]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/fs/buffer.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992, 2002 Linus Torvalds | |
5 | */ | |
6 | ||
7 | /* | |
8 | * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 | |
9 | * | |
10 | * Removed a lot of unnecessary code and simplified things now that | |
11 | * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 | |
12 | * | |
13 | * Speed up hash, lru, and free list operations. Use gfp() for allocating | |
14 | * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM | |
15 | * | |
16 | * Added 32k buffer block sizes - these are required older ARM systems. - RMK | |
17 | * | |
18 | * async buffer flushing, 1999 Andrea Arcangeli <[email protected]> | |
19 | */ | |
20 | ||
1da177e4 LT |
21 | #include <linux/kernel.h> |
22 | #include <linux/syscalls.h> | |
23 | #include <linux/fs.h> | |
24 | #include <linux/mm.h> | |
25 | #include <linux/percpu.h> | |
26 | #include <linux/slab.h> | |
16f7e0fe | 27 | #include <linux/capability.h> |
1da177e4 LT |
28 | #include <linux/blkdev.h> |
29 | #include <linux/file.h> | |
30 | #include <linux/quotaops.h> | |
31 | #include <linux/highmem.h> | |
630d9c47 | 32 | #include <linux/export.h> |
1da177e4 LT |
33 | #include <linux/writeback.h> |
34 | #include <linux/hash.h> | |
35 | #include <linux/suspend.h> | |
36 | #include <linux/buffer_head.h> | |
55e829af | 37 | #include <linux/task_io_accounting_ops.h> |
1da177e4 LT |
38 | #include <linux/bio.h> |
39 | #include <linux/notifier.h> | |
40 | #include <linux/cpu.h> | |
41 | #include <linux/bitops.h> | |
42 | #include <linux/mpage.h> | |
fb1c8f93 | 43 | #include <linux/bit_spinlock.h> |
1da177e4 LT |
44 | |
45 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); | |
1da177e4 LT |
46 | |
47 | #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) | |
48 | ||
49 | inline void | |
50 | init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) | |
51 | { | |
52 | bh->b_end_io = handler; | |
53 | bh->b_private = private; | |
54 | } | |
1fe72eaa | 55 | EXPORT_SYMBOL(init_buffer); |
1da177e4 | 56 | |
7eaceacc | 57 | static int sleep_on_buffer(void *word) |
1da177e4 | 58 | { |
1da177e4 LT |
59 | io_schedule(); |
60 | return 0; | |
61 | } | |
62 | ||
fc9b52cd | 63 | void __lock_buffer(struct buffer_head *bh) |
1da177e4 | 64 | { |
7eaceacc | 65 | wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer, |
1da177e4 LT |
66 | TASK_UNINTERRUPTIBLE); |
67 | } | |
68 | EXPORT_SYMBOL(__lock_buffer); | |
69 | ||
fc9b52cd | 70 | void unlock_buffer(struct buffer_head *bh) |
1da177e4 | 71 | { |
51b07fc3 | 72 | clear_bit_unlock(BH_Lock, &bh->b_state); |
1da177e4 LT |
73 | smp_mb__after_clear_bit(); |
74 | wake_up_bit(&bh->b_state, BH_Lock); | |
75 | } | |
1fe72eaa | 76 | EXPORT_SYMBOL(unlock_buffer); |
1da177e4 LT |
77 | |
78 | /* | |
79 | * Block until a buffer comes unlocked. This doesn't stop it | |
80 | * from becoming locked again - you have to lock it yourself | |
81 | * if you want to preserve its state. | |
82 | */ | |
83 | void __wait_on_buffer(struct buffer_head * bh) | |
84 | { | |
7eaceacc | 85 | wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE); |
1da177e4 | 86 | } |
1fe72eaa | 87 | EXPORT_SYMBOL(__wait_on_buffer); |
1da177e4 LT |
88 | |
89 | static void | |
90 | __clear_page_buffers(struct page *page) | |
91 | { | |
92 | ClearPagePrivate(page); | |
4c21e2f2 | 93 | set_page_private(page, 0); |
1da177e4 LT |
94 | page_cache_release(page); |
95 | } | |
96 | ||
08bafc03 KM |
97 | |
98 | static int quiet_error(struct buffer_head *bh) | |
99 | { | |
100 | if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) | |
101 | return 0; | |
102 | return 1; | |
103 | } | |
104 | ||
105 | ||
1da177e4 LT |
106 | static void buffer_io_error(struct buffer_head *bh) |
107 | { | |
108 | char b[BDEVNAME_SIZE]; | |
1da177e4 LT |
109 | printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", |
110 | bdevname(bh->b_bdev, b), | |
111 | (unsigned long long)bh->b_blocknr); | |
112 | } | |
113 | ||
114 | /* | |
68671f35 DM |
115 | * End-of-IO handler helper function which does not touch the bh after |
116 | * unlocking it. | |
117 | * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but | |
118 | * a race there is benign: unlock_buffer() only use the bh's address for | |
119 | * hashing after unlocking the buffer, so it doesn't actually touch the bh | |
120 | * itself. | |
1da177e4 | 121 | */ |
68671f35 | 122 | static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
123 | { |
124 | if (uptodate) { | |
125 | set_buffer_uptodate(bh); | |
126 | } else { | |
127 | /* This happens, due to failed READA attempts. */ | |
128 | clear_buffer_uptodate(bh); | |
129 | } | |
130 | unlock_buffer(bh); | |
68671f35 DM |
131 | } |
132 | ||
133 | /* | |
134 | * Default synchronous end-of-IO handler.. Just mark it up-to-date and | |
135 | * unlock the buffer. This is what ll_rw_block uses too. | |
136 | */ | |
137 | void end_buffer_read_sync(struct buffer_head *bh, int uptodate) | |
138 | { | |
139 | __end_buffer_read_notouch(bh, uptodate); | |
1da177e4 LT |
140 | put_bh(bh); |
141 | } | |
1fe72eaa | 142 | EXPORT_SYMBOL(end_buffer_read_sync); |
1da177e4 LT |
143 | |
144 | void end_buffer_write_sync(struct buffer_head *bh, int uptodate) | |
145 | { | |
146 | char b[BDEVNAME_SIZE]; | |
147 | ||
148 | if (uptodate) { | |
149 | set_buffer_uptodate(bh); | |
150 | } else { | |
0edd55fa | 151 | if (!quiet_error(bh)) { |
1da177e4 LT |
152 | buffer_io_error(bh); |
153 | printk(KERN_WARNING "lost page write due to " | |
154 | "I/O error on %s\n", | |
155 | bdevname(bh->b_bdev, b)); | |
156 | } | |
157 | set_buffer_write_io_error(bh); | |
158 | clear_buffer_uptodate(bh); | |
159 | } | |
160 | unlock_buffer(bh); | |
161 | put_bh(bh); | |
162 | } | |
1fe72eaa | 163 | EXPORT_SYMBOL(end_buffer_write_sync); |
1da177e4 | 164 | |
1da177e4 LT |
165 | /* |
166 | * Various filesystems appear to want __find_get_block to be non-blocking. | |
167 | * But it's the page lock which protects the buffers. To get around this, | |
168 | * we get exclusion from try_to_free_buffers with the blockdev mapping's | |
169 | * private_lock. | |
170 | * | |
171 | * Hack idea: for the blockdev mapping, i_bufferlist_lock contention | |
172 | * may be quite high. This code could TryLock the page, and if that | |
173 | * succeeds, there is no need to take private_lock. (But if | |
174 | * private_lock is contended then so is mapping->tree_lock). | |
175 | */ | |
176 | static struct buffer_head * | |
385fd4c5 | 177 | __find_get_block_slow(struct block_device *bdev, sector_t block) |
1da177e4 LT |
178 | { |
179 | struct inode *bd_inode = bdev->bd_inode; | |
180 | struct address_space *bd_mapping = bd_inode->i_mapping; | |
181 | struct buffer_head *ret = NULL; | |
182 | pgoff_t index; | |
183 | struct buffer_head *bh; | |
184 | struct buffer_head *head; | |
185 | struct page *page; | |
186 | int all_mapped = 1; | |
187 | ||
188 | index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); | |
189 | page = find_get_page(bd_mapping, index); | |
190 | if (!page) | |
191 | goto out; | |
192 | ||
193 | spin_lock(&bd_mapping->private_lock); | |
194 | if (!page_has_buffers(page)) | |
195 | goto out_unlock; | |
196 | head = page_buffers(page); | |
197 | bh = head; | |
198 | do { | |
97f76d3d NK |
199 | if (!buffer_mapped(bh)) |
200 | all_mapped = 0; | |
201 | else if (bh->b_blocknr == block) { | |
1da177e4 LT |
202 | ret = bh; |
203 | get_bh(bh); | |
204 | goto out_unlock; | |
205 | } | |
1da177e4 LT |
206 | bh = bh->b_this_page; |
207 | } while (bh != head); | |
208 | ||
209 | /* we might be here because some of the buffers on this page are | |
210 | * not mapped. This is due to various races between | |
211 | * file io on the block device and getblk. It gets dealt with | |
212 | * elsewhere, don't buffer_error if we had some unmapped buffers | |
213 | */ | |
214 | if (all_mapped) { | |
72a2ebd8 TM |
215 | char b[BDEVNAME_SIZE]; |
216 | ||
1da177e4 LT |
217 | printk("__find_get_block_slow() failed. " |
218 | "block=%llu, b_blocknr=%llu\n", | |
205f87f6 BP |
219 | (unsigned long long)block, |
220 | (unsigned long long)bh->b_blocknr); | |
221 | printk("b_state=0x%08lx, b_size=%zu\n", | |
222 | bh->b_state, bh->b_size); | |
72a2ebd8 TM |
223 | printk("device %s blocksize: %d\n", bdevname(bdev, b), |
224 | 1 << bd_inode->i_blkbits); | |
1da177e4 LT |
225 | } |
226 | out_unlock: | |
227 | spin_unlock(&bd_mapping->private_lock); | |
228 | page_cache_release(page); | |
229 | out: | |
230 | return ret; | |
231 | } | |
232 | ||
1da177e4 | 233 | /* |
5b0830cb | 234 | * Kick the writeback threads then try to free up some ZONE_NORMAL memory. |
1da177e4 LT |
235 | */ |
236 | static void free_more_memory(void) | |
237 | { | |
19770b32 | 238 | struct zone *zone; |
0e88460d | 239 | int nid; |
1da177e4 | 240 | |
0e175a18 | 241 | wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM); |
1da177e4 LT |
242 | yield(); |
243 | ||
0e88460d | 244 | for_each_online_node(nid) { |
19770b32 MG |
245 | (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), |
246 | gfp_zone(GFP_NOFS), NULL, | |
247 | &zone); | |
248 | if (zone) | |
54a6eb5c | 249 | try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, |
327c0e96 | 250 | GFP_NOFS, NULL); |
1da177e4 LT |
251 | } |
252 | } | |
253 | ||
254 | /* | |
255 | * I/O completion handler for block_read_full_page() - pages | |
256 | * which come unlocked at the end of I/O. | |
257 | */ | |
258 | static void end_buffer_async_read(struct buffer_head *bh, int uptodate) | |
259 | { | |
1da177e4 | 260 | unsigned long flags; |
a3972203 | 261 | struct buffer_head *first; |
1da177e4 LT |
262 | struct buffer_head *tmp; |
263 | struct page *page; | |
264 | int page_uptodate = 1; | |
265 | ||
266 | BUG_ON(!buffer_async_read(bh)); | |
267 | ||
268 | page = bh->b_page; | |
269 | if (uptodate) { | |
270 | set_buffer_uptodate(bh); | |
271 | } else { | |
272 | clear_buffer_uptodate(bh); | |
08bafc03 | 273 | if (!quiet_error(bh)) |
1da177e4 LT |
274 | buffer_io_error(bh); |
275 | SetPageError(page); | |
276 | } | |
277 | ||
278 | /* | |
279 | * Be _very_ careful from here on. Bad things can happen if | |
280 | * two buffer heads end IO at almost the same time and both | |
281 | * decide that the page is now completely done. | |
282 | */ | |
a3972203 NP |
283 | first = page_buffers(page); |
284 | local_irq_save(flags); | |
285 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
1da177e4 LT |
286 | clear_buffer_async_read(bh); |
287 | unlock_buffer(bh); | |
288 | tmp = bh; | |
289 | do { | |
290 | if (!buffer_uptodate(tmp)) | |
291 | page_uptodate = 0; | |
292 | if (buffer_async_read(tmp)) { | |
293 | BUG_ON(!buffer_locked(tmp)); | |
294 | goto still_busy; | |
295 | } | |
296 | tmp = tmp->b_this_page; | |
297 | } while (tmp != bh); | |
a3972203 NP |
298 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
299 | local_irq_restore(flags); | |
1da177e4 LT |
300 | |
301 | /* | |
302 | * If none of the buffers had errors and they are all | |
303 | * uptodate then we can set the page uptodate. | |
304 | */ | |
305 | if (page_uptodate && !PageError(page)) | |
306 | SetPageUptodate(page); | |
307 | unlock_page(page); | |
308 | return; | |
309 | ||
310 | still_busy: | |
a3972203 NP |
311 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
312 | local_irq_restore(flags); | |
1da177e4 LT |
313 | return; |
314 | } | |
315 | ||
316 | /* | |
317 | * Completion handler for block_write_full_page() - pages which are unlocked | |
318 | * during I/O, and which have PageWriteback cleared upon I/O completion. | |
319 | */ | |
35c80d5f | 320 | void end_buffer_async_write(struct buffer_head *bh, int uptodate) |
1da177e4 LT |
321 | { |
322 | char b[BDEVNAME_SIZE]; | |
1da177e4 | 323 | unsigned long flags; |
a3972203 | 324 | struct buffer_head *first; |
1da177e4 LT |
325 | struct buffer_head *tmp; |
326 | struct page *page; | |
327 | ||
328 | BUG_ON(!buffer_async_write(bh)); | |
329 | ||
330 | page = bh->b_page; | |
331 | if (uptodate) { | |
332 | set_buffer_uptodate(bh); | |
333 | } else { | |
08bafc03 | 334 | if (!quiet_error(bh)) { |
1da177e4 LT |
335 | buffer_io_error(bh); |
336 | printk(KERN_WARNING "lost page write due to " | |
337 | "I/O error on %s\n", | |
338 | bdevname(bh->b_bdev, b)); | |
339 | } | |
340 | set_bit(AS_EIO, &page->mapping->flags); | |
58ff407b | 341 | set_buffer_write_io_error(bh); |
1da177e4 LT |
342 | clear_buffer_uptodate(bh); |
343 | SetPageError(page); | |
344 | } | |
345 | ||
a3972203 NP |
346 | first = page_buffers(page); |
347 | local_irq_save(flags); | |
348 | bit_spin_lock(BH_Uptodate_Lock, &first->b_state); | |
349 | ||
1da177e4 LT |
350 | clear_buffer_async_write(bh); |
351 | unlock_buffer(bh); | |
352 | tmp = bh->b_this_page; | |
353 | while (tmp != bh) { | |
354 | if (buffer_async_write(tmp)) { | |
355 | BUG_ON(!buffer_locked(tmp)); | |
356 | goto still_busy; | |
357 | } | |
358 | tmp = tmp->b_this_page; | |
359 | } | |
a3972203 NP |
360 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
361 | local_irq_restore(flags); | |
1da177e4 LT |
362 | end_page_writeback(page); |
363 | return; | |
364 | ||
365 | still_busy: | |
a3972203 NP |
366 | bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); |
367 | local_irq_restore(flags); | |
1da177e4 LT |
368 | return; |
369 | } | |
1fe72eaa | 370 | EXPORT_SYMBOL(end_buffer_async_write); |
1da177e4 LT |
371 | |
372 | /* | |
373 | * If a page's buffers are under async readin (end_buffer_async_read | |
374 | * completion) then there is a possibility that another thread of | |
375 | * control could lock one of the buffers after it has completed | |
376 | * but while some of the other buffers have not completed. This | |
377 | * locked buffer would confuse end_buffer_async_read() into not unlocking | |
378 | * the page. So the absence of BH_Async_Read tells end_buffer_async_read() | |
379 | * that this buffer is not under async I/O. | |
380 | * | |
381 | * The page comes unlocked when it has no locked buffer_async buffers | |
382 | * left. | |
383 | * | |
384 | * PageLocked prevents anyone starting new async I/O reads any of | |
385 | * the buffers. | |
386 | * | |
387 | * PageWriteback is used to prevent simultaneous writeout of the same | |
388 | * page. | |
389 | * | |
390 | * PageLocked prevents anyone from starting writeback of a page which is | |
391 | * under read I/O (PageWriteback is only ever set against a locked page). | |
392 | */ | |
393 | static void mark_buffer_async_read(struct buffer_head *bh) | |
394 | { | |
395 | bh->b_end_io = end_buffer_async_read; | |
396 | set_buffer_async_read(bh); | |
397 | } | |
398 | ||
1fe72eaa HS |
399 | static void mark_buffer_async_write_endio(struct buffer_head *bh, |
400 | bh_end_io_t *handler) | |
1da177e4 | 401 | { |
35c80d5f | 402 | bh->b_end_io = handler; |
1da177e4 LT |
403 | set_buffer_async_write(bh); |
404 | } | |
35c80d5f CM |
405 | |
406 | void mark_buffer_async_write(struct buffer_head *bh) | |
407 | { | |
408 | mark_buffer_async_write_endio(bh, end_buffer_async_write); | |
409 | } | |
1da177e4 LT |
410 | EXPORT_SYMBOL(mark_buffer_async_write); |
411 | ||
412 | ||
413 | /* | |
414 | * fs/buffer.c contains helper functions for buffer-backed address space's | |
415 | * fsync functions. A common requirement for buffer-based filesystems is | |
416 | * that certain data from the backing blockdev needs to be written out for | |
417 | * a successful fsync(). For example, ext2 indirect blocks need to be | |
418 | * written back and waited upon before fsync() returns. | |
419 | * | |
420 | * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), | |
421 | * inode_has_buffers() and invalidate_inode_buffers() are provided for the | |
422 | * management of a list of dependent buffers at ->i_mapping->private_list. | |
423 | * | |
424 | * Locking is a little subtle: try_to_free_buffers() will remove buffers | |
425 | * from their controlling inode's queue when they are being freed. But | |
426 | * try_to_free_buffers() will be operating against the *blockdev* mapping | |
427 | * at the time, not against the S_ISREG file which depends on those buffers. | |
428 | * So the locking for private_list is via the private_lock in the address_space | |
429 | * which backs the buffers. Which is different from the address_space | |
430 | * against which the buffers are listed. So for a particular address_space, | |
431 | * mapping->private_lock does *not* protect mapping->private_list! In fact, | |
432 | * mapping->private_list will always be protected by the backing blockdev's | |
433 | * ->private_lock. | |
434 | * | |
435 | * Which introduces a requirement: all buffers on an address_space's | |
436 | * ->private_list must be from the same address_space: the blockdev's. | |
437 | * | |
438 | * address_spaces which do not place buffers at ->private_list via these | |
439 | * utility functions are free to use private_lock and private_list for | |
440 | * whatever they want. The only requirement is that list_empty(private_list) | |
441 | * be true at clear_inode() time. | |
442 | * | |
443 | * FIXME: clear_inode should not call invalidate_inode_buffers(). The | |
444 | * filesystems should do that. invalidate_inode_buffers() should just go | |
445 | * BUG_ON(!list_empty). | |
446 | * | |
447 | * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should | |
448 | * take an address_space, not an inode. And it should be called | |
449 | * mark_buffer_dirty_fsync() to clearly define why those buffers are being | |
450 | * queued up. | |
451 | * | |
452 | * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the | |
453 | * list if it is already on a list. Because if the buffer is on a list, | |
454 | * it *must* already be on the right one. If not, the filesystem is being | |
455 | * silly. This will save a ton of locking. But first we have to ensure | |
456 | * that buffers are taken *off* the old inode's list when they are freed | |
457 | * (presumably in truncate). That requires careful auditing of all | |
458 | * filesystems (do it inside bforget()). It could also be done by bringing | |
459 | * b_inode back. | |
460 | */ | |
461 | ||
462 | /* | |
463 | * The buffer's backing address_space's private_lock must be held | |
464 | */ | |
dbacefc9 | 465 | static void __remove_assoc_queue(struct buffer_head *bh) |
1da177e4 LT |
466 | { |
467 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b JK |
468 | WARN_ON(!bh->b_assoc_map); |
469 | if (buffer_write_io_error(bh)) | |
470 | set_bit(AS_EIO, &bh->b_assoc_map->flags); | |
471 | bh->b_assoc_map = NULL; | |
1da177e4 LT |
472 | } |
473 | ||
474 | int inode_has_buffers(struct inode *inode) | |
475 | { | |
476 | return !list_empty(&inode->i_data.private_list); | |
477 | } | |
478 | ||
479 | /* | |
480 | * osync is designed to support O_SYNC io. It waits synchronously for | |
481 | * all already-submitted IO to complete, but does not queue any new | |
482 | * writes to the disk. | |
483 | * | |
484 | * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as | |
485 | * you dirty the buffers, and then use osync_inode_buffers to wait for | |
486 | * completion. Any other dirty buffers which are not yet queued for | |
487 | * write will not be flushed to disk by the osync. | |
488 | */ | |
489 | static int osync_buffers_list(spinlock_t *lock, struct list_head *list) | |
490 | { | |
491 | struct buffer_head *bh; | |
492 | struct list_head *p; | |
493 | int err = 0; | |
494 | ||
495 | spin_lock(lock); | |
496 | repeat: | |
497 | list_for_each_prev(p, list) { | |
498 | bh = BH_ENTRY(p); | |
499 | if (buffer_locked(bh)) { | |
500 | get_bh(bh); | |
501 | spin_unlock(lock); | |
502 | wait_on_buffer(bh); | |
503 | if (!buffer_uptodate(bh)) | |
504 | err = -EIO; | |
505 | brelse(bh); | |
506 | spin_lock(lock); | |
507 | goto repeat; | |
508 | } | |
509 | } | |
510 | spin_unlock(lock); | |
511 | return err; | |
512 | } | |
513 | ||
01a05b33 | 514 | static void do_thaw_one(struct super_block *sb, void *unused) |
c2d75438 | 515 | { |
c2d75438 | 516 | char b[BDEVNAME_SIZE]; |
01a05b33 AV |
517 | while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) |
518 | printk(KERN_WARNING "Emergency Thaw on %s\n", | |
519 | bdevname(sb->s_bdev, b)); | |
520 | } | |
c2d75438 | 521 | |
01a05b33 AV |
522 | static void do_thaw_all(struct work_struct *work) |
523 | { | |
524 | iterate_supers(do_thaw_one, NULL); | |
053c525f | 525 | kfree(work); |
c2d75438 ES |
526 | printk(KERN_WARNING "Emergency Thaw complete\n"); |
527 | } | |
528 | ||
529 | /** | |
530 | * emergency_thaw_all -- forcibly thaw every frozen filesystem | |
531 | * | |
532 | * Used for emergency unfreeze of all filesystems via SysRq | |
533 | */ | |
534 | void emergency_thaw_all(void) | |
535 | { | |
053c525f JA |
536 | struct work_struct *work; |
537 | ||
538 | work = kmalloc(sizeof(*work), GFP_ATOMIC); | |
539 | if (work) { | |
540 | INIT_WORK(work, do_thaw_all); | |
541 | schedule_work(work); | |
542 | } | |
c2d75438 ES |
543 | } |
544 | ||
1da177e4 | 545 | /** |
78a4a50a | 546 | * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers |
67be2dd1 | 547 | * @mapping: the mapping which wants those buffers written |
1da177e4 LT |
548 | * |
549 | * Starts I/O against the buffers at mapping->private_list, and waits upon | |
550 | * that I/O. | |
551 | * | |
67be2dd1 MW |
552 | * Basically, this is a convenience function for fsync(). |
553 | * @mapping is a file or directory which needs those buffers to be written for | |
554 | * a successful fsync(). | |
1da177e4 LT |
555 | */ |
556 | int sync_mapping_buffers(struct address_space *mapping) | |
557 | { | |
558 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
559 | ||
560 | if (buffer_mapping == NULL || list_empty(&mapping->private_list)) | |
561 | return 0; | |
562 | ||
563 | return fsync_buffers_list(&buffer_mapping->private_lock, | |
564 | &mapping->private_list); | |
565 | } | |
566 | EXPORT_SYMBOL(sync_mapping_buffers); | |
567 | ||
568 | /* | |
569 | * Called when we've recently written block `bblock', and it is known that | |
570 | * `bblock' was for a buffer_boundary() buffer. This means that the block at | |
571 | * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's | |
572 | * dirty, schedule it for IO. So that indirects merge nicely with their data. | |
573 | */ | |
574 | void write_boundary_block(struct block_device *bdev, | |
575 | sector_t bblock, unsigned blocksize) | |
576 | { | |
577 | struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); | |
578 | if (bh) { | |
579 | if (buffer_dirty(bh)) | |
580 | ll_rw_block(WRITE, 1, &bh); | |
581 | put_bh(bh); | |
582 | } | |
583 | } | |
584 | ||
585 | void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) | |
586 | { | |
587 | struct address_space *mapping = inode->i_mapping; | |
588 | struct address_space *buffer_mapping = bh->b_page->mapping; | |
589 | ||
590 | mark_buffer_dirty(bh); | |
591 | if (!mapping->assoc_mapping) { | |
592 | mapping->assoc_mapping = buffer_mapping; | |
593 | } else { | |
e827f923 | 594 | BUG_ON(mapping->assoc_mapping != buffer_mapping); |
1da177e4 | 595 | } |
535ee2fb | 596 | if (!bh->b_assoc_map) { |
1da177e4 LT |
597 | spin_lock(&buffer_mapping->private_lock); |
598 | list_move_tail(&bh->b_assoc_buffers, | |
599 | &mapping->private_list); | |
58ff407b | 600 | bh->b_assoc_map = mapping; |
1da177e4 LT |
601 | spin_unlock(&buffer_mapping->private_lock); |
602 | } | |
603 | } | |
604 | EXPORT_SYMBOL(mark_buffer_dirty_inode); | |
605 | ||
787d2214 NP |
606 | /* |
607 | * Mark the page dirty, and set it dirty in the radix tree, and mark the inode | |
608 | * dirty. | |
609 | * | |
610 | * If warn is true, then emit a warning if the page is not uptodate and has | |
611 | * not been truncated. | |
612 | */ | |
a8e7d49a | 613 | static void __set_page_dirty(struct page *page, |
787d2214 NP |
614 | struct address_space *mapping, int warn) |
615 | { | |
19fd6231 | 616 | spin_lock_irq(&mapping->tree_lock); |
787d2214 NP |
617 | if (page->mapping) { /* Race with truncate? */ |
618 | WARN_ON_ONCE(warn && !PageUptodate(page)); | |
e3a7cca1 | 619 | account_page_dirtied(page, mapping); |
787d2214 NP |
620 | radix_tree_tag_set(&mapping->page_tree, |
621 | page_index(page), PAGECACHE_TAG_DIRTY); | |
622 | } | |
19fd6231 | 623 | spin_unlock_irq(&mapping->tree_lock); |
787d2214 | 624 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
787d2214 NP |
625 | } |
626 | ||
1da177e4 LT |
627 | /* |
628 | * Add a page to the dirty page list. | |
629 | * | |
630 | * It is a sad fact of life that this function is called from several places | |
631 | * deeply under spinlocking. It may not sleep. | |
632 | * | |
633 | * If the page has buffers, the uptodate buffers are set dirty, to preserve | |
634 | * dirty-state coherency between the page and the buffers. It the page does | |
635 | * not have buffers then when they are later attached they will all be set | |
636 | * dirty. | |
637 | * | |
638 | * The buffers are dirtied before the page is dirtied. There's a small race | |
639 | * window in which a writepage caller may see the page cleanness but not the | |
640 | * buffer dirtiness. That's fine. If this code were to set the page dirty | |
641 | * before the buffers, a concurrent writepage caller could clear the page dirty | |
642 | * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean | |
643 | * page on the dirty page list. | |
644 | * | |
645 | * We use private_lock to lock against try_to_free_buffers while using the | |
646 | * page's buffer list. Also use this to protect against clean buffers being | |
647 | * added to the page after it was set dirty. | |
648 | * | |
649 | * FIXME: may need to call ->reservepage here as well. That's rather up to the | |
650 | * address_space though. | |
651 | */ | |
652 | int __set_page_dirty_buffers(struct page *page) | |
653 | { | |
a8e7d49a | 654 | int newly_dirty; |
787d2214 | 655 | struct address_space *mapping = page_mapping(page); |
ebf7a227 NP |
656 | |
657 | if (unlikely(!mapping)) | |
658 | return !TestSetPageDirty(page); | |
1da177e4 LT |
659 | |
660 | spin_lock(&mapping->private_lock); | |
661 | if (page_has_buffers(page)) { | |
662 | struct buffer_head *head = page_buffers(page); | |
663 | struct buffer_head *bh = head; | |
664 | ||
665 | do { | |
666 | set_buffer_dirty(bh); | |
667 | bh = bh->b_this_page; | |
668 | } while (bh != head); | |
669 | } | |
a8e7d49a | 670 | newly_dirty = !TestSetPageDirty(page); |
1da177e4 LT |
671 | spin_unlock(&mapping->private_lock); |
672 | ||
a8e7d49a LT |
673 | if (newly_dirty) |
674 | __set_page_dirty(page, mapping, 1); | |
675 | return newly_dirty; | |
1da177e4 LT |
676 | } |
677 | EXPORT_SYMBOL(__set_page_dirty_buffers); | |
678 | ||
679 | /* | |
680 | * Write out and wait upon a list of buffers. | |
681 | * | |
682 | * We have conflicting pressures: we want to make sure that all | |
683 | * initially dirty buffers get waited on, but that any subsequently | |
684 | * dirtied buffers don't. After all, we don't want fsync to last | |
685 | * forever if somebody is actively writing to the file. | |
686 | * | |
687 | * Do this in two main stages: first we copy dirty buffers to a | |
688 | * temporary inode list, queueing the writes as we go. Then we clean | |
689 | * up, waiting for those writes to complete. | |
690 | * | |
691 | * During this second stage, any subsequent updates to the file may end | |
692 | * up refiling the buffer on the original inode's dirty list again, so | |
693 | * there is a chance we will end up with a buffer queued for write but | |
694 | * not yet completed on that list. So, as a final cleanup we go through | |
695 | * the osync code to catch these locked, dirty buffers without requeuing | |
696 | * any newly dirty buffers for write. | |
697 | */ | |
698 | static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) | |
699 | { | |
700 | struct buffer_head *bh; | |
701 | struct list_head tmp; | |
7eaceacc | 702 | struct address_space *mapping; |
1da177e4 | 703 | int err = 0, err2; |
4ee2491e | 704 | struct blk_plug plug; |
1da177e4 LT |
705 | |
706 | INIT_LIST_HEAD(&tmp); | |
4ee2491e | 707 | blk_start_plug(&plug); |
1da177e4 LT |
708 | |
709 | spin_lock(lock); | |
710 | while (!list_empty(list)) { | |
711 | bh = BH_ENTRY(list->next); | |
535ee2fb | 712 | mapping = bh->b_assoc_map; |
58ff407b | 713 | __remove_assoc_queue(bh); |
535ee2fb JK |
714 | /* Avoid race with mark_buffer_dirty_inode() which does |
715 | * a lockless check and we rely on seeing the dirty bit */ | |
716 | smp_mb(); | |
1da177e4 LT |
717 | if (buffer_dirty(bh) || buffer_locked(bh)) { |
718 | list_add(&bh->b_assoc_buffers, &tmp); | |
535ee2fb | 719 | bh->b_assoc_map = mapping; |
1da177e4 LT |
720 | if (buffer_dirty(bh)) { |
721 | get_bh(bh); | |
722 | spin_unlock(lock); | |
723 | /* | |
724 | * Ensure any pending I/O completes so that | |
9cb569d6 CH |
725 | * write_dirty_buffer() actually writes the |
726 | * current contents - it is a noop if I/O is | |
727 | * still in flight on potentially older | |
728 | * contents. | |
1da177e4 | 729 | */ |
721a9602 | 730 | write_dirty_buffer(bh, WRITE_SYNC); |
9cf6b720 JA |
731 | |
732 | /* | |
733 | * Kick off IO for the previous mapping. Note | |
734 | * that we will not run the very last mapping, | |
735 | * wait_on_buffer() will do that for us | |
736 | * through sync_buffer(). | |
737 | */ | |
1da177e4 LT |
738 | brelse(bh); |
739 | spin_lock(lock); | |
740 | } | |
741 | } | |
742 | } | |
743 | ||
4ee2491e JA |
744 | spin_unlock(lock); |
745 | blk_finish_plug(&plug); | |
746 | spin_lock(lock); | |
747 | ||
1da177e4 LT |
748 | while (!list_empty(&tmp)) { |
749 | bh = BH_ENTRY(tmp.prev); | |
1da177e4 | 750 | get_bh(bh); |
535ee2fb JK |
751 | mapping = bh->b_assoc_map; |
752 | __remove_assoc_queue(bh); | |
753 | /* Avoid race with mark_buffer_dirty_inode() which does | |
754 | * a lockless check and we rely on seeing the dirty bit */ | |
755 | smp_mb(); | |
756 | if (buffer_dirty(bh)) { | |
757 | list_add(&bh->b_assoc_buffers, | |
e3892296 | 758 | &mapping->private_list); |
535ee2fb JK |
759 | bh->b_assoc_map = mapping; |
760 | } | |
1da177e4 LT |
761 | spin_unlock(lock); |
762 | wait_on_buffer(bh); | |
763 | if (!buffer_uptodate(bh)) | |
764 | err = -EIO; | |
765 | brelse(bh); | |
766 | spin_lock(lock); | |
767 | } | |
768 | ||
769 | spin_unlock(lock); | |
770 | err2 = osync_buffers_list(lock, list); | |
771 | if (err) | |
772 | return err; | |
773 | else | |
774 | return err2; | |
775 | } | |
776 | ||
777 | /* | |
778 | * Invalidate any and all dirty buffers on a given inode. We are | |
779 | * probably unmounting the fs, but that doesn't mean we have already | |
780 | * done a sync(). Just drop the buffers from the inode list. | |
781 | * | |
782 | * NOTE: we take the inode's blockdev's mapping's private_lock. Which | |
783 | * assumes that all the buffers are against the blockdev. Not true | |
784 | * for reiserfs. | |
785 | */ | |
786 | void invalidate_inode_buffers(struct inode *inode) | |
787 | { | |
788 | if (inode_has_buffers(inode)) { | |
789 | struct address_space *mapping = &inode->i_data; | |
790 | struct list_head *list = &mapping->private_list; | |
791 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
792 | ||
793 | spin_lock(&buffer_mapping->private_lock); | |
794 | while (!list_empty(list)) | |
795 | __remove_assoc_queue(BH_ENTRY(list->next)); | |
796 | spin_unlock(&buffer_mapping->private_lock); | |
797 | } | |
798 | } | |
52b19ac9 | 799 | EXPORT_SYMBOL(invalidate_inode_buffers); |
1da177e4 LT |
800 | |
801 | /* | |
802 | * Remove any clean buffers from the inode's buffer list. This is called | |
803 | * when we're trying to free the inode itself. Those buffers can pin it. | |
804 | * | |
805 | * Returns true if all buffers were removed. | |
806 | */ | |
807 | int remove_inode_buffers(struct inode *inode) | |
808 | { | |
809 | int ret = 1; | |
810 | ||
811 | if (inode_has_buffers(inode)) { | |
812 | struct address_space *mapping = &inode->i_data; | |
813 | struct list_head *list = &mapping->private_list; | |
814 | struct address_space *buffer_mapping = mapping->assoc_mapping; | |
815 | ||
816 | spin_lock(&buffer_mapping->private_lock); | |
817 | while (!list_empty(list)) { | |
818 | struct buffer_head *bh = BH_ENTRY(list->next); | |
819 | if (buffer_dirty(bh)) { | |
820 | ret = 0; | |
821 | break; | |
822 | } | |
823 | __remove_assoc_queue(bh); | |
824 | } | |
825 | spin_unlock(&buffer_mapping->private_lock); | |
826 | } | |
827 | return ret; | |
828 | } | |
829 | ||
830 | /* | |
831 | * Create the appropriate buffers when given a page for data area and | |
832 | * the size of each buffer.. Use the bh->b_this_page linked list to | |
833 | * follow the buffers created. Return NULL if unable to create more | |
834 | * buffers. | |
835 | * | |
836 | * The retry flag is used to differentiate async IO (paging, swapping) | |
837 | * which may not fail from ordinary buffer allocations. | |
838 | */ | |
839 | struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, | |
840 | int retry) | |
841 | { | |
842 | struct buffer_head *bh, *head; | |
843 | long offset; | |
844 | ||
845 | try_again: | |
846 | head = NULL; | |
847 | offset = PAGE_SIZE; | |
848 | while ((offset -= size) >= 0) { | |
849 | bh = alloc_buffer_head(GFP_NOFS); | |
850 | if (!bh) | |
851 | goto no_grow; | |
852 | ||
853 | bh->b_bdev = NULL; | |
854 | bh->b_this_page = head; | |
855 | bh->b_blocknr = -1; | |
856 | head = bh; | |
857 | ||
858 | bh->b_state = 0; | |
859 | atomic_set(&bh->b_count, 0); | |
860 | bh->b_size = size; | |
861 | ||
862 | /* Link the buffer to its page */ | |
863 | set_bh_page(bh, page, offset); | |
864 | ||
01ffe339 | 865 | init_buffer(bh, NULL, NULL); |
1da177e4 LT |
866 | } |
867 | return head; | |
868 | /* | |
869 | * In case anything failed, we just free everything we got. | |
870 | */ | |
871 | no_grow: | |
872 | if (head) { | |
873 | do { | |
874 | bh = head; | |
875 | head = head->b_this_page; | |
876 | free_buffer_head(bh); | |
877 | } while (head); | |
878 | } | |
879 | ||
880 | /* | |
881 | * Return failure for non-async IO requests. Async IO requests | |
882 | * are not allowed to fail, so we have to wait until buffer heads | |
883 | * become available. But we don't want tasks sleeping with | |
884 | * partially complete buffers, so all were released above. | |
885 | */ | |
886 | if (!retry) | |
887 | return NULL; | |
888 | ||
889 | /* We're _really_ low on memory. Now we just | |
890 | * wait for old buffer heads to become free due to | |
891 | * finishing IO. Since this is an async request and | |
892 | * the reserve list is empty, we're sure there are | |
893 | * async buffer heads in use. | |
894 | */ | |
895 | free_more_memory(); | |
896 | goto try_again; | |
897 | } | |
898 | EXPORT_SYMBOL_GPL(alloc_page_buffers); | |
899 | ||
900 | static inline void | |
901 | link_dev_buffers(struct page *page, struct buffer_head *head) | |
902 | { | |
903 | struct buffer_head *bh, *tail; | |
904 | ||
905 | bh = head; | |
906 | do { | |
907 | tail = bh; | |
908 | bh = bh->b_this_page; | |
909 | } while (bh); | |
910 | tail->b_this_page = head; | |
911 | attach_page_buffers(page, head); | |
912 | } | |
913 | ||
914 | /* | |
915 | * Initialise the state of a blockdev page's buffers. | |
916 | */ | |
917 | static void | |
918 | init_page_buffers(struct page *page, struct block_device *bdev, | |
919 | sector_t block, int size) | |
920 | { | |
921 | struct buffer_head *head = page_buffers(page); | |
922 | struct buffer_head *bh = head; | |
923 | int uptodate = PageUptodate(page); | |
080399aa | 924 | sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode)); |
1da177e4 LT |
925 | |
926 | do { | |
927 | if (!buffer_mapped(bh)) { | |
928 | init_buffer(bh, NULL, NULL); | |
929 | bh->b_bdev = bdev; | |
930 | bh->b_blocknr = block; | |
931 | if (uptodate) | |
932 | set_buffer_uptodate(bh); | |
080399aa JM |
933 | if (block < end_block) |
934 | set_buffer_mapped(bh); | |
1da177e4 LT |
935 | } |
936 | block++; | |
937 | bh = bh->b_this_page; | |
938 | } while (bh != head); | |
939 | } | |
940 | ||
941 | /* | |
942 | * Create the page-cache page that contains the requested block. | |
943 | * | |
944 | * This is user purely for blockdev mappings. | |
945 | */ | |
946 | static struct page * | |
947 | grow_dev_page(struct block_device *bdev, sector_t block, | |
948 | pgoff_t index, int size) | |
949 | { | |
950 | struct inode *inode = bdev->bd_inode; | |
951 | struct page *page; | |
952 | struct buffer_head *bh; | |
953 | ||
ea125892 | 954 | page = find_or_create_page(inode->i_mapping, index, |
769848c0 | 955 | (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); |
1da177e4 LT |
956 | if (!page) |
957 | return NULL; | |
958 | ||
e827f923 | 959 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
960 | |
961 | if (page_has_buffers(page)) { | |
962 | bh = page_buffers(page); | |
963 | if (bh->b_size == size) { | |
964 | init_page_buffers(page, bdev, block, size); | |
965 | return page; | |
966 | } | |
967 | if (!try_to_free_buffers(page)) | |
968 | goto failed; | |
969 | } | |
970 | ||
971 | /* | |
972 | * Allocate some buffers for this page | |
973 | */ | |
974 | bh = alloc_page_buffers(page, size, 0); | |
975 | if (!bh) | |
976 | goto failed; | |
977 | ||
978 | /* | |
979 | * Link the page to the buffers and initialise them. Take the | |
980 | * lock to be atomic wrt __find_get_block(), which does not | |
981 | * run under the page lock. | |
982 | */ | |
983 | spin_lock(&inode->i_mapping->private_lock); | |
984 | link_dev_buffers(page, bh); | |
985 | init_page_buffers(page, bdev, block, size); | |
986 | spin_unlock(&inode->i_mapping->private_lock); | |
987 | return page; | |
988 | ||
989 | failed: | |
1da177e4 LT |
990 | unlock_page(page); |
991 | page_cache_release(page); | |
992 | return NULL; | |
993 | } | |
994 | ||
995 | /* | |
996 | * Create buffers for the specified block device block's page. If | |
997 | * that page was dirty, the buffers are set dirty also. | |
1da177e4 | 998 | */ |
858119e1 | 999 | static int |
1da177e4 LT |
1000 | grow_buffers(struct block_device *bdev, sector_t block, int size) |
1001 | { | |
1002 | struct page *page; | |
1003 | pgoff_t index; | |
1004 | int sizebits; | |
1005 | ||
1006 | sizebits = -1; | |
1007 | do { | |
1008 | sizebits++; | |
1009 | } while ((size << sizebits) < PAGE_SIZE); | |
1010 | ||
1011 | index = block >> sizebits; | |
1da177e4 | 1012 | |
e5657933 AM |
1013 | /* |
1014 | * Check for a block which wants to lie outside our maximum possible | |
1015 | * pagecache index. (this comparison is done using sector_t types). | |
1016 | */ | |
1017 | if (unlikely(index != block >> sizebits)) { | |
1018 | char b[BDEVNAME_SIZE]; | |
1019 | ||
1020 | printk(KERN_ERR "%s: requested out-of-range block %llu for " | |
1021 | "device %s\n", | |
8e24eea7 | 1022 | __func__, (unsigned long long)block, |
e5657933 AM |
1023 | bdevname(bdev, b)); |
1024 | return -EIO; | |
1025 | } | |
1026 | block = index << sizebits; | |
1da177e4 LT |
1027 | /* Create a page with the proper size buffers.. */ |
1028 | page = grow_dev_page(bdev, block, index, size); | |
1029 | if (!page) | |
1030 | return 0; | |
1031 | unlock_page(page); | |
1032 | page_cache_release(page); | |
1033 | return 1; | |
1034 | } | |
1035 | ||
75c96f85 | 1036 | static struct buffer_head * |
1da177e4 LT |
1037 | __getblk_slow(struct block_device *bdev, sector_t block, int size) |
1038 | { | |
1039 | /* Size must be multiple of hard sectorsize */ | |
e1defc4f | 1040 | if (unlikely(size & (bdev_logical_block_size(bdev)-1) || |
1da177e4 LT |
1041 | (size < 512 || size > PAGE_SIZE))) { |
1042 | printk(KERN_ERR "getblk(): invalid block size %d requested\n", | |
1043 | size); | |
e1defc4f MP |
1044 | printk(KERN_ERR "logical block size: %d\n", |
1045 | bdev_logical_block_size(bdev)); | |
1da177e4 LT |
1046 | |
1047 | dump_stack(); | |
1048 | return NULL; | |
1049 | } | |
1050 | ||
1051 | for (;;) { | |
1052 | struct buffer_head * bh; | |
e5657933 | 1053 | int ret; |
1da177e4 LT |
1054 | |
1055 | bh = __find_get_block(bdev, block, size); | |
1056 | if (bh) | |
1057 | return bh; | |
1058 | ||
e5657933 AM |
1059 | ret = grow_buffers(bdev, block, size); |
1060 | if (ret < 0) | |
1061 | return NULL; | |
1062 | if (ret == 0) | |
1da177e4 LT |
1063 | free_more_memory(); |
1064 | } | |
1065 | } | |
1066 | ||
1067 | /* | |
1068 | * The relationship between dirty buffers and dirty pages: | |
1069 | * | |
1070 | * Whenever a page has any dirty buffers, the page's dirty bit is set, and | |
1071 | * the page is tagged dirty in its radix tree. | |
1072 | * | |
1073 | * At all times, the dirtiness of the buffers represents the dirtiness of | |
1074 | * subsections of the page. If the page has buffers, the page dirty bit is | |
1075 | * merely a hint about the true dirty state. | |
1076 | * | |
1077 | * When a page is set dirty in its entirety, all its buffers are marked dirty | |
1078 | * (if the page has buffers). | |
1079 | * | |
1080 | * When a buffer is marked dirty, its page is dirtied, but the page's other | |
1081 | * buffers are not. | |
1082 | * | |
1083 | * Also. When blockdev buffers are explicitly read with bread(), they | |
1084 | * individually become uptodate. But their backing page remains not | |
1085 | * uptodate - even if all of its buffers are uptodate. A subsequent | |
1086 | * block_read_full_page() against that page will discover all the uptodate | |
1087 | * buffers, will set the page uptodate and will perform no I/O. | |
1088 | */ | |
1089 | ||
1090 | /** | |
1091 | * mark_buffer_dirty - mark a buffer_head as needing writeout | |
67be2dd1 | 1092 | * @bh: the buffer_head to mark dirty |
1da177e4 LT |
1093 | * |
1094 | * mark_buffer_dirty() will set the dirty bit against the buffer, then set its | |
1095 | * backing page dirty, then tag the page as dirty in its address_space's radix | |
1096 | * tree and then attach the address_space's inode to its superblock's dirty | |
1097 | * inode list. | |
1098 | * | |
1099 | * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, | |
250df6ed | 1100 | * mapping->tree_lock and mapping->host->i_lock. |
1da177e4 | 1101 | */ |
fc9b52cd | 1102 | void mark_buffer_dirty(struct buffer_head *bh) |
1da177e4 | 1103 | { |
787d2214 | 1104 | WARN_ON_ONCE(!buffer_uptodate(bh)); |
1be62dc1 LT |
1105 | |
1106 | /* | |
1107 | * Very *carefully* optimize the it-is-already-dirty case. | |
1108 | * | |
1109 | * Don't let the final "is it dirty" escape to before we | |
1110 | * perhaps modified the buffer. | |
1111 | */ | |
1112 | if (buffer_dirty(bh)) { | |
1113 | smp_mb(); | |
1114 | if (buffer_dirty(bh)) | |
1115 | return; | |
1116 | } | |
1117 | ||
a8e7d49a LT |
1118 | if (!test_set_buffer_dirty(bh)) { |
1119 | struct page *page = bh->b_page; | |
8e9d78ed LT |
1120 | if (!TestSetPageDirty(page)) { |
1121 | struct address_space *mapping = page_mapping(page); | |
1122 | if (mapping) | |
1123 | __set_page_dirty(page, mapping, 0); | |
1124 | } | |
a8e7d49a | 1125 | } |
1da177e4 | 1126 | } |
1fe72eaa | 1127 | EXPORT_SYMBOL(mark_buffer_dirty); |
1da177e4 LT |
1128 | |
1129 | /* | |
1130 | * Decrement a buffer_head's reference count. If all buffers against a page | |
1131 | * have zero reference count, are clean and unlocked, and if the page is clean | |
1132 | * and unlocked then try_to_free_buffers() may strip the buffers from the page | |
1133 | * in preparation for freeing it (sometimes, rarely, buffers are removed from | |
1134 | * a page but it ends up not being freed, and buffers may later be reattached). | |
1135 | */ | |
1136 | void __brelse(struct buffer_head * buf) | |
1137 | { | |
1138 | if (atomic_read(&buf->b_count)) { | |
1139 | put_bh(buf); | |
1140 | return; | |
1141 | } | |
5c752ad9 | 1142 | WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); |
1da177e4 | 1143 | } |
1fe72eaa | 1144 | EXPORT_SYMBOL(__brelse); |
1da177e4 LT |
1145 | |
1146 | /* | |
1147 | * bforget() is like brelse(), except it discards any | |
1148 | * potentially dirty data. | |
1149 | */ | |
1150 | void __bforget(struct buffer_head *bh) | |
1151 | { | |
1152 | clear_buffer_dirty(bh); | |
535ee2fb | 1153 | if (bh->b_assoc_map) { |
1da177e4 LT |
1154 | struct address_space *buffer_mapping = bh->b_page->mapping; |
1155 | ||
1156 | spin_lock(&buffer_mapping->private_lock); | |
1157 | list_del_init(&bh->b_assoc_buffers); | |
58ff407b | 1158 | bh->b_assoc_map = NULL; |
1da177e4 LT |
1159 | spin_unlock(&buffer_mapping->private_lock); |
1160 | } | |
1161 | __brelse(bh); | |
1162 | } | |
1fe72eaa | 1163 | EXPORT_SYMBOL(__bforget); |
1da177e4 LT |
1164 | |
1165 | static struct buffer_head *__bread_slow(struct buffer_head *bh) | |
1166 | { | |
1167 | lock_buffer(bh); | |
1168 | if (buffer_uptodate(bh)) { | |
1169 | unlock_buffer(bh); | |
1170 | return bh; | |
1171 | } else { | |
1172 | get_bh(bh); | |
1173 | bh->b_end_io = end_buffer_read_sync; | |
1174 | submit_bh(READ, bh); | |
1175 | wait_on_buffer(bh); | |
1176 | if (buffer_uptodate(bh)) | |
1177 | return bh; | |
1178 | } | |
1179 | brelse(bh); | |
1180 | return NULL; | |
1181 | } | |
1182 | ||
1183 | /* | |
1184 | * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). | |
1185 | * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their | |
1186 | * refcount elevated by one when they're in an LRU. A buffer can only appear | |
1187 | * once in a particular CPU's LRU. A single buffer can be present in multiple | |
1188 | * CPU's LRUs at the same time. | |
1189 | * | |
1190 | * This is a transparent caching front-end to sb_bread(), sb_getblk() and | |
1191 | * sb_find_get_block(). | |
1192 | * | |
1193 | * The LRUs themselves only need locking against invalidate_bh_lrus. We use | |
1194 | * a local interrupt disable for that. | |
1195 | */ | |
1196 | ||
1197 | #define BH_LRU_SIZE 8 | |
1198 | ||
1199 | struct bh_lru { | |
1200 | struct buffer_head *bhs[BH_LRU_SIZE]; | |
1201 | }; | |
1202 | ||
1203 | static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; | |
1204 | ||
1205 | #ifdef CONFIG_SMP | |
1206 | #define bh_lru_lock() local_irq_disable() | |
1207 | #define bh_lru_unlock() local_irq_enable() | |
1208 | #else | |
1209 | #define bh_lru_lock() preempt_disable() | |
1210 | #define bh_lru_unlock() preempt_enable() | |
1211 | #endif | |
1212 | ||
1213 | static inline void check_irqs_on(void) | |
1214 | { | |
1215 | #ifdef irqs_disabled | |
1216 | BUG_ON(irqs_disabled()); | |
1217 | #endif | |
1218 | } | |
1219 | ||
1220 | /* | |
1221 | * The LRU management algorithm is dopey-but-simple. Sorry. | |
1222 | */ | |
1223 | static void bh_lru_install(struct buffer_head *bh) | |
1224 | { | |
1225 | struct buffer_head *evictee = NULL; | |
1da177e4 LT |
1226 | |
1227 | check_irqs_on(); | |
1228 | bh_lru_lock(); | |
c7b92516 | 1229 | if (__this_cpu_read(bh_lrus.bhs[0]) != bh) { |
1da177e4 LT |
1230 | struct buffer_head *bhs[BH_LRU_SIZE]; |
1231 | int in; | |
1232 | int out = 0; | |
1233 | ||
1234 | get_bh(bh); | |
1235 | bhs[out++] = bh; | |
1236 | for (in = 0; in < BH_LRU_SIZE; in++) { | |
c7b92516 CL |
1237 | struct buffer_head *bh2 = |
1238 | __this_cpu_read(bh_lrus.bhs[in]); | |
1da177e4 LT |
1239 | |
1240 | if (bh2 == bh) { | |
1241 | __brelse(bh2); | |
1242 | } else { | |
1243 | if (out >= BH_LRU_SIZE) { | |
1244 | BUG_ON(evictee != NULL); | |
1245 | evictee = bh2; | |
1246 | } else { | |
1247 | bhs[out++] = bh2; | |
1248 | } | |
1249 | } | |
1250 | } | |
1251 | while (out < BH_LRU_SIZE) | |
1252 | bhs[out++] = NULL; | |
c7b92516 | 1253 | memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs)); |
1da177e4 LT |
1254 | } |
1255 | bh_lru_unlock(); | |
1256 | ||
1257 | if (evictee) | |
1258 | __brelse(evictee); | |
1259 | } | |
1260 | ||
1261 | /* | |
1262 | * Look up the bh in this cpu's LRU. If it's there, move it to the head. | |
1263 | */ | |
858119e1 | 1264 | static struct buffer_head * |
3991d3bd | 1265 | lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1266 | { |
1267 | struct buffer_head *ret = NULL; | |
3991d3bd | 1268 | unsigned int i; |
1da177e4 LT |
1269 | |
1270 | check_irqs_on(); | |
1271 | bh_lru_lock(); | |
1da177e4 | 1272 | for (i = 0; i < BH_LRU_SIZE; i++) { |
c7b92516 | 1273 | struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); |
1da177e4 LT |
1274 | |
1275 | if (bh && bh->b_bdev == bdev && | |
1276 | bh->b_blocknr == block && bh->b_size == size) { | |
1277 | if (i) { | |
1278 | while (i) { | |
c7b92516 CL |
1279 | __this_cpu_write(bh_lrus.bhs[i], |
1280 | __this_cpu_read(bh_lrus.bhs[i - 1])); | |
1da177e4 LT |
1281 | i--; |
1282 | } | |
c7b92516 | 1283 | __this_cpu_write(bh_lrus.bhs[0], bh); |
1da177e4 LT |
1284 | } |
1285 | get_bh(bh); | |
1286 | ret = bh; | |
1287 | break; | |
1288 | } | |
1289 | } | |
1290 | bh_lru_unlock(); | |
1291 | return ret; | |
1292 | } | |
1293 | ||
1294 | /* | |
1295 | * Perform a pagecache lookup for the matching buffer. If it's there, refresh | |
1296 | * it in the LRU and mark it as accessed. If it is not present then return | |
1297 | * NULL | |
1298 | */ | |
1299 | struct buffer_head * | |
3991d3bd | 1300 | __find_get_block(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1301 | { |
1302 | struct buffer_head *bh = lookup_bh_lru(bdev, block, size); | |
1303 | ||
1304 | if (bh == NULL) { | |
385fd4c5 | 1305 | bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1306 | if (bh) |
1307 | bh_lru_install(bh); | |
1308 | } | |
1309 | if (bh) | |
1310 | touch_buffer(bh); | |
1311 | return bh; | |
1312 | } | |
1313 | EXPORT_SYMBOL(__find_get_block); | |
1314 | ||
1315 | /* | |
1316 | * __getblk will locate (and, if necessary, create) the buffer_head | |
1317 | * which corresponds to the passed block_device, block and size. The | |
1318 | * returned buffer has its reference count incremented. | |
1319 | * | |
1320 | * __getblk() cannot fail - it just keeps trying. If you pass it an | |
1321 | * illegal block number, __getblk() will happily return a buffer_head | |
1322 | * which represents the non-existent block. Very weird. | |
1323 | * | |
1324 | * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() | |
1325 | * attempt is failing. FIXME, perhaps? | |
1326 | */ | |
1327 | struct buffer_head * | |
3991d3bd | 1328 | __getblk(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1329 | { |
1330 | struct buffer_head *bh = __find_get_block(bdev, block, size); | |
1331 | ||
1332 | might_sleep(); | |
1333 | if (bh == NULL) | |
1334 | bh = __getblk_slow(bdev, block, size); | |
1335 | return bh; | |
1336 | } | |
1337 | EXPORT_SYMBOL(__getblk); | |
1338 | ||
1339 | /* | |
1340 | * Do async read-ahead on a buffer.. | |
1341 | */ | |
3991d3bd | 1342 | void __breadahead(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1343 | { |
1344 | struct buffer_head *bh = __getblk(bdev, block, size); | |
a3e713b5 AM |
1345 | if (likely(bh)) { |
1346 | ll_rw_block(READA, 1, &bh); | |
1347 | brelse(bh); | |
1348 | } | |
1da177e4 LT |
1349 | } |
1350 | EXPORT_SYMBOL(__breadahead); | |
1351 | ||
1352 | /** | |
1353 | * __bread() - reads a specified block and returns the bh | |
67be2dd1 | 1354 | * @bdev: the block_device to read from |
1da177e4 LT |
1355 | * @block: number of block |
1356 | * @size: size (in bytes) to read | |
1357 | * | |
1358 | * Reads a specified block, and returns buffer head that contains it. | |
1359 | * It returns NULL if the block was unreadable. | |
1360 | */ | |
1361 | struct buffer_head * | |
3991d3bd | 1362 | __bread(struct block_device *bdev, sector_t block, unsigned size) |
1da177e4 LT |
1363 | { |
1364 | struct buffer_head *bh = __getblk(bdev, block, size); | |
1365 | ||
a3e713b5 | 1366 | if (likely(bh) && !buffer_uptodate(bh)) |
1da177e4 LT |
1367 | bh = __bread_slow(bh); |
1368 | return bh; | |
1369 | } | |
1370 | EXPORT_SYMBOL(__bread); | |
1371 | ||
1372 | /* | |
1373 | * invalidate_bh_lrus() is called rarely - but not only at unmount. | |
1374 | * This doesn't race because it runs in each cpu either in irq | |
1375 | * or with preempt disabled. | |
1376 | */ | |
1377 | static void invalidate_bh_lru(void *arg) | |
1378 | { | |
1379 | struct bh_lru *b = &get_cpu_var(bh_lrus); | |
1380 | int i; | |
1381 | ||
1382 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
1383 | brelse(b->bhs[i]); | |
1384 | b->bhs[i] = NULL; | |
1385 | } | |
1386 | put_cpu_var(bh_lrus); | |
1387 | } | |
42be35d0 GBY |
1388 | |
1389 | static bool has_bh_in_lru(int cpu, void *dummy) | |
1390 | { | |
1391 | struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); | |
1392 | int i; | |
1da177e4 | 1393 | |
42be35d0 GBY |
1394 | for (i = 0; i < BH_LRU_SIZE; i++) { |
1395 | if (b->bhs[i]) | |
1396 | return 1; | |
1397 | } | |
1398 | ||
1399 | return 0; | |
1400 | } | |
1401 | ||
f9a14399 | 1402 | void invalidate_bh_lrus(void) |
1da177e4 | 1403 | { |
42be35d0 | 1404 | on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL); |
1da177e4 | 1405 | } |
9db5579b | 1406 | EXPORT_SYMBOL_GPL(invalidate_bh_lrus); |
1da177e4 LT |
1407 | |
1408 | void set_bh_page(struct buffer_head *bh, | |
1409 | struct page *page, unsigned long offset) | |
1410 | { | |
1411 | bh->b_page = page; | |
e827f923 | 1412 | BUG_ON(offset >= PAGE_SIZE); |
1da177e4 LT |
1413 | if (PageHighMem(page)) |
1414 | /* | |
1415 | * This catches illegal uses and preserves the offset: | |
1416 | */ | |
1417 | bh->b_data = (char *)(0 + offset); | |
1418 | else | |
1419 | bh->b_data = page_address(page) + offset; | |
1420 | } | |
1421 | EXPORT_SYMBOL(set_bh_page); | |
1422 | ||
1423 | /* | |
1424 | * Called when truncating a buffer on a page completely. | |
1425 | */ | |
858119e1 | 1426 | static void discard_buffer(struct buffer_head * bh) |
1da177e4 LT |
1427 | { |
1428 | lock_buffer(bh); | |
1429 | clear_buffer_dirty(bh); | |
1430 | bh->b_bdev = NULL; | |
1431 | clear_buffer_mapped(bh); | |
1432 | clear_buffer_req(bh); | |
1433 | clear_buffer_new(bh); | |
1434 | clear_buffer_delay(bh); | |
33a266dd | 1435 | clear_buffer_unwritten(bh); |
1da177e4 LT |
1436 | unlock_buffer(bh); |
1437 | } | |
1438 | ||
1da177e4 | 1439 | /** |
814e1d25 | 1440 | * block_invalidatepage - invalidate part or all of a buffer-backed page |
1da177e4 LT |
1441 | * |
1442 | * @page: the page which is affected | |
1443 | * @offset: the index of the truncation point | |
1444 | * | |
1445 | * block_invalidatepage() is called when all or part of the page has become | |
814e1d25 | 1446 | * invalidated by a truncate operation. |
1da177e4 LT |
1447 | * |
1448 | * block_invalidatepage() does not have to release all buffers, but it must | |
1449 | * ensure that no dirty buffer is left outside @offset and that no I/O | |
1450 | * is underway against any of the blocks which are outside the truncation | |
1451 | * point. Because the caller is about to free (and possibly reuse) those | |
1452 | * blocks on-disk. | |
1453 | */ | |
2ff28e22 | 1454 | void block_invalidatepage(struct page *page, unsigned long offset) |
1da177e4 LT |
1455 | { |
1456 | struct buffer_head *head, *bh, *next; | |
1457 | unsigned int curr_off = 0; | |
1da177e4 LT |
1458 | |
1459 | BUG_ON(!PageLocked(page)); | |
1460 | if (!page_has_buffers(page)) | |
1461 | goto out; | |
1462 | ||
1463 | head = page_buffers(page); | |
1464 | bh = head; | |
1465 | do { | |
1466 | unsigned int next_off = curr_off + bh->b_size; | |
1467 | next = bh->b_this_page; | |
1468 | ||
1469 | /* | |
1470 | * is this block fully invalidated? | |
1471 | */ | |
1472 | if (offset <= curr_off) | |
1473 | discard_buffer(bh); | |
1474 | curr_off = next_off; | |
1475 | bh = next; | |
1476 | } while (bh != head); | |
1477 | ||
1478 | /* | |
1479 | * We release buffers only if the entire page is being invalidated. | |
1480 | * The get_block cached value has been unconditionally invalidated, | |
1481 | * so real IO is not possible anymore. | |
1482 | */ | |
1483 | if (offset == 0) | |
2ff28e22 | 1484 | try_to_release_page(page, 0); |
1da177e4 | 1485 | out: |
2ff28e22 | 1486 | return; |
1da177e4 LT |
1487 | } |
1488 | EXPORT_SYMBOL(block_invalidatepage); | |
1489 | ||
1490 | /* | |
1491 | * We attach and possibly dirty the buffers atomically wrt | |
1492 | * __set_page_dirty_buffers() via private_lock. try_to_free_buffers | |
1493 | * is already excluded via the page lock. | |
1494 | */ | |
1495 | void create_empty_buffers(struct page *page, | |
1496 | unsigned long blocksize, unsigned long b_state) | |
1497 | { | |
1498 | struct buffer_head *bh, *head, *tail; | |
1499 | ||
1500 | head = alloc_page_buffers(page, blocksize, 1); | |
1501 | bh = head; | |
1502 | do { | |
1503 | bh->b_state |= b_state; | |
1504 | tail = bh; | |
1505 | bh = bh->b_this_page; | |
1506 | } while (bh); | |
1507 | tail->b_this_page = head; | |
1508 | ||
1509 | spin_lock(&page->mapping->private_lock); | |
1510 | if (PageUptodate(page) || PageDirty(page)) { | |
1511 | bh = head; | |
1512 | do { | |
1513 | if (PageDirty(page)) | |
1514 | set_buffer_dirty(bh); | |
1515 | if (PageUptodate(page)) | |
1516 | set_buffer_uptodate(bh); | |
1517 | bh = bh->b_this_page; | |
1518 | } while (bh != head); | |
1519 | } | |
1520 | attach_page_buffers(page, head); | |
1521 | spin_unlock(&page->mapping->private_lock); | |
1522 | } | |
1523 | EXPORT_SYMBOL(create_empty_buffers); | |
1524 | ||
1525 | /* | |
1526 | * We are taking a block for data and we don't want any output from any | |
1527 | * buffer-cache aliases starting from return from that function and | |
1528 | * until the moment when something will explicitly mark the buffer | |
1529 | * dirty (hopefully that will not happen until we will free that block ;-) | |
1530 | * We don't even need to mark it not-uptodate - nobody can expect | |
1531 | * anything from a newly allocated buffer anyway. We used to used | |
1532 | * unmap_buffer() for such invalidation, but that was wrong. We definitely | |
1533 | * don't want to mark the alias unmapped, for example - it would confuse | |
1534 | * anyone who might pick it with bread() afterwards... | |
1535 | * | |
1536 | * Also.. Note that bforget() doesn't lock the buffer. So there can | |
1537 | * be writeout I/O going on against recently-freed buffers. We don't | |
1538 | * wait on that I/O in bforget() - it's more efficient to wait on the I/O | |
1539 | * only if we really need to. That happens here. | |
1540 | */ | |
1541 | void unmap_underlying_metadata(struct block_device *bdev, sector_t block) | |
1542 | { | |
1543 | struct buffer_head *old_bh; | |
1544 | ||
1545 | might_sleep(); | |
1546 | ||
385fd4c5 | 1547 | old_bh = __find_get_block_slow(bdev, block); |
1da177e4 LT |
1548 | if (old_bh) { |
1549 | clear_buffer_dirty(old_bh); | |
1550 | wait_on_buffer(old_bh); | |
1551 | clear_buffer_req(old_bh); | |
1552 | __brelse(old_bh); | |
1553 | } | |
1554 | } | |
1555 | EXPORT_SYMBOL(unmap_underlying_metadata); | |
1556 | ||
1557 | /* | |
1558 | * NOTE! All mapped/uptodate combinations are valid: | |
1559 | * | |
1560 | * Mapped Uptodate Meaning | |
1561 | * | |
1562 | * No No "unknown" - must do get_block() | |
1563 | * No Yes "hole" - zero-filled | |
1564 | * Yes No "allocated" - allocated on disk, not read in | |
1565 | * Yes Yes "valid" - allocated and up-to-date in memory. | |
1566 | * | |
1567 | * "Dirty" is valid only with the last case (mapped+uptodate). | |
1568 | */ | |
1569 | ||
1570 | /* | |
1571 | * While block_write_full_page is writing back the dirty buffers under | |
1572 | * the page lock, whoever dirtied the buffers may decide to clean them | |
1573 | * again at any time. We handle that by only looking at the buffer | |
1574 | * state inside lock_buffer(). | |
1575 | * | |
1576 | * If block_write_full_page() is called for regular writeback | |
1577 | * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a | |
1578 | * locked buffer. This only can happen if someone has written the buffer | |
1579 | * directly, with submit_bh(). At the address_space level PageWriteback | |
1580 | * prevents this contention from occurring. | |
6e34eedd TT |
1581 | * |
1582 | * If block_write_full_page() is called with wbc->sync_mode == | |
721a9602 JA |
1583 | * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this |
1584 | * causes the writes to be flagged as synchronous writes. | |
1da177e4 LT |
1585 | */ |
1586 | static int __block_write_full_page(struct inode *inode, struct page *page, | |
35c80d5f CM |
1587 | get_block_t *get_block, struct writeback_control *wbc, |
1588 | bh_end_io_t *handler) | |
1da177e4 LT |
1589 | { |
1590 | int err; | |
1591 | sector_t block; | |
1592 | sector_t last_block; | |
f0fbd5fc | 1593 | struct buffer_head *bh, *head; |
b0cf2321 | 1594 | const unsigned blocksize = 1 << inode->i_blkbits; |
1da177e4 | 1595 | int nr_underway = 0; |
6e34eedd | 1596 | int write_op = (wbc->sync_mode == WB_SYNC_ALL ? |
721a9602 | 1597 | WRITE_SYNC : WRITE); |
1da177e4 LT |
1598 | |
1599 | BUG_ON(!PageLocked(page)); | |
1600 | ||
1601 | last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; | |
1602 | ||
1603 | if (!page_has_buffers(page)) { | |
b0cf2321 | 1604 | create_empty_buffers(page, blocksize, |
1da177e4 LT |
1605 | (1 << BH_Dirty)|(1 << BH_Uptodate)); |
1606 | } | |
1607 | ||
1608 | /* | |
1609 | * Be very careful. We have no exclusion from __set_page_dirty_buffers | |
1610 | * here, and the (potentially unmapped) buffers may become dirty at | |
1611 | * any time. If a buffer becomes dirty here after we've inspected it | |
1612 | * then we just miss that fact, and the page stays dirty. | |
1613 | * | |
1614 | * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; | |
1615 | * handle that here by just cleaning them. | |
1616 | */ | |
1617 | ||
54b21a79 | 1618 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
1619 | head = page_buffers(page); |
1620 | bh = head; | |
1621 | ||
1622 | /* | |
1623 | * Get all the dirty buffers mapped to disk addresses and | |
1624 | * handle any aliases from the underlying blockdev's mapping. | |
1625 | */ | |
1626 | do { | |
1627 | if (block > last_block) { | |
1628 | /* | |
1629 | * mapped buffers outside i_size will occur, because | |
1630 | * this page can be outside i_size when there is a | |
1631 | * truncate in progress. | |
1632 | */ | |
1633 | /* | |
1634 | * The buffer was zeroed by block_write_full_page() | |
1635 | */ | |
1636 | clear_buffer_dirty(bh); | |
1637 | set_buffer_uptodate(bh); | |
29a814d2 AT |
1638 | } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && |
1639 | buffer_dirty(bh)) { | |
b0cf2321 | 1640 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1641 | err = get_block(inode, block, bh, 1); |
1642 | if (err) | |
1643 | goto recover; | |
29a814d2 | 1644 | clear_buffer_delay(bh); |
1da177e4 LT |
1645 | if (buffer_new(bh)) { |
1646 | /* blockdev mappings never come here */ | |
1647 | clear_buffer_new(bh); | |
1648 | unmap_underlying_metadata(bh->b_bdev, | |
1649 | bh->b_blocknr); | |
1650 | } | |
1651 | } | |
1652 | bh = bh->b_this_page; | |
1653 | block++; | |
1654 | } while (bh != head); | |
1655 | ||
1656 | do { | |
1da177e4 LT |
1657 | if (!buffer_mapped(bh)) |
1658 | continue; | |
1659 | /* | |
1660 | * If it's a fully non-blocking write attempt and we cannot | |
1661 | * lock the buffer then redirty the page. Note that this can | |
5b0830cb JA |
1662 | * potentially cause a busy-wait loop from writeback threads |
1663 | * and kswapd activity, but those code paths have their own | |
1664 | * higher-level throttling. | |
1da177e4 | 1665 | */ |
1b430bee | 1666 | if (wbc->sync_mode != WB_SYNC_NONE) { |
1da177e4 | 1667 | lock_buffer(bh); |
ca5de404 | 1668 | } else if (!trylock_buffer(bh)) { |
1da177e4 LT |
1669 | redirty_page_for_writepage(wbc, page); |
1670 | continue; | |
1671 | } | |
1672 | if (test_clear_buffer_dirty(bh)) { | |
35c80d5f | 1673 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1674 | } else { |
1675 | unlock_buffer(bh); | |
1676 | } | |
1677 | } while ((bh = bh->b_this_page) != head); | |
1678 | ||
1679 | /* | |
1680 | * The page and its buffers are protected by PageWriteback(), so we can | |
1681 | * drop the bh refcounts early. | |
1682 | */ | |
1683 | BUG_ON(PageWriteback(page)); | |
1684 | set_page_writeback(page); | |
1da177e4 LT |
1685 | |
1686 | do { | |
1687 | struct buffer_head *next = bh->b_this_page; | |
1688 | if (buffer_async_write(bh)) { | |
a64c8610 | 1689 | submit_bh(write_op, bh); |
1da177e4 LT |
1690 | nr_underway++; |
1691 | } | |
1da177e4 LT |
1692 | bh = next; |
1693 | } while (bh != head); | |
05937baa | 1694 | unlock_page(page); |
1da177e4 LT |
1695 | |
1696 | err = 0; | |
1697 | done: | |
1698 | if (nr_underway == 0) { | |
1699 | /* | |
1700 | * The page was marked dirty, but the buffers were | |
1701 | * clean. Someone wrote them back by hand with | |
1702 | * ll_rw_block/submit_bh. A rare case. | |
1703 | */ | |
1da177e4 | 1704 | end_page_writeback(page); |
3d67f2d7 | 1705 | |
1da177e4 LT |
1706 | /* |
1707 | * The page and buffer_heads can be released at any time from | |
1708 | * here on. | |
1709 | */ | |
1da177e4 LT |
1710 | } |
1711 | return err; | |
1712 | ||
1713 | recover: | |
1714 | /* | |
1715 | * ENOSPC, or some other error. We may already have added some | |
1716 | * blocks to the file, so we need to write these out to avoid | |
1717 | * exposing stale data. | |
1718 | * The page is currently locked and not marked for writeback | |
1719 | */ | |
1720 | bh = head; | |
1721 | /* Recovery: lock and submit the mapped buffers */ | |
1722 | do { | |
29a814d2 AT |
1723 | if (buffer_mapped(bh) && buffer_dirty(bh) && |
1724 | !buffer_delay(bh)) { | |
1da177e4 | 1725 | lock_buffer(bh); |
35c80d5f | 1726 | mark_buffer_async_write_endio(bh, handler); |
1da177e4 LT |
1727 | } else { |
1728 | /* | |
1729 | * The buffer may have been set dirty during | |
1730 | * attachment to a dirty page. | |
1731 | */ | |
1732 | clear_buffer_dirty(bh); | |
1733 | } | |
1734 | } while ((bh = bh->b_this_page) != head); | |
1735 | SetPageError(page); | |
1736 | BUG_ON(PageWriteback(page)); | |
7e4c3690 | 1737 | mapping_set_error(page->mapping, err); |
1da177e4 | 1738 | set_page_writeback(page); |
1da177e4 LT |
1739 | do { |
1740 | struct buffer_head *next = bh->b_this_page; | |
1741 | if (buffer_async_write(bh)) { | |
1742 | clear_buffer_dirty(bh); | |
a64c8610 | 1743 | submit_bh(write_op, bh); |
1da177e4 LT |
1744 | nr_underway++; |
1745 | } | |
1da177e4 LT |
1746 | bh = next; |
1747 | } while (bh != head); | |
ffda9d30 | 1748 | unlock_page(page); |
1da177e4 LT |
1749 | goto done; |
1750 | } | |
1751 | ||
afddba49 NP |
1752 | /* |
1753 | * If a page has any new buffers, zero them out here, and mark them uptodate | |
1754 | * and dirty so they'll be written out (in order to prevent uninitialised | |
1755 | * block data from leaking). And clear the new bit. | |
1756 | */ | |
1757 | void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) | |
1758 | { | |
1759 | unsigned int block_start, block_end; | |
1760 | struct buffer_head *head, *bh; | |
1761 | ||
1762 | BUG_ON(!PageLocked(page)); | |
1763 | if (!page_has_buffers(page)) | |
1764 | return; | |
1765 | ||
1766 | bh = head = page_buffers(page); | |
1767 | block_start = 0; | |
1768 | do { | |
1769 | block_end = block_start + bh->b_size; | |
1770 | ||
1771 | if (buffer_new(bh)) { | |
1772 | if (block_end > from && block_start < to) { | |
1773 | if (!PageUptodate(page)) { | |
1774 | unsigned start, size; | |
1775 | ||
1776 | start = max(from, block_start); | |
1777 | size = min(to, block_end) - start; | |
1778 | ||
eebd2aa3 | 1779 | zero_user(page, start, size); |
afddba49 NP |
1780 | set_buffer_uptodate(bh); |
1781 | } | |
1782 | ||
1783 | clear_buffer_new(bh); | |
1784 | mark_buffer_dirty(bh); | |
1785 | } | |
1786 | } | |
1787 | ||
1788 | block_start = block_end; | |
1789 | bh = bh->b_this_page; | |
1790 | } while (bh != head); | |
1791 | } | |
1792 | EXPORT_SYMBOL(page_zero_new_buffers); | |
1793 | ||
ebdec241 | 1794 | int __block_write_begin(struct page *page, loff_t pos, unsigned len, |
6e1db88d | 1795 | get_block_t *get_block) |
1da177e4 | 1796 | { |
ebdec241 CH |
1797 | unsigned from = pos & (PAGE_CACHE_SIZE - 1); |
1798 | unsigned to = from + len; | |
6e1db88d | 1799 | struct inode *inode = page->mapping->host; |
1da177e4 LT |
1800 | unsigned block_start, block_end; |
1801 | sector_t block; | |
1802 | int err = 0; | |
1803 | unsigned blocksize, bbits; | |
1804 | struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; | |
1805 | ||
1806 | BUG_ON(!PageLocked(page)); | |
1807 | BUG_ON(from > PAGE_CACHE_SIZE); | |
1808 | BUG_ON(to > PAGE_CACHE_SIZE); | |
1809 | BUG_ON(from > to); | |
1810 | ||
1811 | blocksize = 1 << inode->i_blkbits; | |
1812 | if (!page_has_buffers(page)) | |
1813 | create_empty_buffers(page, blocksize, 0); | |
1814 | head = page_buffers(page); | |
1815 | ||
1816 | bbits = inode->i_blkbits; | |
1817 | block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); | |
1818 | ||
1819 | for(bh = head, block_start = 0; bh != head || !block_start; | |
1820 | block++, block_start=block_end, bh = bh->b_this_page) { | |
1821 | block_end = block_start + blocksize; | |
1822 | if (block_end <= from || block_start >= to) { | |
1823 | if (PageUptodate(page)) { | |
1824 | if (!buffer_uptodate(bh)) | |
1825 | set_buffer_uptodate(bh); | |
1826 | } | |
1827 | continue; | |
1828 | } | |
1829 | if (buffer_new(bh)) | |
1830 | clear_buffer_new(bh); | |
1831 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 1832 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
1833 | err = get_block(inode, block, bh, 1); |
1834 | if (err) | |
f3ddbdc6 | 1835 | break; |
1da177e4 | 1836 | if (buffer_new(bh)) { |
1da177e4 LT |
1837 | unmap_underlying_metadata(bh->b_bdev, |
1838 | bh->b_blocknr); | |
1839 | if (PageUptodate(page)) { | |
637aff46 | 1840 | clear_buffer_new(bh); |
1da177e4 | 1841 | set_buffer_uptodate(bh); |
637aff46 | 1842 | mark_buffer_dirty(bh); |
1da177e4 LT |
1843 | continue; |
1844 | } | |
eebd2aa3 CL |
1845 | if (block_end > to || block_start < from) |
1846 | zero_user_segments(page, | |
1847 | to, block_end, | |
1848 | block_start, from); | |
1da177e4 LT |
1849 | continue; |
1850 | } | |
1851 | } | |
1852 | if (PageUptodate(page)) { | |
1853 | if (!buffer_uptodate(bh)) | |
1854 | set_buffer_uptodate(bh); | |
1855 | continue; | |
1856 | } | |
1857 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && | |
33a266dd | 1858 | !buffer_unwritten(bh) && |
1da177e4 LT |
1859 | (block_start < from || block_end > to)) { |
1860 | ll_rw_block(READ, 1, &bh); | |
1861 | *wait_bh++=bh; | |
1862 | } | |
1863 | } | |
1864 | /* | |
1865 | * If we issued read requests - let them complete. | |
1866 | */ | |
1867 | while(wait_bh > wait) { | |
1868 | wait_on_buffer(*--wait_bh); | |
1869 | if (!buffer_uptodate(*wait_bh)) | |
f3ddbdc6 | 1870 | err = -EIO; |
1da177e4 | 1871 | } |
f9f07b6c | 1872 | if (unlikely(err)) |
afddba49 | 1873 | page_zero_new_buffers(page, from, to); |
1da177e4 LT |
1874 | return err; |
1875 | } | |
ebdec241 | 1876 | EXPORT_SYMBOL(__block_write_begin); |
1da177e4 LT |
1877 | |
1878 | static int __block_commit_write(struct inode *inode, struct page *page, | |
1879 | unsigned from, unsigned to) | |
1880 | { | |
1881 | unsigned block_start, block_end; | |
1882 | int partial = 0; | |
1883 | unsigned blocksize; | |
1884 | struct buffer_head *bh, *head; | |
1885 | ||
1886 | blocksize = 1 << inode->i_blkbits; | |
1887 | ||
1888 | for(bh = head = page_buffers(page), block_start = 0; | |
1889 | bh != head || !block_start; | |
1890 | block_start=block_end, bh = bh->b_this_page) { | |
1891 | block_end = block_start + blocksize; | |
1892 | if (block_end <= from || block_start >= to) { | |
1893 | if (!buffer_uptodate(bh)) | |
1894 | partial = 1; | |
1895 | } else { | |
1896 | set_buffer_uptodate(bh); | |
1897 | mark_buffer_dirty(bh); | |
1898 | } | |
afddba49 | 1899 | clear_buffer_new(bh); |
1da177e4 LT |
1900 | } |
1901 | ||
1902 | /* | |
1903 | * If this is a partial write which happened to make all buffers | |
1904 | * uptodate then we can optimize away a bogus readpage() for | |
1905 | * the next read(). Here we 'discover' whether the page went | |
1906 | * uptodate as a result of this (potentially partial) write. | |
1907 | */ | |
1908 | if (!partial) | |
1909 | SetPageUptodate(page); | |
1910 | return 0; | |
1911 | } | |
1912 | ||
afddba49 | 1913 | /* |
155130a4 CH |
1914 | * block_write_begin takes care of the basic task of block allocation and |
1915 | * bringing partial write blocks uptodate first. | |
1916 | * | |
7bb46a67 | 1917 | * The filesystem needs to handle block truncation upon failure. |
afddba49 | 1918 | */ |
155130a4 CH |
1919 | int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, |
1920 | unsigned flags, struct page **pagep, get_block_t *get_block) | |
afddba49 | 1921 | { |
6e1db88d | 1922 | pgoff_t index = pos >> PAGE_CACHE_SHIFT; |
afddba49 | 1923 | struct page *page; |
6e1db88d | 1924 | int status; |
afddba49 | 1925 | |
6e1db88d CH |
1926 | page = grab_cache_page_write_begin(mapping, index, flags); |
1927 | if (!page) | |
1928 | return -ENOMEM; | |
afddba49 | 1929 | |
6e1db88d | 1930 | status = __block_write_begin(page, pos, len, get_block); |
afddba49 | 1931 | if (unlikely(status)) { |
6e1db88d CH |
1932 | unlock_page(page); |
1933 | page_cache_release(page); | |
1934 | page = NULL; | |
afddba49 NP |
1935 | } |
1936 | ||
6e1db88d | 1937 | *pagep = page; |
afddba49 NP |
1938 | return status; |
1939 | } | |
1940 | EXPORT_SYMBOL(block_write_begin); | |
1941 | ||
1942 | int block_write_end(struct file *file, struct address_space *mapping, | |
1943 | loff_t pos, unsigned len, unsigned copied, | |
1944 | struct page *page, void *fsdata) | |
1945 | { | |
1946 | struct inode *inode = mapping->host; | |
1947 | unsigned start; | |
1948 | ||
1949 | start = pos & (PAGE_CACHE_SIZE - 1); | |
1950 | ||
1951 | if (unlikely(copied < len)) { | |
1952 | /* | |
1953 | * The buffers that were written will now be uptodate, so we | |
1954 | * don't have to worry about a readpage reading them and | |
1955 | * overwriting a partial write. However if we have encountered | |
1956 | * a short write and only partially written into a buffer, it | |
1957 | * will not be marked uptodate, so a readpage might come in and | |
1958 | * destroy our partial write. | |
1959 | * | |
1960 | * Do the simplest thing, and just treat any short write to a | |
1961 | * non uptodate page as a zero-length write, and force the | |
1962 | * caller to redo the whole thing. | |
1963 | */ | |
1964 | if (!PageUptodate(page)) | |
1965 | copied = 0; | |
1966 | ||
1967 | page_zero_new_buffers(page, start+copied, start+len); | |
1968 | } | |
1969 | flush_dcache_page(page); | |
1970 | ||
1971 | /* This could be a short (even 0-length) commit */ | |
1972 | __block_commit_write(inode, page, start, start+copied); | |
1973 | ||
1974 | return copied; | |
1975 | } | |
1976 | EXPORT_SYMBOL(block_write_end); | |
1977 | ||
1978 | int generic_write_end(struct file *file, struct address_space *mapping, | |
1979 | loff_t pos, unsigned len, unsigned copied, | |
1980 | struct page *page, void *fsdata) | |
1981 | { | |
1982 | struct inode *inode = mapping->host; | |
c7d206b3 | 1983 | int i_size_changed = 0; |
afddba49 NP |
1984 | |
1985 | copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); | |
1986 | ||
1987 | /* | |
1988 | * No need to use i_size_read() here, the i_size | |
1989 | * cannot change under us because we hold i_mutex. | |
1990 | * | |
1991 | * But it's important to update i_size while still holding page lock: | |
1992 | * page writeout could otherwise come in and zero beyond i_size. | |
1993 | */ | |
1994 | if (pos+copied > inode->i_size) { | |
1995 | i_size_write(inode, pos+copied); | |
c7d206b3 | 1996 | i_size_changed = 1; |
afddba49 NP |
1997 | } |
1998 | ||
1999 | unlock_page(page); | |
2000 | page_cache_release(page); | |
2001 | ||
c7d206b3 JK |
2002 | /* |
2003 | * Don't mark the inode dirty under page lock. First, it unnecessarily | |
2004 | * makes the holding time of page lock longer. Second, it forces lock | |
2005 | * ordering of page lock and transaction start for journaling | |
2006 | * filesystems. | |
2007 | */ | |
2008 | if (i_size_changed) | |
2009 | mark_inode_dirty(inode); | |
2010 | ||
afddba49 NP |
2011 | return copied; |
2012 | } | |
2013 | EXPORT_SYMBOL(generic_write_end); | |
2014 | ||
8ab22b9a HH |
2015 | /* |
2016 | * block_is_partially_uptodate checks whether buffers within a page are | |
2017 | * uptodate or not. | |
2018 | * | |
2019 | * Returns true if all buffers which correspond to a file portion | |
2020 | * we want to read are uptodate. | |
2021 | */ | |
2022 | int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, | |
2023 | unsigned long from) | |
2024 | { | |
2025 | struct inode *inode = page->mapping->host; | |
2026 | unsigned block_start, block_end, blocksize; | |
2027 | unsigned to; | |
2028 | struct buffer_head *bh, *head; | |
2029 | int ret = 1; | |
2030 | ||
2031 | if (!page_has_buffers(page)) | |
2032 | return 0; | |
2033 | ||
2034 | blocksize = 1 << inode->i_blkbits; | |
2035 | to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); | |
2036 | to = from + to; | |
2037 | if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) | |
2038 | return 0; | |
2039 | ||
2040 | head = page_buffers(page); | |
2041 | bh = head; | |
2042 | block_start = 0; | |
2043 | do { | |
2044 | block_end = block_start + blocksize; | |
2045 | if (block_end > from && block_start < to) { | |
2046 | if (!buffer_uptodate(bh)) { | |
2047 | ret = 0; | |
2048 | break; | |
2049 | } | |
2050 | if (block_end >= to) | |
2051 | break; | |
2052 | } | |
2053 | block_start = block_end; | |
2054 | bh = bh->b_this_page; | |
2055 | } while (bh != head); | |
2056 | ||
2057 | return ret; | |
2058 | } | |
2059 | EXPORT_SYMBOL(block_is_partially_uptodate); | |
2060 | ||
1da177e4 LT |
2061 | /* |
2062 | * Generic "read page" function for block devices that have the normal | |
2063 | * get_block functionality. This is most of the block device filesystems. | |
2064 | * Reads the page asynchronously --- the unlock_buffer() and | |
2065 | * set/clear_buffer_uptodate() functions propagate buffer state into the | |
2066 | * page struct once IO has completed. | |
2067 | */ | |
2068 | int block_read_full_page(struct page *page, get_block_t *get_block) | |
2069 | { | |
2070 | struct inode *inode = page->mapping->host; | |
2071 | sector_t iblock, lblock; | |
2072 | struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; | |
2073 | unsigned int blocksize; | |
2074 | int nr, i; | |
2075 | int fully_mapped = 1; | |
2076 | ||
cd7619d6 | 2077 | BUG_ON(!PageLocked(page)); |
1da177e4 LT |
2078 | blocksize = 1 << inode->i_blkbits; |
2079 | if (!page_has_buffers(page)) | |
2080 | create_empty_buffers(page, blocksize, 0); | |
2081 | head = page_buffers(page); | |
2082 | ||
2083 | iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
2084 | lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; | |
2085 | bh = head; | |
2086 | nr = 0; | |
2087 | i = 0; | |
2088 | ||
2089 | do { | |
2090 | if (buffer_uptodate(bh)) | |
2091 | continue; | |
2092 | ||
2093 | if (!buffer_mapped(bh)) { | |
c64610ba AM |
2094 | int err = 0; |
2095 | ||
1da177e4 LT |
2096 | fully_mapped = 0; |
2097 | if (iblock < lblock) { | |
b0cf2321 | 2098 | WARN_ON(bh->b_size != blocksize); |
c64610ba AM |
2099 | err = get_block(inode, iblock, bh, 0); |
2100 | if (err) | |
1da177e4 LT |
2101 | SetPageError(page); |
2102 | } | |
2103 | if (!buffer_mapped(bh)) { | |
eebd2aa3 | 2104 | zero_user(page, i * blocksize, blocksize); |
c64610ba AM |
2105 | if (!err) |
2106 | set_buffer_uptodate(bh); | |
1da177e4 LT |
2107 | continue; |
2108 | } | |
2109 | /* | |
2110 | * get_block() might have updated the buffer | |
2111 | * synchronously | |
2112 | */ | |
2113 | if (buffer_uptodate(bh)) | |
2114 | continue; | |
2115 | } | |
2116 | arr[nr++] = bh; | |
2117 | } while (i++, iblock++, (bh = bh->b_this_page) != head); | |
2118 | ||
2119 | if (fully_mapped) | |
2120 | SetPageMappedToDisk(page); | |
2121 | ||
2122 | if (!nr) { | |
2123 | /* | |
2124 | * All buffers are uptodate - we can set the page uptodate | |
2125 | * as well. But not if get_block() returned an error. | |
2126 | */ | |
2127 | if (!PageError(page)) | |
2128 | SetPageUptodate(page); | |
2129 | unlock_page(page); | |
2130 | return 0; | |
2131 | } | |
2132 | ||
2133 | /* Stage two: lock the buffers */ | |
2134 | for (i = 0; i < nr; i++) { | |
2135 | bh = arr[i]; | |
2136 | lock_buffer(bh); | |
2137 | mark_buffer_async_read(bh); | |
2138 | } | |
2139 | ||
2140 | /* | |
2141 | * Stage 3: start the IO. Check for uptodateness | |
2142 | * inside the buffer lock in case another process reading | |
2143 | * the underlying blockdev brought it uptodate (the sct fix). | |
2144 | */ | |
2145 | for (i = 0; i < nr; i++) { | |
2146 | bh = arr[i]; | |
2147 | if (buffer_uptodate(bh)) | |
2148 | end_buffer_async_read(bh, 1); | |
2149 | else | |
2150 | submit_bh(READ, bh); | |
2151 | } | |
2152 | return 0; | |
2153 | } | |
1fe72eaa | 2154 | EXPORT_SYMBOL(block_read_full_page); |
1da177e4 LT |
2155 | |
2156 | /* utility function for filesystems that need to do work on expanding | |
89e10787 | 2157 | * truncates. Uses filesystem pagecache writes to allow the filesystem to |
1da177e4 LT |
2158 | * deal with the hole. |
2159 | */ | |
89e10787 | 2160 | int generic_cont_expand_simple(struct inode *inode, loff_t size) |
1da177e4 LT |
2161 | { |
2162 | struct address_space *mapping = inode->i_mapping; | |
2163 | struct page *page; | |
89e10787 | 2164 | void *fsdata; |
1da177e4 LT |
2165 | int err; |
2166 | ||
c08d3b0e NP |
2167 | err = inode_newsize_ok(inode, size); |
2168 | if (err) | |
1da177e4 LT |
2169 | goto out; |
2170 | ||
89e10787 NP |
2171 | err = pagecache_write_begin(NULL, mapping, size, 0, |
2172 | AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, | |
2173 | &page, &fsdata); | |
2174 | if (err) | |
05eb0b51 | 2175 | goto out; |
05eb0b51 | 2176 | |
89e10787 NP |
2177 | err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); |
2178 | BUG_ON(err > 0); | |
05eb0b51 | 2179 | |
1da177e4 LT |
2180 | out: |
2181 | return err; | |
2182 | } | |
1fe72eaa | 2183 | EXPORT_SYMBOL(generic_cont_expand_simple); |
1da177e4 | 2184 | |
f1e3af72 AB |
2185 | static int cont_expand_zero(struct file *file, struct address_space *mapping, |
2186 | loff_t pos, loff_t *bytes) | |
1da177e4 | 2187 | { |
1da177e4 | 2188 | struct inode *inode = mapping->host; |
1da177e4 | 2189 | unsigned blocksize = 1 << inode->i_blkbits; |
89e10787 NP |
2190 | struct page *page; |
2191 | void *fsdata; | |
2192 | pgoff_t index, curidx; | |
2193 | loff_t curpos; | |
2194 | unsigned zerofrom, offset, len; | |
2195 | int err = 0; | |
1da177e4 | 2196 | |
89e10787 NP |
2197 | index = pos >> PAGE_CACHE_SHIFT; |
2198 | offset = pos & ~PAGE_CACHE_MASK; | |
2199 | ||
2200 | while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { | |
2201 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 LT |
2202 | if (zerofrom & (blocksize-1)) { |
2203 | *bytes |= (blocksize-1); | |
2204 | (*bytes)++; | |
2205 | } | |
89e10787 | 2206 | len = PAGE_CACHE_SIZE - zerofrom; |
1da177e4 | 2207 | |
89e10787 NP |
2208 | err = pagecache_write_begin(file, mapping, curpos, len, |
2209 | AOP_FLAG_UNINTERRUPTIBLE, | |
2210 | &page, &fsdata); | |
2211 | if (err) | |
2212 | goto out; | |
eebd2aa3 | 2213 | zero_user(page, zerofrom, len); |
89e10787 NP |
2214 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2215 | page, fsdata); | |
2216 | if (err < 0) | |
2217 | goto out; | |
2218 | BUG_ON(err != len); | |
2219 | err = 0; | |
061e9746 OH |
2220 | |
2221 | balance_dirty_pages_ratelimited(mapping); | |
89e10787 | 2222 | } |
1da177e4 | 2223 | |
89e10787 NP |
2224 | /* page covers the boundary, find the boundary offset */ |
2225 | if (index == curidx) { | |
2226 | zerofrom = curpos & ~PAGE_CACHE_MASK; | |
1da177e4 | 2227 | /* if we will expand the thing last block will be filled */ |
89e10787 NP |
2228 | if (offset <= zerofrom) { |
2229 | goto out; | |
2230 | } | |
2231 | if (zerofrom & (blocksize-1)) { | |
1da177e4 LT |
2232 | *bytes |= (blocksize-1); |
2233 | (*bytes)++; | |
2234 | } | |
89e10787 | 2235 | len = offset - zerofrom; |
1da177e4 | 2236 | |
89e10787 NP |
2237 | err = pagecache_write_begin(file, mapping, curpos, len, |
2238 | AOP_FLAG_UNINTERRUPTIBLE, | |
2239 | &page, &fsdata); | |
2240 | if (err) | |
2241 | goto out; | |
eebd2aa3 | 2242 | zero_user(page, zerofrom, len); |
89e10787 NP |
2243 | err = pagecache_write_end(file, mapping, curpos, len, len, |
2244 | page, fsdata); | |
2245 | if (err < 0) | |
2246 | goto out; | |
2247 | BUG_ON(err != len); | |
2248 | err = 0; | |
1da177e4 | 2249 | } |
89e10787 NP |
2250 | out: |
2251 | return err; | |
2252 | } | |
2253 | ||
2254 | /* | |
2255 | * For moronic filesystems that do not allow holes in file. | |
2256 | * We may have to extend the file. | |
2257 | */ | |
282dc178 | 2258 | int cont_write_begin(struct file *file, struct address_space *mapping, |
89e10787 NP |
2259 | loff_t pos, unsigned len, unsigned flags, |
2260 | struct page **pagep, void **fsdata, | |
2261 | get_block_t *get_block, loff_t *bytes) | |
2262 | { | |
2263 | struct inode *inode = mapping->host; | |
2264 | unsigned blocksize = 1 << inode->i_blkbits; | |
2265 | unsigned zerofrom; | |
2266 | int err; | |
2267 | ||
2268 | err = cont_expand_zero(file, mapping, pos, bytes); | |
2269 | if (err) | |
155130a4 | 2270 | return err; |
89e10787 NP |
2271 | |
2272 | zerofrom = *bytes & ~PAGE_CACHE_MASK; | |
2273 | if (pos+len > *bytes && zerofrom & (blocksize-1)) { | |
2274 | *bytes |= (blocksize-1); | |
2275 | (*bytes)++; | |
1da177e4 | 2276 | } |
1da177e4 | 2277 | |
155130a4 | 2278 | return block_write_begin(mapping, pos, len, flags, pagep, get_block); |
1da177e4 | 2279 | } |
1fe72eaa | 2280 | EXPORT_SYMBOL(cont_write_begin); |
1da177e4 | 2281 | |
1da177e4 LT |
2282 | int block_commit_write(struct page *page, unsigned from, unsigned to) |
2283 | { | |
2284 | struct inode *inode = page->mapping->host; | |
2285 | __block_commit_write(inode,page,from,to); | |
2286 | return 0; | |
2287 | } | |
1fe72eaa | 2288 | EXPORT_SYMBOL(block_commit_write); |
1da177e4 | 2289 | |
54171690 DC |
2290 | /* |
2291 | * block_page_mkwrite() is not allowed to change the file size as it gets | |
2292 | * called from a page fault handler when a page is first dirtied. Hence we must | |
2293 | * be careful to check for EOF conditions here. We set the page up correctly | |
2294 | * for a written page which means we get ENOSPC checking when writing into | |
2295 | * holes and correct delalloc and unwritten extent mapping on filesystems that | |
2296 | * support these features. | |
2297 | * | |
2298 | * We are not allowed to take the i_mutex here so we have to play games to | |
2299 | * protect against truncate races as the page could now be beyond EOF. Because | |
7bb46a67 | 2300 | * truncate writes the inode size before removing pages, once we have the |
54171690 DC |
2301 | * page lock we can determine safely if the page is beyond EOF. If it is not |
2302 | * beyond EOF, then the page is guaranteed safe against truncation until we | |
2303 | * unlock the page. | |
ea13a864 JK |
2304 | * |
2305 | * Direct callers of this function should call vfs_check_frozen() so that page | |
2306 | * fault does not busyloop until the fs is thawed. | |
54171690 | 2307 | */ |
24da4fab JK |
2308 | int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, |
2309 | get_block_t get_block) | |
54171690 | 2310 | { |
c2ec175c | 2311 | struct page *page = vmf->page; |
54171690 DC |
2312 | struct inode *inode = vma->vm_file->f_path.dentry->d_inode; |
2313 | unsigned long end; | |
2314 | loff_t size; | |
24da4fab | 2315 | int ret; |
54171690 DC |
2316 | |
2317 | lock_page(page); | |
2318 | size = i_size_read(inode); | |
2319 | if ((page->mapping != inode->i_mapping) || | |
18336338 | 2320 | (page_offset(page) > size)) { |
24da4fab JK |
2321 | /* We overload EFAULT to mean page got truncated */ |
2322 | ret = -EFAULT; | |
2323 | goto out_unlock; | |
54171690 DC |
2324 | } |
2325 | ||
2326 | /* page is wholly or partially inside EOF */ | |
2327 | if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) | |
2328 | end = size & ~PAGE_CACHE_MASK; | |
2329 | else | |
2330 | end = PAGE_CACHE_SIZE; | |
2331 | ||
ebdec241 | 2332 | ret = __block_write_begin(page, 0, end, get_block); |
54171690 DC |
2333 | if (!ret) |
2334 | ret = block_commit_write(page, 0, end); | |
2335 | ||
24da4fab JK |
2336 | if (unlikely(ret < 0)) |
2337 | goto out_unlock; | |
ea13a864 JK |
2338 | /* |
2339 | * Freezing in progress? We check after the page is marked dirty and | |
2340 | * with page lock held so if the test here fails, we are sure freezing | |
2341 | * code will wait during syncing until the page fault is done - at that | |
2342 | * point page will be dirty and unlocked so freezing code will write it | |
2343 | * and writeprotect it again. | |
2344 | */ | |
2345 | set_page_dirty(page); | |
2346 | if (inode->i_sb->s_frozen != SB_UNFROZEN) { | |
2347 | ret = -EAGAIN; | |
2348 | goto out_unlock; | |
2349 | } | |
d76ee18a | 2350 | wait_on_page_writeback(page); |
24da4fab JK |
2351 | return 0; |
2352 | out_unlock: | |
2353 | unlock_page(page); | |
54171690 | 2354 | return ret; |
24da4fab JK |
2355 | } |
2356 | EXPORT_SYMBOL(__block_page_mkwrite); | |
2357 | ||
2358 | int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, | |
2359 | get_block_t get_block) | |
2360 | { | |
ea13a864 JK |
2361 | int ret; |
2362 | struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb; | |
24da4fab | 2363 | |
ea13a864 JK |
2364 | /* |
2365 | * This check is racy but catches the common case. The check in | |
2366 | * __block_page_mkwrite() is reliable. | |
2367 | */ | |
2368 | vfs_check_frozen(sb, SB_FREEZE_WRITE); | |
2369 | ret = __block_page_mkwrite(vma, vmf, get_block); | |
24da4fab | 2370 | return block_page_mkwrite_return(ret); |
54171690 | 2371 | } |
1fe72eaa | 2372 | EXPORT_SYMBOL(block_page_mkwrite); |
1da177e4 LT |
2373 | |
2374 | /* | |
03158cd7 | 2375 | * nobh_write_begin()'s prereads are special: the buffer_heads are freed |
1da177e4 LT |
2376 | * immediately, while under the page lock. So it needs a special end_io |
2377 | * handler which does not touch the bh after unlocking it. | |
1da177e4 LT |
2378 | */ |
2379 | static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) | |
2380 | { | |
68671f35 | 2381 | __end_buffer_read_notouch(bh, uptodate); |
1da177e4 LT |
2382 | } |
2383 | ||
03158cd7 NP |
2384 | /* |
2385 | * Attach the singly-linked list of buffers created by nobh_write_begin, to | |
2386 | * the page (converting it to circular linked list and taking care of page | |
2387 | * dirty races). | |
2388 | */ | |
2389 | static void attach_nobh_buffers(struct page *page, struct buffer_head *head) | |
2390 | { | |
2391 | struct buffer_head *bh; | |
2392 | ||
2393 | BUG_ON(!PageLocked(page)); | |
2394 | ||
2395 | spin_lock(&page->mapping->private_lock); | |
2396 | bh = head; | |
2397 | do { | |
2398 | if (PageDirty(page)) | |
2399 | set_buffer_dirty(bh); | |
2400 | if (!bh->b_this_page) | |
2401 | bh->b_this_page = head; | |
2402 | bh = bh->b_this_page; | |
2403 | } while (bh != head); | |
2404 | attach_page_buffers(page, head); | |
2405 | spin_unlock(&page->mapping->private_lock); | |
2406 | } | |
2407 | ||
1da177e4 | 2408 | /* |
ea0f04e5 CH |
2409 | * On entry, the page is fully not uptodate. |
2410 | * On exit the page is fully uptodate in the areas outside (from,to) | |
7bb46a67 | 2411 | * The filesystem needs to handle block truncation upon failure. |
1da177e4 | 2412 | */ |
ea0f04e5 | 2413 | int nobh_write_begin(struct address_space *mapping, |
03158cd7 NP |
2414 | loff_t pos, unsigned len, unsigned flags, |
2415 | struct page **pagep, void **fsdata, | |
1da177e4 LT |
2416 | get_block_t *get_block) |
2417 | { | |
03158cd7 | 2418 | struct inode *inode = mapping->host; |
1da177e4 LT |
2419 | const unsigned blkbits = inode->i_blkbits; |
2420 | const unsigned blocksize = 1 << blkbits; | |
a4b0672d | 2421 | struct buffer_head *head, *bh; |
03158cd7 NP |
2422 | struct page *page; |
2423 | pgoff_t index; | |
2424 | unsigned from, to; | |
1da177e4 | 2425 | unsigned block_in_page; |
a4b0672d | 2426 | unsigned block_start, block_end; |
1da177e4 | 2427 | sector_t block_in_file; |
1da177e4 | 2428 | int nr_reads = 0; |
1da177e4 LT |
2429 | int ret = 0; |
2430 | int is_mapped_to_disk = 1; | |
1da177e4 | 2431 | |
03158cd7 NP |
2432 | index = pos >> PAGE_CACHE_SHIFT; |
2433 | from = pos & (PAGE_CACHE_SIZE - 1); | |
2434 | to = from + len; | |
2435 | ||
54566b2c | 2436 | page = grab_cache_page_write_begin(mapping, index, flags); |
03158cd7 NP |
2437 | if (!page) |
2438 | return -ENOMEM; | |
2439 | *pagep = page; | |
2440 | *fsdata = NULL; | |
2441 | ||
2442 | if (page_has_buffers(page)) { | |
309f77ad NK |
2443 | ret = __block_write_begin(page, pos, len, get_block); |
2444 | if (unlikely(ret)) | |
2445 | goto out_release; | |
2446 | return ret; | |
03158cd7 | 2447 | } |
a4b0672d | 2448 | |
1da177e4 LT |
2449 | if (PageMappedToDisk(page)) |
2450 | return 0; | |
2451 | ||
a4b0672d NP |
2452 | /* |
2453 | * Allocate buffers so that we can keep track of state, and potentially | |
2454 | * attach them to the page if an error occurs. In the common case of | |
2455 | * no error, they will just be freed again without ever being attached | |
2456 | * to the page (which is all OK, because we're under the page lock). | |
2457 | * | |
2458 | * Be careful: the buffer linked list is a NULL terminated one, rather | |
2459 | * than the circular one we're used to. | |
2460 | */ | |
2461 | head = alloc_page_buffers(page, blocksize, 0); | |
03158cd7 NP |
2462 | if (!head) { |
2463 | ret = -ENOMEM; | |
2464 | goto out_release; | |
2465 | } | |
a4b0672d | 2466 | |
1da177e4 | 2467 | block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); |
1da177e4 LT |
2468 | |
2469 | /* | |
2470 | * We loop across all blocks in the page, whether or not they are | |
2471 | * part of the affected region. This is so we can discover if the | |
2472 | * page is fully mapped-to-disk. | |
2473 | */ | |
a4b0672d | 2474 | for (block_start = 0, block_in_page = 0, bh = head; |
1da177e4 | 2475 | block_start < PAGE_CACHE_SIZE; |
a4b0672d | 2476 | block_in_page++, block_start += blocksize, bh = bh->b_this_page) { |
1da177e4 LT |
2477 | int create; |
2478 | ||
a4b0672d NP |
2479 | block_end = block_start + blocksize; |
2480 | bh->b_state = 0; | |
1da177e4 LT |
2481 | create = 1; |
2482 | if (block_start >= to) | |
2483 | create = 0; | |
2484 | ret = get_block(inode, block_in_file + block_in_page, | |
a4b0672d | 2485 | bh, create); |
1da177e4 LT |
2486 | if (ret) |
2487 | goto failed; | |
a4b0672d | 2488 | if (!buffer_mapped(bh)) |
1da177e4 | 2489 | is_mapped_to_disk = 0; |
a4b0672d NP |
2490 | if (buffer_new(bh)) |
2491 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | |
2492 | if (PageUptodate(page)) { | |
2493 | set_buffer_uptodate(bh); | |
1da177e4 | 2494 | continue; |
a4b0672d NP |
2495 | } |
2496 | if (buffer_new(bh) || !buffer_mapped(bh)) { | |
eebd2aa3 CL |
2497 | zero_user_segments(page, block_start, from, |
2498 | to, block_end); | |
1da177e4 LT |
2499 | continue; |
2500 | } | |
a4b0672d | 2501 | if (buffer_uptodate(bh)) |
1da177e4 LT |
2502 | continue; /* reiserfs does this */ |
2503 | if (block_start < from || block_end > to) { | |
a4b0672d NP |
2504 | lock_buffer(bh); |
2505 | bh->b_end_io = end_buffer_read_nobh; | |
2506 | submit_bh(READ, bh); | |
2507 | nr_reads++; | |
1da177e4 LT |
2508 | } |
2509 | } | |
2510 | ||
2511 | if (nr_reads) { | |
1da177e4 LT |
2512 | /* |
2513 | * The page is locked, so these buffers are protected from | |
2514 | * any VM or truncate activity. Hence we don't need to care | |
2515 | * for the buffer_head refcounts. | |
2516 | */ | |
a4b0672d | 2517 | for (bh = head; bh; bh = bh->b_this_page) { |
1da177e4 LT |
2518 | wait_on_buffer(bh); |
2519 | if (!buffer_uptodate(bh)) | |
2520 | ret = -EIO; | |
1da177e4 LT |
2521 | } |
2522 | if (ret) | |
2523 | goto failed; | |
2524 | } | |
2525 | ||
2526 | if (is_mapped_to_disk) | |
2527 | SetPageMappedToDisk(page); | |
1da177e4 | 2528 | |
03158cd7 | 2529 | *fsdata = head; /* to be released by nobh_write_end */ |
a4b0672d | 2530 | |
1da177e4 LT |
2531 | return 0; |
2532 | ||
2533 | failed: | |
03158cd7 | 2534 | BUG_ON(!ret); |
1da177e4 | 2535 | /* |
a4b0672d NP |
2536 | * Error recovery is a bit difficult. We need to zero out blocks that |
2537 | * were newly allocated, and dirty them to ensure they get written out. | |
2538 | * Buffers need to be attached to the page at this point, otherwise | |
2539 | * the handling of potential IO errors during writeout would be hard | |
2540 | * (could try doing synchronous writeout, but what if that fails too?) | |
1da177e4 | 2541 | */ |
03158cd7 NP |
2542 | attach_nobh_buffers(page, head); |
2543 | page_zero_new_buffers(page, from, to); | |
a4b0672d | 2544 | |
03158cd7 NP |
2545 | out_release: |
2546 | unlock_page(page); | |
2547 | page_cache_release(page); | |
2548 | *pagep = NULL; | |
a4b0672d | 2549 | |
7bb46a67 NP |
2550 | return ret; |
2551 | } | |
03158cd7 | 2552 | EXPORT_SYMBOL(nobh_write_begin); |
1da177e4 | 2553 | |
03158cd7 NP |
2554 | int nobh_write_end(struct file *file, struct address_space *mapping, |
2555 | loff_t pos, unsigned len, unsigned copied, | |
2556 | struct page *page, void *fsdata) | |
1da177e4 LT |
2557 | { |
2558 | struct inode *inode = page->mapping->host; | |
efdc3131 | 2559 | struct buffer_head *head = fsdata; |
03158cd7 | 2560 | struct buffer_head *bh; |
5b41e74a | 2561 | BUG_ON(fsdata != NULL && page_has_buffers(page)); |
1da177e4 | 2562 | |
d4cf109f | 2563 | if (unlikely(copied < len) && head) |
5b41e74a DM |
2564 | attach_nobh_buffers(page, head); |
2565 | if (page_has_buffers(page)) | |
2566 | return generic_write_end(file, mapping, pos, len, | |
2567 | copied, page, fsdata); | |
a4b0672d | 2568 | |
22c8ca78 | 2569 | SetPageUptodate(page); |
1da177e4 | 2570 | set_page_dirty(page); |
03158cd7 NP |
2571 | if (pos+copied > inode->i_size) { |
2572 | i_size_write(inode, pos+copied); | |
1da177e4 LT |
2573 | mark_inode_dirty(inode); |
2574 | } | |
03158cd7 NP |
2575 | |
2576 | unlock_page(page); | |
2577 | page_cache_release(page); | |
2578 | ||
03158cd7 NP |
2579 | while (head) { |
2580 | bh = head; | |
2581 | head = head->b_this_page; | |
2582 | free_buffer_head(bh); | |
2583 | } | |
2584 | ||
2585 | return copied; | |
1da177e4 | 2586 | } |
03158cd7 | 2587 | EXPORT_SYMBOL(nobh_write_end); |
1da177e4 LT |
2588 | |
2589 | /* | |
2590 | * nobh_writepage() - based on block_full_write_page() except | |
2591 | * that it tries to operate without attaching bufferheads to | |
2592 | * the page. | |
2593 | */ | |
2594 | int nobh_writepage(struct page *page, get_block_t *get_block, | |
2595 | struct writeback_control *wbc) | |
2596 | { | |
2597 | struct inode * const inode = page->mapping->host; | |
2598 | loff_t i_size = i_size_read(inode); | |
2599 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2600 | unsigned offset; | |
1da177e4 LT |
2601 | int ret; |
2602 | ||
2603 | /* Is the page fully inside i_size? */ | |
2604 | if (page->index < end_index) | |
2605 | goto out; | |
2606 | ||
2607 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2608 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2609 | if (page->index >= end_index+1 || !offset) { | |
2610 | /* | |
2611 | * The page may have dirty, unmapped buffers. For example, | |
2612 | * they may have been added in ext3_writepage(). Make them | |
2613 | * freeable here, so the page does not leak. | |
2614 | */ | |
2615 | #if 0 | |
2616 | /* Not really sure about this - do we need this ? */ | |
2617 | if (page->mapping->a_ops->invalidatepage) | |
2618 | page->mapping->a_ops->invalidatepage(page, offset); | |
2619 | #endif | |
2620 | unlock_page(page); | |
2621 | return 0; /* don't care */ | |
2622 | } | |
2623 | ||
2624 | /* | |
2625 | * The page straddles i_size. It must be zeroed out on each and every | |
2626 | * writepage invocation because it may be mmapped. "A file is mapped | |
2627 | * in multiples of the page size. For a file that is not a multiple of | |
2628 | * the page size, the remaining memory is zeroed when mapped, and | |
2629 | * writes to that region are not written out to the file." | |
2630 | */ | |
eebd2aa3 | 2631 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
1da177e4 LT |
2632 | out: |
2633 | ret = mpage_writepage(page, get_block, wbc); | |
2634 | if (ret == -EAGAIN) | |
35c80d5f CM |
2635 | ret = __block_write_full_page(inode, page, get_block, wbc, |
2636 | end_buffer_async_write); | |
1da177e4 LT |
2637 | return ret; |
2638 | } | |
2639 | EXPORT_SYMBOL(nobh_writepage); | |
2640 | ||
03158cd7 NP |
2641 | int nobh_truncate_page(struct address_space *mapping, |
2642 | loff_t from, get_block_t *get_block) | |
1da177e4 | 2643 | { |
1da177e4 LT |
2644 | pgoff_t index = from >> PAGE_CACHE_SHIFT; |
2645 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
03158cd7 NP |
2646 | unsigned blocksize; |
2647 | sector_t iblock; | |
2648 | unsigned length, pos; | |
2649 | struct inode *inode = mapping->host; | |
1da177e4 | 2650 | struct page *page; |
03158cd7 NP |
2651 | struct buffer_head map_bh; |
2652 | int err; | |
1da177e4 | 2653 | |
03158cd7 NP |
2654 | blocksize = 1 << inode->i_blkbits; |
2655 | length = offset & (blocksize - 1); | |
2656 | ||
2657 | /* Block boundary? Nothing to do */ | |
2658 | if (!length) | |
2659 | return 0; | |
2660 | ||
2661 | length = blocksize - length; | |
2662 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); | |
1da177e4 | 2663 | |
1da177e4 | 2664 | page = grab_cache_page(mapping, index); |
03158cd7 | 2665 | err = -ENOMEM; |
1da177e4 LT |
2666 | if (!page) |
2667 | goto out; | |
2668 | ||
03158cd7 NP |
2669 | if (page_has_buffers(page)) { |
2670 | has_buffers: | |
2671 | unlock_page(page); | |
2672 | page_cache_release(page); | |
2673 | return block_truncate_page(mapping, from, get_block); | |
2674 | } | |
2675 | ||
2676 | /* Find the buffer that contains "offset" */ | |
2677 | pos = blocksize; | |
2678 | while (offset >= pos) { | |
2679 | iblock++; | |
2680 | pos += blocksize; | |
2681 | } | |
2682 | ||
460bcf57 TT |
2683 | map_bh.b_size = blocksize; |
2684 | map_bh.b_state = 0; | |
03158cd7 NP |
2685 | err = get_block(inode, iblock, &map_bh, 0); |
2686 | if (err) | |
2687 | goto unlock; | |
2688 | /* unmapped? It's a hole - nothing to do */ | |
2689 | if (!buffer_mapped(&map_bh)) | |
2690 | goto unlock; | |
2691 | ||
2692 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2693 | if (!PageUptodate(page)) { | |
2694 | err = mapping->a_ops->readpage(NULL, page); | |
2695 | if (err) { | |
2696 | page_cache_release(page); | |
2697 | goto out; | |
2698 | } | |
2699 | lock_page(page); | |
2700 | if (!PageUptodate(page)) { | |
2701 | err = -EIO; | |
2702 | goto unlock; | |
2703 | } | |
2704 | if (page_has_buffers(page)) | |
2705 | goto has_buffers; | |
1da177e4 | 2706 | } |
eebd2aa3 | 2707 | zero_user(page, offset, length); |
03158cd7 NP |
2708 | set_page_dirty(page); |
2709 | err = 0; | |
2710 | ||
2711 | unlock: | |
1da177e4 LT |
2712 | unlock_page(page); |
2713 | page_cache_release(page); | |
2714 | out: | |
03158cd7 | 2715 | return err; |
1da177e4 LT |
2716 | } |
2717 | EXPORT_SYMBOL(nobh_truncate_page); | |
2718 | ||
2719 | int block_truncate_page(struct address_space *mapping, | |
2720 | loff_t from, get_block_t *get_block) | |
2721 | { | |
2722 | pgoff_t index = from >> PAGE_CACHE_SHIFT; | |
2723 | unsigned offset = from & (PAGE_CACHE_SIZE-1); | |
2724 | unsigned blocksize; | |
54b21a79 | 2725 | sector_t iblock; |
1da177e4 LT |
2726 | unsigned length, pos; |
2727 | struct inode *inode = mapping->host; | |
2728 | struct page *page; | |
2729 | struct buffer_head *bh; | |
1da177e4 LT |
2730 | int err; |
2731 | ||
2732 | blocksize = 1 << inode->i_blkbits; | |
2733 | length = offset & (blocksize - 1); | |
2734 | ||
2735 | /* Block boundary? Nothing to do */ | |
2736 | if (!length) | |
2737 | return 0; | |
2738 | ||
2739 | length = blocksize - length; | |
54b21a79 | 2740 | iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); |
1da177e4 LT |
2741 | |
2742 | page = grab_cache_page(mapping, index); | |
2743 | err = -ENOMEM; | |
2744 | if (!page) | |
2745 | goto out; | |
2746 | ||
2747 | if (!page_has_buffers(page)) | |
2748 | create_empty_buffers(page, blocksize, 0); | |
2749 | ||
2750 | /* Find the buffer that contains "offset" */ | |
2751 | bh = page_buffers(page); | |
2752 | pos = blocksize; | |
2753 | while (offset >= pos) { | |
2754 | bh = bh->b_this_page; | |
2755 | iblock++; | |
2756 | pos += blocksize; | |
2757 | } | |
2758 | ||
2759 | err = 0; | |
2760 | if (!buffer_mapped(bh)) { | |
b0cf2321 | 2761 | WARN_ON(bh->b_size != blocksize); |
1da177e4 LT |
2762 | err = get_block(inode, iblock, bh, 0); |
2763 | if (err) | |
2764 | goto unlock; | |
2765 | /* unmapped? It's a hole - nothing to do */ | |
2766 | if (!buffer_mapped(bh)) | |
2767 | goto unlock; | |
2768 | } | |
2769 | ||
2770 | /* Ok, it's mapped. Make sure it's up-to-date */ | |
2771 | if (PageUptodate(page)) | |
2772 | set_buffer_uptodate(bh); | |
2773 | ||
33a266dd | 2774 | if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { |
1da177e4 LT |
2775 | err = -EIO; |
2776 | ll_rw_block(READ, 1, &bh); | |
2777 | wait_on_buffer(bh); | |
2778 | /* Uhhuh. Read error. Complain and punt. */ | |
2779 | if (!buffer_uptodate(bh)) | |
2780 | goto unlock; | |
2781 | } | |
2782 | ||
eebd2aa3 | 2783 | zero_user(page, offset, length); |
1da177e4 LT |
2784 | mark_buffer_dirty(bh); |
2785 | err = 0; | |
2786 | ||
2787 | unlock: | |
2788 | unlock_page(page); | |
2789 | page_cache_release(page); | |
2790 | out: | |
2791 | return err; | |
2792 | } | |
1fe72eaa | 2793 | EXPORT_SYMBOL(block_truncate_page); |
1da177e4 LT |
2794 | |
2795 | /* | |
2796 | * The generic ->writepage function for buffer-backed address_spaces | |
35c80d5f | 2797 | * this form passes in the end_io handler used to finish the IO. |
1da177e4 | 2798 | */ |
35c80d5f CM |
2799 | int block_write_full_page_endio(struct page *page, get_block_t *get_block, |
2800 | struct writeback_control *wbc, bh_end_io_t *handler) | |
1da177e4 LT |
2801 | { |
2802 | struct inode * const inode = page->mapping->host; | |
2803 | loff_t i_size = i_size_read(inode); | |
2804 | const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; | |
2805 | unsigned offset; | |
1da177e4 LT |
2806 | |
2807 | /* Is the page fully inside i_size? */ | |
2808 | if (page->index < end_index) | |
35c80d5f CM |
2809 | return __block_write_full_page(inode, page, get_block, wbc, |
2810 | handler); | |
1da177e4 LT |
2811 | |
2812 | /* Is the page fully outside i_size? (truncate in progress) */ | |
2813 | offset = i_size & (PAGE_CACHE_SIZE-1); | |
2814 | if (page->index >= end_index+1 || !offset) { | |
2815 | /* | |
2816 | * The page may have dirty, unmapped buffers. For example, | |
2817 | * they may have been added in ext3_writepage(). Make them | |
2818 | * freeable here, so the page does not leak. | |
2819 | */ | |
aaa4059b | 2820 | do_invalidatepage(page, 0); |
1da177e4 LT |
2821 | unlock_page(page); |
2822 | return 0; /* don't care */ | |
2823 | } | |
2824 | ||
2825 | /* | |
2826 | * The page straddles i_size. It must be zeroed out on each and every | |
2a61aa40 | 2827 | * writepage invocation because it may be mmapped. "A file is mapped |
1da177e4 LT |
2828 | * in multiples of the page size. For a file that is not a multiple of |
2829 | * the page size, the remaining memory is zeroed when mapped, and | |
2830 | * writes to that region are not written out to the file." | |
2831 | */ | |
eebd2aa3 | 2832 | zero_user_segment(page, offset, PAGE_CACHE_SIZE); |
35c80d5f | 2833 | return __block_write_full_page(inode, page, get_block, wbc, handler); |
1da177e4 | 2834 | } |
1fe72eaa | 2835 | EXPORT_SYMBOL(block_write_full_page_endio); |
1da177e4 | 2836 | |
35c80d5f CM |
2837 | /* |
2838 | * The generic ->writepage function for buffer-backed address_spaces | |
2839 | */ | |
2840 | int block_write_full_page(struct page *page, get_block_t *get_block, | |
2841 | struct writeback_control *wbc) | |
2842 | { | |
2843 | return block_write_full_page_endio(page, get_block, wbc, | |
2844 | end_buffer_async_write); | |
2845 | } | |
1fe72eaa | 2846 | EXPORT_SYMBOL(block_write_full_page); |
35c80d5f | 2847 | |
1da177e4 LT |
2848 | sector_t generic_block_bmap(struct address_space *mapping, sector_t block, |
2849 | get_block_t *get_block) | |
2850 | { | |
2851 | struct buffer_head tmp; | |
2852 | struct inode *inode = mapping->host; | |
2853 | tmp.b_state = 0; | |
2854 | tmp.b_blocknr = 0; | |
b0cf2321 | 2855 | tmp.b_size = 1 << inode->i_blkbits; |
1da177e4 LT |
2856 | get_block(inode, block, &tmp, 0); |
2857 | return tmp.b_blocknr; | |
2858 | } | |
1fe72eaa | 2859 | EXPORT_SYMBOL(generic_block_bmap); |
1da177e4 | 2860 | |
6712ecf8 | 2861 | static void end_bio_bh_io_sync(struct bio *bio, int err) |
1da177e4 LT |
2862 | { |
2863 | struct buffer_head *bh = bio->bi_private; | |
2864 | ||
1da177e4 LT |
2865 | if (err == -EOPNOTSUPP) { |
2866 | set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); | |
1da177e4 LT |
2867 | } |
2868 | ||
08bafc03 KM |
2869 | if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) |
2870 | set_bit(BH_Quiet, &bh->b_state); | |
2871 | ||
1da177e4 LT |
2872 | bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); |
2873 | bio_put(bio); | |
1da177e4 LT |
2874 | } |
2875 | ||
2876 | int submit_bh(int rw, struct buffer_head * bh) | |
2877 | { | |
2878 | struct bio *bio; | |
2879 | int ret = 0; | |
2880 | ||
2881 | BUG_ON(!buffer_locked(bh)); | |
2882 | BUG_ON(!buffer_mapped(bh)); | |
2883 | BUG_ON(!bh->b_end_io); | |
8fb0e342 AK |
2884 | BUG_ON(buffer_delay(bh)); |
2885 | BUG_ON(buffer_unwritten(bh)); | |
1da177e4 | 2886 | |
1da177e4 | 2887 | /* |
48fd4f93 | 2888 | * Only clear out a write error when rewriting |
1da177e4 | 2889 | */ |
48fd4f93 | 2890 | if (test_set_buffer_req(bh) && (rw & WRITE)) |
1da177e4 LT |
2891 | clear_buffer_write_io_error(bh); |
2892 | ||
2893 | /* | |
2894 | * from here on down, it's all bio -- do the initial mapping, | |
2895 | * submit_bio -> generic_make_request may further map this bio around | |
2896 | */ | |
2897 | bio = bio_alloc(GFP_NOIO, 1); | |
2898 | ||
2899 | bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); | |
2900 | bio->bi_bdev = bh->b_bdev; | |
2901 | bio->bi_io_vec[0].bv_page = bh->b_page; | |
2902 | bio->bi_io_vec[0].bv_len = bh->b_size; | |
2903 | bio->bi_io_vec[0].bv_offset = bh_offset(bh); | |
2904 | ||
2905 | bio->bi_vcnt = 1; | |
2906 | bio->bi_idx = 0; | |
2907 | bio->bi_size = bh->b_size; | |
2908 | ||
2909 | bio->bi_end_io = end_bio_bh_io_sync; | |
2910 | bio->bi_private = bh; | |
2911 | ||
2912 | bio_get(bio); | |
2913 | submit_bio(rw, bio); | |
2914 | ||
2915 | if (bio_flagged(bio, BIO_EOPNOTSUPP)) | |
2916 | ret = -EOPNOTSUPP; | |
2917 | ||
2918 | bio_put(bio); | |
2919 | return ret; | |
2920 | } | |
1fe72eaa | 2921 | EXPORT_SYMBOL(submit_bh); |
1da177e4 LT |
2922 | |
2923 | /** | |
2924 | * ll_rw_block: low-level access to block devices (DEPRECATED) | |
9cb569d6 | 2925 | * @rw: whether to %READ or %WRITE or maybe %READA (readahead) |
1da177e4 LT |
2926 | * @nr: number of &struct buffer_heads in the array |
2927 | * @bhs: array of pointers to &struct buffer_head | |
2928 | * | |
a7662236 JK |
2929 | * ll_rw_block() takes an array of pointers to &struct buffer_heads, and |
2930 | * requests an I/O operation on them, either a %READ or a %WRITE. The third | |
9cb569d6 CH |
2931 | * %READA option is described in the documentation for generic_make_request() |
2932 | * which ll_rw_block() calls. | |
1da177e4 LT |
2933 | * |
2934 | * This function drops any buffer that it cannot get a lock on (with the | |
9cb569d6 CH |
2935 | * BH_Lock state bit), any buffer that appears to be clean when doing a write |
2936 | * request, and any buffer that appears to be up-to-date when doing read | |
2937 | * request. Further it marks as clean buffers that are processed for | |
2938 | * writing (the buffer cache won't assume that they are actually clean | |
2939 | * until the buffer gets unlocked). | |
1da177e4 LT |
2940 | * |
2941 | * ll_rw_block sets b_end_io to simple completion handler that marks | |
2942 | * the buffer up-to-date (if approriate), unlocks the buffer and wakes | |
2943 | * any waiters. | |
2944 | * | |
2945 | * All of the buffers must be for the same device, and must also be a | |
2946 | * multiple of the current approved size for the device. | |
2947 | */ | |
2948 | void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) | |
2949 | { | |
2950 | int i; | |
2951 | ||
2952 | for (i = 0; i < nr; i++) { | |
2953 | struct buffer_head *bh = bhs[i]; | |
2954 | ||
9cb569d6 | 2955 | if (!trylock_buffer(bh)) |
1da177e4 | 2956 | continue; |
9cb569d6 | 2957 | if (rw == WRITE) { |
1da177e4 | 2958 | if (test_clear_buffer_dirty(bh)) { |
76c3073a | 2959 | bh->b_end_io = end_buffer_write_sync; |
e60e5c50 | 2960 | get_bh(bh); |
9cb569d6 | 2961 | submit_bh(WRITE, bh); |
1da177e4 LT |
2962 | continue; |
2963 | } | |
2964 | } else { | |
1da177e4 | 2965 | if (!buffer_uptodate(bh)) { |
76c3073a | 2966 | bh->b_end_io = end_buffer_read_sync; |
e60e5c50 | 2967 | get_bh(bh); |
1da177e4 LT |
2968 | submit_bh(rw, bh); |
2969 | continue; | |
2970 | } | |
2971 | } | |
2972 | unlock_buffer(bh); | |
1da177e4 LT |
2973 | } |
2974 | } | |
1fe72eaa | 2975 | EXPORT_SYMBOL(ll_rw_block); |
1da177e4 | 2976 | |
9cb569d6 CH |
2977 | void write_dirty_buffer(struct buffer_head *bh, int rw) |
2978 | { | |
2979 | lock_buffer(bh); | |
2980 | if (!test_clear_buffer_dirty(bh)) { | |
2981 | unlock_buffer(bh); | |
2982 | return; | |
2983 | } | |
2984 | bh->b_end_io = end_buffer_write_sync; | |
2985 | get_bh(bh); | |
2986 | submit_bh(rw, bh); | |
2987 | } | |
2988 | EXPORT_SYMBOL(write_dirty_buffer); | |
2989 | ||
1da177e4 LT |
2990 | /* |
2991 | * For a data-integrity writeout, we need to wait upon any in-progress I/O | |
2992 | * and then start new I/O and then wait upon it. The caller must have a ref on | |
2993 | * the buffer_head. | |
2994 | */ | |
87e99511 | 2995 | int __sync_dirty_buffer(struct buffer_head *bh, int rw) |
1da177e4 LT |
2996 | { |
2997 | int ret = 0; | |
2998 | ||
2999 | WARN_ON(atomic_read(&bh->b_count) < 1); | |
3000 | lock_buffer(bh); | |
3001 | if (test_clear_buffer_dirty(bh)) { | |
3002 | get_bh(bh); | |
3003 | bh->b_end_io = end_buffer_write_sync; | |
87e99511 | 3004 | ret = submit_bh(rw, bh); |
1da177e4 | 3005 | wait_on_buffer(bh); |
1da177e4 LT |
3006 | if (!ret && !buffer_uptodate(bh)) |
3007 | ret = -EIO; | |
3008 | } else { | |
3009 | unlock_buffer(bh); | |
3010 | } | |
3011 | return ret; | |
3012 | } | |
87e99511 CH |
3013 | EXPORT_SYMBOL(__sync_dirty_buffer); |
3014 | ||
3015 | int sync_dirty_buffer(struct buffer_head *bh) | |
3016 | { | |
3017 | return __sync_dirty_buffer(bh, WRITE_SYNC); | |
3018 | } | |
1fe72eaa | 3019 | EXPORT_SYMBOL(sync_dirty_buffer); |
1da177e4 LT |
3020 | |
3021 | /* | |
3022 | * try_to_free_buffers() checks if all the buffers on this particular page | |
3023 | * are unused, and releases them if so. | |
3024 | * | |
3025 | * Exclusion against try_to_free_buffers may be obtained by either | |
3026 | * locking the page or by holding its mapping's private_lock. | |
3027 | * | |
3028 | * If the page is dirty but all the buffers are clean then we need to | |
3029 | * be sure to mark the page clean as well. This is because the page | |
3030 | * may be against a block device, and a later reattachment of buffers | |
3031 | * to a dirty page will set *all* buffers dirty. Which would corrupt | |
3032 | * filesystem data on the same device. | |
3033 | * | |
3034 | * The same applies to regular filesystem pages: if all the buffers are | |
3035 | * clean then we set the page clean and proceed. To do that, we require | |
3036 | * total exclusion from __set_page_dirty_buffers(). That is obtained with | |
3037 | * private_lock. | |
3038 | * | |
3039 | * try_to_free_buffers() is non-blocking. | |
3040 | */ | |
3041 | static inline int buffer_busy(struct buffer_head *bh) | |
3042 | { | |
3043 | return atomic_read(&bh->b_count) | | |
3044 | (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); | |
3045 | } | |
3046 | ||
3047 | static int | |
3048 | drop_buffers(struct page *page, struct buffer_head **buffers_to_free) | |
3049 | { | |
3050 | struct buffer_head *head = page_buffers(page); | |
3051 | struct buffer_head *bh; | |
3052 | ||
3053 | bh = head; | |
3054 | do { | |
de7d5a3b | 3055 | if (buffer_write_io_error(bh) && page->mapping) |
1da177e4 LT |
3056 | set_bit(AS_EIO, &page->mapping->flags); |
3057 | if (buffer_busy(bh)) | |
3058 | goto failed; | |
3059 | bh = bh->b_this_page; | |
3060 | } while (bh != head); | |
3061 | ||
3062 | do { | |
3063 | struct buffer_head *next = bh->b_this_page; | |
3064 | ||
535ee2fb | 3065 | if (bh->b_assoc_map) |
1da177e4 LT |
3066 | __remove_assoc_queue(bh); |
3067 | bh = next; | |
3068 | } while (bh != head); | |
3069 | *buffers_to_free = head; | |
3070 | __clear_page_buffers(page); | |
3071 | return 1; | |
3072 | failed: | |
3073 | return 0; | |
3074 | } | |
3075 | ||
3076 | int try_to_free_buffers(struct page *page) | |
3077 | { | |
3078 | struct address_space * const mapping = page->mapping; | |
3079 | struct buffer_head *buffers_to_free = NULL; | |
3080 | int ret = 0; | |
3081 | ||
3082 | BUG_ON(!PageLocked(page)); | |
ecdfc978 | 3083 | if (PageWriteback(page)) |
1da177e4 LT |
3084 | return 0; |
3085 | ||
3086 | if (mapping == NULL) { /* can this still happen? */ | |
3087 | ret = drop_buffers(page, &buffers_to_free); | |
3088 | goto out; | |
3089 | } | |
3090 | ||
3091 | spin_lock(&mapping->private_lock); | |
3092 | ret = drop_buffers(page, &buffers_to_free); | |
ecdfc978 LT |
3093 | |
3094 | /* | |
3095 | * If the filesystem writes its buffers by hand (eg ext3) | |
3096 | * then we can have clean buffers against a dirty page. We | |
3097 | * clean the page here; otherwise the VM will never notice | |
3098 | * that the filesystem did any IO at all. | |
3099 | * | |
3100 | * Also, during truncate, discard_buffer will have marked all | |
3101 | * the page's buffers clean. We discover that here and clean | |
3102 | * the page also. | |
87df7241 NP |
3103 | * |
3104 | * private_lock must be held over this entire operation in order | |
3105 | * to synchronise against __set_page_dirty_buffers and prevent the | |
3106 | * dirty bit from being lost. | |
ecdfc978 LT |
3107 | */ |
3108 | if (ret) | |
3109 | cancel_dirty_page(page, PAGE_CACHE_SIZE); | |
87df7241 | 3110 | spin_unlock(&mapping->private_lock); |
1da177e4 LT |
3111 | out: |
3112 | if (buffers_to_free) { | |
3113 | struct buffer_head *bh = buffers_to_free; | |
3114 | ||
3115 | do { | |
3116 | struct buffer_head *next = bh->b_this_page; | |
3117 | free_buffer_head(bh); | |
3118 | bh = next; | |
3119 | } while (bh != buffers_to_free); | |
3120 | } | |
3121 | return ret; | |
3122 | } | |
3123 | EXPORT_SYMBOL(try_to_free_buffers); | |
3124 | ||
1da177e4 LT |
3125 | /* |
3126 | * There are no bdflush tunables left. But distributions are | |
3127 | * still running obsolete flush daemons, so we terminate them here. | |
3128 | * | |
3129 | * Use of bdflush() is deprecated and will be removed in a future kernel. | |
5b0830cb | 3130 | * The `flush-X' kernel threads fully replace bdflush daemons and this call. |
1da177e4 | 3131 | */ |
bdc480e3 | 3132 | SYSCALL_DEFINE2(bdflush, int, func, long, data) |
1da177e4 LT |
3133 | { |
3134 | static int msg_count; | |
3135 | ||
3136 | if (!capable(CAP_SYS_ADMIN)) | |
3137 | return -EPERM; | |
3138 | ||
3139 | if (msg_count < 5) { | |
3140 | msg_count++; | |
3141 | printk(KERN_INFO | |
3142 | "warning: process `%s' used the obsolete bdflush" | |
3143 | " system call\n", current->comm); | |
3144 | printk(KERN_INFO "Fix your initscripts?\n"); | |
3145 | } | |
3146 | ||
3147 | if (func == 1) | |
3148 | do_exit(0); | |
3149 | return 0; | |
3150 | } | |
3151 | ||
3152 | /* | |
3153 | * Buffer-head allocation | |
3154 | */ | |
a0a9b043 | 3155 | static struct kmem_cache *bh_cachep __read_mostly; |
1da177e4 LT |
3156 | |
3157 | /* | |
3158 | * Once the number of bh's in the machine exceeds this level, we start | |
3159 | * stripping them in writeback. | |
3160 | */ | |
3161 | static int max_buffer_heads; | |
3162 | ||
3163 | int buffer_heads_over_limit; | |
3164 | ||
3165 | struct bh_accounting { | |
3166 | int nr; /* Number of live bh's */ | |
3167 | int ratelimit; /* Limit cacheline bouncing */ | |
3168 | }; | |
3169 | ||
3170 | static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; | |
3171 | ||
3172 | static void recalc_bh_state(void) | |
3173 | { | |
3174 | int i; | |
3175 | int tot = 0; | |
3176 | ||
ee1be862 | 3177 | if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) |
1da177e4 | 3178 | return; |
c7b92516 | 3179 | __this_cpu_write(bh_accounting.ratelimit, 0); |
8a143426 | 3180 | for_each_online_cpu(i) |
1da177e4 LT |
3181 | tot += per_cpu(bh_accounting, i).nr; |
3182 | buffer_heads_over_limit = (tot > max_buffer_heads); | |
3183 | } | |
c7b92516 | 3184 | |
dd0fc66f | 3185 | struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) |
1da177e4 | 3186 | { |
019b4d12 | 3187 | struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); |
1da177e4 | 3188 | if (ret) { |
a35afb83 | 3189 | INIT_LIST_HEAD(&ret->b_assoc_buffers); |
c7b92516 CL |
3190 | preempt_disable(); |
3191 | __this_cpu_inc(bh_accounting.nr); | |
1da177e4 | 3192 | recalc_bh_state(); |
c7b92516 | 3193 | preempt_enable(); |
1da177e4 LT |
3194 | } |
3195 | return ret; | |
3196 | } | |
3197 | EXPORT_SYMBOL(alloc_buffer_head); | |
3198 | ||
3199 | void free_buffer_head(struct buffer_head *bh) | |
3200 | { | |
3201 | BUG_ON(!list_empty(&bh->b_assoc_buffers)); | |
3202 | kmem_cache_free(bh_cachep, bh); | |
c7b92516 CL |
3203 | preempt_disable(); |
3204 | __this_cpu_dec(bh_accounting.nr); | |
1da177e4 | 3205 | recalc_bh_state(); |
c7b92516 | 3206 | preempt_enable(); |
1da177e4 LT |
3207 | } |
3208 | EXPORT_SYMBOL(free_buffer_head); | |
3209 | ||
1da177e4 LT |
3210 | static void buffer_exit_cpu(int cpu) |
3211 | { | |
3212 | int i; | |
3213 | struct bh_lru *b = &per_cpu(bh_lrus, cpu); | |
3214 | ||
3215 | for (i = 0; i < BH_LRU_SIZE; i++) { | |
3216 | brelse(b->bhs[i]); | |
3217 | b->bhs[i] = NULL; | |
3218 | } | |
c7b92516 | 3219 | this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); |
8a143426 | 3220 | per_cpu(bh_accounting, cpu).nr = 0; |
1da177e4 LT |
3221 | } |
3222 | ||
3223 | static int buffer_cpu_notify(struct notifier_block *self, | |
3224 | unsigned long action, void *hcpu) | |
3225 | { | |
8bb78442 | 3226 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) |
1da177e4 LT |
3227 | buffer_exit_cpu((unsigned long)hcpu); |
3228 | return NOTIFY_OK; | |
3229 | } | |
1da177e4 | 3230 | |
389d1b08 | 3231 | /** |
a6b91919 | 3232 | * bh_uptodate_or_lock - Test whether the buffer is uptodate |
389d1b08 AK |
3233 | * @bh: struct buffer_head |
3234 | * | |
3235 | * Return true if the buffer is up-to-date and false, | |
3236 | * with the buffer locked, if not. | |
3237 | */ | |
3238 | int bh_uptodate_or_lock(struct buffer_head *bh) | |
3239 | { | |
3240 | if (!buffer_uptodate(bh)) { | |
3241 | lock_buffer(bh); | |
3242 | if (!buffer_uptodate(bh)) | |
3243 | return 0; | |
3244 | unlock_buffer(bh); | |
3245 | } | |
3246 | return 1; | |
3247 | } | |
3248 | EXPORT_SYMBOL(bh_uptodate_or_lock); | |
3249 | ||
3250 | /** | |
a6b91919 | 3251 | * bh_submit_read - Submit a locked buffer for reading |
389d1b08 AK |
3252 | * @bh: struct buffer_head |
3253 | * | |
3254 | * Returns zero on success and -EIO on error. | |
3255 | */ | |
3256 | int bh_submit_read(struct buffer_head *bh) | |
3257 | { | |
3258 | BUG_ON(!buffer_locked(bh)); | |
3259 | ||
3260 | if (buffer_uptodate(bh)) { | |
3261 | unlock_buffer(bh); | |
3262 | return 0; | |
3263 | } | |
3264 | ||
3265 | get_bh(bh); | |
3266 | bh->b_end_io = end_buffer_read_sync; | |
3267 | submit_bh(READ, bh); | |
3268 | wait_on_buffer(bh); | |
3269 | if (buffer_uptodate(bh)) | |
3270 | return 0; | |
3271 | return -EIO; | |
3272 | } | |
3273 | EXPORT_SYMBOL(bh_submit_read); | |
3274 | ||
1da177e4 LT |
3275 | void __init buffer_init(void) |
3276 | { | |
3277 | int nrpages; | |
3278 | ||
b98938c3 CL |
3279 | bh_cachep = kmem_cache_create("buffer_head", |
3280 | sizeof(struct buffer_head), 0, | |
3281 | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | |
3282 | SLAB_MEM_SPREAD), | |
019b4d12 | 3283 | NULL); |
1da177e4 LT |
3284 | |
3285 | /* | |
3286 | * Limit the bh occupancy to 10% of ZONE_NORMAL | |
3287 | */ | |
3288 | nrpages = (nr_free_buffer_pages() * 10) / 100; | |
3289 | max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); | |
3290 | hotcpu_notifier(buffer_cpu_notify, 0); | |
3291 | } |