]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
7 | #include <linux/config.h> | |
8 | #include <linux/mm.h> | |
9 | #include <linux/slab.h> | |
10 | #include <linux/interrupt.h> | |
11 | #include <linux/smp_lock.h> | |
12 | #include <linux/module.h> | |
c59ede7b | 13 | #include <linux/capability.h> |
1da177e4 LT |
14 | #include <linux/completion.h> |
15 | #include <linux/personality.h> | |
16 | #include <linux/tty.h> | |
17 | #include <linux/namespace.h> | |
18 | #include <linux/key.h> | |
19 | #include <linux/security.h> | |
20 | #include <linux/cpu.h> | |
21 | #include <linux/acct.h> | |
22 | #include <linux/file.h> | |
23 | #include <linux/binfmts.h> | |
24 | #include <linux/ptrace.h> | |
25 | #include <linux/profile.h> | |
26 | #include <linux/mount.h> | |
27 | #include <linux/proc_fs.h> | |
28 | #include <linux/mempolicy.h> | |
29 | #include <linux/cpuset.h> | |
30 | #include <linux/syscalls.h> | |
7ed20e1a | 31 | #include <linux/signal.h> |
6a14c5c9 | 32 | #include <linux/posix-timers.h> |
9f46080c | 33 | #include <linux/cn_proc.h> |
de5097c2 | 34 | #include <linux/mutex.h> |
0771dfef | 35 | #include <linux/futex.h> |
34f192c6 | 36 | #include <linux/compat.h> |
1da177e4 LT |
37 | |
38 | #include <asm/uaccess.h> | |
39 | #include <asm/unistd.h> | |
40 | #include <asm/pgtable.h> | |
41 | #include <asm/mmu_context.h> | |
42 | ||
43 | extern void sem_exit (void); | |
44 | extern struct task_struct *child_reaper; | |
45 | ||
46 | int getrusage(struct task_struct *, int, struct rusage __user *); | |
47 | ||
408b664a AB |
48 | static void exit_mm(struct task_struct * tsk); |
49 | ||
1da177e4 LT |
50 | static void __unhash_process(struct task_struct *p) |
51 | { | |
52 | nr_threads--; | |
53 | detach_pid(p, PIDTYPE_PID); | |
54 | detach_pid(p, PIDTYPE_TGID); | |
55 | if (thread_group_leader(p)) { | |
56 | detach_pid(p, PIDTYPE_PGID); | |
57 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 ON |
58 | |
59 | list_del_init(&p->tasks); | |
73b9ebfe | 60 | __get_cpu_var(process_counts)--; |
1da177e4 LT |
61 | } |
62 | ||
c97d9893 | 63 | remove_parent(p); |
1da177e4 LT |
64 | } |
65 | ||
6a14c5c9 ON |
66 | /* |
67 | * This function expects the tasklist_lock write-locked. | |
68 | */ | |
69 | static void __exit_signal(struct task_struct *tsk) | |
70 | { | |
71 | struct signal_struct *sig = tsk->signal; | |
72 | struct sighand_struct *sighand; | |
73 | ||
74 | BUG_ON(!sig); | |
75 | BUG_ON(!atomic_read(&sig->count)); | |
76 | ||
77 | rcu_read_lock(); | |
78 | sighand = rcu_dereference(tsk->sighand); | |
79 | spin_lock(&sighand->siglock); | |
80 | ||
81 | posix_cpu_timers_exit(tsk); | |
82 | if (atomic_dec_and_test(&sig->count)) | |
83 | posix_cpu_timers_exit_group(tsk); | |
84 | else { | |
85 | /* | |
86 | * If there is any task waiting for the group exit | |
87 | * then notify it: | |
88 | */ | |
89 | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { | |
90 | wake_up_process(sig->group_exit_task); | |
91 | sig->group_exit_task = NULL; | |
92 | } | |
93 | if (tsk == sig->curr_target) | |
94 | sig->curr_target = next_thread(tsk); | |
95 | /* | |
96 | * Accumulate here the counters for all threads but the | |
97 | * group leader as they die, so they can be added into | |
98 | * the process-wide totals when those are taken. | |
99 | * The group leader stays around as a zombie as long | |
100 | * as there are other threads. When it gets reaped, | |
101 | * the exit.c code will add its counts into these totals. | |
102 | * We won't ever get here for the group leader, since it | |
103 | * will have been the last reference on the signal_struct. | |
104 | */ | |
105 | sig->utime = cputime_add(sig->utime, tsk->utime); | |
106 | sig->stime = cputime_add(sig->stime, tsk->stime); | |
107 | sig->min_flt += tsk->min_flt; | |
108 | sig->maj_flt += tsk->maj_flt; | |
109 | sig->nvcsw += tsk->nvcsw; | |
110 | sig->nivcsw += tsk->nivcsw; | |
111 | sig->sched_time += tsk->sched_time; | |
112 | sig = NULL; /* Marker for below. */ | |
113 | } | |
114 | ||
5876700c ON |
115 | __unhash_process(tsk); |
116 | ||
6a14c5c9 ON |
117 | tsk->signal = NULL; |
118 | cleanup_sighand(tsk); | |
119 | spin_unlock(&sighand->siglock); | |
120 | rcu_read_unlock(); | |
121 | ||
122 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | |
123 | flush_sigqueue(&tsk->pending); | |
124 | if (sig) { | |
125 | flush_sigqueue(&sig->shared_pending); | |
126 | __cleanup_signal(sig); | |
127 | } | |
128 | } | |
129 | ||
1da177e4 LT |
130 | void release_task(struct task_struct * p) |
131 | { | |
132 | int zap_leader; | |
133 | task_t *leader; | |
134 | struct dentry *proc_dentry; | |
135 | ||
1f09f974 | 136 | repeat: |
1da177e4 LT |
137 | atomic_dec(&p->user->processes); |
138 | spin_lock(&p->proc_lock); | |
139 | proc_dentry = proc_pid_unhash(p); | |
140 | write_lock_irq(&tasklist_lock); | |
1f09f974 | 141 | ptrace_unlink(p); |
1da177e4 LT |
142 | BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); |
143 | __exit_signal(p); | |
35f5cad8 | 144 | |
1da177e4 LT |
145 | /* |
146 | * If we are the last non-leader member of the thread | |
147 | * group, and the leader is zombie, then notify the | |
148 | * group leader's parent process. (if it wants notification.) | |
149 | */ | |
150 | zap_leader = 0; | |
151 | leader = p->group_leader; | |
152 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | |
153 | BUG_ON(leader->exit_signal == -1); | |
154 | do_notify_parent(leader, leader->exit_signal); | |
155 | /* | |
156 | * If we were the last child thread and the leader has | |
157 | * exited already, and the leader's parent ignores SIGCHLD, | |
158 | * then we are the one who should release the leader. | |
159 | * | |
160 | * do_notify_parent() will have marked it self-reaping in | |
161 | * that case. | |
162 | */ | |
163 | zap_leader = (leader->exit_signal == -1); | |
164 | } | |
165 | ||
166 | sched_exit(p); | |
167 | write_unlock_irq(&tasklist_lock); | |
168 | spin_unlock(&p->proc_lock); | |
169 | proc_pid_flush(proc_dentry); | |
170 | release_thread(p); | |
171 | put_task_struct(p); | |
172 | ||
173 | p = leader; | |
174 | if (unlikely(zap_leader)) | |
175 | goto repeat; | |
176 | } | |
177 | ||
1da177e4 LT |
178 | /* |
179 | * This checks not only the pgrp, but falls back on the pid if no | |
180 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | |
181 | * without this... | |
182 | */ | |
183 | int session_of_pgrp(int pgrp) | |
184 | { | |
185 | struct task_struct *p; | |
186 | int sid = -1; | |
187 | ||
188 | read_lock(&tasklist_lock); | |
189 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | |
190 | if (p->signal->session > 0) { | |
191 | sid = p->signal->session; | |
192 | goto out; | |
193 | } | |
194 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | |
195 | p = find_task_by_pid(pgrp); | |
196 | if (p) | |
197 | sid = p->signal->session; | |
198 | out: | |
199 | read_unlock(&tasklist_lock); | |
200 | ||
201 | return sid; | |
202 | } | |
203 | ||
204 | /* | |
205 | * Determine if a process group is "orphaned", according to the POSIX | |
206 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
207 | * by terminal-generated stop signals. Newly orphaned process groups are | |
208 | * to receive a SIGHUP and a SIGCONT. | |
209 | * | |
210 | * "I ask you, have you ever known what it is to be an orphan?" | |
211 | */ | |
212 | static int will_become_orphaned_pgrp(int pgrp, task_t *ignored_task) | |
213 | { | |
214 | struct task_struct *p; | |
215 | int ret = 1; | |
216 | ||
217 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | |
218 | if (p == ignored_task | |
219 | || p->exit_state | |
220 | || p->real_parent->pid == 1) | |
221 | continue; | |
222 | if (process_group(p->real_parent) != pgrp | |
223 | && p->real_parent->signal->session == p->signal->session) { | |
224 | ret = 0; | |
225 | break; | |
226 | } | |
227 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | |
228 | return ret; /* (sighing) "Often!" */ | |
229 | } | |
230 | ||
231 | int is_orphaned_pgrp(int pgrp) | |
232 | { | |
233 | int retval; | |
234 | ||
235 | read_lock(&tasklist_lock); | |
236 | retval = will_become_orphaned_pgrp(pgrp, NULL); | |
237 | read_unlock(&tasklist_lock); | |
238 | ||
239 | return retval; | |
240 | } | |
241 | ||
858119e1 | 242 | static int has_stopped_jobs(int pgrp) |
1da177e4 LT |
243 | { |
244 | int retval = 0; | |
245 | struct task_struct *p; | |
246 | ||
247 | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | |
248 | if (p->state != TASK_STOPPED) | |
249 | continue; | |
250 | ||
251 | /* If p is stopped by a debugger on a signal that won't | |
252 | stop it, then don't count p as stopped. This isn't | |
253 | perfect but it's a good approximation. */ | |
254 | if (unlikely (p->ptrace) | |
255 | && p->exit_code != SIGSTOP | |
256 | && p->exit_code != SIGTSTP | |
257 | && p->exit_code != SIGTTOU | |
258 | && p->exit_code != SIGTTIN) | |
259 | continue; | |
260 | ||
261 | retval = 1; | |
262 | break; | |
263 | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | |
264 | return retval; | |
265 | } | |
266 | ||
267 | /** | |
4dc3b16b | 268 | * reparent_to_init - Reparent the calling kernel thread to the init task. |
1da177e4 LT |
269 | * |
270 | * If a kernel thread is launched as a result of a system call, or if | |
271 | * it ever exits, it should generally reparent itself to init so that | |
272 | * it is correctly cleaned up on exit. | |
273 | * | |
274 | * The various task state such as scheduling policy and priority may have | |
275 | * been inherited from a user process, so we reset them to sane values here. | |
276 | * | |
277 | * NOTE that reparent_to_init() gives the caller full capabilities. | |
278 | */ | |
858119e1 | 279 | static void reparent_to_init(void) |
1da177e4 LT |
280 | { |
281 | write_lock_irq(&tasklist_lock); | |
282 | ||
283 | ptrace_unlink(current); | |
284 | /* Reparent to init */ | |
9b678ece | 285 | remove_parent(current); |
1da177e4 LT |
286 | current->parent = child_reaper; |
287 | current->real_parent = child_reaper; | |
9b678ece | 288 | add_parent(current); |
1da177e4 LT |
289 | |
290 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | |
291 | current->exit_signal = SIGCHLD; | |
292 | ||
b0a9499c IM |
293 | if ((current->policy == SCHED_NORMAL || |
294 | current->policy == SCHED_BATCH) | |
295 | && (task_nice(current) < 0)) | |
1da177e4 LT |
296 | set_user_nice(current, 0); |
297 | /* cpus_allowed? */ | |
298 | /* rt_priority? */ | |
299 | /* signals? */ | |
300 | security_task_reparent_to_init(current); | |
301 | memcpy(current->signal->rlim, init_task.signal->rlim, | |
302 | sizeof(current->signal->rlim)); | |
303 | atomic_inc(&(INIT_USER->__count)); | |
304 | write_unlock_irq(&tasklist_lock); | |
305 | switch_uid(INIT_USER); | |
306 | } | |
307 | ||
308 | void __set_special_pids(pid_t session, pid_t pgrp) | |
309 | { | |
e19f247a | 310 | struct task_struct *curr = current->group_leader; |
1da177e4 LT |
311 | |
312 | if (curr->signal->session != session) { | |
313 | detach_pid(curr, PIDTYPE_SID); | |
314 | curr->signal->session = session; | |
315 | attach_pid(curr, PIDTYPE_SID, session); | |
316 | } | |
317 | if (process_group(curr) != pgrp) { | |
318 | detach_pid(curr, PIDTYPE_PGID); | |
319 | curr->signal->pgrp = pgrp; | |
320 | attach_pid(curr, PIDTYPE_PGID, pgrp); | |
321 | } | |
322 | } | |
323 | ||
324 | void set_special_pids(pid_t session, pid_t pgrp) | |
325 | { | |
326 | write_lock_irq(&tasklist_lock); | |
327 | __set_special_pids(session, pgrp); | |
328 | write_unlock_irq(&tasklist_lock); | |
329 | } | |
330 | ||
331 | /* | |
332 | * Let kernel threads use this to say that they | |
333 | * allow a certain signal (since daemonize() will | |
334 | * have disabled all of them by default). | |
335 | */ | |
336 | int allow_signal(int sig) | |
337 | { | |
7ed20e1a | 338 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
339 | return -EINVAL; |
340 | ||
341 | spin_lock_irq(¤t->sighand->siglock); | |
342 | sigdelset(¤t->blocked, sig); | |
343 | if (!current->mm) { | |
344 | /* Kernel threads handle their own signals. | |
345 | Let the signal code know it'll be handled, so | |
346 | that they don't get converted to SIGKILL or | |
347 | just silently dropped */ | |
348 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | |
349 | } | |
350 | recalc_sigpending(); | |
351 | spin_unlock_irq(¤t->sighand->siglock); | |
352 | return 0; | |
353 | } | |
354 | ||
355 | EXPORT_SYMBOL(allow_signal); | |
356 | ||
357 | int disallow_signal(int sig) | |
358 | { | |
7ed20e1a | 359 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
360 | return -EINVAL; |
361 | ||
362 | spin_lock_irq(¤t->sighand->siglock); | |
363 | sigaddset(¤t->blocked, sig); | |
364 | recalc_sigpending(); | |
365 | spin_unlock_irq(¤t->sighand->siglock); | |
366 | return 0; | |
367 | } | |
368 | ||
369 | EXPORT_SYMBOL(disallow_signal); | |
370 | ||
371 | /* | |
372 | * Put all the gunge required to become a kernel thread without | |
373 | * attached user resources in one place where it belongs. | |
374 | */ | |
375 | ||
376 | void daemonize(const char *name, ...) | |
377 | { | |
378 | va_list args; | |
379 | struct fs_struct *fs; | |
380 | sigset_t blocked; | |
381 | ||
382 | va_start(args, name); | |
383 | vsnprintf(current->comm, sizeof(current->comm), name, args); | |
384 | va_end(args); | |
385 | ||
386 | /* | |
387 | * If we were started as result of loading a module, close all of the | |
388 | * user space pages. We don't need them, and if we didn't close them | |
389 | * they would be locked into memory. | |
390 | */ | |
391 | exit_mm(current); | |
392 | ||
393 | set_special_pids(1, 1); | |
70522e12 | 394 | mutex_lock(&tty_mutex); |
1da177e4 | 395 | current->signal->tty = NULL; |
70522e12 | 396 | mutex_unlock(&tty_mutex); |
1da177e4 LT |
397 | |
398 | /* Block and flush all signals */ | |
399 | sigfillset(&blocked); | |
400 | sigprocmask(SIG_BLOCK, &blocked, NULL); | |
401 | flush_signals(current); | |
402 | ||
403 | /* Become as one with the init task */ | |
404 | ||
405 | exit_fs(current); /* current->fs->count--; */ | |
406 | fs = init_task.fs; | |
407 | current->fs = fs; | |
408 | atomic_inc(&fs->count); | |
5914811a BS |
409 | exit_namespace(current); |
410 | current->namespace = init_task.namespace; | |
411 | get_namespace(current->namespace); | |
1da177e4 LT |
412 | exit_files(current); |
413 | current->files = init_task.files; | |
414 | atomic_inc(¤t->files->count); | |
415 | ||
416 | reparent_to_init(); | |
417 | } | |
418 | ||
419 | EXPORT_SYMBOL(daemonize); | |
420 | ||
858119e1 | 421 | static void close_files(struct files_struct * files) |
1da177e4 LT |
422 | { |
423 | int i, j; | |
badf1662 | 424 | struct fdtable *fdt; |
1da177e4 LT |
425 | |
426 | j = 0; | |
4fb3a538 DS |
427 | |
428 | /* | |
429 | * It is safe to dereference the fd table without RCU or | |
430 | * ->file_lock because this is the last reference to the | |
431 | * files structure. | |
432 | */ | |
badf1662 | 433 | fdt = files_fdtable(files); |
1da177e4 LT |
434 | for (;;) { |
435 | unsigned long set; | |
436 | i = j * __NFDBITS; | |
badf1662 | 437 | if (i >= fdt->max_fdset || i >= fdt->max_fds) |
1da177e4 | 438 | break; |
badf1662 | 439 | set = fdt->open_fds->fds_bits[j++]; |
1da177e4 LT |
440 | while (set) { |
441 | if (set & 1) { | |
badf1662 | 442 | struct file * file = xchg(&fdt->fd[i], NULL); |
1da177e4 LT |
443 | if (file) |
444 | filp_close(file, files); | |
445 | } | |
446 | i++; | |
447 | set >>= 1; | |
448 | } | |
449 | } | |
450 | } | |
451 | ||
452 | struct files_struct *get_files_struct(struct task_struct *task) | |
453 | { | |
454 | struct files_struct *files; | |
455 | ||
456 | task_lock(task); | |
457 | files = task->files; | |
458 | if (files) | |
459 | atomic_inc(&files->count); | |
460 | task_unlock(task); | |
461 | ||
462 | return files; | |
463 | } | |
464 | ||
465 | void fastcall put_files_struct(struct files_struct *files) | |
466 | { | |
badf1662 DS |
467 | struct fdtable *fdt; |
468 | ||
1da177e4 LT |
469 | if (atomic_dec_and_test(&files->count)) { |
470 | close_files(files); | |
471 | /* | |
472 | * Free the fd and fdset arrays if we expanded them. | |
ab2af1f5 DS |
473 | * If the fdtable was embedded, pass files for freeing |
474 | * at the end of the RCU grace period. Otherwise, | |
475 | * you can free files immediately. | |
1da177e4 | 476 | */ |
badf1662 | 477 | fdt = files_fdtable(files); |
ab2af1f5 DS |
478 | if (fdt == &files->fdtab) |
479 | fdt->free_files = files; | |
480 | else | |
481 | kmem_cache_free(files_cachep, files); | |
482 | free_fdtable(fdt); | |
1da177e4 LT |
483 | } |
484 | } | |
485 | ||
486 | EXPORT_SYMBOL(put_files_struct); | |
487 | ||
488 | static inline void __exit_files(struct task_struct *tsk) | |
489 | { | |
490 | struct files_struct * files = tsk->files; | |
491 | ||
492 | if (files) { | |
493 | task_lock(tsk); | |
494 | tsk->files = NULL; | |
495 | task_unlock(tsk); | |
496 | put_files_struct(files); | |
497 | } | |
498 | } | |
499 | ||
500 | void exit_files(struct task_struct *tsk) | |
501 | { | |
502 | __exit_files(tsk); | |
503 | } | |
504 | ||
505 | static inline void __put_fs_struct(struct fs_struct *fs) | |
506 | { | |
507 | /* No need to hold fs->lock if we are killing it */ | |
508 | if (atomic_dec_and_test(&fs->count)) { | |
509 | dput(fs->root); | |
510 | mntput(fs->rootmnt); | |
511 | dput(fs->pwd); | |
512 | mntput(fs->pwdmnt); | |
513 | if (fs->altroot) { | |
514 | dput(fs->altroot); | |
515 | mntput(fs->altrootmnt); | |
516 | } | |
517 | kmem_cache_free(fs_cachep, fs); | |
518 | } | |
519 | } | |
520 | ||
521 | void put_fs_struct(struct fs_struct *fs) | |
522 | { | |
523 | __put_fs_struct(fs); | |
524 | } | |
525 | ||
526 | static inline void __exit_fs(struct task_struct *tsk) | |
527 | { | |
528 | struct fs_struct * fs = tsk->fs; | |
529 | ||
530 | if (fs) { | |
531 | task_lock(tsk); | |
532 | tsk->fs = NULL; | |
533 | task_unlock(tsk); | |
534 | __put_fs_struct(fs); | |
535 | } | |
536 | } | |
537 | ||
538 | void exit_fs(struct task_struct *tsk) | |
539 | { | |
540 | __exit_fs(tsk); | |
541 | } | |
542 | ||
543 | EXPORT_SYMBOL_GPL(exit_fs); | |
544 | ||
545 | /* | |
546 | * Turn us into a lazy TLB process if we | |
547 | * aren't already.. | |
548 | */ | |
408b664a | 549 | static void exit_mm(struct task_struct * tsk) |
1da177e4 LT |
550 | { |
551 | struct mm_struct *mm = tsk->mm; | |
552 | ||
553 | mm_release(tsk, mm); | |
554 | if (!mm) | |
555 | return; | |
556 | /* | |
557 | * Serialize with any possible pending coredump. | |
558 | * We must hold mmap_sem around checking core_waiters | |
559 | * and clearing tsk->mm. The core-inducing thread | |
560 | * will increment core_waiters for each thread in the | |
561 | * group with ->mm != NULL. | |
562 | */ | |
563 | down_read(&mm->mmap_sem); | |
564 | if (mm->core_waiters) { | |
565 | up_read(&mm->mmap_sem); | |
566 | down_write(&mm->mmap_sem); | |
567 | if (!--mm->core_waiters) | |
568 | complete(mm->core_startup_done); | |
569 | up_write(&mm->mmap_sem); | |
570 | ||
571 | wait_for_completion(&mm->core_done); | |
572 | down_read(&mm->mmap_sem); | |
573 | } | |
574 | atomic_inc(&mm->mm_count); | |
575 | if (mm != tsk->active_mm) BUG(); | |
576 | /* more a memory barrier than a real lock */ | |
577 | task_lock(tsk); | |
578 | tsk->mm = NULL; | |
579 | up_read(&mm->mmap_sem); | |
580 | enter_lazy_tlb(mm, current); | |
581 | task_unlock(tsk); | |
582 | mmput(mm); | |
583 | } | |
584 | ||
d799f035 | 585 | static inline void choose_new_parent(task_t *p, task_t *reaper) |
1da177e4 LT |
586 | { |
587 | /* | |
588 | * Make sure we're not reparenting to ourselves and that | |
589 | * the parent is not a zombie. | |
590 | */ | |
d799f035 | 591 | BUG_ON(p == reaper || reaper->exit_state); |
1da177e4 | 592 | p->real_parent = reaper; |
1da177e4 LT |
593 | } |
594 | ||
858119e1 | 595 | static void reparent_thread(task_t *p, task_t *father, int traced) |
1da177e4 LT |
596 | { |
597 | /* We don't want people slaying init. */ | |
598 | if (p->exit_signal != -1) | |
599 | p->exit_signal = SIGCHLD; | |
600 | ||
601 | if (p->pdeath_signal) | |
602 | /* We already hold the tasklist_lock here. */ | |
b67a1b9e | 603 | group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); |
1da177e4 LT |
604 | |
605 | /* Move the child from its dying parent to the new one. */ | |
606 | if (unlikely(traced)) { | |
607 | /* Preserve ptrace links if someone else is tracing this child. */ | |
608 | list_del_init(&p->ptrace_list); | |
609 | if (p->parent != p->real_parent) | |
610 | list_add(&p->ptrace_list, &p->real_parent->ptrace_children); | |
611 | } else { | |
612 | /* If this child is being traced, then we're the one tracing it | |
613 | * anyway, so let go of it. | |
614 | */ | |
615 | p->ptrace = 0; | |
6ac781b1 | 616 | remove_parent(p); |
1da177e4 | 617 | p->parent = p->real_parent; |
6ac781b1 | 618 | add_parent(p); |
1da177e4 LT |
619 | |
620 | /* If we'd notified the old parent about this child's death, | |
621 | * also notify the new parent. | |
622 | */ | |
623 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && | |
624 | thread_group_empty(p)) | |
625 | do_notify_parent(p, p->exit_signal); | |
626 | else if (p->state == TASK_TRACED) { | |
627 | /* | |
628 | * If it was at a trace stop, turn it into | |
629 | * a normal stop since it's no longer being | |
630 | * traced. | |
631 | */ | |
632 | ptrace_untrace(p); | |
633 | } | |
634 | } | |
635 | ||
636 | /* | |
637 | * process group orphan check | |
638 | * Case ii: Our child is in a different pgrp | |
639 | * than we are, and it was the only connection | |
640 | * outside, so the child pgrp is now orphaned. | |
641 | */ | |
642 | if ((process_group(p) != process_group(father)) && | |
643 | (p->signal->session == father->signal->session)) { | |
644 | int pgrp = process_group(p); | |
645 | ||
646 | if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) { | |
b67a1b9e ON |
647 | __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp); |
648 | __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
1da177e4 LT |
649 | } |
650 | } | |
651 | } | |
652 | ||
653 | /* | |
654 | * When we die, we re-parent all our children. | |
655 | * Try to give them to another thread in our thread | |
656 | * group, and if no such member exists, give it to | |
657 | * the global child reaper process (ie "init") | |
658 | */ | |
858119e1 | 659 | static void forget_original_parent(struct task_struct * father, |
1da177e4 LT |
660 | struct list_head *to_release) |
661 | { | |
662 | struct task_struct *p, *reaper = father; | |
663 | struct list_head *_p, *_n; | |
664 | ||
665 | do { | |
666 | reaper = next_thread(reaper); | |
667 | if (reaper == father) { | |
668 | reaper = child_reaper; | |
669 | break; | |
670 | } | |
671 | } while (reaper->exit_state); | |
672 | ||
673 | /* | |
674 | * There are only two places where our children can be: | |
675 | * | |
676 | * - in our child list | |
677 | * - in our ptraced child list | |
678 | * | |
679 | * Search them and reparent children. | |
680 | */ | |
681 | list_for_each_safe(_p, _n, &father->children) { | |
682 | int ptrace; | |
683 | p = list_entry(_p,struct task_struct,sibling); | |
684 | ||
685 | ptrace = p->ptrace; | |
686 | ||
687 | /* if father isn't the real parent, then ptrace must be enabled */ | |
688 | BUG_ON(father != p->real_parent && !ptrace); | |
689 | ||
690 | if (father == p->real_parent) { | |
691 | /* reparent with a reaper, real father it's us */ | |
d799f035 | 692 | choose_new_parent(p, reaper); |
1da177e4 LT |
693 | reparent_thread(p, father, 0); |
694 | } else { | |
695 | /* reparent ptraced task to its real parent */ | |
696 | __ptrace_unlink (p); | |
697 | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && | |
698 | thread_group_empty(p)) | |
699 | do_notify_parent(p, p->exit_signal); | |
700 | } | |
701 | ||
702 | /* | |
703 | * if the ptraced child is a zombie with exit_signal == -1 | |
704 | * we must collect it before we exit, or it will remain | |
705 | * zombie forever since we prevented it from self-reap itself | |
706 | * while it was being traced by us, to be able to see it in wait4. | |
707 | */ | |
708 | if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) | |
709 | list_add(&p->ptrace_list, to_release); | |
710 | } | |
711 | list_for_each_safe(_p, _n, &father->ptrace_children) { | |
712 | p = list_entry(_p,struct task_struct,ptrace_list); | |
d799f035 | 713 | choose_new_parent(p, reaper); |
1da177e4 LT |
714 | reparent_thread(p, father, 1); |
715 | } | |
716 | } | |
717 | ||
718 | /* | |
719 | * Send signals to all our closest relatives so that they know | |
720 | * to properly mourn us.. | |
721 | */ | |
722 | static void exit_notify(struct task_struct *tsk) | |
723 | { | |
724 | int state; | |
725 | struct task_struct *t; | |
726 | struct list_head ptrace_dead, *_p, *_n; | |
727 | ||
728 | if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) | |
729 | && !thread_group_empty(tsk)) { | |
730 | /* | |
731 | * This occurs when there was a race between our exit | |
732 | * syscall and a group signal choosing us as the one to | |
733 | * wake up. It could be that we are the only thread | |
734 | * alerted to check for pending signals, but another thread | |
735 | * should be woken now to take the signal since we will not. | |
736 | * Now we'll wake all the threads in the group just to make | |
737 | * sure someone gets all the pending signals. | |
738 | */ | |
739 | read_lock(&tasklist_lock); | |
740 | spin_lock_irq(&tsk->sighand->siglock); | |
741 | for (t = next_thread(tsk); t != tsk; t = next_thread(t)) | |
742 | if (!signal_pending(t) && !(t->flags & PF_EXITING)) { | |
743 | recalc_sigpending_tsk(t); | |
744 | if (signal_pending(t)) | |
745 | signal_wake_up(t, 0); | |
746 | } | |
747 | spin_unlock_irq(&tsk->sighand->siglock); | |
748 | read_unlock(&tasklist_lock); | |
749 | } | |
750 | ||
751 | write_lock_irq(&tasklist_lock); | |
752 | ||
753 | /* | |
754 | * This does two things: | |
755 | * | |
756 | * A. Make init inherit all the child processes | |
757 | * B. Check to see if any process groups have become orphaned | |
758 | * as a result of our exiting, and if they have any stopped | |
759 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
760 | */ | |
761 | ||
762 | INIT_LIST_HEAD(&ptrace_dead); | |
763 | forget_original_parent(tsk, &ptrace_dead); | |
764 | BUG_ON(!list_empty(&tsk->children)); | |
765 | BUG_ON(!list_empty(&tsk->ptrace_children)); | |
766 | ||
767 | /* | |
768 | * Check to see if any process groups have become orphaned | |
769 | * as a result of our exiting, and if they have any stopped | |
770 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
771 | * | |
772 | * Case i: Our father is in a different pgrp than we are | |
773 | * and we were the only connection outside, so our pgrp | |
774 | * is about to become orphaned. | |
775 | */ | |
776 | ||
777 | t = tsk->real_parent; | |
778 | ||
779 | if ((process_group(t) != process_group(tsk)) && | |
780 | (t->signal->session == tsk->signal->session) && | |
781 | will_become_orphaned_pgrp(process_group(tsk), tsk) && | |
782 | has_stopped_jobs(process_group(tsk))) { | |
b67a1b9e ON |
783 | __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk)); |
784 | __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk)); | |
1da177e4 LT |
785 | } |
786 | ||
787 | /* Let father know we died | |
788 | * | |
789 | * Thread signals are configurable, but you aren't going to use | |
790 | * that to send signals to arbitary processes. | |
791 | * That stops right now. | |
792 | * | |
793 | * If the parent exec id doesn't match the exec id we saved | |
794 | * when we started then we know the parent has changed security | |
795 | * domain. | |
796 | * | |
797 | * If our self_exec id doesn't match our parent_exec_id then | |
798 | * we have changed execution domain as these two values started | |
799 | * the same after a fork. | |
800 | * | |
801 | */ | |
802 | ||
803 | if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && | |
804 | ( tsk->parent_exec_id != t->self_exec_id || | |
805 | tsk->self_exec_id != tsk->parent_exec_id) | |
806 | && !capable(CAP_KILL)) | |
807 | tsk->exit_signal = SIGCHLD; | |
808 | ||
809 | ||
810 | /* If something other than our normal parent is ptracing us, then | |
811 | * send it a SIGCHLD instead of honoring exit_signal. exit_signal | |
812 | * only has special meaning to our real parent. | |
813 | */ | |
814 | if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { | |
815 | int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; | |
816 | do_notify_parent(tsk, signal); | |
817 | } else if (tsk->ptrace) { | |
818 | do_notify_parent(tsk, SIGCHLD); | |
819 | } | |
820 | ||
821 | state = EXIT_ZOMBIE; | |
822 | if (tsk->exit_signal == -1 && | |
823 | (likely(tsk->ptrace == 0) || | |
824 | unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) | |
825 | state = EXIT_DEAD; | |
826 | tsk->exit_state = state; | |
827 | ||
828 | write_unlock_irq(&tasklist_lock); | |
829 | ||
830 | list_for_each_safe(_p, _n, &ptrace_dead) { | |
831 | list_del_init(_p); | |
832 | t = list_entry(_p,struct task_struct,ptrace_list); | |
833 | release_task(t); | |
834 | } | |
835 | ||
836 | /* If the process is dead, release it - nobody will wait for it */ | |
837 | if (state == EXIT_DEAD) | |
838 | release_task(tsk); | |
1da177e4 LT |
839 | } |
840 | ||
841 | fastcall NORET_TYPE void do_exit(long code) | |
842 | { | |
843 | struct task_struct *tsk = current; | |
844 | int group_dead; | |
845 | ||
846 | profile_task_exit(tsk); | |
847 | ||
22e2c507 JA |
848 | WARN_ON(atomic_read(&tsk->fs_excl)); |
849 | ||
1da177e4 LT |
850 | if (unlikely(in_interrupt())) |
851 | panic("Aiee, killing interrupt handler!"); | |
852 | if (unlikely(!tsk->pid)) | |
853 | panic("Attempted to kill the idle task!"); | |
fef23e7f | 854 | if (unlikely(tsk == child_reaper)) |
1da177e4 | 855 | panic("Attempted to kill init!"); |
1da177e4 LT |
856 | |
857 | if (unlikely(current->ptrace & PT_TRACE_EXIT)) { | |
858 | current->ptrace_message = code; | |
859 | ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); | |
860 | } | |
861 | ||
df164db5 AN |
862 | /* |
863 | * We're taking recursive faults here in do_exit. Safest is to just | |
864 | * leave this task alone and wait for reboot. | |
865 | */ | |
866 | if (unlikely(tsk->flags & PF_EXITING)) { | |
867 | printk(KERN_ALERT | |
868 | "Fixing recursive fault but reboot is needed!\n"); | |
afc847b7 AV |
869 | if (tsk->io_context) |
870 | exit_io_context(); | |
df164db5 AN |
871 | set_current_state(TASK_UNINTERRUPTIBLE); |
872 | schedule(); | |
873 | } | |
874 | ||
1da177e4 LT |
875 | tsk->flags |= PF_EXITING; |
876 | ||
a362f463 LT |
877 | /* |
878 | * Make sure we don't try to process any timer firings | |
879 | * while we are already exiting. | |
880 | */ | |
881 | tsk->it_virt_expires = cputime_zero; | |
882 | tsk->it_prof_expires = cputime_zero; | |
883 | tsk->it_sched_expires = 0; | |
884 | ||
1da177e4 LT |
885 | if (unlikely(in_atomic())) |
886 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | |
887 | current->comm, current->pid, | |
888 | preempt_count()); | |
889 | ||
890 | acct_update_integrals(tsk); | |
365e9c87 HD |
891 | if (tsk->mm) { |
892 | update_hiwater_rss(tsk->mm); | |
893 | update_hiwater_vm(tsk->mm); | |
894 | } | |
1da177e4 | 895 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 896 | if (group_dead) { |
2ff678b8 | 897 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 898 | exit_itimers(tsk->signal); |
1da177e4 | 899 | acct_process(code); |
c3068951 | 900 | } |
0771dfef IM |
901 | if (unlikely(tsk->robust_list)) |
902 | exit_robust_list(tsk); | |
34f192c6 IM |
903 | #ifdef CONFIG_COMPAT |
904 | if (unlikely(tsk->compat_robust_list)) | |
905 | compat_exit_robust_list(tsk); | |
906 | #endif | |
1da177e4 LT |
907 | exit_mm(tsk); |
908 | ||
909 | exit_sem(tsk); | |
910 | __exit_files(tsk); | |
911 | __exit_fs(tsk); | |
912 | exit_namespace(tsk); | |
913 | exit_thread(); | |
914 | cpuset_exit(tsk); | |
915 | exit_keys(tsk); | |
916 | ||
917 | if (group_dead && tsk->signal->leader) | |
918 | disassociate_ctty(1); | |
919 | ||
a1261f54 | 920 | module_put(task_thread_info(tsk)->exec_domain->module); |
1da177e4 LT |
921 | if (tsk->binfmt) |
922 | module_put(tsk->binfmt->module); | |
923 | ||
924 | tsk->exit_code = code; | |
9f46080c | 925 | proc_exit_connector(tsk); |
1da177e4 LT |
926 | exit_notify(tsk); |
927 | #ifdef CONFIG_NUMA | |
928 | mpol_free(tsk->mempolicy); | |
929 | tsk->mempolicy = NULL; | |
930 | #endif | |
de5097c2 IM |
931 | /* |
932 | * If DEBUG_MUTEXES is on, make sure we are holding no locks: | |
933 | */ | |
934 | mutex_debug_check_no_locks_held(tsk); | |
1da177e4 | 935 | |
afc847b7 AV |
936 | if (tsk->io_context) |
937 | exit_io_context(); | |
938 | ||
7407251a CQH |
939 | /* PF_DEAD causes final put_task_struct after we schedule. */ |
940 | preempt_disable(); | |
941 | BUG_ON(tsk->flags & PF_DEAD); | |
942 | tsk->flags |= PF_DEAD; | |
943 | ||
1da177e4 LT |
944 | schedule(); |
945 | BUG(); | |
946 | /* Avoid "noreturn function does return". */ | |
947 | for (;;) ; | |
948 | } | |
949 | ||
012914da RA |
950 | EXPORT_SYMBOL_GPL(do_exit); |
951 | ||
1da177e4 LT |
952 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) |
953 | { | |
954 | if (comp) | |
955 | complete(comp); | |
956 | ||
957 | do_exit(code); | |
958 | } | |
959 | ||
960 | EXPORT_SYMBOL(complete_and_exit); | |
961 | ||
962 | asmlinkage long sys_exit(int error_code) | |
963 | { | |
964 | do_exit((error_code&0xff)<<8); | |
965 | } | |
966 | ||
967 | task_t fastcall *next_thread(const task_t *p) | |
968 | { | |
969 | return pid_task(p->pids[PIDTYPE_TGID].pid_list.next, PIDTYPE_TGID); | |
970 | } | |
971 | ||
972 | EXPORT_SYMBOL(next_thread); | |
973 | ||
974 | /* | |
975 | * Take down every thread in the group. This is called by fatal signals | |
976 | * as well as by sys_exit_group (below). | |
977 | */ | |
978 | NORET_TYPE void | |
979 | do_group_exit(int exit_code) | |
980 | { | |
981 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | |
982 | ||
983 | if (current->signal->flags & SIGNAL_GROUP_EXIT) | |
984 | exit_code = current->signal->group_exit_code; | |
985 | else if (!thread_group_empty(current)) { | |
986 | struct signal_struct *const sig = current->signal; | |
987 | struct sighand_struct *const sighand = current->sighand; | |
1da177e4 LT |
988 | spin_lock_irq(&sighand->siglock); |
989 | if (sig->flags & SIGNAL_GROUP_EXIT) | |
990 | /* Another thread got here before we took the lock. */ | |
991 | exit_code = sig->group_exit_code; | |
992 | else { | |
1da177e4 LT |
993 | sig->group_exit_code = exit_code; |
994 | zap_other_threads(current); | |
995 | } | |
996 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
997 | } |
998 | ||
999 | do_exit(exit_code); | |
1000 | /* NOTREACHED */ | |
1001 | } | |
1002 | ||
1003 | /* | |
1004 | * this kills every thread in the thread group. Note that any externally | |
1005 | * wait4()-ing process will get the correct exit code - even if this | |
1006 | * thread is not the thread group leader. | |
1007 | */ | |
1008 | asmlinkage void sys_exit_group(int error_code) | |
1009 | { | |
1010 | do_group_exit((error_code & 0xff) << 8); | |
1011 | } | |
1012 | ||
1013 | static int eligible_child(pid_t pid, int options, task_t *p) | |
1014 | { | |
1015 | if (pid > 0) { | |
1016 | if (p->pid != pid) | |
1017 | return 0; | |
1018 | } else if (!pid) { | |
1019 | if (process_group(p) != process_group(current)) | |
1020 | return 0; | |
1021 | } else if (pid != -1) { | |
1022 | if (process_group(p) != -pid) | |
1023 | return 0; | |
1024 | } | |
1025 | ||
1026 | /* | |
1027 | * Do not consider detached threads that are | |
1028 | * not ptraced: | |
1029 | */ | |
1030 | if (p->exit_signal == -1 && !p->ptrace) | |
1031 | return 0; | |
1032 | ||
1033 | /* Wait for all children (clone and not) if __WALL is set; | |
1034 | * otherwise, wait for clone children *only* if __WCLONE is | |
1035 | * set; otherwise, wait for non-clone children *only*. (Note: | |
1036 | * A "clone" child here is one that reports to its parent | |
1037 | * using a signal other than SIGCHLD.) */ | |
1038 | if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) | |
1039 | && !(options & __WALL)) | |
1040 | return 0; | |
1041 | /* | |
1042 | * Do not consider thread group leaders that are | |
1043 | * in a non-empty thread group: | |
1044 | */ | |
1045 | if (current->tgid != p->tgid && delay_group_leader(p)) | |
1046 | return 2; | |
1047 | ||
1048 | if (security_task_wait(p)) | |
1049 | return 0; | |
1050 | ||
1051 | return 1; | |
1052 | } | |
1053 | ||
1054 | static int wait_noreap_copyout(task_t *p, pid_t pid, uid_t uid, | |
1055 | int why, int status, | |
1056 | struct siginfo __user *infop, | |
1057 | struct rusage __user *rusagep) | |
1058 | { | |
1059 | int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; | |
1060 | put_task_struct(p); | |
1061 | if (!retval) | |
1062 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1063 | if (!retval) | |
1064 | retval = put_user(0, &infop->si_errno); | |
1065 | if (!retval) | |
1066 | retval = put_user((short)why, &infop->si_code); | |
1067 | if (!retval) | |
1068 | retval = put_user(pid, &infop->si_pid); | |
1069 | if (!retval) | |
1070 | retval = put_user(uid, &infop->si_uid); | |
1071 | if (!retval) | |
1072 | retval = put_user(status, &infop->si_status); | |
1073 | if (!retval) | |
1074 | retval = pid; | |
1075 | return retval; | |
1076 | } | |
1077 | ||
1078 | /* | |
1079 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
1080 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1081 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1082 | * released the lock and the system call should return. | |
1083 | */ | |
1084 | static int wait_task_zombie(task_t *p, int noreap, | |
1085 | struct siginfo __user *infop, | |
1086 | int __user *stat_addr, struct rusage __user *ru) | |
1087 | { | |
1088 | unsigned long state; | |
1089 | int retval; | |
1090 | int status; | |
1091 | ||
1092 | if (unlikely(noreap)) { | |
1093 | pid_t pid = p->pid; | |
1094 | uid_t uid = p->uid; | |
1095 | int exit_code = p->exit_code; | |
1096 | int why, status; | |
1097 | ||
1098 | if (unlikely(p->exit_state != EXIT_ZOMBIE)) | |
1099 | return 0; | |
1100 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) | |
1101 | return 0; | |
1102 | get_task_struct(p); | |
1103 | read_unlock(&tasklist_lock); | |
1104 | if ((exit_code & 0x7f) == 0) { | |
1105 | why = CLD_EXITED; | |
1106 | status = exit_code >> 8; | |
1107 | } else { | |
1108 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1109 | status = exit_code & 0x7f; | |
1110 | } | |
1111 | return wait_noreap_copyout(p, pid, uid, why, | |
1112 | status, infop, ru); | |
1113 | } | |
1114 | ||
1115 | /* | |
1116 | * Try to move the task's state to DEAD | |
1117 | * only one thread is allowed to do this: | |
1118 | */ | |
1119 | state = xchg(&p->exit_state, EXIT_DEAD); | |
1120 | if (state != EXIT_ZOMBIE) { | |
1121 | BUG_ON(state != EXIT_DEAD); | |
1122 | return 0; | |
1123 | } | |
1124 | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { | |
1125 | /* | |
1126 | * This can only happen in a race with a ptraced thread | |
1127 | * dying on another processor. | |
1128 | */ | |
1129 | return 0; | |
1130 | } | |
1131 | ||
1132 | if (likely(p->real_parent == p->parent) && likely(p->signal)) { | |
3795e161 JJ |
1133 | struct signal_struct *psig; |
1134 | struct signal_struct *sig; | |
1135 | ||
1da177e4 LT |
1136 | /* |
1137 | * The resource counters for the group leader are in its | |
1138 | * own task_struct. Those for dead threads in the group | |
1139 | * are in its signal_struct, as are those for the child | |
1140 | * processes it has previously reaped. All these | |
1141 | * accumulate in the parent's signal_struct c* fields. | |
1142 | * | |
1143 | * We don't bother to take a lock here to protect these | |
1144 | * p->signal fields, because they are only touched by | |
1145 | * __exit_signal, which runs with tasklist_lock | |
1146 | * write-locked anyway, and so is excluded here. We do | |
1147 | * need to protect the access to p->parent->signal fields, | |
1148 | * as other threads in the parent group can be right | |
1149 | * here reaping other children at the same time. | |
1150 | */ | |
1151 | spin_lock_irq(&p->parent->sighand->siglock); | |
3795e161 JJ |
1152 | psig = p->parent->signal; |
1153 | sig = p->signal; | |
1154 | psig->cutime = | |
1155 | cputime_add(psig->cutime, | |
1da177e4 | 1156 | cputime_add(p->utime, |
3795e161 JJ |
1157 | cputime_add(sig->utime, |
1158 | sig->cutime))); | |
1159 | psig->cstime = | |
1160 | cputime_add(psig->cstime, | |
1da177e4 | 1161 | cputime_add(p->stime, |
3795e161 JJ |
1162 | cputime_add(sig->stime, |
1163 | sig->cstime))); | |
1164 | psig->cmin_flt += | |
1165 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1166 | psig->cmaj_flt += | |
1167 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1168 | psig->cnvcsw += | |
1169 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1170 | psig->cnivcsw += | |
1171 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
1da177e4 LT |
1172 | spin_unlock_irq(&p->parent->sighand->siglock); |
1173 | } | |
1174 | ||
1175 | /* | |
1176 | * Now we are sure this task is interesting, and no other | |
1177 | * thread can reap it because we set its state to EXIT_DEAD. | |
1178 | */ | |
1179 | read_unlock(&tasklist_lock); | |
1180 | ||
1181 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1182 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | |
1183 | ? p->signal->group_exit_code : p->exit_code; | |
1184 | if (!retval && stat_addr) | |
1185 | retval = put_user(status, stat_addr); | |
1186 | if (!retval && infop) | |
1187 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1188 | if (!retval && infop) | |
1189 | retval = put_user(0, &infop->si_errno); | |
1190 | if (!retval && infop) { | |
1191 | int why; | |
1192 | ||
1193 | if ((status & 0x7f) == 0) { | |
1194 | why = CLD_EXITED; | |
1195 | status >>= 8; | |
1196 | } else { | |
1197 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1198 | status &= 0x7f; | |
1199 | } | |
1200 | retval = put_user((short)why, &infop->si_code); | |
1201 | if (!retval) | |
1202 | retval = put_user(status, &infop->si_status); | |
1203 | } | |
1204 | if (!retval && infop) | |
1205 | retval = put_user(p->pid, &infop->si_pid); | |
1206 | if (!retval && infop) | |
1207 | retval = put_user(p->uid, &infop->si_uid); | |
1208 | if (retval) { | |
1209 | // TODO: is this safe? | |
1210 | p->exit_state = EXIT_ZOMBIE; | |
1211 | return retval; | |
1212 | } | |
1213 | retval = p->pid; | |
1214 | if (p->real_parent != p->parent) { | |
1215 | write_lock_irq(&tasklist_lock); | |
1216 | /* Double-check with lock held. */ | |
1217 | if (p->real_parent != p->parent) { | |
1218 | __ptrace_unlink(p); | |
1219 | // TODO: is this safe? | |
1220 | p->exit_state = EXIT_ZOMBIE; | |
1221 | /* | |
1222 | * If this is not a detached task, notify the parent. | |
1223 | * If it's still not detached after that, don't release | |
1224 | * it now. | |
1225 | */ | |
1226 | if (p->exit_signal != -1) { | |
1227 | do_notify_parent(p, p->exit_signal); | |
1228 | if (p->exit_signal != -1) | |
1229 | p = NULL; | |
1230 | } | |
1231 | } | |
1232 | write_unlock_irq(&tasklist_lock); | |
1233 | } | |
1234 | if (p != NULL) | |
1235 | release_task(p); | |
1236 | BUG_ON(!retval); | |
1237 | return retval; | |
1238 | } | |
1239 | ||
1240 | /* | |
1241 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold | |
1242 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1243 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1244 | * released the lock and the system call should return. | |
1245 | */ | |
1246 | static int wait_task_stopped(task_t *p, int delayed_group_leader, int noreap, | |
1247 | struct siginfo __user *infop, | |
1248 | int __user *stat_addr, struct rusage __user *ru) | |
1249 | { | |
1250 | int retval, exit_code; | |
1251 | ||
1252 | if (!p->exit_code) | |
1253 | return 0; | |
1254 | if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && | |
1255 | p->signal && p->signal->group_stop_count > 0) | |
1256 | /* | |
1257 | * A group stop is in progress and this is the group leader. | |
1258 | * We won't report until all threads have stopped. | |
1259 | */ | |
1260 | return 0; | |
1261 | ||
1262 | /* | |
1263 | * Now we are pretty sure this task is interesting. | |
1264 | * Make sure it doesn't get reaped out from under us while we | |
1265 | * give up the lock and then examine it below. We don't want to | |
1266 | * keep holding onto the tasklist_lock while we call getrusage and | |
1267 | * possibly take page faults for user memory. | |
1268 | */ | |
1269 | get_task_struct(p); | |
1270 | read_unlock(&tasklist_lock); | |
1271 | ||
1272 | if (unlikely(noreap)) { | |
1273 | pid_t pid = p->pid; | |
1274 | uid_t uid = p->uid; | |
1275 | int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; | |
1276 | ||
1277 | exit_code = p->exit_code; | |
1278 | if (unlikely(!exit_code) || | |
14bf01bb | 1279 | unlikely(p->state & TASK_TRACED)) |
1da177e4 LT |
1280 | goto bail_ref; |
1281 | return wait_noreap_copyout(p, pid, uid, | |
1282 | why, (exit_code << 8) | 0x7f, | |
1283 | infop, ru); | |
1284 | } | |
1285 | ||
1286 | write_lock_irq(&tasklist_lock); | |
1287 | ||
1288 | /* | |
1289 | * This uses xchg to be atomic with the thread resuming and setting | |
1290 | * it. It must also be done with the write lock held to prevent a | |
1291 | * race with the EXIT_ZOMBIE case. | |
1292 | */ | |
1293 | exit_code = xchg(&p->exit_code, 0); | |
1294 | if (unlikely(p->exit_state)) { | |
1295 | /* | |
1296 | * The task resumed and then died. Let the next iteration | |
1297 | * catch it in EXIT_ZOMBIE. Note that exit_code might | |
1298 | * already be zero here if it resumed and did _exit(0). | |
1299 | * The task itself is dead and won't touch exit_code again; | |
1300 | * other processors in this function are locked out. | |
1301 | */ | |
1302 | p->exit_code = exit_code; | |
1303 | exit_code = 0; | |
1304 | } | |
1305 | if (unlikely(exit_code == 0)) { | |
1306 | /* | |
1307 | * Another thread in this function got to it first, or it | |
1308 | * resumed, or it resumed and then died. | |
1309 | */ | |
1310 | write_unlock_irq(&tasklist_lock); | |
1311 | bail_ref: | |
1312 | put_task_struct(p); | |
1313 | /* | |
1314 | * We are returning to the wait loop without having successfully | |
1315 | * removed the process and having released the lock. We cannot | |
1316 | * continue, since the "p" task pointer is potentially stale. | |
1317 | * | |
1318 | * Return -EAGAIN, and do_wait() will restart the loop from the | |
1319 | * beginning. Do _not_ re-acquire the lock. | |
1320 | */ | |
1321 | return -EAGAIN; | |
1322 | } | |
1323 | ||
1324 | /* move to end of parent's list to avoid starvation */ | |
1325 | remove_parent(p); | |
8fafabd8 | 1326 | add_parent(p); |
1da177e4 LT |
1327 | |
1328 | write_unlock_irq(&tasklist_lock); | |
1329 | ||
1330 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1331 | if (!retval && stat_addr) | |
1332 | retval = put_user((exit_code << 8) | 0x7f, stat_addr); | |
1333 | if (!retval && infop) | |
1334 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1335 | if (!retval && infop) | |
1336 | retval = put_user(0, &infop->si_errno); | |
1337 | if (!retval && infop) | |
1338 | retval = put_user((short)((p->ptrace & PT_PTRACED) | |
1339 | ? CLD_TRAPPED : CLD_STOPPED), | |
1340 | &infop->si_code); | |
1341 | if (!retval && infop) | |
1342 | retval = put_user(exit_code, &infop->si_status); | |
1343 | if (!retval && infop) | |
1344 | retval = put_user(p->pid, &infop->si_pid); | |
1345 | if (!retval && infop) | |
1346 | retval = put_user(p->uid, &infop->si_uid); | |
1347 | if (!retval) | |
1348 | retval = p->pid; | |
1349 | put_task_struct(p); | |
1350 | ||
1351 | BUG_ON(!retval); | |
1352 | return retval; | |
1353 | } | |
1354 | ||
1355 | /* | |
1356 | * Handle do_wait work for one task in a live, non-stopped state. | |
1357 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1358 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1359 | * released the lock and the system call should return. | |
1360 | */ | |
1361 | static int wait_task_continued(task_t *p, int noreap, | |
1362 | struct siginfo __user *infop, | |
1363 | int __user *stat_addr, struct rusage __user *ru) | |
1364 | { | |
1365 | int retval; | |
1366 | pid_t pid; | |
1367 | uid_t uid; | |
1368 | ||
1369 | if (unlikely(!p->signal)) | |
1370 | return 0; | |
1371 | ||
1372 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | |
1373 | return 0; | |
1374 | ||
1375 | spin_lock_irq(&p->sighand->siglock); | |
1376 | /* Re-check with the lock held. */ | |
1377 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1378 | spin_unlock_irq(&p->sighand->siglock); | |
1379 | return 0; | |
1380 | } | |
1381 | if (!noreap) | |
1382 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | |
1383 | spin_unlock_irq(&p->sighand->siglock); | |
1384 | ||
1385 | pid = p->pid; | |
1386 | uid = p->uid; | |
1387 | get_task_struct(p); | |
1388 | read_unlock(&tasklist_lock); | |
1389 | ||
1390 | if (!infop) { | |
1391 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1392 | put_task_struct(p); | |
1393 | if (!retval && stat_addr) | |
1394 | retval = put_user(0xffff, stat_addr); | |
1395 | if (!retval) | |
1396 | retval = p->pid; | |
1397 | } else { | |
1398 | retval = wait_noreap_copyout(p, pid, uid, | |
1399 | CLD_CONTINUED, SIGCONT, | |
1400 | infop, ru); | |
1401 | BUG_ON(retval == 0); | |
1402 | } | |
1403 | ||
1404 | return retval; | |
1405 | } | |
1406 | ||
1407 | ||
1408 | static inline int my_ptrace_child(struct task_struct *p) | |
1409 | { | |
1410 | if (!(p->ptrace & PT_PTRACED)) | |
1411 | return 0; | |
1412 | if (!(p->ptrace & PT_ATTACHED)) | |
1413 | return 1; | |
1414 | /* | |
1415 | * This child was PTRACE_ATTACH'd. We should be seeing it only if | |
1416 | * we are the attacher. If we are the real parent, this is a race | |
1417 | * inside ptrace_attach. It is waiting for the tasklist_lock, | |
1418 | * which we have to switch the parent links, but has already set | |
1419 | * the flags in p->ptrace. | |
1420 | */ | |
1421 | return (p->parent != p->real_parent); | |
1422 | } | |
1423 | ||
1424 | static long do_wait(pid_t pid, int options, struct siginfo __user *infop, | |
1425 | int __user *stat_addr, struct rusage __user *ru) | |
1426 | { | |
1427 | DECLARE_WAITQUEUE(wait, current); | |
1428 | struct task_struct *tsk; | |
1429 | int flag, retval; | |
1430 | ||
1431 | add_wait_queue(¤t->signal->wait_chldexit,&wait); | |
1432 | repeat: | |
1433 | /* | |
1434 | * We will set this flag if we see any child that might later | |
1435 | * match our criteria, even if we are not able to reap it yet. | |
1436 | */ | |
1437 | flag = 0; | |
1438 | current->state = TASK_INTERRUPTIBLE; | |
1439 | read_lock(&tasklist_lock); | |
1440 | tsk = current; | |
1441 | do { | |
1442 | struct task_struct *p; | |
1443 | struct list_head *_p; | |
1444 | int ret; | |
1445 | ||
1446 | list_for_each(_p,&tsk->children) { | |
1447 | p = list_entry(_p,struct task_struct,sibling); | |
1448 | ||
1449 | ret = eligible_child(pid, options, p); | |
1450 | if (!ret) | |
1451 | continue; | |
1452 | ||
1453 | switch (p->state) { | |
1454 | case TASK_TRACED: | |
7f2a5255 RM |
1455 | /* |
1456 | * When we hit the race with PTRACE_ATTACH, | |
1457 | * we will not report this child. But the | |
1458 | * race means it has not yet been moved to | |
1459 | * our ptrace_children list, so we need to | |
1460 | * set the flag here to avoid a spurious ECHILD | |
1461 | * when the race happens with the only child. | |
1462 | */ | |
1463 | flag = 1; | |
1da177e4 LT |
1464 | if (!my_ptrace_child(p)) |
1465 | continue; | |
1466 | /*FALLTHROUGH*/ | |
1467 | case TASK_STOPPED: | |
1468 | /* | |
1469 | * It's stopped now, so it might later | |
1470 | * continue, exit, or stop again. | |
1471 | */ | |
1472 | flag = 1; | |
1473 | if (!(options & WUNTRACED) && | |
1474 | !my_ptrace_child(p)) | |
1475 | continue; | |
1476 | retval = wait_task_stopped(p, ret == 2, | |
1477 | (options & WNOWAIT), | |
1478 | infop, | |
1479 | stat_addr, ru); | |
1480 | if (retval == -EAGAIN) | |
1481 | goto repeat; | |
1482 | if (retval != 0) /* He released the lock. */ | |
1483 | goto end; | |
1484 | break; | |
1485 | default: | |
1486 | // case EXIT_DEAD: | |
1487 | if (p->exit_state == EXIT_DEAD) | |
1488 | continue; | |
1489 | // case EXIT_ZOMBIE: | |
1490 | if (p->exit_state == EXIT_ZOMBIE) { | |
1491 | /* | |
1492 | * Eligible but we cannot release | |
1493 | * it yet: | |
1494 | */ | |
1495 | if (ret == 2) | |
1496 | goto check_continued; | |
1497 | if (!likely(options & WEXITED)) | |
1498 | continue; | |
1499 | retval = wait_task_zombie( | |
1500 | p, (options & WNOWAIT), | |
1501 | infop, stat_addr, ru); | |
1502 | /* He released the lock. */ | |
1503 | if (retval != 0) | |
1504 | goto end; | |
1505 | break; | |
1506 | } | |
1507 | check_continued: | |
1508 | /* | |
1509 | * It's running now, so it might later | |
1510 | * exit, stop, or stop and then continue. | |
1511 | */ | |
1512 | flag = 1; | |
1513 | if (!unlikely(options & WCONTINUED)) | |
1514 | continue; | |
1515 | retval = wait_task_continued( | |
1516 | p, (options & WNOWAIT), | |
1517 | infop, stat_addr, ru); | |
1518 | if (retval != 0) /* He released the lock. */ | |
1519 | goto end; | |
1520 | break; | |
1521 | } | |
1522 | } | |
1523 | if (!flag) { | |
1524 | list_for_each(_p, &tsk->ptrace_children) { | |
1525 | p = list_entry(_p, struct task_struct, | |
1526 | ptrace_list); | |
1527 | if (!eligible_child(pid, options, p)) | |
1528 | continue; | |
1529 | flag = 1; | |
1530 | break; | |
1531 | } | |
1532 | } | |
1533 | if (options & __WNOTHREAD) | |
1534 | break; | |
1535 | tsk = next_thread(tsk); | |
1536 | if (tsk->signal != current->signal) | |
1537 | BUG(); | |
1538 | } while (tsk != current); | |
1539 | ||
1540 | read_unlock(&tasklist_lock); | |
1541 | if (flag) { | |
1542 | retval = 0; | |
1543 | if (options & WNOHANG) | |
1544 | goto end; | |
1545 | retval = -ERESTARTSYS; | |
1546 | if (signal_pending(current)) | |
1547 | goto end; | |
1548 | schedule(); | |
1549 | goto repeat; | |
1550 | } | |
1551 | retval = -ECHILD; | |
1552 | end: | |
1553 | current->state = TASK_RUNNING; | |
1554 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | |
1555 | if (infop) { | |
1556 | if (retval > 0) | |
1557 | retval = 0; | |
1558 | else { | |
1559 | /* | |
1560 | * For a WNOHANG return, clear out all the fields | |
1561 | * we would set so the user can easily tell the | |
1562 | * difference. | |
1563 | */ | |
1564 | if (!retval) | |
1565 | retval = put_user(0, &infop->si_signo); | |
1566 | if (!retval) | |
1567 | retval = put_user(0, &infop->si_errno); | |
1568 | if (!retval) | |
1569 | retval = put_user(0, &infop->si_code); | |
1570 | if (!retval) | |
1571 | retval = put_user(0, &infop->si_pid); | |
1572 | if (!retval) | |
1573 | retval = put_user(0, &infop->si_uid); | |
1574 | if (!retval) | |
1575 | retval = put_user(0, &infop->si_status); | |
1576 | } | |
1577 | } | |
1578 | return retval; | |
1579 | } | |
1580 | ||
1581 | asmlinkage long sys_waitid(int which, pid_t pid, | |
1582 | struct siginfo __user *infop, int options, | |
1583 | struct rusage __user *ru) | |
1584 | { | |
1585 | long ret; | |
1586 | ||
1587 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | |
1588 | return -EINVAL; | |
1589 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1590 | return -EINVAL; | |
1591 | ||
1592 | switch (which) { | |
1593 | case P_ALL: | |
1594 | pid = -1; | |
1595 | break; | |
1596 | case P_PID: | |
1597 | if (pid <= 0) | |
1598 | return -EINVAL; | |
1599 | break; | |
1600 | case P_PGID: | |
1601 | if (pid <= 0) | |
1602 | return -EINVAL; | |
1603 | pid = -pid; | |
1604 | break; | |
1605 | default: | |
1606 | return -EINVAL; | |
1607 | } | |
1608 | ||
1609 | ret = do_wait(pid, options, infop, NULL, ru); | |
1610 | ||
1611 | /* avoid REGPARM breakage on x86: */ | |
1612 | prevent_tail_call(ret); | |
1613 | return ret; | |
1614 | } | |
1615 | ||
1616 | asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, | |
1617 | int options, struct rusage __user *ru) | |
1618 | { | |
1619 | long ret; | |
1620 | ||
1621 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1622 | __WNOTHREAD|__WCLONE|__WALL)) | |
1623 | return -EINVAL; | |
1624 | ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); | |
1625 | ||
1626 | /* avoid REGPARM breakage on x86: */ | |
1627 | prevent_tail_call(ret); | |
1628 | return ret; | |
1629 | } | |
1630 | ||
1631 | #ifdef __ARCH_WANT_SYS_WAITPID | |
1632 | ||
1633 | /* | |
1634 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1635 | * implemented by calling sys_wait4() from libc.a. | |
1636 | */ | |
1637 | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) | |
1638 | { | |
1639 | return sys_wait4(pid, stat_addr, options, NULL); | |
1640 | } | |
1641 | ||
1642 | #endif |