]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/buffer.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
9 | * | |
10 | * Removed a lot of unnecessary code and simplified things now that | |
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
12 | * | |
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
15 | * | |
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
17 | * | |
18 | * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> | |
19 | */ | |
20 | ||
1da177e4 LT |
21 | #include <linux/kernel.h> |
22 | #include <linux/syscalls.h> | |
23 | #include <linux/fs.h> | |
24 | #include <linux/mm.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/slab.h> | |
16f7e0fe | 27 | #include <linux/capability.h> |
1da177e4 LT |
28 | #include <linux/blkdev.h> |
29 | #include <linux/file.h> | |
30 | #include <linux/quotaops.h> | |
31 | #include <linux/highmem.h> | |
630d9c47 | 32 | #include <linux/export.h> |
1da177e4 LT |
33 | #include <linux/writeback.h> |
34 | #include <linux/hash.h> | |
35 | #include <linux/suspend.h> | |
36 | #include <linux/buffer_head.h> | |
55e829af | 37 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
38 | #include <linux/bio.h> |
39 | #include <linux/notifier.h> | |
40 | #include <linux/cpu.h> | |
41 | #include <linux/bitops.h> | |
42 | #include <linux/mpage.h> | |
fb1c8f93 | 43 | #include <linux/bit_spinlock.h> |
5305cb83 | 44 | #include <trace/events/block.h> |
1da177e4 LT |
45 | |
46 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | |
1da177e4 LT |
47 | |
48 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
49 | ||
a3f3c29c | 50 | void init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) |
1da177e4 LT |
51 | { |
52 | bh->b_end_io = handler; | |
53 | bh->b_private = private; | |
54 | } | |
1fe72eaa | 55 | EXPORT_SYMBOL(init_buffer); |
1da177e4 | 56 | |
f0059afd TH |
57 | inline void touch_buffer(struct buffer_head *bh) |
58 | { | |
5305cb83 | 59 | trace_block_touch_buffer(bh); |
f0059afd TH |
60 | mark_page_accessed(bh->b_page); |
61 | } | |
62 | EXPORT_SYMBOL(touch_buffer); | |
63 | ||
fc9b52cd | 64 | void __lock_buffer(struct buffer_head *bh) |
1da177e4 | 65 | { |
74316201 | 66 | wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 LT |
67 | } |
68 | EXPORT_SYMBOL(__lock_buffer); | |
69 | ||
fc9b52cd | 70 | void unlock_buffer(struct buffer_head *bh) |
1da177e4 | 71 | { |
51b07fc3 | 72 | clear_bit_unlock(BH_Lock, &bh->b_state); |
4e857c58 | 73 | smp_mb__after_atomic(); |
1da177e4 LT |
74 | wake_up_bit(&bh->b_state, BH_Lock); |
75 | } | |
1fe72eaa | 76 | EXPORT_SYMBOL(unlock_buffer); |
1da177e4 | 77 | |
b4597226 MG |
78 | /* |
79 | * Returns if the page has dirty or writeback buffers. If all the buffers | |
80 | * are unlocked and clean then the PageDirty information is stale. If | |
81 | * any of the pages are locked, it is assumed they are locked for IO. | |
82 | */ | |
83 | void buffer_check_dirty_writeback(struct page *page, | |
84 | bool *dirty, bool *writeback) | |
85 | { | |
86 | struct buffer_head *head, *bh; | |
87 | *dirty = false; | |
88 | *writeback = false; | |
89 | ||
90 | BUG_ON(!PageLocked(page)); | |
91 | ||
92 | if (!page_has_buffers(page)) | |
93 | return; | |
94 | ||
95 | if (PageWriteback(page)) | |
96 | *writeback = true; | |
97 | ||
98 | head = page_buffers(page); | |
99 | bh = head; | |
100 | do { | |
101 | if (buffer_locked(bh)) | |
102 | *writeback = true; | |
103 | ||
104 | if (buffer_dirty(bh)) | |
105 | *dirty = true; | |
106 | ||
107 | bh = bh->b_this_page; | |
108 | } while (bh != head); | |
109 | } | |
110 | EXPORT_SYMBOL(buffer_check_dirty_writeback); | |
111 | ||
1da177e4 LT |
112 | /* |
113 | * Block until a buffer comes unlocked. This doesn't stop it | |
114 | * from becoming locked again - you have to lock it yourself | |
115 | * if you want to preserve its state. | |
116 | */ | |
117 | void __wait_on_buffer(struct buffer_head * bh) | |
118 | { | |
74316201 | 119 | wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); |
1da177e4 | 120 | } |
1fe72eaa | 121 | EXPORT_SYMBOL(__wait_on_buffer); |
1da177e4 LT |
122 | |
123 | static void | |
124 | __clear_page_buffers(struct page *page) | |
125 | { | |
126 | ClearPagePrivate(page); | |
4c21e2f2 | 127 | set_page_private(page, 0); |
1da177e4 LT |
128 | page_cache_release(page); |
129 | } | |
130 | ||
08bafc03 KM |
131 | |
132 | static int quiet_error(struct buffer_head *bh) | |
133 | { | |
134 | if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) | |
135 | return 0; | |
136 | return 1; | |
137 | } | |
138 | ||
139 | ||
1da177e4 LT |
140 | static void buffer_io_error(struct buffer_head *bh) |
141 | { | |
142 | char b[BDEVNAME_SIZE]; | |
1da177e4 LT |
143 | printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", |
144 | bdevname(bh->b_bdev, b), | |
145 | (unsigned long long)bh->b_blocknr); | |
146 | } | |
147 | ||
148 | /* | |
68671f35 DM |
149 | * End-of-IO handler helper function which does not touch the bh after |
150 | * unlocking it. | |
151 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
152 | * a race there is benign: unlock_buffer() only use the bh's address for | |
153 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
154 | * itself. | |
1da177e4 | 155 | */ |
68671f35 | 156 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
157 | { |
158 | if (uptodate) { | |
159 | set_buffer_uptodate(bh); | |
160 | } else { | |
161 | /* This happens, due to failed READA attempts. */ | |
162 | clear_buffer_uptodate(bh); | |
163 | } | |
164 | unlock_buffer(bh); | |
68671f35 DM |
165 | } |
166 | ||
167 | /* | |
168 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
169 | * unlock the buffer. This is what ll_rw_block uses too. | |
170 | */ | |
171 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
172 | { | |
173 | __end_buffer_read_notouch(bh, uptodate); | |
1da177e4 LT |
174 | put_bh(bh); |
175 | } | |
1fe72eaa | 176 | EXPORT_SYMBOL(end_buffer_read_sync); |
1da177e4 LT |
177 | |
178 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
179 | { | |
180 | char b[BDEVNAME_SIZE]; | |
181 | ||
182 | if (uptodate) { | |
183 | set_buffer_uptodate(bh); | |
184 | } else { | |
0edd55fa | 185 | if (!quiet_error(bh)) { |
1da177e4 LT |
186 | buffer_io_error(bh); |
187 | printk(KERN_WARNING "lost page write due to " | |
188 | "I/O error on %s\n", | |
189 | bdevname(bh->b_bdev, b)); | |
190 | } | |
191 | set_buffer_write_io_error(bh); | |
192 | clear_buffer_uptodate(bh); | |
193 | } | |
194 | unlock_buffer(bh); | |
195 | put_bh(bh); | |
196 | } | |
1fe72eaa | 197 | EXPORT_SYMBOL(end_buffer_write_sync); |
1da177e4 | 198 | |
1da177e4 LT |
199 | /* |
200 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
201 | * But it's the page lock which protects the buffers. To get around this, | |
202 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
203 | * private_lock. | |
204 | * | |
205 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | |
206 | * may be quite high. This code could TryLock the page, and if that | |
207 | * succeeds, there is no need to take private_lock. (But if | |
208 | * private_lock is contended then so is mapping->tree_lock). | |
209 | */ | |
210 | static struct buffer_head * | |
385fd4c5 | 211 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
212 | { |
213 | struct inode *bd_inode = bdev->bd_inode; | |
214 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
215 | struct buffer_head *ret = NULL; | |
216 | pgoff_t index; | |
217 | struct buffer_head *bh; | |
218 | struct buffer_head *head; | |
219 | struct page *page; | |
220 | int all_mapped = 1; | |
221 | ||
222 | index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); | |
2457aec6 | 223 | page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED); |
1da177e4 LT |
224 | if (!page) |
225 | goto out; | |
226 | ||
227 | spin_lock(&bd_mapping->private_lock); | |
228 | if (!page_has_buffers(page)) | |
229 | goto out_unlock; | |
230 | head = page_buffers(page); | |
231 | bh = head; | |
232 | do { | |
97f76d3d NK |
233 | if (!buffer_mapped(bh)) |
234 | all_mapped = 0; | |
235 | else if (bh->b_blocknr == block) { | |
1da177e4 LT |
236 | ret = bh; |
237 | get_bh(bh); | |
238 | goto out_unlock; | |
239 | } | |
1da177e4 LT |
240 | bh = bh->b_this_page; |
241 | } while (bh != head); | |
242 | ||
243 | /* we might be here because some of the buffers on this page are | |
244 | * not mapped. This is due to various races between | |
245 | * file io on the block device and getblk. It gets dealt with | |
246 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
247 | */ | |
248 | if (all_mapped) { | |
72a2ebd8 TM |
249 | char b[BDEVNAME_SIZE]; |
250 | ||
1da177e4 LT |
251 | printk("__find_get_block_slow() failed. " |
252 | "block=%llu, b_blocknr=%llu\n", | |
205f87f6 BP |
253 | (unsigned long long)block, |
254 | (unsigned long long)bh->b_blocknr); | |
255 | printk("b_state=0x%08lx, b_size=%zu\n", | |
256 | bh->b_state, bh->b_size); | |
72a2ebd8 TM |
257 | printk("device %s blocksize: %d\n", bdevname(bdev, b), |
258 | 1 << bd_inode->i_blkbits); | |
1da177e4 LT |
259 | } |
260 | out_unlock: | |
261 | spin_unlock(&bd_mapping->private_lock); | |
262 | page_cache_release(page); | |
263 | out: | |
264 | return ret; | |
265 | } | |
266 | ||
1da177e4 | 267 | /* |
5b0830cb | 268 | * Kick the writeback threads then try to free up some ZONE_NORMAL memory. |
1da177e4 LT |
269 | */ |
270 | static void free_more_memory(void) | |
271 | { | |
19770b32 | 272 | struct zone *zone; |
0e88460d | 273 | int nid; |
1da177e4 | 274 | |
0e175a18 | 275 | wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); |
1da177e4 LT |
276 | yield(); |
277 | ||
0e88460d | 278 | for_each_online_node(nid) { |
19770b32 MG |
279 | (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), |
280 | gfp_zone(GFP_NOFS), NULL, | |
281 | &zone); | |
282 | if (zone) | |
54a6eb5c | 283 | try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, |
327c0e96 | 284 | GFP_NOFS, NULL); |
1da177e4 LT |
285 | } |
286 | } | |
287 | ||
288 | /* | |
289 | * I/O completion handler for block_read_full_page() - pages | |
290 | * which come unlocked at the end of I/O. | |
291 | */ | |
292 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | |
293 | { | |
1da177e4 | 294 | unsigned long flags; |
a3972203 | 295 | struct buffer_head *first; |
1da177e4 LT |
296 | struct buffer_head *tmp; |
297 | struct page *page; | |
298 | int page_uptodate = 1; | |
299 | ||
300 | BUG_ON(!buffer_async_read(bh)); | |
301 | ||
302 | page = bh->b_page; | |
303 | if (uptodate) { | |
304 | set_buffer_uptodate(bh); | |
305 | } else { | |
306 | clear_buffer_uptodate(bh); | |
08bafc03 | 307 | if (!quiet_error(bh)) |
1da177e4 LT |
308 | buffer_io_error(bh); |
309 | SetPageError(page); | |
310 | } | |
311 | ||
312 | /* | |
313 | * Be _very_ careful from here on. Bad things can happen if | |
314 | * two buffer heads end IO at almost the same time and both | |
315 | * decide that the page is now completely done. | |
316 | */ | |
a3972203 NP |
317 | first = page_buffers(page); |
318 | local_irq_save(flags); | |
319 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
320 | clear_buffer_async_read(bh); |
321 | unlock_buffer(bh); | |
322 | tmp = bh; | |
323 | do { | |
324 | if (!buffer_uptodate(tmp)) | |
325 | page_uptodate = 0; | |
326 | if (buffer_async_read(tmp)) { | |
327 | BUG_ON(!buffer_locked(tmp)); | |
328 | goto still_busy; | |
329 | } | |
330 | tmp = tmp->b_this_page; | |
331 | } while (tmp != bh); | |
a3972203 NP |
332 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
333 | local_irq_restore(flags); | |
1da177e4 LT |
334 | |
335 | /* | |
336 | * If none of the buffers had errors and they are all | |
337 | * uptodate then we can set the page uptodate. | |
338 | */ | |
339 | if (page_uptodate && !PageError(page)) | |
340 | SetPageUptodate(page); | |
341 | unlock_page(page); | |
342 | return; | |
343 | ||
344 | still_busy: | |
a3972203 NP |
345 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
346 | local_irq_restore(flags); | |
1da177e4 LT |
347 | return; |
348 | } | |
349 | ||
350 | /* | |
351 | * Completion handler for block_write_full_page() - pages which are unlocked | |
352 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
353 | */ | |
35c80d5f | 354 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
355 | { |
356 | char b[BDEVNAME_SIZE]; | |
1da177e4 | 357 | unsigned long flags; |
a3972203 | 358 | struct buffer_head *first; |
1da177e4 LT |
359 | struct buffer_head *tmp; |
360 | struct page *page; | |
361 | ||
362 | BUG_ON(!buffer_async_write(bh)); | |
363 | ||
364 | page = bh->b_page; | |
365 | if (uptodate) { | |
366 | set_buffer_uptodate(bh); | |
367 | } else { | |
08bafc03 | 368 | if (!quiet_error(bh)) { |
1da177e4 LT |
369 | buffer_io_error(bh); |
370 | printk(KERN_WARNING "lost page write due to " | |
371 | "I/O error on %s\n", | |
372 | bdevname(bh->b_bdev, b)); | |
373 | } | |
374 | set_bit(AS_EIO, &page->mapping->flags); | |
58ff407b | 375 | set_buffer_write_io_error(bh); |
1da177e4 LT |
376 | clear_buffer_uptodate(bh); |
377 | SetPageError(page); | |
378 | } | |
379 | ||
a3972203 NP |
380 | first = page_buffers(page); |
381 | local_irq_save(flags); | |
382 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
383 | ||
1da177e4 LT |
384 | clear_buffer_async_write(bh); |
385 | unlock_buffer(bh); | |
386 | tmp = bh->b_this_page; | |
387 | while (tmp != bh) { | |
388 | if (buffer_async_write(tmp)) { | |
389 | BUG_ON(!buffer_locked(tmp)); | |
390 | goto still_busy; | |
391 | } | |
392 | tmp = tmp->b_this_page; | |
393 | } | |
a3972203 NP |
394 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
395 | local_irq_restore(flags); | |
1da177e4 LT |
396 | end_page_writeback(page); |
397 | return; | |
398 | ||
399 | still_busy: | |
a3972203 NP |
400 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
401 | local_irq_restore(flags); | |
1da177e4 LT |
402 | return; |
403 | } | |
1fe72eaa | 404 | EXPORT_SYMBOL(end_buffer_async_write); |
1da177e4 LT |
405 | |
406 | /* | |
407 | * If a page's buffers are under async readin (end_buffer_async_read | |
408 | * completion) then there is a possibility that another thread of | |
409 | * control could lock one of the buffers after it has completed | |
410 | * but while some of the other buffers have not completed. This | |
411 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
412 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
413 | * that this buffer is not under async I/O. | |
414 | * | |
415 | * The page comes unlocked when it has no locked buffer_async buffers | |
416 | * left. | |
417 | * | |
418 | * PageLocked prevents anyone starting new async I/O reads any of | |
419 | * the buffers. | |
420 | * | |
421 | * PageWriteback is used to prevent simultaneous writeout of the same | |
422 | * page. | |
423 | * | |
424 | * PageLocked prevents anyone from starting writeback of a page which is | |
425 | * under read I/O (PageWriteback is only ever set against a locked page). | |
426 | */ | |
427 | static void mark_buffer_async_read(struct buffer_head *bh) | |
428 | { | |
429 | bh->b_end_io = end_buffer_async_read; | |
430 | set_buffer_async_read(bh); | |
431 | } | |
432 | ||
1fe72eaa HS |
433 | static void mark_buffer_async_write_endio(struct buffer_head *bh, |
434 | bh_end_io_t *handler) | |
1da177e4 | 435 | { |
35c80d5f | 436 | bh->b_end_io = handler; |
1da177e4 LT |
437 | set_buffer_async_write(bh); |
438 | } | |
35c80d5f CM |
439 | |
440 | void mark_buffer_async_write(struct buffer_head *bh) | |
441 | { | |
442 | mark_buffer_async_write_endio(bh, end_buffer_async_write); | |
443 | } | |
1da177e4 LT |
444 | EXPORT_SYMBOL(mark_buffer_async_write); |
445 | ||
446 | ||
447 | /* | |
448 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
449 | * fsync functions. A common requirement for buffer-based filesystems is | |
450 | * that certain data from the backing blockdev needs to be written out for | |
451 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
452 | * written back and waited upon before fsync() returns. | |
453 | * | |
454 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
455 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
456 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
457 | * | |
458 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
459 | * from their controlling inode's queue when they are being freed. But | |
460 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
461 | * at the time, not against the S_ISREG file which depends on those buffers. | |
462 | * So the locking for private_list is via the private_lock in the address_space | |
463 | * which backs the buffers. Which is different from the address_space | |
464 | * against which the buffers are listed. So for a particular address_space, | |
465 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
466 | * mapping->private_list will always be protected by the backing blockdev's | |
467 | * ->private_lock. | |
468 | * | |
469 | * Which introduces a requirement: all buffers on an address_space's | |
470 | * ->private_list must be from the same address_space: the blockdev's. | |
471 | * | |
472 | * address_spaces which do not place buffers at ->private_list via these | |
473 | * utility functions are free to use private_lock and private_list for | |
474 | * whatever they want. The only requirement is that list_empty(private_list) | |
475 | * be true at clear_inode() time. | |
476 | * | |
477 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
478 | * filesystems should do that. invalidate_inode_buffers() should just go | |
479 | * BUG_ON(!list_empty). | |
480 | * | |
481 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
482 | * take an address_space, not an inode. And it should be called | |
483 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
484 | * queued up. | |
485 | * | |
486 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
487 | * list if it is already on a list. Because if the buffer is on a list, | |
488 | * it *must* already be on the right one. If not, the filesystem is being | |
489 | * silly. This will save a ton of locking. But first we have to ensure | |
490 | * that buffers are taken *off* the old inode's list when they are freed | |
491 | * (presumably in truncate). That requires careful auditing of all | |
492 | * filesystems (do it inside bforget()). It could also be done by bringing | |
493 | * b_inode back. | |
494 | */ | |
495 | ||
496 | /* | |
497 | * The buffer's backing address_space's private_lock must be held | |
498 | */ | |
dbacefc9 | 499 | static void __remove_assoc_queue(struct buffer_head *bh) |
1da177e4 LT |
500 | { |
501 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b JK |
502 | WARN_ON(!bh->b_assoc_map); |
503 | if (buffer_write_io_error(bh)) | |
504 | set_bit(AS_EIO, &bh->b_assoc_map->flags); | |
505 | bh->b_assoc_map = NULL; | |
1da177e4 LT |
506 | } |
507 | ||
508 | int inode_has_buffers(struct inode *inode) | |
509 | { | |
510 | return !list_empty(&inode->i_data.private_list); | |
511 | } | |
512 | ||
513 | /* | |
514 | * osync is designed to support O_SYNC io. It waits synchronously for | |
515 | * all already-submitted IO to complete, but does not queue any new | |
516 | * writes to the disk. | |
517 | * | |
518 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
519 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
520 | * completion. Any other dirty buffers which are not yet queued for | |
521 | * write will not be flushed to disk by the osync. | |
522 | */ | |
523 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
524 | { | |
525 | struct buffer_head *bh; | |
526 | struct list_head *p; | |
527 | int err = 0; | |
528 | ||
529 | spin_lock(lock); | |
530 | repeat: | |
531 | list_for_each_prev(p, list) { | |
532 | bh = BH_ENTRY(p); | |
533 | if (buffer_locked(bh)) { | |
534 | get_bh(bh); | |
535 | spin_unlock(lock); | |
536 | wait_on_buffer(bh); | |
537 | if (!buffer_uptodate(bh)) | |
538 | err = -EIO; | |
539 | brelse(bh); | |
540 | spin_lock(lock); | |
541 | goto repeat; | |
542 | } | |
543 | } | |
544 | spin_unlock(lock); | |
545 | return err; | |
546 | } | |
547 | ||
01a05b33 | 548 | static void do_thaw_one(struct super_block *sb, void *unused) |
c2d75438 | 549 | { |
c2d75438 | 550 | char b[BDEVNAME_SIZE]; |
01a05b33 AV |
551 | while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) |
552 | printk(KERN_WARNING "Emergency Thaw on %s\n", | |
553 | bdevname(sb->s_bdev, b)); | |
554 | } | |
c2d75438 | 555 | |
01a05b33 AV |
556 | static void do_thaw_all(struct work_struct *work) |
557 | { | |
558 | iterate_supers(do_thaw_one, NULL); | |
053c525f | 559 | kfree(work); |
c2d75438 ES |
560 | printk(KERN_WARNING "Emergency Thaw complete\n"); |
561 | } | |
562 | ||
563 | /** | |
564 | * emergency_thaw_all -- forcibly thaw every frozen filesystem | |
565 | * | |
566 | * Used for emergency unfreeze of all filesystems via SysRq | |
567 | */ | |
568 | void emergency_thaw_all(void) | |
569 | { | |
053c525f JA |
570 | struct work_struct *work; |
571 | ||
572 | work = kmalloc(sizeof(*work), GFP_ATOMIC); | |
573 | if (work) { | |
574 | INIT_WORK(work, do_thaw_all); | |
575 | schedule_work(work); | |
576 | } | |
c2d75438 ES |
577 | } |
578 | ||
1da177e4 | 579 | /** |
78a4a50a | 580 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
67be2dd1 | 581 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
582 | * |
583 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
584 | * that I/O. | |
585 | * | |
67be2dd1 MW |
586 | * Basically, this is a convenience function for fsync(). |
587 | * @mapping is a file or directory which needs those buffers to be written for | |
588 | * a successful fsync(). | |
1da177e4 LT |
589 | */ |
590 | int sync_mapping_buffers(struct address_space *mapping) | |
591 | { | |
252aa6f5 | 592 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
593 | |
594 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
595 | return 0; | |
596 | ||
597 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
598 | &mapping->private_list); | |
599 | } | |
600 | EXPORT_SYMBOL(sync_mapping_buffers); | |
601 | ||
602 | /* | |
603 | * Called when we've recently written block `bblock', and it is known that | |
604 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
605 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
606 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
607 | */ | |
608 | void write_boundary_block(struct block_device *bdev, | |
609 | sector_t bblock, unsigned blocksize) | |
610 | { | |
611 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
612 | if (bh) { | |
613 | if (buffer_dirty(bh)) | |
614 | ll_rw_block(WRITE, 1, &bh); | |
615 | put_bh(bh); | |
616 | } | |
617 | } | |
618 | ||
619 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
620 | { | |
621 | struct address_space *mapping = inode->i_mapping; | |
622 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
623 | ||
624 | mark_buffer_dirty(bh); | |
252aa6f5 RA |
625 | if (!mapping->private_data) { |
626 | mapping->private_data = buffer_mapping; | |
1da177e4 | 627 | } else { |
252aa6f5 | 628 | BUG_ON(mapping->private_data != buffer_mapping); |
1da177e4 | 629 | } |
535ee2fb | 630 | if (!bh->b_assoc_map) { |
1da177e4 LT |
631 | spin_lock(&buffer_mapping->private_lock); |
632 | list_move_tail(&bh->b_assoc_buffers, | |
633 | &mapping->private_list); | |
58ff407b | 634 | bh->b_assoc_map = mapping; |
1da177e4 LT |
635 | spin_unlock(&buffer_mapping->private_lock); |
636 | } | |
637 | } | |
638 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
639 | ||
787d2214 NP |
640 | /* |
641 | * Mark the page dirty, and set it dirty in the radix tree, and mark the inode | |
642 | * dirty. | |
643 | * | |
644 | * If warn is true, then emit a warning if the page is not uptodate and has | |
645 | * not been truncated. | |
646 | */ | |
a8e7d49a | 647 | static void __set_page_dirty(struct page *page, |
787d2214 NP |
648 | struct address_space *mapping, int warn) |
649 | { | |
227d53b3 KM |
650 | unsigned long flags; |
651 | ||
652 | spin_lock_irqsave(&mapping->tree_lock, flags); | |
787d2214 NP |
653 | if (page->mapping) { /* Race with truncate? */ |
654 | WARN_ON_ONCE(warn && !PageUptodate(page)); | |
e3a7cca1 | 655 | account_page_dirtied(page, mapping); |
787d2214 NP |
656 | radix_tree_tag_set(&mapping->page_tree, |
657 | page_index(page), PAGECACHE_TAG_DIRTY); | |
658 | } | |
227d53b3 | 659 | spin_unlock_irqrestore(&mapping->tree_lock, flags); |
787d2214 | 660 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
787d2214 NP |
661 | } |
662 | ||
1da177e4 LT |
663 | /* |
664 | * Add a page to the dirty page list. | |
665 | * | |
666 | * It is a sad fact of life that this function is called from several places | |
667 | * deeply under spinlocking. It may not sleep. | |
668 | * | |
669 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
670 | * dirty-state coherency between the page and the buffers. It the page does | |
671 | * not have buffers then when they are later attached they will all be set | |
672 | * dirty. | |
673 | * | |
674 | * The buffers are dirtied before the page is dirtied. There's a small race | |
675 | * window in which a writepage caller may see the page cleanness but not the | |
676 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
677 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
678 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
679 | * page on the dirty page list. | |
680 | * | |
681 | * We use private_lock to lock against try_to_free_buffers while using the | |
682 | * page's buffer list. Also use this to protect against clean buffers being | |
683 | * added to the page after it was set dirty. | |
684 | * | |
685 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
686 | * address_space though. | |
687 | */ | |
688 | int __set_page_dirty_buffers(struct page *page) | |
689 | { | |
a8e7d49a | 690 | int newly_dirty; |
787d2214 | 691 | struct address_space *mapping = page_mapping(page); |
ebf7a227 NP |
692 | |
693 | if (unlikely(!mapping)) | |
694 | return !TestSetPageDirty(page); | |
1da177e4 LT |
695 | |
696 | spin_lock(&mapping->private_lock); | |
697 | if (page_has_buffers(page)) { | |
698 | struct buffer_head *head = page_buffers(page); | |
699 | struct buffer_head *bh = head; | |
700 | ||
701 | do { | |
702 | set_buffer_dirty(bh); | |
703 | bh = bh->b_this_page; | |
704 | } while (bh != head); | |
705 | } | |
a8e7d49a | 706 | newly_dirty = !TestSetPageDirty(page); |
1da177e4 LT |
707 | spin_unlock(&mapping->private_lock); |
708 | ||
a8e7d49a LT |
709 | if (newly_dirty) |
710 | __set_page_dirty(page, mapping, 1); | |
711 | return newly_dirty; | |
1da177e4 LT |
712 | } |
713 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
714 | ||
715 | /* | |
716 | * Write out and wait upon a list of buffers. | |
717 | * | |
718 | * We have conflicting pressures: we want to make sure that all | |
719 | * initially dirty buffers get waited on, but that any subsequently | |
720 | * dirtied buffers don't. After all, we don't want fsync to last | |
721 | * forever if somebody is actively writing to the file. | |
722 | * | |
723 | * Do this in two main stages: first we copy dirty buffers to a | |
724 | * temporary inode list, queueing the writes as we go. Then we clean | |
725 | * up, waiting for those writes to complete. | |
726 | * | |
727 | * During this second stage, any subsequent updates to the file may end | |
728 | * up refiling the buffer on the original inode's dirty list again, so | |
729 | * there is a chance we will end up with a buffer queued for write but | |
730 | * not yet completed on that list. So, as a final cleanup we go through | |
731 | * the osync code to catch these locked, dirty buffers without requeuing | |
732 | * any newly dirty buffers for write. | |
733 | */ | |
734 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
735 | { | |
736 | struct buffer_head *bh; | |
737 | struct list_head tmp; | |
7eaceacc | 738 | struct address_space *mapping; |
1da177e4 | 739 | int err = 0, err2; |
4ee2491e | 740 | struct blk_plug plug; |
1da177e4 LT |
741 | |
742 | INIT_LIST_HEAD(&tmp); | |
4ee2491e | 743 | blk_start_plug(&plug); |
1da177e4 LT |
744 | |
745 | spin_lock(lock); | |
746 | while (!list_empty(list)) { | |
747 | bh = BH_ENTRY(list->next); | |
535ee2fb | 748 | mapping = bh->b_assoc_map; |
58ff407b | 749 | __remove_assoc_queue(bh); |
535ee2fb JK |
750 | /* Avoid race with mark_buffer_dirty_inode() which does |
751 | * a lockless check and we rely on seeing the dirty bit */ | |
752 | smp_mb(); | |
1da177e4 LT |
753 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
754 | list_add(&bh->b_assoc_buffers, &tmp); | |
535ee2fb | 755 | bh->b_assoc_map = mapping; |
1da177e4 LT |
756 | if (buffer_dirty(bh)) { |
757 | get_bh(bh); | |
758 | spin_unlock(lock); | |
759 | /* | |
760 | * Ensure any pending I/O completes so that | |
9cb569d6 CH |
761 | * write_dirty_buffer() actually writes the |
762 | * current contents - it is a noop if I/O is | |
763 | * still in flight on potentially older | |
764 | * contents. | |
1da177e4 | 765 | */ |
721a9602 | 766 | write_dirty_buffer(bh, WRITE_SYNC); |
9cf6b720 JA |
767 | |
768 | /* | |
769 | * Kick off IO for the previous mapping. Note | |
770 | * that we will not run the very last mapping, | |
771 | * wait_on_buffer() will do that for us | |
772 | * through sync_buffer(). | |
773 | */ | |
1da177e4 LT |
774 | brelse(bh); |
775 | spin_lock(lock); | |
776 | } | |
777 | } | |
778 | } | |
779 | ||
4ee2491e JA |
780 | spin_unlock(lock); |
781 | blk_finish_plug(&plug); | |
782 | spin_lock(lock); | |
783 | ||
1da177e4 LT |
784 | while (!list_empty(&tmp)) { |
785 | bh = BH_ENTRY(tmp.prev); | |
1da177e4 | 786 | get_bh(bh); |
535ee2fb JK |
787 | mapping = bh->b_assoc_map; |
788 | __remove_assoc_queue(bh); | |
789 | /* Avoid race with mark_buffer_dirty_inode() which does | |
790 | * a lockless check and we rely on seeing the dirty bit */ | |
791 | smp_mb(); | |
792 | if (buffer_dirty(bh)) { | |
793 | list_add(&bh->b_assoc_buffers, | |
e3892296 | 794 | &mapping->private_list); |
535ee2fb JK |
795 | bh->b_assoc_map = mapping; |
796 | } | |
1da177e4 LT |
797 | spin_unlock(lock); |
798 | wait_on_buffer(bh); | |
799 | if (!buffer_uptodate(bh)) | |
800 | err = -EIO; | |
801 | brelse(bh); | |
802 | spin_lock(lock); | |
803 | } | |
804 | ||
805 | spin_unlock(lock); | |
806 | err2 = osync_buffers_list(lock, list); | |
807 | if (err) | |
808 | return err; | |
809 | else | |
810 | return err2; | |
811 | } | |
812 | ||
813 | /* | |
814 | * Invalidate any and all dirty buffers on a given inode. We are | |
815 | * probably unmounting the fs, but that doesn't mean we have already | |
816 | * done a sync(). Just drop the buffers from the inode list. | |
817 | * | |
818 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
819 | * assumes that all the buffers are against the blockdev. Not true | |
820 | * for reiserfs. | |
821 | */ | |
822 | void invalidate_inode_buffers(struct inode *inode) | |
823 | { | |
824 | if (inode_has_buffers(inode)) { | |
825 | struct address_space *mapping = &inode->i_data; | |
826 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 827 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
828 | |
829 | spin_lock(&buffer_mapping->private_lock); | |
830 | while (!list_empty(list)) | |
831 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
832 | spin_unlock(&buffer_mapping->private_lock); | |
833 | } | |
834 | } | |
52b19ac9 | 835 | EXPORT_SYMBOL(invalidate_inode_buffers); |
1da177e4 LT |
836 | |
837 | /* | |
838 | * Remove any clean buffers from the inode's buffer list. This is called | |
839 | * when we're trying to free the inode itself. Those buffers can pin it. | |
840 | * | |
841 | * Returns true if all buffers were removed. | |
842 | */ | |
843 | int remove_inode_buffers(struct inode *inode) | |
844 | { | |
845 | int ret = 1; | |
846 | ||
847 | if (inode_has_buffers(inode)) { | |
848 | struct address_space *mapping = &inode->i_data; | |
849 | struct list_head *list = &mapping->private_list; | |
252aa6f5 | 850 | struct address_space *buffer_mapping = mapping->private_data; |
1da177e4 LT |
851 | |
852 | spin_lock(&buffer_mapping->private_lock); | |
853 | while (!list_empty(list)) { | |
854 | struct buffer_head *bh = BH_ENTRY(list->next); | |
855 | if (buffer_dirty(bh)) { | |
856 | ret = 0; | |
857 | break; | |
858 | } | |
859 | __remove_assoc_queue(bh); | |
860 | } | |
861 | spin_unlock(&buffer_mapping->private_lock); | |
862 | } | |
863 | return ret; | |
864 | } | |
865 | ||
866 | /* | |
867 | * Create the appropriate buffers when given a page for data area and | |
868 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
869 | * follow the buffers created. Return NULL if unable to create more | |
870 | * buffers. | |
871 | * | |
872 | * The retry flag is used to differentiate async IO (paging, swapping) | |
873 | * which may not fail from ordinary buffer allocations. | |
874 | */ | |
875 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
876 | int retry) | |
877 | { | |
878 | struct buffer_head *bh, *head; | |
879 | long offset; | |
880 | ||
881 | try_again: | |
882 | head = NULL; | |
883 | offset = PAGE_SIZE; | |
884 | while ((offset -= size) >= 0) { | |
885 | bh = alloc_buffer_head(GFP_NOFS); | |
886 | if (!bh) | |
887 | goto no_grow; | |
888 | ||
1da177e4 LT |
889 | bh->b_this_page = head; |
890 | bh->b_blocknr = -1; | |
891 | head = bh; | |
892 | ||
1da177e4 LT |
893 | bh->b_size = size; |
894 | ||
895 | /* Link the buffer to its page */ | |
896 | set_bh_page(bh, page, offset); | |
1da177e4 LT |
897 | } |
898 | return head; | |
899 | /* | |
900 | * In case anything failed, we just free everything we got. | |
901 | */ | |
902 | no_grow: | |
903 | if (head) { | |
904 | do { | |
905 | bh = head; | |
906 | head = head->b_this_page; | |
907 | free_buffer_head(bh); | |
908 | } while (head); | |
909 | } | |
910 | ||
911 | /* | |
912 | * Return failure for non-async IO requests. Async IO requests | |
913 | * are not allowed to fail, so we have to wait until buffer heads | |
914 | * become available. But we don't want tasks sleeping with | |
915 | * partially complete buffers, so all were released above. | |
916 | */ | |
917 | if (!retry) | |
918 | return NULL; | |
919 | ||
920 | /* We're _really_ low on memory. Now we just | |
921 | * wait for old buffer heads to become free due to | |
922 | * finishing IO. Since this is an async request and | |
923 | * the reserve list is empty, we're sure there are | |
924 | * async buffer heads in use. | |
925 | */ | |
926 | free_more_memory(); | |
927 | goto try_again; | |
928 | } | |
929 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
930 | ||
931 | static inline void | |
932 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
933 | { | |
934 | struct buffer_head *bh, *tail; | |
935 | ||
936 | bh = head; | |
937 | do { | |
938 | tail = bh; | |
939 | bh = bh->b_this_page; | |
940 | } while (bh); | |
941 | tail->b_this_page = head; | |
942 | attach_page_buffers(page, head); | |
943 | } | |
944 | ||
bbec0270 LT |
945 | static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) |
946 | { | |
947 | sector_t retval = ~((sector_t)0); | |
948 | loff_t sz = i_size_read(bdev->bd_inode); | |
949 | ||
950 | if (sz) { | |
951 | unsigned int sizebits = blksize_bits(size); | |
952 | retval = (sz >> sizebits); | |
953 | } | |
954 | return retval; | |
955 | } | |
956 | ||
1da177e4 LT |
957 | /* |
958 | * Initialise the state of a blockdev page's buffers. | |
959 | */ | |
676ce6d5 | 960 | static sector_t |
1da177e4 LT |
961 | init_page_buffers(struct page *page, struct block_device *bdev, |
962 | sector_t block, int size) | |
963 | { | |
964 | struct buffer_head *head = page_buffers(page); | |
965 | struct buffer_head *bh = head; | |
966 | int uptodate = PageUptodate(page); | |
bbec0270 | 967 | sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size); |
1da177e4 LT |
968 | |
969 | do { | |
970 | if (!buffer_mapped(bh)) { | |
971 | init_buffer(bh, NULL, NULL); | |
972 | bh->b_bdev = bdev; | |
973 | bh->b_blocknr = block; | |
974 | if (uptodate) | |
975 | set_buffer_uptodate(bh); | |
080399aa JM |
976 | if (block < end_block) |
977 | set_buffer_mapped(bh); | |
1da177e4 LT |
978 | } |
979 | block++; | |
980 | bh = bh->b_this_page; | |
981 | } while (bh != head); | |
676ce6d5 HD |
982 | |
983 | /* | |
984 | * Caller needs to validate requested block against end of device. | |
985 | */ | |
986 | return end_block; | |
1da177e4 LT |
987 | } |
988 | ||
989 | /* | |
990 | * Create the page-cache page that contains the requested block. | |
991 | * | |
676ce6d5 | 992 | * This is used purely for blockdev mappings. |
1da177e4 | 993 | */ |
676ce6d5 | 994 | static int |
1da177e4 | 995 | grow_dev_page(struct block_device *bdev, sector_t block, |
676ce6d5 | 996 | pgoff_t index, int size, int sizebits) |
1da177e4 LT |
997 | { |
998 | struct inode *inode = bdev->bd_inode; | |
999 | struct page *page; | |
1000 | struct buffer_head *bh; | |
676ce6d5 HD |
1001 | sector_t end_block; |
1002 | int ret = 0; /* Will call free_more_memory() */ | |
84235de3 | 1003 | gfp_t gfp_mask; |
1da177e4 | 1004 | |
84235de3 JW |
1005 | gfp_mask = mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS; |
1006 | gfp_mask |= __GFP_MOVABLE; | |
1007 | /* | |
1008 | * XXX: __getblk_slow() can not really deal with failure and | |
1009 | * will endlessly loop on improvised global reclaim. Prefer | |
1010 | * looping in the allocator rather than here, at least that | |
1011 | * code knows what it's doing. | |
1012 | */ | |
1013 | gfp_mask |= __GFP_NOFAIL; | |
1014 | ||
1015 | page = find_or_create_page(inode->i_mapping, index, gfp_mask); | |
1da177e4 | 1016 | if (!page) |
676ce6d5 | 1017 | return ret; |
1da177e4 | 1018 | |
e827f923 | 1019 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
1020 | |
1021 | if (page_has_buffers(page)) { | |
1022 | bh = page_buffers(page); | |
1023 | if (bh->b_size == size) { | |
676ce6d5 | 1024 | end_block = init_page_buffers(page, bdev, |
f2d5a944 AA |
1025 | (sector_t)index << sizebits, |
1026 | size); | |
676ce6d5 | 1027 | goto done; |
1da177e4 LT |
1028 | } |
1029 | if (!try_to_free_buffers(page)) | |
1030 | goto failed; | |
1031 | } | |
1032 | ||
1033 | /* | |
1034 | * Allocate some buffers for this page | |
1035 | */ | |
1036 | bh = alloc_page_buffers(page, size, 0); | |
1037 | if (!bh) | |
1038 | goto failed; | |
1039 | ||
1040 | /* | |
1041 | * Link the page to the buffers and initialise them. Take the | |
1042 | * lock to be atomic wrt __find_get_block(), which does not | |
1043 | * run under the page lock. | |
1044 | */ | |
1045 | spin_lock(&inode->i_mapping->private_lock); | |
1046 | link_dev_buffers(page, bh); | |
f2d5a944 AA |
1047 | end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits, |
1048 | size); | |
1da177e4 | 1049 | spin_unlock(&inode->i_mapping->private_lock); |
676ce6d5 HD |
1050 | done: |
1051 | ret = (block < end_block) ? 1 : -ENXIO; | |
1da177e4 | 1052 | failed: |
1da177e4 LT |
1053 | unlock_page(page); |
1054 | page_cache_release(page); | |
676ce6d5 | 1055 | return ret; |
1da177e4 LT |
1056 | } |
1057 | ||
1058 | /* | |
1059 | * Create buffers for the specified block device block's page. If | |
1060 | * that page was dirty, the buffers are set dirty also. | |
1da177e4 | 1061 | */ |
858119e1 | 1062 | static int |
1da177e4 LT |
1063 | grow_buffers(struct block_device *bdev, sector_t block, int size) |
1064 | { | |
1da177e4 LT |
1065 | pgoff_t index; |
1066 | int sizebits; | |
1067 | ||
1068 | sizebits = -1; | |
1069 | do { | |
1070 | sizebits++; | |
1071 | } while ((size << sizebits) < PAGE_SIZE); | |
1072 | ||
1073 | index = block >> sizebits; | |
1da177e4 | 1074 | |
e5657933 AM |
1075 | /* |
1076 | * Check for a block which wants to lie outside our maximum possible | |
1077 | * pagecache index. (this comparison is done using sector_t types). | |
1078 | */ | |
1079 | if (unlikely(index != block >> sizebits)) { | |
1080 | char b[BDEVNAME_SIZE]; | |
1081 | ||
1082 | printk(KERN_ERR "%s: requested out-of-range block %llu for " | |
1083 | "device %s\n", | |
8e24eea7 | 1084 | __func__, (unsigned long long)block, |
e5657933 AM |
1085 | bdevname(bdev, b)); |
1086 | return -EIO; | |
1087 | } | |
676ce6d5 | 1088 | |
1da177e4 | 1089 | /* Create a page with the proper size buffers.. */ |
676ce6d5 | 1090 | return grow_dev_page(bdev, block, index, size, sizebits); |
1da177e4 LT |
1091 | } |
1092 | ||
75c96f85 | 1093 | static struct buffer_head * |
1da177e4 LT |
1094 | __getblk_slow(struct block_device *bdev, sector_t block, int size) |
1095 | { | |
1096 | /* Size must be multiple of hard sectorsize */ | |
e1defc4f | 1097 | if (unlikely(size & (bdev_logical_block_size(bdev)-1) || |
1da177e4 LT |
1098 | (size < 512 || size > PAGE_SIZE))) { |
1099 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1100 | size); | |
e1defc4f MP |
1101 | printk(KERN_ERR "logical block size: %d\n", |
1102 | bdev_logical_block_size(bdev)); | |
1da177e4 LT |
1103 | |
1104 | dump_stack(); | |
1105 | return NULL; | |
1106 | } | |
1107 | ||
676ce6d5 HD |
1108 | for (;;) { |
1109 | struct buffer_head *bh; | |
1110 | int ret; | |
1da177e4 LT |
1111 | |
1112 | bh = __find_get_block(bdev, block, size); | |
1113 | if (bh) | |
1114 | return bh; | |
676ce6d5 HD |
1115 | |
1116 | ret = grow_buffers(bdev, block, size); | |
1117 | if (ret < 0) | |
1118 | return NULL; | |
1119 | if (ret == 0) | |
1120 | free_more_memory(); | |
1da177e4 LT |
1121 | } |
1122 | } | |
1123 | ||
1124 | /* | |
1125 | * The relationship between dirty buffers and dirty pages: | |
1126 | * | |
1127 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
1128 | * the page is tagged dirty in its radix tree. | |
1129 | * | |
1130 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1131 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1132 | * merely a hint about the true dirty state. | |
1133 | * | |
1134 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1135 | * (if the page has buffers). | |
1136 | * | |
1137 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1138 | * buffers are not. | |
1139 | * | |
1140 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1141 | * individually become uptodate. But their backing page remains not | |
1142 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1143 | * block_read_full_page() against that page will discover all the uptodate | |
1144 | * buffers, will set the page uptodate and will perform no I/O. | |
1145 | */ | |
1146 | ||
1147 | /** | |
1148 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1149 | * @bh: the buffer_head to mark dirty |
1da177e4 LT |
1150 | * |
1151 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | |
1152 | * backing page dirty, then tag the page as dirty in its address_space's radix | |
1153 | * tree and then attach the address_space's inode to its superblock's dirty | |
1154 | * inode list. | |
1155 | * | |
1156 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
250df6ed | 1157 | * mapping->tree_lock and mapping->host->i_lock. |
1da177e4 | 1158 | */ |
fc9b52cd | 1159 | void mark_buffer_dirty(struct buffer_head *bh) |
1da177e4 | 1160 | { |
787d2214 | 1161 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
1be62dc1 | 1162 | |
5305cb83 TH |
1163 | trace_block_dirty_buffer(bh); |
1164 | ||
1be62dc1 LT |
1165 | /* |
1166 | * Very *carefully* optimize the it-is-already-dirty case. | |
1167 | * | |
1168 | * Don't let the final "is it dirty" escape to before we | |
1169 | * perhaps modified the buffer. | |
1170 | */ | |
1171 | if (buffer_dirty(bh)) { | |
1172 | smp_mb(); | |
1173 | if (buffer_dirty(bh)) | |
1174 | return; | |
1175 | } | |
1176 | ||
a8e7d49a LT |
1177 | if (!test_set_buffer_dirty(bh)) { |
1178 | struct page *page = bh->b_page; | |
8e9d78ed LT |
1179 | if (!TestSetPageDirty(page)) { |
1180 | struct address_space *mapping = page_mapping(page); | |
1181 | if (mapping) | |
1182 | __set_page_dirty(page, mapping, 0); | |
1183 | } | |
a8e7d49a | 1184 | } |
1da177e4 | 1185 | } |
1fe72eaa | 1186 | EXPORT_SYMBOL(mark_buffer_dirty); |
1da177e4 LT |
1187 | |
1188 | /* | |
1189 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1190 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1191 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1192 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1193 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1194 | */ | |
1195 | void __brelse(struct buffer_head * buf) | |
1196 | { | |
1197 | if (atomic_read(&buf->b_count)) { | |
1198 | put_bh(buf); | |
1199 | return; | |
1200 | } | |
5c752ad9 | 1201 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); |
1da177e4 | 1202 | } |
1fe72eaa | 1203 | EXPORT_SYMBOL(__brelse); |
1da177e4 LT |
1204 | |
1205 | /* | |
1206 | * bforget() is like brelse(), except it discards any | |
1207 | * potentially dirty data. | |
1208 | */ | |
1209 | void __bforget(struct buffer_head *bh) | |
1210 | { | |
1211 | clear_buffer_dirty(bh); | |
535ee2fb | 1212 | if (bh->b_assoc_map) { |
1da177e4 LT |
1213 | struct address_space *buffer_mapping = bh->b_page->mapping; |
1214 | ||
1215 | spin_lock(&buffer_mapping->private_lock); | |
1216 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 1217 | bh->b_assoc_map = NULL; |
1da177e4 LT |
1218 | spin_unlock(&buffer_mapping->private_lock); |
1219 | } | |
1220 | __brelse(bh); | |
1221 | } | |
1fe72eaa | 1222 | EXPORT_SYMBOL(__bforget); |
1da177e4 LT |
1223 | |
1224 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1225 | { | |
1226 | lock_buffer(bh); | |
1227 | if (buffer_uptodate(bh)) { | |
1228 | unlock_buffer(bh); | |
1229 | return bh; | |
1230 | } else { | |
1231 | get_bh(bh); | |
1232 | bh->b_end_io = end_buffer_read_sync; | |
1233 | submit_bh(READ, bh); | |
1234 | wait_on_buffer(bh); | |
1235 | if (buffer_uptodate(bh)) | |
1236 | return bh; | |
1237 | } | |
1238 | brelse(bh); | |
1239 | return NULL; | |
1240 | } | |
1241 | ||
1242 | /* | |
1243 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1244 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1245 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1246 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1247 | * CPU's LRUs at the same time. | |
1248 | * | |
1249 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1250 | * sb_find_get_block(). | |
1251 | * | |
1252 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1253 | * a local interrupt disable for that. | |
1254 | */ | |
1255 | ||
1256 | #define BH_LRU_SIZE 8 | |
1257 | ||
1258 | struct bh_lru { | |
1259 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1260 | }; | |
1261 | ||
1262 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1263 | ||
1264 | #ifdef CONFIG_SMP | |
1265 | #define bh_lru_lock() local_irq_disable() | |
1266 | #define bh_lru_unlock() local_irq_enable() | |
1267 | #else | |
1268 | #define bh_lru_lock() preempt_disable() | |
1269 | #define bh_lru_unlock() preempt_enable() | |
1270 | #endif | |
1271 | ||
1272 | static inline void check_irqs_on(void) | |
1273 | { | |
1274 | #ifdef irqs_disabled | |
1275 | BUG_ON(irqs_disabled()); | |
1276 | #endif | |
1277 | } | |
1278 | ||
1279 | /* | |
1280 | * The LRU management algorithm is dopey-but-simple. Sorry. | |
1281 | */ | |
1282 | static void bh_lru_install(struct buffer_head *bh) | |
1283 | { | |
1284 | struct buffer_head *evictee = NULL; | |
1da177e4 LT |
1285 | |
1286 | check_irqs_on(); | |
1287 | bh_lru_lock(); | |
c7b92516 | 1288 | if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { |
1da177e4 LT |
1289 | struct buffer_head *bhs[BH_LRU_SIZE]; |
1290 | int in; | |
1291 | int out = 0; | |
1292 | ||
1293 | get_bh(bh); | |
1294 | bhs[out++] = bh; | |
1295 | for (in = 0; in < BH_LRU_SIZE; in++) { | |
c7b92516 CL |
1296 | struct buffer_head *bh2 = |
1297 | __this_cpu_read(bh_lrus.bhs[in]); | |
1da177e4 LT |
1298 | |
1299 | if (bh2 == bh) { | |
1300 | __brelse(bh2); | |
1301 | } else { | |
1302 | if (out >= BH_LRU_SIZE) { | |
1303 | BUG_ON(evictee != NULL); | |
1304 | evictee = bh2; | |
1305 | } else { | |
1306 | bhs[out++] = bh2; | |
1307 | } | |
1308 | } | |
1309 | } | |
1310 | while (out < BH_LRU_SIZE) | |
1311 | bhs[out++] = NULL; | |
ca6673b0 | 1312 | memcpy(this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); |
1da177e4 LT |
1313 | } |
1314 | bh_lru_unlock(); | |
1315 | ||
1316 | if (evictee) | |
1317 | __brelse(evictee); | |
1318 | } | |
1319 | ||
1320 | /* | |
1321 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1322 | */ | |
858119e1 | 1323 | static struct buffer_head * |
3991d3bd | 1324 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1325 | { |
1326 | struct buffer_head *ret = NULL; | |
3991d3bd | 1327 | unsigned int i; |
1da177e4 LT |
1328 | |
1329 | check_irqs_on(); | |
1330 | bh_lru_lock(); | |
1da177e4 | 1331 | for (i = 0; i < BH_LRU_SIZE; i++) { |
c7b92516 | 1332 | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); |
1da177e4 LT |
1333 | |
1334 | if (bh && bh->b_bdev == bdev && | |
1335 | bh->b_blocknr == block && bh->b_size == size) { | |
1336 | if (i) { | |
1337 | while (i) { | |
c7b92516 CL |
1338 | __this_cpu_write(bh_lrus.bhs[i], |
1339 | __this_cpu_read(bh_lrus.bhs[i - 1])); | |
1da177e4 LT |
1340 | i--; |
1341 | } | |
c7b92516 | 1342 | __this_cpu_write(bh_lrus.bhs[0], bh); |
1da177e4 LT |
1343 | } |
1344 | get_bh(bh); | |
1345 | ret = bh; | |
1346 | break; | |
1347 | } | |
1348 | } | |
1349 | bh_lru_unlock(); | |
1350 | return ret; | |
1351 | } | |
1352 | ||
1353 | /* | |
1354 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1355 | * it in the LRU and mark it as accessed. If it is not present then return | |
1356 | * NULL | |
1357 | */ | |
1358 | struct buffer_head * | |
3991d3bd | 1359 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1360 | { |
1361 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1362 | ||
1363 | if (bh == NULL) { | |
2457aec6 | 1364 | /* __find_get_block_slow will mark the page accessed */ |
385fd4c5 | 1365 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1366 | if (bh) |
1367 | bh_lru_install(bh); | |
2457aec6 | 1368 | } else |
1da177e4 | 1369 | touch_buffer(bh); |
2457aec6 | 1370 | |
1da177e4 LT |
1371 | return bh; |
1372 | } | |
1373 | EXPORT_SYMBOL(__find_get_block); | |
1374 | ||
1375 | /* | |
1376 | * __getblk will locate (and, if necessary, create) the buffer_head | |
1377 | * which corresponds to the passed block_device, block and size. The | |
1378 | * returned buffer has its reference count incremented. | |
1379 | * | |
1da177e4 LT |
1380 | * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() |
1381 | * attempt is failing. FIXME, perhaps? | |
1382 | */ | |
1383 | struct buffer_head * | |
3991d3bd | 1384 | __getblk(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1385 | { |
1386 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1387 | ||
1388 | might_sleep(); | |
1389 | if (bh == NULL) | |
1390 | bh = __getblk_slow(bdev, block, size); | |
1391 | return bh; | |
1392 | } | |
1393 | EXPORT_SYMBOL(__getblk); | |
1394 | ||
1395 | /* | |
1396 | * Do async read-ahead on a buffer.. | |
1397 | */ | |
3991d3bd | 1398 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1399 | { |
1400 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 AM |
1401 | if (likely(bh)) { |
1402 | ll_rw_block(READA, 1, &bh); | |
1403 | brelse(bh); | |
1404 | } | |
1da177e4 LT |
1405 | } |
1406 | EXPORT_SYMBOL(__breadahead); | |
1407 | ||
1408 | /** | |
1409 | * __bread() - reads a specified block and returns the bh | |
67be2dd1 | 1410 | * @bdev: the block_device to read from |
1da177e4 LT |
1411 | * @block: number of block |
1412 | * @size: size (in bytes) to read | |
1413 | * | |
1414 | * Reads a specified block, and returns buffer head that contains it. | |
1415 | * It returns NULL if the block was unreadable. | |
1416 | */ | |
1417 | struct buffer_head * | |
3991d3bd | 1418 | __bread(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1419 | { |
1420 | struct buffer_head *bh = __getblk(bdev, block, size); | |
1421 | ||
a3e713b5 | 1422 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1423 | bh = __bread_slow(bh); |
1424 | return bh; | |
1425 | } | |
1426 | EXPORT_SYMBOL(__bread); | |
1427 | ||
1428 | /* | |
1429 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1430 | * This doesn't race because it runs in each cpu either in irq | |
1431 | * or with preempt disabled. | |
1432 | */ | |
1433 | static void invalidate_bh_lru(void *arg) | |
1434 | { | |
1435 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1436 | int i; | |
1437 | ||
1438 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1439 | brelse(b->bhs[i]); | |
1440 | b->bhs[i] = NULL; | |
1441 | } | |
1442 | put_cpu_var(bh_lrus); | |
1443 | } | |
42be35d0 GBY |
1444 | |
1445 | static bool has_bh_in_lru(int cpu, void *dummy) | |
1446 | { | |
1447 | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); | |
1448 | int i; | |
1da177e4 | 1449 | |
42be35d0 GBY |
1450 | for (i = 0; i < BH_LRU_SIZE; i++) { |
1451 | if (b->bhs[i]) | |
1452 | return 1; | |
1453 | } | |
1454 | ||
1455 | return 0; | |
1456 | } | |
1457 | ||
f9a14399 | 1458 | void invalidate_bh_lrus(void) |
1da177e4 | 1459 | { |
42be35d0 | 1460 | on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); |
1da177e4 | 1461 | } |
9db5579b | 1462 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
1da177e4 LT |
1463 | |
1464 | void set_bh_page(struct buffer_head *bh, | |
1465 | struct page *page, unsigned long offset) | |
1466 | { | |
1467 | bh->b_page = page; | |
e827f923 | 1468 | BUG_ON(offset >= PAGE_SIZE); |
1da177e4 LT |
1469 | if (PageHighMem(page)) |
1470 | /* | |
1471 | * This catches illegal uses and preserves the offset: | |
1472 | */ | |
1473 | bh->b_data = (char *)(0 + offset); | |
1474 | else | |
1475 | bh->b_data = page_address(page) + offset; | |
1476 | } | |
1477 | EXPORT_SYMBOL(set_bh_page); | |
1478 | ||
1479 | /* | |
1480 | * Called when truncating a buffer on a page completely. | |
1481 | */ | |
e7470ee8 MG |
1482 | |
1483 | /* Bits that are cleared during an invalidate */ | |
1484 | #define BUFFER_FLAGS_DISCARD \ | |
1485 | (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ | |
1486 | 1 << BH_Delay | 1 << BH_Unwritten) | |
1487 | ||
858119e1 | 1488 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 | 1489 | { |
e7470ee8 MG |
1490 | unsigned long b_state, b_state_old; |
1491 | ||
1da177e4 LT |
1492 | lock_buffer(bh); |
1493 | clear_buffer_dirty(bh); | |
1494 | bh->b_bdev = NULL; | |
e7470ee8 MG |
1495 | b_state = bh->b_state; |
1496 | for (;;) { | |
1497 | b_state_old = cmpxchg(&bh->b_state, b_state, | |
1498 | (b_state & ~BUFFER_FLAGS_DISCARD)); | |
1499 | if (b_state_old == b_state) | |
1500 | break; | |
1501 | b_state = b_state_old; | |
1502 | } | |
1da177e4 LT |
1503 | unlock_buffer(bh); |
1504 | } | |
1505 | ||
1da177e4 | 1506 | /** |
814e1d25 | 1507 | * block_invalidatepage - invalidate part or all of a buffer-backed page |
1da177e4 LT |
1508 | * |
1509 | * @page: the page which is affected | |
d47992f8 LC |
1510 | * @offset: start of the range to invalidate |
1511 | * @length: length of the range to invalidate | |
1da177e4 LT |
1512 | * |
1513 | * block_invalidatepage() is called when all or part of the page has become | |
814e1d25 | 1514 | * invalidated by a truncate operation. |
1da177e4 LT |
1515 | * |
1516 | * block_invalidatepage() does not have to release all buffers, but it must | |
1517 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1518 | * is underway against any of the blocks which are outside the truncation | |
1519 | * point. Because the caller is about to free (and possibly reuse) those | |
1520 | * blocks on-disk. | |
1521 | */ | |
d47992f8 LC |
1522 | void block_invalidatepage(struct page *page, unsigned int offset, |
1523 | unsigned int length) | |
1da177e4 LT |
1524 | { |
1525 | struct buffer_head *head, *bh, *next; | |
1526 | unsigned int curr_off = 0; | |
d47992f8 | 1527 | unsigned int stop = length + offset; |
1da177e4 LT |
1528 | |
1529 | BUG_ON(!PageLocked(page)); | |
1530 | if (!page_has_buffers(page)) | |
1531 | goto out; | |
1532 | ||
d47992f8 LC |
1533 | /* |
1534 | * Check for overflow | |
1535 | */ | |
1536 | BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); | |
1537 | ||
1da177e4 LT |
1538 | head = page_buffers(page); |
1539 | bh = head; | |
1540 | do { | |
1541 | unsigned int next_off = curr_off + bh->b_size; | |
1542 | next = bh->b_this_page; | |
1543 | ||
d47992f8 LC |
1544 | /* |
1545 | * Are we still fully in range ? | |
1546 | */ | |
1547 | if (next_off > stop) | |
1548 | goto out; | |
1549 | ||
1da177e4 LT |
1550 | /* |
1551 | * is this block fully invalidated? | |
1552 | */ | |
1553 | if (offset <= curr_off) | |
1554 | discard_buffer(bh); | |
1555 | curr_off = next_off; | |
1556 | bh = next; | |
1557 | } while (bh != head); | |
1558 | ||
1559 | /* | |
1560 | * We release buffers only if the entire page is being invalidated. | |
1561 | * The get_block cached value has been unconditionally invalidated, | |
1562 | * so real IO is not possible anymore. | |
1563 | */ | |
1564 | if (offset == 0) | |
2ff28e22 | 1565 | try_to_release_page(page, 0); |
1da177e4 | 1566 | out: |
2ff28e22 | 1567 | return; |
1da177e4 LT |
1568 | } |
1569 | EXPORT_SYMBOL(block_invalidatepage); | |
1570 | ||
d47992f8 | 1571 | |
1da177e4 LT |
1572 | /* |
1573 | * We attach and possibly dirty the buffers atomically wrt | |
1574 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1575 | * is already excluded via the page lock. | |
1576 | */ | |
1577 | void create_empty_buffers(struct page *page, | |
1578 | unsigned long blocksize, unsigned long b_state) | |
1579 | { | |
1580 | struct buffer_head *bh, *head, *tail; | |
1581 | ||
1582 | head = alloc_page_buffers(page, blocksize, 1); | |
1583 | bh = head; | |
1584 | do { | |
1585 | bh->b_state |= b_state; | |
1586 | tail = bh; | |
1587 | bh = bh->b_this_page; | |
1588 | } while (bh); | |
1589 | tail->b_this_page = head; | |
1590 | ||
1591 | spin_lock(&page->mapping->private_lock); | |
1592 | if (PageUptodate(page) || PageDirty(page)) { | |
1593 | bh = head; | |
1594 | do { | |
1595 | if (PageDirty(page)) | |
1596 | set_buffer_dirty(bh); | |
1597 | if (PageUptodate(page)) | |
1598 | set_buffer_uptodate(bh); | |
1599 | bh = bh->b_this_page; | |
1600 | } while (bh != head); | |
1601 | } | |
1602 | attach_page_buffers(page, head); | |
1603 | spin_unlock(&page->mapping->private_lock); | |
1604 | } | |
1605 | EXPORT_SYMBOL(create_empty_buffers); | |
1606 | ||
1607 | /* | |
1608 | * We are taking a block for data and we don't want any output from any | |
1609 | * buffer-cache aliases starting from return from that function and | |
1610 | * until the moment when something will explicitly mark the buffer | |
1611 | * dirty (hopefully that will not happen until we will free that block ;-) | |
1612 | * We don't even need to mark it not-uptodate - nobody can expect | |
1613 | * anything from a newly allocated buffer anyway. We used to used | |
1614 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | |
1615 | * don't want to mark the alias unmapped, for example - it would confuse | |
1616 | * anyone who might pick it with bread() afterwards... | |
1617 | * | |
1618 | * Also.. Note that bforget() doesn't lock the buffer. So there can | |
1619 | * be writeout I/O going on against recently-freed buffers. We don't | |
1620 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | |
1621 | * only if we really need to. That happens here. | |
1622 | */ | |
1623 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | |
1624 | { | |
1625 | struct buffer_head *old_bh; | |
1626 | ||
1627 | might_sleep(); | |
1628 | ||
385fd4c5 | 1629 | old_bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1630 | if (old_bh) { |
1631 | clear_buffer_dirty(old_bh); | |
1632 | wait_on_buffer(old_bh); | |
1633 | clear_buffer_req(old_bh); | |
1634 | __brelse(old_bh); | |
1635 | } | |
1636 | } | |
1637 | EXPORT_SYMBOL(unmap_underlying_metadata); | |
1638 | ||
45bce8f3 LT |
1639 | /* |
1640 | * Size is a power-of-two in the range 512..PAGE_SIZE, | |
1641 | * and the case we care about most is PAGE_SIZE. | |
1642 | * | |
1643 | * So this *could* possibly be written with those | |
1644 | * constraints in mind (relevant mostly if some | |
1645 | * architecture has a slow bit-scan instruction) | |
1646 | */ | |
1647 | static inline int block_size_bits(unsigned int blocksize) | |
1648 | { | |
1649 | return ilog2(blocksize); | |
1650 | } | |
1651 | ||
1652 | static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state) | |
1653 | { | |
1654 | BUG_ON(!PageLocked(page)); | |
1655 | ||
1656 | if (!page_has_buffers(page)) | |
1657 | create_empty_buffers(page, 1 << ACCESS_ONCE(inode->i_blkbits), b_state); | |
1658 | return page_buffers(page); | |
1659 | } | |
1660 | ||
1da177e4 LT |
1661 | /* |
1662 | * NOTE! All mapped/uptodate combinations are valid: | |
1663 | * | |
1664 | * Mapped Uptodate Meaning | |
1665 | * | |
1666 | * No No "unknown" - must do get_block() | |
1667 | * No Yes "hole" - zero-filled | |
1668 | * Yes No "allocated" - allocated on disk, not read in | |
1669 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1670 | * | |
1671 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1672 | */ | |
1673 | ||
1674 | /* | |
1675 | * While block_write_full_page is writing back the dirty buffers under | |
1676 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1677 | * again at any time. We handle that by only looking at the buffer | |
1678 | * state inside lock_buffer(). | |
1679 | * | |
1680 | * If block_write_full_page() is called for regular writeback | |
1681 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1682 | * locked buffer. This only can happen if someone has written the buffer | |
1683 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1684 | * prevents this contention from occurring. | |
6e34eedd TT |
1685 | * |
1686 | * If block_write_full_page() is called with wbc->sync_mode == | |
721a9602 JA |
1687 | * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this |
1688 | * causes the writes to be flagged as synchronous writes. | |
1da177e4 LT |
1689 | */ |
1690 | static int __block_write_full_page(struct inode *inode, struct page *page, | |
35c80d5f CM |
1691 | get_block_t *get_block, struct writeback_control *wbc, |
1692 | bh_end_io_t *handler) | |
1da177e4 LT |
1693 | { |
1694 | int err; | |
1695 | sector_t block; | |
1696 | sector_t last_block; | |
f0fbd5fc | 1697 | struct buffer_head *bh, *head; |
45bce8f3 | 1698 | unsigned int blocksize, bbits; |
1da177e4 | 1699 | int nr_underway = 0; |
6e34eedd | 1700 | int write_op = (wbc->sync_mode == WB_SYNC_ALL ? |
721a9602 | 1701 | WRITE_SYNC : WRITE); |
1da177e4 | 1702 | |
45bce8f3 | 1703 | head = create_page_buffers(page, inode, |
1da177e4 | 1704 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
1da177e4 LT |
1705 | |
1706 | /* | |
1707 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1708 | * here, and the (potentially unmapped) buffers may become dirty at | |
1709 | * any time. If a buffer becomes dirty here after we've inspected it | |
1710 | * then we just miss that fact, and the page stays dirty. | |
1711 | * | |
1712 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1713 | * handle that here by just cleaning them. | |
1714 | */ | |
1715 | ||
1da177e4 | 1716 | bh = head; |
45bce8f3 LT |
1717 | blocksize = bh->b_size; |
1718 | bbits = block_size_bits(blocksize); | |
1719 | ||
1720 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | |
1721 | last_block = (i_size_read(inode) - 1) >> bbits; | |
1da177e4 LT |
1722 | |
1723 | /* | |
1724 | * Get all the dirty buffers mapped to disk addresses and | |
1725 | * handle any aliases from the underlying blockdev's mapping. | |
1726 | */ | |
1727 | do { | |
1728 | if (block > last_block) { | |
1729 | /* | |
1730 | * mapped buffers outside i_size will occur, because | |
1731 | * this page can be outside i_size when there is a | |
1732 | * truncate in progress. | |
1733 | */ | |
1734 | /* | |
1735 | * The buffer was zeroed by block_write_full_page() | |
1736 | */ | |
1737 | clear_buffer_dirty(bh); | |
1738 | set_buffer_uptodate(bh); | |
29a814d2 AT |
1739 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
1740 | buffer_dirty(bh)) { | |
b0cf2321 | 1741 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1742 | err = get_block(inode, block, bh, 1); |
1743 | if (err) | |
1744 | goto recover; | |
29a814d2 | 1745 | clear_buffer_delay(bh); |
1da177e4 LT |
1746 | if (buffer_new(bh)) { |
1747 | /* blockdev mappings never come here */ | |
1748 | clear_buffer_new(bh); | |
1749 | unmap_underlying_metadata(bh->b_bdev, | |
1750 | bh->b_blocknr); | |
1751 | } | |
1752 | } | |
1753 | bh = bh->b_this_page; | |
1754 | block++; | |
1755 | } while (bh != head); | |
1756 | ||
1757 | do { | |
1da177e4 LT |
1758 | if (!buffer_mapped(bh)) |
1759 | continue; | |
1760 | /* | |
1761 | * If it's a fully non-blocking write attempt and we cannot | |
1762 | * lock the buffer then redirty the page. Note that this can | |
5b0830cb JA |
1763 | * potentially cause a busy-wait loop from writeback threads |
1764 | * and kswapd activity, but those code paths have their own | |
1765 | * higher-level throttling. | |
1da177e4 | 1766 | */ |
1b430bee | 1767 | if (wbc->sync_mode != WB_SYNC_NONE) { |
1da177e4 | 1768 | lock_buffer(bh); |
ca5de404 | 1769 | } else if (!trylock_buffer(bh)) { |
1da177e4 LT |
1770 | redirty_page_for_writepage(wbc, page); |
1771 | continue; | |
1772 | } | |
1773 | if (test_clear_buffer_dirty(bh)) { | |
35c80d5f | 1774 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1775 | } else { |
1776 | unlock_buffer(bh); | |
1777 | } | |
1778 | } while ((bh = bh->b_this_page) != head); | |
1779 | ||
1780 | /* | |
1781 | * The page and its buffers are protected by PageWriteback(), so we can | |
1782 | * drop the bh refcounts early. | |
1783 | */ | |
1784 | BUG_ON(PageWriteback(page)); | |
1785 | set_page_writeback(page); | |
1da177e4 LT |
1786 | |
1787 | do { | |
1788 | struct buffer_head *next = bh->b_this_page; | |
1789 | if (buffer_async_write(bh)) { | |
a64c8610 | 1790 | submit_bh(write_op, bh); |
1da177e4 LT |
1791 | nr_underway++; |
1792 | } | |
1da177e4 LT |
1793 | bh = next; |
1794 | } while (bh != head); | |
05937baa | 1795 | unlock_page(page); |
1da177e4 LT |
1796 | |
1797 | err = 0; | |
1798 | done: | |
1799 | if (nr_underway == 0) { | |
1800 | /* | |
1801 | * The page was marked dirty, but the buffers were | |
1802 | * clean. Someone wrote them back by hand with | |
1803 | * ll_rw_block/submit_bh. A rare case. | |
1804 | */ | |
1da177e4 | 1805 | end_page_writeback(page); |
3d67f2d7 | 1806 | |
1da177e4 LT |
1807 | /* |
1808 | * The page and buffer_heads can be released at any time from | |
1809 | * here on. | |
1810 | */ | |
1da177e4 LT |
1811 | } |
1812 | return err; | |
1813 | ||
1814 | recover: | |
1815 | /* | |
1816 | * ENOSPC, or some other error. We may already have added some | |
1817 | * blocks to the file, so we need to write these out to avoid | |
1818 | * exposing stale data. | |
1819 | * The page is currently locked and not marked for writeback | |
1820 | */ | |
1821 | bh = head; | |
1822 | /* Recovery: lock and submit the mapped buffers */ | |
1823 | do { | |
29a814d2 AT |
1824 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
1825 | !buffer_delay(bh)) { | |
1da177e4 | 1826 | lock_buffer(bh); |
35c80d5f | 1827 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1828 | } else { |
1829 | /* | |
1830 | * The buffer may have been set dirty during | |
1831 | * attachment to a dirty page. | |
1832 | */ | |
1833 | clear_buffer_dirty(bh); | |
1834 | } | |
1835 | } while ((bh = bh->b_this_page) != head); | |
1836 | SetPageError(page); | |
1837 | BUG_ON(PageWriteback(page)); | |
7e4c3690 | 1838 | mapping_set_error(page->mapping, err); |
1da177e4 | 1839 | set_page_writeback(page); |
1da177e4 LT |
1840 | do { |
1841 | struct buffer_head *next = bh->b_this_page; | |
1842 | if (buffer_async_write(bh)) { | |
1843 | clear_buffer_dirty(bh); | |
a64c8610 | 1844 | submit_bh(write_op, bh); |
1da177e4 LT |
1845 | nr_underway++; |
1846 | } | |
1da177e4 LT |
1847 | bh = next; |
1848 | } while (bh != head); | |
ffda9d30 | 1849 | unlock_page(page); |
1da177e4 LT |
1850 | goto done; |
1851 | } | |
1852 | ||
afddba49 NP |
1853 | /* |
1854 | * If a page has any new buffers, zero them out here, and mark them uptodate | |
1855 | * and dirty so they'll be written out (in order to prevent uninitialised | |
1856 | * block data from leaking). And clear the new bit. | |
1857 | */ | |
1858 | void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) | |
1859 | { | |
1860 | unsigned int block_start, block_end; | |
1861 | struct buffer_head *head, *bh; | |
1862 | ||
1863 | BUG_ON(!PageLocked(page)); | |
1864 | if (!page_has_buffers(page)) | |
1865 | return; | |
1866 | ||
1867 | bh = head = page_buffers(page); | |
1868 | block_start = 0; | |
1869 | do { | |
1870 | block_end = block_start + bh->b_size; | |
1871 | ||
1872 | if (buffer_new(bh)) { | |
1873 | if (block_end > from && block_start < to) { | |
1874 | if (!PageUptodate(page)) { | |
1875 | unsigned start, size; | |
1876 | ||
1877 | start = max(from, block_start); | |
1878 | size = min(to, block_end) - start; | |
1879 | ||
eebd2aa3 | 1880 | zero_user(page, start, size); |
afddba49 NP |
1881 | set_buffer_uptodate(bh); |
1882 | } | |
1883 | ||
1884 | clear_buffer_new(bh); | |
1885 | mark_buffer_dirty(bh); | |
1886 | } | |
1887 | } | |
1888 | ||
1889 | block_start = block_end; | |
1890 | bh = bh->b_this_page; | |
1891 | } while (bh != head); | |
1892 | } | |
1893 | EXPORT_SYMBOL(page_zero_new_buffers); | |
1894 | ||
ebdec241 | 1895 | int __block_write_begin(struct page *page, loff_t pos, unsigned len, |
6e1db88d | 1896 | get_block_t *get_block) |
1da177e4 | 1897 | { |
ebdec241 CH |
1898 | unsigned from = pos & (PAGE_CACHE_SIZE - 1); |
1899 | unsigned to = from + len; | |
6e1db88d | 1900 | struct inode *inode = page->mapping->host; |
1da177e4 LT |
1901 | unsigned block_start, block_end; |
1902 | sector_t block; | |
1903 | int err = 0; | |
1904 | unsigned blocksize, bbits; | |
1905 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1906 | ||
1907 | BUG_ON(!PageLocked(page)); | |
1908 | BUG_ON(from > PAGE_CACHE_SIZE); | |
1909 | BUG_ON(to > PAGE_CACHE_SIZE); | |
1910 | BUG_ON(from > to); | |
1911 | ||
45bce8f3 LT |
1912 | head = create_page_buffers(page, inode, 0); |
1913 | blocksize = head->b_size; | |
1914 | bbits = block_size_bits(blocksize); | |
1da177e4 | 1915 | |
1da177e4 LT |
1916 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); |
1917 | ||
1918 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1919 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1920 | block_end = block_start + blocksize; | |
1921 | if (block_end <= from || block_start >= to) { | |
1922 | if (PageUptodate(page)) { | |
1923 | if (!buffer_uptodate(bh)) | |
1924 | set_buffer_uptodate(bh); | |
1925 | } | |
1926 | continue; | |
1927 | } | |
1928 | if (buffer_new(bh)) | |
1929 | clear_buffer_new(bh); | |
1930 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 1931 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1932 | err = get_block(inode, block, bh, 1); |
1933 | if (err) | |
f3ddbdc6 | 1934 | break; |
1da177e4 | 1935 | if (buffer_new(bh)) { |
1da177e4 LT |
1936 | unmap_underlying_metadata(bh->b_bdev, |
1937 | bh->b_blocknr); | |
1938 | if (PageUptodate(page)) { | |
637aff46 | 1939 | clear_buffer_new(bh); |
1da177e4 | 1940 | set_buffer_uptodate(bh); |
637aff46 | 1941 | mark_buffer_dirty(bh); |
1da177e4 LT |
1942 | continue; |
1943 | } | |
eebd2aa3 CL |
1944 | if (block_end > to || block_start < from) |
1945 | zero_user_segments(page, | |
1946 | to, block_end, | |
1947 | block_start, from); | |
1da177e4 LT |
1948 | continue; |
1949 | } | |
1950 | } | |
1951 | if (PageUptodate(page)) { | |
1952 | if (!buffer_uptodate(bh)) | |
1953 | set_buffer_uptodate(bh); | |
1954 | continue; | |
1955 | } | |
1956 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
33a266dd | 1957 | !buffer_unwritten(bh) && |
1da177e4 LT |
1958 | (block_start < from || block_end > to)) { |
1959 | ll_rw_block(READ, 1, &bh); | |
1960 | *wait_bh++=bh; | |
1961 | } | |
1962 | } | |
1963 | /* | |
1964 | * If we issued read requests - let them complete. | |
1965 | */ | |
1966 | while(wait_bh > wait) { | |
1967 | wait_on_buffer(*--wait_bh); | |
1968 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 1969 | err = -EIO; |
1da177e4 | 1970 | } |
f9f07b6c | 1971 | if (unlikely(err)) |
afddba49 | 1972 | page_zero_new_buffers(page, from, to); |
1da177e4 LT |
1973 | return err; |
1974 | } | |
ebdec241 | 1975 | EXPORT_SYMBOL(__block_write_begin); |
1da177e4 LT |
1976 | |
1977 | static int __block_commit_write(struct inode *inode, struct page *page, | |
1978 | unsigned from, unsigned to) | |
1979 | { | |
1980 | unsigned block_start, block_end; | |
1981 | int partial = 0; | |
1982 | unsigned blocksize; | |
1983 | struct buffer_head *bh, *head; | |
1984 | ||
45bce8f3 LT |
1985 | bh = head = page_buffers(page); |
1986 | blocksize = bh->b_size; | |
1da177e4 | 1987 | |
45bce8f3 LT |
1988 | block_start = 0; |
1989 | do { | |
1da177e4 LT |
1990 | block_end = block_start + blocksize; |
1991 | if (block_end <= from || block_start >= to) { | |
1992 | if (!buffer_uptodate(bh)) | |
1993 | partial = 1; | |
1994 | } else { | |
1995 | set_buffer_uptodate(bh); | |
1996 | mark_buffer_dirty(bh); | |
1997 | } | |
afddba49 | 1998 | clear_buffer_new(bh); |
45bce8f3 LT |
1999 | |
2000 | block_start = block_end; | |
2001 | bh = bh->b_this_page; | |
2002 | } while (bh != head); | |
1da177e4 LT |
2003 | |
2004 | /* | |
2005 | * If this is a partial write which happened to make all buffers | |
2006 | * uptodate then we can optimize away a bogus readpage() for | |
2007 | * the next read(). Here we 'discover' whether the page went | |
2008 | * uptodate as a result of this (potentially partial) write. | |
2009 | */ | |
2010 | if (!partial) | |
2011 | SetPageUptodate(page); | |
2012 | return 0; | |
2013 | } | |
2014 | ||
afddba49 | 2015 | /* |
155130a4 CH |
2016 | * block_write_begin takes care of the basic task of block allocation and |
2017 | * bringing partial write blocks uptodate first. | |
2018 | * | |
7bb46a67 | 2019 | * The filesystem needs to handle block truncation upon failure. |
afddba49 | 2020 | */ |
155130a4 CH |
2021 | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, |
2022 | unsigned flags, struct page **pagep, get_block_t *get_block) | |
afddba49 | 2023 | { |
6e1db88d | 2024 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; |
afddba49 | 2025 | struct page *page; |
6e1db88d | 2026 | int status; |
afddba49 | 2027 | |
6e1db88d CH |
2028 | page = grab_cache_page_write_begin(mapping, index, flags); |
2029 | if (!page) | |
2030 | return -ENOMEM; | |
afddba49 | 2031 | |
6e1db88d | 2032 | status = __block_write_begin(page, pos, len, get_block); |
afddba49 | 2033 | if (unlikely(status)) { |
6e1db88d CH |
2034 | unlock_page(page); |
2035 | page_cache_release(page); | |
2036 | page = NULL; | |
afddba49 NP |
2037 | } |
2038 | ||
6e1db88d | 2039 | *pagep = page; |
afddba49 NP |
2040 | return status; |
2041 | } | |
2042 | EXPORT_SYMBOL(block_write_begin); | |
2043 | ||
2044 | int block_write_end(struct file *file, struct address_space *mapping, | |
2045 | loff_t pos, unsigned len, unsigned copied, | |
2046 | struct page *page, void *fsdata) | |
2047 | { | |
2048 | struct inode *inode = mapping->host; | |
2049 | unsigned start; | |
2050 | ||
2051 | start = pos & (PAGE_CACHE_SIZE - 1); | |
2052 | ||
2053 | if (unlikely(copied < len)) { | |
2054 | /* | |
2055 | * The buffers that were written will now be uptodate, so we | |
2056 | * don't have to worry about a readpage reading them and | |
2057 | * overwriting a partial write. However if we have encountered | |
2058 | * a short write and only partially written into a buffer, it | |
2059 | * will not be marked uptodate, so a readpage might come in and | |
2060 | * destroy our partial write. | |
2061 | * | |
2062 | * Do the simplest thing, and just treat any short write to a | |
2063 | * non uptodate page as a zero-length write, and force the | |
2064 | * caller to redo the whole thing. | |
2065 | */ | |
2066 | if (!PageUptodate(page)) | |
2067 | copied = 0; | |
2068 | ||
2069 | page_zero_new_buffers(page, start+copied, start+len); | |
2070 | } | |
2071 | flush_dcache_page(page); | |
2072 | ||
2073 | /* This could be a short (even 0-length) commit */ | |
2074 | __block_commit_write(inode, page, start, start+copied); | |
2075 | ||
2076 | return copied; | |
2077 | } | |
2078 | EXPORT_SYMBOL(block_write_end); | |
2079 | ||
2080 | int generic_write_end(struct file *file, struct address_space *mapping, | |
2081 | loff_t pos, unsigned len, unsigned copied, | |
2082 | struct page *page, void *fsdata) | |
2083 | { | |
2084 | struct inode *inode = mapping->host; | |
c7d206b3 | 2085 | int i_size_changed = 0; |
afddba49 NP |
2086 | |
2087 | copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); | |
2088 | ||
2089 | /* | |
2090 | * No need to use i_size_read() here, the i_size | |
2091 | * cannot change under us because we hold i_mutex. | |
2092 | * | |
2093 | * But it's important to update i_size while still holding page lock: | |
2094 | * page writeout could otherwise come in and zero beyond i_size. | |
2095 | */ | |
2096 | if (pos+copied > inode->i_size) { | |
2097 | i_size_write(inode, pos+copied); | |
c7d206b3 | 2098 | i_size_changed = 1; |
afddba49 NP |
2099 | } |
2100 | ||
2101 | unlock_page(page); | |
2102 | page_cache_release(page); | |
2103 | ||
c7d206b3 JK |
2104 | /* |
2105 | * Don't mark the inode dirty under page lock. First, it unnecessarily | |
2106 | * makes the holding time of page lock longer. Second, it forces lock | |
2107 | * ordering of page lock and transaction start for journaling | |
2108 | * filesystems. | |
2109 | */ | |
2110 | if (i_size_changed) | |
2111 | mark_inode_dirty(inode); | |
2112 | ||
afddba49 NP |
2113 | return copied; |
2114 | } | |
2115 | EXPORT_SYMBOL(generic_write_end); | |
2116 | ||
8ab22b9a HH |
2117 | /* |
2118 | * block_is_partially_uptodate checks whether buffers within a page are | |
2119 | * uptodate or not. | |
2120 | * | |
2121 | * Returns true if all buffers which correspond to a file portion | |
2122 | * we want to read are uptodate. | |
2123 | */ | |
c186afb4 AV |
2124 | int block_is_partially_uptodate(struct page *page, unsigned long from, |
2125 | unsigned long count) | |
8ab22b9a | 2126 | { |
8ab22b9a HH |
2127 | unsigned block_start, block_end, blocksize; |
2128 | unsigned to; | |
2129 | struct buffer_head *bh, *head; | |
2130 | int ret = 1; | |
2131 | ||
2132 | if (!page_has_buffers(page)) | |
2133 | return 0; | |
2134 | ||
45bce8f3 LT |
2135 | head = page_buffers(page); |
2136 | blocksize = head->b_size; | |
c186afb4 | 2137 | to = min_t(unsigned, PAGE_CACHE_SIZE - from, count); |
8ab22b9a HH |
2138 | to = from + to; |
2139 | if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) | |
2140 | return 0; | |
2141 | ||
8ab22b9a HH |
2142 | bh = head; |
2143 | block_start = 0; | |
2144 | do { | |
2145 | block_end = block_start + blocksize; | |
2146 | if (block_end > from && block_start < to) { | |
2147 | if (!buffer_uptodate(bh)) { | |
2148 | ret = 0; | |
2149 | break; | |
2150 | } | |
2151 | if (block_end >= to) | |
2152 | break; | |
2153 | } | |
2154 | block_start = block_end; | |
2155 | bh = bh->b_this_page; | |
2156 | } while (bh != head); | |
2157 | ||
2158 | return ret; | |
2159 | } | |
2160 | EXPORT_SYMBOL(block_is_partially_uptodate); | |
2161 | ||
1da177e4 LT |
2162 | /* |
2163 | * Generic "read page" function for block devices that have the normal | |
2164 | * get_block functionality. This is most of the block device filesystems. | |
2165 | * Reads the page asynchronously --- the unlock_buffer() and | |
2166 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
2167 | * page struct once IO has completed. | |
2168 | */ | |
2169 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
2170 | { | |
2171 | struct inode *inode = page->mapping->host; | |
2172 | sector_t iblock, lblock; | |
2173 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
45bce8f3 | 2174 | unsigned int blocksize, bbits; |
1da177e4 LT |
2175 | int nr, i; |
2176 | int fully_mapped = 1; | |
2177 | ||
45bce8f3 LT |
2178 | head = create_page_buffers(page, inode, 0); |
2179 | blocksize = head->b_size; | |
2180 | bbits = block_size_bits(blocksize); | |
1da177e4 | 2181 | |
45bce8f3 LT |
2182 | iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); |
2183 | lblock = (i_size_read(inode)+blocksize-1) >> bbits; | |
1da177e4 LT |
2184 | bh = head; |
2185 | nr = 0; | |
2186 | i = 0; | |
2187 | ||
2188 | do { | |
2189 | if (buffer_uptodate(bh)) | |
2190 | continue; | |
2191 | ||
2192 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
2193 | int err = 0; |
2194 | ||
1da177e4 LT |
2195 | fully_mapped = 0; |
2196 | if (iblock < lblock) { | |
b0cf2321 | 2197 | WARN_ON(bh->b_size != blocksize); |
c64610ba AM |
2198 | err = get_block(inode, iblock, bh, 0); |
2199 | if (err) | |
1da177e4 LT |
2200 | SetPageError(page); |
2201 | } | |
2202 | if (!buffer_mapped(bh)) { | |
eebd2aa3 | 2203 | zero_user(page, i * blocksize, blocksize); |
c64610ba AM |
2204 | if (!err) |
2205 | set_buffer_uptodate(bh); | |
1da177e4 LT |
2206 | continue; |
2207 | } | |
2208 | /* | |
2209 | * get_block() might have updated the buffer | |
2210 | * synchronously | |
2211 | */ | |
2212 | if (buffer_uptodate(bh)) | |
2213 | continue; | |
2214 | } | |
2215 | arr[nr++] = bh; | |
2216 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
2217 | ||
2218 | if (fully_mapped) | |
2219 | SetPageMappedToDisk(page); | |
2220 | ||
2221 | if (!nr) { | |
2222 | /* | |
2223 | * All buffers are uptodate - we can set the page uptodate | |
2224 | * as well. But not if get_block() returned an error. | |
2225 | */ | |
2226 | if (!PageError(page)) | |
2227 | SetPageUptodate(page); | |
2228 | unlock_page(page); | |
2229 | return 0; | |
2230 | } | |
2231 | ||
2232 | /* Stage two: lock the buffers */ | |
2233 | for (i = 0; i < nr; i++) { | |
2234 | bh = arr[i]; | |
2235 | lock_buffer(bh); | |
2236 | mark_buffer_async_read(bh); | |
2237 | } | |
2238 | ||
2239 | /* | |
2240 | * Stage 3: start the IO. Check for uptodateness | |
2241 | * inside the buffer lock in case another process reading | |
2242 | * the underlying blockdev brought it uptodate (the sct fix). | |
2243 | */ | |
2244 | for (i = 0; i < nr; i++) { | |
2245 | bh = arr[i]; | |
2246 | if (buffer_uptodate(bh)) | |
2247 | end_buffer_async_read(bh, 1); | |
2248 | else | |
2249 | submit_bh(READ, bh); | |
2250 | } | |
2251 | return 0; | |
2252 | } | |
1fe72eaa | 2253 | EXPORT_SYMBOL(block_read_full_page); |
1da177e4 LT |
2254 | |
2255 | /* utility function for filesystems that need to do work on expanding | |
89e10787 | 2256 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
1da177e4 LT |
2257 | * deal with the hole. |
2258 | */ | |
89e10787 | 2259 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
1da177e4 LT |
2260 | { |
2261 | struct address_space *mapping = inode->i_mapping; | |
2262 | struct page *page; | |
89e10787 | 2263 | void *fsdata; |
1da177e4 LT |
2264 | int err; |
2265 | ||
c08d3b0e NP |
2266 | err = inode_newsize_ok(inode, size); |
2267 | if (err) | |
1da177e4 LT |
2268 | goto out; |
2269 | ||
89e10787 NP |
2270 | err = pagecache_write_begin(NULL, mapping, size, 0, |
2271 | AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, | |
2272 | &page, &fsdata); | |
2273 | if (err) | |
05eb0b51 | 2274 | goto out; |
05eb0b51 | 2275 | |
89e10787 NP |
2276 | err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); |
2277 | BUG_ON(err > 0); | |
05eb0b51 | 2278 | |
1da177e4 LT |
2279 | out: |
2280 | return err; | |
2281 | } | |
1fe72eaa | 2282 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 | 2283 | |
f1e3af72 AB |
2284 | static int cont_expand_zero(struct file *file, struct address_space *mapping, |
2285 | loff_t pos, loff_t *bytes) | |
1da177e4 | 2286 | { |
1da177e4 | 2287 | struct inode *inode = mapping->host; |
1da177e4 | 2288 | unsigned blocksize = 1 << inode->i_blkbits; |
89e10787 NP |
2289 | struct page *page; |
2290 | void *fsdata; | |
2291 | pgoff_t index, curidx; | |
2292 | loff_t curpos; | |
2293 | unsigned zerofrom, offset, len; | |
2294 | int err = 0; | |
1da177e4 | 2295 | |
89e10787 NP |
2296 | index = pos >> PAGE_CACHE_SHIFT; |
2297 | offset = pos & ~PAGE_CACHE_MASK; | |
2298 | ||
2299 | while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { | |
2300 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 LT |
2301 | if (zerofrom & (blocksize-1)) { |
2302 | *bytes |= (blocksize-1); | |
2303 | (*bytes)++; | |
2304 | } | |
89e10787 | 2305 | len = PAGE_CACHE_SIZE - zerofrom; |
1da177e4 | 2306 | |
89e10787 NP |
2307 | err = pagecache_write_begin(file, mapping, curpos, len, |
2308 | AOP_FLAG_UNINTERRUPTIBLE, | |
2309 | &page, &fsdata); | |
2310 | if (err) | |
2311 | goto out; | |
eebd2aa3 | 2312 | zero_user(page, zerofrom, len); |
89e10787 NP |
2313 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2314 | page, fsdata); | |
2315 | if (err < 0) | |
2316 | goto out; | |
2317 | BUG_ON(err != len); | |
2318 | err = 0; | |
061e9746 OH |
2319 | |
2320 | balance_dirty_pages_ratelimited(mapping); | |
89e10787 | 2321 | } |
1da177e4 | 2322 | |
89e10787 NP |
2323 | /* page covers the boundary, find the boundary offset */ |
2324 | if (index == curidx) { | |
2325 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 | 2326 | /* if we will expand the thing last block will be filled */ |
89e10787 NP |
2327 | if (offset <= zerofrom) { |
2328 | goto out; | |
2329 | } | |
2330 | if (zerofrom & (blocksize-1)) { | |
1da177e4 LT |
2331 | *bytes |= (blocksize-1); |
2332 | (*bytes)++; | |
2333 | } | |
89e10787 | 2334 | len = offset - zerofrom; |
1da177e4 | 2335 | |
89e10787 NP |
2336 | err = pagecache_write_begin(file, mapping, curpos, len, |
2337 | AOP_FLAG_UNINTERRUPTIBLE, | |
2338 | &page, &fsdata); | |
2339 | if (err) | |
2340 | goto out; | |
eebd2aa3 | 2341 | zero_user(page, zerofrom, len); |
89e10787 NP |
2342 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2343 | page, fsdata); | |
2344 | if (err < 0) | |
2345 | goto out; | |
2346 | BUG_ON(err != len); | |
2347 | err = 0; | |
1da177e4 | 2348 | } |
89e10787 NP |
2349 | out: |
2350 | return err; | |
2351 | } | |
2352 | ||
2353 | /* | |
2354 | * For moronic filesystems that do not allow holes in file. | |
2355 | * We may have to extend the file. | |
2356 | */ | |
282dc178 | 2357 | int cont_write_begin(struct file *file, struct address_space *mapping, |
89e10787 NP |
2358 | loff_t pos, unsigned len, unsigned flags, |
2359 | struct page **pagep, void **fsdata, | |
2360 | get_block_t *get_block, loff_t *bytes) | |
2361 | { | |
2362 | struct inode *inode = mapping->host; | |
2363 | unsigned blocksize = 1 << inode->i_blkbits; | |
2364 | unsigned zerofrom; | |
2365 | int err; | |
2366 | ||
2367 | err = cont_expand_zero(file, mapping, pos, bytes); | |
2368 | if (err) | |
155130a4 | 2369 | return err; |
89e10787 NP |
2370 | |
2371 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2372 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { | |
2373 | *bytes |= (blocksize-1); | |
2374 | (*bytes)++; | |
1da177e4 | 2375 | } |
1da177e4 | 2376 | |
155130a4 | 2377 | return block_write_begin(mapping, pos, len, flags, pagep, get_block); |
1da177e4 | 2378 | } |
1fe72eaa | 2379 | EXPORT_SYMBOL(cont_write_begin); |
1da177e4 | 2380 | |
1da177e4 LT |
2381 | int block_commit_write(struct page *page, unsigned from, unsigned to) |
2382 | { | |
2383 | struct inode *inode = page->mapping->host; | |
2384 | __block_commit_write(inode,page,from,to); | |
2385 | return 0; | |
2386 | } | |
1fe72eaa | 2387 | EXPORT_SYMBOL(block_commit_write); |
1da177e4 | 2388 | |
54171690 DC |
2389 | /* |
2390 | * block_page_mkwrite() is not allowed to change the file size as it gets | |
2391 | * called from a page fault handler when a page is first dirtied. Hence we must | |
2392 | * be careful to check for EOF conditions here. We set the page up correctly | |
2393 | * for a written page which means we get ENOSPC checking when writing into | |
2394 | * holes and correct delalloc and unwritten extent mapping on filesystems that | |
2395 | * support these features. | |
2396 | * | |
2397 | * We are not allowed to take the i_mutex here so we have to play games to | |
2398 | * protect against truncate races as the page could now be beyond EOF. Because | |
7bb46a67 | 2399 | * truncate writes the inode size before removing pages, once we have the |
54171690 DC |
2400 | * page lock we can determine safely if the page is beyond EOF. If it is not |
2401 | * beyond EOF, then the page is guaranteed safe against truncation until we | |
2402 | * unlock the page. | |
ea13a864 | 2403 | * |
14da9200 JK |
2404 | * Direct callers of this function should protect against filesystem freezing |
2405 | * using sb_start_write() - sb_end_write() functions. | |
54171690 | 2406 | */ |
24da4fab JK |
2407 | int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, |
2408 | get_block_t get_block) | |
54171690 | 2409 | { |
c2ec175c | 2410 | struct page *page = vmf->page; |
496ad9aa | 2411 | struct inode *inode = file_inode(vma->vm_file); |
54171690 DC |
2412 | unsigned long end; |
2413 | loff_t size; | |
24da4fab | 2414 | int ret; |
54171690 DC |
2415 | |
2416 | lock_page(page); | |
2417 | size = i_size_read(inode); | |
2418 | if ((page->mapping != inode->i_mapping) || | |
18336338 | 2419 | (page_offset(page) > size)) { |
24da4fab JK |
2420 | /* We overload EFAULT to mean page got truncated */ |
2421 | ret = -EFAULT; | |
2422 | goto out_unlock; | |
54171690 DC |
2423 | } |
2424 | ||
2425 | /* page is wholly or partially inside EOF */ | |
2426 | if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) | |
2427 | end = size & ~PAGE_CACHE_MASK; | |
2428 | else | |
2429 | end = PAGE_CACHE_SIZE; | |
2430 | ||
ebdec241 | 2431 | ret = __block_write_begin(page, 0, end, get_block); |
54171690 DC |
2432 | if (!ret) |
2433 | ret = block_commit_write(page, 0, end); | |
2434 | ||
24da4fab JK |
2435 | if (unlikely(ret < 0)) |
2436 | goto out_unlock; | |
ea13a864 | 2437 | set_page_dirty(page); |
1d1d1a76 | 2438 | wait_for_stable_page(page); |
24da4fab JK |
2439 | return 0; |
2440 | out_unlock: | |
2441 | unlock_page(page); | |
54171690 | 2442 | return ret; |
24da4fab JK |
2443 | } |
2444 | EXPORT_SYMBOL(__block_page_mkwrite); | |
2445 | ||
2446 | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, | |
2447 | get_block_t get_block) | |
2448 | { | |
ea13a864 | 2449 | int ret; |
496ad9aa | 2450 | struct super_block *sb = file_inode(vma->vm_file)->i_sb; |
24da4fab | 2451 | |
14da9200 | 2452 | sb_start_pagefault(sb); |
041bbb6d TT |
2453 | |
2454 | /* | |
2455 | * Update file times before taking page lock. We may end up failing the | |
2456 | * fault so this update may be superfluous but who really cares... | |
2457 | */ | |
2458 | file_update_time(vma->vm_file); | |
2459 | ||
ea13a864 | 2460 | ret = __block_page_mkwrite(vma, vmf, get_block); |
14da9200 | 2461 | sb_end_pagefault(sb); |
24da4fab | 2462 | return block_page_mkwrite_return(ret); |
54171690 | 2463 | } |
1fe72eaa | 2464 | EXPORT_SYMBOL(block_page_mkwrite); |
1da177e4 LT |
2465 | |
2466 | /* | |
03158cd7 | 2467 | * nobh_write_begin()'s prereads are special: the buffer_heads are freed |
1da177e4 LT |
2468 | * immediately, while under the page lock. So it needs a special end_io |
2469 | * handler which does not touch the bh after unlocking it. | |
1da177e4 LT |
2470 | */ |
2471 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2472 | { | |
68671f35 | 2473 | __end_buffer_read_notouch(bh, uptodate); |
1da177e4 LT |
2474 | } |
2475 | ||
03158cd7 NP |
2476 | /* |
2477 | * Attach the singly-linked list of buffers created by nobh_write_begin, to | |
2478 | * the page (converting it to circular linked list and taking care of page | |
2479 | * dirty races). | |
2480 | */ | |
2481 | static void attach_nobh_buffers(struct page *page, struct buffer_head *head) | |
2482 | { | |
2483 | struct buffer_head *bh; | |
2484 | ||
2485 | BUG_ON(!PageLocked(page)); | |
2486 | ||
2487 | spin_lock(&page->mapping->private_lock); | |
2488 | bh = head; | |
2489 | do { | |
2490 | if (PageDirty(page)) | |
2491 | set_buffer_dirty(bh); | |
2492 | if (!bh->b_this_page) | |
2493 | bh->b_this_page = head; | |
2494 | bh = bh->b_this_page; | |
2495 | } while (bh != head); | |
2496 | attach_page_buffers(page, head); | |
2497 | spin_unlock(&page->mapping->private_lock); | |
2498 | } | |
2499 | ||
1da177e4 | 2500 | /* |
ea0f04e5 CH |
2501 | * On entry, the page is fully not uptodate. |
2502 | * On exit the page is fully uptodate in the areas outside (from,to) | |
7bb46a67 | 2503 | * The filesystem needs to handle block truncation upon failure. |
1da177e4 | 2504 | */ |
ea0f04e5 | 2505 | int nobh_write_begin(struct address_space *mapping, |
03158cd7 NP |
2506 | loff_t pos, unsigned len, unsigned flags, |
2507 | struct page **pagep, void **fsdata, | |
1da177e4 LT |
2508 | get_block_t *get_block) |
2509 | { | |
03158cd7 | 2510 | struct inode *inode = mapping->host; |
1da177e4 LT |
2511 | const unsigned blkbits = inode->i_blkbits; |
2512 | const unsigned blocksize = 1 << blkbits; | |
a4b0672d | 2513 | struct buffer_head *head, *bh; |
03158cd7 NP |
2514 | struct page *page; |
2515 | pgoff_t index; | |
2516 | unsigned from, to; | |
1da177e4 | 2517 | unsigned block_in_page; |
a4b0672d | 2518 | unsigned block_start, block_end; |
1da177e4 | 2519 | sector_t block_in_file; |
1da177e4 | 2520 | int nr_reads = 0; |
1da177e4 LT |
2521 | int ret = 0; |
2522 | int is_mapped_to_disk = 1; | |
1da177e4 | 2523 | |
03158cd7 NP |
2524 | index = pos >> PAGE_CACHE_SHIFT; |
2525 | from = pos & (PAGE_CACHE_SIZE - 1); | |
2526 | to = from + len; | |
2527 | ||
54566b2c | 2528 | page = grab_cache_page_write_begin(mapping, index, flags); |
03158cd7 NP |
2529 | if (!page) |
2530 | return -ENOMEM; | |
2531 | *pagep = page; | |
2532 | *fsdata = NULL; | |
2533 | ||
2534 | if (page_has_buffers(page)) { | |
309f77ad NK |
2535 | ret = __block_write_begin(page, pos, len, get_block); |
2536 | if (unlikely(ret)) | |
2537 | goto out_release; | |
2538 | return ret; | |
03158cd7 | 2539 | } |
a4b0672d | 2540 | |
1da177e4 LT |
2541 | if (PageMappedToDisk(page)) |
2542 | return 0; | |
2543 | ||
a4b0672d NP |
2544 | /* |
2545 | * Allocate buffers so that we can keep track of state, and potentially | |
2546 | * attach them to the page if an error occurs. In the common case of | |
2547 | * no error, they will just be freed again without ever being attached | |
2548 | * to the page (which is all OK, because we're under the page lock). | |
2549 | * | |
2550 | * Be careful: the buffer linked list is a NULL terminated one, rather | |
2551 | * than the circular one we're used to. | |
2552 | */ | |
2553 | head = alloc_page_buffers(page, blocksize, 0); | |
03158cd7 NP |
2554 | if (!head) { |
2555 | ret = -ENOMEM; | |
2556 | goto out_release; | |
2557 | } | |
a4b0672d | 2558 | |
1da177e4 | 2559 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
1da177e4 LT |
2560 | |
2561 | /* | |
2562 | * We loop across all blocks in the page, whether or not they are | |
2563 | * part of the affected region. This is so we can discover if the | |
2564 | * page is fully mapped-to-disk. | |
2565 | */ | |
a4b0672d | 2566 | for (block_start = 0, block_in_page = 0, bh = head; |
1da177e4 | 2567 | block_start < PAGE_CACHE_SIZE; |
a4b0672d | 2568 | block_in_page++, block_start += blocksize, bh = bh->b_this_page) { |
1da177e4 LT |
2569 | int create; |
2570 | ||
a4b0672d NP |
2571 | block_end = block_start + blocksize; |
2572 | bh->b_state = 0; | |
1da177e4 LT |
2573 | create = 1; |
2574 | if (block_start >= to) | |
2575 | create = 0; | |
2576 | ret = get_block(inode, block_in_file + block_in_page, | |
a4b0672d | 2577 | bh, create); |
1da177e4 LT |
2578 | if (ret) |
2579 | goto failed; | |
a4b0672d | 2580 | if (!buffer_mapped(bh)) |
1da177e4 | 2581 | is_mapped_to_disk = 0; |
a4b0672d NP |
2582 | if (buffer_new(bh)) |
2583 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | |
2584 | if (PageUptodate(page)) { | |
2585 | set_buffer_uptodate(bh); | |
1da177e4 | 2586 | continue; |
a4b0672d NP |
2587 | } |
2588 | if (buffer_new(bh) || !buffer_mapped(bh)) { | |
eebd2aa3 CL |
2589 | zero_user_segments(page, block_start, from, |
2590 | to, block_end); | |
1da177e4 LT |
2591 | continue; |
2592 | } | |
a4b0672d | 2593 | if (buffer_uptodate(bh)) |
1da177e4 LT |
2594 | continue; /* reiserfs does this */ |
2595 | if (block_start < from || block_end > to) { | |
a4b0672d NP |
2596 | lock_buffer(bh); |
2597 | bh->b_end_io = end_buffer_read_nobh; | |
2598 | submit_bh(READ, bh); | |
2599 | nr_reads++; | |
1da177e4 LT |
2600 | } |
2601 | } | |
2602 | ||
2603 | if (nr_reads) { | |
1da177e4 LT |
2604 | /* |
2605 | * The page is locked, so these buffers are protected from | |
2606 | * any VM or truncate activity. Hence we don't need to care | |
2607 | * for the buffer_head refcounts. | |
2608 | */ | |
a4b0672d | 2609 | for (bh = head; bh; bh = bh->b_this_page) { |
1da177e4 LT |
2610 | wait_on_buffer(bh); |
2611 | if (!buffer_uptodate(bh)) | |
2612 | ret = -EIO; | |
1da177e4 LT |
2613 | } |
2614 | if (ret) | |
2615 | goto failed; | |
2616 | } | |
2617 | ||
2618 | if (is_mapped_to_disk) | |
2619 | SetPageMappedToDisk(page); | |
1da177e4 | 2620 | |
03158cd7 | 2621 | *fsdata = head; /* to be released by nobh_write_end */ |
a4b0672d | 2622 | |
1da177e4 LT |
2623 | return 0; |
2624 | ||
2625 | failed: | |
03158cd7 | 2626 | BUG_ON(!ret); |
1da177e4 | 2627 | /* |
a4b0672d NP |
2628 | * Error recovery is a bit difficult. We need to zero out blocks that |
2629 | * were newly allocated, and dirty them to ensure they get written out. | |
2630 | * Buffers need to be attached to the page at this point, otherwise | |
2631 | * the handling of potential IO errors during writeout would be hard | |
2632 | * (could try doing synchronous writeout, but what if that fails too?) | |
1da177e4 | 2633 | */ |
03158cd7 NP |
2634 | attach_nobh_buffers(page, head); |
2635 | page_zero_new_buffers(page, from, to); | |
a4b0672d | 2636 | |
03158cd7 NP |
2637 | out_release: |
2638 | unlock_page(page); | |
2639 | page_cache_release(page); | |
2640 | *pagep = NULL; | |
a4b0672d | 2641 | |
7bb46a67 NP |
2642 | return ret; |
2643 | } | |
03158cd7 | 2644 | EXPORT_SYMBOL(nobh_write_begin); |
1da177e4 | 2645 | |
03158cd7 NP |
2646 | int nobh_write_end(struct file *file, struct address_space *mapping, |
2647 | loff_t pos, unsigned len, unsigned copied, | |
2648 | struct page *page, void *fsdata) | |
1da177e4 LT |
2649 | { |
2650 | struct inode *inode = page->mapping->host; | |
efdc3131 | 2651 | struct buffer_head *head = fsdata; |
03158cd7 | 2652 | struct buffer_head *bh; |
5b41e74a | 2653 | BUG_ON(fsdata != NULL && page_has_buffers(page)); |
1da177e4 | 2654 | |
d4cf109f | 2655 | if (unlikely(copied < len) && head) |
5b41e74a DM |
2656 | attach_nobh_buffers(page, head); |
2657 | if (page_has_buffers(page)) | |
2658 | return generic_write_end(file, mapping, pos, len, | |
2659 | copied, page, fsdata); | |
a4b0672d | 2660 | |
22c8ca78 | 2661 | SetPageUptodate(page); |
1da177e4 | 2662 | set_page_dirty(page); |
03158cd7 NP |
2663 | if (pos+copied > inode->i_size) { |
2664 | i_size_write(inode, pos+copied); | |
1da177e4 LT |
2665 | mark_inode_dirty(inode); |
2666 | } | |
03158cd7 NP |
2667 | |
2668 | unlock_page(page); | |
2669 | page_cache_release(page); | |
2670 | ||
03158cd7 NP |
2671 | while (head) { |
2672 | bh = head; | |
2673 | head = head->b_this_page; | |
2674 | free_buffer_head(bh); | |
2675 | } | |
2676 | ||
2677 | return copied; | |
1da177e4 | 2678 | } |
03158cd7 | 2679 | EXPORT_SYMBOL(nobh_write_end); |
1da177e4 LT |
2680 | |
2681 | /* | |
2682 | * nobh_writepage() - based on block_full_write_page() except | |
2683 | * that it tries to operate without attaching bufferheads to | |
2684 | * the page. | |
2685 | */ | |
2686 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2687 | struct writeback_control *wbc) | |
2688 | { | |
2689 | struct inode * const inode = page->mapping->host; | |
2690 | loff_t i_size = i_size_read(inode); | |
2691 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2692 | unsigned offset; | |
1da177e4 LT |
2693 | int ret; |
2694 | ||
2695 | /* Is the page fully inside i_size? */ | |
2696 | if (page->index < end_index) | |
2697 | goto out; | |
2698 | ||
2699 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2700 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2701 | if (page->index >= end_index+1 || !offset) { | |
2702 | /* | |
2703 | * The page may have dirty, unmapped buffers. For example, | |
2704 | * they may have been added in ext3_writepage(). Make them | |
2705 | * freeable here, so the page does not leak. | |
2706 | */ | |
2707 | #if 0 | |
2708 | /* Not really sure about this - do we need this ? */ | |
2709 | if (page->mapping->a_ops->invalidatepage) | |
2710 | page->mapping->a_ops->invalidatepage(page, offset); | |
2711 | #endif | |
2712 | unlock_page(page); | |
2713 | return 0; /* don't care */ | |
2714 | } | |
2715 | ||
2716 | /* | |
2717 | * The page straddles i_size. It must be zeroed out on each and every | |
2718 | * writepage invocation because it may be mmapped. "A file is mapped | |
2719 | * in multiples of the page size. For a file that is not a multiple of | |
2720 | * the page size, the remaining memory is zeroed when mapped, and | |
2721 | * writes to that region are not written out to the file." | |
2722 | */ | |
eebd2aa3 | 2723 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1da177e4 LT |
2724 | out: |
2725 | ret = mpage_writepage(page, get_block, wbc); | |
2726 | if (ret == -EAGAIN) | |
35c80d5f CM |
2727 | ret = __block_write_full_page(inode, page, get_block, wbc, |
2728 | end_buffer_async_write); | |
1da177e4 LT |
2729 | return ret; |
2730 | } | |
2731 | EXPORT_SYMBOL(nobh_writepage); | |
2732 | ||
03158cd7 NP |
2733 | int nobh_truncate_page(struct address_space *mapping, |
2734 | loff_t from, get_block_t *get_block) | |
1da177e4 | 2735 | { |
1da177e4 LT |
2736 | pgoff_t index = from >> PAGE_CACHE_SHIFT; |
2737 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
03158cd7 NP |
2738 | unsigned blocksize; |
2739 | sector_t iblock; | |
2740 | unsigned length, pos; | |
2741 | struct inode *inode = mapping->host; | |
1da177e4 | 2742 | struct page *page; |
03158cd7 NP |
2743 | struct buffer_head map_bh; |
2744 | int err; | |
1da177e4 | 2745 | |
03158cd7 NP |
2746 | blocksize = 1 << inode->i_blkbits; |
2747 | length = offset & (blocksize - 1); | |
2748 | ||
2749 | /* Block boundary? Nothing to do */ | |
2750 | if (!length) | |
2751 | return 0; | |
2752 | ||
2753 | length = blocksize - length; | |
2754 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
1da177e4 | 2755 | |
1da177e4 | 2756 | page = grab_cache_page(mapping, index); |
03158cd7 | 2757 | err = -ENOMEM; |
1da177e4 LT |
2758 | if (!page) |
2759 | goto out; | |
2760 | ||
03158cd7 NP |
2761 | if (page_has_buffers(page)) { |
2762 | has_buffers: | |
2763 | unlock_page(page); | |
2764 | page_cache_release(page); | |
2765 | return block_truncate_page(mapping, from, get_block); | |
2766 | } | |
2767 | ||
2768 | /* Find the buffer that contains "offset" */ | |
2769 | pos = blocksize; | |
2770 | while (offset >= pos) { | |
2771 | iblock++; | |
2772 | pos += blocksize; | |
2773 | } | |
2774 | ||
460bcf57 TT |
2775 | map_bh.b_size = blocksize; |
2776 | map_bh.b_state = 0; | |
03158cd7 NP |
2777 | err = get_block(inode, iblock, &map_bh, 0); |
2778 | if (err) | |
2779 | goto unlock; | |
2780 | /* unmapped? It's a hole - nothing to do */ | |
2781 | if (!buffer_mapped(&map_bh)) | |
2782 | goto unlock; | |
2783 | ||
2784 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2785 | if (!PageUptodate(page)) { | |
2786 | err = mapping->a_ops->readpage(NULL, page); | |
2787 | if (err) { | |
2788 | page_cache_release(page); | |
2789 | goto out; | |
2790 | } | |
2791 | lock_page(page); | |
2792 | if (!PageUptodate(page)) { | |
2793 | err = -EIO; | |
2794 | goto unlock; | |
2795 | } | |
2796 | if (page_has_buffers(page)) | |
2797 | goto has_buffers; | |
1da177e4 | 2798 | } |
eebd2aa3 | 2799 | zero_user(page, offset, length); |
03158cd7 NP |
2800 | set_page_dirty(page); |
2801 | err = 0; | |
2802 | ||
2803 | unlock: | |
1da177e4 LT |
2804 | unlock_page(page); |
2805 | page_cache_release(page); | |
2806 | out: | |
03158cd7 | 2807 | return err; |
1da177e4 LT |
2808 | } |
2809 | EXPORT_SYMBOL(nobh_truncate_page); | |
2810 | ||
2811 | int block_truncate_page(struct address_space *mapping, | |
2812 | loff_t from, get_block_t *get_block) | |
2813 | { | |
2814 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2815 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2816 | unsigned blocksize; | |
54b21a79 | 2817 | sector_t iblock; |
1da177e4 LT |
2818 | unsigned length, pos; |
2819 | struct inode *inode = mapping->host; | |
2820 | struct page *page; | |
2821 | struct buffer_head *bh; | |
1da177e4 LT |
2822 | int err; |
2823 | ||
2824 | blocksize = 1 << inode->i_blkbits; | |
2825 | length = offset & (blocksize - 1); | |
2826 | ||
2827 | /* Block boundary? Nothing to do */ | |
2828 | if (!length) | |
2829 | return 0; | |
2830 | ||
2831 | length = blocksize - length; | |
54b21a79 | 2832 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2833 | |
2834 | page = grab_cache_page(mapping, index); | |
2835 | err = -ENOMEM; | |
2836 | if (!page) | |
2837 | goto out; | |
2838 | ||
2839 | if (!page_has_buffers(page)) | |
2840 | create_empty_buffers(page, blocksize, 0); | |
2841 | ||
2842 | /* Find the buffer that contains "offset" */ | |
2843 | bh = page_buffers(page); | |
2844 | pos = blocksize; | |
2845 | while (offset >= pos) { | |
2846 | bh = bh->b_this_page; | |
2847 | iblock++; | |
2848 | pos += blocksize; | |
2849 | } | |
2850 | ||
2851 | err = 0; | |
2852 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2853 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
2854 | err = get_block(inode, iblock, bh, 0); |
2855 | if (err) | |
2856 | goto unlock; | |
2857 | /* unmapped? It's a hole - nothing to do */ | |
2858 | if (!buffer_mapped(bh)) | |
2859 | goto unlock; | |
2860 | } | |
2861 | ||
2862 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2863 | if (PageUptodate(page)) | |
2864 | set_buffer_uptodate(bh); | |
2865 | ||
33a266dd | 2866 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
1da177e4 LT |
2867 | err = -EIO; |
2868 | ll_rw_block(READ, 1, &bh); | |
2869 | wait_on_buffer(bh); | |
2870 | /* Uhhuh. Read error. Complain and punt. */ | |
2871 | if (!buffer_uptodate(bh)) | |
2872 | goto unlock; | |
2873 | } | |
2874 | ||
eebd2aa3 | 2875 | zero_user(page, offset, length); |
1da177e4 LT |
2876 | mark_buffer_dirty(bh); |
2877 | err = 0; | |
2878 | ||
2879 | unlock: | |
2880 | unlock_page(page); | |
2881 | page_cache_release(page); | |
2882 | out: | |
2883 | return err; | |
2884 | } | |
1fe72eaa | 2885 | EXPORT_SYMBOL(block_truncate_page); |
1da177e4 LT |
2886 | |
2887 | /* | |
2888 | * The generic ->writepage function for buffer-backed address_spaces | |
2889 | */ | |
1b938c08 MW |
2890 | int block_write_full_page(struct page *page, get_block_t *get_block, |
2891 | struct writeback_control *wbc) | |
1da177e4 LT |
2892 | { |
2893 | struct inode * const inode = page->mapping->host; | |
2894 | loff_t i_size = i_size_read(inode); | |
2895 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2896 | unsigned offset; | |
1da177e4 LT |
2897 | |
2898 | /* Is the page fully inside i_size? */ | |
2899 | if (page->index < end_index) | |
35c80d5f | 2900 | return __block_write_full_page(inode, page, get_block, wbc, |
1b938c08 | 2901 | end_buffer_async_write); |
1da177e4 LT |
2902 | |
2903 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2904 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2905 | if (page->index >= end_index+1 || !offset) { | |
2906 | /* | |
2907 | * The page may have dirty, unmapped buffers. For example, | |
2908 | * they may have been added in ext3_writepage(). Make them | |
2909 | * freeable here, so the page does not leak. | |
2910 | */ | |
d47992f8 | 2911 | do_invalidatepage(page, 0, PAGE_CACHE_SIZE); |
1da177e4 LT |
2912 | unlock_page(page); |
2913 | return 0; /* don't care */ | |
2914 | } | |
2915 | ||
2916 | /* | |
2917 | * The page straddles i_size. It must be zeroed out on each and every | |
2a61aa40 | 2918 | * writepage invocation because it may be mmapped. "A file is mapped |
1da177e4 LT |
2919 | * in multiples of the page size. For a file that is not a multiple of |
2920 | * the page size, the remaining memory is zeroed when mapped, and | |
2921 | * writes to that region are not written out to the file." | |
2922 | */ | |
eebd2aa3 | 2923 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1b938c08 MW |
2924 | return __block_write_full_page(inode, page, get_block, wbc, |
2925 | end_buffer_async_write); | |
35c80d5f | 2926 | } |
1fe72eaa | 2927 | EXPORT_SYMBOL(block_write_full_page); |
35c80d5f | 2928 | |
1da177e4 LT |
2929 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, |
2930 | get_block_t *get_block) | |
2931 | { | |
2932 | struct buffer_head tmp; | |
2933 | struct inode *inode = mapping->host; | |
2934 | tmp.b_state = 0; | |
2935 | tmp.b_blocknr = 0; | |
b0cf2321 | 2936 | tmp.b_size = 1 << inode->i_blkbits; |
1da177e4 LT |
2937 | get_block(inode, block, &tmp, 0); |
2938 | return tmp.b_blocknr; | |
2939 | } | |
1fe72eaa | 2940 | EXPORT_SYMBOL(generic_block_bmap); |
1da177e4 | 2941 | |
6712ecf8 | 2942 | static void end_bio_bh_io_sync(struct bio *bio, int err) |
1da177e4 LT |
2943 | { |
2944 | struct buffer_head *bh = bio->bi_private; | |
2945 | ||
1da177e4 LT |
2946 | if (err == -EOPNOTSUPP) { |
2947 | set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); | |
1da177e4 LT |
2948 | } |
2949 | ||
08bafc03 KM |
2950 | if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) |
2951 | set_bit(BH_Quiet, &bh->b_state); | |
2952 | ||
1da177e4 LT |
2953 | bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); |
2954 | bio_put(bio); | |
1da177e4 LT |
2955 | } |
2956 | ||
57302e0d LT |
2957 | /* |
2958 | * This allows us to do IO even on the odd last sectors | |
2959 | * of a device, even if the bh block size is some multiple | |
2960 | * of the physical sector size. | |
2961 | * | |
2962 | * We'll just truncate the bio to the size of the device, | |
2963 | * and clear the end of the buffer head manually. | |
2964 | * | |
2965 | * Truly out-of-range accesses will turn into actual IO | |
2966 | * errors, this only handles the "we need to be able to | |
2967 | * do IO at the final sector" case. | |
2968 | */ | |
2969 | static void guard_bh_eod(int rw, struct bio *bio, struct buffer_head *bh) | |
2970 | { | |
2971 | sector_t maxsector; | |
2972 | unsigned bytes; | |
2973 | ||
2974 | maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; | |
2975 | if (!maxsector) | |
2976 | return; | |
2977 | ||
2978 | /* | |
2979 | * If the *whole* IO is past the end of the device, | |
2980 | * let it through, and the IO layer will turn it into | |
2981 | * an EIO. | |
2982 | */ | |
4f024f37 | 2983 | if (unlikely(bio->bi_iter.bi_sector >= maxsector)) |
57302e0d LT |
2984 | return; |
2985 | ||
4f024f37 KO |
2986 | maxsector -= bio->bi_iter.bi_sector; |
2987 | bytes = bio->bi_iter.bi_size; | |
57302e0d LT |
2988 | if (likely((bytes >> 9) <= maxsector)) |
2989 | return; | |
2990 | ||
2991 | /* Uhhuh. We've got a bh that straddles the device size! */ | |
2992 | bytes = maxsector << 9; | |
2993 | ||
2994 | /* Truncate the bio.. */ | |
4f024f37 | 2995 | bio->bi_iter.bi_size = bytes; |
57302e0d LT |
2996 | bio->bi_io_vec[0].bv_len = bytes; |
2997 | ||
2998 | /* ..and clear the end of the buffer for reads */ | |
27d7c2a0 | 2999 | if ((rw & RW_MASK) == READ) { |
57302e0d LT |
3000 | void *kaddr = kmap_atomic(bh->b_page); |
3001 | memset(kaddr + bh_offset(bh) + bytes, 0, bh->b_size - bytes); | |
3002 | kunmap_atomic(kaddr); | |
6d283dba | 3003 | flush_dcache_page(bh->b_page); |
57302e0d LT |
3004 | } |
3005 | } | |
3006 | ||
71368511 | 3007 | int _submit_bh(int rw, struct buffer_head *bh, unsigned long bio_flags) |
1da177e4 LT |
3008 | { |
3009 | struct bio *bio; | |
3010 | int ret = 0; | |
3011 | ||
3012 | BUG_ON(!buffer_locked(bh)); | |
3013 | BUG_ON(!buffer_mapped(bh)); | |
3014 | BUG_ON(!bh->b_end_io); | |
8fb0e342 AK |
3015 | BUG_ON(buffer_delay(bh)); |
3016 | BUG_ON(buffer_unwritten(bh)); | |
1da177e4 | 3017 | |
1da177e4 | 3018 | /* |
48fd4f93 | 3019 | * Only clear out a write error when rewriting |
1da177e4 | 3020 | */ |
48fd4f93 | 3021 | if (test_set_buffer_req(bh) && (rw & WRITE)) |
1da177e4 LT |
3022 | clear_buffer_write_io_error(bh); |
3023 | ||
3024 | /* | |
3025 | * from here on down, it's all bio -- do the initial mapping, | |
3026 | * submit_bio -> generic_make_request may further map this bio around | |
3027 | */ | |
3028 | bio = bio_alloc(GFP_NOIO, 1); | |
3029 | ||
4f024f37 | 3030 | bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); |
1da177e4 LT |
3031 | bio->bi_bdev = bh->b_bdev; |
3032 | bio->bi_io_vec[0].bv_page = bh->b_page; | |
3033 | bio->bi_io_vec[0].bv_len = bh->b_size; | |
3034 | bio->bi_io_vec[0].bv_offset = bh_offset(bh); | |
3035 | ||
3036 | bio->bi_vcnt = 1; | |
4f024f37 | 3037 | bio->bi_iter.bi_size = bh->b_size; |
1da177e4 LT |
3038 | |
3039 | bio->bi_end_io = end_bio_bh_io_sync; | |
3040 | bio->bi_private = bh; | |
71368511 | 3041 | bio->bi_flags |= bio_flags; |
1da177e4 | 3042 | |
57302e0d LT |
3043 | /* Take care of bh's that straddle the end of the device */ |
3044 | guard_bh_eod(rw, bio, bh); | |
3045 | ||
877f962c TT |
3046 | if (buffer_meta(bh)) |
3047 | rw |= REQ_META; | |
3048 | if (buffer_prio(bh)) | |
3049 | rw |= REQ_PRIO; | |
3050 | ||
1da177e4 LT |
3051 | bio_get(bio); |
3052 | submit_bio(rw, bio); | |
3053 | ||
3054 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) | |
3055 | ret = -EOPNOTSUPP; | |
3056 | ||
3057 | bio_put(bio); | |
3058 | return ret; | |
3059 | } | |
71368511 DW |
3060 | EXPORT_SYMBOL_GPL(_submit_bh); |
3061 | ||
3062 | int submit_bh(int rw, struct buffer_head *bh) | |
3063 | { | |
3064 | return _submit_bh(rw, bh, 0); | |
3065 | } | |
1fe72eaa | 3066 | EXPORT_SYMBOL(submit_bh); |
1da177e4 LT |
3067 | |
3068 | /** | |
3069 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
9cb569d6 | 3070 | * @rw: whether to %READ or %WRITE or maybe %READA (readahead) |
1da177e4 LT |
3071 | * @nr: number of &struct buffer_heads in the array |
3072 | * @bhs: array of pointers to &struct buffer_head | |
3073 | * | |
a7662236 JK |
3074 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
3075 | * requests an I/O operation on them, either a %READ or a %WRITE. The third | |
9cb569d6 CH |
3076 | * %READA option is described in the documentation for generic_make_request() |
3077 | * which ll_rw_block() calls. | |
1da177e4 LT |
3078 | * |
3079 | * This function drops any buffer that it cannot get a lock on (with the | |
9cb569d6 CH |
3080 | * BH_Lock state bit), any buffer that appears to be clean when doing a write |
3081 | * request, and any buffer that appears to be up-to-date when doing read | |
3082 | * request. Further it marks as clean buffers that are processed for | |
3083 | * writing (the buffer cache won't assume that they are actually clean | |
3084 | * until the buffer gets unlocked). | |
1da177e4 LT |
3085 | * |
3086 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
e227867f | 3087 | * the buffer up-to-date (if appropriate), unlocks the buffer and wakes |
1da177e4 LT |
3088 | * any waiters. |
3089 | * | |
3090 | * All of the buffers must be for the same device, and must also be a | |
3091 | * multiple of the current approved size for the device. | |
3092 | */ | |
3093 | void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) | |
3094 | { | |
3095 | int i; | |
3096 | ||
3097 | for (i = 0; i < nr; i++) { | |
3098 | struct buffer_head *bh = bhs[i]; | |
3099 | ||
9cb569d6 | 3100 | if (!trylock_buffer(bh)) |
1da177e4 | 3101 | continue; |
9cb569d6 | 3102 | if (rw == WRITE) { |
1da177e4 | 3103 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 3104 | bh->b_end_io = end_buffer_write_sync; |
e60e5c50 | 3105 | get_bh(bh); |
9cb569d6 | 3106 | submit_bh(WRITE, bh); |
1da177e4 LT |
3107 | continue; |
3108 | } | |
3109 | } else { | |
1da177e4 | 3110 | if (!buffer_uptodate(bh)) { |
76c3073a | 3111 | bh->b_end_io = end_buffer_read_sync; |
e60e5c50 | 3112 | get_bh(bh); |
1da177e4 LT |
3113 | submit_bh(rw, bh); |
3114 | continue; | |
3115 | } | |
3116 | } | |
3117 | unlock_buffer(bh); | |
1da177e4 LT |
3118 | } |
3119 | } | |
1fe72eaa | 3120 | EXPORT_SYMBOL(ll_rw_block); |
1da177e4 | 3121 | |
9cb569d6 CH |
3122 | void write_dirty_buffer(struct buffer_head *bh, int rw) |
3123 | { | |
3124 | lock_buffer(bh); | |
3125 | if (!test_clear_buffer_dirty(bh)) { | |
3126 | unlock_buffer(bh); | |
3127 | return; | |
3128 | } | |
3129 | bh->b_end_io = end_buffer_write_sync; | |
3130 | get_bh(bh); | |
3131 | submit_bh(rw, bh); | |
3132 | } | |
3133 | EXPORT_SYMBOL(write_dirty_buffer); | |
3134 | ||
1da177e4 LT |
3135 | /* |
3136 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
3137 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
3138 | * the buffer_head. | |
3139 | */ | |
87e99511 | 3140 | int __sync_dirty_buffer(struct buffer_head *bh, int rw) |
1da177e4 LT |
3141 | { |
3142 | int ret = 0; | |
3143 | ||
3144 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
3145 | lock_buffer(bh); | |
3146 | if (test_clear_buffer_dirty(bh)) { | |
3147 | get_bh(bh); | |
3148 | bh->b_end_io = end_buffer_write_sync; | |
87e99511 | 3149 | ret = submit_bh(rw, bh); |
1da177e4 | 3150 | wait_on_buffer(bh); |
1da177e4 LT |
3151 | if (!ret && !buffer_uptodate(bh)) |
3152 | ret = -EIO; | |
3153 | } else { | |
3154 | unlock_buffer(bh); | |
3155 | } | |
3156 | return ret; | |
3157 | } | |
87e99511 CH |
3158 | EXPORT_SYMBOL(__sync_dirty_buffer); |
3159 | ||
3160 | int sync_dirty_buffer(struct buffer_head *bh) | |
3161 | { | |
3162 | return __sync_dirty_buffer(bh, WRITE_SYNC); | |
3163 | } | |
1fe72eaa | 3164 | EXPORT_SYMBOL(sync_dirty_buffer); |
1da177e4 LT |
3165 | |
3166 | /* | |
3167 | * try_to_free_buffers() checks if all the buffers on this particular page | |
3168 | * are unused, and releases them if so. | |
3169 | * | |
3170 | * Exclusion against try_to_free_buffers may be obtained by either | |
3171 | * locking the page or by holding its mapping's private_lock. | |
3172 | * | |
3173 | * If the page is dirty but all the buffers are clean then we need to | |
3174 | * be sure to mark the page clean as well. This is because the page | |
3175 | * may be against a block device, and a later reattachment of buffers | |
3176 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
3177 | * filesystem data on the same device. | |
3178 | * | |
3179 | * The same applies to regular filesystem pages: if all the buffers are | |
3180 | * clean then we set the page clean and proceed. To do that, we require | |
3181 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
3182 | * private_lock. | |
3183 | * | |
3184 | * try_to_free_buffers() is non-blocking. | |
3185 | */ | |
3186 | static inline int buffer_busy(struct buffer_head *bh) | |
3187 | { | |
3188 | return atomic_read(&bh->b_count) | | |
3189 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
3190 | } | |
3191 | ||
3192 | static int | |
3193 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
3194 | { | |
3195 | struct buffer_head *head = page_buffers(page); | |
3196 | struct buffer_head *bh; | |
3197 | ||
3198 | bh = head; | |
3199 | do { | |
de7d5a3b | 3200 | if (buffer_write_io_error(bh) && page->mapping) |
1da177e4 LT |
3201 | set_bit(AS_EIO, &page->mapping->flags); |
3202 | if (buffer_busy(bh)) | |
3203 | goto failed; | |
3204 | bh = bh->b_this_page; | |
3205 | } while (bh != head); | |
3206 | ||
3207 | do { | |
3208 | struct buffer_head *next = bh->b_this_page; | |
3209 | ||
535ee2fb | 3210 | if (bh->b_assoc_map) |
1da177e4 LT |
3211 | __remove_assoc_queue(bh); |
3212 | bh = next; | |
3213 | } while (bh != head); | |
3214 | *buffers_to_free = head; | |
3215 | __clear_page_buffers(page); | |
3216 | return 1; | |
3217 | failed: | |
3218 | return 0; | |
3219 | } | |
3220 | ||
3221 | int try_to_free_buffers(struct page *page) | |
3222 | { | |
3223 | struct address_space * const mapping = page->mapping; | |
3224 | struct buffer_head *buffers_to_free = NULL; | |
3225 | int ret = 0; | |
3226 | ||
3227 | BUG_ON(!PageLocked(page)); | |
ecdfc978 | 3228 | if (PageWriteback(page)) |
1da177e4 LT |
3229 | return 0; |
3230 | ||
3231 | if (mapping == NULL) { /* can this still happen? */ | |
3232 | ret = drop_buffers(page, &buffers_to_free); | |
3233 | goto out; | |
3234 | } | |
3235 | ||
3236 | spin_lock(&mapping->private_lock); | |
3237 | ret = drop_buffers(page, &buffers_to_free); | |
ecdfc978 LT |
3238 | |
3239 | /* | |
3240 | * If the filesystem writes its buffers by hand (eg ext3) | |
3241 | * then we can have clean buffers against a dirty page. We | |
3242 | * clean the page here; otherwise the VM will never notice | |
3243 | * that the filesystem did any IO at all. | |
3244 | * | |
3245 | * Also, during truncate, discard_buffer will have marked all | |
3246 | * the page's buffers clean. We discover that here and clean | |
3247 | * the page also. | |
87df7241 NP |
3248 | * |
3249 | * private_lock must be held over this entire operation in order | |
3250 | * to synchronise against __set_page_dirty_buffers and prevent the | |
3251 | * dirty bit from being lost. | |
ecdfc978 LT |
3252 | */ |
3253 | if (ret) | |
3254 | cancel_dirty_page(page, PAGE_CACHE_SIZE); | |
87df7241 | 3255 | spin_unlock(&mapping->private_lock); |
1da177e4 LT |
3256 | out: |
3257 | if (buffers_to_free) { | |
3258 | struct buffer_head *bh = buffers_to_free; | |
3259 | ||
3260 | do { | |
3261 | struct buffer_head *next = bh->b_this_page; | |
3262 | free_buffer_head(bh); | |
3263 | bh = next; | |
3264 | } while (bh != buffers_to_free); | |
3265 | } | |
3266 | return ret; | |
3267 | } | |
3268 | EXPORT_SYMBOL(try_to_free_buffers); | |
3269 | ||
1da177e4 LT |
3270 | /* |
3271 | * There are no bdflush tunables left. But distributions are | |
3272 | * still running obsolete flush daemons, so we terminate them here. | |
3273 | * | |
3274 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
5b0830cb | 3275 | * The `flush-X' kernel threads fully replace bdflush daemons and this call. |
1da177e4 | 3276 | */ |
bdc480e3 | 3277 | SYSCALL_DEFINE2(bdflush, int, func, long, data) |
1da177e4 LT |
3278 | { |
3279 | static int msg_count; | |
3280 | ||
3281 | if (!capable(CAP_SYS_ADMIN)) | |
3282 | return -EPERM; | |
3283 | ||
3284 | if (msg_count < 5) { | |
3285 | msg_count++; | |
3286 | printk(KERN_INFO | |
3287 | "warning: process `%s' used the obsolete bdflush" | |
3288 | " system call\n", current->comm); | |
3289 | printk(KERN_INFO "Fix your initscripts?\n"); | |
3290 | } | |
3291 | ||
3292 | if (func == 1) | |
3293 | do_exit(0); | |
3294 | return 0; | |
3295 | } | |
3296 | ||
3297 | /* | |
3298 | * Buffer-head allocation | |
3299 | */ | |
a0a9b043 | 3300 | static struct kmem_cache *bh_cachep __read_mostly; |
1da177e4 LT |
3301 | |
3302 | /* | |
3303 | * Once the number of bh's in the machine exceeds this level, we start | |
3304 | * stripping them in writeback. | |
3305 | */ | |
43be594a | 3306 | static unsigned long max_buffer_heads; |
1da177e4 LT |
3307 | |
3308 | int buffer_heads_over_limit; | |
3309 | ||
3310 | struct bh_accounting { | |
3311 | int nr; /* Number of live bh's */ | |
3312 | int ratelimit; /* Limit cacheline bouncing */ | |
3313 | }; | |
3314 | ||
3315 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
3316 | ||
3317 | static void recalc_bh_state(void) | |
3318 | { | |
3319 | int i; | |
3320 | int tot = 0; | |
3321 | ||
ee1be862 | 3322 | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) |
1da177e4 | 3323 | return; |
c7b92516 | 3324 | __this_cpu_write(bh_accounting.ratelimit, 0); |
8a143426 | 3325 | for_each_online_cpu(i) |
1da177e4 LT |
3326 | tot += per_cpu(bh_accounting, i).nr; |
3327 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
3328 | } | |
c7b92516 | 3329 | |
dd0fc66f | 3330 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 | 3331 | { |
019b4d12 | 3332 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
1da177e4 | 3333 | if (ret) { |
a35afb83 | 3334 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
c7b92516 CL |
3335 | preempt_disable(); |
3336 | __this_cpu_inc(bh_accounting.nr); | |
1da177e4 | 3337 | recalc_bh_state(); |
c7b92516 | 3338 | preempt_enable(); |
1da177e4 LT |
3339 | } |
3340 | return ret; | |
3341 | } | |
3342 | EXPORT_SYMBOL(alloc_buffer_head); | |
3343 | ||
3344 | void free_buffer_head(struct buffer_head *bh) | |
3345 | { | |
3346 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
3347 | kmem_cache_free(bh_cachep, bh); | |
c7b92516 CL |
3348 | preempt_disable(); |
3349 | __this_cpu_dec(bh_accounting.nr); | |
1da177e4 | 3350 | recalc_bh_state(); |
c7b92516 | 3351 | preempt_enable(); |
1da177e4 LT |
3352 | } |
3353 | EXPORT_SYMBOL(free_buffer_head); | |
3354 | ||
1da177e4 LT |
3355 | static void buffer_exit_cpu(int cpu) |
3356 | { | |
3357 | int i; | |
3358 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
3359 | ||
3360 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
3361 | brelse(b->bhs[i]); | |
3362 | b->bhs[i] = NULL; | |
3363 | } | |
c7b92516 | 3364 | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); |
8a143426 | 3365 | per_cpu(bh_accounting, cpu).nr = 0; |
1da177e4 LT |
3366 | } |
3367 | ||
3368 | static int buffer_cpu_notify(struct notifier_block *self, | |
3369 | unsigned long action, void *hcpu) | |
3370 | { | |
8bb78442 | 3371 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) |
1da177e4 LT |
3372 | buffer_exit_cpu((unsigned long)hcpu); |
3373 | return NOTIFY_OK; | |
3374 | } | |
1da177e4 | 3375 | |
389d1b08 | 3376 | /** |
a6b91919 | 3377 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
389d1b08 AK |
3378 | * @bh: struct buffer_head |
3379 | * | |
3380 | * Return true if the buffer is up-to-date and false, | |
3381 | * with the buffer locked, if not. | |
3382 | */ | |
3383 | int bh_uptodate_or_lock(struct buffer_head *bh) | |
3384 | { | |
3385 | if (!buffer_uptodate(bh)) { | |
3386 | lock_buffer(bh); | |
3387 | if (!buffer_uptodate(bh)) | |
3388 | return 0; | |
3389 | unlock_buffer(bh); | |
3390 | } | |
3391 | return 1; | |
3392 | } | |
3393 | EXPORT_SYMBOL(bh_uptodate_or_lock); | |
3394 | ||
3395 | /** | |
a6b91919 | 3396 | * bh_submit_read - Submit a locked buffer for reading |
389d1b08 AK |
3397 | * @bh: struct buffer_head |
3398 | * | |
3399 | * Returns zero on success and -EIO on error. | |
3400 | */ | |
3401 | int bh_submit_read(struct buffer_head *bh) | |
3402 | { | |
3403 | BUG_ON(!buffer_locked(bh)); | |
3404 | ||
3405 | if (buffer_uptodate(bh)) { | |
3406 | unlock_buffer(bh); | |
3407 | return 0; | |
3408 | } | |
3409 | ||
3410 | get_bh(bh); | |
3411 | bh->b_end_io = end_buffer_read_sync; | |
3412 | submit_bh(READ, bh); | |
3413 | wait_on_buffer(bh); | |
3414 | if (buffer_uptodate(bh)) | |
3415 | return 0; | |
3416 | return -EIO; | |
3417 | } | |
3418 | EXPORT_SYMBOL(bh_submit_read); | |
3419 | ||
1da177e4 LT |
3420 | void __init buffer_init(void) |
3421 | { | |
43be594a | 3422 | unsigned long nrpages; |
1da177e4 | 3423 | |
b98938c3 CL |
3424 | bh_cachep = kmem_cache_create("buffer_head", |
3425 | sizeof(struct buffer_head), 0, | |
3426 | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | |
3427 | SLAB_MEM_SPREAD), | |
019b4d12 | 3428 | NULL); |
1da177e4 LT |
3429 | |
3430 | /* | |
3431 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3432 | */ | |
3433 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3434 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
3435 | hotcpu_notifier(buffer_cpu_notify, 0); | |
3436 | } |