu_op_compare(parent, name, seqp);
2196
31e6b01f
NP
2197 /*
2198 * The hash list is protected using RCU.
2199 *
2200 * Carefully use d_seq when comparing a candidate dentry, to avoid
2201 * races with d_move().
2202 *
2203 * It is possible that concurrent renames can mess up our list
2204 * walk here and result in missing our dentry, resulting in the
2205 * false-negative result. d_lookup() protects against concurrent
2206 * renames using rename_lock seqlock.
2207 *
b0a4bb83 2208 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2209 */
b07ad996 2210 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2211 unsigned seq;
31e6b01f 2212
12f8ad4b
LT
2213 /*
2214 * The dentry sequence count protects us from concurrent
da53be12 2215 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2216 *
2217 * The caller must perform a seqcount check in order
da53be12 2218 * to do anything useful with the returned dentry.
12f8ad4b
LT
2219 *
2220 * NOTE! We do a "raw" seqcount_begin here. That means that
2221 * we don't wait for the sequence count to stabilize if it
2222 * is in the middle of a sequence change. If we do the slow
2223 * dentry compare, we will do seqretries until it is stable,
2224 * and if we end up with a successful lookup, we actually
2225 * want to exit RCU lookup anyway.
d4c91a8f
AV
2226 *
2227 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2228 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2229 */
2230 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2231 if (dentry->d_parent != parent)
2232 continue;
2e321806
LT
2233 if (d_unhashed(dentry))
2234 continue;
ae2a8236
LT
2235 if (dentry->d_name.hash_len != hashlen)
2236 continue;
2237 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2238 continue;
da53be12 2239 *seqp = seq;
d4c91a8f 2240 return dentry;
31e6b01f
NP
2241 }
2242 return NULL;
2243}
2244
1da177e4
LT
2245/**
2246 * d_lookup - search for a dentry
2247 * @parent: parent dentry
2248 * @name: qstr of name we wish to find
b04f784e 2249 * Returns: dentry, or NULL
1da177e4 2250 *
b04f784e
NP
2251 * d_lookup searches the children of the parent dentry for the name in
2252 * question. If the dentry is found its reference count is incremented and the
2253 * dentry is returned. The caller must use dput to free the entry when it has
2254 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2255 */
da2d8455 2256struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2257{
31e6b01f 2258 struct dentry *dentry;
949854d0 2259 unsigned seq;
1da177e4 2260
b8314f93
DY
2261 do {
2262 seq = read_seqbegin(&rename_lock);
2263 dentry = __d_lookup(parent, name);
2264 if (dentry)
1da177e4
LT
2265 break;
2266 } while (read_seqretry(&rename_lock, seq));
2267 return dentry;
2268}
ec4f8605 2269EXPORT_SYMBOL(d_lookup);
1da177e4 2270
31e6b01f 2271/**
b04f784e
NP
2272 * __d_lookup - search for a dentry (racy)
2273 * @parent: parent dentry
2274 * @name: qstr of name we wish to find
2275 * Returns: dentry, or NULL
2276 *
2277 * __d_lookup is like d_lookup, however it may (rarely) return a
2278 * false-negative result due to unrelated rename activity.
2279 *
2280 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2281 * however it must be used carefully, eg. with a following d_lookup in
2282 * the case of failure.
2283 *
2284 * __d_lookup callers must be commented.
2285 */
a713ca2a 2286struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2287{
1da177e4 2288 unsigned int hash = name->hash;
8387ff25 2289 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2290 struct hlist_bl_node *node;
31e6b01f 2291 struct dentry *found = NULL;
665a7583 2292 struct dentry *dentry;
1da177e4 2293
31e6b01f
NP
2294 /*
2295 * Note: There is significant duplication with __d_lookup_rcu which is
2296 * required to prevent single threaded performance regressions
2297 * especially on architectures where smp_rmb (in seqcounts) are costly.
2298 * Keep the two functions in sync.
2299 */
2300
b04f784e
NP
2301 /*
2302 * The hash list is protected using RCU.
2303 *
2304 * Take d_lock when comparing a candidate dentry, to avoid races
2305 * with d_move().
2306 *
2307 * It is possible that concurrent renames can mess up our list
2308 * walk here and result in missing our dentry, resulting in the
2309 * false-negative result. d_lookup() protects against concurrent
2310 * renames using rename_lock seqlock.
2311 *
b0a4bb83 2312 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2313 */
1da177e4
LT
2314 rcu_read_lock();
2315
b07ad996 2316 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2317
1da177e4
LT
2318 if (dentry->d_name.hash != hash)
2319 continue;
1da177e4
LT
2320
2321 spin_lock(&dentry->d_lock);
1da177e4
LT
2322 if (dentry->d_parent != parent)
2323 goto next;
d0185c08
LT
2324 if (d_unhashed(dentry))
2325 goto next;
2326
d4c91a8f
AV
2327 if (!d_same_name(dentry, parent, name))
2328 goto next;
1da177e4 2329
98474236 2330 dentry->d_lockref.count++;
d0185c08 2331 found = dentry;
1da177e4
LT
2332 spin_unlock(&dentry->d_lock);
2333 break;
2334next:
2335 spin_unlock(&dentry->d_lock);
2336 }
2337 rcu_read_unlock();
2338
2339 return found;
2340}
2341
3e7e241f
EB
2342/**
2343 * d_hash_and_lookup - hash the qstr then search for a dentry
2344 * @dir: Directory to search in
2345 * @name: qstr of name we wish to find
2346 *
4f522a24 2347 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2348 */
2349struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2350{
3e7e241f
EB
2351 /*
2352 * Check for a fs-specific hash function. Note that we must
2353 * calculate the standard hash first, as the d_op->d_hash()
2354 * routine may choose to leave the hash value unchanged.
2355 */
8387ff25 2356 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2357 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2358 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2359 if (unlikely(err < 0))
2360 return ERR_PTR(err);
3e7e241f 2361 }
4f522a24 2362 return d_lookup(dir, name);
3e7e241f 2363}
4f522a24 2364EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2365
1da177e4
LT
2366/*
2367 * When a file is deleted, we have two options:
2368 * - turn this dentry into a negative dentry
2369 * - unhash this dentry and free it.
2370 *
2371 * Usually, we want to just turn this into
4a4be1ad
LT
2372 * a negative dentry, but if anybody else is
2373 * currently using the dentry or the inode
2374 * we can't do that and we fall back on removing
2375 * it from the hash queues and waiting for
2376 * it to be deleted later when it has no users
1da177e4
LT
2377 */
2378
2379/**
2380 * d_delete - delete a dentry
2381 * @dentry: The dentry to delete
2382 *
4a4be1ad
LT
2383 * Turn the dentry into a negative dentry if possible, otherwise
2384 * remove it from the hash queues so it can be deleted later
1da177e4
LT
2385 */
2386
2387void d_delete(struct dentry * dentry)
2388{
c19457f0 2389 struct inode *inode = dentry->d_inode;
c19457f0
AV
2390
2391 spin_lock(&inode->i_lock);
2392 spin_lock(&dentry->d_lock);
1da177e4
LT
2393 /*
2394 * Are we the only user?
2395 */
98474236 2396 if (dentry->d_lockref.count == 1) {
13e3c5e5 2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2398 dentry_unlink_inode(dentry);
c19457f0 2399 } else {
4a4be1ad 2400 __d_drop(dentry);
c19457f0
AV
2401 spin_unlock(&dentry->d_lock);
2402 spin_unlock(&inode->i_lock);
2403 }
1da177e4 2404}
ec4f8605 2405EXPORT_SYMBOL(d_delete);
1da177e4 2406
15d3c589 2407static void __d_rehash(struct dentry *entry)
1da177e4 2408{
15d3c589 2409 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2410
1879fd6a 2411 hlist_bl_lock(b);
b07ad996 2412 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2413 hlist_bl_unlock(b);
1da177e4
LT
2414}
2415
2416/**
2417 * d_rehash - add an entry back to the hash
2418 * @entry: dentry to add to the hash
2419 *
2420 * Adds a dentry to the hash according to its name.
2421 */
2422
2423void d_rehash(struct dentry * entry)
2424{
1da177e4 2425 spin_lock(&entry->d_lock);
15d3c589 2426 __d_rehash(entry);
1da177e4 2427 spin_unlock(&entry->d_lock);
1da177e4 2428}
ec4f8605 2429EXPORT_SYMBOL(d_rehash);
1da177e4 2430
84e710da
AV
2431static inline unsigned start_dir_add(struct inode *dir)
2432{
93f6d4e1 2433 preempt_disable_nested();
84e710da
AV
2434 for (;;) {
2435 unsigned n = dir->i_dir_seq;
2436 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2437 return n;
2438 cpu_relax();
2439 }
2440}
2441
50417d22
SAS
2442static inline void end_dir_add(struct inode *dir, unsigned int n,
2443 wait_queue_head_t *d_wait)
84e710da
AV
2444{
2445 smp_store_release(&dir->i_dir_seq, n + 2);
93f6d4e1 2446 preempt_enable_nested();
50417d22 2447 wake_up_all(d_wait);
84e710da
AV
2448}
2449
d9171b93
AV
2450static void d_wait_lookup(struct dentry *dentry)
2451{
2452 if (d_in_lookup(dentry)) {
2453 DECLARE_WAITQUEUE(wait, current);
2454 add_wait_queue(dentry->d_wait, &wait);
2455 do {
2456 set_current_state(TASK_UNINTERRUPTIBLE);
2457 spin_unlock(&dentry->d_lock);
2458 schedule();
2459 spin_lock(&dentry->d_lock);
2460 } while (d_in_lookup(dentry));
2461 }
2462}
2463
94bdd655 2464struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2465 const struct qstr *name,
2466 wait_queue_head_t *wq)
94bdd655 2467{
94bdd655 2468 unsigned int hash = name->hash;
94bdd655
AV
2469 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2470 struct hlist_bl_node *node;
2471 struct dentry *new = d_alloc(parent, name);
2472 struct dentry *dentry;
2473 unsigned seq, r_seq, d_seq;
2474
2475 if (unlikely(!new))
2476 return ERR_PTR(-ENOMEM);
2477
2478retry:
2479 rcu_read_lock();
015555fd 2480 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2481 r_seq = read_seqbegin(&rename_lock);
2482 dentry = __d_lookup_rcu(parent, name, &d_seq);
2483 if (unlikely(dentry)) {
2484 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2485 rcu_read_unlock();
2486 goto retry;
2487 }
2488 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2489 rcu_read_unlock();
2490 dput(dentry);
2491 goto retry;
2492 }
2493 rcu_read_unlock();
2494 dput(new);
2495 return dentry;
2496 }
2497 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2498 rcu_read_unlock();
2499 goto retry;
2500 }
015555fd
WD
2501
2502 if (unlikely(seq & 1)) {
2503 rcu_read_unlock();
2504 goto retry;
2505 }
2506
94bdd655 2507 hlist_bl_lock(b);
8cc07c80 2508 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2509 hlist_bl_unlock(b);
2510 rcu_read_unlock();
2511 goto retry;
2512 }
94bdd655
AV
2513 /*
2514 * No changes for the parent since the beginning of d_lookup().
2515 * Since all removals from the chain happen with hlist_bl_lock(),
2516 * any potential in-lookup matches are going to stay here until
2517 * we unlock the chain. All fields are stable in everything
2518 * we encounter.
2519 */
2520 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2521 if (dentry->d_name.hash != hash)
2522 continue;
2523 if (dentry->d_parent != parent)
2524 continue;
d4c91a8f
AV
2525 if (!d_same_name(dentry, parent, name))
2526 continue;
94bdd655 2527 hlist_bl_unlock(b);
e7d6ef97
AV
2528 /* now we can try to grab a reference */
2529 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2530 rcu_read_unlock();
2531 goto retry;
2532 }
2533
2534 rcu_read_unlock();
2535 /*
2536 * somebody is likely to be still doing lookup for it;
2537 * wait for them to finish
2538 */
d9171b93
AV
2539 spin_lock(&dentry->d_lock);
2540 d_wait_lookup(dentry);
2541 /*
2542 * it's not in-lookup anymore; in principle we should repeat
2543 * everything from dcache lookup, but it's likely to be what
2544 * d_lookup() would've found anyway. If it is, just return it;
2545 * otherwise we really have to repeat the whole thing.
2546 */
2547 if (unlikely(dentry->d_name.hash != hash))
2548 goto mismatch;
2549 if (unlikely(dentry->d_parent != parent))
2550 goto mismatch;
2551 if (unlikely(d_unhashed(dentry)))
2552 goto mismatch;
d4c91a8f
AV
2553 if (unlikely(!d_same_name(dentry, parent, name)))
2554 goto mismatch;
d9171b93
AV
2555 /* OK, it *is* a hashed match; return it */
2556 spin_unlock(&dentry->d_lock);
94bdd655
AV
2557 dput(new);
2558 return dentry;
2559 }
e7d6ef97 2560 rcu_read_unlock();
94bdd655
AV
2561 /* we can't take ->d_lock here; it's OK, though. */
2562 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2563 new->d_wait = wq;
f9f677c5 2564 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
94bdd655
AV
2565 hlist_bl_unlock(b);
2566 return new;
d9171b93
AV
2567mismatch:
2568 spin_unlock(&dentry->d_lock);
2569 dput(dentry);
2570 goto retry;
94bdd655
AV
2571}
2572EXPORT_SYMBOL(d_alloc_parallel);
2573
45f78b0a
SAS
2574/*
2575 * - Unhash the dentry
2576 * - Retrieve and clear the waitqueue head in dentry
2577 * - Return the waitqueue head
2578 */
2579static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
85c7f810 2580{
45f78b0a
SAS
2581 wait_queue_head_t *d_wait;
2582 struct hlist_bl_head *b;
2583
2584 lockdep_assert_held(&dentry->d_lock);
2585
2586 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
94bdd655 2587 hlist_bl_lock(b);
85c7f810 2588 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2589 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
45f78b0a 2590 d_wait = dentry->d_wait;
d9171b93 2591 dentry->d_wait = NULL;
94bdd655
AV
2592 hlist_bl_unlock(b);
2593 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2594 INIT_LIST_HEAD(&dentry->d_lru);
45f78b0a
SAS
2595 return d_wait;
2596}
2597
2598void __d_lookup_unhash_wake(struct dentry *dentry)
2599{
2600 spin_lock(&dentry->d_lock);
2601 wake_up_all(__d_lookup_unhash(dentry));
2602 spin_unlock(&dentry->d_lock);
85c7f810 2603}
45f78b0a 2604EXPORT_SYMBOL(__d_lookup_unhash_wake);
ed782b5a
AV
2605
2606/* inode->i_lock held if inode is non-NULL */
2607
2608static inline void __d_add(struct dentry *dentry, struct inode *inode)
2609{
45f78b0a 2610 wait_queue_head_t *d_wait;
84e710da
AV
2611 struct inode *dir = NULL;
2612 unsigned n;
0568d705 2613 spin_lock(&dentry->d_lock);
84e710da
AV
2614 if (unlikely(d_in_lookup(dentry))) {
2615 dir = dentry->d_parent->d_inode;
2616 n = start_dir_add(dir);
45f78b0a 2617 d_wait = __d_lookup_unhash(dentry);
84e710da 2618 }
ed782b5a 2619 if (inode) {
0568d705
AV
2620 unsigned add_flags = d_flags_for_inode(inode);
2621 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2622 raw_write_seqcount_begin(&dentry->d_seq);
2623 __d_set_inode_and_type(dentry, inode, add_flags);
2624 raw_write_seqcount_end(&dentry->d_seq);
affda484 2625 fsnotify_update_flags(dentry);
ed782b5a 2626 }
15d3c589 2627 __d_rehash(dentry);
84e710da 2628 if (dir)
50417d22 2629 end_dir_add(dir, n, d_wait);
0568d705
AV
2630 spin_unlock(&dentry->d_lock);
2631 if (inode)
2632 spin_unlock(&inode->i_lock);
ed782b5a
AV
2633}
2634
34d0d19d
AV
2635/**
2636 * d_add - add dentry to hash queues
2637 * @entry: dentry to add
2638 * @inode: The inode to attach to this dentry
2639 *
2640 * This adds the entry to the hash queues and initializes @inode.
2641 * The entry was actually filled in earlier during d_alloc().
2642 */
2643
2644void d_add(struct dentry *entry, struct inode *inode)
2645{
b9680917
AV
2646 if (inode) {
2647 security_d_instantiate(entry, inode);
ed782b5a 2648 spin_lock(&inode->i_lock);
b9680917 2649 }
ed782b5a 2650 __d_add(entry, inode);
34d0d19d
AV
2651}
2652EXPORT_SYMBOL(d_add);
2653
668d0cd5
AV
2654/**
2655 * d_exact_alias - find and hash an exact unhashed alias
2656 * @entry: dentry to add
2657 * @inode: The inode to go with this dentry
2658 *
2659 * If an unhashed dentry with the same name/parent and desired
2660 * inode already exists, hash and return it. Otherwise, return
2661 * NULL.
2662 *
2663 * Parent directory should be locked.
2664 */
2665struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2666{
2667 struct dentry *alias;
668d0cd5
AV
2668 unsigned int hash = entry->d_name.hash;
2669
2670 spin_lock(&inode->i_lock);
2671 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2672 /*
2673 * Don't need alias->d_lock here, because aliases with
2674 * d_parent == entry->d_parent are not subject to name or
2675 * parent changes, because the parent inode i_mutex is held.
2676 */
2677 if (alias->d_name.hash != hash)
2678 continue;
2679 if (alias->d_parent != entry->d_parent)
2680 continue;
d4c91a8f 2681 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2682 continue;
2683 spin_lock(&alias->d_lock);
2684 if (!d_unhashed(alias)) {
2685 spin_unlock(&alias->d_lock);
2686 alias = NULL;
2687 } else {
1b6ae9f6 2688 dget_dlock(alias);
15d3c589 2689 __d_rehash(alias);
668d0cd5
AV
2690 spin_unlock(&alias->d_lock);
2691 }
2692 spin_unlock(&inode->i_lock);
2693 return alias;
2694 }
2695 spin_unlock(&inode->i_lock);
2696 return NULL;
2697}
2698EXPORT_SYMBOL(d_exact_alias);
2699
8d85b484 2700static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2701{
8d85b484
AV
2702 if (unlikely(dname_external(target))) {
2703 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2704 /*
2705 * Both external: swap the pointers
2706 */
9a8d5bb4 2707 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2708 } else {
2709 /*
2710 * dentry:internal, target:external. Steal target's
2711 * storage and make target internal.
2712 */
321bcf92
BF
2713 memcpy(target->d_iname, dentry->d_name.name,
2714 dentry->d_name.len + 1);
1da177e4
LT
2715 dentry->d_name.name = target->d_name.name;
2716 target->d_name.name = target->d_iname;
2717 }
2718 } else {
8d85b484 2719 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2720 /*
2721 * dentry:external, target:internal. Give dentry's
2722 * storage to target and make dentry internal
2723 */
2724 memcpy(dentry->d_iname, target->d_name.name,
2725 target->d_name.len + 1);
2726 target->d_name.name = dentry->d_name.name;
2727 dentry->d_name.name = dentry->d_iname;
2728 } else {
2729 /*
da1ce067 2730 * Both are internal.
1da177e4 2731 */
da1ce067
MS
2732 unsigned int i;
2733 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2734 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2735 swap(((long *) &dentry->d_iname)[i],
2736 ((long *) &target->d_iname)[i]);
2737 }
1da177e4
LT
2738 }
2739 }
a28ddb87 2740 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2741}
2742
8d85b484
AV
2743static void copy_name(struct dentry *dentry, struct dentry *target)
2744{
2745 struct external_name *old_name = NULL;
2746 if (unlikely(dname_external(dentry)))
2747 old_name = external_name(dentry);
2748 if (unlikely(dname_external(target))) {
2749 atomic_inc(&external_name(target)->u.count);
2750 dentry->d_name = target->d_name;
2751 } else {
2752 memcpy(dentry->d_iname, target->d_name.name,
2753 target->d_name.len + 1);
2754 dentry->d_name.name = dentry->d_iname;
2755 dentry->d_name.hash_len = target->d_name.hash_len;
2756 }
2757 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2e03b4bc 2758 kfree_rcu(old_name, u.head);
8d85b484
AV
2759}
2760
9eaef27b 2761/*
18367501 2762 * __d_move - move a dentry
1da177e4
LT
2763 * @dentry: entry to move
2764 * @target: new dentry
da1ce067 2765 * @exchange: exchange the two dentries
1da177e4
LT
2766 *
2767 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2768 * dcache entries should not be moved in this way. Caller must hold
2769 * rename_lock, the i_mutex of the source and target directories,
2770 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2771 */
da1ce067
MS
2772static void __d_move(struct dentry *dentry, struct dentry *target,
2773 bool exchange)
1da177e4 2774{
42177007 2775 struct dentry *old_parent, *p;
45f78b0a 2776 wait_queue_head_t *d_wait;
84e710da
AV
2777 struct inode *dir = NULL;
2778 unsigned n;
1da177e4 2779
42177007
AV
2780 WARN_ON(!dentry->d_inode);
2781 if (WARN_ON(dentry == target))
2782 return;
2783
2fd6b7f5 2784 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2785 old_parent = dentry->d_parent;
2786 p = d_ancestor(old_parent, target);
2787 if (IS_ROOT(dentry)) {
2788 BUG_ON(p);
2789 spin_lock(&target->d_parent->d_lock);
2790 } else if (!p) {
2791 /* target is not a descendent of dentry->d_parent */
2792 spin_lock(&target->d_parent->d_lock);
2793 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2794 } else {
2795 BUG_ON(p == dentry);
2796 spin_lock(&old_parent->d_lock);
2797 if (p != target)
2798 spin_lock_nested(&target->d_parent->d_lock,
2799 DENTRY_D_LOCK_NESTED);
2800 }
2801 spin_lock_nested(&dentry->d_lock, 2);
2802 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2803
84e710da
AV
2804 if (unlikely(d_in_lookup(target))) {
2805 dir = target->d_parent->d_inode;
2806 n = start_dir_add(dir);
45f78b0a 2807 d_wait = __d_lookup_unhash(target);
84e710da 2808 }
1da177e4 2809
31e6b01f 2810 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2811 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2812
15d3c589 2813 /* unhash both */
0632a9ac
AV
2814 if (!d_unhashed(dentry))
2815 ___d_drop(dentry);
2816 if (!d_unhashed(target))
2817 ___d_drop(target);
1da177e4 2818
076515fc
AV
2819 /* ... and switch them in the tree */
2820 dentry->d_parent = target->d_parent;
2821 if (!exchange) {
8d85b484 2822 copy_name(dentry, target);
61647823 2823 target->d_hash.pprev = NULL;
076515fc 2824 dentry->d_parent->d_lockref.count++;
5467a68c 2825 if (dentry != old_parent) /* wasn't IS_ROOT */
076515fc 2826 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2827 } else {
076515fc
AV
2828 target->d_parent = old_parent;
2829 swap_names(dentry, target);
da549bdd
AV
2830 if (!hlist_unhashed(&target->d_sib))
2831 __hlist_del(&target->d_sib);
2832 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
076515fc
AV
2833 __d_rehash(target);
2834 fsnotify_update_flags(target);
1da177e4 2835 }
da549bdd
AV
2836 if (!hlist_unhashed(&dentry->d_sib))
2837 __hlist_del(&dentry->d_sib);
2838 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
076515fc
AV
2839 __d_rehash(dentry);
2840 fsnotify_update_flags(dentry);
0bf3d5c1 2841 fscrypt_handle_d_move(dentry);
1da177e4 2842
31e6b01f
NP
2843 write_seqcount_end(&target->d_seq);
2844 write_seqcount_end(&dentry->d_seq);
2845
84e710da 2846 if (dir)
50417d22 2847 end_dir_add(dir, n, d_wait);
076515fc
AV
2848
2849 if (dentry->d_parent != old_parent)
2850 spin_unlock(&dentry->d_parent->d_lock);
2851 if (dentry != old_parent)
2852 spin_unlock(&old_parent->d_lock);
2853 spin_unlock(&target->d_lock);
2854 spin_unlock(&dentry->d_lock);
18367501
AV
2855}
2856
2857/*
2858 * d_move - move a dentry
2859 * @dentry: entry to move
2860 * @target: new dentry
2861 *
2862 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2863 * dcache entries should not be moved in this way. See the locking
2864 * requirements for __d_move.
18367501
AV
2865 */
2866void d_move(struct dentry *dentry, struct dentry *target)
2867{
2868 write_seqlock(&rename_lock);
da1ce067 2869 __d_move(dentry, target, false);
1da177e4 2870 write_sequnlock(&rename_lock);
9eaef27b 2871}
ec4f8605 2872EXPORT_SYMBOL(d_move);
1da177e4 2873
da1ce067
MS
2874/*
2875 * d_exchange - exchange two dentries
2876 * @dentry1: first dentry
2877 * @dentry2: second dentry
2878 */
2879void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2880{
2881 write_seqlock(&rename_lock);
2882
2883 WARN_ON(!dentry1->d_inode);
2884 WARN_ON(!dentry2->d_inode);
2885 WARN_ON(IS_ROOT(dentry1));
2886 WARN_ON(IS_ROOT(dentry2));
2887
2888 __d_move(dentry1, dentry2, true);
2889
2890 write_sequnlock(&rename_lock);
2891}
2892
e2761a11
OH
2893/**
2894 * d_ancestor - search for an ancestor
2895 * @p1: ancestor dentry
2896 * @p2: child dentry
2897 *
2898 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2899 * an ancestor of p2, else NULL.
9eaef27b 2900 */
e2761a11 2901struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2902{
2903 struct dentry *p;
2904
871c0067 2905 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2906 if (p->d_parent == p1)
e2761a11 2907 return p;
9eaef27b 2908 }
e2761a11 2909 return NULL;
9eaef27b
TM
2910}
2911
2912/*
2913 * This helper attempts to cope with remotely renamed directories
2914 *
2915 * It assumes that the caller is already holding
a03e283b 2916 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2917 *
2918 * Note: If ever the locking in lock_rename() changes, then please
2919 * remember to update this too...
9eaef27b 2920 */
ef69f050 2921static int __d_unalias(struct dentry *dentry, struct dentry *alias)
9eaef27b 2922{
9902af79
AV
2923 struct mutex *m1 = NULL;
2924 struct rw_semaphore *m2 = NULL;
3d330dc1 2925 int ret = -ESTALE;
9eaef27b
TM
2926
2927 /* If alias and dentry share a parent, then no extra locks required */
2928 if (alias->d_parent == dentry->d_parent)
2929 goto out_unalias;
2930
9eaef27b 2931 /* See lock_rename() */
9eaef27b
TM
2932 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2933 goto out_err;
2934 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2935 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2936 goto out_err;
9902af79 2937 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2938out_unalias:
8ed936b5 2939 __d_move(alias, dentry, false);
b5ae6b15 2940 ret = 0;
9eaef27b 2941out_err:
9eaef27b 2942 if (m2)
9902af79 2943 up_read(m2);
9eaef27b
TM
2944 if (m1)
2945 mutex_unlock(m1);
2946 return ret;
2947}
2948
3f70bd51
BF
2949/**
2950 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2951 * @inode: the inode which may have a disconnected dentry
2952 * @dentry: a negative dentry which we want to point to the inode.
2953 *
da093a9b
BF
2954 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2955 * place of the given dentry and return it, else simply d_add the inode
2956 * to the dentry and return NULL.
3f70bd51 2957 *
908790fa
BF
2958 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2959 * we should error out: directories can't have multiple aliases.
2960 *
3f70bd51
BF
2961 * This is needed in the lookup routine of any filesystem that is exportable
2962 * (via knfsd) so that we can build dcache paths to directories effectively.
2963 *
2964 * If a dentry was found and moved, then it is returned. Otherwise NULL
2965 * is returned. This matches the expected return value of ->lookup.
2966 *
2967 * Cluster filesystems may call this function with a negative, hashed dentry.
2968 * In that case, we know that the inode will be a regular file, and also this
2969 * will only occur during atomic_open. So we need to check for the dentry
2970 * being already hashed only in the final case.
2971 */
2972struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2973{
3f70bd51
BF
2974 if (IS_ERR(inode))
2975 return ERR_CAST(inode);
2976
770bfad8
DH
2977 BUG_ON(!d_unhashed(dentry));
2978
de689f5e 2979 if (!inode)
b5ae6b15 2980 goto out;
de689f5e 2981
b9680917 2982 security_d_instantiate(dentry, inode);
873feea0 2983 spin_lock(&inode->i_lock);
9eaef27b 2984 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2985 struct dentry *new = __d_find_any_alias(inode);
2986 if (unlikely(new)) {
a03e283b
EB
2987 /* The reference to new ensures it remains an alias */
2988 spin_unlock(&inode->i_lock);
18367501 2989 write_seqlock(&rename_lock);
b5ae6b15
AV
2990 if (unlikely(d_ancestor(new, dentry))) {
2991 write_sequnlock(&rename_lock);
b5ae6b15
AV
2992 dput(new);
2993 new = ERR_PTR(-ELOOP);
2994 pr_warn_ratelimited(
2995 "VFS: Lookup of '%s' in %s %s"
2996 " would have caused loop\n",
2997 dentry->d_name.name,
2998 inode->i_sb->s_type->name,
2999 inode->i_sb->s_id);
3000 } else if (!IS_ROOT(new)) {
076515fc 3001 struct dentry *old_parent = dget(new->d_parent);
ef69f050 3002 int err = __d_unalias(dentry, new);
18367501 3003 write_sequnlock(&rename_lock);
b5ae6b15
AV
3004 if (err) {
3005 dput(new);
3006 new = ERR_PTR(err);
3007 }
076515fc 3008 dput(old_parent);
18367501 3009 } else {
b5ae6b15
AV
3010 __d_move(new, dentry, false);
3011 write_sequnlock(&rename_lock);
dd179946 3012 }
b5ae6b15
AV
3013 iput(inode);
3014 return new;
9eaef27b 3015 }
770bfad8 3016 }
b5ae6b15 3017out:
ed782b5a 3018 __d_add(dentry, inode);
b5ae6b15 3019 return NULL;
770bfad8 3020}
b5ae6b15 3021EXPORT_SYMBOL(d_splice_alias);
770bfad8 3022
1da177e4
LT
3023/*
3024 * Test whether new_dentry is a subdirectory of old_dentry.
3025 *
3026 * Trivially implemented using the dcache structure
3027 */
3028
3029/**
3030 * is_subdir - is new dentry a subdirectory of old_dentry
3031 * @new_dentry: new dentry
3032 * @old_dentry: old dentry
3033 *
a6e5787f
YB
3034 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3035 * Returns false otherwise.
1da177e4
LT
3036 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3037 */
3038
a6e5787f 3039bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 3040{
391b59b0 3041 bool subdir;
949854d0 3042 unsigned seq;
1da177e4 3043
e2761a11 3044 if (new_dentry == old_dentry)
a6e5787f 3045 return true;
e2761a11 3046
391b59b0
CB
3047 /* Access d_parent under rcu as d_move() may change it. */
3048 rcu_read_lock();
3049 seq = read_seqbegin(&rename_lock);
3050 subdir = d_ancestor(old_dentry, new_dentry);
3051 /* Try lockless once... */
3052 if (read_seqretry(&rename_lock, seq)) {
3053 /* ...else acquire lock for progress even on deep chains. */
3054 read_seqlock_excl(&rename_lock);
3055 subdir = d_ancestor(old_dentry, new_dentry);
3056 read_sequnlock_excl(&rename_lock);
3057 }
3058 rcu_read_unlock();
3059 return subdir;
1da177e4 3060}
e8f9e5b7 3061EXPORT_SYMBOL(is_subdir);
1da177e4 3062
db14fc3a 3063static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3064{
db14fc3a
MS
3065 struct dentry *root = data;
3066 if (dentry != root) {
3067 if (d_unhashed(dentry) || !dentry->d_inode)
3068 return D_WALK_SKIP;
1da177e4 3069
7e4a205f
AV
3070 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3071 dentry->d_flags |= DCACHE_GENOCIDE;
3072 dentry->d_lockref.count--;
3073 }
1da177e4 3074 }
db14fc3a
MS
3075 return D_WALK_CONTINUE;
3076}
58db63d0 3077
db14fc3a
MS
3078void d_genocide(struct dentry *parent)
3079{
3a8e3611 3080 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3081}
3082
771eb4fe 3083void d_mark_tmpfile(struct file *file, struct inode *inode)
1da177e4 3084{
863f144f
MS
3085 struct dentry *dentry = file->f_path.dentry;
3086
60545d0d 3087 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3088 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3089 !d_unlinked(dentry));
3090 spin_lock(&dentry->d_parent->d_lock);
3091 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3092 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3093 (unsigned long long)inode->i_ino);
3094 spin_unlock(&dentry->d_lock);
3095 spin_unlock(&dentry->d_parent->d_lock);
771eb4fe
KO
3096}
3097EXPORT_SYMBOL(d_mark_tmpfile);
3098
3099void d_tmpfile(struct file *file, struct inode *inode)
3100{
3101 struct dentry *dentry = file->f_path.dentry;
3102
3103 inode_dec_link_count(inode);
3104 d_mark_tmpfile(file, inode);
60545d0d 3105 d_instantiate(dentry, inode);
1da177e4 3106}
60545d0d 3107EXPORT_SYMBOL(d_tmpfile);
1da177e4 3108
f378ec4e
MG
3109/*
3110 * Obtain inode number of the parent dentry.
3111 */
3112ino_t d_parent_ino(struct dentry *dentry)
3113{
3114 struct dentry *parent;
3115 struct inode *iparent;
3116 unsigned seq;
3117 ino_t ret;
3118
3119 scoped_guard(rcu) {
3120 seq = raw_seqcount_begin(&dentry->d_seq);
3121 parent = READ_ONCE(dentry->d_parent);
3122 iparent = d_inode_rcu(parent);
3123 if (likely(iparent)) {
3124 ret = iparent->i_ino;
3125 if (!read_seqcount_retry(&dentry->d_seq, seq))
3126 return ret;
3127 }
3128 }
3129
3130 spin_lock(&dentry->d_lock);
3131 ret = dentry->d_parent->d_inode->i_ino;
3132 spin_unlock(&dentry->d_lock);
3133 return ret;
3134}
3135EXPORT_SYMBOL(d_parent_ino);
3136
1da177e4
LT
3137static __initdata unsigned long dhash_entries;
3138static int __init set_dhash_entries(char *str)
3139{
3140 if (!str)
3141 return 0;
3142 dhash_entries = simple_strtoul(str, &str, 0);
3143 return 1;
3144}
3145__setup("dhash_entries=", set_dhash_entries);
3146
3147static void __init dcache_init_early(void)
3148{
1da177e4
LT
3149 /* If hashes are distributed across NUMA nodes, defer
3150 * hash allocation until vmalloc space is available.
3151 */
3152 if (hashdist)
3153 return;
3154
3155 dentry_hashtable =
3156 alloc_large_system_hash("Dentry cache",
b07ad996 3157 sizeof(struct hlist_bl_head),
1da177e4
LT
3158 dhash_entries,
3159 13,
3d375d78 3160 HASH_EARLY | HASH_ZERO,
1da177e4 3161 &d_hash_shift,
b35d786b 3162 NULL,
31fe62b9 3163 0,
1da177e4 3164 0);
854d3e63 3165 d_hash_shift = 32 - d_hash_shift;
e7829855
LT
3166
3167 runtime_const_init(shift, d_hash_shift);
3168 runtime_const_init(ptr, dentry_hashtable);
1da177e4
LT
3169}
3170
74bf17cf 3171static void __init dcache_init(void)
1da177e4 3172{
3d375d78 3173 /*
1da177e4
LT
3174 * A constructor could be added for stable state like the lists,
3175 * but it is probably not worth it because of the cache nature
3d375d78 3176 * of the dcache.
1da177e4 3177 */
80344266 3178 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
c997d683 3179 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
80344266 3180 d_iname);
1da177e4
LT
3181
3182 /* Hash may have been set up in dcache_init_early */
3183 if (!hashdist)
3184 return;
3185
3186 dentry_hashtable =
3187 alloc_large_system_hash("Dentry cache",
b07ad996 3188 sizeof(struct hlist_bl_head),
1da177e4
LT
3189 dhash_entries,
3190 13,
3d375d78 3191 HASH_ZERO,
1da177e4 3192 &d_hash_shift,
b35d786b 3193 NULL,
31fe62b9 3194 0,
1da177e4 3195 0);
854d3e63 3196 d_hash_shift = 32 - d_hash_shift;
e7829855
LT
3197
3198 runtime_const_init(shift, d_hash_shift);
3199 runtime_const_init(ptr, dentry_hashtable);
1da177e4
LT
3200}
3201
3202/* SLAB cache for __getname() consumers */
68279f9c 3203struct kmem_cache *names_cachep __ro_after_init;
ec4f8605 3204EXPORT_SYMBOL(names_cachep);
1da177e4 3205
1da177e4
LT
3206void __init vfs_caches_init_early(void)
3207{
6916363f
SAS
3208 int i;
3209
3210 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3211 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3212
1da177e4
LT
3213 dcache_init_early();
3214 inode_init_early();
3215}
3216
4248b0da 3217void __init vfs_caches_init(void)
1da177e4 3218{
6a9b8820
DW
3219 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3220 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3221
74bf17cf
DC
3222 dcache_init();
3223 inode_init();
4248b0da
MG
3224 files_init();
3225 files_maxfiles_init();
74bf17cf 3226 mnt_init();
1da177e4
LT
3227 bdev_cache_init();
3228 chrdev_init();
3229}
This page took 1.911393 seconds and 4 git commands to generate.