]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/buffer.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
9 | * | |
10 | * Removed a lot of unnecessary code and simplified things now that | |
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
12 | * | |
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
15 | * | |
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
17 | * | |
18 | * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> | |
19 | */ | |
20 | ||
1da177e4 LT |
21 | #include <linux/kernel.h> |
22 | #include <linux/syscalls.h> | |
23 | #include <linux/fs.h> | |
24 | #include <linux/mm.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/slab.h> | |
16f7e0fe | 27 | #include <linux/capability.h> |
1da177e4 LT |
28 | #include <linux/blkdev.h> |
29 | #include <linux/file.h> | |
30 | #include <linux/quotaops.h> | |
31 | #include <linux/highmem.h> | |
32 | #include <linux/module.h> | |
33 | #include <linux/writeback.h> | |
34 | #include <linux/hash.h> | |
35 | #include <linux/suspend.h> | |
36 | #include <linux/buffer_head.h> | |
55e829af | 37 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
38 | #include <linux/bio.h> |
39 | #include <linux/notifier.h> | |
40 | #include <linux/cpu.h> | |
41 | #include <linux/bitops.h> | |
42 | #include <linux/mpage.h> | |
fb1c8f93 | 43 | #include <linux/bit_spinlock.h> |
1da177e4 LT |
44 | |
45 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | |
1da177e4 LT |
46 | |
47 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
48 | ||
49 | inline void | |
50 | init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) | |
51 | { | |
52 | bh->b_end_io = handler; | |
53 | bh->b_private = private; | |
54 | } | |
55 | ||
56 | static int sync_buffer(void *word) | |
57 | { | |
58 | struct block_device *bd; | |
59 | struct buffer_head *bh | |
60 | = container_of(word, struct buffer_head, b_state); | |
61 | ||
62 | smp_mb(); | |
63 | bd = bh->b_bdev; | |
64 | if (bd) | |
65 | blk_run_address_space(bd->bd_inode->i_mapping); | |
66 | io_schedule(); | |
67 | return 0; | |
68 | } | |
69 | ||
70 | void fastcall __lock_buffer(struct buffer_head *bh) | |
71 | { | |
72 | wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, | |
73 | TASK_UNINTERRUPTIBLE); | |
74 | } | |
75 | EXPORT_SYMBOL(__lock_buffer); | |
76 | ||
77 | void fastcall unlock_buffer(struct buffer_head *bh) | |
78 | { | |
72ed3d03 | 79 | smp_mb__before_clear_bit(); |
1da177e4 LT |
80 | clear_buffer_locked(bh); |
81 | smp_mb__after_clear_bit(); | |
82 | wake_up_bit(&bh->b_state, BH_Lock); | |
83 | } | |
84 | ||
85 | /* | |
86 | * Block until a buffer comes unlocked. This doesn't stop it | |
87 | * from becoming locked again - you have to lock it yourself | |
88 | * if you want to preserve its state. | |
89 | */ | |
90 | void __wait_on_buffer(struct buffer_head * bh) | |
91 | { | |
92 | wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); | |
93 | } | |
94 | ||
95 | static void | |
96 | __clear_page_buffers(struct page *page) | |
97 | { | |
98 | ClearPagePrivate(page); | |
4c21e2f2 | 99 | set_page_private(page, 0); |
1da177e4 LT |
100 | page_cache_release(page); |
101 | } | |
102 | ||
103 | static void buffer_io_error(struct buffer_head *bh) | |
104 | { | |
105 | char b[BDEVNAME_SIZE]; | |
106 | ||
107 | printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", | |
108 | bdevname(bh->b_bdev, b), | |
109 | (unsigned long long)bh->b_blocknr); | |
110 | } | |
111 | ||
112 | /* | |
113 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
114 | * unlock the buffer. This is what ll_rw_block uses too. | |
115 | */ | |
116 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
117 | { | |
118 | if (uptodate) { | |
119 | set_buffer_uptodate(bh); | |
120 | } else { | |
121 | /* This happens, due to failed READA attempts. */ | |
122 | clear_buffer_uptodate(bh); | |
123 | } | |
124 | unlock_buffer(bh); | |
125 | put_bh(bh); | |
126 | } | |
127 | ||
128 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
129 | { | |
130 | char b[BDEVNAME_SIZE]; | |
131 | ||
132 | if (uptodate) { | |
133 | set_buffer_uptodate(bh); | |
134 | } else { | |
135 | if (!buffer_eopnotsupp(bh) && printk_ratelimit()) { | |
136 | buffer_io_error(bh); | |
137 | printk(KERN_WARNING "lost page write due to " | |
138 | "I/O error on %s\n", | |
139 | bdevname(bh->b_bdev, b)); | |
140 | } | |
141 | set_buffer_write_io_error(bh); | |
142 | clear_buffer_uptodate(bh); | |
143 | } | |
144 | unlock_buffer(bh); | |
145 | put_bh(bh); | |
146 | } | |
147 | ||
148 | /* | |
149 | * Write out and wait upon all the dirty data associated with a block | |
150 | * device via its mapping. Does not take the superblock lock. | |
151 | */ | |
152 | int sync_blockdev(struct block_device *bdev) | |
153 | { | |
154 | int ret = 0; | |
155 | ||
28fd1298 OH |
156 | if (bdev) |
157 | ret = filemap_write_and_wait(bdev->bd_inode->i_mapping); | |
1da177e4 LT |
158 | return ret; |
159 | } | |
160 | EXPORT_SYMBOL(sync_blockdev); | |
161 | ||
1da177e4 LT |
162 | /* |
163 | * Write out and wait upon all dirty data associated with this | |
164 | * device. Filesystem data as well as the underlying block | |
165 | * device. Takes the superblock lock. | |
166 | */ | |
167 | int fsync_bdev(struct block_device *bdev) | |
168 | { | |
169 | struct super_block *sb = get_super(bdev); | |
170 | if (sb) { | |
171 | int res = fsync_super(sb); | |
172 | drop_super(sb); | |
173 | return res; | |
174 | } | |
175 | return sync_blockdev(bdev); | |
176 | } | |
177 | ||
178 | /** | |
179 | * freeze_bdev -- lock a filesystem and force it into a consistent state | |
180 | * @bdev: blockdevice to lock | |
181 | * | |
f73ca1b7 | 182 | * This takes the block device bd_mount_sem to make sure no new mounts |
1da177e4 LT |
183 | * happen on bdev until thaw_bdev() is called. |
184 | * If a superblock is found on this device, we take the s_umount semaphore | |
185 | * on it to make sure nobody unmounts until the snapshot creation is done. | |
186 | */ | |
187 | struct super_block *freeze_bdev(struct block_device *bdev) | |
188 | { | |
189 | struct super_block *sb; | |
190 | ||
f73ca1b7 | 191 | down(&bdev->bd_mount_sem); |
1da177e4 LT |
192 | sb = get_super(bdev); |
193 | if (sb && !(sb->s_flags & MS_RDONLY)) { | |
194 | sb->s_frozen = SB_FREEZE_WRITE; | |
d59dd462 | 195 | smp_wmb(); |
1da177e4 | 196 | |
d25b9a1f | 197 | __fsync_super(sb); |
1da177e4 LT |
198 | |
199 | sb->s_frozen = SB_FREEZE_TRANS; | |
d59dd462 | 200 | smp_wmb(); |
1da177e4 LT |
201 | |
202 | sync_blockdev(sb->s_bdev); | |
203 | ||
204 | if (sb->s_op->write_super_lockfs) | |
205 | sb->s_op->write_super_lockfs(sb); | |
206 | } | |
207 | ||
208 | sync_blockdev(bdev); | |
209 | return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */ | |
210 | } | |
211 | EXPORT_SYMBOL(freeze_bdev); | |
212 | ||
213 | /** | |
214 | * thaw_bdev -- unlock filesystem | |
215 | * @bdev: blockdevice to unlock | |
216 | * @sb: associated superblock | |
217 | * | |
218 | * Unlocks the filesystem and marks it writeable again after freeze_bdev(). | |
219 | */ | |
220 | void thaw_bdev(struct block_device *bdev, struct super_block *sb) | |
221 | { | |
222 | if (sb) { | |
223 | BUG_ON(sb->s_bdev != bdev); | |
224 | ||
225 | if (sb->s_op->unlockfs) | |
226 | sb->s_op->unlockfs(sb); | |
227 | sb->s_frozen = SB_UNFROZEN; | |
d59dd462 | 228 | smp_wmb(); |
1da177e4 LT |
229 | wake_up(&sb->s_wait_unfrozen); |
230 | drop_super(sb); | |
231 | } | |
232 | ||
f73ca1b7 | 233 | up(&bdev->bd_mount_sem); |
1da177e4 LT |
234 | } |
235 | EXPORT_SYMBOL(thaw_bdev); | |
236 | ||
1da177e4 LT |
237 | /* |
238 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
239 | * But it's the page lock which protects the buffers. To get around this, | |
240 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
241 | * private_lock. | |
242 | * | |
243 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | |
244 | * may be quite high. This code could TryLock the page, and if that | |
245 | * succeeds, there is no need to take private_lock. (But if | |
246 | * private_lock is contended then so is mapping->tree_lock). | |
247 | */ | |
248 | static struct buffer_head * | |
385fd4c5 | 249 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
250 | { |
251 | struct inode *bd_inode = bdev->bd_inode; | |
252 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
253 | struct buffer_head *ret = NULL; | |
254 | pgoff_t index; | |
255 | struct buffer_head *bh; | |
256 | struct buffer_head *head; | |
257 | struct page *page; | |
258 | int all_mapped = 1; | |
259 | ||
260 | index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); | |
261 | page = find_get_page(bd_mapping, index); | |
262 | if (!page) | |
263 | goto out; | |
264 | ||
265 | spin_lock(&bd_mapping->private_lock); | |
266 | if (!page_has_buffers(page)) | |
267 | goto out_unlock; | |
268 | head = page_buffers(page); | |
269 | bh = head; | |
270 | do { | |
271 | if (bh->b_blocknr == block) { | |
272 | ret = bh; | |
273 | get_bh(bh); | |
274 | goto out_unlock; | |
275 | } | |
276 | if (!buffer_mapped(bh)) | |
277 | all_mapped = 0; | |
278 | bh = bh->b_this_page; | |
279 | } while (bh != head); | |
280 | ||
281 | /* we might be here because some of the buffers on this page are | |
282 | * not mapped. This is due to various races between | |
283 | * file io on the block device and getblk. It gets dealt with | |
284 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
285 | */ | |
286 | if (all_mapped) { | |
287 | printk("__find_get_block_slow() failed. " | |
288 | "block=%llu, b_blocknr=%llu\n", | |
205f87f6 BP |
289 | (unsigned long long)block, |
290 | (unsigned long long)bh->b_blocknr); | |
291 | printk("b_state=0x%08lx, b_size=%zu\n", | |
292 | bh->b_state, bh->b_size); | |
1da177e4 LT |
293 | printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); |
294 | } | |
295 | out_unlock: | |
296 | spin_unlock(&bd_mapping->private_lock); | |
297 | page_cache_release(page); | |
298 | out: | |
299 | return ret; | |
300 | } | |
301 | ||
302 | /* If invalidate_buffers() will trash dirty buffers, it means some kind | |
303 | of fs corruption is going on. Trashing dirty data always imply losing | |
304 | information that was supposed to be just stored on the physical layer | |
305 | by the user. | |
306 | ||
307 | Thus invalidate_buffers in general usage is not allwowed to trash | |
308 | dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to | |
309 | be preserved. These buffers are simply skipped. | |
310 | ||
311 | We also skip buffers which are still in use. For example this can | |
312 | happen if a userspace program is reading the block device. | |
313 | ||
314 | NOTE: In the case where the user removed a removable-media-disk even if | |
315 | there's still dirty data not synced on disk (due a bug in the device driver | |
316 | or due an error of the user), by not destroying the dirty buffers we could | |
317 | generate corruption also on the next media inserted, thus a parameter is | |
318 | necessary to handle this case in the most safe way possible (trying | |
319 | to not corrupt also the new disk inserted with the data belonging to | |
320 | the old now corrupted disk). Also for the ramdisk the natural thing | |
321 | to do in order to release the ramdisk memory is to destroy dirty buffers. | |
322 | ||
323 | These are two special cases. Normal usage imply the device driver | |
324 | to issue a sync on the device (without waiting I/O completion) and | |
325 | then an invalidate_buffers call that doesn't trash dirty buffers. | |
326 | ||
327 | For handling cache coherency with the blkdev pagecache the 'update' case | |
328 | is been introduced. It is needed to re-read from disk any pinned | |
329 | buffer. NOTE: re-reading from disk is destructive so we can do it only | |
330 | when we assume nobody is changing the buffercache under our I/O and when | |
331 | we think the disk contains more recent information than the buffercache. | |
332 | The update == 1 pass marks the buffers we need to update, the update == 2 | |
333 | pass does the actual I/O. */ | |
f98393a6 | 334 | void invalidate_bdev(struct block_device *bdev) |
1da177e4 | 335 | { |
0e1dfc66 AM |
336 | struct address_space *mapping = bdev->bd_inode->i_mapping; |
337 | ||
338 | if (mapping->nrpages == 0) | |
339 | return; | |
340 | ||
1da177e4 | 341 | invalidate_bh_lrus(); |
fc0ecff6 | 342 | invalidate_mapping_pages(mapping, 0, -1); |
1da177e4 LT |
343 | } |
344 | ||
345 | /* | |
346 | * Kick pdflush then try to free up some ZONE_NORMAL memory. | |
347 | */ | |
348 | static void free_more_memory(void) | |
349 | { | |
350 | struct zone **zones; | |
351 | pg_data_t *pgdat; | |
352 | ||
687a21ce | 353 | wakeup_pdflush(1024); |
1da177e4 LT |
354 | yield(); |
355 | ||
ec936fc5 | 356 | for_each_online_pgdat(pgdat) { |
af4ca457 | 357 | zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones; |
1da177e4 | 358 | if (*zones) |
5ad333eb | 359 | try_to_free_pages(zones, 0, GFP_NOFS); |
1da177e4 LT |
360 | } |
361 | } | |
362 | ||
363 | /* | |
364 | * I/O completion handler for block_read_full_page() - pages | |
365 | * which come unlocked at the end of I/O. | |
366 | */ | |
367 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | |
368 | { | |
1da177e4 | 369 | unsigned long flags; |
a3972203 | 370 | struct buffer_head *first; |
1da177e4 LT |
371 | struct buffer_head *tmp; |
372 | struct page *page; | |
373 | int page_uptodate = 1; | |
374 | ||
375 | BUG_ON(!buffer_async_read(bh)); | |
376 | ||
377 | page = bh->b_page; | |
378 | if (uptodate) { | |
379 | set_buffer_uptodate(bh); | |
380 | } else { | |
381 | clear_buffer_uptodate(bh); | |
382 | if (printk_ratelimit()) | |
383 | buffer_io_error(bh); | |
384 | SetPageError(page); | |
385 | } | |
386 | ||
387 | /* | |
388 | * Be _very_ careful from here on. Bad things can happen if | |
389 | * two buffer heads end IO at almost the same time and both | |
390 | * decide that the page is now completely done. | |
391 | */ | |
a3972203 NP |
392 | first = page_buffers(page); |
393 | local_irq_save(flags); | |
394 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
395 | clear_buffer_async_read(bh); |
396 | unlock_buffer(bh); | |
397 | tmp = bh; | |
398 | do { | |
399 | if (!buffer_uptodate(tmp)) | |
400 | page_uptodate = 0; | |
401 | if (buffer_async_read(tmp)) { | |
402 | BUG_ON(!buffer_locked(tmp)); | |
403 | goto still_busy; | |
404 | } | |
405 | tmp = tmp->b_this_page; | |
406 | } while (tmp != bh); | |
a3972203 NP |
407 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
408 | local_irq_restore(flags); | |
1da177e4 LT |
409 | |
410 | /* | |
411 | * If none of the buffers had errors and they are all | |
412 | * uptodate then we can set the page uptodate. | |
413 | */ | |
414 | if (page_uptodate && !PageError(page)) | |
415 | SetPageUptodate(page); | |
416 | unlock_page(page); | |
417 | return; | |
418 | ||
419 | still_busy: | |
a3972203 NP |
420 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
421 | local_irq_restore(flags); | |
1da177e4 LT |
422 | return; |
423 | } | |
424 | ||
425 | /* | |
426 | * Completion handler for block_write_full_page() - pages which are unlocked | |
427 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
428 | */ | |
b6cd0b77 | 429 | static void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
430 | { |
431 | char b[BDEVNAME_SIZE]; | |
1da177e4 | 432 | unsigned long flags; |
a3972203 | 433 | struct buffer_head *first; |
1da177e4 LT |
434 | struct buffer_head *tmp; |
435 | struct page *page; | |
436 | ||
437 | BUG_ON(!buffer_async_write(bh)); | |
438 | ||
439 | page = bh->b_page; | |
440 | if (uptodate) { | |
441 | set_buffer_uptodate(bh); | |
442 | } else { | |
443 | if (printk_ratelimit()) { | |
444 | buffer_io_error(bh); | |
445 | printk(KERN_WARNING "lost page write due to " | |
446 | "I/O error on %s\n", | |
447 | bdevname(bh->b_bdev, b)); | |
448 | } | |
449 | set_bit(AS_EIO, &page->mapping->flags); | |
58ff407b | 450 | set_buffer_write_io_error(bh); |
1da177e4 LT |
451 | clear_buffer_uptodate(bh); |
452 | SetPageError(page); | |
453 | } | |
454 | ||
a3972203 NP |
455 | first = page_buffers(page); |
456 | local_irq_save(flags); | |
457 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
458 | ||
1da177e4 LT |
459 | clear_buffer_async_write(bh); |
460 | unlock_buffer(bh); | |
461 | tmp = bh->b_this_page; | |
462 | while (tmp != bh) { | |
463 | if (buffer_async_write(tmp)) { | |
464 | BUG_ON(!buffer_locked(tmp)); | |
465 | goto still_busy; | |
466 | } | |
467 | tmp = tmp->b_this_page; | |
468 | } | |
a3972203 NP |
469 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
470 | local_irq_restore(flags); | |
1da177e4 LT |
471 | end_page_writeback(page); |
472 | return; | |
473 | ||
474 | still_busy: | |
a3972203 NP |
475 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
476 | local_irq_restore(flags); | |
1da177e4 LT |
477 | return; |
478 | } | |
479 | ||
480 | /* | |
481 | * If a page's buffers are under async readin (end_buffer_async_read | |
482 | * completion) then there is a possibility that another thread of | |
483 | * control could lock one of the buffers after it has completed | |
484 | * but while some of the other buffers have not completed. This | |
485 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
486 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
487 | * that this buffer is not under async I/O. | |
488 | * | |
489 | * The page comes unlocked when it has no locked buffer_async buffers | |
490 | * left. | |
491 | * | |
492 | * PageLocked prevents anyone starting new async I/O reads any of | |
493 | * the buffers. | |
494 | * | |
495 | * PageWriteback is used to prevent simultaneous writeout of the same | |
496 | * page. | |
497 | * | |
498 | * PageLocked prevents anyone from starting writeback of a page which is | |
499 | * under read I/O (PageWriteback is only ever set against a locked page). | |
500 | */ | |
501 | static void mark_buffer_async_read(struct buffer_head *bh) | |
502 | { | |
503 | bh->b_end_io = end_buffer_async_read; | |
504 | set_buffer_async_read(bh); | |
505 | } | |
506 | ||
507 | void mark_buffer_async_write(struct buffer_head *bh) | |
508 | { | |
509 | bh->b_end_io = end_buffer_async_write; | |
510 | set_buffer_async_write(bh); | |
511 | } | |
512 | EXPORT_SYMBOL(mark_buffer_async_write); | |
513 | ||
514 | ||
515 | /* | |
516 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
517 | * fsync functions. A common requirement for buffer-based filesystems is | |
518 | * that certain data from the backing blockdev needs to be written out for | |
519 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
520 | * written back and waited upon before fsync() returns. | |
521 | * | |
522 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
523 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
524 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
525 | * | |
526 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
527 | * from their controlling inode's queue when they are being freed. But | |
528 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
529 | * at the time, not against the S_ISREG file which depends on those buffers. | |
530 | * So the locking for private_list is via the private_lock in the address_space | |
531 | * which backs the buffers. Which is different from the address_space | |
532 | * against which the buffers are listed. So for a particular address_space, | |
533 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
534 | * mapping->private_list will always be protected by the backing blockdev's | |
535 | * ->private_lock. | |
536 | * | |
537 | * Which introduces a requirement: all buffers on an address_space's | |
538 | * ->private_list must be from the same address_space: the blockdev's. | |
539 | * | |
540 | * address_spaces which do not place buffers at ->private_list via these | |
541 | * utility functions are free to use private_lock and private_list for | |
542 | * whatever they want. The only requirement is that list_empty(private_list) | |
543 | * be true at clear_inode() time. | |
544 | * | |
545 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
546 | * filesystems should do that. invalidate_inode_buffers() should just go | |
547 | * BUG_ON(!list_empty). | |
548 | * | |
549 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
550 | * take an address_space, not an inode. And it should be called | |
551 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
552 | * queued up. | |
553 | * | |
554 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
555 | * list if it is already on a list. Because if the buffer is on a list, | |
556 | * it *must* already be on the right one. If not, the filesystem is being | |
557 | * silly. This will save a ton of locking. But first we have to ensure | |
558 | * that buffers are taken *off* the old inode's list when they are freed | |
559 | * (presumably in truncate). That requires careful auditing of all | |
560 | * filesystems (do it inside bforget()). It could also be done by bringing | |
561 | * b_inode back. | |
562 | */ | |
563 | ||
564 | /* | |
565 | * The buffer's backing address_space's private_lock must be held | |
566 | */ | |
567 | static inline void __remove_assoc_queue(struct buffer_head *bh) | |
568 | { | |
569 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b JK |
570 | WARN_ON(!bh->b_assoc_map); |
571 | if (buffer_write_io_error(bh)) | |
572 | set_bit(AS_EIO, &bh->b_assoc_map->flags); | |
573 | bh->b_assoc_map = NULL; | |
1da177e4 LT |
574 | } |
575 | ||
576 | int inode_has_buffers(struct inode *inode) | |
577 | { | |
578 | return !list_empty(&inode->i_data.private_list); | |
579 | } | |
580 | ||
581 | /* | |
582 | * osync is designed to support O_SYNC io. It waits synchronously for | |
583 | * all already-submitted IO to complete, but does not queue any new | |
584 | * writes to the disk. | |
585 | * | |
586 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
587 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
588 | * completion. Any other dirty buffers which are not yet queued for | |
589 | * write will not be flushed to disk by the osync. | |
590 | */ | |
591 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
592 | { | |
593 | struct buffer_head *bh; | |
594 | struct list_head *p; | |
595 | int err = 0; | |
596 | ||
597 | spin_lock(lock); | |
598 | repeat: | |
599 | list_for_each_prev(p, list) { | |
600 | bh = BH_ENTRY(p); | |
601 | if (buffer_locked(bh)) { | |
602 | get_bh(bh); | |
603 | spin_unlock(lock); | |
604 | wait_on_buffer(bh); | |
605 | if (!buffer_uptodate(bh)) | |
606 | err = -EIO; | |
607 | brelse(bh); | |
608 | spin_lock(lock); | |
609 | goto repeat; | |
610 | } | |
611 | } | |
612 | spin_unlock(lock); | |
613 | return err; | |
614 | } | |
615 | ||
616 | /** | |
617 | * sync_mapping_buffers - write out and wait upon a mapping's "associated" | |
618 | * buffers | |
67be2dd1 | 619 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
620 | * |
621 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
622 | * that I/O. | |
623 | * | |
67be2dd1 MW |
624 | * Basically, this is a convenience function for fsync(). |
625 | * @mapping is a file or directory which needs those buffers to be written for | |
626 | * a successful fsync(). | |
1da177e4 LT |
627 | */ |
628 | int sync_mapping_buffers(struct address_space *mapping) | |
629 | { | |
630 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
631 | ||
632 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
633 | return 0; | |
634 | ||
635 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
636 | &mapping->private_list); | |
637 | } | |
638 | EXPORT_SYMBOL(sync_mapping_buffers); | |
639 | ||
640 | /* | |
641 | * Called when we've recently written block `bblock', and it is known that | |
642 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
643 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
644 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
645 | */ | |
646 | void write_boundary_block(struct block_device *bdev, | |
647 | sector_t bblock, unsigned blocksize) | |
648 | { | |
649 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
650 | if (bh) { | |
651 | if (buffer_dirty(bh)) | |
652 | ll_rw_block(WRITE, 1, &bh); | |
653 | put_bh(bh); | |
654 | } | |
655 | } | |
656 | ||
657 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
658 | { | |
659 | struct address_space *mapping = inode->i_mapping; | |
660 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
661 | ||
662 | mark_buffer_dirty(bh); | |
663 | if (!mapping->assoc_mapping) { | |
664 | mapping->assoc_mapping = buffer_mapping; | |
665 | } else { | |
e827f923 | 666 | BUG_ON(mapping->assoc_mapping != buffer_mapping); |
1da177e4 LT |
667 | } |
668 | if (list_empty(&bh->b_assoc_buffers)) { | |
669 | spin_lock(&buffer_mapping->private_lock); | |
670 | list_move_tail(&bh->b_assoc_buffers, | |
671 | &mapping->private_list); | |
58ff407b | 672 | bh->b_assoc_map = mapping; |
1da177e4 LT |
673 | spin_unlock(&buffer_mapping->private_lock); |
674 | } | |
675 | } | |
676 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
677 | ||
787d2214 NP |
678 | /* |
679 | * Mark the page dirty, and set it dirty in the radix tree, and mark the inode | |
680 | * dirty. | |
681 | * | |
682 | * If warn is true, then emit a warning if the page is not uptodate and has | |
683 | * not been truncated. | |
684 | */ | |
685 | static int __set_page_dirty(struct page *page, | |
686 | struct address_space *mapping, int warn) | |
687 | { | |
688 | if (unlikely(!mapping)) | |
689 | return !TestSetPageDirty(page); | |
690 | ||
691 | if (TestSetPageDirty(page)) | |
692 | return 0; | |
693 | ||
694 | write_lock_irq(&mapping->tree_lock); | |
695 | if (page->mapping) { /* Race with truncate? */ | |
696 | WARN_ON_ONCE(warn && !PageUptodate(page)); | |
697 | ||
698 | if (mapping_cap_account_dirty(mapping)) { | |
699 | __inc_zone_page_state(page, NR_FILE_DIRTY); | |
700 | task_io_account_write(PAGE_CACHE_SIZE); | |
701 | } | |
702 | radix_tree_tag_set(&mapping->page_tree, | |
703 | page_index(page), PAGECACHE_TAG_DIRTY); | |
704 | } | |
705 | write_unlock_irq(&mapping->tree_lock); | |
706 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); | |
707 | ||
708 | return 1; | |
709 | } | |
710 | ||
1da177e4 LT |
711 | /* |
712 | * Add a page to the dirty page list. | |
713 | * | |
714 | * It is a sad fact of life that this function is called from several places | |
715 | * deeply under spinlocking. It may not sleep. | |
716 | * | |
717 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
718 | * dirty-state coherency between the page and the buffers. It the page does | |
719 | * not have buffers then when they are later attached they will all be set | |
720 | * dirty. | |
721 | * | |
722 | * The buffers are dirtied before the page is dirtied. There's a small race | |
723 | * window in which a writepage caller may see the page cleanness but not the | |
724 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
725 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
726 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
727 | * page on the dirty page list. | |
728 | * | |
729 | * We use private_lock to lock against try_to_free_buffers while using the | |
730 | * page's buffer list. Also use this to protect against clean buffers being | |
731 | * added to the page after it was set dirty. | |
732 | * | |
733 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
734 | * address_space though. | |
735 | */ | |
736 | int __set_page_dirty_buffers(struct page *page) | |
737 | { | |
787d2214 | 738 | struct address_space *mapping = page_mapping(page); |
ebf7a227 NP |
739 | |
740 | if (unlikely(!mapping)) | |
741 | return !TestSetPageDirty(page); | |
1da177e4 LT |
742 | |
743 | spin_lock(&mapping->private_lock); | |
744 | if (page_has_buffers(page)) { | |
745 | struct buffer_head *head = page_buffers(page); | |
746 | struct buffer_head *bh = head; | |
747 | ||
748 | do { | |
749 | set_buffer_dirty(bh); | |
750 | bh = bh->b_this_page; | |
751 | } while (bh != head); | |
752 | } | |
753 | spin_unlock(&mapping->private_lock); | |
754 | ||
787d2214 | 755 | return __set_page_dirty(page, mapping, 1); |
1da177e4 LT |
756 | } |
757 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
758 | ||
759 | /* | |
760 | * Write out and wait upon a list of buffers. | |
761 | * | |
762 | * We have conflicting pressures: we want to make sure that all | |
763 | * initially dirty buffers get waited on, but that any subsequently | |
764 | * dirtied buffers don't. After all, we don't want fsync to last | |
765 | * forever if somebody is actively writing to the file. | |
766 | * | |
767 | * Do this in two main stages: first we copy dirty buffers to a | |
768 | * temporary inode list, queueing the writes as we go. Then we clean | |
769 | * up, waiting for those writes to complete. | |
770 | * | |
771 | * During this second stage, any subsequent updates to the file may end | |
772 | * up refiling the buffer on the original inode's dirty list again, so | |
773 | * there is a chance we will end up with a buffer queued for write but | |
774 | * not yet completed on that list. So, as a final cleanup we go through | |
775 | * the osync code to catch these locked, dirty buffers without requeuing | |
776 | * any newly dirty buffers for write. | |
777 | */ | |
778 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
779 | { | |
780 | struct buffer_head *bh; | |
781 | struct list_head tmp; | |
782 | int err = 0, err2; | |
783 | ||
784 | INIT_LIST_HEAD(&tmp); | |
785 | ||
786 | spin_lock(lock); | |
787 | while (!list_empty(list)) { | |
788 | bh = BH_ENTRY(list->next); | |
58ff407b | 789 | __remove_assoc_queue(bh); |
1da177e4 LT |
790 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
791 | list_add(&bh->b_assoc_buffers, &tmp); | |
792 | if (buffer_dirty(bh)) { | |
793 | get_bh(bh); | |
794 | spin_unlock(lock); | |
795 | /* | |
796 | * Ensure any pending I/O completes so that | |
797 | * ll_rw_block() actually writes the current | |
798 | * contents - it is a noop if I/O is still in | |
799 | * flight on potentially older contents. | |
800 | */ | |
a7662236 | 801 | ll_rw_block(SWRITE, 1, &bh); |
1da177e4 LT |
802 | brelse(bh); |
803 | spin_lock(lock); | |
804 | } | |
805 | } | |
806 | } | |
807 | ||
808 | while (!list_empty(&tmp)) { | |
809 | bh = BH_ENTRY(tmp.prev); | |
58ff407b | 810 | list_del_init(&bh->b_assoc_buffers); |
1da177e4 LT |
811 | get_bh(bh); |
812 | spin_unlock(lock); | |
813 | wait_on_buffer(bh); | |
814 | if (!buffer_uptodate(bh)) | |
815 | err = -EIO; | |
816 | brelse(bh); | |
817 | spin_lock(lock); | |
818 | } | |
819 | ||
820 | spin_unlock(lock); | |
821 | err2 = osync_buffers_list(lock, list); | |
822 | if (err) | |
823 | return err; | |
824 | else | |
825 | return err2; | |
826 | } | |
827 | ||
828 | /* | |
829 | * Invalidate any and all dirty buffers on a given inode. We are | |
830 | * probably unmounting the fs, but that doesn't mean we have already | |
831 | * done a sync(). Just drop the buffers from the inode list. | |
832 | * | |
833 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
834 | * assumes that all the buffers are against the blockdev. Not true | |
835 | * for reiserfs. | |
836 | */ | |
837 | void invalidate_inode_buffers(struct inode *inode) | |
838 | { | |
839 | if (inode_has_buffers(inode)) { | |
840 | struct address_space *mapping = &inode->i_data; | |
841 | struct list_head *list = &mapping->private_list; | |
842 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
843 | ||
844 | spin_lock(&buffer_mapping->private_lock); | |
845 | while (!list_empty(list)) | |
846 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
847 | spin_unlock(&buffer_mapping->private_lock); | |
848 | } | |
849 | } | |
850 | ||
851 | /* | |
852 | * Remove any clean buffers from the inode's buffer list. This is called | |
853 | * when we're trying to free the inode itself. Those buffers can pin it. | |
854 | * | |
855 | * Returns true if all buffers were removed. | |
856 | */ | |
857 | int remove_inode_buffers(struct inode *inode) | |
858 | { | |
859 | int ret = 1; | |
860 | ||
861 | if (inode_has_buffers(inode)) { | |
862 | struct address_space *mapping = &inode->i_data; | |
863 | struct list_head *list = &mapping->private_list; | |
864 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
865 | ||
866 | spin_lock(&buffer_mapping->private_lock); | |
867 | while (!list_empty(list)) { | |
868 | struct buffer_head *bh = BH_ENTRY(list->next); | |
869 | if (buffer_dirty(bh)) { | |
870 | ret = 0; | |
871 | break; | |
872 | } | |
873 | __remove_assoc_queue(bh); | |
874 | } | |
875 | spin_unlock(&buffer_mapping->private_lock); | |
876 | } | |
877 | return ret; | |
878 | } | |
879 | ||
880 | /* | |
881 | * Create the appropriate buffers when given a page for data area and | |
882 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
883 | * follow the buffers created. Return NULL if unable to create more | |
884 | * buffers. | |
885 | * | |
886 | * The retry flag is used to differentiate async IO (paging, swapping) | |
887 | * which may not fail from ordinary buffer allocations. | |
888 | */ | |
889 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
890 | int retry) | |
891 | { | |
892 | struct buffer_head *bh, *head; | |
893 | long offset; | |
894 | ||
895 | try_again: | |
896 | head = NULL; | |
897 | offset = PAGE_SIZE; | |
898 | while ((offset -= size) >= 0) { | |
899 | bh = alloc_buffer_head(GFP_NOFS); | |
900 | if (!bh) | |
901 | goto no_grow; | |
902 | ||
903 | bh->b_bdev = NULL; | |
904 | bh->b_this_page = head; | |
905 | bh->b_blocknr = -1; | |
906 | head = bh; | |
907 | ||
908 | bh->b_state = 0; | |
909 | atomic_set(&bh->b_count, 0); | |
fc5cd582 | 910 | bh->b_private = NULL; |
1da177e4 LT |
911 | bh->b_size = size; |
912 | ||
913 | /* Link the buffer to its page */ | |
914 | set_bh_page(bh, page, offset); | |
915 | ||
01ffe339 | 916 | init_buffer(bh, NULL, NULL); |
1da177e4 LT |
917 | } |
918 | return head; | |
919 | /* | |
920 | * In case anything failed, we just free everything we got. | |
921 | */ | |
922 | no_grow: | |
923 | if (head) { | |
924 | do { | |
925 | bh = head; | |
926 | head = head->b_this_page; | |
927 | free_buffer_head(bh); | |
928 | } while (head); | |
929 | } | |
930 | ||
931 | /* | |
932 | * Return failure for non-async IO requests. Async IO requests | |
933 | * are not allowed to fail, so we have to wait until buffer heads | |
934 | * become available. But we don't want tasks sleeping with | |
935 | * partially complete buffers, so all were released above. | |
936 | */ | |
937 | if (!retry) | |
938 | return NULL; | |
939 | ||
940 | /* We're _really_ low on memory. Now we just | |
941 | * wait for old buffer heads to become free due to | |
942 | * finishing IO. Since this is an async request and | |
943 | * the reserve list is empty, we're sure there are | |
944 | * async buffer heads in use. | |
945 | */ | |
946 | free_more_memory(); | |
947 | goto try_again; | |
948 | } | |
949 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
950 | ||
951 | static inline void | |
952 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
953 | { | |
954 | struct buffer_head *bh, *tail; | |
955 | ||
956 | bh = head; | |
957 | do { | |
958 | tail = bh; | |
959 | bh = bh->b_this_page; | |
960 | } while (bh); | |
961 | tail->b_this_page = head; | |
962 | attach_page_buffers(page, head); | |
963 | } | |
964 | ||
965 | /* | |
966 | * Initialise the state of a blockdev page's buffers. | |
967 | */ | |
968 | static void | |
969 | init_page_buffers(struct page *page, struct block_device *bdev, | |
970 | sector_t block, int size) | |
971 | { | |
972 | struct buffer_head *head = page_buffers(page); | |
973 | struct buffer_head *bh = head; | |
974 | int uptodate = PageUptodate(page); | |
975 | ||
976 | do { | |
977 | if (!buffer_mapped(bh)) { | |
978 | init_buffer(bh, NULL, NULL); | |
979 | bh->b_bdev = bdev; | |
980 | bh->b_blocknr = block; | |
981 | if (uptodate) | |
982 | set_buffer_uptodate(bh); | |
983 | set_buffer_mapped(bh); | |
984 | } | |
985 | block++; | |
986 | bh = bh->b_this_page; | |
987 | } while (bh != head); | |
988 | } | |
989 | ||
990 | /* | |
991 | * Create the page-cache page that contains the requested block. | |
992 | * | |
993 | * This is user purely for blockdev mappings. | |
994 | */ | |
995 | static struct page * | |
996 | grow_dev_page(struct block_device *bdev, sector_t block, | |
997 | pgoff_t index, int size) | |
998 | { | |
999 | struct inode *inode = bdev->bd_inode; | |
1000 | struct page *page; | |
1001 | struct buffer_head *bh; | |
1002 | ||
ea125892 | 1003 | page = find_or_create_page(inode->i_mapping, index, |
769848c0 | 1004 | (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); |
1da177e4 LT |
1005 | if (!page) |
1006 | return NULL; | |
1007 | ||
e827f923 | 1008 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
1009 | |
1010 | if (page_has_buffers(page)) { | |
1011 | bh = page_buffers(page); | |
1012 | if (bh->b_size == size) { | |
1013 | init_page_buffers(page, bdev, block, size); | |
1014 | return page; | |
1015 | } | |
1016 | if (!try_to_free_buffers(page)) | |
1017 | goto failed; | |
1018 | } | |
1019 | ||
1020 | /* | |
1021 | * Allocate some buffers for this page | |
1022 | */ | |
1023 | bh = alloc_page_buffers(page, size, 0); | |
1024 | if (!bh) | |
1025 | goto failed; | |
1026 | ||
1027 | /* | |
1028 | * Link the page to the buffers and initialise them. Take the | |
1029 | * lock to be atomic wrt __find_get_block(), which does not | |
1030 | * run under the page lock. | |
1031 | */ | |
1032 | spin_lock(&inode->i_mapping->private_lock); | |
1033 | link_dev_buffers(page, bh); | |
1034 | init_page_buffers(page, bdev, block, size); | |
1035 | spin_unlock(&inode->i_mapping->private_lock); | |
1036 | return page; | |
1037 | ||
1038 | failed: | |
1039 | BUG(); | |
1040 | unlock_page(page); | |
1041 | page_cache_release(page); | |
1042 | return NULL; | |
1043 | } | |
1044 | ||
1045 | /* | |
1046 | * Create buffers for the specified block device block's page. If | |
1047 | * that page was dirty, the buffers are set dirty also. | |
1da177e4 | 1048 | */ |
858119e1 | 1049 | static int |
1da177e4 LT |
1050 | grow_buffers(struct block_device *bdev, sector_t block, int size) |
1051 | { | |
1052 | struct page *page; | |
1053 | pgoff_t index; | |
1054 | int sizebits; | |
1055 | ||
1056 | sizebits = -1; | |
1057 | do { | |
1058 | sizebits++; | |
1059 | } while ((size << sizebits) < PAGE_SIZE); | |
1060 | ||
1061 | index = block >> sizebits; | |
1da177e4 | 1062 | |
e5657933 AM |
1063 | /* |
1064 | * Check for a block which wants to lie outside our maximum possible | |
1065 | * pagecache index. (this comparison is done using sector_t types). | |
1066 | */ | |
1067 | if (unlikely(index != block >> sizebits)) { | |
1068 | char b[BDEVNAME_SIZE]; | |
1069 | ||
1070 | printk(KERN_ERR "%s: requested out-of-range block %llu for " | |
1071 | "device %s\n", | |
1072 | __FUNCTION__, (unsigned long long)block, | |
1073 | bdevname(bdev, b)); | |
1074 | return -EIO; | |
1075 | } | |
1076 | block = index << sizebits; | |
1da177e4 LT |
1077 | /* Create a page with the proper size buffers.. */ |
1078 | page = grow_dev_page(bdev, block, index, size); | |
1079 | if (!page) | |
1080 | return 0; | |
1081 | unlock_page(page); | |
1082 | page_cache_release(page); | |
1083 | return 1; | |
1084 | } | |
1085 | ||
75c96f85 | 1086 | static struct buffer_head * |
1da177e4 LT |
1087 | __getblk_slow(struct block_device *bdev, sector_t block, int size) |
1088 | { | |
1089 | /* Size must be multiple of hard sectorsize */ | |
1090 | if (unlikely(size & (bdev_hardsect_size(bdev)-1) || | |
1091 | (size < 512 || size > PAGE_SIZE))) { | |
1092 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1093 | size); | |
1094 | printk(KERN_ERR "hardsect size: %d\n", | |
1095 | bdev_hardsect_size(bdev)); | |
1096 | ||
1097 | dump_stack(); | |
1098 | return NULL; | |
1099 | } | |
1100 | ||
1101 | for (;;) { | |
1102 | struct buffer_head * bh; | |
e5657933 | 1103 | int ret; |
1da177e4 LT |
1104 | |
1105 | bh = __find_get_block(bdev, block, size); | |
1106 | if (bh) | |
1107 | return bh; | |
1108 | ||
e5657933 AM |
1109 | ret = grow_buffers(bdev, block, size); |
1110 | if (ret < 0) | |
1111 | return NULL; | |
1112 | if (ret == 0) | |
1da177e4 LT |
1113 | free_more_memory(); |
1114 | } | |
1115 | } | |
1116 | ||
1117 | /* | |
1118 | * The relationship between dirty buffers and dirty pages: | |
1119 | * | |
1120 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
1121 | * the page is tagged dirty in its radix tree. | |
1122 | * | |
1123 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1124 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1125 | * merely a hint about the true dirty state. | |
1126 | * | |
1127 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1128 | * (if the page has buffers). | |
1129 | * | |
1130 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1131 | * buffers are not. | |
1132 | * | |
1133 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1134 | * individually become uptodate. But their backing page remains not | |
1135 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1136 | * block_read_full_page() against that page will discover all the uptodate | |
1137 | * buffers, will set the page uptodate and will perform no I/O. | |
1138 | */ | |
1139 | ||
1140 | /** | |
1141 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1142 | * @bh: the buffer_head to mark dirty |
1da177e4 LT |
1143 | * |
1144 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | |
1145 | * backing page dirty, then tag the page as dirty in its address_space's radix | |
1146 | * tree and then attach the address_space's inode to its superblock's dirty | |
1147 | * inode list. | |
1148 | * | |
1149 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
1150 | * mapping->tree_lock and the global inode_lock. | |
1151 | */ | |
1152 | void fastcall mark_buffer_dirty(struct buffer_head *bh) | |
1153 | { | |
787d2214 | 1154 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
1da177e4 | 1155 | if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh)) |
787d2214 | 1156 | __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0); |
1da177e4 LT |
1157 | } |
1158 | ||
1159 | /* | |
1160 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1161 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1162 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1163 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1164 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1165 | */ | |
1166 | void __brelse(struct buffer_head * buf) | |
1167 | { | |
1168 | if (atomic_read(&buf->b_count)) { | |
1169 | put_bh(buf); | |
1170 | return; | |
1171 | } | |
1172 | printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n"); | |
1173 | WARN_ON(1); | |
1174 | } | |
1175 | ||
1176 | /* | |
1177 | * bforget() is like brelse(), except it discards any | |
1178 | * potentially dirty data. | |
1179 | */ | |
1180 | void __bforget(struct buffer_head *bh) | |
1181 | { | |
1182 | clear_buffer_dirty(bh); | |
1183 | if (!list_empty(&bh->b_assoc_buffers)) { | |
1184 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
1185 | ||
1186 | spin_lock(&buffer_mapping->private_lock); | |
1187 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 1188 | bh->b_assoc_map = NULL; |
1da177e4 LT |
1189 | spin_unlock(&buffer_mapping->private_lock); |
1190 | } | |
1191 | __brelse(bh); | |
1192 | } | |
1193 | ||
1194 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1195 | { | |
1196 | lock_buffer(bh); | |
1197 | if (buffer_uptodate(bh)) { | |
1198 | unlock_buffer(bh); | |
1199 | return bh; | |
1200 | } else { | |
1201 | get_bh(bh); | |
1202 | bh->b_end_io = end_buffer_read_sync; | |
1203 | submit_bh(READ, bh); | |
1204 | wait_on_buffer(bh); | |
1205 | if (buffer_uptodate(bh)) | |
1206 | return bh; | |
1207 | } | |
1208 | brelse(bh); | |
1209 | return NULL; | |
1210 | } | |
1211 | ||
1212 | /* | |
1213 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1214 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1215 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1216 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1217 | * CPU's LRUs at the same time. | |
1218 | * | |
1219 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1220 | * sb_find_get_block(). | |
1221 | * | |
1222 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1223 | * a local interrupt disable for that. | |
1224 | */ | |
1225 | ||
1226 | #define BH_LRU_SIZE 8 | |
1227 | ||
1228 | struct bh_lru { | |
1229 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1230 | }; | |
1231 | ||
1232 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1233 | ||
1234 | #ifdef CONFIG_SMP | |
1235 | #define bh_lru_lock() local_irq_disable() | |
1236 | #define bh_lru_unlock() local_irq_enable() | |
1237 | #else | |
1238 | #define bh_lru_lock() preempt_disable() | |
1239 | #define bh_lru_unlock() preempt_enable() | |
1240 | #endif | |
1241 | ||
1242 | static inline void check_irqs_on(void) | |
1243 | { | |
1244 | #ifdef irqs_disabled | |
1245 | BUG_ON(irqs_disabled()); | |
1246 | #endif | |
1247 | } | |
1248 | ||
1249 | /* | |
1250 | * The LRU management algorithm is dopey-but-simple. Sorry. | |
1251 | */ | |
1252 | static void bh_lru_install(struct buffer_head *bh) | |
1253 | { | |
1254 | struct buffer_head *evictee = NULL; | |
1255 | struct bh_lru *lru; | |
1256 | ||
1257 | check_irqs_on(); | |
1258 | bh_lru_lock(); | |
1259 | lru = &__get_cpu_var(bh_lrus); | |
1260 | if (lru->bhs[0] != bh) { | |
1261 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1262 | int in; | |
1263 | int out = 0; | |
1264 | ||
1265 | get_bh(bh); | |
1266 | bhs[out++] = bh; | |
1267 | for (in = 0; in < BH_LRU_SIZE; in++) { | |
1268 | struct buffer_head *bh2 = lru->bhs[in]; | |
1269 | ||
1270 | if (bh2 == bh) { | |
1271 | __brelse(bh2); | |
1272 | } else { | |
1273 | if (out >= BH_LRU_SIZE) { | |
1274 | BUG_ON(evictee != NULL); | |
1275 | evictee = bh2; | |
1276 | } else { | |
1277 | bhs[out++] = bh2; | |
1278 | } | |
1279 | } | |
1280 | } | |
1281 | while (out < BH_LRU_SIZE) | |
1282 | bhs[out++] = NULL; | |
1283 | memcpy(lru->bhs, bhs, sizeof(bhs)); | |
1284 | } | |
1285 | bh_lru_unlock(); | |
1286 | ||
1287 | if (evictee) | |
1288 | __brelse(evictee); | |
1289 | } | |
1290 | ||
1291 | /* | |
1292 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1293 | */ | |
858119e1 | 1294 | static struct buffer_head * |
3991d3bd | 1295 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1296 | { |
1297 | struct buffer_head *ret = NULL; | |
1298 | struct bh_lru *lru; | |
3991d3bd | 1299 | unsigned int i; |
1da177e4 LT |
1300 | |
1301 | check_irqs_on(); | |
1302 | bh_lru_lock(); | |
1303 | lru = &__get_cpu_var(bh_lrus); | |
1304 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1305 | struct buffer_head *bh = lru->bhs[i]; | |
1306 | ||
1307 | if (bh && bh->b_bdev == bdev && | |
1308 | bh->b_blocknr == block && bh->b_size == size) { | |
1309 | if (i) { | |
1310 | while (i) { | |
1311 | lru->bhs[i] = lru->bhs[i - 1]; | |
1312 | i--; | |
1313 | } | |
1314 | lru->bhs[0] = bh; | |
1315 | } | |
1316 | get_bh(bh); | |
1317 | ret = bh; | |
1318 | break; | |
1319 | } | |
1320 | } | |
1321 | bh_lru_unlock(); | |
1322 | return ret; | |
1323 | } | |
1324 | ||
1325 | /* | |
1326 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1327 | * it in the LRU and mark it as accessed. If it is not present then return | |
1328 | * NULL | |
1329 | */ | |
1330 | struct buffer_head * | |
3991d3bd | 1331 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1332 | { |
1333 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1334 | ||
1335 | if (bh == NULL) { | |
385fd4c5 | 1336 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1337 | if (bh) |
1338 | bh_lru_install(bh); | |
1339 | } | |
1340 | if (bh) | |
1341 | touch_buffer(bh); | |
1342 | return bh; | |
1343 | } | |
1344 | EXPORT_SYMBOL(__find_get_block); | |
1345 | ||
1346 | /* | |
1347 | * __getblk will locate (and, if necessary, create) the buffer_head | |
1348 | * which corresponds to the passed block_device, block and size. The | |
1349 | * returned buffer has its reference count incremented. | |
1350 | * | |
1351 | * __getblk() cannot fail - it just keeps trying. If you pass it an | |
1352 | * illegal block number, __getblk() will happily return a buffer_head | |
1353 | * which represents the non-existent block. Very weird. | |
1354 | * | |
1355 | * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() | |
1356 | * attempt is failing. FIXME, perhaps? | |
1357 | */ | |
1358 | struct buffer_head * | |
3991d3bd | 1359 | __getblk(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1360 | { |
1361 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1362 | ||
1363 | might_sleep(); | |
1364 | if (bh == NULL) | |
1365 | bh = __getblk_slow(bdev, block, size); | |
1366 | return bh; | |
1367 | } | |
1368 | EXPORT_SYMBOL(__getblk); | |
1369 | ||
1370 | /* | |
1371 | * Do async read-ahead on a buffer.. | |
1372 | */ | |
3991d3bd | 1373 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1374 | { |
1375 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 AM |
1376 | if (likely(bh)) { |
1377 | ll_rw_block(READA, 1, &bh); | |
1378 | brelse(bh); | |
1379 | } | |
1da177e4 LT |
1380 | } |
1381 | EXPORT_SYMBOL(__breadahead); | |
1382 | ||
1383 | /** | |
1384 | * __bread() - reads a specified block and returns the bh | |
67be2dd1 | 1385 | * @bdev: the block_device to read from |
1da177e4 LT |
1386 | * @block: number of block |
1387 | * @size: size (in bytes) to read | |
1388 | * | |
1389 | * Reads a specified block, and returns buffer head that contains it. | |
1390 | * It returns NULL if the block was unreadable. | |
1391 | */ | |
1392 | struct buffer_head * | |
3991d3bd | 1393 | __bread(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1394 | { |
1395 | struct buffer_head *bh = __getblk(bdev, block, size); | |
1396 | ||
a3e713b5 | 1397 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1398 | bh = __bread_slow(bh); |
1399 | return bh; | |
1400 | } | |
1401 | EXPORT_SYMBOL(__bread); | |
1402 | ||
1403 | /* | |
1404 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1405 | * This doesn't race because it runs in each cpu either in irq | |
1406 | * or with preempt disabled. | |
1407 | */ | |
1408 | static void invalidate_bh_lru(void *arg) | |
1409 | { | |
1410 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1411 | int i; | |
1412 | ||
1413 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1414 | brelse(b->bhs[i]); | |
1415 | b->bhs[i] = NULL; | |
1416 | } | |
1417 | put_cpu_var(bh_lrus); | |
1418 | } | |
1419 | ||
f9a14399 | 1420 | void invalidate_bh_lrus(void) |
1da177e4 LT |
1421 | { |
1422 | on_each_cpu(invalidate_bh_lru, NULL, 1, 1); | |
1423 | } | |
1424 | ||
1425 | void set_bh_page(struct buffer_head *bh, | |
1426 | struct page *page, unsigned long offset) | |
1427 | { | |
1428 | bh->b_page = page; | |
e827f923 | 1429 | BUG_ON(offset >= PAGE_SIZE); |
1da177e4 LT |
1430 | if (PageHighMem(page)) |
1431 | /* | |
1432 | * This catches illegal uses and preserves the offset: | |
1433 | */ | |
1434 | bh->b_data = (char *)(0 + offset); | |
1435 | else | |
1436 | bh->b_data = page_address(page) + offset; | |
1437 | } | |
1438 | EXPORT_SYMBOL(set_bh_page); | |
1439 | ||
1440 | /* | |
1441 | * Called when truncating a buffer on a page completely. | |
1442 | */ | |
858119e1 | 1443 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 LT |
1444 | { |
1445 | lock_buffer(bh); | |
1446 | clear_buffer_dirty(bh); | |
1447 | bh->b_bdev = NULL; | |
1448 | clear_buffer_mapped(bh); | |
1449 | clear_buffer_req(bh); | |
1450 | clear_buffer_new(bh); | |
1451 | clear_buffer_delay(bh); | |
33a266dd | 1452 | clear_buffer_unwritten(bh); |
1da177e4 LT |
1453 | unlock_buffer(bh); |
1454 | } | |
1455 | ||
1da177e4 LT |
1456 | /** |
1457 | * block_invalidatepage - invalidate part of all of a buffer-backed page | |
1458 | * | |
1459 | * @page: the page which is affected | |
1460 | * @offset: the index of the truncation point | |
1461 | * | |
1462 | * block_invalidatepage() is called when all or part of the page has become | |
1463 | * invalidatedby a truncate operation. | |
1464 | * | |
1465 | * block_invalidatepage() does not have to release all buffers, but it must | |
1466 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1467 | * is underway against any of the blocks which are outside the truncation | |
1468 | * point. Because the caller is about to free (and possibly reuse) those | |
1469 | * blocks on-disk. | |
1470 | */ | |
2ff28e22 | 1471 | void block_invalidatepage(struct page *page, unsigned long offset) |
1da177e4 LT |
1472 | { |
1473 | struct buffer_head *head, *bh, *next; | |
1474 | unsigned int curr_off = 0; | |
1da177e4 LT |
1475 | |
1476 | BUG_ON(!PageLocked(page)); | |
1477 | if (!page_has_buffers(page)) | |
1478 | goto out; | |
1479 | ||
1480 | head = page_buffers(page); | |
1481 | bh = head; | |
1482 | do { | |
1483 | unsigned int next_off = curr_off + bh->b_size; | |
1484 | next = bh->b_this_page; | |
1485 | ||
1486 | /* | |
1487 | * is this block fully invalidated? | |
1488 | */ | |
1489 | if (offset <= curr_off) | |
1490 | discard_buffer(bh); | |
1491 | curr_off = next_off; | |
1492 | bh = next; | |
1493 | } while (bh != head); | |
1494 | ||
1495 | /* | |
1496 | * We release buffers only if the entire page is being invalidated. | |
1497 | * The get_block cached value has been unconditionally invalidated, | |
1498 | * so real IO is not possible anymore. | |
1499 | */ | |
1500 | if (offset == 0) | |
2ff28e22 | 1501 | try_to_release_page(page, 0); |
1da177e4 | 1502 | out: |
2ff28e22 | 1503 | return; |
1da177e4 LT |
1504 | } |
1505 | EXPORT_SYMBOL(block_invalidatepage); | |
1506 | ||
1507 | /* | |
1508 | * We attach and possibly dirty the buffers atomically wrt | |
1509 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1510 | * is already excluded via the page lock. | |
1511 | */ | |
1512 | void create_empty_buffers(struct page *page, | |
1513 | unsigned long blocksize, unsigned long b_state) | |
1514 | { | |
1515 | struct buffer_head *bh, *head, *tail; | |
1516 | ||
1517 | head = alloc_page_buffers(page, blocksize, 1); | |
1518 | bh = head; | |
1519 | do { | |
1520 | bh->b_state |= b_state; | |
1521 | tail = bh; | |
1522 | bh = bh->b_this_page; | |
1523 | } while (bh); | |
1524 | tail->b_this_page = head; | |
1525 | ||
1526 | spin_lock(&page->mapping->private_lock); | |
1527 | if (PageUptodate(page) || PageDirty(page)) { | |
1528 | bh = head; | |
1529 | do { | |
1530 | if (PageDirty(page)) | |
1531 | set_buffer_dirty(bh); | |
1532 | if (PageUptodate(page)) | |
1533 | set_buffer_uptodate(bh); | |
1534 | bh = bh->b_this_page; | |
1535 | } while (bh != head); | |
1536 | } | |
1537 | attach_page_buffers(page, head); | |
1538 | spin_unlock(&page->mapping->private_lock); | |
1539 | } | |
1540 | EXPORT_SYMBOL(create_empty_buffers); | |
1541 | ||
1542 | /* | |
1543 | * We are taking a block for data and we don't want any output from any | |
1544 | * buffer-cache aliases starting from return from that function and | |
1545 | * until the moment when something will explicitly mark the buffer | |
1546 | * dirty (hopefully that will not happen until we will free that block ;-) | |
1547 | * We don't even need to mark it not-uptodate - nobody can expect | |
1548 | * anything from a newly allocated buffer anyway. We used to used | |
1549 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | |
1550 | * don't want to mark the alias unmapped, for example - it would confuse | |
1551 | * anyone who might pick it with bread() afterwards... | |
1552 | * | |
1553 | * Also.. Note that bforget() doesn't lock the buffer. So there can | |
1554 | * be writeout I/O going on against recently-freed buffers. We don't | |
1555 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | |
1556 | * only if we really need to. That happens here. | |
1557 | */ | |
1558 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | |
1559 | { | |
1560 | struct buffer_head *old_bh; | |
1561 | ||
1562 | might_sleep(); | |
1563 | ||
385fd4c5 | 1564 | old_bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1565 | if (old_bh) { |
1566 | clear_buffer_dirty(old_bh); | |
1567 | wait_on_buffer(old_bh); | |
1568 | clear_buffer_req(old_bh); | |
1569 | __brelse(old_bh); | |
1570 | } | |
1571 | } | |
1572 | EXPORT_SYMBOL(unmap_underlying_metadata); | |
1573 | ||
1574 | /* | |
1575 | * NOTE! All mapped/uptodate combinations are valid: | |
1576 | * | |
1577 | * Mapped Uptodate Meaning | |
1578 | * | |
1579 | * No No "unknown" - must do get_block() | |
1580 | * No Yes "hole" - zero-filled | |
1581 | * Yes No "allocated" - allocated on disk, not read in | |
1582 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1583 | * | |
1584 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1585 | */ | |
1586 | ||
1587 | /* | |
1588 | * While block_write_full_page is writing back the dirty buffers under | |
1589 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1590 | * again at any time. We handle that by only looking at the buffer | |
1591 | * state inside lock_buffer(). | |
1592 | * | |
1593 | * If block_write_full_page() is called for regular writeback | |
1594 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1595 | * locked buffer. This only can happen if someone has written the buffer | |
1596 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1597 | * prevents this contention from occurring. | |
1598 | */ | |
1599 | static int __block_write_full_page(struct inode *inode, struct page *page, | |
1600 | get_block_t *get_block, struct writeback_control *wbc) | |
1601 | { | |
1602 | int err; | |
1603 | sector_t block; | |
1604 | sector_t last_block; | |
f0fbd5fc | 1605 | struct buffer_head *bh, *head; |
b0cf2321 | 1606 | const unsigned blocksize = 1 << inode->i_blkbits; |
1da177e4 LT |
1607 | int nr_underway = 0; |
1608 | ||
1609 | BUG_ON(!PageLocked(page)); | |
1610 | ||
1611 | last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; | |
1612 | ||
1613 | if (!page_has_buffers(page)) { | |
b0cf2321 | 1614 | create_empty_buffers(page, blocksize, |
1da177e4 LT |
1615 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
1616 | } | |
1617 | ||
1618 | /* | |
1619 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1620 | * here, and the (potentially unmapped) buffers may become dirty at | |
1621 | * any time. If a buffer becomes dirty here after we've inspected it | |
1622 | * then we just miss that fact, and the page stays dirty. | |
1623 | * | |
1624 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1625 | * handle that here by just cleaning them. | |
1626 | */ | |
1627 | ||
54b21a79 | 1628 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
1629 | head = page_buffers(page); |
1630 | bh = head; | |
1631 | ||
1632 | /* | |
1633 | * Get all the dirty buffers mapped to disk addresses and | |
1634 | * handle any aliases from the underlying blockdev's mapping. | |
1635 | */ | |
1636 | do { | |
1637 | if (block > last_block) { | |
1638 | /* | |
1639 | * mapped buffers outside i_size will occur, because | |
1640 | * this page can be outside i_size when there is a | |
1641 | * truncate in progress. | |
1642 | */ | |
1643 | /* | |
1644 | * The buffer was zeroed by block_write_full_page() | |
1645 | */ | |
1646 | clear_buffer_dirty(bh); | |
1647 | set_buffer_uptodate(bh); | |
1648 | } else if (!buffer_mapped(bh) && buffer_dirty(bh)) { | |
b0cf2321 | 1649 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1650 | err = get_block(inode, block, bh, 1); |
1651 | if (err) | |
1652 | goto recover; | |
1653 | if (buffer_new(bh)) { | |
1654 | /* blockdev mappings never come here */ | |
1655 | clear_buffer_new(bh); | |
1656 | unmap_underlying_metadata(bh->b_bdev, | |
1657 | bh->b_blocknr); | |
1658 | } | |
1659 | } | |
1660 | bh = bh->b_this_page; | |
1661 | block++; | |
1662 | } while (bh != head); | |
1663 | ||
1664 | do { | |
1da177e4 LT |
1665 | if (!buffer_mapped(bh)) |
1666 | continue; | |
1667 | /* | |
1668 | * If it's a fully non-blocking write attempt and we cannot | |
1669 | * lock the buffer then redirty the page. Note that this can | |
1670 | * potentially cause a busy-wait loop from pdflush and kswapd | |
1671 | * activity, but those code paths have their own higher-level | |
1672 | * throttling. | |
1673 | */ | |
1674 | if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { | |
1675 | lock_buffer(bh); | |
1676 | } else if (test_set_buffer_locked(bh)) { | |
1677 | redirty_page_for_writepage(wbc, page); | |
1678 | continue; | |
1679 | } | |
1680 | if (test_clear_buffer_dirty(bh)) { | |
1681 | mark_buffer_async_write(bh); | |
1682 | } else { | |
1683 | unlock_buffer(bh); | |
1684 | } | |
1685 | } while ((bh = bh->b_this_page) != head); | |
1686 | ||
1687 | /* | |
1688 | * The page and its buffers are protected by PageWriteback(), so we can | |
1689 | * drop the bh refcounts early. | |
1690 | */ | |
1691 | BUG_ON(PageWriteback(page)); | |
1692 | set_page_writeback(page); | |
1da177e4 LT |
1693 | |
1694 | do { | |
1695 | struct buffer_head *next = bh->b_this_page; | |
1696 | if (buffer_async_write(bh)) { | |
1697 | submit_bh(WRITE, bh); | |
1698 | nr_underway++; | |
1699 | } | |
1da177e4 LT |
1700 | bh = next; |
1701 | } while (bh != head); | |
05937baa | 1702 | unlock_page(page); |
1da177e4 LT |
1703 | |
1704 | err = 0; | |
1705 | done: | |
1706 | if (nr_underway == 0) { | |
1707 | /* | |
1708 | * The page was marked dirty, but the buffers were | |
1709 | * clean. Someone wrote them back by hand with | |
1710 | * ll_rw_block/submit_bh. A rare case. | |
1711 | */ | |
1da177e4 | 1712 | end_page_writeback(page); |
3d67f2d7 | 1713 | |
1da177e4 LT |
1714 | /* |
1715 | * The page and buffer_heads can be released at any time from | |
1716 | * here on. | |
1717 | */ | |
1718 | wbc->pages_skipped++; /* We didn't write this page */ | |
1719 | } | |
1720 | return err; | |
1721 | ||
1722 | recover: | |
1723 | /* | |
1724 | * ENOSPC, or some other error. We may already have added some | |
1725 | * blocks to the file, so we need to write these out to avoid | |
1726 | * exposing stale data. | |
1727 | * The page is currently locked and not marked for writeback | |
1728 | */ | |
1729 | bh = head; | |
1730 | /* Recovery: lock and submit the mapped buffers */ | |
1731 | do { | |
1da177e4 LT |
1732 | if (buffer_mapped(bh) && buffer_dirty(bh)) { |
1733 | lock_buffer(bh); | |
1734 | mark_buffer_async_write(bh); | |
1735 | } else { | |
1736 | /* | |
1737 | * The buffer may have been set dirty during | |
1738 | * attachment to a dirty page. | |
1739 | */ | |
1740 | clear_buffer_dirty(bh); | |
1741 | } | |
1742 | } while ((bh = bh->b_this_page) != head); | |
1743 | SetPageError(page); | |
1744 | BUG_ON(PageWriteback(page)); | |
7e4c3690 | 1745 | mapping_set_error(page->mapping, err); |
1da177e4 | 1746 | set_page_writeback(page); |
1da177e4 LT |
1747 | do { |
1748 | struct buffer_head *next = bh->b_this_page; | |
1749 | if (buffer_async_write(bh)) { | |
1750 | clear_buffer_dirty(bh); | |
1751 | submit_bh(WRITE, bh); | |
1752 | nr_underway++; | |
1753 | } | |
1da177e4 LT |
1754 | bh = next; |
1755 | } while (bh != head); | |
ffda9d30 | 1756 | unlock_page(page); |
1da177e4 LT |
1757 | goto done; |
1758 | } | |
1759 | ||
1760 | static int __block_prepare_write(struct inode *inode, struct page *page, | |
1761 | unsigned from, unsigned to, get_block_t *get_block) | |
1762 | { | |
1763 | unsigned block_start, block_end; | |
1764 | sector_t block; | |
1765 | int err = 0; | |
1766 | unsigned blocksize, bbits; | |
1767 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1768 | ||
1769 | BUG_ON(!PageLocked(page)); | |
1770 | BUG_ON(from > PAGE_CACHE_SIZE); | |
1771 | BUG_ON(to > PAGE_CACHE_SIZE); | |
1772 | BUG_ON(from > to); | |
1773 | ||
1774 | blocksize = 1 << inode->i_blkbits; | |
1775 | if (!page_has_buffers(page)) | |
1776 | create_empty_buffers(page, blocksize, 0); | |
1777 | head = page_buffers(page); | |
1778 | ||
1779 | bbits = inode->i_blkbits; | |
1780 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | |
1781 | ||
1782 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1783 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1784 | block_end = block_start + blocksize; | |
1785 | if (block_end <= from || block_start >= to) { | |
1786 | if (PageUptodate(page)) { | |
1787 | if (!buffer_uptodate(bh)) | |
1788 | set_buffer_uptodate(bh); | |
1789 | } | |
1790 | continue; | |
1791 | } | |
1792 | if (buffer_new(bh)) | |
1793 | clear_buffer_new(bh); | |
1794 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 1795 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1796 | err = get_block(inode, block, bh, 1); |
1797 | if (err) | |
f3ddbdc6 | 1798 | break; |
1da177e4 | 1799 | if (buffer_new(bh)) { |
1da177e4 LT |
1800 | unmap_underlying_metadata(bh->b_bdev, |
1801 | bh->b_blocknr); | |
1802 | if (PageUptodate(page)) { | |
1803 | set_buffer_uptodate(bh); | |
1804 | continue; | |
1805 | } | |
1806 | if (block_end > to || block_start < from) { | |
1807 | void *kaddr; | |
1808 | ||
1809 | kaddr = kmap_atomic(page, KM_USER0); | |
1810 | if (block_end > to) | |
1811 | memset(kaddr+to, 0, | |
1812 | block_end-to); | |
1813 | if (block_start < from) | |
1814 | memset(kaddr+block_start, | |
1815 | 0, from-block_start); | |
1816 | flush_dcache_page(page); | |
1817 | kunmap_atomic(kaddr, KM_USER0); | |
1818 | } | |
1819 | continue; | |
1820 | } | |
1821 | } | |
1822 | if (PageUptodate(page)) { | |
1823 | if (!buffer_uptodate(bh)) | |
1824 | set_buffer_uptodate(bh); | |
1825 | continue; | |
1826 | } | |
1827 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
33a266dd | 1828 | !buffer_unwritten(bh) && |
1da177e4 LT |
1829 | (block_start < from || block_end > to)) { |
1830 | ll_rw_block(READ, 1, &bh); | |
1831 | *wait_bh++=bh; | |
1832 | } | |
1833 | } | |
1834 | /* | |
1835 | * If we issued read requests - let them complete. | |
1836 | */ | |
1837 | while(wait_bh > wait) { | |
1838 | wait_on_buffer(*--wait_bh); | |
1839 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 1840 | err = -EIO; |
1da177e4 | 1841 | } |
152becd2 AA |
1842 | if (!err) { |
1843 | bh = head; | |
1844 | do { | |
1845 | if (buffer_new(bh)) | |
1846 | clear_buffer_new(bh); | |
1847 | } while ((bh = bh->b_this_page) != head); | |
1848 | return 0; | |
1849 | } | |
f3ddbdc6 | 1850 | /* Error case: */ |
1da177e4 LT |
1851 | /* |
1852 | * Zero out any newly allocated blocks to avoid exposing stale | |
1853 | * data. If BH_New is set, we know that the block was newly | |
1854 | * allocated in the above loop. | |
1855 | */ | |
1856 | bh = head; | |
1857 | block_start = 0; | |
1858 | do { | |
1859 | block_end = block_start+blocksize; | |
1860 | if (block_end <= from) | |
1861 | goto next_bh; | |
1862 | if (block_start >= to) | |
1863 | break; | |
1864 | if (buffer_new(bh)) { | |
1da177e4 | 1865 | clear_buffer_new(bh); |
01f2705d | 1866 | zero_user_page(page, block_start, bh->b_size, KM_USER0); |
1da177e4 LT |
1867 | set_buffer_uptodate(bh); |
1868 | mark_buffer_dirty(bh); | |
1869 | } | |
1870 | next_bh: | |
1871 | block_start = block_end; | |
1872 | bh = bh->b_this_page; | |
1873 | } while (bh != head); | |
1874 | return err; | |
1875 | } | |
1876 | ||
1877 | static int __block_commit_write(struct inode *inode, struct page *page, | |
1878 | unsigned from, unsigned to) | |
1879 | { | |
1880 | unsigned block_start, block_end; | |
1881 | int partial = 0; | |
1882 | unsigned blocksize; | |
1883 | struct buffer_head *bh, *head; | |
1884 | ||
1885 | blocksize = 1 << inode->i_blkbits; | |
1886 | ||
1887 | for(bh = head = page_buffers(page), block_start = 0; | |
1888 | bh != head || !block_start; | |
1889 | block_start=block_end, bh = bh->b_this_page) { | |
1890 | block_end = block_start + blocksize; | |
1891 | if (block_end <= from || block_start >= to) { | |
1892 | if (!buffer_uptodate(bh)) | |
1893 | partial = 1; | |
1894 | } else { | |
1895 | set_buffer_uptodate(bh); | |
1896 | mark_buffer_dirty(bh); | |
1897 | } | |
1898 | } | |
1899 | ||
1900 | /* | |
1901 | * If this is a partial write which happened to make all buffers | |
1902 | * uptodate then we can optimize away a bogus readpage() for | |
1903 | * the next read(). Here we 'discover' whether the page went | |
1904 | * uptodate as a result of this (potentially partial) write. | |
1905 | */ | |
1906 | if (!partial) | |
1907 | SetPageUptodate(page); | |
1908 | return 0; | |
1909 | } | |
1910 | ||
1911 | /* | |
1912 | * Generic "read page" function for block devices that have the normal | |
1913 | * get_block functionality. This is most of the block device filesystems. | |
1914 | * Reads the page asynchronously --- the unlock_buffer() and | |
1915 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
1916 | * page struct once IO has completed. | |
1917 | */ | |
1918 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
1919 | { | |
1920 | struct inode *inode = page->mapping->host; | |
1921 | sector_t iblock, lblock; | |
1922 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
1923 | unsigned int blocksize; | |
1924 | int nr, i; | |
1925 | int fully_mapped = 1; | |
1926 | ||
cd7619d6 | 1927 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
1928 | blocksize = 1 << inode->i_blkbits; |
1929 | if (!page_has_buffers(page)) | |
1930 | create_empty_buffers(page, blocksize, 0); | |
1931 | head = page_buffers(page); | |
1932 | ||
1933 | iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
1934 | lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; | |
1935 | bh = head; | |
1936 | nr = 0; | |
1937 | i = 0; | |
1938 | ||
1939 | do { | |
1940 | if (buffer_uptodate(bh)) | |
1941 | continue; | |
1942 | ||
1943 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
1944 | int err = 0; |
1945 | ||
1da177e4 LT |
1946 | fully_mapped = 0; |
1947 | if (iblock < lblock) { | |
b0cf2321 | 1948 | WARN_ON(bh->b_size != blocksize); |
c64610ba AM |
1949 | err = get_block(inode, iblock, bh, 0); |
1950 | if (err) | |
1da177e4 LT |
1951 | SetPageError(page); |
1952 | } | |
1953 | if (!buffer_mapped(bh)) { | |
01f2705d ND |
1954 | zero_user_page(page, i * blocksize, blocksize, |
1955 | KM_USER0); | |
c64610ba AM |
1956 | if (!err) |
1957 | set_buffer_uptodate(bh); | |
1da177e4 LT |
1958 | continue; |
1959 | } | |
1960 | /* | |
1961 | * get_block() might have updated the buffer | |
1962 | * synchronously | |
1963 | */ | |
1964 | if (buffer_uptodate(bh)) | |
1965 | continue; | |
1966 | } | |
1967 | arr[nr++] = bh; | |
1968 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
1969 | ||
1970 | if (fully_mapped) | |
1971 | SetPageMappedToDisk(page); | |
1972 | ||
1973 | if (!nr) { | |
1974 | /* | |
1975 | * All buffers are uptodate - we can set the page uptodate | |
1976 | * as well. But not if get_block() returned an error. | |
1977 | */ | |
1978 | if (!PageError(page)) | |
1979 | SetPageUptodate(page); | |
1980 | unlock_page(page); | |
1981 | return 0; | |
1982 | } | |
1983 | ||
1984 | /* Stage two: lock the buffers */ | |
1985 | for (i = 0; i < nr; i++) { | |
1986 | bh = arr[i]; | |
1987 | lock_buffer(bh); | |
1988 | mark_buffer_async_read(bh); | |
1989 | } | |
1990 | ||
1991 | /* | |
1992 | * Stage 3: start the IO. Check for uptodateness | |
1993 | * inside the buffer lock in case another process reading | |
1994 | * the underlying blockdev brought it uptodate (the sct fix). | |
1995 | */ | |
1996 | for (i = 0; i < nr; i++) { | |
1997 | bh = arr[i]; | |
1998 | if (buffer_uptodate(bh)) | |
1999 | end_buffer_async_read(bh, 1); | |
2000 | else | |
2001 | submit_bh(READ, bh); | |
2002 | } | |
2003 | return 0; | |
2004 | } | |
2005 | ||
2006 | /* utility function for filesystems that need to do work on expanding | |
2007 | * truncates. Uses prepare/commit_write to allow the filesystem to | |
2008 | * deal with the hole. | |
2009 | */ | |
05eb0b51 OH |
2010 | static int __generic_cont_expand(struct inode *inode, loff_t size, |
2011 | pgoff_t index, unsigned int offset) | |
1da177e4 LT |
2012 | { |
2013 | struct address_space *mapping = inode->i_mapping; | |
2014 | struct page *page; | |
05eb0b51 | 2015 | unsigned long limit; |
1da177e4 LT |
2016 | int err; |
2017 | ||
2018 | err = -EFBIG; | |
2019 | limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | |
2020 | if (limit != RLIM_INFINITY && size > (loff_t)limit) { | |
2021 | send_sig(SIGXFSZ, current, 0); | |
2022 | goto out; | |
2023 | } | |
2024 | if (size > inode->i_sb->s_maxbytes) | |
2025 | goto out; | |
2026 | ||
1da177e4 LT |
2027 | err = -ENOMEM; |
2028 | page = grab_cache_page(mapping, index); | |
2029 | if (!page) | |
2030 | goto out; | |
2031 | err = mapping->a_ops->prepare_write(NULL, page, offset, offset); | |
05eb0b51 OH |
2032 | if (err) { |
2033 | /* | |
2034 | * ->prepare_write() may have instantiated a few blocks | |
2035 | * outside i_size. Trim these off again. | |
2036 | */ | |
2037 | unlock_page(page); | |
2038 | page_cache_release(page); | |
2039 | vmtruncate(inode, inode->i_size); | |
2040 | goto out; | |
1da177e4 | 2041 | } |
05eb0b51 OH |
2042 | |
2043 | err = mapping->a_ops->commit_write(NULL, page, offset, offset); | |
2044 | ||
1da177e4 LT |
2045 | unlock_page(page); |
2046 | page_cache_release(page); | |
2047 | if (err > 0) | |
2048 | err = 0; | |
2049 | out: | |
2050 | return err; | |
2051 | } | |
2052 | ||
05eb0b51 OH |
2053 | int generic_cont_expand(struct inode *inode, loff_t size) |
2054 | { | |
2055 | pgoff_t index; | |
2056 | unsigned int offset; | |
2057 | ||
2058 | offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */ | |
2059 | ||
2060 | /* ugh. in prepare/commit_write, if from==to==start of block, we | |
2061 | ** skip the prepare. make sure we never send an offset for the start | |
2062 | ** of a block | |
2063 | */ | |
2064 | if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) { | |
2065 | /* caller must handle this extra byte. */ | |
2066 | offset++; | |
2067 | } | |
2068 | index = size >> PAGE_CACHE_SHIFT; | |
2069 | ||
2070 | return __generic_cont_expand(inode, size, index, offset); | |
2071 | } | |
2072 | ||
2073 | int generic_cont_expand_simple(struct inode *inode, loff_t size) | |
2074 | { | |
2075 | loff_t pos = size - 1; | |
2076 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; | |
2077 | unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1; | |
2078 | ||
2079 | /* prepare/commit_write can handle even if from==to==start of block. */ | |
2080 | return __generic_cont_expand(inode, size, index, offset); | |
2081 | } | |
2082 | ||
1da177e4 LT |
2083 | /* |
2084 | * For moronic filesystems that do not allow holes in file. | |
2085 | * We may have to extend the file. | |
2086 | */ | |
2087 | ||
2088 | int cont_prepare_write(struct page *page, unsigned offset, | |
2089 | unsigned to, get_block_t *get_block, loff_t *bytes) | |
2090 | { | |
2091 | struct address_space *mapping = page->mapping; | |
2092 | struct inode *inode = mapping->host; | |
2093 | struct page *new_page; | |
2094 | pgoff_t pgpos; | |
2095 | long status; | |
2096 | unsigned zerofrom; | |
2097 | unsigned blocksize = 1 << inode->i_blkbits; | |
1da177e4 LT |
2098 | |
2099 | while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) { | |
2100 | status = -ENOMEM; | |
2101 | new_page = grab_cache_page(mapping, pgpos); | |
2102 | if (!new_page) | |
2103 | goto out; | |
2104 | /* we might sleep */ | |
2105 | if (*bytes>>PAGE_CACHE_SHIFT != pgpos) { | |
2106 | unlock_page(new_page); | |
2107 | page_cache_release(new_page); | |
2108 | continue; | |
2109 | } | |
2110 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2111 | if (zerofrom & (blocksize-1)) { | |
2112 | *bytes |= (blocksize-1); | |
2113 | (*bytes)++; | |
2114 | } | |
2115 | status = __block_prepare_write(inode, new_page, zerofrom, | |
2116 | PAGE_CACHE_SIZE, get_block); | |
2117 | if (status) | |
2118 | goto out_unmap; | |
ff1be9ad | 2119 | zero_user_page(new_page, zerofrom, PAGE_CACHE_SIZE - zerofrom, |
01f2705d | 2120 | KM_USER0); |
1da177e4 LT |
2121 | generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE); |
2122 | unlock_page(new_page); | |
2123 | page_cache_release(new_page); | |
2124 | } | |
2125 | ||
2126 | if (page->index < pgpos) { | |
2127 | /* completely inside the area */ | |
2128 | zerofrom = offset; | |
2129 | } else { | |
2130 | /* page covers the boundary, find the boundary offset */ | |
2131 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2132 | ||
2133 | /* if we will expand the thing last block will be filled */ | |
2134 | if (to > zerofrom && (zerofrom & (blocksize-1))) { | |
2135 | *bytes |= (blocksize-1); | |
2136 | (*bytes)++; | |
2137 | } | |
2138 | ||
2139 | /* starting below the boundary? Nothing to zero out */ | |
2140 | if (offset <= zerofrom) | |
2141 | zerofrom = offset; | |
2142 | } | |
2143 | status = __block_prepare_write(inode, page, zerofrom, to, get_block); | |
2144 | if (status) | |
2145 | goto out1; | |
2146 | if (zerofrom < offset) { | |
01f2705d | 2147 | zero_user_page(page, zerofrom, offset - zerofrom, KM_USER0); |
1da177e4 LT |
2148 | __block_commit_write(inode, page, zerofrom, offset); |
2149 | } | |
2150 | return 0; | |
2151 | out1: | |
2152 | ClearPageUptodate(page); | |
2153 | return status; | |
2154 | ||
2155 | out_unmap: | |
2156 | ClearPageUptodate(new_page); | |
2157 | unlock_page(new_page); | |
2158 | page_cache_release(new_page); | |
2159 | out: | |
2160 | return status; | |
2161 | } | |
2162 | ||
2163 | int block_prepare_write(struct page *page, unsigned from, unsigned to, | |
2164 | get_block_t *get_block) | |
2165 | { | |
2166 | struct inode *inode = page->mapping->host; | |
2167 | int err = __block_prepare_write(inode, page, from, to, get_block); | |
2168 | if (err) | |
2169 | ClearPageUptodate(page); | |
2170 | return err; | |
2171 | } | |
2172 | ||
2173 | int block_commit_write(struct page *page, unsigned from, unsigned to) | |
2174 | { | |
2175 | struct inode *inode = page->mapping->host; | |
2176 | __block_commit_write(inode,page,from,to); | |
2177 | return 0; | |
2178 | } | |
2179 | ||
2180 | int generic_commit_write(struct file *file, struct page *page, | |
2181 | unsigned from, unsigned to) | |
2182 | { | |
2183 | struct inode *inode = page->mapping->host; | |
2184 | loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | |
2185 | __block_commit_write(inode,page,from,to); | |
2186 | /* | |
2187 | * No need to use i_size_read() here, the i_size | |
1b1dcc1b | 2188 | * cannot change under us because we hold i_mutex. |
1da177e4 LT |
2189 | */ |
2190 | if (pos > inode->i_size) { | |
2191 | i_size_write(inode, pos); | |
2192 | mark_inode_dirty(inode); | |
2193 | } | |
2194 | return 0; | |
2195 | } | |
2196 | ||
54171690 DC |
2197 | /* |
2198 | * block_page_mkwrite() is not allowed to change the file size as it gets | |
2199 | * called from a page fault handler when a page is first dirtied. Hence we must | |
2200 | * be careful to check for EOF conditions here. We set the page up correctly | |
2201 | * for a written page which means we get ENOSPC checking when writing into | |
2202 | * holes and correct delalloc and unwritten extent mapping on filesystems that | |
2203 | * support these features. | |
2204 | * | |
2205 | * We are not allowed to take the i_mutex here so we have to play games to | |
2206 | * protect against truncate races as the page could now be beyond EOF. Because | |
2207 | * vmtruncate() writes the inode size before removing pages, once we have the | |
2208 | * page lock we can determine safely if the page is beyond EOF. If it is not | |
2209 | * beyond EOF, then the page is guaranteed safe against truncation until we | |
2210 | * unlock the page. | |
2211 | */ | |
2212 | int | |
2213 | block_page_mkwrite(struct vm_area_struct *vma, struct page *page, | |
2214 | get_block_t get_block) | |
2215 | { | |
2216 | struct inode *inode = vma->vm_file->f_path.dentry->d_inode; | |
2217 | unsigned long end; | |
2218 | loff_t size; | |
2219 | int ret = -EINVAL; | |
2220 | ||
2221 | lock_page(page); | |
2222 | size = i_size_read(inode); | |
2223 | if ((page->mapping != inode->i_mapping) || | |
18336338 | 2224 | (page_offset(page) > size)) { |
54171690 DC |
2225 | /* page got truncated out from underneath us */ |
2226 | goto out_unlock; | |
2227 | } | |
2228 | ||
2229 | /* page is wholly or partially inside EOF */ | |
2230 | if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) | |
2231 | end = size & ~PAGE_CACHE_MASK; | |
2232 | else | |
2233 | end = PAGE_CACHE_SIZE; | |
2234 | ||
2235 | ret = block_prepare_write(page, 0, end, get_block); | |
2236 | if (!ret) | |
2237 | ret = block_commit_write(page, 0, end); | |
2238 | ||
2239 | out_unlock: | |
2240 | unlock_page(page); | |
2241 | return ret; | |
2242 | } | |
1da177e4 LT |
2243 | |
2244 | /* | |
2245 | * nobh_prepare_write()'s prereads are special: the buffer_heads are freed | |
2246 | * immediately, while under the page lock. So it needs a special end_io | |
2247 | * handler which does not touch the bh after unlocking it. | |
2248 | * | |
2249 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
2250 | * a race there is benign: unlock_buffer() only use the bh's address for | |
2251 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
2252 | * itself. | |
2253 | */ | |
2254 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2255 | { | |
2256 | if (uptodate) { | |
2257 | set_buffer_uptodate(bh); | |
2258 | } else { | |
2259 | /* This happens, due to failed READA attempts. */ | |
2260 | clear_buffer_uptodate(bh); | |
2261 | } | |
2262 | unlock_buffer(bh); | |
2263 | } | |
2264 | ||
2265 | /* | |
2266 | * On entry, the page is fully not uptodate. | |
2267 | * On exit the page is fully uptodate in the areas outside (from,to) | |
2268 | */ | |
2269 | int nobh_prepare_write(struct page *page, unsigned from, unsigned to, | |
2270 | get_block_t *get_block) | |
2271 | { | |
2272 | struct inode *inode = page->mapping->host; | |
2273 | const unsigned blkbits = inode->i_blkbits; | |
2274 | const unsigned blocksize = 1 << blkbits; | |
2275 | struct buffer_head map_bh; | |
2276 | struct buffer_head *read_bh[MAX_BUF_PER_PAGE]; | |
2277 | unsigned block_in_page; | |
2278 | unsigned block_start; | |
2279 | sector_t block_in_file; | |
2280 | char *kaddr; | |
2281 | int nr_reads = 0; | |
2282 | int i; | |
2283 | int ret = 0; | |
2284 | int is_mapped_to_disk = 1; | |
1da177e4 LT |
2285 | |
2286 | if (PageMappedToDisk(page)) | |
2287 | return 0; | |
2288 | ||
2289 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); | |
2290 | map_bh.b_page = page; | |
2291 | ||
2292 | /* | |
2293 | * We loop across all blocks in the page, whether or not they are | |
2294 | * part of the affected region. This is so we can discover if the | |
2295 | * page is fully mapped-to-disk. | |
2296 | */ | |
2297 | for (block_start = 0, block_in_page = 0; | |
2298 | block_start < PAGE_CACHE_SIZE; | |
2299 | block_in_page++, block_start += blocksize) { | |
2300 | unsigned block_end = block_start + blocksize; | |
2301 | int create; | |
2302 | ||
2303 | map_bh.b_state = 0; | |
2304 | create = 1; | |
2305 | if (block_start >= to) | |
2306 | create = 0; | |
b0cf2321 | 2307 | map_bh.b_size = blocksize; |
1da177e4 LT |
2308 | ret = get_block(inode, block_in_file + block_in_page, |
2309 | &map_bh, create); | |
2310 | if (ret) | |
2311 | goto failed; | |
2312 | if (!buffer_mapped(&map_bh)) | |
2313 | is_mapped_to_disk = 0; | |
2314 | if (buffer_new(&map_bh)) | |
2315 | unmap_underlying_metadata(map_bh.b_bdev, | |
2316 | map_bh.b_blocknr); | |
2317 | if (PageUptodate(page)) | |
2318 | continue; | |
2319 | if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) { | |
2320 | kaddr = kmap_atomic(page, KM_USER0); | |
22c8ca78 | 2321 | if (block_start < from) |
1da177e4 | 2322 | memset(kaddr+block_start, 0, from-block_start); |
22c8ca78 | 2323 | if (block_end > to) |
1da177e4 | 2324 | memset(kaddr + to, 0, block_end - to); |
1da177e4 LT |
2325 | flush_dcache_page(page); |
2326 | kunmap_atomic(kaddr, KM_USER0); | |
2327 | continue; | |
2328 | } | |
2329 | if (buffer_uptodate(&map_bh)) | |
2330 | continue; /* reiserfs does this */ | |
2331 | if (block_start < from || block_end > to) { | |
2332 | struct buffer_head *bh = alloc_buffer_head(GFP_NOFS); | |
2333 | ||
2334 | if (!bh) { | |
2335 | ret = -ENOMEM; | |
2336 | goto failed; | |
2337 | } | |
2338 | bh->b_state = map_bh.b_state; | |
2339 | atomic_set(&bh->b_count, 0); | |
2340 | bh->b_this_page = NULL; | |
2341 | bh->b_page = page; | |
2342 | bh->b_blocknr = map_bh.b_blocknr; | |
2343 | bh->b_size = blocksize; | |
2344 | bh->b_data = (char *)(long)block_start; | |
2345 | bh->b_bdev = map_bh.b_bdev; | |
2346 | bh->b_private = NULL; | |
2347 | read_bh[nr_reads++] = bh; | |
2348 | } | |
2349 | } | |
2350 | ||
2351 | if (nr_reads) { | |
2352 | struct buffer_head *bh; | |
2353 | ||
2354 | /* | |
2355 | * The page is locked, so these buffers are protected from | |
2356 | * any VM or truncate activity. Hence we don't need to care | |
2357 | * for the buffer_head refcounts. | |
2358 | */ | |
2359 | for (i = 0; i < nr_reads; i++) { | |
2360 | bh = read_bh[i]; | |
2361 | lock_buffer(bh); | |
2362 | bh->b_end_io = end_buffer_read_nobh; | |
2363 | submit_bh(READ, bh); | |
2364 | } | |
2365 | for (i = 0; i < nr_reads; i++) { | |
2366 | bh = read_bh[i]; | |
2367 | wait_on_buffer(bh); | |
2368 | if (!buffer_uptodate(bh)) | |
2369 | ret = -EIO; | |
2370 | free_buffer_head(bh); | |
2371 | read_bh[i] = NULL; | |
2372 | } | |
2373 | if (ret) | |
2374 | goto failed; | |
2375 | } | |
2376 | ||
2377 | if (is_mapped_to_disk) | |
2378 | SetPageMappedToDisk(page); | |
1da177e4 LT |
2379 | |
2380 | return 0; | |
2381 | ||
2382 | failed: | |
2383 | for (i = 0; i < nr_reads; i++) { | |
2384 | if (read_bh[i]) | |
2385 | free_buffer_head(read_bh[i]); | |
2386 | } | |
2387 | ||
2388 | /* | |
2389 | * Error recovery is pretty slack. Clear the page and mark it dirty | |
2390 | * so we'll later zero out any blocks which _were_ allocated. | |
2391 | */ | |
01f2705d | 2392 | zero_user_page(page, 0, PAGE_CACHE_SIZE, KM_USER0); |
1da177e4 LT |
2393 | SetPageUptodate(page); |
2394 | set_page_dirty(page); | |
2395 | return ret; | |
2396 | } | |
2397 | EXPORT_SYMBOL(nobh_prepare_write); | |
2398 | ||
57bf63d6 DK |
2399 | /* |
2400 | * Make sure any changes to nobh_commit_write() are reflected in | |
2401 | * nobh_truncate_page(), since it doesn't call commit_write(). | |
2402 | */ | |
1da177e4 LT |
2403 | int nobh_commit_write(struct file *file, struct page *page, |
2404 | unsigned from, unsigned to) | |
2405 | { | |
2406 | struct inode *inode = page->mapping->host; | |
2407 | loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; | |
2408 | ||
22c8ca78 | 2409 | SetPageUptodate(page); |
1da177e4 LT |
2410 | set_page_dirty(page); |
2411 | if (pos > inode->i_size) { | |
2412 | i_size_write(inode, pos); | |
2413 | mark_inode_dirty(inode); | |
2414 | } | |
2415 | return 0; | |
2416 | } | |
2417 | EXPORT_SYMBOL(nobh_commit_write); | |
2418 | ||
2419 | /* | |
2420 | * nobh_writepage() - based on block_full_write_page() except | |
2421 | * that it tries to operate without attaching bufferheads to | |
2422 | * the page. | |
2423 | */ | |
2424 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2425 | struct writeback_control *wbc) | |
2426 | { | |
2427 | struct inode * const inode = page->mapping->host; | |
2428 | loff_t i_size = i_size_read(inode); | |
2429 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2430 | unsigned offset; | |
1da177e4 LT |
2431 | int ret; |
2432 | ||
2433 | /* Is the page fully inside i_size? */ | |
2434 | if (page->index < end_index) | |
2435 | goto out; | |
2436 | ||
2437 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2438 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2439 | if (page->index >= end_index+1 || !offset) { | |
2440 | /* | |
2441 | * The page may have dirty, unmapped buffers. For example, | |
2442 | * they may have been added in ext3_writepage(). Make them | |
2443 | * freeable here, so the page does not leak. | |
2444 | */ | |
2445 | #if 0 | |
2446 | /* Not really sure about this - do we need this ? */ | |
2447 | if (page->mapping->a_ops->invalidatepage) | |
2448 | page->mapping->a_ops->invalidatepage(page, offset); | |
2449 | #endif | |
2450 | unlock_page(page); | |
2451 | return 0; /* don't care */ | |
2452 | } | |
2453 | ||
2454 | /* | |
2455 | * The page straddles i_size. It must be zeroed out on each and every | |
2456 | * writepage invocation because it may be mmapped. "A file is mapped | |
2457 | * in multiples of the page size. For a file that is not a multiple of | |
2458 | * the page size, the remaining memory is zeroed when mapped, and | |
2459 | * writes to that region are not written out to the file." | |
2460 | */ | |
01f2705d | 2461 | zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0); |
1da177e4 LT |
2462 | out: |
2463 | ret = mpage_writepage(page, get_block, wbc); | |
2464 | if (ret == -EAGAIN) | |
2465 | ret = __block_write_full_page(inode, page, get_block, wbc); | |
2466 | return ret; | |
2467 | } | |
2468 | EXPORT_SYMBOL(nobh_writepage); | |
2469 | ||
2470 | /* | |
2471 | * This function assumes that ->prepare_write() uses nobh_prepare_write(). | |
2472 | */ | |
2473 | int nobh_truncate_page(struct address_space *mapping, loff_t from) | |
2474 | { | |
2475 | struct inode *inode = mapping->host; | |
2476 | unsigned blocksize = 1 << inode->i_blkbits; | |
2477 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2478 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2479 | unsigned to; | |
2480 | struct page *page; | |
f5e54d6e | 2481 | const struct address_space_operations *a_ops = mapping->a_ops; |
1da177e4 LT |
2482 | int ret = 0; |
2483 | ||
2484 | if ((offset & (blocksize - 1)) == 0) | |
2485 | goto out; | |
2486 | ||
2487 | ret = -ENOMEM; | |
2488 | page = grab_cache_page(mapping, index); | |
2489 | if (!page) | |
2490 | goto out; | |
2491 | ||
2492 | to = (offset + blocksize) & ~(blocksize - 1); | |
2493 | ret = a_ops->prepare_write(NULL, page, offset, to); | |
2494 | if (ret == 0) { | |
01f2705d ND |
2495 | zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, |
2496 | KM_USER0); | |
57bf63d6 DK |
2497 | /* |
2498 | * It would be more correct to call aops->commit_write() | |
2499 | * here, but this is more efficient. | |
2500 | */ | |
2501 | SetPageUptodate(page); | |
1da177e4 LT |
2502 | set_page_dirty(page); |
2503 | } | |
2504 | unlock_page(page); | |
2505 | page_cache_release(page); | |
2506 | out: | |
2507 | return ret; | |
2508 | } | |
2509 | EXPORT_SYMBOL(nobh_truncate_page); | |
2510 | ||
2511 | int block_truncate_page(struct address_space *mapping, | |
2512 | loff_t from, get_block_t *get_block) | |
2513 | { | |
2514 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2515 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2516 | unsigned blocksize; | |
54b21a79 | 2517 | sector_t iblock; |
1da177e4 LT |
2518 | unsigned length, pos; |
2519 | struct inode *inode = mapping->host; | |
2520 | struct page *page; | |
2521 | struct buffer_head *bh; | |
1da177e4 LT |
2522 | int err; |
2523 | ||
2524 | blocksize = 1 << inode->i_blkbits; | |
2525 | length = offset & (blocksize - 1); | |
2526 | ||
2527 | /* Block boundary? Nothing to do */ | |
2528 | if (!length) | |
2529 | return 0; | |
2530 | ||
2531 | length = blocksize - length; | |
54b21a79 | 2532 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2533 | |
2534 | page = grab_cache_page(mapping, index); | |
2535 | err = -ENOMEM; | |
2536 | if (!page) | |
2537 | goto out; | |
2538 | ||
2539 | if (!page_has_buffers(page)) | |
2540 | create_empty_buffers(page, blocksize, 0); | |
2541 | ||
2542 | /* Find the buffer that contains "offset" */ | |
2543 | bh = page_buffers(page); | |
2544 | pos = blocksize; | |
2545 | while (offset >= pos) { | |
2546 | bh = bh->b_this_page; | |
2547 | iblock++; | |
2548 | pos += blocksize; | |
2549 | } | |
2550 | ||
2551 | err = 0; | |
2552 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2553 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
2554 | err = get_block(inode, iblock, bh, 0); |
2555 | if (err) | |
2556 | goto unlock; | |
2557 | /* unmapped? It's a hole - nothing to do */ | |
2558 | if (!buffer_mapped(bh)) | |
2559 | goto unlock; | |
2560 | } | |
2561 | ||
2562 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2563 | if (PageUptodate(page)) | |
2564 | set_buffer_uptodate(bh); | |
2565 | ||
33a266dd | 2566 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
1da177e4 LT |
2567 | err = -EIO; |
2568 | ll_rw_block(READ, 1, &bh); | |
2569 | wait_on_buffer(bh); | |
2570 | /* Uhhuh. Read error. Complain and punt. */ | |
2571 | if (!buffer_uptodate(bh)) | |
2572 | goto unlock; | |
2573 | } | |
2574 | ||
01f2705d | 2575 | zero_user_page(page, offset, length, KM_USER0); |
1da177e4 LT |
2576 | mark_buffer_dirty(bh); |
2577 | err = 0; | |
2578 | ||
2579 | unlock: | |
2580 | unlock_page(page); | |
2581 | page_cache_release(page); | |
2582 | out: | |
2583 | return err; | |
2584 | } | |
2585 | ||
2586 | /* | |
2587 | * The generic ->writepage function for buffer-backed address_spaces | |
2588 | */ | |
2589 | int block_write_full_page(struct page *page, get_block_t *get_block, | |
2590 | struct writeback_control *wbc) | |
2591 | { | |
2592 | struct inode * const inode = page->mapping->host; | |
2593 | loff_t i_size = i_size_read(inode); | |
2594 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2595 | unsigned offset; | |
1da177e4 LT |
2596 | |
2597 | /* Is the page fully inside i_size? */ | |
2598 | if (page->index < end_index) | |
2599 | return __block_write_full_page(inode, page, get_block, wbc); | |
2600 | ||
2601 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2602 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2603 | if (page->index >= end_index+1 || !offset) { | |
2604 | /* | |
2605 | * The page may have dirty, unmapped buffers. For example, | |
2606 | * they may have been added in ext3_writepage(). Make them | |
2607 | * freeable here, so the page does not leak. | |
2608 | */ | |
aaa4059b | 2609 | do_invalidatepage(page, 0); |
1da177e4 LT |
2610 | unlock_page(page); |
2611 | return 0; /* don't care */ | |
2612 | } | |
2613 | ||
2614 | /* | |
2615 | * The page straddles i_size. It must be zeroed out on each and every | |
2616 | * writepage invokation because it may be mmapped. "A file is mapped | |
2617 | * in multiples of the page size. For a file that is not a multiple of | |
2618 | * the page size, the remaining memory is zeroed when mapped, and | |
2619 | * writes to that region are not written out to the file." | |
2620 | */ | |
01f2705d | 2621 | zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0); |
1da177e4 LT |
2622 | return __block_write_full_page(inode, page, get_block, wbc); |
2623 | } | |
2624 | ||
2625 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, | |
2626 | get_block_t *get_block) | |
2627 | { | |
2628 | struct buffer_head tmp; | |
2629 | struct inode *inode = mapping->host; | |
2630 | tmp.b_state = 0; | |
2631 | tmp.b_blocknr = 0; | |
b0cf2321 | 2632 | tmp.b_size = 1 << inode->i_blkbits; |
1da177e4 LT |
2633 | get_block(inode, block, &tmp, 0); |
2634 | return tmp.b_blocknr; | |
2635 | } | |
2636 | ||
2637 | static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err) | |
2638 | { | |
2639 | struct buffer_head *bh = bio->bi_private; | |
2640 | ||
2641 | if (bio->bi_size) | |
2642 | return 1; | |
2643 | ||
2644 | if (err == -EOPNOTSUPP) { | |
2645 | set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); | |
2646 | set_bit(BH_Eopnotsupp, &bh->b_state); | |
2647 | } | |
2648 | ||
2649 | bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); | |
2650 | bio_put(bio); | |
2651 | return 0; | |
2652 | } | |
2653 | ||
2654 | int submit_bh(int rw, struct buffer_head * bh) | |
2655 | { | |
2656 | struct bio *bio; | |
2657 | int ret = 0; | |
2658 | ||
2659 | BUG_ON(!buffer_locked(bh)); | |
2660 | BUG_ON(!buffer_mapped(bh)); | |
2661 | BUG_ON(!bh->b_end_io); | |
2662 | ||
2663 | if (buffer_ordered(bh) && (rw == WRITE)) | |
2664 | rw = WRITE_BARRIER; | |
2665 | ||
2666 | /* | |
2667 | * Only clear out a write error when rewriting, should this | |
2668 | * include WRITE_SYNC as well? | |
2669 | */ | |
2670 | if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER)) | |
2671 | clear_buffer_write_io_error(bh); | |
2672 | ||
2673 | /* | |
2674 | * from here on down, it's all bio -- do the initial mapping, | |
2675 | * submit_bio -> generic_make_request may further map this bio around | |
2676 | */ | |
2677 | bio = bio_alloc(GFP_NOIO, 1); | |
2678 | ||
2679 | bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); | |
2680 | bio->bi_bdev = bh->b_bdev; | |
2681 | bio->bi_io_vec[0].bv_page = bh->b_page; | |
2682 | bio->bi_io_vec[0].bv_len = bh->b_size; | |
2683 | bio->bi_io_vec[0].bv_offset = bh_offset(bh); | |
2684 | ||
2685 | bio->bi_vcnt = 1; | |
2686 | bio->bi_idx = 0; | |
2687 | bio->bi_size = bh->b_size; | |
2688 | ||
2689 | bio->bi_end_io = end_bio_bh_io_sync; | |
2690 | bio->bi_private = bh; | |
2691 | ||
2692 | bio_get(bio); | |
2693 | submit_bio(rw, bio); | |
2694 | ||
2695 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) | |
2696 | ret = -EOPNOTSUPP; | |
2697 | ||
2698 | bio_put(bio); | |
2699 | return ret; | |
2700 | } | |
2701 | ||
2702 | /** | |
2703 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
a7662236 | 2704 | * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) |
1da177e4 LT |
2705 | * @nr: number of &struct buffer_heads in the array |
2706 | * @bhs: array of pointers to &struct buffer_head | |
2707 | * | |
a7662236 JK |
2708 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
2709 | * requests an I/O operation on them, either a %READ or a %WRITE. The third | |
2710 | * %SWRITE is like %WRITE only we make sure that the *current* data in buffers | |
2711 | * are sent to disk. The fourth %READA option is described in the documentation | |
2712 | * for generic_make_request() which ll_rw_block() calls. | |
1da177e4 LT |
2713 | * |
2714 | * This function drops any buffer that it cannot get a lock on (with the | |
a7662236 JK |
2715 | * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be |
2716 | * clean when doing a write request, and any buffer that appears to be | |
2717 | * up-to-date when doing read request. Further it marks as clean buffers that | |
2718 | * are processed for writing (the buffer cache won't assume that they are | |
2719 | * actually clean until the buffer gets unlocked). | |
1da177e4 LT |
2720 | * |
2721 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
2722 | * the buffer up-to-date (if approriate), unlocks the buffer and wakes | |
2723 | * any waiters. | |
2724 | * | |
2725 | * All of the buffers must be for the same device, and must also be a | |
2726 | * multiple of the current approved size for the device. | |
2727 | */ | |
2728 | void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) | |
2729 | { | |
2730 | int i; | |
2731 | ||
2732 | for (i = 0; i < nr; i++) { | |
2733 | struct buffer_head *bh = bhs[i]; | |
2734 | ||
a7662236 JK |
2735 | if (rw == SWRITE) |
2736 | lock_buffer(bh); | |
2737 | else if (test_set_buffer_locked(bh)) | |
1da177e4 LT |
2738 | continue; |
2739 | ||
a7662236 | 2740 | if (rw == WRITE || rw == SWRITE) { |
1da177e4 | 2741 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 2742 | bh->b_end_io = end_buffer_write_sync; |
e60e5c50 | 2743 | get_bh(bh); |
1da177e4 LT |
2744 | submit_bh(WRITE, bh); |
2745 | continue; | |
2746 | } | |
2747 | } else { | |
1da177e4 | 2748 | if (!buffer_uptodate(bh)) { |
76c3073a | 2749 | bh->b_end_io = end_buffer_read_sync; |
e60e5c50 | 2750 | get_bh(bh); |
1da177e4 LT |
2751 | submit_bh(rw, bh); |
2752 | continue; | |
2753 | } | |
2754 | } | |
2755 | unlock_buffer(bh); | |
1da177e4 LT |
2756 | } |
2757 | } | |
2758 | ||
2759 | /* | |
2760 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
2761 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
2762 | * the buffer_head. | |
2763 | */ | |
2764 | int sync_dirty_buffer(struct buffer_head *bh) | |
2765 | { | |
2766 | int ret = 0; | |
2767 | ||
2768 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
2769 | lock_buffer(bh); | |
2770 | if (test_clear_buffer_dirty(bh)) { | |
2771 | get_bh(bh); | |
2772 | bh->b_end_io = end_buffer_write_sync; | |
2773 | ret = submit_bh(WRITE, bh); | |
2774 | wait_on_buffer(bh); | |
2775 | if (buffer_eopnotsupp(bh)) { | |
2776 | clear_buffer_eopnotsupp(bh); | |
2777 | ret = -EOPNOTSUPP; | |
2778 | } | |
2779 | if (!ret && !buffer_uptodate(bh)) | |
2780 | ret = -EIO; | |
2781 | } else { | |
2782 | unlock_buffer(bh); | |
2783 | } | |
2784 | return ret; | |
2785 | } | |
2786 | ||
2787 | /* | |
2788 | * try_to_free_buffers() checks if all the buffers on this particular page | |
2789 | * are unused, and releases them if so. | |
2790 | * | |
2791 | * Exclusion against try_to_free_buffers may be obtained by either | |
2792 | * locking the page or by holding its mapping's private_lock. | |
2793 | * | |
2794 | * If the page is dirty but all the buffers are clean then we need to | |
2795 | * be sure to mark the page clean as well. This is because the page | |
2796 | * may be against a block device, and a later reattachment of buffers | |
2797 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
2798 | * filesystem data on the same device. | |
2799 | * | |
2800 | * The same applies to regular filesystem pages: if all the buffers are | |
2801 | * clean then we set the page clean and proceed. To do that, we require | |
2802 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
2803 | * private_lock. | |
2804 | * | |
2805 | * try_to_free_buffers() is non-blocking. | |
2806 | */ | |
2807 | static inline int buffer_busy(struct buffer_head *bh) | |
2808 | { | |
2809 | return atomic_read(&bh->b_count) | | |
2810 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
2811 | } | |
2812 | ||
2813 | static int | |
2814 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
2815 | { | |
2816 | struct buffer_head *head = page_buffers(page); | |
2817 | struct buffer_head *bh; | |
2818 | ||
2819 | bh = head; | |
2820 | do { | |
de7d5a3b | 2821 | if (buffer_write_io_error(bh) && page->mapping) |
1da177e4 LT |
2822 | set_bit(AS_EIO, &page->mapping->flags); |
2823 | if (buffer_busy(bh)) | |
2824 | goto failed; | |
2825 | bh = bh->b_this_page; | |
2826 | } while (bh != head); | |
2827 | ||
2828 | do { | |
2829 | struct buffer_head *next = bh->b_this_page; | |
2830 | ||
2831 | if (!list_empty(&bh->b_assoc_buffers)) | |
2832 | __remove_assoc_queue(bh); | |
2833 | bh = next; | |
2834 | } while (bh != head); | |
2835 | *buffers_to_free = head; | |
2836 | __clear_page_buffers(page); | |
2837 | return 1; | |
2838 | failed: | |
2839 | return 0; | |
2840 | } | |
2841 | ||
2842 | int try_to_free_buffers(struct page *page) | |
2843 | { | |
2844 | struct address_space * const mapping = page->mapping; | |
2845 | struct buffer_head *buffers_to_free = NULL; | |
2846 | int ret = 0; | |
2847 | ||
2848 | BUG_ON(!PageLocked(page)); | |
ecdfc978 | 2849 | if (PageWriteback(page)) |
1da177e4 LT |
2850 | return 0; |
2851 | ||
2852 | if (mapping == NULL) { /* can this still happen? */ | |
2853 | ret = drop_buffers(page, &buffers_to_free); | |
2854 | goto out; | |
2855 | } | |
2856 | ||
2857 | spin_lock(&mapping->private_lock); | |
2858 | ret = drop_buffers(page, &buffers_to_free); | |
ecdfc978 LT |
2859 | |
2860 | /* | |
2861 | * If the filesystem writes its buffers by hand (eg ext3) | |
2862 | * then we can have clean buffers against a dirty page. We | |
2863 | * clean the page here; otherwise the VM will never notice | |
2864 | * that the filesystem did any IO at all. | |
2865 | * | |
2866 | * Also, during truncate, discard_buffer will have marked all | |
2867 | * the page's buffers clean. We discover that here and clean | |
2868 | * the page also. | |
87df7241 NP |
2869 | * |
2870 | * private_lock must be held over this entire operation in order | |
2871 | * to synchronise against __set_page_dirty_buffers and prevent the | |
2872 | * dirty bit from being lost. | |
ecdfc978 LT |
2873 | */ |
2874 | if (ret) | |
2875 | cancel_dirty_page(page, PAGE_CACHE_SIZE); | |
87df7241 | 2876 | spin_unlock(&mapping->private_lock); |
1da177e4 LT |
2877 | out: |
2878 | if (buffers_to_free) { | |
2879 | struct buffer_head *bh = buffers_to_free; | |
2880 | ||
2881 | do { | |
2882 | struct buffer_head *next = bh->b_this_page; | |
2883 | free_buffer_head(bh); | |
2884 | bh = next; | |
2885 | } while (bh != buffers_to_free); | |
2886 | } | |
2887 | return ret; | |
2888 | } | |
2889 | EXPORT_SYMBOL(try_to_free_buffers); | |
2890 | ||
3978d717 | 2891 | void block_sync_page(struct page *page) |
1da177e4 LT |
2892 | { |
2893 | struct address_space *mapping; | |
2894 | ||
2895 | smp_mb(); | |
2896 | mapping = page_mapping(page); | |
2897 | if (mapping) | |
2898 | blk_run_backing_dev(mapping->backing_dev_info, page); | |
1da177e4 LT |
2899 | } |
2900 | ||
2901 | /* | |
2902 | * There are no bdflush tunables left. But distributions are | |
2903 | * still running obsolete flush daemons, so we terminate them here. | |
2904 | * | |
2905 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
2906 | * The `pdflush' kernel threads fully replace bdflush daemons and this call. | |
2907 | */ | |
2908 | asmlinkage long sys_bdflush(int func, long data) | |
2909 | { | |
2910 | static int msg_count; | |
2911 | ||
2912 | if (!capable(CAP_SYS_ADMIN)) | |
2913 | return -EPERM; | |
2914 | ||
2915 | if (msg_count < 5) { | |
2916 | msg_count++; | |
2917 | printk(KERN_INFO | |
2918 | "warning: process `%s' used the obsolete bdflush" | |
2919 | " system call\n", current->comm); | |
2920 | printk(KERN_INFO "Fix your initscripts?\n"); | |
2921 | } | |
2922 | ||
2923 | if (func == 1) | |
2924 | do_exit(0); | |
2925 | return 0; | |
2926 | } | |
2927 | ||
2928 | /* | |
2929 | * Buffer-head allocation | |
2930 | */ | |
e18b890b | 2931 | static struct kmem_cache *bh_cachep; |
1da177e4 LT |
2932 | |
2933 | /* | |
2934 | * Once the number of bh's in the machine exceeds this level, we start | |
2935 | * stripping them in writeback. | |
2936 | */ | |
2937 | static int max_buffer_heads; | |
2938 | ||
2939 | int buffer_heads_over_limit; | |
2940 | ||
2941 | struct bh_accounting { | |
2942 | int nr; /* Number of live bh's */ | |
2943 | int ratelimit; /* Limit cacheline bouncing */ | |
2944 | }; | |
2945 | ||
2946 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
2947 | ||
2948 | static void recalc_bh_state(void) | |
2949 | { | |
2950 | int i; | |
2951 | int tot = 0; | |
2952 | ||
2953 | if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) | |
2954 | return; | |
2955 | __get_cpu_var(bh_accounting).ratelimit = 0; | |
8a143426 | 2956 | for_each_online_cpu(i) |
1da177e4 LT |
2957 | tot += per_cpu(bh_accounting, i).nr; |
2958 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
2959 | } | |
2960 | ||
dd0fc66f | 2961 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 | 2962 | { |
a35afb83 | 2963 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
1da177e4 | 2964 | if (ret) { |
a35afb83 | 2965 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
736c7b80 | 2966 | get_cpu_var(bh_accounting).nr++; |
1da177e4 | 2967 | recalc_bh_state(); |
736c7b80 | 2968 | put_cpu_var(bh_accounting); |
1da177e4 LT |
2969 | } |
2970 | return ret; | |
2971 | } | |
2972 | EXPORT_SYMBOL(alloc_buffer_head); | |
2973 | ||
2974 | void free_buffer_head(struct buffer_head *bh) | |
2975 | { | |
2976 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
2977 | kmem_cache_free(bh_cachep, bh); | |
736c7b80 | 2978 | get_cpu_var(bh_accounting).nr--; |
1da177e4 | 2979 | recalc_bh_state(); |
736c7b80 | 2980 | put_cpu_var(bh_accounting); |
1da177e4 LT |
2981 | } |
2982 | EXPORT_SYMBOL(free_buffer_head); | |
2983 | ||
1da177e4 LT |
2984 | static void buffer_exit_cpu(int cpu) |
2985 | { | |
2986 | int i; | |
2987 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
2988 | ||
2989 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
2990 | brelse(b->bhs[i]); | |
2991 | b->bhs[i] = NULL; | |
2992 | } | |
8a143426 ED |
2993 | get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; |
2994 | per_cpu(bh_accounting, cpu).nr = 0; | |
2995 | put_cpu_var(bh_accounting); | |
1da177e4 LT |
2996 | } |
2997 | ||
2998 | static int buffer_cpu_notify(struct notifier_block *self, | |
2999 | unsigned long action, void *hcpu) | |
3000 | { | |
8bb78442 | 3001 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) |
1da177e4 LT |
3002 | buffer_exit_cpu((unsigned long)hcpu); |
3003 | return NOTIFY_OK; | |
3004 | } | |
1da177e4 LT |
3005 | |
3006 | void __init buffer_init(void) | |
3007 | { | |
3008 | int nrpages; | |
3009 | ||
a35afb83 CL |
3010 | bh_cachep = KMEM_CACHE(buffer_head, |
3011 | SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); | |
1da177e4 LT |
3012 | |
3013 | /* | |
3014 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3015 | */ | |
3016 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3017 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
3018 | hotcpu_notifier(buffer_cpu_notify, 0); | |
3019 | } | |
3020 | ||
3021 | EXPORT_SYMBOL(__bforget); | |
3022 | EXPORT_SYMBOL(__brelse); | |
3023 | EXPORT_SYMBOL(__wait_on_buffer); | |
3024 | EXPORT_SYMBOL(block_commit_write); | |
3025 | EXPORT_SYMBOL(block_prepare_write); | |
54171690 | 3026 | EXPORT_SYMBOL(block_page_mkwrite); |
1da177e4 LT |
3027 | EXPORT_SYMBOL(block_read_full_page); |
3028 | EXPORT_SYMBOL(block_sync_page); | |
3029 | EXPORT_SYMBOL(block_truncate_page); | |
3030 | EXPORT_SYMBOL(block_write_full_page); | |
3031 | EXPORT_SYMBOL(cont_prepare_write); | |
1da177e4 LT |
3032 | EXPORT_SYMBOL(end_buffer_read_sync); |
3033 | EXPORT_SYMBOL(end_buffer_write_sync); | |
3034 | EXPORT_SYMBOL(file_fsync); | |
3035 | EXPORT_SYMBOL(fsync_bdev); | |
3036 | EXPORT_SYMBOL(generic_block_bmap); | |
3037 | EXPORT_SYMBOL(generic_commit_write); | |
3038 | EXPORT_SYMBOL(generic_cont_expand); | |
05eb0b51 | 3039 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 LT |
3040 | EXPORT_SYMBOL(init_buffer); |
3041 | EXPORT_SYMBOL(invalidate_bdev); | |
3042 | EXPORT_SYMBOL(ll_rw_block); | |
3043 | EXPORT_SYMBOL(mark_buffer_dirty); | |
3044 | EXPORT_SYMBOL(submit_bh); | |
3045 | EXPORT_SYMBOL(sync_dirty_buffer); | |
3046 | EXPORT_SYMBOL(unlock_buffer); |