]> Git Repo - linux.git/blame - fs/dcache.c
ocfs2: make several functions and variables static (and some const)
[linux.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
7a5cf791 17#include <linux/ratelimit.h>
1da177e4
LT
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/seqlock.h>
1da177e4 29#include <linux/bootmem.h>
ceb5bdc2
NP
30#include <linux/bit_spinlock.h>
31#include <linux/rculist_bl.h>
f6041567 32#include <linux/list_lru.h>
07f3f05c 33#include "internal.h"
b2dba1af 34#include "mount.h"
1da177e4 35
789680d1
NP
36/*
37 * Usage:
873feea0 38 * dcache->d_inode->i_lock protects:
946e51f2 39 * - i_dentry, d_u.d_alias, d_inode of aliases
ceb5bdc2
NP
40 * dcache_hash_bucket lock protects:
41 * - the dcache hash table
f1ee6162
N
42 * s_roots bl list spinlock protects:
43 * - the s_roots list (see __d_drop)
19156840 44 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
45 * - the dcache lru lists and counters
46 * d_lock protects:
47 * - d_flags
48 * - d_name
49 * - d_lru
b7ab39f6 50 * - d_count
da502956 51 * - d_unhashed()
2fd6b7f5
NP
52 * - d_parent and d_subdirs
53 * - childrens' d_child and d_parent
946e51f2 54 * - d_u.d_alias, d_inode
789680d1
NP
55 *
56 * Ordering:
873feea0 57 * dentry->d_inode->i_lock
b5c84bf6 58 * dentry->d_lock
19156840 59 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2 60 * dcache_hash_bucket lock
f1ee6162 61 * s_roots lock
789680d1 62 *
da502956
NP
63 * If there is an ancestor relationship:
64 * dentry->d_parent->...->d_parent->d_lock
65 * ...
66 * dentry->d_parent->d_lock
67 * dentry->d_lock
68 *
69 * If no ancestor relationship:
076515fc 70 * arbitrary, since it's serialized on rename_lock
789680d1 71 */
fa3536cc 72int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
73EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
74c3cbe3 75__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 76
949854d0 77EXPORT_SYMBOL(rename_lock);
1da177e4 78
e18b890b 79static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 80
cdf01226
DH
81const struct qstr empty_name = QSTR_INIT("", 0);
82EXPORT_SYMBOL(empty_name);
83const struct qstr slash_name = QSTR_INIT("/", 1);
84EXPORT_SYMBOL(slash_name);
85
1da177e4
LT
86/*
87 * This is the single most critical data structure when it comes
88 * to the dcache: the hashtable for lookups. Somebody should try
89 * to make this good - I've just made it work.
90 *
91 * This hash-function tries to avoid losing too many bits of hash
92 * information, yet avoid using a prime hash-size or similar.
93 */
1da177e4 94
fa3536cc 95static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 96
b07ad996 97static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 98
8387ff25 99static inline struct hlist_bl_head *d_hash(unsigned int hash)
ceb5bdc2 100{
854d3e63 101 return dentry_hashtable + (hash >> d_hash_shift);
ceb5bdc2
NP
102}
103
94bdd655
AV
104#define IN_LOOKUP_SHIFT 10
105static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 unsigned int hash)
109{
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112}
113
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3942c07c 120static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 121static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
122
123#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
124
125/*
126 * Here we resort to our own counters instead of using generic per-cpu counters
127 * for consistency with what the vfs inode code does. We are expected to harvest
128 * better code and performance by having our own specialized counters.
129 *
130 * Please note that the loop is done over all possible CPUs, not over all online
131 * CPUs. The reason for this is that we don't want to play games with CPUs going
132 * on and off. If one of them goes off, we will just keep their counters.
133 *
134 * glommer: See cffbc8a for details, and if you ever intend to change this,
135 * please update all vfs counters to match.
136 */
3942c07c 137static long get_nr_dentry(void)
3e880fb5
NP
138{
139 int i;
3942c07c 140 long sum = 0;
3e880fb5
NP
141 for_each_possible_cpu(i)
142 sum += per_cpu(nr_dentry, i);
143 return sum < 0 ? 0 : sum;
144}
145
62d36c77
DC
146static long get_nr_dentry_unused(void)
147{
148 int i;
149 long sum = 0;
150 for_each_possible_cpu(i)
151 sum += per_cpu(nr_dentry_unused, i);
152 return sum < 0 ? 0 : sum;
153}
154
1f7e0616 155int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
312d3ca8
CH
156 size_t *lenp, loff_t *ppos)
157{
3e880fb5 158 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 159 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
161}
162#endif
163
5483f18e
LT
164/*
165 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166 * The strings are both count bytes long, and count is non-zero.
167 */
e419b4cc
LT
168#ifdef CONFIG_DCACHE_WORD_ACCESS
169
170#include <asm/word-at-a-time.h>
171/*
172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173 * aligned allocation for this particular component. We don't
174 * strictly need the load_unaligned_zeropad() safety, but it
175 * doesn't hurt either.
176 *
177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178 * need the careful unaligned handling.
179 */
94753db5 180static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 181{
bfcfaa77 182 unsigned long a,b,mask;
bfcfaa77
LT
183
184 for (;;) {
bfe7aa6c 185 a = read_word_at_a_time(cs);
e419b4cc 186 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
187 if (tcount < sizeof(unsigned long))
188 break;
189 if (unlikely(a != b))
190 return 1;
191 cs += sizeof(unsigned long);
192 ct += sizeof(unsigned long);
193 tcount -= sizeof(unsigned long);
194 if (!tcount)
195 return 0;
196 }
a5c21dce 197 mask = bytemask_from_count(tcount);
bfcfaa77 198 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
199}
200
bfcfaa77 201#else
e419b4cc 202
94753db5 203static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 204{
5483f18e
LT
205 do {
206 if (*cs != *ct)
207 return 1;
208 cs++;
209 ct++;
210 tcount--;
211 } while (tcount);
212 return 0;
213}
214
e419b4cc
LT
215#endif
216
94753db5
LT
217static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218{
94753db5
LT
219 /*
220 * Be careful about RCU walk racing with rename:
506458ef 221 * use 'READ_ONCE' to fetch the name pointer.
94753db5
LT
222 *
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
230 *
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
234 */
506458ef 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
ae0a843c 236
6326c71f 237 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
238}
239
8d85b484
AV
240struct external_name {
241 union {
242 atomic_t count;
243 struct rcu_head head;
244 } u;
245 unsigned char name[];
246};
247
248static inline struct external_name *external_name(struct dentry *dentry)
249{
250 return container_of(dentry->d_name.name, struct external_name, name[0]);
251}
252
9c82ab9c 253static void __d_free(struct rcu_head *head)
1da177e4 254{
9c82ab9c
CH
255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
8d85b484
AV
257 kmem_cache_free(dentry_cache, dentry);
258}
259
f1782c9b
RG
260static void __d_free_external_name(struct rcu_head *head)
261{
262 struct external_name *name = container_of(head, struct external_name,
263 u.head);
264
265 mod_node_page_state(page_pgdat(virt_to_page(name)),
266 NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 -ksize(name));
268
269 kfree(name);
270}
271
8d85b484
AV
272static void __d_free_external(struct rcu_head *head)
273{
274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
f1782c9b
RG
275
276 __d_free_external_name(&external_name(dentry)->u.head);
277
278 kmem_cache_free(dentry_cache, dentry);
1da177e4
LT
279}
280
810bb172
AV
281static inline int dname_external(const struct dentry *dentry)
282{
283 return dentry->d_name.name != dentry->d_iname;
284}
285
49d31c2f
AV
286void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287{
288 spin_lock(&dentry->d_lock);
289 if (unlikely(dname_external(dentry))) {
290 struct external_name *p = external_name(dentry);
291 atomic_inc(&p->u.count);
292 spin_unlock(&dentry->d_lock);
293 name->name = p->name;
294 } else {
295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 spin_unlock(&dentry->d_lock);
297 name->name = name->inline_name;
298 }
299}
300EXPORT_SYMBOL(take_dentry_name_snapshot);
301
302void release_dentry_name_snapshot(struct name_snapshot *name)
303{
304 if (unlikely(name->name != name->inline_name)) {
305 struct external_name *p;
306 p = container_of(name->name, struct external_name, name[0]);
307 if (unlikely(atomic_dec_and_test(&p->u.count)))
f1782c9b 308 call_rcu(&p->u.head, __d_free_external_name);
49d31c2f
AV
309 }
310}
311EXPORT_SYMBOL(release_dentry_name_snapshot);
312
4bf46a27
DH
313static inline void __d_set_inode_and_type(struct dentry *dentry,
314 struct inode *inode,
315 unsigned type_flags)
316{
317 unsigned flags;
318
319 dentry->d_inode = inode;
4bf46a27
DH
320 flags = READ_ONCE(dentry->d_flags);
321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 flags |= type_flags;
323 WRITE_ONCE(dentry->d_flags, flags);
324}
325
4bf46a27
DH
326static inline void __d_clear_type_and_inode(struct dentry *dentry)
327{
328 unsigned flags = READ_ONCE(dentry->d_flags);
329
330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 WRITE_ONCE(dentry->d_flags, flags);
4bf46a27
DH
332 dentry->d_inode = NULL;
333}
334
b4f0354e
AV
335static void dentry_free(struct dentry *dentry)
336{
946e51f2 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
8d85b484
AV
338 if (unlikely(dname_external(dentry))) {
339 struct external_name *p = external_name(dentry);
340 if (likely(atomic_dec_and_test(&p->u.count))) {
341 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 return;
343 }
344 }
b4f0354e
AV
345 /* if dentry was never visible to RCU, immediate free is OK */
346 if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 __d_free(&dentry->d_u.d_rcu);
348 else
349 call_rcu(&dentry->d_u.d_rcu, __d_free);
350}
351
1da177e4
LT
352/*
353 * Release the dentry's inode, using the filesystem
550dce01 354 * d_iput() operation if defined.
31e6b01f
NP
355 */
356static void dentry_unlink_inode(struct dentry * dentry)
357 __releases(dentry->d_lock)
873feea0 358 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
359{
360 struct inode *inode = dentry->d_inode;
a528aca7 361
4c0d7cd5 362 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 363 __d_clear_type_and_inode(dentry);
946e51f2 364 hlist_del_init(&dentry->d_u.d_alias);
4c0d7cd5 365 raw_write_seqcount_end(&dentry->d_seq);
31e6b01f 366 spin_unlock(&dentry->d_lock);
873feea0 367 spin_unlock(&inode->i_lock);
31e6b01f
NP
368 if (!inode->i_nlink)
369 fsnotify_inoderemove(inode);
370 if (dentry->d_op && dentry->d_op->d_iput)
371 dentry->d_op->d_iput(dentry, inode);
372 else
373 iput(inode);
374}
375
89dc77bc
LT
376/*
377 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378 * is in use - which includes both the "real" per-superblock
379 * LRU list _and_ the DCACHE_SHRINK_LIST use.
380 *
381 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382 * on the shrink list (ie not on the superblock LRU list).
383 *
384 * The per-cpu "nr_dentry_unused" counters are updated with
385 * the DCACHE_LRU_LIST bit.
386 *
387 * These helper functions make sure we always follow the
388 * rules. d_lock must be held by the caller.
389 */
390#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
391static void d_lru_add(struct dentry *dentry)
392{
393 D_FLAG_VERIFY(dentry, 0);
394 dentry->d_flags |= DCACHE_LRU_LIST;
395 this_cpu_inc(nr_dentry_unused);
396 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397}
398
399static void d_lru_del(struct dentry *dentry)
400{
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405}
406
407static void d_shrink_del(struct dentry *dentry)
408{
409 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 list_del_init(&dentry->d_lru);
411 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 this_cpu_dec(nr_dentry_unused);
413}
414
415static void d_shrink_add(struct dentry *dentry, struct list_head *list)
416{
417 D_FLAG_VERIFY(dentry, 0);
418 list_add(&dentry->d_lru, list);
419 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
420 this_cpu_inc(nr_dentry_unused);
421}
422
423/*
424 * These can only be called under the global LRU lock, ie during the
425 * callback for freeing the LRU list. "isolate" removes it from the
426 * LRU lists entirely, while shrink_move moves it to the indicated
427 * private list.
428 */
3f97b163 429static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
89dc77bc
LT
430{
431 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432 dentry->d_flags &= ~DCACHE_LRU_LIST;
433 this_cpu_dec(nr_dentry_unused);
3f97b163 434 list_lru_isolate(lru, &dentry->d_lru);
89dc77bc
LT
435}
436
3f97b163
VD
437static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
438 struct list_head *list)
89dc77bc
LT
439{
440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 dentry->d_flags |= DCACHE_SHRINK_LIST;
3f97b163 442 list_lru_isolate_move(lru, &dentry->d_lru, list);
89dc77bc
LT
443}
444
789680d1
NP
445/**
446 * d_drop - drop a dentry
447 * @dentry: dentry to drop
448 *
449 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
450 * be found through a VFS lookup any more. Note that this is different from
451 * deleting the dentry - d_delete will try to mark the dentry negative if
452 * possible, giving a successful _negative_ lookup, while d_drop will
453 * just make the cache lookup fail.
454 *
455 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
456 * reason (NFS timeouts or autofs deletes).
457 *
61647823
N
458 * __d_drop requires dentry->d_lock
459 * ___d_drop doesn't mark dentry as "unhashed"
460 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
789680d1 461 */
61647823 462static void ___d_drop(struct dentry *dentry)
789680d1 463{
0632a9ac
AV
464 struct hlist_bl_head *b;
465 /*
466 * Hashed dentries are normally on the dentry hashtable,
467 * with the exception of those newly allocated by
468 * d_obtain_root, which are always IS_ROOT:
469 */
470 if (unlikely(IS_ROOT(dentry)))
471 b = &dentry->d_sb->s_roots;
472 else
473 b = d_hash(dentry->d_name.hash);
b61625d2 474
0632a9ac
AV
475 hlist_bl_lock(b);
476 __hlist_bl_del(&dentry->d_hash);
477 hlist_bl_unlock(b);
789680d1 478}
61647823
N
479
480void __d_drop(struct dentry *dentry)
481{
0632a9ac
AV
482 if (!d_unhashed(dentry)) {
483 ___d_drop(dentry);
484 dentry->d_hash.pprev = NULL;
485 write_seqcount_invalidate(&dentry->d_seq);
486 }
61647823 487}
789680d1
NP
488EXPORT_SYMBOL(__d_drop);
489
490void d_drop(struct dentry *dentry)
491{
789680d1
NP
492 spin_lock(&dentry->d_lock);
493 __d_drop(dentry);
494 spin_unlock(&dentry->d_lock);
789680d1
NP
495}
496EXPORT_SYMBOL(d_drop);
497
ba65dc5e
AV
498static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
499{
500 struct dentry *next;
501 /*
502 * Inform d_walk() and shrink_dentry_list() that we are no longer
503 * attached to the dentry tree
504 */
505 dentry->d_flags |= DCACHE_DENTRY_KILLED;
506 if (unlikely(list_empty(&dentry->d_child)))
507 return;
508 __list_del_entry(&dentry->d_child);
509 /*
510 * Cursors can move around the list of children. While we'd been
511 * a normal list member, it didn't matter - ->d_child.next would've
512 * been updated. However, from now on it won't be and for the
513 * things like d_walk() it might end up with a nasty surprise.
514 * Normally d_walk() doesn't care about cursors moving around -
515 * ->d_lock on parent prevents that and since a cursor has no children
516 * of its own, we get through it without ever unlocking the parent.
517 * There is one exception, though - if we ascend from a child that
518 * gets killed as soon as we unlock it, the next sibling is found
519 * using the value left in its ->d_child.next. And if _that_
520 * pointed to a cursor, and cursor got moved (e.g. by lseek())
521 * before d_walk() regains parent->d_lock, we'll end up skipping
522 * everything the cursor had been moved past.
523 *
524 * Solution: make sure that the pointer left behind in ->d_child.next
525 * points to something that won't be moving around. I.e. skip the
526 * cursors.
527 */
528 while (dentry->d_child.next != &parent->d_subdirs) {
529 next = list_entry(dentry->d_child.next, struct dentry, d_child);
530 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
531 break;
532 dentry->d_child.next = next->d_child.next;
533 }
534}
535
e55fd011 536static void __dentry_kill(struct dentry *dentry)
77812a1e 537{
41edf278
AV
538 struct dentry *parent = NULL;
539 bool can_free = true;
41edf278 540 if (!IS_ROOT(dentry))
77812a1e 541 parent = dentry->d_parent;
31e6b01f 542
0d98439e
LT
543 /*
544 * The dentry is now unrecoverably dead to the world.
545 */
546 lockref_mark_dead(&dentry->d_lockref);
547
f0023bc6 548 /*
f0023bc6
SW
549 * inform the fs via d_prune that this dentry is about to be
550 * unhashed and destroyed.
551 */
29266201 552 if (dentry->d_flags & DCACHE_OP_PRUNE)
61572bb1
YZ
553 dentry->d_op->d_prune(dentry);
554
01b60351
AV
555 if (dentry->d_flags & DCACHE_LRU_LIST) {
556 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
557 d_lru_del(dentry);
01b60351 558 }
77812a1e
NP
559 /* if it was on the hash then remove it */
560 __d_drop(dentry);
ba65dc5e 561 dentry_unlist(dentry, parent);
03b3b889
AV
562 if (parent)
563 spin_unlock(&parent->d_lock);
550dce01
AV
564 if (dentry->d_inode)
565 dentry_unlink_inode(dentry);
566 else
567 spin_unlock(&dentry->d_lock);
03b3b889
AV
568 this_cpu_dec(nr_dentry);
569 if (dentry->d_op && dentry->d_op->d_release)
570 dentry->d_op->d_release(dentry);
571
41edf278
AV
572 spin_lock(&dentry->d_lock);
573 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
574 dentry->d_flags |= DCACHE_MAY_FREE;
575 can_free = false;
576 }
577 spin_unlock(&dentry->d_lock);
41edf278
AV
578 if (likely(can_free))
579 dentry_free(dentry);
9c5f1d30 580 cond_resched();
e55fd011
AV
581}
582
8b987a46 583static struct dentry *__lock_parent(struct dentry *dentry)
046b961b 584{
8b987a46 585 struct dentry *parent;
046b961b 586 rcu_read_lock();
c2338f2d 587 spin_unlock(&dentry->d_lock);
046b961b 588again:
66702eb5 589 parent = READ_ONCE(dentry->d_parent);
046b961b
AV
590 spin_lock(&parent->d_lock);
591 /*
592 * We can't blindly lock dentry until we are sure
593 * that we won't violate the locking order.
594 * Any changes of dentry->d_parent must have
595 * been done with parent->d_lock held, so
596 * spin_lock() above is enough of a barrier
597 * for checking if it's still our child.
598 */
599 if (unlikely(parent != dentry->d_parent)) {
600 spin_unlock(&parent->d_lock);
601 goto again;
602 }
65d8eb5a
AV
603 rcu_read_unlock();
604 if (parent != dentry)
9f12600f 605 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
65d8eb5a 606 else
046b961b
AV
607 parent = NULL;
608 return parent;
609}
610
8b987a46
AV
611static inline struct dentry *lock_parent(struct dentry *dentry)
612{
613 struct dentry *parent = dentry->d_parent;
614 if (IS_ROOT(dentry))
615 return NULL;
616 if (likely(spin_trylock(&parent->d_lock)))
617 return parent;
618 return __lock_parent(dentry);
619}
620
a338579f
AV
621static inline bool retain_dentry(struct dentry *dentry)
622{
623 WARN_ON(d_in_lookup(dentry));
624
625 /* Unreachable? Get rid of it */
626 if (unlikely(d_unhashed(dentry)))
627 return false;
628
629 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
630 return false;
631
632 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
633 if (dentry->d_op->d_delete(dentry))
634 return false;
635 }
62d9956c
AV
636 /* retain; LRU fodder */
637 dentry->d_lockref.count--;
638 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
639 d_lru_add(dentry);
640 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
641 dentry->d_flags |= DCACHE_REFERENCED;
a338579f
AV
642 return true;
643}
644
c1d0c1a2
JO
645/*
646 * Finish off a dentry we've decided to kill.
647 * dentry->d_lock must be held, returns with it unlocked.
648 * Returns dentry requiring refcount drop, or NULL if we're done.
649 */
650static struct dentry *dentry_kill(struct dentry *dentry)
651 __releases(dentry->d_lock)
652{
653 struct inode *inode = dentry->d_inode;
654 struct dentry *parent = NULL;
655
656 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
f657a666 657 goto slow_positive;
c1d0c1a2
JO
658
659 if (!IS_ROOT(dentry)) {
660 parent = dentry->d_parent;
661 if (unlikely(!spin_trylock(&parent->d_lock))) {
f657a666
AV
662 parent = __lock_parent(dentry);
663 if (likely(inode || !dentry->d_inode))
664 goto got_locks;
665 /* negative that became positive */
666 if (parent)
667 spin_unlock(&parent->d_lock);
668 inode = dentry->d_inode;
669 goto slow_positive;
c1d0c1a2
JO
670 }
671 }
c1d0c1a2
JO
672 __dentry_kill(dentry);
673 return parent;
674
f657a666
AV
675slow_positive:
676 spin_unlock(&dentry->d_lock);
677 spin_lock(&inode->i_lock);
678 spin_lock(&dentry->d_lock);
679 parent = lock_parent(dentry);
680got_locks:
681 if (unlikely(dentry->d_lockref.count != 1)) {
682 dentry->d_lockref.count--;
683 } else if (likely(!retain_dentry(dentry))) {
684 __dentry_kill(dentry);
685 return parent;
686 }
687 /* we are keeping it, after all */
688 if (inode)
689 spin_unlock(&inode->i_lock);
690 if (parent)
691 spin_unlock(&parent->d_lock);
c1d0c1a2 692 spin_unlock(&dentry->d_lock);
f657a666 693 return NULL;
c1d0c1a2
JO
694}
695
360f5479
LT
696/*
697 * Try to do a lockless dput(), and return whether that was successful.
698 *
699 * If unsuccessful, we return false, having already taken the dentry lock.
700 *
701 * The caller needs to hold the RCU read lock, so that the dentry is
702 * guaranteed to stay around even if the refcount goes down to zero!
703 */
704static inline bool fast_dput(struct dentry *dentry)
705{
706 int ret;
707 unsigned int d_flags;
708
709 /*
710 * If we have a d_op->d_delete() operation, we sould not
75a6f82a 711 * let the dentry count go to zero, so use "put_or_lock".
360f5479
LT
712 */
713 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
714 return lockref_put_or_lock(&dentry->d_lockref);
715
716 /*
717 * .. otherwise, we can try to just decrement the
718 * lockref optimistically.
719 */
720 ret = lockref_put_return(&dentry->d_lockref);
721
722 /*
723 * If the lockref_put_return() failed due to the lock being held
724 * by somebody else, the fast path has failed. We will need to
725 * get the lock, and then check the count again.
726 */
727 if (unlikely(ret < 0)) {
728 spin_lock(&dentry->d_lock);
729 if (dentry->d_lockref.count > 1) {
730 dentry->d_lockref.count--;
731 spin_unlock(&dentry->d_lock);
7964410f 732 return true;
360f5479 733 }
7964410f 734 return false;
360f5479
LT
735 }
736
737 /*
738 * If we weren't the last ref, we're done.
739 */
740 if (ret)
7964410f 741 return true;
360f5479
LT
742
743 /*
744 * Careful, careful. The reference count went down
745 * to zero, but we don't hold the dentry lock, so
746 * somebody else could get it again, and do another
747 * dput(), and we need to not race with that.
748 *
749 * However, there is a very special and common case
750 * where we don't care, because there is nothing to
751 * do: the dentry is still hashed, it does not have
752 * a 'delete' op, and it's referenced and already on
753 * the LRU list.
754 *
755 * NOTE! Since we aren't locked, these values are
756 * not "stable". However, it is sufficient that at
757 * some point after we dropped the reference the
758 * dentry was hashed and the flags had the proper
759 * value. Other dentry users may have re-gotten
760 * a reference to the dentry and change that, but
761 * our work is done - we can leave the dentry
762 * around with a zero refcount.
763 */
764 smp_rmb();
66702eb5 765 d_flags = READ_ONCE(dentry->d_flags);
75a6f82a 766 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
360f5479
LT
767
768 /* Nothing to do? Dropping the reference was all we needed? */
769 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
7964410f 770 return true;
360f5479
LT
771
772 /*
773 * Not the fast normal case? Get the lock. We've already decremented
774 * the refcount, but we'll need to re-check the situation after
775 * getting the lock.
776 */
777 spin_lock(&dentry->d_lock);
778
779 /*
780 * Did somebody else grab a reference to it in the meantime, and
781 * we're no longer the last user after all? Alternatively, somebody
782 * else could have killed it and marked it dead. Either way, we
783 * don't need to do anything else.
784 */
785 if (dentry->d_lockref.count) {
786 spin_unlock(&dentry->d_lock);
7964410f 787 return true;
360f5479
LT
788 }
789
790 /*
791 * Re-get the reference we optimistically dropped. We hold the
792 * lock, and we just tested that it was zero, so we can just
793 * set it to 1.
794 */
795 dentry->d_lockref.count = 1;
7964410f 796 return false;
360f5479
LT
797}
798
799
1da177e4
LT
800/*
801 * This is dput
802 *
803 * This is complicated by the fact that we do not want to put
804 * dentries that are no longer on any hash chain on the unused
805 * list: we'd much rather just get rid of them immediately.
806 *
807 * However, that implies that we have to traverse the dentry
808 * tree upwards to the parents which might _also_ now be
809 * scheduled for deletion (it may have been only waiting for
810 * its last child to go away).
811 *
812 * This tail recursion is done by hand as we don't want to depend
813 * on the compiler to always get this right (gcc generally doesn't).
814 * Real recursion would eat up our stack space.
815 */
816
817/*
818 * dput - release a dentry
819 * @dentry: dentry to release
820 *
821 * Release a dentry. This will drop the usage count and if appropriate
822 * call the dentry unlink method as well as removing it from the queues and
823 * releasing its resources. If the parent dentries were scheduled for release
824 * they too may now get deleted.
1da177e4 825 */
1da177e4
LT
826void dput(struct dentry *dentry)
827{
1088a640
AV
828 while (dentry) {
829 might_sleep();
1da177e4 830
1088a640
AV
831 rcu_read_lock();
832 if (likely(fast_dput(dentry))) {
833 rcu_read_unlock();
834 return;
835 }
47be6184 836
1088a640 837 /* Slow case: now with the dentry lock held */
360f5479 838 rcu_read_unlock();
360f5479 839
1088a640
AV
840 if (likely(retain_dentry(dentry))) {
841 spin_unlock(&dentry->d_lock);
842 return;
843 }
265ac902 844
1088a640 845 dentry = dentry_kill(dentry);
47be6184 846 }
1da177e4 847}
ec4f8605 848EXPORT_SYMBOL(dput);
1da177e4 849
1da177e4 850
b5c84bf6 851/* This must be called with d_lock held */
dc0474be 852static inline void __dget_dlock(struct dentry *dentry)
23044507 853{
98474236 854 dentry->d_lockref.count++;
23044507
NP
855}
856
dc0474be 857static inline void __dget(struct dentry *dentry)
1da177e4 858{
98474236 859 lockref_get(&dentry->d_lockref);
1da177e4
LT
860}
861
b7ab39f6
NP
862struct dentry *dget_parent(struct dentry *dentry)
863{
df3d0bbc 864 int gotref;
b7ab39f6
NP
865 struct dentry *ret;
866
df3d0bbc
WL
867 /*
868 * Do optimistic parent lookup without any
869 * locking.
870 */
871 rcu_read_lock();
66702eb5 872 ret = READ_ONCE(dentry->d_parent);
df3d0bbc
WL
873 gotref = lockref_get_not_zero(&ret->d_lockref);
874 rcu_read_unlock();
875 if (likely(gotref)) {
66702eb5 876 if (likely(ret == READ_ONCE(dentry->d_parent)))
df3d0bbc
WL
877 return ret;
878 dput(ret);
879 }
880
b7ab39f6 881repeat:
a734eb45
NP
882 /*
883 * Don't need rcu_dereference because we re-check it was correct under
884 * the lock.
885 */
886 rcu_read_lock();
b7ab39f6 887 ret = dentry->d_parent;
a734eb45
NP
888 spin_lock(&ret->d_lock);
889 if (unlikely(ret != dentry->d_parent)) {
890 spin_unlock(&ret->d_lock);
891 rcu_read_unlock();
b7ab39f6
NP
892 goto repeat;
893 }
a734eb45 894 rcu_read_unlock();
98474236
WL
895 BUG_ON(!ret->d_lockref.count);
896 ret->d_lockref.count++;
b7ab39f6 897 spin_unlock(&ret->d_lock);
b7ab39f6
NP
898 return ret;
899}
900EXPORT_SYMBOL(dget_parent);
901
61fec493
AV
902static struct dentry * __d_find_any_alias(struct inode *inode)
903{
904 struct dentry *alias;
905
906 if (hlist_empty(&inode->i_dentry))
907 return NULL;
908 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
909 __dget(alias);
910 return alias;
911}
912
913/**
914 * d_find_any_alias - find any alias for a given inode
915 * @inode: inode to find an alias for
916 *
917 * If any aliases exist for the given inode, take and return a
918 * reference for one of them. If no aliases exist, return %NULL.
919 */
920struct dentry *d_find_any_alias(struct inode *inode)
921{
922 struct dentry *de;
923
924 spin_lock(&inode->i_lock);
925 de = __d_find_any_alias(inode);
926 spin_unlock(&inode->i_lock);
927 return de;
928}
929EXPORT_SYMBOL(d_find_any_alias);
930
1da177e4
LT
931/**
932 * d_find_alias - grab a hashed alias of inode
933 * @inode: inode in question
1da177e4
LT
934 *
935 * If inode has a hashed alias, or is a directory and has any alias,
936 * acquire the reference to alias and return it. Otherwise return NULL.
937 * Notice that if inode is a directory there can be only one alias and
938 * it can be unhashed only if it has no children, or if it is the root
3ccb354d
EB
939 * of a filesystem, or if the directory was renamed and d_revalidate
940 * was the first vfs operation to notice.
1da177e4 941 *
21c0d8fd 942 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
52ed46f0 943 * any other hashed alias over that one.
1da177e4 944 */
52ed46f0 945static struct dentry *__d_find_alias(struct inode *inode)
1da177e4 946{
61fec493
AV
947 struct dentry *alias;
948
949 if (S_ISDIR(inode->i_mode))
950 return __d_find_any_alias(inode);
1da177e4 951
946e51f2 952 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
da502956 953 spin_lock(&alias->d_lock);
61fec493 954 if (!d_unhashed(alias)) {
8d80d7da
BF
955 __dget_dlock(alias);
956 spin_unlock(&alias->d_lock);
957 return alias;
1da177e4 958 }
da502956 959 spin_unlock(&alias->d_lock);
1da177e4 960 }
da502956 961 return NULL;
1da177e4
LT
962}
963
da502956 964struct dentry *d_find_alias(struct inode *inode)
1da177e4 965{
214fda1f
DH
966 struct dentry *de = NULL;
967
b3d9b7a3 968 if (!hlist_empty(&inode->i_dentry)) {
873feea0 969 spin_lock(&inode->i_lock);
52ed46f0 970 de = __d_find_alias(inode);
873feea0 971 spin_unlock(&inode->i_lock);
214fda1f 972 }
1da177e4
LT
973 return de;
974}
ec4f8605 975EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
976
977/*
978 * Try to kill dentries associated with this inode.
979 * WARNING: you must own a reference to inode.
980 */
981void d_prune_aliases(struct inode *inode)
982{
0cdca3f9 983 struct dentry *dentry;
1da177e4 984restart:
873feea0 985 spin_lock(&inode->i_lock);
946e51f2 986 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1da177e4 987 spin_lock(&dentry->d_lock);
98474236 988 if (!dentry->d_lockref.count) {
29355c39
AV
989 struct dentry *parent = lock_parent(dentry);
990 if (likely(!dentry->d_lockref.count)) {
991 __dentry_kill(dentry);
4a7795d3 992 dput(parent);
29355c39
AV
993 goto restart;
994 }
995 if (parent)
996 spin_unlock(&parent->d_lock);
1da177e4
LT
997 }
998 spin_unlock(&dentry->d_lock);
999 }
873feea0 1000 spin_unlock(&inode->i_lock);
1da177e4 1001}
ec4f8605 1002EXPORT_SYMBOL(d_prune_aliases);
1da177e4 1003
3b3f09f4
AV
1004/*
1005 * Lock a dentry from shrink list.
8f04da2a
JO
1006 * Called under rcu_read_lock() and dentry->d_lock; the former
1007 * guarantees that nothing we access will be freed under us.
3b3f09f4 1008 * Note that dentry is *not* protected from concurrent dentry_kill(),
8f04da2a
JO
1009 * d_delete(), etc.
1010 *
3b3f09f4
AV
1011 * Return false if dentry has been disrupted or grabbed, leaving
1012 * the caller to kick it off-list. Otherwise, return true and have
1013 * that dentry's inode and parent both locked.
1014 */
1015static bool shrink_lock_dentry(struct dentry *dentry)
1da177e4 1016{
3b3f09f4
AV
1017 struct inode *inode;
1018 struct dentry *parent;
da3bbdd4 1019
3b3f09f4
AV
1020 if (dentry->d_lockref.count)
1021 return false;
1022
1023 inode = dentry->d_inode;
1024 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
3b3f09f4
AV
1025 spin_unlock(&dentry->d_lock);
1026 spin_lock(&inode->i_lock);
ec33679d 1027 spin_lock(&dentry->d_lock);
3b3f09f4
AV
1028 if (unlikely(dentry->d_lockref.count))
1029 goto out;
1030 /* changed inode means that somebody had grabbed it */
1031 if (unlikely(inode != dentry->d_inode))
1032 goto out;
3b3f09f4 1033 }
046b961b 1034
3b3f09f4
AV
1035 parent = dentry->d_parent;
1036 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1037 return true;
dd1f6b2e 1038
3b3f09f4 1039 spin_unlock(&dentry->d_lock);
3b3f09f4
AV
1040 spin_lock(&parent->d_lock);
1041 if (unlikely(parent != dentry->d_parent)) {
1042 spin_unlock(&parent->d_lock);
1043 spin_lock(&dentry->d_lock);
1044 goto out;
1045 }
1046 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
8f04da2a 1047 if (likely(!dentry->d_lockref.count))
3b3f09f4 1048 return true;
3b3f09f4
AV
1049 spin_unlock(&parent->d_lock);
1050out:
1051 if (inode)
1052 spin_unlock(&inode->i_lock);
3b3f09f4
AV
1053 return false;
1054}
77812a1e 1055
3b3f09f4
AV
1056static void shrink_dentry_list(struct list_head *list)
1057{
1058 while (!list_empty(list)) {
1059 struct dentry *dentry, *parent;
64fd72e0 1060
3b3f09f4
AV
1061 dentry = list_entry(list->prev, struct dentry, d_lru);
1062 spin_lock(&dentry->d_lock);
8f04da2a 1063 rcu_read_lock();
3b3f09f4
AV
1064 if (!shrink_lock_dentry(dentry)) {
1065 bool can_free = false;
8f04da2a 1066 rcu_read_unlock();
3b3f09f4
AV
1067 d_shrink_del(dentry);
1068 if (dentry->d_lockref.count < 0)
1069 can_free = dentry->d_flags & DCACHE_MAY_FREE;
64fd72e0
AV
1070 spin_unlock(&dentry->d_lock);
1071 if (can_free)
1072 dentry_free(dentry);
1073 continue;
1074 }
8f04da2a 1075 rcu_read_unlock();
3b3f09f4
AV
1076 d_shrink_del(dentry);
1077 parent = dentry->d_parent;
ff2fde99 1078 __dentry_kill(dentry);
3b3f09f4
AV
1079 if (parent == dentry)
1080 continue;
5c47e6d0
AV
1081 /*
1082 * We need to prune ancestors too. This is necessary to prevent
1083 * quadratic behavior of shrink_dcache_parent(), but is also
1084 * expected to be beneficial in reducing dentry cache
1085 * fragmentation.
1086 */
1087 dentry = parent;
8f04da2a
JO
1088 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1089 dentry = dentry_kill(dentry);
da3bbdd4 1090 }
3049cfe2
CH
1091}
1092
3f97b163
VD
1093static enum lru_status dentry_lru_isolate(struct list_head *item,
1094 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
f6041567
DC
1095{
1096 struct list_head *freeable = arg;
1097 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1098
1099
1100 /*
1101 * we are inverting the lru lock/dentry->d_lock here,
1102 * so use a trylock. If we fail to get the lock, just skip
1103 * it
1104 */
1105 if (!spin_trylock(&dentry->d_lock))
1106 return LRU_SKIP;
1107
1108 /*
1109 * Referenced dentries are still in use. If they have active
1110 * counts, just remove them from the LRU. Otherwise give them
1111 * another pass through the LRU.
1112 */
1113 if (dentry->d_lockref.count) {
3f97b163 1114 d_lru_isolate(lru, dentry);
f6041567
DC
1115 spin_unlock(&dentry->d_lock);
1116 return LRU_REMOVED;
1117 }
1118
1119 if (dentry->d_flags & DCACHE_REFERENCED) {
1120 dentry->d_flags &= ~DCACHE_REFERENCED;
1121 spin_unlock(&dentry->d_lock);
1122
1123 /*
1124 * The list move itself will be made by the common LRU code. At
1125 * this point, we've dropped the dentry->d_lock but keep the
1126 * lru lock. This is safe to do, since every list movement is
1127 * protected by the lru lock even if both locks are held.
1128 *
1129 * This is guaranteed by the fact that all LRU management
1130 * functions are intermediated by the LRU API calls like
1131 * list_lru_add and list_lru_del. List movement in this file
1132 * only ever occur through this functions or through callbacks
1133 * like this one, that are called from the LRU API.
1134 *
1135 * The only exceptions to this are functions like
1136 * shrink_dentry_list, and code that first checks for the
1137 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1138 * operating only with stack provided lists after they are
1139 * properly isolated from the main list. It is thus, always a
1140 * local access.
1141 */
1142 return LRU_ROTATE;
1143 }
1144
3f97b163 1145 d_lru_shrink_move(lru, dentry, freeable);
f6041567
DC
1146 spin_unlock(&dentry->d_lock);
1147
1148 return LRU_REMOVED;
1149}
1150
3049cfe2 1151/**
b48f03b3
DC
1152 * prune_dcache_sb - shrink the dcache
1153 * @sb: superblock
503c358c 1154 * @sc: shrink control, passed to list_lru_shrink_walk()
b48f03b3 1155 *
503c358c
VD
1156 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1157 * is done when we need more memory and called from the superblock shrinker
b48f03b3 1158 * function.
3049cfe2 1159 *
b48f03b3
DC
1160 * This function may fail to free any resources if all the dentries are in
1161 * use.
3049cfe2 1162 */
503c358c 1163long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
3049cfe2 1164{
f6041567
DC
1165 LIST_HEAD(dispose);
1166 long freed;
3049cfe2 1167
503c358c
VD
1168 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1169 dentry_lru_isolate, &dispose);
f6041567 1170 shrink_dentry_list(&dispose);
0a234c6d 1171 return freed;
da3bbdd4 1172}
23044507 1173
4e717f5c 1174static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
3f97b163 1175 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
dd1f6b2e 1176{
4e717f5c
GC
1177 struct list_head *freeable = arg;
1178 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 1179
4e717f5c
GC
1180 /*
1181 * we are inverting the lru lock/dentry->d_lock here,
1182 * so use a trylock. If we fail to get the lock, just skip
1183 * it
1184 */
1185 if (!spin_trylock(&dentry->d_lock))
1186 return LRU_SKIP;
1187
3f97b163 1188 d_lru_shrink_move(lru, dentry, freeable);
4e717f5c 1189 spin_unlock(&dentry->d_lock);
ec33679d 1190
4e717f5c 1191 return LRU_REMOVED;
da3bbdd4
KM
1192}
1193
4e717f5c 1194
1da177e4
LT
1195/**
1196 * shrink_dcache_sb - shrink dcache for a superblock
1197 * @sb: superblock
1198 *
3049cfe2
CH
1199 * Shrink the dcache for the specified super block. This is used to free
1200 * the dcache before unmounting a file system.
1da177e4 1201 */
3049cfe2 1202void shrink_dcache_sb(struct super_block *sb)
1da177e4 1203{
4e717f5c
GC
1204 long freed;
1205
1206 do {
1207 LIST_HEAD(dispose);
1208
1209 freed = list_lru_walk(&sb->s_dentry_lru,
b17c070f 1210 dentry_lru_isolate_shrink, &dispose, 1024);
3049cfe2 1211
4e717f5c
GC
1212 this_cpu_sub(nr_dentry_unused, freed);
1213 shrink_dentry_list(&dispose);
b17c070f 1214 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1da177e4 1215}
ec4f8605 1216EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 1217
db14fc3a
MS
1218/**
1219 * enum d_walk_ret - action to talke during tree walk
1220 * @D_WALK_CONTINUE: contrinue walk
1221 * @D_WALK_QUIT: quit walk
1222 * @D_WALK_NORETRY: quit when retry is needed
1223 * @D_WALK_SKIP: skip this dentry and its children
1224 */
1225enum d_walk_ret {
1226 D_WALK_CONTINUE,
1227 D_WALK_QUIT,
1228 D_WALK_NORETRY,
1229 D_WALK_SKIP,
1230};
c826cb7d 1231
1da177e4 1232/**
db14fc3a
MS
1233 * d_walk - walk the dentry tree
1234 * @parent: start of walk
1235 * @data: data passed to @enter() and @finish()
1236 * @enter: callback when first entering the dentry
1da177e4 1237 *
3a8e3611 1238 * The @enter() callbacks are called with d_lock held.
1da177e4 1239 */
db14fc3a 1240static void d_walk(struct dentry *parent, void *data,
3a8e3611 1241 enum d_walk_ret (*enter)(void *, struct dentry *))
1da177e4 1242{
949854d0 1243 struct dentry *this_parent;
1da177e4 1244 struct list_head *next;
48f5ec21 1245 unsigned seq = 0;
db14fc3a
MS
1246 enum d_walk_ret ret;
1247 bool retry = true;
949854d0 1248
58db63d0 1249again:
48f5ec21 1250 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1251 this_parent = parent;
2fd6b7f5 1252 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1253
1254 ret = enter(data, this_parent);
1255 switch (ret) {
1256 case D_WALK_CONTINUE:
1257 break;
1258 case D_WALK_QUIT:
1259 case D_WALK_SKIP:
1260 goto out_unlock;
1261 case D_WALK_NORETRY:
1262 retry = false;
1263 break;
1264 }
1da177e4
LT
1265repeat:
1266 next = this_parent->d_subdirs.next;
1267resume:
1268 while (next != &this_parent->d_subdirs) {
1269 struct list_head *tmp = next;
946e51f2 1270 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1da177e4 1271 next = tmp->next;
2fd6b7f5 1272
ba65dc5e
AV
1273 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1274 continue;
1275
2fd6b7f5 1276 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1277
1278 ret = enter(data, dentry);
1279 switch (ret) {
1280 case D_WALK_CONTINUE:
1281 break;
1282 case D_WALK_QUIT:
2fd6b7f5 1283 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1284 goto out_unlock;
1285 case D_WALK_NORETRY:
1286 retry = false;
1287 break;
1288 case D_WALK_SKIP:
1289 spin_unlock(&dentry->d_lock);
1290 continue;
2fd6b7f5 1291 }
db14fc3a 1292
1da177e4 1293 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1294 spin_unlock(&this_parent->d_lock);
1295 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1296 this_parent = dentry;
2fd6b7f5 1297 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1298 goto repeat;
1299 }
2fd6b7f5 1300 spin_unlock(&dentry->d_lock);
1da177e4
LT
1301 }
1302 /*
1303 * All done at this level ... ascend and resume the search.
1304 */
ca5358ef
AV
1305 rcu_read_lock();
1306ascend:
1da177e4 1307 if (this_parent != parent) {
c826cb7d 1308 struct dentry *child = this_parent;
31dec132
AV
1309 this_parent = child->d_parent;
1310
31dec132
AV
1311 spin_unlock(&child->d_lock);
1312 spin_lock(&this_parent->d_lock);
1313
ca5358ef
AV
1314 /* might go back up the wrong parent if we have had a rename. */
1315 if (need_seqretry(&rename_lock, seq))
949854d0 1316 goto rename_retry;
2159184e
AV
1317 /* go into the first sibling still alive */
1318 do {
1319 next = child->d_child.next;
ca5358ef
AV
1320 if (next == &this_parent->d_subdirs)
1321 goto ascend;
1322 child = list_entry(next, struct dentry, d_child);
2159184e 1323 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
31dec132 1324 rcu_read_unlock();
1da177e4
LT
1325 goto resume;
1326 }
ca5358ef 1327 if (need_seqretry(&rename_lock, seq))
949854d0 1328 goto rename_retry;
ca5358ef 1329 rcu_read_unlock();
db14fc3a
MS
1330
1331out_unlock:
1332 spin_unlock(&this_parent->d_lock);
48f5ec21 1333 done_seqretry(&rename_lock, seq);
db14fc3a 1334 return;
58db63d0
NP
1335
1336rename_retry:
ca5358ef
AV
1337 spin_unlock(&this_parent->d_lock);
1338 rcu_read_unlock();
1339 BUG_ON(seq & 1);
db14fc3a
MS
1340 if (!retry)
1341 return;
48f5ec21 1342 seq = 1;
58db63d0 1343 goto again;
1da177e4 1344}
db14fc3a 1345
01619491
IK
1346struct check_mount {
1347 struct vfsmount *mnt;
1348 unsigned int mounted;
1349};
1350
1351static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352{
1353 struct check_mount *info = data;
1354 struct path path = { .mnt = info->mnt, .dentry = dentry };
1355
1356 if (likely(!d_mountpoint(dentry)))
1357 return D_WALK_CONTINUE;
1358 if (__path_is_mountpoint(&path)) {
1359 info->mounted = 1;
1360 return D_WALK_QUIT;
1361 }
1362 return D_WALK_CONTINUE;
1363}
1364
1365/**
1366 * path_has_submounts - check for mounts over a dentry in the
1367 * current namespace.
1368 * @parent: path to check.
1369 *
1370 * Return true if the parent or its subdirectories contain
1371 * a mount point in the current namespace.
1372 */
1373int path_has_submounts(const struct path *parent)
1374{
1375 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376
1377 read_seqlock_excl(&mount_lock);
3a8e3611 1378 d_walk(parent->dentry, &data, path_check_mount);
01619491
IK
1379 read_sequnlock_excl(&mount_lock);
1380
1381 return data.mounted;
1382}
1383EXPORT_SYMBOL(path_has_submounts);
1384
eed81007
MS
1385/*
1386 * Called by mount code to set a mountpoint and check if the mountpoint is
1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388 * subtree can become unreachable).
1389 *
1ffe46d1 1390 * Only one of d_invalidate() and d_set_mounted() must succeed. For
eed81007
MS
1391 * this reason take rename_lock and d_lock on dentry and ancestors.
1392 */
1393int d_set_mounted(struct dentry *dentry)
1394{
1395 struct dentry *p;
1396 int ret = -ENOENT;
1397 write_seqlock(&rename_lock);
1398 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1ffe46d1 1399 /* Need exclusion wrt. d_invalidate() */
eed81007
MS
1400 spin_lock(&p->d_lock);
1401 if (unlikely(d_unhashed(p))) {
1402 spin_unlock(&p->d_lock);
1403 goto out;
1404 }
1405 spin_unlock(&p->d_lock);
1406 }
1407 spin_lock(&dentry->d_lock);
1408 if (!d_unlinked(dentry)) {
3895dbf8
EB
1409 ret = -EBUSY;
1410 if (!d_mountpoint(dentry)) {
1411 dentry->d_flags |= DCACHE_MOUNTED;
1412 ret = 0;
1413 }
eed81007
MS
1414 }
1415 spin_unlock(&dentry->d_lock);
1416out:
1417 write_sequnlock(&rename_lock);
1418 return ret;
1419}
1420
1da177e4 1421/*
fd517909 1422 * Search the dentry child list of the specified parent,
1da177e4
LT
1423 * and move any unused dentries to the end of the unused
1424 * list for prune_dcache(). We descend to the next level
1425 * whenever the d_subdirs list is non-empty and continue
1426 * searching.
1427 *
1428 * It returns zero iff there are no unused children,
1429 * otherwise it returns the number of children moved to
1430 * the end of the unused list. This may not be the total
1431 * number of unused children, because select_parent can
1432 * drop the lock and return early due to latency
1433 * constraints.
1434 */
1da177e4 1435
db14fc3a
MS
1436struct select_data {
1437 struct dentry *start;
1438 struct list_head dispose;
1439 int found;
1440};
23044507 1441
db14fc3a
MS
1442static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443{
1444 struct select_data *data = _data;
1445 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1446
db14fc3a
MS
1447 if (data->start == dentry)
1448 goto out;
2fd6b7f5 1449
fe91522a 1450 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
db14fc3a 1451 data->found++;
fe91522a
AV
1452 } else {
1453 if (dentry->d_flags & DCACHE_LRU_LIST)
1454 d_lru_del(dentry);
1455 if (!dentry->d_lockref.count) {
1456 d_shrink_add(dentry, &data->dispose);
1457 data->found++;
1458 }
1da177e4 1459 }
db14fc3a
MS
1460 /*
1461 * We can return to the caller if we have found some (this
1462 * ensures forward progress). We'll be coming back to find
1463 * the rest.
1464 */
fe91522a
AV
1465 if (!list_empty(&data->dispose))
1466 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1da177e4 1467out:
db14fc3a 1468 return ret;
1da177e4
LT
1469}
1470
1471/**
1472 * shrink_dcache_parent - prune dcache
1473 * @parent: parent of entries to prune
1474 *
1475 * Prune the dcache to remove unused children of the parent dentry.
1476 */
db14fc3a 1477void shrink_dcache_parent(struct dentry *parent)
1da177e4 1478{
db14fc3a
MS
1479 for (;;) {
1480 struct select_data data;
1da177e4 1481
db14fc3a
MS
1482 INIT_LIST_HEAD(&data.dispose);
1483 data.start = parent;
1484 data.found = 0;
1485
3a8e3611 1486 d_walk(parent, &data, select_collect);
4fb48871
AV
1487
1488 if (!list_empty(&data.dispose)) {
1489 shrink_dentry_list(&data.dispose);
1490 continue;
1491 }
1492
1493 cond_resched();
db14fc3a
MS
1494 if (!data.found)
1495 break;
421348f1 1496 }
1da177e4 1497}
ec4f8605 1498EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1499
9c8c10e2 1500static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
42c32608 1501{
9c8c10e2
AV
1502 /* it has busy descendents; complain about those instead */
1503 if (!list_empty(&dentry->d_subdirs))
1504 return D_WALK_CONTINUE;
42c32608 1505
9c8c10e2
AV
1506 /* root with refcount 1 is fine */
1507 if (dentry == _data && dentry->d_lockref.count == 1)
1508 return D_WALK_CONTINUE;
1509
1510 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1511 " still in use (%d) [unmount of %s %s]\n",
42c32608
AV
1512 dentry,
1513 dentry->d_inode ?
1514 dentry->d_inode->i_ino : 0UL,
9c8c10e2 1515 dentry,
42c32608
AV
1516 dentry->d_lockref.count,
1517 dentry->d_sb->s_type->name,
1518 dentry->d_sb->s_id);
9c8c10e2
AV
1519 WARN_ON(1);
1520 return D_WALK_CONTINUE;
1521}
1522
1523static void do_one_tree(struct dentry *dentry)
1524{
1525 shrink_dcache_parent(dentry);
3a8e3611 1526 d_walk(dentry, dentry, umount_check);
9c8c10e2
AV
1527 d_drop(dentry);
1528 dput(dentry);
42c32608
AV
1529}
1530
1531/*
1532 * destroy the dentries attached to a superblock on unmounting
1533 */
1534void shrink_dcache_for_umount(struct super_block *sb)
1535{
1536 struct dentry *dentry;
1537
9c8c10e2 1538 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
42c32608
AV
1539
1540 dentry = sb->s_root;
1541 sb->s_root = NULL;
9c8c10e2 1542 do_one_tree(dentry);
42c32608 1543
f1ee6162
N
1544 while (!hlist_bl_empty(&sb->s_roots)) {
1545 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
9c8c10e2 1546 do_one_tree(dentry);
42c32608
AV
1547 }
1548}
1549
ff17fa56 1550static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
848ac114 1551{
ff17fa56 1552 struct dentry **victim = _data;
848ac114 1553 if (d_mountpoint(dentry)) {
8ed936b5 1554 __dget_dlock(dentry);
ff17fa56 1555 *victim = dentry;
848ac114
MS
1556 return D_WALK_QUIT;
1557 }
ff17fa56 1558 return D_WALK_CONTINUE;
848ac114
MS
1559}
1560
1561/**
1ffe46d1
EB
1562 * d_invalidate - detach submounts, prune dcache, and drop
1563 * @dentry: dentry to invalidate (aka detach, prune and drop)
848ac114 1564 */
5542aa2f 1565void d_invalidate(struct dentry *dentry)
848ac114 1566{
ff17fa56 1567 bool had_submounts = false;
1ffe46d1
EB
1568 spin_lock(&dentry->d_lock);
1569 if (d_unhashed(dentry)) {
1570 spin_unlock(&dentry->d_lock);
5542aa2f 1571 return;
1ffe46d1 1572 }
ff17fa56 1573 __d_drop(dentry);
1ffe46d1
EB
1574 spin_unlock(&dentry->d_lock);
1575
848ac114 1576 /* Negative dentries can be dropped without further checks */
ff17fa56 1577 if (!dentry->d_inode)
5542aa2f 1578 return;
848ac114 1579
ff17fa56 1580 shrink_dcache_parent(dentry);
848ac114 1581 for (;;) {
ff17fa56 1582 struct dentry *victim = NULL;
3a8e3611 1583 d_walk(dentry, &victim, find_submount);
ff17fa56
AV
1584 if (!victim) {
1585 if (had_submounts)
1586 shrink_dcache_parent(dentry);
81be24d2 1587 return;
8ed936b5 1588 }
ff17fa56
AV
1589 had_submounts = true;
1590 detach_mounts(victim);
1591 dput(victim);
848ac114 1592 }
848ac114 1593}
1ffe46d1 1594EXPORT_SYMBOL(d_invalidate);
848ac114 1595
1da177e4 1596/**
a4464dbc
AV
1597 * __d_alloc - allocate a dcache entry
1598 * @sb: filesystem it will belong to
1da177e4
LT
1599 * @name: qstr of the name
1600 *
1601 * Allocates a dentry. It returns %NULL if there is insufficient memory
1602 * available. On a success the dentry is returned. The name passed in is
1603 * copied and the copy passed in may be reused after this call.
1604 */
1605
a4464dbc 1606struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4 1607{
f1782c9b 1608 struct external_name *ext = NULL;
1da177e4
LT
1609 struct dentry *dentry;
1610 char *dname;
285b102d 1611 int err;
1da177e4 1612
e12ba74d 1613 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1614 if (!dentry)
1615 return NULL;
1616
6326c71f
LT
1617 /*
1618 * We guarantee that the inline name is always NUL-terminated.
1619 * This way the memcpy() done by the name switching in rename
1620 * will still always have a NUL at the end, even if we might
1621 * be overwriting an internal NUL character
1622 */
1623 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
798434bd 1624 if (unlikely(!name)) {
cdf01226 1625 name = &slash_name;
798434bd
AV
1626 dname = dentry->d_iname;
1627 } else if (name->len > DNAME_INLINE_LEN-1) {
8d85b484 1628 size_t size = offsetof(struct external_name, name[1]);
f1782c9b
RG
1629
1630 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1631 if (!ext) {
1da177e4
LT
1632 kmem_cache_free(dentry_cache, dentry);
1633 return NULL;
1634 }
f1782c9b
RG
1635 atomic_set(&ext->u.count, 1);
1636 dname = ext->name;
1da177e4
LT
1637 } else {
1638 dname = dentry->d_iname;
1639 }
1da177e4
LT
1640
1641 dentry->d_name.len = name->len;
1642 dentry->d_name.hash = name->hash;
1643 memcpy(dname, name->name, name->len);
1644 dname[name->len] = 0;
1645
6326c71f 1646 /* Make sure we always see the terminating NUL character */
7088efa9 1647 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
6326c71f 1648
98474236 1649 dentry->d_lockref.count = 1;
dea3667b 1650 dentry->d_flags = 0;
1da177e4 1651 spin_lock_init(&dentry->d_lock);
31e6b01f 1652 seqcount_init(&dentry->d_seq);
1da177e4 1653 dentry->d_inode = NULL;
a4464dbc
AV
1654 dentry->d_parent = dentry;
1655 dentry->d_sb = sb;
1da177e4
LT
1656 dentry->d_op = NULL;
1657 dentry->d_fsdata = NULL;
ceb5bdc2 1658 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1659 INIT_LIST_HEAD(&dentry->d_lru);
1660 INIT_LIST_HEAD(&dentry->d_subdirs);
946e51f2
AV
1661 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1662 INIT_LIST_HEAD(&dentry->d_child);
a4464dbc 1663 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1664
285b102d
MS
1665 if (dentry->d_op && dentry->d_op->d_init) {
1666 err = dentry->d_op->d_init(dentry);
1667 if (err) {
1668 if (dname_external(dentry))
1669 kfree(external_name(dentry));
1670 kmem_cache_free(dentry_cache, dentry);
1671 return NULL;
1672 }
1673 }
1674
f1782c9b
RG
1675 if (unlikely(ext)) {
1676 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1677 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1678 ksize(ext));
1679 }
1680
3e880fb5 1681 this_cpu_inc(nr_dentry);
312d3ca8 1682
1da177e4
LT
1683 return dentry;
1684}
a4464dbc
AV
1685
1686/**
1687 * d_alloc - allocate a dcache entry
1688 * @parent: parent of entry to allocate
1689 * @name: qstr of the name
1690 *
1691 * Allocates a dentry. It returns %NULL if there is insufficient memory
1692 * available. On a success the dentry is returned. The name passed in is
1693 * copied and the copy passed in may be reused after this call.
1694 */
1695struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1696{
1697 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1698 if (!dentry)
1699 return NULL;
3d56c25e 1700 dentry->d_flags |= DCACHE_RCUACCESS;
a4464dbc
AV
1701 spin_lock(&parent->d_lock);
1702 /*
1703 * don't need child lock because it is not subject
1704 * to concurrency here
1705 */
1706 __dget_dlock(parent);
1707 dentry->d_parent = parent;
946e51f2 1708 list_add(&dentry->d_child, &parent->d_subdirs);
a4464dbc
AV
1709 spin_unlock(&parent->d_lock);
1710
1711 return dentry;
1712}
ec4f8605 1713EXPORT_SYMBOL(d_alloc);
1da177e4 1714
f9c34674
MS
1715struct dentry *d_alloc_anon(struct super_block *sb)
1716{
1717 return __d_alloc(sb, NULL);
1718}
1719EXPORT_SYMBOL(d_alloc_anon);
1720
ba65dc5e
AV
1721struct dentry *d_alloc_cursor(struct dentry * parent)
1722{
f9c34674 1723 struct dentry *dentry = d_alloc_anon(parent->d_sb);
ba65dc5e
AV
1724 if (dentry) {
1725 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1726 dentry->d_parent = dget(parent);
1727 }
1728 return dentry;
1729}
1730
e1a24bb0
BF
1731/**
1732 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1733 * @sb: the superblock
1734 * @name: qstr of the name
1735 *
1736 * For a filesystem that just pins its dentries in memory and never
1737 * performs lookups at all, return an unhashed IS_ROOT dentry.
1738 */
4b936885
NP
1739struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1740{
e1a24bb0 1741 return __d_alloc(sb, name);
4b936885
NP
1742}
1743EXPORT_SYMBOL(d_alloc_pseudo);
1744
1da177e4
LT
1745struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1746{
1747 struct qstr q;
1748
1749 q.name = name;
8387ff25 1750 q.hash_len = hashlen_string(parent, name);
1da177e4
LT
1751 return d_alloc(parent, &q);
1752}
ef26ca97 1753EXPORT_SYMBOL(d_alloc_name);
1da177e4 1754
fb045adb
NP
1755void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1756{
6f7f7caa
LT
1757 WARN_ON_ONCE(dentry->d_op);
1758 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1759 DCACHE_OP_COMPARE |
1760 DCACHE_OP_REVALIDATE |
ecf3d1f1 1761 DCACHE_OP_WEAK_REVALIDATE |
4bacc9c9 1762 DCACHE_OP_DELETE |
d101a125 1763 DCACHE_OP_REAL));
fb045adb
NP
1764 dentry->d_op = op;
1765 if (!op)
1766 return;
1767 if (op->d_hash)
1768 dentry->d_flags |= DCACHE_OP_HASH;
1769 if (op->d_compare)
1770 dentry->d_flags |= DCACHE_OP_COMPARE;
1771 if (op->d_revalidate)
1772 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1773 if (op->d_weak_revalidate)
1774 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1775 if (op->d_delete)
1776 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1777 if (op->d_prune)
1778 dentry->d_flags |= DCACHE_OP_PRUNE;
d101a125
MS
1779 if (op->d_real)
1780 dentry->d_flags |= DCACHE_OP_REAL;
fb045adb
NP
1781
1782}
1783EXPORT_SYMBOL(d_set_d_op);
1784
df1a085a
DH
1785
1786/*
1787 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1788 * @dentry - The dentry to mark
1789 *
1790 * Mark a dentry as falling through to the lower layer (as set with
1791 * d_pin_lower()). This flag may be recorded on the medium.
1792 */
1793void d_set_fallthru(struct dentry *dentry)
1794{
1795 spin_lock(&dentry->d_lock);
1796 dentry->d_flags |= DCACHE_FALLTHRU;
1797 spin_unlock(&dentry->d_lock);
1798}
1799EXPORT_SYMBOL(d_set_fallthru);
1800
b18825a7
DH
1801static unsigned d_flags_for_inode(struct inode *inode)
1802{
44bdb5e5 1803 unsigned add_flags = DCACHE_REGULAR_TYPE;
b18825a7
DH
1804
1805 if (!inode)
1806 return DCACHE_MISS_TYPE;
1807
1808 if (S_ISDIR(inode->i_mode)) {
1809 add_flags = DCACHE_DIRECTORY_TYPE;
1810 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1811 if (unlikely(!inode->i_op->lookup))
1812 add_flags = DCACHE_AUTODIR_TYPE;
1813 else
1814 inode->i_opflags |= IOP_LOOKUP;
1815 }
44bdb5e5
DH
1816 goto type_determined;
1817 }
1818
1819 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
6b255391 1820 if (unlikely(inode->i_op->get_link)) {
b18825a7 1821 add_flags = DCACHE_SYMLINK_TYPE;
44bdb5e5
DH
1822 goto type_determined;
1823 }
1824 inode->i_opflags |= IOP_NOFOLLOW;
b18825a7
DH
1825 }
1826
44bdb5e5
DH
1827 if (unlikely(!S_ISREG(inode->i_mode)))
1828 add_flags = DCACHE_SPECIAL_TYPE;
1829
1830type_determined:
b18825a7
DH
1831 if (unlikely(IS_AUTOMOUNT(inode)))
1832 add_flags |= DCACHE_NEED_AUTOMOUNT;
1833 return add_flags;
1834}
1835
360da900
OH
1836static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1837{
b18825a7 1838 unsigned add_flags = d_flags_for_inode(inode);
85c7f810 1839 WARN_ON(d_in_lookup(dentry));
b18825a7 1840
b23fb0a6 1841 spin_lock(&dentry->d_lock);
de689f5e 1842 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
a528aca7 1843 raw_write_seqcount_begin(&dentry->d_seq);
4bf46a27 1844 __d_set_inode_and_type(dentry, inode, add_flags);
a528aca7 1845 raw_write_seqcount_end(&dentry->d_seq);
affda484 1846 fsnotify_update_flags(dentry);
b23fb0a6 1847 spin_unlock(&dentry->d_lock);
360da900
OH
1848}
1849
1da177e4
LT
1850/**
1851 * d_instantiate - fill in inode information for a dentry
1852 * @entry: dentry to complete
1853 * @inode: inode to attach to this dentry
1854 *
1855 * Fill in inode information in the entry.
1856 *
1857 * This turns negative dentries into productive full members
1858 * of society.
1859 *
1860 * NOTE! This assumes that the inode count has been incremented
1861 * (or otherwise set) by the caller to indicate that it is now
1862 * in use by the dcache.
1863 */
1864
1865void d_instantiate(struct dentry *entry, struct inode * inode)
1866{
946e51f2 1867 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
de689f5e 1868 if (inode) {
b9680917 1869 security_d_instantiate(entry, inode);
873feea0 1870 spin_lock(&inode->i_lock);
de689f5e 1871 __d_instantiate(entry, inode);
873feea0 1872 spin_unlock(&inode->i_lock);
de689f5e 1873 }
1da177e4 1874}
ec4f8605 1875EXPORT_SYMBOL(d_instantiate);
1da177e4 1876
1e2e547a
AV
1877/*
1878 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1879 * with lockdep-related part of unlock_new_inode() done before
1880 * anything else. Use that instead of open-coding d_instantiate()/
1881 * unlock_new_inode() combinations.
1882 */
1883void d_instantiate_new(struct dentry *entry, struct inode *inode)
1884{
1885 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1886 BUG_ON(!inode);
1887 lockdep_annotate_inode_mutex_key(inode);
1888 security_d_instantiate(entry, inode);
1889 spin_lock(&inode->i_lock);
1890 __d_instantiate(entry, inode);
1891 WARN_ON(!(inode->i_state & I_NEW));
c2b6d621 1892 inode->i_state &= ~I_NEW & ~I_CREATING;
1e2e547a
AV
1893 smp_mb();
1894 wake_up_bit(&inode->i_state, __I_NEW);
1895 spin_unlock(&inode->i_lock);
1896}
1897EXPORT_SYMBOL(d_instantiate_new);
1898
adc0e91a
AV
1899struct dentry *d_make_root(struct inode *root_inode)
1900{
1901 struct dentry *res = NULL;
1902
1903 if (root_inode) {
f9c34674 1904 res = d_alloc_anon(root_inode->i_sb);
90bad5e0
AV
1905 if (res) {
1906 res->d_flags |= DCACHE_RCUACCESS;
adc0e91a 1907 d_instantiate(res, root_inode);
90bad5e0 1908 } else {
adc0e91a 1909 iput(root_inode);
90bad5e0 1910 }
adc0e91a
AV
1911 }
1912 return res;
1913}
1914EXPORT_SYMBOL(d_make_root);
1915
f9c34674
MS
1916static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1917 struct inode *inode,
1918 bool disconnected)
4ea3ada2 1919{
9308a612 1920 struct dentry *res;
b18825a7 1921 unsigned add_flags;
4ea3ada2 1922
f9c34674 1923 security_d_instantiate(dentry, inode);
873feea0 1924 spin_lock(&inode->i_lock);
d891eedb 1925 res = __d_find_any_alias(inode);
9308a612 1926 if (res) {
873feea0 1927 spin_unlock(&inode->i_lock);
f9c34674 1928 dput(dentry);
9308a612
CH
1929 goto out_iput;
1930 }
1931
1932 /* attach a disconnected dentry */
1a0a397e
BF
1933 add_flags = d_flags_for_inode(inode);
1934
1935 if (disconnected)
1936 add_flags |= DCACHE_DISCONNECTED;
b18825a7 1937
f9c34674
MS
1938 spin_lock(&dentry->d_lock);
1939 __d_set_inode_and_type(dentry, inode, add_flags);
1940 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
f1ee6162 1941 if (!disconnected) {
139351f1
LT
1942 hlist_bl_lock(&dentry->d_sb->s_roots);
1943 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1944 hlist_bl_unlock(&dentry->d_sb->s_roots);
f1ee6162 1945 }
f9c34674 1946 spin_unlock(&dentry->d_lock);
873feea0 1947 spin_unlock(&inode->i_lock);
9308a612 1948
f9c34674 1949 return dentry;
9308a612
CH
1950
1951 out_iput:
1952 iput(inode);
1953 return res;
4ea3ada2 1954}
1a0a397e 1955
f9c34674
MS
1956struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1957{
1958 return __d_instantiate_anon(dentry, inode, true);
1959}
1960EXPORT_SYMBOL(d_instantiate_anon);
1961
1962static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1963{
1964 struct dentry *tmp;
1965 struct dentry *res;
1966
1967 if (!inode)
1968 return ERR_PTR(-ESTALE);
1969 if (IS_ERR(inode))
1970 return ERR_CAST(inode);
1971
1972 res = d_find_any_alias(inode);
1973 if (res)
1974 goto out_iput;
1975
1976 tmp = d_alloc_anon(inode->i_sb);
1977 if (!tmp) {
1978 res = ERR_PTR(-ENOMEM);
1979 goto out_iput;
1980 }
1981
1982 return __d_instantiate_anon(tmp, inode, disconnected);
1983
1984out_iput:
1985 iput(inode);
1986 return res;
1987}
1988
1a0a397e
BF
1989/**
1990 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1991 * @inode: inode to allocate the dentry for
1992 *
1993 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1994 * similar open by handle operations. The returned dentry may be anonymous,
1995 * or may have a full name (if the inode was already in the cache).
1996 *
1997 * When called on a directory inode, we must ensure that the inode only ever
1998 * has one dentry. If a dentry is found, that is returned instead of
1999 * allocating a new one.
2000 *
2001 * On successful return, the reference to the inode has been transferred
2002 * to the dentry. In case of an error the reference on the inode is released.
2003 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2004 * be passed in and the error will be propagated to the return value,
2005 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2006 */
2007struct dentry *d_obtain_alias(struct inode *inode)
2008{
f9c34674 2009 return __d_obtain_alias(inode, true);
1a0a397e 2010}
adc48720 2011EXPORT_SYMBOL(d_obtain_alias);
1da177e4 2012
1a0a397e
BF
2013/**
2014 * d_obtain_root - find or allocate a dentry for a given inode
2015 * @inode: inode to allocate the dentry for
2016 *
2017 * Obtain an IS_ROOT dentry for the root of a filesystem.
2018 *
2019 * We must ensure that directory inodes only ever have one dentry. If a
2020 * dentry is found, that is returned instead of allocating a new one.
2021 *
2022 * On successful return, the reference to the inode has been transferred
2023 * to the dentry. In case of an error the reference on the inode is
2024 * released. A %NULL or IS_ERR inode may be passed in and will be the
2025 * error will be propagate to the return value, with a %NULL @inode
2026 * replaced by ERR_PTR(-ESTALE).
2027 */
2028struct dentry *d_obtain_root(struct inode *inode)
2029{
f9c34674 2030 return __d_obtain_alias(inode, false);
1a0a397e
BF
2031}
2032EXPORT_SYMBOL(d_obtain_root);
2033
9403540c
BN
2034/**
2035 * d_add_ci - lookup or allocate new dentry with case-exact name
2036 * @inode: the inode case-insensitive lookup has found
2037 * @dentry: the negative dentry that was passed to the parent's lookup func
2038 * @name: the case-exact name to be associated with the returned dentry
2039 *
2040 * This is to avoid filling the dcache with case-insensitive names to the
2041 * same inode, only the actual correct case is stored in the dcache for
2042 * case-insensitive filesystems.
2043 *
2044 * For a case-insensitive lookup match and if the the case-exact dentry
2045 * already exists in in the dcache, use it and return it.
2046 *
2047 * If no entry exists with the exact case name, allocate new dentry with
2048 * the exact case, and return the spliced entry.
2049 */
e45b590b 2050struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
2051 struct qstr *name)
2052{
d9171b93 2053 struct dentry *found, *res;
9403540c 2054
b6520c81
CH
2055 /*
2056 * First check if a dentry matching the name already exists,
2057 * if not go ahead and create it now.
2058 */
9403540c 2059 found = d_hash_and_lookup(dentry->d_parent, name);
d9171b93
AV
2060 if (found) {
2061 iput(inode);
2062 return found;
2063 }
2064 if (d_in_lookup(dentry)) {
2065 found = d_alloc_parallel(dentry->d_parent, name,
2066 dentry->d_wait);
2067 if (IS_ERR(found) || !d_in_lookup(found)) {
2068 iput(inode);
2069 return found;
9403540c 2070 }
d9171b93
AV
2071 } else {
2072 found = d_alloc(dentry->d_parent, name);
2073 if (!found) {
2074 iput(inode);
2075 return ERR_PTR(-ENOMEM);
2076 }
2077 }
2078 res = d_splice_alias(inode, found);
2079 if (res) {
2080 dput(found);
2081 return res;
9403540c 2082 }
4f522a24 2083 return found;
9403540c 2084}
ec4f8605 2085EXPORT_SYMBOL(d_add_ci);
1da177e4 2086
12f8ad4b 2087
d4c91a8f
AV
2088static inline bool d_same_name(const struct dentry *dentry,
2089 const struct dentry *parent,
2090 const struct qstr *name)
12f8ad4b 2091{
d4c91a8f
AV
2092 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2093 if (dentry->d_name.len != name->len)
2094 return false;
2095 return dentry_cmp(dentry, name->name, name->len) == 0;
12f8ad4b 2096 }
6fa67e70 2097 return parent->d_op->d_compare(dentry,
d4c91a8f
AV
2098 dentry->d_name.len, dentry->d_name.name,
2099 name) == 0;
12f8ad4b
LT
2100}
2101
31e6b01f
NP
2102/**
2103 * __d_lookup_rcu - search for a dentry (racy, store-free)
2104 * @parent: parent dentry
2105 * @name: qstr of name we wish to find
1f1e6e52 2106 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2107 * Returns: dentry, or NULL
2108 *
2109 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2110 * resolution (store-free path walking) design described in
2111 * Documentation/filesystems/path-lookup.txt.
2112 *
2113 * This is not to be used outside core vfs.
2114 *
2115 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2116 * held, and rcu_read_lock held. The returned dentry must not be stored into
2117 * without taking d_lock and checking d_seq sequence count against @seq
2118 * returned here.
2119 *
15570086 2120 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2121 * function.
2122 *
2123 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2124 * the returned dentry, so long as its parent's seqlock is checked after the
2125 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2126 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2127 *
2128 * NOTE! The caller *has* to check the resulting dentry against the sequence
2129 * number we've returned before using any of the resulting dentry state!
31e6b01f 2130 */
8966be90
LT
2131struct dentry *__d_lookup_rcu(const struct dentry *parent,
2132 const struct qstr *name,
da53be12 2133 unsigned *seqp)
31e6b01f 2134{
26fe5750 2135 u64 hashlen = name->hash_len;
31e6b01f 2136 const unsigned char *str = name->name;
8387ff25 2137 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
ceb5bdc2 2138 struct hlist_bl_node *node;
31e6b01f
NP
2139 struct dentry *dentry;
2140
2141 /*
2142 * Note: There is significant duplication with __d_lookup_rcu which is
2143 * required to prevent single threaded performance regressions
2144 * especially on architectures where smp_rmb (in seqcounts) are costly.
2145 * Keep the two functions in sync.
2146 */
2147
2148 /*
2149 * The hash list is protected using RCU.
2150 *
2151 * Carefully use d_seq when comparing a candidate dentry, to avoid
2152 * races with d_move().
2153 *
2154 * It is possible that concurrent renames can mess up our list
2155 * walk here and result in missing our dentry, resulting in the
2156 * false-negative result. d_lookup() protects against concurrent
2157 * renames using rename_lock seqlock.
2158 *
b0a4bb83 2159 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2160 */
b07ad996 2161 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2162 unsigned seq;
31e6b01f 2163
31e6b01f 2164seqretry:
12f8ad4b
LT
2165 /*
2166 * The dentry sequence count protects us from concurrent
da53be12 2167 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2168 *
2169 * The caller must perform a seqcount check in order
da53be12 2170 * to do anything useful with the returned dentry.
12f8ad4b
LT
2171 *
2172 * NOTE! We do a "raw" seqcount_begin here. That means that
2173 * we don't wait for the sequence count to stabilize if it
2174 * is in the middle of a sequence change. If we do the slow
2175 * dentry compare, we will do seqretries until it is stable,
2176 * and if we end up with a successful lookup, we actually
2177 * want to exit RCU lookup anyway.
d4c91a8f
AV
2178 *
2179 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2180 * we are still guaranteed NUL-termination of ->d_name.name.
12f8ad4b
LT
2181 */
2182 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2183 if (dentry->d_parent != parent)
2184 continue;
2e321806
LT
2185 if (d_unhashed(dentry))
2186 continue;
12f8ad4b 2187
830c0f0e 2188 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
d4c91a8f
AV
2189 int tlen;
2190 const char *tname;
26fe5750
LT
2191 if (dentry->d_name.hash != hashlen_hash(hashlen))
2192 continue;
d4c91a8f
AV
2193 tlen = dentry->d_name.len;
2194 tname = dentry->d_name.name;
2195 /* we want a consistent (name,len) pair */
2196 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2197 cpu_relax();
12f8ad4b
LT
2198 goto seqretry;
2199 }
6fa67e70 2200 if (parent->d_op->d_compare(dentry,
d4c91a8f
AV
2201 tlen, tname, name) != 0)
2202 continue;
2203 } else {
2204 if (dentry->d_name.hash_len != hashlen)
2205 continue;
2206 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2207 continue;
31e6b01f 2208 }
da53be12 2209 *seqp = seq;
d4c91a8f 2210 return dentry;
31e6b01f
NP
2211 }
2212 return NULL;
2213}
2214
1da177e4
LT
2215/**
2216 * d_lookup - search for a dentry
2217 * @parent: parent dentry
2218 * @name: qstr of name we wish to find
b04f784e 2219 * Returns: dentry, or NULL
1da177e4 2220 *
b04f784e
NP
2221 * d_lookup searches the children of the parent dentry for the name in
2222 * question. If the dentry is found its reference count is incremented and the
2223 * dentry is returned. The caller must use dput to free the entry when it has
2224 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2225 */
da2d8455 2226struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2227{
31e6b01f 2228 struct dentry *dentry;
949854d0 2229 unsigned seq;
1da177e4 2230
b8314f93
DY
2231 do {
2232 seq = read_seqbegin(&rename_lock);
2233 dentry = __d_lookup(parent, name);
2234 if (dentry)
1da177e4
LT
2235 break;
2236 } while (read_seqretry(&rename_lock, seq));
2237 return dentry;
2238}
ec4f8605 2239EXPORT_SYMBOL(d_lookup);
1da177e4 2240
31e6b01f 2241/**
b04f784e
NP
2242 * __d_lookup - search for a dentry (racy)
2243 * @parent: parent dentry
2244 * @name: qstr of name we wish to find
2245 * Returns: dentry, or NULL
2246 *
2247 * __d_lookup is like d_lookup, however it may (rarely) return a
2248 * false-negative result due to unrelated rename activity.
2249 *
2250 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2251 * however it must be used carefully, eg. with a following d_lookup in
2252 * the case of failure.
2253 *
2254 * __d_lookup callers must be commented.
2255 */
a713ca2a 2256struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2257{
1da177e4 2258 unsigned int hash = name->hash;
8387ff25 2259 struct hlist_bl_head *b = d_hash(hash);
ceb5bdc2 2260 struct hlist_bl_node *node;
31e6b01f 2261 struct dentry *found = NULL;
665a7583 2262 struct dentry *dentry;
1da177e4 2263
31e6b01f
NP
2264 /*
2265 * Note: There is significant duplication with __d_lookup_rcu which is
2266 * required to prevent single threaded performance regressions
2267 * especially on architectures where smp_rmb (in seqcounts) are costly.
2268 * Keep the two functions in sync.
2269 */
2270
b04f784e
NP
2271 /*
2272 * The hash list is protected using RCU.
2273 *
2274 * Take d_lock when comparing a candidate dentry, to avoid races
2275 * with d_move().
2276 *
2277 * It is possible that concurrent renames can mess up our list
2278 * walk here and result in missing our dentry, resulting in the
2279 * false-negative result. d_lookup() protects against concurrent
2280 * renames using rename_lock seqlock.
2281 *
b0a4bb83 2282 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2283 */
1da177e4
LT
2284 rcu_read_lock();
2285
b07ad996 2286 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2287
1da177e4
LT
2288 if (dentry->d_name.hash != hash)
2289 continue;
1da177e4
LT
2290
2291 spin_lock(&dentry->d_lock);
1da177e4
LT
2292 if (dentry->d_parent != parent)
2293 goto next;
d0185c08
LT
2294 if (d_unhashed(dentry))
2295 goto next;
2296
d4c91a8f
AV
2297 if (!d_same_name(dentry, parent, name))
2298 goto next;
1da177e4 2299
98474236 2300 dentry->d_lockref.count++;
d0185c08 2301 found = dentry;
1da177e4
LT
2302 spin_unlock(&dentry->d_lock);
2303 break;
2304next:
2305 spin_unlock(&dentry->d_lock);
2306 }
2307 rcu_read_unlock();
2308
2309 return found;
2310}
2311
3e7e241f
EB
2312/**
2313 * d_hash_and_lookup - hash the qstr then search for a dentry
2314 * @dir: Directory to search in
2315 * @name: qstr of name we wish to find
2316 *
4f522a24 2317 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2318 */
2319struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2320{
3e7e241f
EB
2321 /*
2322 * Check for a fs-specific hash function. Note that we must
2323 * calculate the standard hash first, as the d_op->d_hash()
2324 * routine may choose to leave the hash value unchanged.
2325 */
8387ff25 2326 name->hash = full_name_hash(dir, name->name, name->len);
fb045adb 2327 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2328 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2329 if (unlikely(err < 0))
2330 return ERR_PTR(err);
3e7e241f 2331 }
4f522a24 2332 return d_lookup(dir, name);
3e7e241f 2333}
4f522a24 2334EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2335
1da177e4
LT
2336/*
2337 * When a file is deleted, we have two options:
2338 * - turn this dentry into a negative dentry
2339 * - unhash this dentry and free it.
2340 *
2341 * Usually, we want to just turn this into
2342 * a negative dentry, but if anybody else is
2343 * currently using the dentry or the inode
2344 * we can't do that and we fall back on removing
2345 * it from the hash queues and waiting for
2346 * it to be deleted later when it has no users
2347 */
2348
2349/**
2350 * d_delete - delete a dentry
2351 * @dentry: The dentry to delete
2352 *
2353 * Turn the dentry into a negative dentry if possible, otherwise
2354 * remove it from the hash queues so it can be deleted later
2355 */
2356
2357void d_delete(struct dentry * dentry)
2358{
c19457f0
AV
2359 struct inode *inode = dentry->d_inode;
2360 int isdir = d_is_dir(dentry);
2361
2362 spin_lock(&inode->i_lock);
2363 spin_lock(&dentry->d_lock);
1da177e4
LT
2364 /*
2365 * Are we the only user?
2366 */
98474236 2367 if (dentry->d_lockref.count == 1) {
13e3c5e5 2368 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2369 dentry_unlink_inode(dentry);
c19457f0 2370 } else {
1da177e4 2371 __d_drop(dentry);
c19457f0
AV
2372 spin_unlock(&dentry->d_lock);
2373 spin_unlock(&inode->i_lock);
2374 }
7a91bf7f 2375 fsnotify_nameremove(dentry, isdir);
1da177e4 2376}
ec4f8605 2377EXPORT_SYMBOL(d_delete);
1da177e4 2378
15d3c589 2379static void __d_rehash(struct dentry *entry)
1da177e4 2380{
15d3c589 2381 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
61647823 2382
1879fd6a 2383 hlist_bl_lock(b);
b07ad996 2384 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2385 hlist_bl_unlock(b);
1da177e4
LT
2386}
2387
2388/**
2389 * d_rehash - add an entry back to the hash
2390 * @entry: dentry to add to the hash
2391 *
2392 * Adds a dentry to the hash according to its name.
2393 */
2394
2395void d_rehash(struct dentry * entry)
2396{
1da177e4 2397 spin_lock(&entry->d_lock);
15d3c589 2398 __d_rehash(entry);
1da177e4 2399 spin_unlock(&entry->d_lock);
1da177e4 2400}
ec4f8605 2401EXPORT_SYMBOL(d_rehash);
1da177e4 2402
84e710da
AV
2403static inline unsigned start_dir_add(struct inode *dir)
2404{
2405
2406 for (;;) {
2407 unsigned n = dir->i_dir_seq;
2408 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2409 return n;
2410 cpu_relax();
2411 }
2412}
2413
2414static inline void end_dir_add(struct inode *dir, unsigned n)
2415{
2416 smp_store_release(&dir->i_dir_seq, n + 2);
2417}
2418
d9171b93
AV
2419static void d_wait_lookup(struct dentry *dentry)
2420{
2421 if (d_in_lookup(dentry)) {
2422 DECLARE_WAITQUEUE(wait, current);
2423 add_wait_queue(dentry->d_wait, &wait);
2424 do {
2425 set_current_state(TASK_UNINTERRUPTIBLE);
2426 spin_unlock(&dentry->d_lock);
2427 schedule();
2428 spin_lock(&dentry->d_lock);
2429 } while (d_in_lookup(dentry));
2430 }
2431}
2432
94bdd655 2433struct dentry *d_alloc_parallel(struct dentry *parent,
d9171b93
AV
2434 const struct qstr *name,
2435 wait_queue_head_t *wq)
94bdd655 2436{
94bdd655 2437 unsigned int hash = name->hash;
94bdd655
AV
2438 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2439 struct hlist_bl_node *node;
2440 struct dentry *new = d_alloc(parent, name);
2441 struct dentry *dentry;
2442 unsigned seq, r_seq, d_seq;
2443
2444 if (unlikely(!new))
2445 return ERR_PTR(-ENOMEM);
2446
2447retry:
2448 rcu_read_lock();
015555fd 2449 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
94bdd655
AV
2450 r_seq = read_seqbegin(&rename_lock);
2451 dentry = __d_lookup_rcu(parent, name, &d_seq);
2452 if (unlikely(dentry)) {
2453 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2454 rcu_read_unlock();
2455 goto retry;
2456 }
2457 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2458 rcu_read_unlock();
2459 dput(dentry);
2460 goto retry;
2461 }
2462 rcu_read_unlock();
2463 dput(new);
2464 return dentry;
2465 }
2466 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2467 rcu_read_unlock();
2468 goto retry;
2469 }
015555fd
WD
2470
2471 if (unlikely(seq & 1)) {
2472 rcu_read_unlock();
2473 goto retry;
2474 }
2475
94bdd655 2476 hlist_bl_lock(b);
8cc07c80 2477 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
94bdd655
AV
2478 hlist_bl_unlock(b);
2479 rcu_read_unlock();
2480 goto retry;
2481 }
94bdd655
AV
2482 /*
2483 * No changes for the parent since the beginning of d_lookup().
2484 * Since all removals from the chain happen with hlist_bl_lock(),
2485 * any potential in-lookup matches are going to stay here until
2486 * we unlock the chain. All fields are stable in everything
2487 * we encounter.
2488 */
2489 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2490 if (dentry->d_name.hash != hash)
2491 continue;
2492 if (dentry->d_parent != parent)
2493 continue;
d4c91a8f
AV
2494 if (!d_same_name(dentry, parent, name))
2495 continue;
94bdd655 2496 hlist_bl_unlock(b);
e7d6ef97
AV
2497 /* now we can try to grab a reference */
2498 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2499 rcu_read_unlock();
2500 goto retry;
2501 }
2502
2503 rcu_read_unlock();
2504 /*
2505 * somebody is likely to be still doing lookup for it;
2506 * wait for them to finish
2507 */
d9171b93
AV
2508 spin_lock(&dentry->d_lock);
2509 d_wait_lookup(dentry);
2510 /*
2511 * it's not in-lookup anymore; in principle we should repeat
2512 * everything from dcache lookup, but it's likely to be what
2513 * d_lookup() would've found anyway. If it is, just return it;
2514 * otherwise we really have to repeat the whole thing.
2515 */
2516 if (unlikely(dentry->d_name.hash != hash))
2517 goto mismatch;
2518 if (unlikely(dentry->d_parent != parent))
2519 goto mismatch;
2520 if (unlikely(d_unhashed(dentry)))
2521 goto mismatch;
d4c91a8f
AV
2522 if (unlikely(!d_same_name(dentry, parent, name)))
2523 goto mismatch;
d9171b93
AV
2524 /* OK, it *is* a hashed match; return it */
2525 spin_unlock(&dentry->d_lock);
94bdd655
AV
2526 dput(new);
2527 return dentry;
2528 }
e7d6ef97 2529 rcu_read_unlock();
94bdd655
AV
2530 /* we can't take ->d_lock here; it's OK, though. */
2531 new->d_flags |= DCACHE_PAR_LOOKUP;
d9171b93 2532 new->d_wait = wq;
94bdd655
AV
2533 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2534 hlist_bl_unlock(b);
2535 return new;
d9171b93
AV
2536mismatch:
2537 spin_unlock(&dentry->d_lock);
2538 dput(dentry);
2539 goto retry;
94bdd655
AV
2540}
2541EXPORT_SYMBOL(d_alloc_parallel);
2542
85c7f810
AV
2543void __d_lookup_done(struct dentry *dentry)
2544{
94bdd655
AV
2545 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2546 dentry->d_name.hash);
2547 hlist_bl_lock(b);
85c7f810 2548 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
94bdd655 2549 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
d9171b93
AV
2550 wake_up_all(dentry->d_wait);
2551 dentry->d_wait = NULL;
94bdd655
AV
2552 hlist_bl_unlock(b);
2553 INIT_HLIST_NODE(&dentry->d_u.d_alias);
d9171b93 2554 INIT_LIST_HEAD(&dentry->d_lru);
85c7f810
AV
2555}
2556EXPORT_SYMBOL(__d_lookup_done);
ed782b5a
AV
2557
2558/* inode->i_lock held if inode is non-NULL */
2559
2560static inline void __d_add(struct dentry *dentry, struct inode *inode)
2561{
84e710da
AV
2562 struct inode *dir = NULL;
2563 unsigned n;
0568d705 2564 spin_lock(&dentry->d_lock);
84e710da
AV
2565 if (unlikely(d_in_lookup(dentry))) {
2566 dir = dentry->d_parent->d_inode;
2567 n = start_dir_add(dir);
85c7f810 2568 __d_lookup_done(dentry);
84e710da 2569 }
ed782b5a 2570 if (inode) {
0568d705
AV
2571 unsigned add_flags = d_flags_for_inode(inode);
2572 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2573 raw_write_seqcount_begin(&dentry->d_seq);
2574 __d_set_inode_and_type(dentry, inode, add_flags);
2575 raw_write_seqcount_end(&dentry->d_seq);
affda484 2576 fsnotify_update_flags(dentry);
ed782b5a 2577 }
15d3c589 2578 __d_rehash(dentry);
84e710da
AV
2579 if (dir)
2580 end_dir_add(dir, n);
0568d705
AV
2581 spin_unlock(&dentry->d_lock);
2582 if (inode)
2583 spin_unlock(&inode->i_lock);
ed782b5a
AV
2584}
2585
34d0d19d
AV
2586/**
2587 * d_add - add dentry to hash queues
2588 * @entry: dentry to add
2589 * @inode: The inode to attach to this dentry
2590 *
2591 * This adds the entry to the hash queues and initializes @inode.
2592 * The entry was actually filled in earlier during d_alloc().
2593 */
2594
2595void d_add(struct dentry *entry, struct inode *inode)
2596{
b9680917
AV
2597 if (inode) {
2598 security_d_instantiate(entry, inode);
ed782b5a 2599 spin_lock(&inode->i_lock);
b9680917 2600 }
ed782b5a 2601 __d_add(entry, inode);
34d0d19d
AV
2602}
2603EXPORT_SYMBOL(d_add);
2604
668d0cd5
AV
2605/**
2606 * d_exact_alias - find and hash an exact unhashed alias
2607 * @entry: dentry to add
2608 * @inode: The inode to go with this dentry
2609 *
2610 * If an unhashed dentry with the same name/parent and desired
2611 * inode already exists, hash and return it. Otherwise, return
2612 * NULL.
2613 *
2614 * Parent directory should be locked.
2615 */
2616struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2617{
2618 struct dentry *alias;
668d0cd5
AV
2619 unsigned int hash = entry->d_name.hash;
2620
2621 spin_lock(&inode->i_lock);
2622 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2623 /*
2624 * Don't need alias->d_lock here, because aliases with
2625 * d_parent == entry->d_parent are not subject to name or
2626 * parent changes, because the parent inode i_mutex is held.
2627 */
2628 if (alias->d_name.hash != hash)
2629 continue;
2630 if (alias->d_parent != entry->d_parent)
2631 continue;
d4c91a8f 2632 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
668d0cd5
AV
2633 continue;
2634 spin_lock(&alias->d_lock);
2635 if (!d_unhashed(alias)) {
2636 spin_unlock(&alias->d_lock);
2637 alias = NULL;
2638 } else {
2639 __dget_dlock(alias);
15d3c589 2640 __d_rehash(alias);
668d0cd5
AV
2641 spin_unlock(&alias->d_lock);
2642 }
2643 spin_unlock(&inode->i_lock);
2644 return alias;
2645 }
2646 spin_unlock(&inode->i_lock);
2647 return NULL;
2648}
2649EXPORT_SYMBOL(d_exact_alias);
2650
8d85b484 2651static void swap_names(struct dentry *dentry, struct dentry *target)
1da177e4 2652{
8d85b484
AV
2653 if (unlikely(dname_external(target))) {
2654 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2655 /*
2656 * Both external: swap the pointers
2657 */
9a8d5bb4 2658 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2659 } else {
2660 /*
2661 * dentry:internal, target:external. Steal target's
2662 * storage and make target internal.
2663 */
321bcf92
BF
2664 memcpy(target->d_iname, dentry->d_name.name,
2665 dentry->d_name.len + 1);
1da177e4
LT
2666 dentry->d_name.name = target->d_name.name;
2667 target->d_name.name = target->d_iname;
2668 }
2669 } else {
8d85b484 2670 if (unlikely(dname_external(dentry))) {
1da177e4
LT
2671 /*
2672 * dentry:external, target:internal. Give dentry's
2673 * storage to target and make dentry internal
2674 */
2675 memcpy(dentry->d_iname, target->d_name.name,
2676 target->d_name.len + 1);
2677 target->d_name.name = dentry->d_name.name;
2678 dentry->d_name.name = dentry->d_iname;
2679 } else {
2680 /*
da1ce067 2681 * Both are internal.
1da177e4 2682 */
da1ce067
MS
2683 unsigned int i;
2684 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2685 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2686 swap(((long *) &dentry->d_iname)[i],
2687 ((long *) &target->d_iname)[i]);
2688 }
1da177e4
LT
2689 }
2690 }
a28ddb87 2691 swap(dentry->d_name.hash_len, target->d_name.hash_len);
1da177e4
LT
2692}
2693
8d85b484
AV
2694static void copy_name(struct dentry *dentry, struct dentry *target)
2695{
2696 struct external_name *old_name = NULL;
2697 if (unlikely(dname_external(dentry)))
2698 old_name = external_name(dentry);
2699 if (unlikely(dname_external(target))) {
2700 atomic_inc(&external_name(target)->u.count);
2701 dentry->d_name = target->d_name;
2702 } else {
2703 memcpy(dentry->d_iname, target->d_name.name,
2704 target->d_name.len + 1);
2705 dentry->d_name.name = dentry->d_iname;
2706 dentry->d_name.hash_len = target->d_name.hash_len;
2707 }
2708 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
f1782c9b 2709 call_rcu(&old_name->u.head, __d_free_external_name);
8d85b484
AV
2710}
2711
9eaef27b 2712/*
18367501 2713 * __d_move - move a dentry
1da177e4
LT
2714 * @dentry: entry to move
2715 * @target: new dentry
da1ce067 2716 * @exchange: exchange the two dentries
1da177e4
LT
2717 *
2718 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2719 * dcache entries should not be moved in this way. Caller must hold
2720 * rename_lock, the i_mutex of the source and target directories,
2721 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2722 */
da1ce067
MS
2723static void __d_move(struct dentry *dentry, struct dentry *target,
2724 bool exchange)
1da177e4 2725{
42177007 2726 struct dentry *old_parent, *p;
84e710da
AV
2727 struct inode *dir = NULL;
2728 unsigned n;
1da177e4 2729
42177007
AV
2730 WARN_ON(!dentry->d_inode);
2731 if (WARN_ON(dentry == target))
2732 return;
2733
2fd6b7f5 2734 BUG_ON(d_ancestor(target, dentry));
42177007
AV
2735 old_parent = dentry->d_parent;
2736 p = d_ancestor(old_parent, target);
2737 if (IS_ROOT(dentry)) {
2738 BUG_ON(p);
2739 spin_lock(&target->d_parent->d_lock);
2740 } else if (!p) {
2741 /* target is not a descendent of dentry->d_parent */
2742 spin_lock(&target->d_parent->d_lock);
2743 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2744 } else {
2745 BUG_ON(p == dentry);
2746 spin_lock(&old_parent->d_lock);
2747 if (p != target)
2748 spin_lock_nested(&target->d_parent->d_lock,
2749 DENTRY_D_LOCK_NESTED);
2750 }
2751 spin_lock_nested(&dentry->d_lock, 2);
2752 spin_lock_nested(&target->d_lock, 3);
2fd6b7f5 2753
84e710da
AV
2754 if (unlikely(d_in_lookup(target))) {
2755 dir = target->d_parent->d_inode;
2756 n = start_dir_add(dir);
85c7f810 2757 __d_lookup_done(target);
84e710da 2758 }
1da177e4 2759
31e6b01f 2760 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2761 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2762
15d3c589 2763 /* unhash both */
0632a9ac
AV
2764 if (!d_unhashed(dentry))
2765 ___d_drop(dentry);
2766 if (!d_unhashed(target))
2767 ___d_drop(target);
1da177e4 2768
076515fc
AV
2769 /* ... and switch them in the tree */
2770 dentry->d_parent = target->d_parent;
2771 if (!exchange) {
8d85b484 2772 copy_name(dentry, target);
61647823 2773 target->d_hash.pprev = NULL;
076515fc
AV
2774 dentry->d_parent->d_lockref.count++;
2775 if (dentry == old_parent)
2776 dentry->d_flags |= DCACHE_RCUACCESS;
2777 else
2778 WARN_ON(!--old_parent->d_lockref.count);
1da177e4 2779 } else {
076515fc
AV
2780 target->d_parent = old_parent;
2781 swap_names(dentry, target);
946e51f2 2782 list_move(&target->d_child, &target->d_parent->d_subdirs);
076515fc
AV
2783 __d_rehash(target);
2784 fsnotify_update_flags(target);
1da177e4 2785 }
076515fc
AV
2786 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2787 __d_rehash(dentry);
2788 fsnotify_update_flags(dentry);
1da177e4 2789
31e6b01f
NP
2790 write_seqcount_end(&target->d_seq);
2791 write_seqcount_end(&dentry->d_seq);
2792
84e710da
AV
2793 if (dir)
2794 end_dir_add(dir, n);
076515fc
AV
2795
2796 if (dentry->d_parent != old_parent)
2797 spin_unlock(&dentry->d_parent->d_lock);
2798 if (dentry != old_parent)
2799 spin_unlock(&old_parent->d_lock);
2800 spin_unlock(&target->d_lock);
2801 spin_unlock(&dentry->d_lock);
18367501
AV
2802}
2803
2804/*
2805 * d_move - move a dentry
2806 * @dentry: entry to move
2807 * @target: new dentry
2808 *
2809 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2810 * dcache entries should not be moved in this way. See the locking
2811 * requirements for __d_move.
18367501
AV
2812 */
2813void d_move(struct dentry *dentry, struct dentry *target)
2814{
2815 write_seqlock(&rename_lock);
da1ce067 2816 __d_move(dentry, target, false);
1da177e4 2817 write_sequnlock(&rename_lock);
9eaef27b 2818}
ec4f8605 2819EXPORT_SYMBOL(d_move);
1da177e4 2820
da1ce067
MS
2821/*
2822 * d_exchange - exchange two dentries
2823 * @dentry1: first dentry
2824 * @dentry2: second dentry
2825 */
2826void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2827{
2828 write_seqlock(&rename_lock);
2829
2830 WARN_ON(!dentry1->d_inode);
2831 WARN_ON(!dentry2->d_inode);
2832 WARN_ON(IS_ROOT(dentry1));
2833 WARN_ON(IS_ROOT(dentry2));
2834
2835 __d_move(dentry1, dentry2, true);
2836
2837 write_sequnlock(&rename_lock);
2838}
2839
e2761a11
OH
2840/**
2841 * d_ancestor - search for an ancestor
2842 * @p1: ancestor dentry
2843 * @p2: child dentry
2844 *
2845 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2846 * an ancestor of p2, else NULL.
9eaef27b 2847 */
e2761a11 2848struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2849{
2850 struct dentry *p;
2851
871c0067 2852 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2853 if (p->d_parent == p1)
e2761a11 2854 return p;
9eaef27b 2855 }
e2761a11 2856 return NULL;
9eaef27b
TM
2857}
2858
2859/*
2860 * This helper attempts to cope with remotely renamed directories
2861 *
2862 * It assumes that the caller is already holding
a03e283b 2863 * dentry->d_parent->d_inode->i_mutex, and rename_lock
9eaef27b
TM
2864 *
2865 * Note: If ever the locking in lock_rename() changes, then please
2866 * remember to update this too...
9eaef27b 2867 */
b5ae6b15 2868static int __d_unalias(struct inode *inode,
873feea0 2869 struct dentry *dentry, struct dentry *alias)
9eaef27b 2870{
9902af79
AV
2871 struct mutex *m1 = NULL;
2872 struct rw_semaphore *m2 = NULL;
3d330dc1 2873 int ret = -ESTALE;
9eaef27b
TM
2874
2875 /* If alias and dentry share a parent, then no extra locks required */
2876 if (alias->d_parent == dentry->d_parent)
2877 goto out_unalias;
2878
9eaef27b 2879 /* See lock_rename() */
9eaef27b
TM
2880 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2881 goto out_err;
2882 m1 = &dentry->d_sb->s_vfs_rename_mutex;
9902af79 2883 if (!inode_trylock_shared(alias->d_parent->d_inode))
9eaef27b 2884 goto out_err;
9902af79 2885 m2 = &alias->d_parent->d_inode->i_rwsem;
9eaef27b 2886out_unalias:
8ed936b5 2887 __d_move(alias, dentry, false);
b5ae6b15 2888 ret = 0;
9eaef27b 2889out_err:
9eaef27b 2890 if (m2)
9902af79 2891 up_read(m2);
9eaef27b
TM
2892 if (m1)
2893 mutex_unlock(m1);
2894 return ret;
2895}
2896
3f70bd51
BF
2897/**
2898 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2899 * @inode: the inode which may have a disconnected dentry
2900 * @dentry: a negative dentry which we want to point to the inode.
2901 *
da093a9b
BF
2902 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2903 * place of the given dentry and return it, else simply d_add the inode
2904 * to the dentry and return NULL.
3f70bd51 2905 *
908790fa
BF
2906 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2907 * we should error out: directories can't have multiple aliases.
2908 *
3f70bd51
BF
2909 * This is needed in the lookup routine of any filesystem that is exportable
2910 * (via knfsd) so that we can build dcache paths to directories effectively.
2911 *
2912 * If a dentry was found and moved, then it is returned. Otherwise NULL
2913 * is returned. This matches the expected return value of ->lookup.
2914 *
2915 * Cluster filesystems may call this function with a negative, hashed dentry.
2916 * In that case, we know that the inode will be a regular file, and also this
2917 * will only occur during atomic_open. So we need to check for the dentry
2918 * being already hashed only in the final case.
2919 */
2920struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2921{
3f70bd51
BF
2922 if (IS_ERR(inode))
2923 return ERR_CAST(inode);
2924
770bfad8
DH
2925 BUG_ON(!d_unhashed(dentry));
2926
de689f5e 2927 if (!inode)
b5ae6b15 2928 goto out;
de689f5e 2929
b9680917 2930 security_d_instantiate(dentry, inode);
873feea0 2931 spin_lock(&inode->i_lock);
9eaef27b 2932 if (S_ISDIR(inode->i_mode)) {
b5ae6b15
AV
2933 struct dentry *new = __d_find_any_alias(inode);
2934 if (unlikely(new)) {
a03e283b
EB
2935 /* The reference to new ensures it remains an alias */
2936 spin_unlock(&inode->i_lock);
18367501 2937 write_seqlock(&rename_lock);
b5ae6b15
AV
2938 if (unlikely(d_ancestor(new, dentry))) {
2939 write_sequnlock(&rename_lock);
b5ae6b15
AV
2940 dput(new);
2941 new = ERR_PTR(-ELOOP);
2942 pr_warn_ratelimited(
2943 "VFS: Lookup of '%s' in %s %s"
2944 " would have caused loop\n",
2945 dentry->d_name.name,
2946 inode->i_sb->s_type->name,
2947 inode->i_sb->s_id);
2948 } else if (!IS_ROOT(new)) {
076515fc 2949 struct dentry *old_parent = dget(new->d_parent);
b5ae6b15 2950 int err = __d_unalias(inode, dentry, new);
18367501 2951 write_sequnlock(&rename_lock);
b5ae6b15
AV
2952 if (err) {
2953 dput(new);
2954 new = ERR_PTR(err);
2955 }
076515fc 2956 dput(old_parent);
18367501 2957 } else {
b5ae6b15
AV
2958 __d_move(new, dentry, false);
2959 write_sequnlock(&rename_lock);
dd179946 2960 }
b5ae6b15
AV
2961 iput(inode);
2962 return new;
9eaef27b 2963 }
770bfad8 2964 }
b5ae6b15 2965out:
ed782b5a 2966 __d_add(dentry, inode);
b5ae6b15 2967 return NULL;
770bfad8 2968}
b5ae6b15 2969EXPORT_SYMBOL(d_splice_alias);
770bfad8 2970
1da177e4
LT
2971/*
2972 * Test whether new_dentry is a subdirectory of old_dentry.
2973 *
2974 * Trivially implemented using the dcache structure
2975 */
2976
2977/**
2978 * is_subdir - is new dentry a subdirectory of old_dentry
2979 * @new_dentry: new dentry
2980 * @old_dentry: old dentry
2981 *
a6e5787f
YB
2982 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2983 * Returns false otherwise.
1da177e4
LT
2984 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2985 */
2986
a6e5787f 2987bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4 2988{
a6e5787f 2989 bool result;
949854d0 2990 unsigned seq;
1da177e4 2991
e2761a11 2992 if (new_dentry == old_dentry)
a6e5787f 2993 return true;
e2761a11 2994
e2761a11 2995 do {
1da177e4 2996 /* for restarting inner loop in case of seq retry */
1da177e4 2997 seq = read_seqbegin(&rename_lock);
949854d0
NP
2998 /*
2999 * Need rcu_readlock to protect against the d_parent trashing
3000 * due to d_move
3001 */
3002 rcu_read_lock();
e2761a11 3003 if (d_ancestor(old_dentry, new_dentry))
a6e5787f 3004 result = true;
e2761a11 3005 else
a6e5787f 3006 result = false;
949854d0 3007 rcu_read_unlock();
1da177e4 3008 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3009
3010 return result;
3011}
e8f9e5b7 3012EXPORT_SYMBOL(is_subdir);
1da177e4 3013
db14fc3a 3014static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3015{
db14fc3a
MS
3016 struct dentry *root = data;
3017 if (dentry != root) {
3018 if (d_unhashed(dentry) || !dentry->d_inode)
3019 return D_WALK_SKIP;
1da177e4 3020
01ddc4ed
MS
3021 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3022 dentry->d_flags |= DCACHE_GENOCIDE;
3023 dentry->d_lockref.count--;
3024 }
1da177e4 3025 }
db14fc3a
MS
3026 return D_WALK_CONTINUE;
3027}
58db63d0 3028
db14fc3a
MS
3029void d_genocide(struct dentry *parent)
3030{
3a8e3611 3031 d_walk(parent, parent, d_genocide_kill);
1da177e4
LT
3032}
3033
cbd4a5bc
AV
3034EXPORT_SYMBOL(d_genocide);
3035
60545d0d 3036void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3037{
60545d0d
AV
3038 inode_dec_link_count(inode);
3039 BUG_ON(dentry->d_name.name != dentry->d_iname ||
946e51f2 3040 !hlist_unhashed(&dentry->d_u.d_alias) ||
60545d0d
AV
3041 !d_unlinked(dentry));
3042 spin_lock(&dentry->d_parent->d_lock);
3043 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3044 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3045 (unsigned long long)inode->i_ino);
3046 spin_unlock(&dentry->d_lock);
3047 spin_unlock(&dentry->d_parent->d_lock);
3048 d_instantiate(dentry, inode);
1da177e4 3049}
60545d0d 3050EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3051
3052static __initdata unsigned long dhash_entries;
3053static int __init set_dhash_entries(char *str)
3054{
3055 if (!str)
3056 return 0;
3057 dhash_entries = simple_strtoul(str, &str, 0);
3058 return 1;
3059}
3060__setup("dhash_entries=", set_dhash_entries);
3061
3062static void __init dcache_init_early(void)
3063{
1da177e4
LT
3064 /* If hashes are distributed across NUMA nodes, defer
3065 * hash allocation until vmalloc space is available.
3066 */
3067 if (hashdist)
3068 return;
3069
3070 dentry_hashtable =
3071 alloc_large_system_hash("Dentry cache",
b07ad996 3072 sizeof(struct hlist_bl_head),
1da177e4
LT
3073 dhash_entries,
3074 13,
3d375d78 3075 HASH_EARLY | HASH_ZERO,
1da177e4 3076 &d_hash_shift,
b35d786b 3077 NULL,
31fe62b9 3078 0,
1da177e4 3079 0);
854d3e63 3080 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3081}
3082
74bf17cf 3083static void __init dcache_init(void)
1da177e4 3084{
3d375d78 3085 /*
1da177e4
LT
3086 * A constructor could be added for stable state like the lists,
3087 * but it is probably not worth it because of the cache nature
3d375d78 3088 * of the dcache.
1da177e4 3089 */
80344266
DW
3090 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3091 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3092 d_iname);
1da177e4
LT
3093
3094 /* Hash may have been set up in dcache_init_early */
3095 if (!hashdist)
3096 return;
3097
3098 dentry_hashtable =
3099 alloc_large_system_hash("Dentry cache",
b07ad996 3100 sizeof(struct hlist_bl_head),
1da177e4
LT
3101 dhash_entries,
3102 13,
3d375d78 3103 HASH_ZERO,
1da177e4 3104 &d_hash_shift,
b35d786b 3105 NULL,
31fe62b9 3106 0,
1da177e4 3107 0);
854d3e63 3108 d_hash_shift = 32 - d_hash_shift;
1da177e4
LT
3109}
3110
3111/* SLAB cache for __getname() consumers */
e18b890b 3112struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3113EXPORT_SYMBOL(names_cachep);
1da177e4 3114
1da177e4
LT
3115void __init vfs_caches_init_early(void)
3116{
6916363f
SAS
3117 int i;
3118
3119 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3120 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3121
1da177e4
LT
3122 dcache_init_early();
3123 inode_init_early();
3124}
3125
4248b0da 3126void __init vfs_caches_init(void)
1da177e4 3127{
6a9b8820
DW
3128 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3129 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
1da177e4 3130
74bf17cf
DC
3131 dcache_init();
3132 inode_init();
4248b0da
MG
3133 files_init();
3134 files_maxfiles_init();
74bf17cf 3135 mnt_init();
1da177e4
LT
3136 bdev_cache_init();
3137 chrdev_init();
3138}
This page took 1.574459 seconds and 4 git commands to generate.