]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
1da177e4 LT |
7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | |
9 | #include <linux/interrupt.h> | |
1da177e4 | 10 | #include <linux/module.h> |
c59ede7b | 11 | #include <linux/capability.h> |
1da177e4 LT |
12 | #include <linux/completion.h> |
13 | #include <linux/personality.h> | |
14 | #include <linux/tty.h> | |
da9cbc87 | 15 | #include <linux/iocontext.h> |
1da177e4 LT |
16 | #include <linux/key.h> |
17 | #include <linux/security.h> | |
18 | #include <linux/cpu.h> | |
19 | #include <linux/acct.h> | |
8f0ab514 | 20 | #include <linux/tsacct_kern.h> |
1da177e4 | 21 | #include <linux/file.h> |
9f3acc31 | 22 | #include <linux/fdtable.h> |
1da177e4 | 23 | #include <linux/binfmts.h> |
ab516013 | 24 | #include <linux/nsproxy.h> |
84d73786 | 25 | #include <linux/pid_namespace.h> |
1da177e4 LT |
26 | #include <linux/ptrace.h> |
27 | #include <linux/profile.h> | |
28 | #include <linux/mount.h> | |
29 | #include <linux/proc_fs.h> | |
49d769d5 | 30 | #include <linux/kthread.h> |
1da177e4 | 31 | #include <linux/mempolicy.h> |
c757249a | 32 | #include <linux/taskstats_kern.h> |
ca74e92b | 33 | #include <linux/delayacct.h> |
83144186 | 34 | #include <linux/freezer.h> |
b4f48b63 | 35 | #include <linux/cgroup.h> |
1da177e4 | 36 | #include <linux/syscalls.h> |
7ed20e1a | 37 | #include <linux/signal.h> |
6a14c5c9 | 38 | #include <linux/posix-timers.h> |
9f46080c | 39 | #include <linux/cn_proc.h> |
de5097c2 | 40 | #include <linux/mutex.h> |
0771dfef | 41 | #include <linux/futex.h> |
b92ce558 | 42 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 43 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 44 | #include <linux/resource.h> |
0d67a46d | 45 | #include <linux/blkdev.h> |
6eaeeaba | 46 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 47 | #include <linux/tracehook.h> |
5ad4e53b | 48 | #include <linux/fs_struct.h> |
d84f4f99 | 49 | #include <linux/init_task.h> |
cdd6c482 | 50 | #include <linux/perf_event.h> |
ad8d75ff | 51 | #include <trace/events/sched.h> |
24f1e32c | 52 | #include <linux/hw_breakpoint.h> |
3d5992d2 | 53 | #include <linux/oom.h> |
54848d73 | 54 | #include <linux/writeback.h> |
40401530 | 55 | #include <linux/shm.h> |
1da177e4 LT |
56 | |
57 | #include <asm/uaccess.h> | |
58 | #include <asm/unistd.h> | |
59 | #include <asm/pgtable.h> | |
60 | #include <asm/mmu_context.h> | |
61 | ||
408b664a AB |
62 | static void exit_mm(struct task_struct * tsk); |
63 | ||
d40e48e0 | 64 | static void __unhash_process(struct task_struct *p, bool group_dead) |
1da177e4 LT |
65 | { |
66 | nr_threads--; | |
50d75f8d | 67 | detach_pid(p, PIDTYPE_PID); |
d40e48e0 | 68 | if (group_dead) { |
1da177e4 LT |
69 | detach_pid(p, PIDTYPE_PGID); |
70 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 71 | |
5e85d4ab | 72 | list_del_rcu(&p->tasks); |
9cd80bbb | 73 | list_del_init(&p->sibling); |
909ea964 | 74 | __this_cpu_dec(process_counts); |
6347e900 EB |
75 | /* |
76 | * If we are the last child process in a pid namespace to be | |
77 | * reaped, notify the reaper sleeping zap_pid_ns_processes(). | |
78 | */ | |
79 | if (IS_ENABLED(CONFIG_PID_NS)) { | |
80 | struct task_struct *parent = p->real_parent; | |
81 | ||
50d75f8d | 82 | if ((task_active_pid_ns(parent)->child_reaper == parent) && |
6347e900 EB |
83 | list_empty(&parent->children) && |
84 | (parent->flags & PF_EXITING)) | |
85 | wake_up_process(parent); | |
86 | } | |
1da177e4 | 87 | } |
47e65328 | 88 | list_del_rcu(&p->thread_group); |
1da177e4 LT |
89 | } |
90 | ||
6a14c5c9 ON |
91 | /* |
92 | * This function expects the tasklist_lock write-locked. | |
93 | */ | |
94 | static void __exit_signal(struct task_struct *tsk) | |
95 | { | |
96 | struct signal_struct *sig = tsk->signal; | |
d40e48e0 | 97 | bool group_dead = thread_group_leader(tsk); |
6a14c5c9 | 98 | struct sighand_struct *sighand; |
4ada856f | 99 | struct tty_struct *uninitialized_var(tty); |
6a14c5c9 | 100 | |
d11c563d | 101 | sighand = rcu_dereference_check(tsk->sighand, |
db1466b3 | 102 | lockdep_tasklist_lock_is_held()); |
6a14c5c9 ON |
103 | spin_lock(&sighand->siglock); |
104 | ||
105 | posix_cpu_timers_exit(tsk); | |
d40e48e0 | 106 | if (group_dead) { |
6a14c5c9 | 107 | posix_cpu_timers_exit_group(tsk); |
4ada856f ON |
108 | tty = sig->tty; |
109 | sig->tty = NULL; | |
4a599942 | 110 | } else { |
e0a70217 ON |
111 | /* |
112 | * This can only happen if the caller is de_thread(). | |
113 | * FIXME: this is the temporary hack, we should teach | |
114 | * posix-cpu-timers to handle this case correctly. | |
115 | */ | |
116 | if (unlikely(has_group_leader_pid(tsk))) | |
117 | posix_cpu_timers_exit_group(tsk); | |
118 | ||
6a14c5c9 ON |
119 | /* |
120 | * If there is any task waiting for the group exit | |
121 | * then notify it: | |
122 | */ | |
d344193a | 123 | if (sig->notify_count > 0 && !--sig->notify_count) |
6a14c5c9 | 124 | wake_up_process(sig->group_exit_task); |
6db840fa | 125 | |
6a14c5c9 ON |
126 | if (tsk == sig->curr_target) |
127 | sig->curr_target = next_thread(tsk); | |
128 | /* | |
129 | * Accumulate here the counters for all threads but the | |
130 | * group leader as they die, so they can be added into | |
131 | * the process-wide totals when those are taken. | |
132 | * The group leader stays around as a zombie as long | |
133 | * as there are other threads. When it gets reaped, | |
134 | * the exit.c code will add its counts into these totals. | |
135 | * We won't ever get here for the group leader, since it | |
136 | * will have been the last reference on the signal_struct. | |
137 | */ | |
64861634 MS |
138 | sig->utime += tsk->utime; |
139 | sig->stime += tsk->stime; | |
140 | sig->gtime += tsk->gtime; | |
6a14c5c9 ON |
141 | sig->min_flt += tsk->min_flt; |
142 | sig->maj_flt += tsk->maj_flt; | |
143 | sig->nvcsw += tsk->nvcsw; | |
144 | sig->nivcsw += tsk->nivcsw; | |
6eaeeaba ED |
145 | sig->inblock += task_io_get_inblock(tsk); |
146 | sig->oublock += task_io_get_oublock(tsk); | |
5995477a | 147 | task_io_accounting_add(&sig->ioac, &tsk->ioac); |
32bd671d | 148 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; |
6a14c5c9 ON |
149 | } |
150 | ||
b3ac022c | 151 | sig->nr_threads--; |
d40e48e0 | 152 | __unhash_process(tsk, group_dead); |
5876700c | 153 | |
da7978b0 ON |
154 | /* |
155 | * Do this under ->siglock, we can race with another thread | |
156 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
157 | */ | |
158 | flush_sigqueue(&tsk->pending); | |
a7e5328a | 159 | tsk->sighand = NULL; |
6a14c5c9 | 160 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 161 | |
a7e5328a | 162 | __cleanup_sighand(sighand); |
6a14c5c9 | 163 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
d40e48e0 | 164 | if (group_dead) { |
6a14c5c9 | 165 | flush_sigqueue(&sig->shared_pending); |
4ada856f | 166 | tty_kref_put(tty); |
6a14c5c9 ON |
167 | } |
168 | } | |
169 | ||
8c7904a0 EB |
170 | static void delayed_put_task_struct(struct rcu_head *rhp) |
171 | { | |
0a16b607 MD |
172 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
173 | ||
4e231c79 | 174 | perf_event_delayed_put(tsk); |
0a16b607 MD |
175 | trace_sched_process_free(tsk); |
176 | put_task_struct(tsk); | |
8c7904a0 EB |
177 | } |
178 | ||
f470021a | 179 | |
1da177e4 LT |
180 | void release_task(struct task_struct * p) |
181 | { | |
36c8b586 | 182 | struct task_struct *leader; |
1da177e4 | 183 | int zap_leader; |
1f09f974 | 184 | repeat: |
c69e8d9c | 185 | /* don't need to get the RCU readlock here - the process is dead and |
d11c563d PM |
186 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
187 | rcu_read_lock(); | |
c69e8d9c | 188 | atomic_dec(&__task_cred(p)->user->processes); |
d11c563d | 189 | rcu_read_unlock(); |
c69e8d9c | 190 | |
60347f67 | 191 | proc_flush_task(p); |
0203026b | 192 | |
1da177e4 | 193 | write_lock_irq(&tasklist_lock); |
a288eecc | 194 | ptrace_release_task(p); |
1da177e4 | 195 | __exit_signal(p); |
35f5cad8 | 196 | |
1da177e4 LT |
197 | /* |
198 | * If we are the last non-leader member of the thread | |
199 | * group, and the leader is zombie, then notify the | |
200 | * group leader's parent process. (if it wants notification.) | |
201 | */ | |
202 | zap_leader = 0; | |
203 | leader = p->group_leader; | |
204 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | |
1da177e4 LT |
205 | /* |
206 | * If we were the last child thread and the leader has | |
207 | * exited already, and the leader's parent ignores SIGCHLD, | |
208 | * then we are the one who should release the leader. | |
dae33574 | 209 | */ |
86773473 | 210 | zap_leader = do_notify_parent(leader, leader->exit_signal); |
dae33574 RM |
211 | if (zap_leader) |
212 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
213 | } |
214 | ||
1da177e4 | 215 | write_unlock_irq(&tasklist_lock); |
1da177e4 | 216 | release_thread(p); |
8c7904a0 | 217 | call_rcu(&p->rcu, delayed_put_task_struct); |
1da177e4 LT |
218 | |
219 | p = leader; | |
220 | if (unlikely(zap_leader)) | |
221 | goto repeat; | |
222 | } | |
223 | ||
1da177e4 LT |
224 | /* |
225 | * This checks not only the pgrp, but falls back on the pid if no | |
226 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | |
227 | * without this... | |
04a2e6a5 EB |
228 | * |
229 | * The caller must hold rcu lock or the tasklist lock. | |
1da177e4 | 230 | */ |
04a2e6a5 | 231 | struct pid *session_of_pgrp(struct pid *pgrp) |
1da177e4 LT |
232 | { |
233 | struct task_struct *p; | |
04a2e6a5 | 234 | struct pid *sid = NULL; |
62dfb554 | 235 | |
04a2e6a5 | 236 | p = pid_task(pgrp, PIDTYPE_PGID); |
62dfb554 | 237 | if (p == NULL) |
04a2e6a5 | 238 | p = pid_task(pgrp, PIDTYPE_PID); |
62dfb554 | 239 | if (p != NULL) |
04a2e6a5 | 240 | sid = task_session(p); |
62dfb554 | 241 | |
1da177e4 LT |
242 | return sid; |
243 | } | |
244 | ||
245 | /* | |
246 | * Determine if a process group is "orphaned", according to the POSIX | |
247 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
248 | * by terminal-generated stop signals. Newly orphaned process groups are | |
249 | * to receive a SIGHUP and a SIGCONT. | |
250 | * | |
251 | * "I ask you, have you ever known what it is to be an orphan?" | |
252 | */ | |
0475ac08 | 253 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) |
1da177e4 LT |
254 | { |
255 | struct task_struct *p; | |
1da177e4 | 256 | |
0475ac08 | 257 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
258 | if ((p == ignored_task) || |
259 | (p->exit_state && thread_group_empty(p)) || | |
260 | is_global_init(p->real_parent)) | |
1da177e4 | 261 | continue; |
05e83df6 | 262 | |
0475ac08 | 263 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
264 | task_session(p->real_parent) == task_session(p)) |
265 | return 0; | |
0475ac08 | 266 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
267 | |
268 | return 1; | |
1da177e4 LT |
269 | } |
270 | ||
3e7cd6c4 | 271 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
272 | { |
273 | int retval; | |
274 | ||
275 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 276 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
277 | read_unlock(&tasklist_lock); |
278 | ||
279 | return retval; | |
280 | } | |
281 | ||
961c4675 | 282 | static bool has_stopped_jobs(struct pid *pgrp) |
1da177e4 | 283 | { |
1da177e4 LT |
284 | struct task_struct *p; |
285 | ||
0475ac08 | 286 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
961c4675 ON |
287 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
288 | return true; | |
0475ac08 | 289 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
961c4675 ON |
290 | |
291 | return false; | |
1da177e4 LT |
292 | } |
293 | ||
f49ee505 ON |
294 | /* |
295 | * Check to see if any process groups have become orphaned as | |
296 | * a result of our exiting, and if they have any stopped jobs, | |
297 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
298 | */ | |
299 | static void | |
300 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
301 | { | |
302 | struct pid *pgrp = task_pgrp(tsk); | |
303 | struct task_struct *ignored_task = tsk; | |
304 | ||
305 | if (!parent) | |
306 | /* exit: our father is in a different pgrp than | |
307 | * we are and we were the only connection outside. | |
308 | */ | |
309 | parent = tsk->real_parent; | |
310 | else | |
311 | /* reparent: our child is in a different pgrp than | |
312 | * we are, and it was the only connection outside. | |
313 | */ | |
314 | ignored_task = NULL; | |
315 | ||
316 | if (task_pgrp(parent) != pgrp && | |
317 | task_session(parent) == task_session(tsk) && | |
318 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
319 | has_stopped_jobs(pgrp)) { | |
320 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
321 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
322 | } | |
323 | } | |
324 | ||
1da177e4 | 325 | /** |
49d769d5 | 326 | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd |
1da177e4 LT |
327 | * |
328 | * If a kernel thread is launched as a result of a system call, or if | |
49d769d5 EB |
329 | * it ever exits, it should generally reparent itself to kthreadd so it |
330 | * isn't in the way of other processes and is correctly cleaned up on exit. | |
1da177e4 LT |
331 | * |
332 | * The various task state such as scheduling policy and priority may have | |
333 | * been inherited from a user process, so we reset them to sane values here. | |
334 | * | |
49d769d5 | 335 | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. |
1da177e4 | 336 | */ |
49d769d5 | 337 | static void reparent_to_kthreadd(void) |
1da177e4 LT |
338 | { |
339 | write_lock_irq(&tasklist_lock); | |
340 | ||
341 | ptrace_unlink(current); | |
342 | /* Reparent to init */ | |
49d769d5 | 343 | current->real_parent = current->parent = kthreadd_task; |
f470021a | 344 | list_move_tail(¤t->sibling, ¤t->real_parent->children); |
1da177e4 LT |
345 | |
346 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | |
347 | current->exit_signal = SIGCHLD; | |
348 | ||
e05606d3 | 349 | if (task_nice(current) < 0) |
1da177e4 LT |
350 | set_user_nice(current, 0); |
351 | /* cpus_allowed? */ | |
352 | /* rt_priority? */ | |
353 | /* signals? */ | |
1da177e4 LT |
354 | memcpy(current->signal->rlim, init_task.signal->rlim, |
355 | sizeof(current->signal->rlim)); | |
d84f4f99 DH |
356 | |
357 | atomic_inc(&init_cred.usage); | |
358 | commit_creds(&init_cred); | |
1da177e4 | 359 | write_unlock_irq(&tasklist_lock); |
1da177e4 LT |
360 | } |
361 | ||
8520d7c7 | 362 | void __set_special_pids(struct pid *pid) |
1da177e4 | 363 | { |
e19f247a | 364 | struct task_struct *curr = current->group_leader; |
1da177e4 | 365 | |
0d0df599 | 366 | if (task_session(curr) != pid) |
7d8da096 | 367 | change_pid(curr, PIDTYPE_SID, pid); |
1b0f7ffd ON |
368 | |
369 | if (task_pgrp(curr) != pid) | |
7d8da096 | 370 | change_pid(curr, PIDTYPE_PGID, pid); |
1da177e4 LT |
371 | } |
372 | ||
8520d7c7 | 373 | static void set_special_pids(struct pid *pid) |
1da177e4 LT |
374 | { |
375 | write_lock_irq(&tasklist_lock); | |
8520d7c7 | 376 | __set_special_pids(pid); |
1da177e4 LT |
377 | write_unlock_irq(&tasklist_lock); |
378 | } | |
379 | ||
380 | /* | |
87245135 ON |
381 | * Let kernel threads use this to say that they allow a certain signal. |
382 | * Must not be used if kthread was cloned with CLONE_SIGHAND. | |
1da177e4 LT |
383 | */ |
384 | int allow_signal(int sig) | |
385 | { | |
7ed20e1a | 386 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
387 | return -EINVAL; |
388 | ||
389 | spin_lock_irq(¤t->sighand->siglock); | |
87245135 | 390 | /* This is only needed for daemonize()'ed kthreads */ |
1da177e4 | 391 | sigdelset(¤t->blocked, sig); |
87245135 ON |
392 | /* |
393 | * Kernel threads handle their own signals. Let the signal code | |
394 | * know it'll be handled, so that they don't get converted to | |
395 | * SIGKILL or just silently dropped. | |
396 | */ | |
397 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | |
1da177e4 LT |
398 | recalc_sigpending(); |
399 | spin_unlock_irq(¤t->sighand->siglock); | |
400 | return 0; | |
401 | } | |
402 | ||
403 | EXPORT_SYMBOL(allow_signal); | |
404 | ||
405 | int disallow_signal(int sig) | |
406 | { | |
7ed20e1a | 407 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
408 | return -EINVAL; |
409 | ||
410 | spin_lock_irq(¤t->sighand->siglock); | |
10ab825b | 411 | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; |
1da177e4 LT |
412 | recalc_sigpending(); |
413 | spin_unlock_irq(¤t->sighand->siglock); | |
414 | return 0; | |
415 | } | |
416 | ||
417 | EXPORT_SYMBOL(disallow_signal); | |
418 | ||
419 | /* | |
420 | * Put all the gunge required to become a kernel thread without | |
421 | * attached user resources in one place where it belongs. | |
422 | */ | |
423 | ||
424 | void daemonize(const char *name, ...) | |
425 | { | |
426 | va_list args; | |
1da177e4 LT |
427 | sigset_t blocked; |
428 | ||
429 | va_start(args, name); | |
430 | vsnprintf(current->comm, sizeof(current->comm), name, args); | |
431 | va_end(args); | |
432 | ||
433 | /* | |
434 | * If we were started as result of loading a module, close all of the | |
435 | * user space pages. We don't need them, and if we didn't close them | |
436 | * they would be locked into memory. | |
437 | */ | |
438 | exit_mm(current); | |
83144186 | 439 | /* |
37f08be1 | 440 | * We don't want to get frozen, in case system-wide hibernation |
83144186 RW |
441 | * or suspend transition begins right now. |
442 | */ | |
7b34e428 | 443 | current->flags |= (PF_NOFREEZE | PF_KTHREAD); |
1da177e4 | 444 | |
8520d7c7 ON |
445 | if (current->nsproxy != &init_nsproxy) { |
446 | get_nsproxy(&init_nsproxy); | |
447 | switch_task_namespaces(current, &init_nsproxy); | |
448 | } | |
297bd42b | 449 | set_special_pids(&init_struct_pid); |
24ec839c | 450 | proc_clear_tty(current); |
1da177e4 LT |
451 | |
452 | /* Block and flush all signals */ | |
453 | sigfillset(&blocked); | |
454 | sigprocmask(SIG_BLOCK, &blocked, NULL); | |
455 | flush_signals(current); | |
456 | ||
457 | /* Become as one with the init task */ | |
458 | ||
3e93cd67 | 459 | daemonize_fs_struct(); |
864bdb3b | 460 | daemonize_descriptors(); |
1da177e4 | 461 | |
49d769d5 | 462 | reparent_to_kthreadd(); |
1da177e4 LT |
463 | } |
464 | ||
465 | EXPORT_SYMBOL(daemonize); | |
466 | ||
cf475ad2 BS |
467 | #ifdef CONFIG_MM_OWNER |
468 | /* | |
733eda7a | 469 | * A task is exiting. If it owned this mm, find a new owner for the mm. |
cf475ad2 | 470 | */ |
cf475ad2 BS |
471 | void mm_update_next_owner(struct mm_struct *mm) |
472 | { | |
473 | struct task_struct *c, *g, *p = current; | |
474 | ||
475 | retry: | |
733eda7a KH |
476 | /* |
477 | * If the exiting or execing task is not the owner, it's | |
478 | * someone else's problem. | |
479 | */ | |
480 | if (mm->owner != p) | |
cf475ad2 | 481 | return; |
733eda7a KH |
482 | /* |
483 | * The current owner is exiting/execing and there are no other | |
484 | * candidates. Do not leave the mm pointing to a possibly | |
485 | * freed task structure. | |
486 | */ | |
487 | if (atomic_read(&mm->mm_users) <= 1) { | |
488 | mm->owner = NULL; | |
489 | return; | |
490 | } | |
cf475ad2 BS |
491 | |
492 | read_lock(&tasklist_lock); | |
493 | /* | |
494 | * Search in the children | |
495 | */ | |
496 | list_for_each_entry(c, &p->children, sibling) { | |
497 | if (c->mm == mm) | |
498 | goto assign_new_owner; | |
499 | } | |
500 | ||
501 | /* | |
502 | * Search in the siblings | |
503 | */ | |
dea33cfd | 504 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
cf475ad2 BS |
505 | if (c->mm == mm) |
506 | goto assign_new_owner; | |
507 | } | |
508 | ||
509 | /* | |
510 | * Search through everything else. We should not get | |
511 | * here often | |
512 | */ | |
513 | do_each_thread(g, c) { | |
514 | if (c->mm == mm) | |
515 | goto assign_new_owner; | |
516 | } while_each_thread(g, c); | |
517 | ||
518 | read_unlock(&tasklist_lock); | |
31a78f23 BS |
519 | /* |
520 | * We found no owner yet mm_users > 1: this implies that we are | |
521 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
e5991371 | 522 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
31a78f23 | 523 | */ |
31a78f23 | 524 | mm->owner = NULL; |
cf475ad2 BS |
525 | return; |
526 | ||
527 | assign_new_owner: | |
528 | BUG_ON(c == p); | |
529 | get_task_struct(c); | |
530 | /* | |
531 | * The task_lock protects c->mm from changing. | |
532 | * We always want mm->owner->mm == mm | |
533 | */ | |
534 | task_lock(c); | |
e5991371 HD |
535 | /* |
536 | * Delay read_unlock() till we have the task_lock() | |
537 | * to ensure that c does not slip away underneath us | |
538 | */ | |
539 | read_unlock(&tasklist_lock); | |
cf475ad2 BS |
540 | if (c->mm != mm) { |
541 | task_unlock(c); | |
542 | put_task_struct(c); | |
543 | goto retry; | |
544 | } | |
cf475ad2 BS |
545 | mm->owner = c; |
546 | task_unlock(c); | |
547 | put_task_struct(c); | |
548 | } | |
549 | #endif /* CONFIG_MM_OWNER */ | |
550 | ||
1da177e4 LT |
551 | /* |
552 | * Turn us into a lazy TLB process if we | |
553 | * aren't already.. | |
554 | */ | |
408b664a | 555 | static void exit_mm(struct task_struct * tsk) |
1da177e4 LT |
556 | { |
557 | struct mm_struct *mm = tsk->mm; | |
b564daf8 | 558 | struct core_state *core_state; |
1da177e4 | 559 | |
48d212a2 | 560 | mm_release(tsk, mm); |
1da177e4 LT |
561 | if (!mm) |
562 | return; | |
4fe7efdb | 563 | sync_mm_rss(mm); |
1da177e4 LT |
564 | /* |
565 | * Serialize with any possible pending coredump. | |
999d9fc1 | 566 | * We must hold mmap_sem around checking core_state |
1da177e4 | 567 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 568 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
569 | * group with ->mm != NULL. |
570 | */ | |
571 | down_read(&mm->mmap_sem); | |
b564daf8 ON |
572 | core_state = mm->core_state; |
573 | if (core_state) { | |
574 | struct core_thread self; | |
1da177e4 | 575 | up_read(&mm->mmap_sem); |
1da177e4 | 576 | |
b564daf8 ON |
577 | self.task = tsk; |
578 | self.next = xchg(&core_state->dumper.next, &self); | |
579 | /* | |
580 | * Implies mb(), the result of xchg() must be visible | |
581 | * to core_state->dumper. | |
582 | */ | |
583 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
584 | complete(&core_state->startup); | |
1da177e4 | 585 | |
a94e2d40 ON |
586 | for (;;) { |
587 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | |
588 | if (!self.task) /* see coredump_finish() */ | |
589 | break; | |
590 | schedule(); | |
591 | } | |
592 | __set_task_state(tsk, TASK_RUNNING); | |
1da177e4 LT |
593 | down_read(&mm->mmap_sem); |
594 | } | |
595 | atomic_inc(&mm->mm_count); | |
125e1874 | 596 | BUG_ON(mm != tsk->active_mm); |
1da177e4 LT |
597 | /* more a memory barrier than a real lock */ |
598 | task_lock(tsk); | |
599 | tsk->mm = NULL; | |
600 | up_read(&mm->mmap_sem); | |
601 | enter_lazy_tlb(mm, current); | |
602 | task_unlock(tsk); | |
cf475ad2 | 603 | mm_update_next_owner(mm); |
1da177e4 LT |
604 | mmput(mm); |
605 | } | |
606 | ||
1da177e4 | 607 | /* |
ebec18a6 LP |
608 | * When we die, we re-parent all our children, and try to: |
609 | * 1. give them to another thread in our thread group, if such a member exists | |
610 | * 2. give it to the first ancestor process which prctl'd itself as a | |
611 | * child_subreaper for its children (like a service manager) | |
612 | * 3. give it to the init process (PID 1) in our pid namespace | |
1da177e4 | 613 | */ |
950bbabb | 614 | static struct task_struct *find_new_reaper(struct task_struct *father) |
d16e15f5 NK |
615 | __releases(&tasklist_lock) |
616 | __acquires(&tasklist_lock) | |
1da177e4 | 617 | { |
950bbabb ON |
618 | struct pid_namespace *pid_ns = task_active_pid_ns(father); |
619 | struct task_struct *thread; | |
1da177e4 | 620 | |
950bbabb ON |
621 | thread = father; |
622 | while_each_thread(father, thread) { | |
623 | if (thread->flags & PF_EXITING) | |
624 | continue; | |
625 | if (unlikely(pid_ns->child_reaper == father)) | |
626 | pid_ns->child_reaper = thread; | |
627 | return thread; | |
628 | } | |
1da177e4 | 629 | |
950bbabb ON |
630 | if (unlikely(pid_ns->child_reaper == father)) { |
631 | write_unlock_irq(&tasklist_lock); | |
397a21f2 DV |
632 | if (unlikely(pid_ns == &init_pid_ns)) { |
633 | panic("Attempted to kill init! exitcode=0x%08x\n", | |
634 | father->signal->group_exit_code ?: | |
635 | father->exit_code); | |
636 | } | |
1da177e4 | 637 | |
950bbabb ON |
638 | zap_pid_ns_processes(pid_ns); |
639 | write_lock_irq(&tasklist_lock); | |
ebec18a6 LP |
640 | } else if (father->signal->has_child_subreaper) { |
641 | struct task_struct *reaper; | |
642 | ||
643 | /* | |
644 | * Find the first ancestor marked as child_subreaper. | |
645 | * Note that the code below checks same_thread_group(reaper, | |
646 | * pid_ns->child_reaper). This is what we need to DTRT in a | |
647 | * PID namespace. However we still need the check above, see | |
648 | * http://marc.info/?l=linux-kernel&m=131385460420380 | |
649 | */ | |
650 | for (reaper = father->real_parent; | |
651 | reaper != &init_task; | |
652 | reaper = reaper->real_parent) { | |
653 | if (same_thread_group(reaper, pid_ns->child_reaper)) | |
654 | break; | |
655 | if (!reaper->signal->is_child_subreaper) | |
656 | continue; | |
657 | thread = reaper; | |
658 | do { | |
659 | if (!(thread->flags & PF_EXITING)) | |
660 | return reaper; | |
661 | } while_each_thread(reaper, thread); | |
662 | } | |
1da177e4 | 663 | } |
762a24be | 664 | |
950bbabb ON |
665 | return pid_ns->child_reaper; |
666 | } | |
667 | ||
5dfc80be ON |
668 | /* |
669 | * Any that need to be release_task'd are put on the @dead list. | |
670 | */ | |
9cd80bbb | 671 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
5dfc80be ON |
672 | struct list_head *dead) |
673 | { | |
5dfc80be ON |
674 | list_move_tail(&p->sibling, &p->real_parent->children); |
675 | ||
0976a03e | 676 | if (p->exit_state == EXIT_DEAD) |
5dfc80be ON |
677 | return; |
678 | /* | |
679 | * If this is a threaded reparent there is no need to | |
680 | * notify anyone anything has happened. | |
681 | */ | |
682 | if (same_thread_group(p->real_parent, father)) | |
683 | return; | |
684 | ||
685 | /* We don't want people slaying init. */ | |
686 | p->exit_signal = SIGCHLD; | |
687 | ||
688 | /* If it has exited notify the new parent about this child's death. */ | |
d21142ec | 689 | if (!p->ptrace && |
5dfc80be | 690 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
86773473 | 691 | if (do_notify_parent(p, p->exit_signal)) { |
5dfc80be ON |
692 | p->exit_state = EXIT_DEAD; |
693 | list_move_tail(&p->sibling, dead); | |
694 | } | |
695 | } | |
696 | ||
697 | kill_orphaned_pgrp(p, father); | |
698 | } | |
699 | ||
762a24be | 700 | static void forget_original_parent(struct task_struct *father) |
1da177e4 | 701 | { |
950bbabb | 702 | struct task_struct *p, *n, *reaper; |
5dfc80be | 703 | LIST_HEAD(dead_children); |
762a24be ON |
704 | |
705 | write_lock_irq(&tasklist_lock); | |
c7e49c14 ON |
706 | /* |
707 | * Note that exit_ptrace() and find_new_reaper() might | |
708 | * drop tasklist_lock and reacquire it. | |
709 | */ | |
710 | exit_ptrace(father); | |
950bbabb | 711 | reaper = find_new_reaper(father); |
f470021a | 712 | |
03ff1797 | 713 | list_for_each_entry_safe(p, n, &father->children, sibling) { |
9cd80bbb ON |
714 | struct task_struct *t = p; |
715 | do { | |
716 | t->real_parent = reaper; | |
717 | if (t->parent == father) { | |
d21142ec | 718 | BUG_ON(t->ptrace); |
9cd80bbb ON |
719 | t->parent = t->real_parent; |
720 | } | |
721 | if (t->pdeath_signal) | |
722 | group_send_sig_info(t->pdeath_signal, | |
723 | SEND_SIG_NOINFO, t); | |
724 | } while_each_thread(p, t); | |
725 | reparent_leader(father, p, &dead_children); | |
1da177e4 | 726 | } |
762a24be | 727 | write_unlock_irq(&tasklist_lock); |
5dfc80be | 728 | |
762a24be | 729 | BUG_ON(!list_empty(&father->children)); |
762a24be | 730 | |
5dfc80be ON |
731 | list_for_each_entry_safe(p, n, &dead_children, sibling) { |
732 | list_del_init(&p->sibling); | |
39c626ae ON |
733 | release_task(p); |
734 | } | |
1da177e4 LT |
735 | } |
736 | ||
737 | /* | |
738 | * Send signals to all our closest relatives so that they know | |
739 | * to properly mourn us.. | |
740 | */ | |
821c7de7 | 741 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 742 | { |
53c8f9f1 | 743 | bool autoreap; |
1da177e4 | 744 | |
1da177e4 LT |
745 | /* |
746 | * This does two things: | |
747 | * | |
748 | * A. Make init inherit all the child processes | |
749 | * B. Check to see if any process groups have become orphaned | |
750 | * as a result of our exiting, and if they have any stopped | |
751 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
752 | */ | |
762a24be | 753 | forget_original_parent(tsk); |
2e4a7072 | 754 | exit_task_namespaces(tsk); |
1da177e4 | 755 | |
762a24be | 756 | write_lock_irq(&tasklist_lock); |
821c7de7 ON |
757 | if (group_dead) |
758 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 759 | |
45cdf5cc ON |
760 | if (unlikely(tsk->ptrace)) { |
761 | int sig = thread_group_leader(tsk) && | |
762 | thread_group_empty(tsk) && | |
763 | !ptrace_reparented(tsk) ? | |
764 | tsk->exit_signal : SIGCHLD; | |
765 | autoreap = do_notify_parent(tsk, sig); | |
766 | } else if (thread_group_leader(tsk)) { | |
767 | autoreap = thread_group_empty(tsk) && | |
768 | do_notify_parent(tsk, tsk->exit_signal); | |
769 | } else { | |
770 | autoreap = true; | |
771 | } | |
1da177e4 | 772 | |
53c8f9f1 | 773 | tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE; |
1da177e4 | 774 | |
9c339168 ON |
775 | /* mt-exec, de_thread() is waiting for group leader */ |
776 | if (unlikely(tsk->signal->notify_count < 0)) | |
6db840fa | 777 | wake_up_process(tsk->signal->group_exit_task); |
1da177e4 LT |
778 | write_unlock_irq(&tasklist_lock); |
779 | ||
1da177e4 | 780 | /* If the process is dead, release it - nobody will wait for it */ |
53c8f9f1 | 781 | if (autoreap) |
1da177e4 | 782 | release_task(tsk); |
1da177e4 LT |
783 | } |
784 | ||
e18eecb8 JD |
785 | #ifdef CONFIG_DEBUG_STACK_USAGE |
786 | static void check_stack_usage(void) | |
787 | { | |
788 | static DEFINE_SPINLOCK(low_water_lock); | |
789 | static int lowest_to_date = THREAD_SIZE; | |
e18eecb8 JD |
790 | unsigned long free; |
791 | ||
7c9f8861 | 792 | free = stack_not_used(current); |
e18eecb8 JD |
793 | |
794 | if (free >= lowest_to_date) | |
795 | return; | |
796 | ||
797 | spin_lock(&low_water_lock); | |
798 | if (free < lowest_to_date) { | |
168eeccb TB |
799 | printk(KERN_WARNING "%s (%d) used greatest stack depth: " |
800 | "%lu bytes left\n", | |
801 | current->comm, task_pid_nr(current), free); | |
e18eecb8 JD |
802 | lowest_to_date = free; |
803 | } | |
804 | spin_unlock(&low_water_lock); | |
805 | } | |
806 | #else | |
807 | static inline void check_stack_usage(void) {} | |
808 | #endif | |
809 | ||
9402c95f | 810 | void do_exit(long code) |
1da177e4 LT |
811 | { |
812 | struct task_struct *tsk = current; | |
813 | int group_dead; | |
814 | ||
815 | profile_task_exit(tsk); | |
816 | ||
73c10101 | 817 | WARN_ON(blk_needs_flush_plug(tsk)); |
22e2c507 | 818 | |
1da177e4 LT |
819 | if (unlikely(in_interrupt())) |
820 | panic("Aiee, killing interrupt handler!"); | |
821 | if (unlikely(!tsk->pid)) | |
822 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 823 | |
33dd94ae NE |
824 | /* |
825 | * If do_exit is called because this processes oopsed, it's possible | |
826 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | |
827 | * continuing. Amongst other possible reasons, this is to prevent | |
828 | * mm_release()->clear_child_tid() from writing to a user-controlled | |
829 | * kernel address. | |
830 | */ | |
831 | set_fs(USER_DS); | |
832 | ||
a288eecc | 833 | ptrace_event(PTRACE_EVENT_EXIT, code); |
1da177e4 | 834 | |
e0e81739 DH |
835 | validate_creds_for_do_exit(tsk); |
836 | ||
df164db5 AN |
837 | /* |
838 | * We're taking recursive faults here in do_exit. Safest is to just | |
839 | * leave this task alone and wait for reboot. | |
840 | */ | |
841 | if (unlikely(tsk->flags & PF_EXITING)) { | |
842 | printk(KERN_ALERT | |
843 | "Fixing recursive fault but reboot is needed!\n"); | |
778e9a9c AK |
844 | /* |
845 | * We can do this unlocked here. The futex code uses | |
846 | * this flag just to verify whether the pi state | |
847 | * cleanup has been done or not. In the worst case it | |
848 | * loops once more. We pretend that the cleanup was | |
849 | * done as there is no way to return. Either the | |
850 | * OWNER_DIED bit is set by now or we push the blocked | |
851 | * task into the wait for ever nirwana as well. | |
852 | */ | |
853 | tsk->flags |= PF_EXITPIDONE; | |
df164db5 AN |
854 | set_current_state(TASK_UNINTERRUPTIBLE); |
855 | schedule(); | |
856 | } | |
857 | ||
d12619b5 | 858 | exit_signals(tsk); /* sets PF_EXITING */ |
778e9a9c AK |
859 | /* |
860 | * tsk->flags are checked in the futex code to protect against | |
ed3e694d | 861 | * an exiting task cleaning up the robust pi futexes. |
778e9a9c | 862 | */ |
d2ee7198 | 863 | smp_mb(); |
1d615482 | 864 | raw_spin_unlock_wait(&tsk->pi_lock); |
1da177e4 | 865 | |
1da177e4 LT |
866 | if (unlikely(in_atomic())) |
867 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | |
ba25f9dc | 868 | current->comm, task_pid_nr(current), |
1da177e4 LT |
869 | preempt_count()); |
870 | ||
871 | acct_update_integrals(tsk); | |
48d212a2 LT |
872 | /* sync mm's RSS info before statistics gathering */ |
873 | if (tsk->mm) | |
874 | sync_mm_rss(tsk->mm); | |
1da177e4 | 875 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 876 | if (group_dead) { |
778e9a9c | 877 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 878 | exit_itimers(tsk->signal); |
1f10206c JP |
879 | if (tsk->mm) |
880 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | |
c3068951 | 881 | } |
f6ec29a4 | 882 | acct_collect(code, group_dead); |
522ed776 MT |
883 | if (group_dead) |
884 | tty_audit_exit(); | |
a4ff8dba | 885 | audit_free(tsk); |
115085ea | 886 | |
48d212a2 | 887 | tsk->exit_code = code; |
115085ea | 888 | taskstats_exit(tsk, group_dead); |
c757249a | 889 | |
1da177e4 LT |
890 | exit_mm(tsk); |
891 | ||
0e464814 | 892 | if (group_dead) |
f6ec29a4 | 893 | acct_process(); |
0a16b607 MD |
894 | trace_sched_process_exit(tsk); |
895 | ||
1da177e4 | 896 | exit_sem(tsk); |
b34a6b1d | 897 | exit_shm(tsk); |
1ec7f1dd AV |
898 | exit_files(tsk); |
899 | exit_fs(tsk); | |
ed3e694d | 900 | exit_task_work(tsk); |
e18eecb8 | 901 | check_stack_usage(); |
1da177e4 | 902 | exit_thread(); |
0b3fcf17 SE |
903 | |
904 | /* | |
905 | * Flush inherited counters to the parent - before the parent | |
906 | * gets woken up by child-exit notifications. | |
907 | * | |
908 | * because of cgroup mode, must be called before cgroup_exit() | |
909 | */ | |
910 | perf_event_exit_task(tsk); | |
911 | ||
b4f48b63 | 912 | cgroup_exit(tsk, 1); |
1da177e4 | 913 | |
5ec93d11 | 914 | if (group_dead) |
1da177e4 LT |
915 | disassociate_ctty(1); |
916 | ||
a1261f54 | 917 | module_put(task_thread_info(tsk)->exec_domain->module); |
1da177e4 | 918 | |
9f46080c | 919 | proc_exit_connector(tsk); |
33b2fb30 | 920 | |
24f1e32c FW |
921 | /* |
922 | * FIXME: do that only when needed, using sched_exit tracepoint | |
923 | */ | |
bf26c018 | 924 | ptrace_put_breakpoints(tsk); |
33b2fb30 | 925 | |
821c7de7 | 926 | exit_notify(tsk, group_dead); |
1da177e4 | 927 | #ifdef CONFIG_NUMA |
c0ff7453 | 928 | task_lock(tsk); |
f0be3d32 | 929 | mpol_put(tsk->mempolicy); |
1da177e4 | 930 | tsk->mempolicy = NULL; |
c0ff7453 | 931 | task_unlock(tsk); |
1da177e4 | 932 | #endif |
42b2dd0a | 933 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
934 | if (unlikely(current->pi_state_cache)) |
935 | kfree(current->pi_state_cache); | |
42b2dd0a | 936 | #endif |
de5097c2 | 937 | /* |
9a11b49a | 938 | * Make sure we are holding no locks: |
de5097c2 | 939 | */ |
9a11b49a | 940 | debug_check_no_locks_held(tsk); |
778e9a9c AK |
941 | /* |
942 | * We can do this unlocked here. The futex code uses this flag | |
943 | * just to verify whether the pi state cleanup has been done | |
944 | * or not. In the worst case it loops once more. | |
945 | */ | |
946 | tsk->flags |= PF_EXITPIDONE; | |
1da177e4 | 947 | |
afc847b7 | 948 | if (tsk->io_context) |
b69f2292 | 949 | exit_io_context(tsk); |
afc847b7 | 950 | |
b92ce558 JA |
951 | if (tsk->splice_pipe) |
952 | __free_pipe_info(tsk->splice_pipe); | |
953 | ||
5640f768 ED |
954 | if (tsk->task_frag.page) |
955 | put_page(tsk->task_frag.page); | |
956 | ||
e0e81739 DH |
957 | validate_creds_for_do_exit(tsk); |
958 | ||
7407251a | 959 | preempt_disable(); |
54848d73 WF |
960 | if (tsk->nr_dirtied) |
961 | __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); | |
f41d911f | 962 | exit_rcu(); |
b5740f4b YG |
963 | |
964 | /* | |
965 | * The setting of TASK_RUNNING by try_to_wake_up() may be delayed | |
966 | * when the following two conditions become true. | |
967 | * - There is race condition of mmap_sem (It is acquired by | |
968 | * exit_mm()), and | |
969 | * - SMI occurs before setting TASK_RUNINNG. | |
970 | * (or hypervisor of virtual machine switches to other guest) | |
971 | * As a result, we may become TASK_RUNNING after becoming TASK_DEAD | |
972 | * | |
973 | * To avoid it, we have to wait for releasing tsk->pi_lock which | |
974 | * is held by try_to_wake_up() | |
975 | */ | |
976 | smp_mb(); | |
977 | raw_spin_unlock_wait(&tsk->pi_lock); | |
978 | ||
55a101f8 | 979 | /* causes final put_task_struct in finish_task_switch(). */ |
c394cc9f | 980 | tsk->state = TASK_DEAD; |
a585042f | 981 | tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */ |
1da177e4 LT |
982 | schedule(); |
983 | BUG(); | |
984 | /* Avoid "noreturn function does return". */ | |
54306cf0 AC |
985 | for (;;) |
986 | cpu_relax(); /* For when BUG is null */ | |
1da177e4 LT |
987 | } |
988 | ||
012914da RA |
989 | EXPORT_SYMBOL_GPL(do_exit); |
990 | ||
9402c95f | 991 | void complete_and_exit(struct completion *comp, long code) |
1da177e4 LT |
992 | { |
993 | if (comp) | |
994 | complete(comp); | |
55a101f8 | 995 | |
1da177e4 LT |
996 | do_exit(code); |
997 | } | |
998 | ||
999 | EXPORT_SYMBOL(complete_and_exit); | |
1000 | ||
754fe8d2 | 1001 | SYSCALL_DEFINE1(exit, int, error_code) |
1da177e4 LT |
1002 | { |
1003 | do_exit((error_code&0xff)<<8); | |
1004 | } | |
1005 | ||
1da177e4 LT |
1006 | /* |
1007 | * Take down every thread in the group. This is called by fatal signals | |
1008 | * as well as by sys_exit_group (below). | |
1009 | */ | |
9402c95f | 1010 | void |
1da177e4 LT |
1011 | do_group_exit(int exit_code) |
1012 | { | |
bfc4b089 ON |
1013 | struct signal_struct *sig = current->signal; |
1014 | ||
1da177e4 LT |
1015 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
1016 | ||
bfc4b089 ON |
1017 | if (signal_group_exit(sig)) |
1018 | exit_code = sig->group_exit_code; | |
1da177e4 | 1019 | else if (!thread_group_empty(current)) { |
1da177e4 | 1020 | struct sighand_struct *const sighand = current->sighand; |
1da177e4 | 1021 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 1022 | if (signal_group_exit(sig)) |
1da177e4 LT |
1023 | /* Another thread got here before we took the lock. */ |
1024 | exit_code = sig->group_exit_code; | |
1025 | else { | |
1da177e4 | 1026 | sig->group_exit_code = exit_code; |
ed5d2cac | 1027 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
1028 | zap_other_threads(current); |
1029 | } | |
1030 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
1031 | } |
1032 | ||
1033 | do_exit(exit_code); | |
1034 | /* NOTREACHED */ | |
1035 | } | |
1036 | ||
1037 | /* | |
1038 | * this kills every thread in the thread group. Note that any externally | |
1039 | * wait4()-ing process will get the correct exit code - even if this | |
1040 | * thread is not the thread group leader. | |
1041 | */ | |
754fe8d2 | 1042 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1da177e4 LT |
1043 | { |
1044 | do_group_exit((error_code & 0xff) << 8); | |
2ed7c03e HC |
1045 | /* NOTREACHED */ |
1046 | return 0; | |
1da177e4 LT |
1047 | } |
1048 | ||
9e8ae01d ON |
1049 | struct wait_opts { |
1050 | enum pid_type wo_type; | |
9e8ae01d | 1051 | int wo_flags; |
e1eb1ebc | 1052 | struct pid *wo_pid; |
9e8ae01d ON |
1053 | |
1054 | struct siginfo __user *wo_info; | |
1055 | int __user *wo_stat; | |
1056 | struct rusage __user *wo_rusage; | |
1057 | ||
0b7570e7 | 1058 | wait_queue_t child_wait; |
9e8ae01d ON |
1059 | int notask_error; |
1060 | }; | |
1061 | ||
989264f4 ON |
1062 | static inline |
1063 | struct pid *task_pid_type(struct task_struct *task, enum pid_type type) | |
161550d7 | 1064 | { |
989264f4 ON |
1065 | if (type != PIDTYPE_PID) |
1066 | task = task->group_leader; | |
1067 | return task->pids[type].pid; | |
161550d7 EB |
1068 | } |
1069 | ||
989264f4 | 1070 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 1071 | { |
5c01ba49 ON |
1072 | return wo->wo_type == PIDTYPE_MAX || |
1073 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
1074 | } | |
1da177e4 | 1075 | |
5c01ba49 ON |
1076 | static int eligible_child(struct wait_opts *wo, struct task_struct *p) |
1077 | { | |
1078 | if (!eligible_pid(wo, p)) | |
1079 | return 0; | |
1da177e4 LT |
1080 | /* Wait for all children (clone and not) if __WALL is set; |
1081 | * otherwise, wait for clone children *only* if __WCLONE is | |
1082 | * set; otherwise, wait for non-clone children *only*. (Note: | |
1083 | * A "clone" child here is one that reports to its parent | |
1084 | * using a signal other than SIGCHLD.) */ | |
9e8ae01d ON |
1085 | if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) |
1086 | && !(wo->wo_flags & __WALL)) | |
1da177e4 | 1087 | return 0; |
1da177e4 | 1088 | |
14dd0b81 | 1089 | return 1; |
1da177e4 LT |
1090 | } |
1091 | ||
9e8ae01d ON |
1092 | static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p, |
1093 | pid_t pid, uid_t uid, int why, int status) | |
1da177e4 | 1094 | { |
9e8ae01d ON |
1095 | struct siginfo __user *infop; |
1096 | int retval = wo->wo_rusage | |
1097 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
36c8b586 | 1098 | |
1da177e4 | 1099 | put_task_struct(p); |
9e8ae01d | 1100 | infop = wo->wo_info; |
b6fe2d11 VM |
1101 | if (infop) { |
1102 | if (!retval) | |
1103 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1104 | if (!retval) | |
1105 | retval = put_user(0, &infop->si_errno); | |
1106 | if (!retval) | |
1107 | retval = put_user((short)why, &infop->si_code); | |
1108 | if (!retval) | |
1109 | retval = put_user(pid, &infop->si_pid); | |
1110 | if (!retval) | |
1111 | retval = put_user(uid, &infop->si_uid); | |
1112 | if (!retval) | |
1113 | retval = put_user(status, &infop->si_status); | |
1114 | } | |
1da177e4 LT |
1115 | if (!retval) |
1116 | retval = pid; | |
1117 | return retval; | |
1118 | } | |
1119 | ||
1120 | /* | |
1121 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
1122 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1123 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1124 | * released the lock and the system call should return. | |
1125 | */ | |
9e8ae01d | 1126 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1da177e4 LT |
1127 | { |
1128 | unsigned long state; | |
2f4e6e2a | 1129 | int retval, status, traced; |
6c5f3e7b | 1130 | pid_t pid = task_pid_vnr(p); |
43e13cc1 | 1131 | uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
9e8ae01d | 1132 | struct siginfo __user *infop; |
1da177e4 | 1133 | |
9e8ae01d | 1134 | if (!likely(wo->wo_flags & WEXITED)) |
98abed02 RM |
1135 | return 0; |
1136 | ||
9e8ae01d | 1137 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
1da177e4 | 1138 | int exit_code = p->exit_code; |
f3abd4f9 | 1139 | int why; |
1da177e4 | 1140 | |
1da177e4 LT |
1141 | get_task_struct(p); |
1142 | read_unlock(&tasklist_lock); | |
1143 | if ((exit_code & 0x7f) == 0) { | |
1144 | why = CLD_EXITED; | |
1145 | status = exit_code >> 8; | |
1146 | } else { | |
1147 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1148 | status = exit_code & 0x7f; | |
1149 | } | |
9e8ae01d | 1150 | return wait_noreap_copyout(wo, p, pid, uid, why, status); |
1da177e4 LT |
1151 | } |
1152 | ||
1153 | /* | |
1154 | * Try to move the task's state to DEAD | |
1155 | * only one thread is allowed to do this: | |
1156 | */ | |
1157 | state = xchg(&p->exit_state, EXIT_DEAD); | |
1158 | if (state != EXIT_ZOMBIE) { | |
1159 | BUG_ON(state != EXIT_DEAD); | |
1160 | return 0; | |
1161 | } | |
1da177e4 | 1162 | |
53b6f9fb | 1163 | traced = ptrace_reparented(p); |
befca967 ON |
1164 | /* |
1165 | * It can be ptraced but not reparented, check | |
e550f14d | 1166 | * thread_group_leader() to filter out sub-threads. |
befca967 | 1167 | */ |
e550f14d | 1168 | if (likely(!traced) && thread_group_leader(p)) { |
3795e161 JJ |
1169 | struct signal_struct *psig; |
1170 | struct signal_struct *sig; | |
1f10206c | 1171 | unsigned long maxrss; |
0cf55e1e | 1172 | cputime_t tgutime, tgstime; |
3795e161 | 1173 | |
1da177e4 LT |
1174 | /* |
1175 | * The resource counters for the group leader are in its | |
1176 | * own task_struct. Those for dead threads in the group | |
1177 | * are in its signal_struct, as are those for the child | |
1178 | * processes it has previously reaped. All these | |
1179 | * accumulate in the parent's signal_struct c* fields. | |
1180 | * | |
1181 | * We don't bother to take a lock here to protect these | |
1182 | * p->signal fields, because they are only touched by | |
1183 | * __exit_signal, which runs with tasklist_lock | |
1184 | * write-locked anyway, and so is excluded here. We do | |
d1e98f42 | 1185 | * need to protect the access to parent->signal fields, |
1da177e4 LT |
1186 | * as other threads in the parent group can be right |
1187 | * here reaping other children at the same time. | |
0cf55e1e HS |
1188 | * |
1189 | * We use thread_group_times() to get times for the thread | |
1190 | * group, which consolidates times for all threads in the | |
1191 | * group including the group leader. | |
1da177e4 | 1192 | */ |
0cf55e1e | 1193 | thread_group_times(p, &tgutime, &tgstime); |
d1e98f42 ON |
1194 | spin_lock_irq(&p->real_parent->sighand->siglock); |
1195 | psig = p->real_parent->signal; | |
3795e161 | 1196 | sig = p->signal; |
64861634 MS |
1197 | psig->cutime += tgutime + sig->cutime; |
1198 | psig->cstime += tgstime + sig->cstime; | |
1199 | psig->cgtime += p->gtime + sig->gtime + sig->cgtime; | |
3795e161 JJ |
1200 | psig->cmin_flt += |
1201 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1202 | psig->cmaj_flt += | |
1203 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1204 | psig->cnvcsw += | |
1205 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1206 | psig->cnivcsw += | |
1207 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1208 | psig->cinblock += |
1209 | task_io_get_inblock(p) + | |
1210 | sig->inblock + sig->cinblock; | |
1211 | psig->coublock += | |
1212 | task_io_get_oublock(p) + | |
1213 | sig->oublock + sig->coublock; | |
1f10206c JP |
1214 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1215 | if (psig->cmaxrss < maxrss) | |
1216 | psig->cmaxrss = maxrss; | |
5995477a AR |
1217 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1218 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
d1e98f42 | 1219 | spin_unlock_irq(&p->real_parent->sighand->siglock); |
1da177e4 LT |
1220 | } |
1221 | ||
1222 | /* | |
1223 | * Now we are sure this task is interesting, and no other | |
1224 | * thread can reap it because we set its state to EXIT_DEAD. | |
1225 | */ | |
1226 | read_unlock(&tasklist_lock); | |
1227 | ||
9e8ae01d ON |
1228 | retval = wo->wo_rusage |
1229 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 LT |
1230 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1231 | ? p->signal->group_exit_code : p->exit_code; | |
9e8ae01d ON |
1232 | if (!retval && wo->wo_stat) |
1233 | retval = put_user(status, wo->wo_stat); | |
1234 | ||
1235 | infop = wo->wo_info; | |
1da177e4 LT |
1236 | if (!retval && infop) |
1237 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1238 | if (!retval && infop) | |
1239 | retval = put_user(0, &infop->si_errno); | |
1240 | if (!retval && infop) { | |
1241 | int why; | |
1242 | ||
1243 | if ((status & 0x7f) == 0) { | |
1244 | why = CLD_EXITED; | |
1245 | status >>= 8; | |
1246 | } else { | |
1247 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1248 | status &= 0x7f; | |
1249 | } | |
1250 | retval = put_user((short)why, &infop->si_code); | |
1251 | if (!retval) | |
1252 | retval = put_user(status, &infop->si_status); | |
1253 | } | |
1254 | if (!retval && infop) | |
3a515e4a | 1255 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1256 | if (!retval && infop) |
c69e8d9c | 1257 | retval = put_user(uid, &infop->si_uid); |
2f4e6e2a | 1258 | if (!retval) |
3a515e4a | 1259 | retval = pid; |
2f4e6e2a ON |
1260 | |
1261 | if (traced) { | |
1da177e4 | 1262 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1263 | /* We dropped tasklist, ptracer could die and untrace */ |
1264 | ptrace_unlink(p); | |
1265 | /* | |
86773473 ON |
1266 | * If this is not a sub-thread, notify the parent. |
1267 | * If parent wants a zombie, don't release it now. | |
2f4e6e2a | 1268 | */ |
86773473 ON |
1269 | if (thread_group_leader(p) && |
1270 | !do_notify_parent(p, p->exit_signal)) { | |
1271 | p->exit_state = EXIT_ZOMBIE; | |
1272 | p = NULL; | |
1da177e4 LT |
1273 | } |
1274 | write_unlock_irq(&tasklist_lock); | |
1275 | } | |
1276 | if (p != NULL) | |
1277 | release_task(p); | |
2f4e6e2a | 1278 | |
1da177e4 LT |
1279 | return retval; |
1280 | } | |
1281 | ||
90bc8d8b ON |
1282 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1283 | { | |
1284 | if (ptrace) { | |
544b2c91 TH |
1285 | if (task_is_stopped_or_traced(p) && |
1286 | !(p->jobctl & JOBCTL_LISTENING)) | |
90bc8d8b ON |
1287 | return &p->exit_code; |
1288 | } else { | |
1289 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | |
1290 | return &p->signal->group_exit_code; | |
1291 | } | |
1292 | return NULL; | |
1293 | } | |
1294 | ||
19e27463 TH |
1295 | /** |
1296 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | |
1297 | * @wo: wait options | |
1298 | * @ptrace: is the wait for ptrace | |
1299 | * @p: task to wait for | |
1300 | * | |
1301 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | |
1302 | * | |
1303 | * CONTEXT: | |
1304 | * read_lock(&tasklist_lock), which is released if return value is | |
1305 | * non-zero. Also, grabs and releases @p->sighand->siglock. | |
1306 | * | |
1307 | * RETURNS: | |
1308 | * 0 if wait condition didn't exist and search for other wait conditions | |
1309 | * should continue. Non-zero return, -errno on failure and @p's pid on | |
1310 | * success, implies that tasklist_lock is released and wait condition | |
1311 | * search should terminate. | |
1da177e4 | 1312 | */ |
9e8ae01d ON |
1313 | static int wait_task_stopped(struct wait_opts *wo, |
1314 | int ptrace, struct task_struct *p) | |
1da177e4 | 1315 | { |
9e8ae01d | 1316 | struct siginfo __user *infop; |
90bc8d8b | 1317 | int retval, exit_code, *p_code, why; |
ee7c82da | 1318 | uid_t uid = 0; /* unneeded, required by compiler */ |
c8950783 | 1319 | pid_t pid; |
1da177e4 | 1320 | |
47918025 ON |
1321 | /* |
1322 | * Traditionally we see ptrace'd stopped tasks regardless of options. | |
1323 | */ | |
9e8ae01d | 1324 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
98abed02 RM |
1325 | return 0; |
1326 | ||
19e27463 TH |
1327 | if (!task_stopped_code(p, ptrace)) |
1328 | return 0; | |
1329 | ||
ee7c82da ON |
1330 | exit_code = 0; |
1331 | spin_lock_irq(&p->sighand->siglock); | |
1332 | ||
90bc8d8b ON |
1333 | p_code = task_stopped_code(p, ptrace); |
1334 | if (unlikely(!p_code)) | |
ee7c82da ON |
1335 | goto unlock_sig; |
1336 | ||
90bc8d8b | 1337 | exit_code = *p_code; |
ee7c82da ON |
1338 | if (!exit_code) |
1339 | goto unlock_sig; | |
1340 | ||
9e8ae01d | 1341 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
90bc8d8b | 1342 | *p_code = 0; |
ee7c82da | 1343 | |
8ca937a6 | 1344 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
ee7c82da ON |
1345 | unlock_sig: |
1346 | spin_unlock_irq(&p->sighand->siglock); | |
1347 | if (!exit_code) | |
1da177e4 LT |
1348 | return 0; |
1349 | ||
1350 | /* | |
1351 | * Now we are pretty sure this task is interesting. | |
1352 | * Make sure it doesn't get reaped out from under us while we | |
1353 | * give up the lock and then examine it below. We don't want to | |
1354 | * keep holding onto the tasklist_lock while we call getrusage and | |
1355 | * possibly take page faults for user memory. | |
1356 | */ | |
1357 | get_task_struct(p); | |
6c5f3e7b | 1358 | pid = task_pid_vnr(p); |
f470021a | 1359 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 LT |
1360 | read_unlock(&tasklist_lock); |
1361 | ||
9e8ae01d ON |
1362 | if (unlikely(wo->wo_flags & WNOWAIT)) |
1363 | return wait_noreap_copyout(wo, p, pid, uid, why, exit_code); | |
1364 | ||
1365 | retval = wo->wo_rusage | |
1366 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1367 | if (!retval && wo->wo_stat) | |
1368 | retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat); | |
1da177e4 | 1369 | |
9e8ae01d | 1370 | infop = wo->wo_info; |
1da177e4 LT |
1371 | if (!retval && infop) |
1372 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1373 | if (!retval && infop) | |
1374 | retval = put_user(0, &infop->si_errno); | |
1375 | if (!retval && infop) | |
6efcae46 | 1376 | retval = put_user((short)why, &infop->si_code); |
1da177e4 LT |
1377 | if (!retval && infop) |
1378 | retval = put_user(exit_code, &infop->si_status); | |
1379 | if (!retval && infop) | |
c8950783 | 1380 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1381 | if (!retval && infop) |
ee7c82da | 1382 | retval = put_user(uid, &infop->si_uid); |
1da177e4 | 1383 | if (!retval) |
c8950783 | 1384 | retval = pid; |
1da177e4 LT |
1385 | put_task_struct(p); |
1386 | ||
1387 | BUG_ON(!retval); | |
1388 | return retval; | |
1389 | } | |
1390 | ||
1391 | /* | |
1392 | * Handle do_wait work for one task in a live, non-stopped state. | |
1393 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1394 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1395 | * released the lock and the system call should return. | |
1396 | */ | |
9e8ae01d | 1397 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1da177e4 LT |
1398 | { |
1399 | int retval; | |
1400 | pid_t pid; | |
1401 | uid_t uid; | |
1402 | ||
9e8ae01d | 1403 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
98abed02 RM |
1404 | return 0; |
1405 | ||
1da177e4 LT |
1406 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1407 | return 0; | |
1408 | ||
1409 | spin_lock_irq(&p->sighand->siglock); | |
1410 | /* Re-check with the lock held. */ | |
1411 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1412 | spin_unlock_irq(&p->sighand->siglock); | |
1413 | return 0; | |
1414 | } | |
9e8ae01d | 1415 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1da177e4 | 1416 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
8ca937a6 | 1417 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
1da177e4 LT |
1418 | spin_unlock_irq(&p->sighand->siglock); |
1419 | ||
6c5f3e7b | 1420 | pid = task_pid_vnr(p); |
1da177e4 LT |
1421 | get_task_struct(p); |
1422 | read_unlock(&tasklist_lock); | |
1423 | ||
9e8ae01d ON |
1424 | if (!wo->wo_info) { |
1425 | retval = wo->wo_rusage | |
1426 | ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0; | |
1da177e4 | 1427 | put_task_struct(p); |
9e8ae01d ON |
1428 | if (!retval && wo->wo_stat) |
1429 | retval = put_user(0xffff, wo->wo_stat); | |
1da177e4 | 1430 | if (!retval) |
3a515e4a | 1431 | retval = pid; |
1da177e4 | 1432 | } else { |
9e8ae01d ON |
1433 | retval = wait_noreap_copyout(wo, p, pid, uid, |
1434 | CLD_CONTINUED, SIGCONT); | |
1da177e4 LT |
1435 | BUG_ON(retval == 0); |
1436 | } | |
1437 | ||
1438 | return retval; | |
1439 | } | |
1440 | ||
98abed02 RM |
1441 | /* |
1442 | * Consider @p for a wait by @parent. | |
1443 | * | |
9e8ae01d | 1444 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1445 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1446 | * Returns zero if the search for a child should continue; | |
9e8ae01d | 1447 | * then ->notask_error is 0 if @p is an eligible child, |
14dd0b81 | 1448 | * or another error from security_task_wait(), or still -ECHILD. |
98abed02 | 1449 | */ |
b6e763f0 ON |
1450 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1451 | struct task_struct *p) | |
98abed02 | 1452 | { |
9e8ae01d | 1453 | int ret = eligible_child(wo, p); |
14dd0b81 | 1454 | if (!ret) |
98abed02 RM |
1455 | return ret; |
1456 | ||
a2322e1d | 1457 | ret = security_task_wait(p); |
14dd0b81 RM |
1458 | if (unlikely(ret < 0)) { |
1459 | /* | |
1460 | * If we have not yet seen any eligible child, | |
1461 | * then let this error code replace -ECHILD. | |
1462 | * A permission error will give the user a clue | |
1463 | * to look for security policy problems, rather | |
1464 | * than for mysterious wait bugs. | |
1465 | */ | |
9e8ae01d ON |
1466 | if (wo->notask_error) |
1467 | wo->notask_error = ret; | |
78a3d9d5 | 1468 | return 0; |
14dd0b81 RM |
1469 | } |
1470 | ||
823b018e | 1471 | /* dead body doesn't have much to contribute */ |
50b8d257 ON |
1472 | if (unlikely(p->exit_state == EXIT_DEAD)) { |
1473 | /* | |
1474 | * But do not ignore this task until the tracer does | |
1475 | * wait_task_zombie()->do_notify_parent(). | |
1476 | */ | |
1477 | if (likely(!ptrace) && unlikely(ptrace_reparented(p))) | |
1478 | wo->notask_error = 0; | |
823b018e | 1479 | return 0; |
50b8d257 | 1480 | } |
823b018e | 1481 | |
45cb24a1 TH |
1482 | /* slay zombie? */ |
1483 | if (p->exit_state == EXIT_ZOMBIE) { | |
f470021a | 1484 | /* |
45cb24a1 TH |
1485 | * A zombie ptracee is only visible to its ptracer. |
1486 | * Notification and reaping will be cascaded to the real | |
1487 | * parent when the ptracer detaches. | |
f470021a | 1488 | */ |
d21142ec | 1489 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
45cb24a1 TH |
1490 | /* it will become visible, clear notask_error */ |
1491 | wo->notask_error = 0; | |
1492 | return 0; | |
1493 | } | |
f470021a | 1494 | |
9b84cca2 TH |
1495 | /* we don't reap group leaders with subthreads */ |
1496 | if (!delay_group_leader(p)) | |
1497 | return wait_task_zombie(wo, p); | |
98abed02 | 1498 | |
f470021a | 1499 | /* |
9b84cca2 TH |
1500 | * Allow access to stopped/continued state via zombie by |
1501 | * falling through. Clearing of notask_error is complex. | |
1502 | * | |
1503 | * When !@ptrace: | |
1504 | * | |
1505 | * If WEXITED is set, notask_error should naturally be | |
1506 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | |
1507 | * so, if there are live subthreads, there are events to | |
1508 | * wait for. If all subthreads are dead, it's still safe | |
1509 | * to clear - this function will be called again in finite | |
1510 | * amount time once all the subthreads are released and | |
1511 | * will then return without clearing. | |
1512 | * | |
1513 | * When @ptrace: | |
1514 | * | |
1515 | * Stopped state is per-task and thus can't change once the | |
1516 | * target task dies. Only continued and exited can happen. | |
1517 | * Clear notask_error if WCONTINUED | WEXITED. | |
1518 | */ | |
1519 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | |
1520 | wo->notask_error = 0; | |
1521 | } else { | |
45cb24a1 TH |
1522 | /* |
1523 | * If @p is ptraced by a task in its real parent's group, | |
1524 | * hide group stop/continued state when looking at @p as | |
1525 | * the real parent; otherwise, a single stop can be | |
1526 | * reported twice as group and ptrace stops. | |
1527 | * | |
1528 | * If a ptracer wants to distinguish the two events for its | |
1529 | * own children, it should create a separate process which | |
1530 | * takes the role of real parent. | |
1531 | */ | |
479bf98c | 1532 | if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p)) |
45cb24a1 TH |
1533 | return 0; |
1534 | ||
9b84cca2 TH |
1535 | /* |
1536 | * @p is alive and it's gonna stop, continue or exit, so | |
1537 | * there always is something to wait for. | |
f470021a | 1538 | */ |
9e8ae01d | 1539 | wo->notask_error = 0; |
f470021a RM |
1540 | } |
1541 | ||
98abed02 | 1542 | /* |
45cb24a1 TH |
1543 | * Wait for stopped. Depending on @ptrace, different stopped state |
1544 | * is used and the two don't interact with each other. | |
98abed02 | 1545 | */ |
19e27463 TH |
1546 | ret = wait_task_stopped(wo, ptrace, p); |
1547 | if (ret) | |
1548 | return ret; | |
98abed02 RM |
1549 | |
1550 | /* | |
45cb24a1 TH |
1551 | * Wait for continued. There's only one continued state and the |
1552 | * ptracer can consume it which can confuse the real parent. Don't | |
1553 | * use WCONTINUED from ptracer. You don't need or want it. | |
98abed02 | 1554 | */ |
9e8ae01d | 1555 | return wait_task_continued(wo, p); |
98abed02 RM |
1556 | } |
1557 | ||
1558 | /* | |
1559 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1560 | * | |
9e8ae01d | 1561 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1562 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1563 | * Returns zero if the search for a child should continue; then | |
9e8ae01d | 1564 | * ->notask_error is 0 if there were any eligible children, |
14dd0b81 | 1565 | * or another error from security_task_wait(), or still -ECHILD. |
98abed02 | 1566 | */ |
9e8ae01d | 1567 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1568 | { |
1569 | struct task_struct *p; | |
1570 | ||
1571 | list_for_each_entry(p, &tsk->children, sibling) { | |
9cd80bbb ON |
1572 | int ret = wait_consider_task(wo, 0, p); |
1573 | if (ret) | |
1574 | return ret; | |
98abed02 RM |
1575 | } |
1576 | ||
1577 | return 0; | |
1578 | } | |
1579 | ||
9e8ae01d | 1580 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1581 | { |
1582 | struct task_struct *p; | |
1583 | ||
f470021a | 1584 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
b6e763f0 | 1585 | int ret = wait_consider_task(wo, 1, p); |
f470021a | 1586 | if (ret) |
98abed02 | 1587 | return ret; |
98abed02 RM |
1588 | } |
1589 | ||
1590 | return 0; | |
1591 | } | |
1592 | ||
0b7570e7 ON |
1593 | static int child_wait_callback(wait_queue_t *wait, unsigned mode, |
1594 | int sync, void *key) | |
1595 | { | |
1596 | struct wait_opts *wo = container_of(wait, struct wait_opts, | |
1597 | child_wait); | |
1598 | struct task_struct *p = key; | |
1599 | ||
5c01ba49 | 1600 | if (!eligible_pid(wo, p)) |
0b7570e7 ON |
1601 | return 0; |
1602 | ||
b4fe5182 ON |
1603 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1604 | return 0; | |
1605 | ||
0b7570e7 ON |
1606 | return default_wake_function(wait, mode, sync, key); |
1607 | } | |
1608 | ||
a7f0765e ON |
1609 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1610 | { | |
0b7570e7 ON |
1611 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
1612 | TASK_INTERRUPTIBLE, 1, p); | |
a7f0765e ON |
1613 | } |
1614 | ||
9e8ae01d | 1615 | static long do_wait(struct wait_opts *wo) |
1da177e4 | 1616 | { |
1da177e4 | 1617 | struct task_struct *tsk; |
98abed02 | 1618 | int retval; |
1da177e4 | 1619 | |
9e8ae01d | 1620 | trace_sched_process_wait(wo->wo_pid); |
0a16b607 | 1621 | |
0b7570e7 ON |
1622 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1623 | wo->child_wait.private = current; | |
1624 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | |
1da177e4 | 1625 | repeat: |
98abed02 RM |
1626 | /* |
1627 | * If there is nothing that can match our critiera just get out. | |
9e8ae01d ON |
1628 | * We will clear ->notask_error to zero if we see any child that |
1629 | * might later match our criteria, even if we are not able to reap | |
1630 | * it yet. | |
98abed02 | 1631 | */ |
64a16caf | 1632 | wo->notask_error = -ECHILD; |
9e8ae01d ON |
1633 | if ((wo->wo_type < PIDTYPE_MAX) && |
1634 | (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type]))) | |
64a16caf | 1635 | goto notask; |
161550d7 | 1636 | |
f95d39d1 | 1637 | set_current_state(TASK_INTERRUPTIBLE); |
1da177e4 LT |
1638 | read_lock(&tasklist_lock); |
1639 | tsk = current; | |
1640 | do { | |
64a16caf ON |
1641 | retval = do_wait_thread(wo, tsk); |
1642 | if (retval) | |
1643 | goto end; | |
9e8ae01d | 1644 | |
64a16caf ON |
1645 | retval = ptrace_do_wait(wo, tsk); |
1646 | if (retval) | |
98abed02 | 1647 | goto end; |
98abed02 | 1648 | |
9e8ae01d | 1649 | if (wo->wo_flags & __WNOTHREAD) |
1da177e4 | 1650 | break; |
a3f6dfb7 | 1651 | } while_each_thread(current, tsk); |
1da177e4 | 1652 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1653 | |
64a16caf | 1654 | notask: |
9e8ae01d ON |
1655 | retval = wo->notask_error; |
1656 | if (!retval && !(wo->wo_flags & WNOHANG)) { | |
1da177e4 | 1657 | retval = -ERESTARTSYS; |
98abed02 RM |
1658 | if (!signal_pending(current)) { |
1659 | schedule(); | |
1660 | goto repeat; | |
1661 | } | |
1da177e4 | 1662 | } |
1da177e4 | 1663 | end: |
f95d39d1 | 1664 | __set_current_state(TASK_RUNNING); |
0b7570e7 | 1665 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1da177e4 LT |
1666 | return retval; |
1667 | } | |
1668 | ||
17da2bd9 HC |
1669 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1670 | infop, int, options, struct rusage __user *, ru) | |
1da177e4 | 1671 | { |
9e8ae01d | 1672 | struct wait_opts wo; |
161550d7 EB |
1673 | struct pid *pid = NULL; |
1674 | enum pid_type type; | |
1da177e4 LT |
1675 | long ret; |
1676 | ||
1677 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | |
1678 | return -EINVAL; | |
1679 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1680 | return -EINVAL; | |
1681 | ||
1682 | switch (which) { | |
1683 | case P_ALL: | |
161550d7 | 1684 | type = PIDTYPE_MAX; |
1da177e4 LT |
1685 | break; |
1686 | case P_PID: | |
161550d7 EB |
1687 | type = PIDTYPE_PID; |
1688 | if (upid <= 0) | |
1da177e4 LT |
1689 | return -EINVAL; |
1690 | break; | |
1691 | case P_PGID: | |
161550d7 EB |
1692 | type = PIDTYPE_PGID; |
1693 | if (upid <= 0) | |
1da177e4 | 1694 | return -EINVAL; |
1da177e4 LT |
1695 | break; |
1696 | default: | |
1697 | return -EINVAL; | |
1698 | } | |
1699 | ||
161550d7 EB |
1700 | if (type < PIDTYPE_MAX) |
1701 | pid = find_get_pid(upid); | |
9e8ae01d ON |
1702 | |
1703 | wo.wo_type = type; | |
1704 | wo.wo_pid = pid; | |
1705 | wo.wo_flags = options; | |
1706 | wo.wo_info = infop; | |
1707 | wo.wo_stat = NULL; | |
1708 | wo.wo_rusage = ru; | |
1709 | ret = do_wait(&wo); | |
dfe16dfa VM |
1710 | |
1711 | if (ret > 0) { | |
1712 | ret = 0; | |
1713 | } else if (infop) { | |
1714 | /* | |
1715 | * For a WNOHANG return, clear out all the fields | |
1716 | * we would set so the user can easily tell the | |
1717 | * difference. | |
1718 | */ | |
1719 | if (!ret) | |
1720 | ret = put_user(0, &infop->si_signo); | |
1721 | if (!ret) | |
1722 | ret = put_user(0, &infop->si_errno); | |
1723 | if (!ret) | |
1724 | ret = put_user(0, &infop->si_code); | |
1725 | if (!ret) | |
1726 | ret = put_user(0, &infop->si_pid); | |
1727 | if (!ret) | |
1728 | ret = put_user(0, &infop->si_uid); | |
1729 | if (!ret) | |
1730 | ret = put_user(0, &infop->si_status); | |
1731 | } | |
1732 | ||
161550d7 | 1733 | put_pid(pid); |
1da177e4 LT |
1734 | |
1735 | /* avoid REGPARM breakage on x86: */ | |
54a01510 | 1736 | asmlinkage_protect(5, ret, which, upid, infop, options, ru); |
1da177e4 LT |
1737 | return ret; |
1738 | } | |
1739 | ||
754fe8d2 HC |
1740 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1741 | int, options, struct rusage __user *, ru) | |
1da177e4 | 1742 | { |
9e8ae01d | 1743 | struct wait_opts wo; |
161550d7 EB |
1744 | struct pid *pid = NULL; |
1745 | enum pid_type type; | |
1da177e4 LT |
1746 | long ret; |
1747 | ||
1748 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1749 | __WNOTHREAD|__WCLONE|__WALL)) | |
1750 | return -EINVAL; | |
161550d7 EB |
1751 | |
1752 | if (upid == -1) | |
1753 | type = PIDTYPE_MAX; | |
1754 | else if (upid < 0) { | |
1755 | type = PIDTYPE_PGID; | |
1756 | pid = find_get_pid(-upid); | |
1757 | } else if (upid == 0) { | |
1758 | type = PIDTYPE_PGID; | |
2ae448ef | 1759 | pid = get_task_pid(current, PIDTYPE_PGID); |
161550d7 EB |
1760 | } else /* upid > 0 */ { |
1761 | type = PIDTYPE_PID; | |
1762 | pid = find_get_pid(upid); | |
1763 | } | |
1764 | ||
9e8ae01d ON |
1765 | wo.wo_type = type; |
1766 | wo.wo_pid = pid; | |
1767 | wo.wo_flags = options | WEXITED; | |
1768 | wo.wo_info = NULL; | |
1769 | wo.wo_stat = stat_addr; | |
1770 | wo.wo_rusage = ru; | |
1771 | ret = do_wait(&wo); | |
161550d7 | 1772 | put_pid(pid); |
1da177e4 LT |
1773 | |
1774 | /* avoid REGPARM breakage on x86: */ | |
54a01510 | 1775 | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); |
1da177e4 LT |
1776 | return ret; |
1777 | } | |
1778 | ||
1779 | #ifdef __ARCH_WANT_SYS_WAITPID | |
1780 | ||
1781 | /* | |
1782 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1783 | * implemented by calling sys_wait4() from libc.a. | |
1784 | */ | |
17da2bd9 | 1785 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1da177e4 LT |
1786 | { |
1787 | return sys_wait4(pid, stat_addr, options, NULL); | |
1788 | } | |
1789 | ||
1790 | #endif |