]>
Commit | Line | Data |
---|---|---|
2874c5fd | 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
1da177e4 LT |
2 | /* |
3 | * Routines having to do with the 'struct sk_buff' memory handlers. | |
4 | * | |
113aa838 | 5 | * Authors: Alan Cox <[email protected]> |
1da177e4 LT |
6 | * Florian La Roche <[email protected]> |
7 | * | |
1da177e4 LT |
8 | * Fixes: |
9 | * Alan Cox : Fixed the worst of the load | |
10 | * balancer bugs. | |
11 | * Dave Platt : Interrupt stacking fix. | |
12 | * Richard Kooijman : Timestamp fixes. | |
13 | * Alan Cox : Changed buffer format. | |
14 | * Alan Cox : destructor hook for AF_UNIX etc. | |
15 | * Linus Torvalds : Better skb_clone. | |
16 | * Alan Cox : Added skb_copy. | |
17 | * Alan Cox : Added all the changed routines Linus | |
18 | * only put in the headers | |
19 | * Ray VanTassle : Fixed --skb->lock in free | |
20 | * Alan Cox : skb_copy copy arp field | |
21 | * Andi Kleen : slabified it. | |
22 | * Robert Olsson : Removed skb_head_pool | |
23 | * | |
24 | * NOTE: | |
25 | * The __skb_ routines should be called with interrupts | |
26 | * disabled, or you better be *real* sure that the operation is atomic | |
27 | * with respect to whatever list is being frobbed (e.g. via lock_sock() | |
28 | * or via disabling bottom half handlers, etc). | |
1da177e4 LT |
29 | */ |
30 | ||
31 | /* | |
32 | * The functions in this file will not compile correctly with gcc 2.4.x | |
33 | */ | |
34 | ||
e005d193 JP |
35 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
36 | ||
1da177e4 LT |
37 | #include <linux/module.h> |
38 | #include <linux/types.h> | |
39 | #include <linux/kernel.h> | |
1da177e4 LT |
40 | #include <linux/mm.h> |
41 | #include <linux/interrupt.h> | |
42 | #include <linux/in.h> | |
43 | #include <linux/inet.h> | |
44 | #include <linux/slab.h> | |
de960aa9 FW |
45 | #include <linux/tcp.h> |
46 | #include <linux/udp.h> | |
90017acc | 47 | #include <linux/sctp.h> |
1da177e4 LT |
48 | #include <linux/netdevice.h> |
49 | #ifdef CONFIG_NET_CLS_ACT | |
50 | #include <net/pkt_sched.h> | |
51 | #endif | |
52 | #include <linux/string.h> | |
53 | #include <linux/skbuff.h> | |
9c55e01c | 54 | #include <linux/splice.h> |
1da177e4 LT |
55 | #include <linux/cache.h> |
56 | #include <linux/rtnetlink.h> | |
57 | #include <linux/init.h> | |
716ea3a7 | 58 | #include <linux/scatterlist.h> |
ac45f602 | 59 | #include <linux/errqueue.h> |
268bb0ce | 60 | #include <linux/prefetch.h> |
0d5501c1 | 61 | #include <linux/if_vlan.h> |
2a2ea508 | 62 | #include <linux/mpls.h> |
183f47fc | 63 | #include <linux/kcov.h> |
1da177e4 LT |
64 | |
65 | #include <net/protocol.h> | |
66 | #include <net/dst.h> | |
67 | #include <net/sock.h> | |
68 | #include <net/checksum.h> | |
ed1f50c3 | 69 | #include <net/ip6_checksum.h> |
1da177e4 | 70 | #include <net/xfrm.h> |
8822e270 | 71 | #include <net/mpls.h> |
3ee17bc7 | 72 | #include <net/mptcp.h> |
6a5bcd84 | 73 | #include <net/page_pool.h> |
1da177e4 | 74 | |
7c0f6ba6 | 75 | #include <linux/uaccess.h> |
ad8d75ff | 76 | #include <trace/events/skb.h> |
51c56b00 | 77 | #include <linux/highmem.h> |
b245be1f WB |
78 | #include <linux/capability.h> |
79 | #include <linux/user_namespace.h> | |
2544af03 | 80 | #include <linux/indirect_call_wrapper.h> |
a1f8e7f7 | 81 | |
7b7ed885 BVA |
82 | #include "datagram.h" |
83 | ||
08009a76 AD |
84 | struct kmem_cache *skbuff_head_cache __ro_after_init; |
85 | static struct kmem_cache *skbuff_fclone_cache __ro_after_init; | |
df5042f4 FW |
86 | #ifdef CONFIG_SKB_EXTENSIONS |
87 | static struct kmem_cache *skbuff_ext_cache __ro_after_init; | |
88 | #endif | |
5f74f82e HWR |
89 | int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS; |
90 | EXPORT_SYMBOL(sysctl_max_skb_frags); | |
1da177e4 | 91 | |
1da177e4 | 92 | /** |
f05de73b JS |
93 | * skb_panic - private function for out-of-line support |
94 | * @skb: buffer | |
95 | * @sz: size | |
96 | * @addr: address | |
99d5851e | 97 | * @msg: skb_over_panic or skb_under_panic |
1da177e4 | 98 | * |
f05de73b JS |
99 | * Out-of-line support for skb_put() and skb_push(). |
100 | * Called via the wrapper skb_over_panic() or skb_under_panic(). | |
101 | * Keep out of line to prevent kernel bloat. | |
102 | * __builtin_return_address is not used because it is not always reliable. | |
1da177e4 | 103 | */ |
f05de73b | 104 | static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, |
99d5851e | 105 | const char msg[]) |
1da177e4 | 106 | { |
41a46913 | 107 | pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", |
99d5851e | 108 | msg, addr, skb->len, sz, skb->head, skb->data, |
e005d193 JP |
109 | (unsigned long)skb->tail, (unsigned long)skb->end, |
110 | skb->dev ? skb->dev->name : "<NULL>"); | |
1da177e4 LT |
111 | BUG(); |
112 | } | |
113 | ||
f05de73b | 114 | static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) |
1da177e4 | 115 | { |
f05de73b | 116 | skb_panic(skb, sz, addr, __func__); |
1da177e4 LT |
117 | } |
118 | ||
f05de73b JS |
119 | static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) |
120 | { | |
121 | skb_panic(skb, sz, addr, __func__); | |
122 | } | |
c93bdd0e | 123 | |
50fad4b5 | 124 | #define NAPI_SKB_CACHE_SIZE 64 |
f450d539 AL |
125 | #define NAPI_SKB_CACHE_BULK 16 |
126 | #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2) | |
50fad4b5 AL |
127 | |
128 | struct napi_alloc_cache { | |
129 | struct page_frag_cache page; | |
130 | unsigned int skb_count; | |
131 | void *skb_cache[NAPI_SKB_CACHE_SIZE]; | |
132 | }; | |
133 | ||
134 | static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); | |
135 | static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache); | |
136 | ||
137 | static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask, | |
138 | unsigned int align_mask) | |
139 | { | |
140 | struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); | |
141 | ||
142 | return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask); | |
143 | } | |
144 | ||
145 | void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) | |
146 | { | |
147 | fragsz = SKB_DATA_ALIGN(fragsz); | |
148 | ||
149 | return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); | |
150 | } | |
151 | EXPORT_SYMBOL(__napi_alloc_frag_align); | |
152 | ||
153 | void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) | |
154 | { | |
155 | struct page_frag_cache *nc; | |
156 | void *data; | |
157 | ||
158 | fragsz = SKB_DATA_ALIGN(fragsz); | |
159 | if (in_irq() || irqs_disabled()) { | |
160 | nc = this_cpu_ptr(&netdev_alloc_cache); | |
161 | data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask); | |
162 | } else { | |
163 | local_bh_disable(); | |
164 | data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask); | |
165 | local_bh_enable(); | |
166 | } | |
167 | return data; | |
168 | } | |
169 | EXPORT_SYMBOL(__netdev_alloc_frag_align); | |
170 | ||
f450d539 AL |
171 | static struct sk_buff *napi_skb_cache_get(void) |
172 | { | |
173 | struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); | |
174 | struct sk_buff *skb; | |
175 | ||
176 | if (unlikely(!nc->skb_count)) | |
177 | nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache, | |
178 | GFP_ATOMIC, | |
179 | NAPI_SKB_CACHE_BULK, | |
180 | nc->skb_cache); | |
181 | if (unlikely(!nc->skb_count)) | |
182 | return NULL; | |
183 | ||
184 | skb = nc->skb_cache[--nc->skb_count]; | |
185 | kasan_unpoison_object_data(skbuff_head_cache, skb); | |
186 | ||
187 | return skb; | |
188 | } | |
189 | ||
ba0509b6 | 190 | /* Caller must provide SKB that is memset cleared */ |
483126b3 AL |
191 | static void __build_skb_around(struct sk_buff *skb, void *data, |
192 | unsigned int frag_size) | |
ba0509b6 JDB |
193 | { |
194 | struct skb_shared_info *shinfo; | |
195 | unsigned int size = frag_size ? : ksize(data); | |
196 | ||
197 | size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | |
198 | ||
199 | /* Assumes caller memset cleared SKB */ | |
200 | skb->truesize = SKB_TRUESIZE(size); | |
201 | refcount_set(&skb->users, 1); | |
202 | skb->head = data; | |
203 | skb->data = data; | |
204 | skb_reset_tail_pointer(skb); | |
205 | skb->end = skb->tail + size; | |
206 | skb->mac_header = (typeof(skb->mac_header))~0U; | |
207 | skb->transport_header = (typeof(skb->transport_header))~0U; | |
208 | ||
209 | /* make sure we initialize shinfo sequentially */ | |
210 | shinfo = skb_shinfo(skb); | |
211 | memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); | |
212 | atomic_set(&shinfo->dataref, 1); | |
213 | ||
6370cc3b | 214 | skb_set_kcov_handle(skb, kcov_common_handle()); |
ba0509b6 JDB |
215 | } |
216 | ||
b2b5ce9d | 217 | /** |
2ea2f62c | 218 | * __build_skb - build a network buffer |
b2b5ce9d | 219 | * @data: data buffer provided by caller |
2ea2f62c | 220 | * @frag_size: size of data, or 0 if head was kmalloced |
b2b5ce9d ED |
221 | * |
222 | * Allocate a new &sk_buff. Caller provides space holding head and | |
deceb4c0 | 223 | * skb_shared_info. @data must have been allocated by kmalloc() only if |
2ea2f62c ED |
224 | * @frag_size is 0, otherwise data should come from the page allocator |
225 | * or vmalloc() | |
b2b5ce9d ED |
226 | * The return is the new skb buffer. |
227 | * On a failure the return is %NULL, and @data is not freed. | |
228 | * Notes : | |
229 | * Before IO, driver allocates only data buffer where NIC put incoming frame | |
230 | * Driver should add room at head (NET_SKB_PAD) and | |
231 | * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) | |
232 | * After IO, driver calls build_skb(), to allocate sk_buff and populate it | |
233 | * before giving packet to stack. | |
234 | * RX rings only contains data buffers, not full skbs. | |
235 | */ | |
2ea2f62c | 236 | struct sk_buff *__build_skb(void *data, unsigned int frag_size) |
b2b5ce9d | 237 | { |
b2b5ce9d | 238 | struct sk_buff *skb; |
b2b5ce9d ED |
239 | |
240 | skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC); | |
ba0509b6 | 241 | if (unlikely(!skb)) |
b2b5ce9d ED |
242 | return NULL; |
243 | ||
b2b5ce9d | 244 | memset(skb, 0, offsetof(struct sk_buff, tail)); |
483126b3 | 245 | __build_skb_around(skb, data, frag_size); |
b2b5ce9d | 246 | |
483126b3 | 247 | return skb; |
b2b5ce9d | 248 | } |
2ea2f62c ED |
249 | |
250 | /* build_skb() is wrapper over __build_skb(), that specifically | |
251 | * takes care of skb->head and skb->pfmemalloc | |
252 | * This means that if @frag_size is not zero, then @data must be backed | |
253 | * by a page fragment, not kmalloc() or vmalloc() | |
254 | */ | |
255 | struct sk_buff *build_skb(void *data, unsigned int frag_size) | |
256 | { | |
257 | struct sk_buff *skb = __build_skb(data, frag_size); | |
258 | ||
259 | if (skb && frag_size) { | |
260 | skb->head_frag = 1; | |
2f064f34 | 261 | if (page_is_pfmemalloc(virt_to_head_page(data))) |
2ea2f62c ED |
262 | skb->pfmemalloc = 1; |
263 | } | |
264 | return skb; | |
265 | } | |
b2b5ce9d ED |
266 | EXPORT_SYMBOL(build_skb); |
267 | ||
ba0509b6 JDB |
268 | /** |
269 | * build_skb_around - build a network buffer around provided skb | |
270 | * @skb: sk_buff provide by caller, must be memset cleared | |
271 | * @data: data buffer provided by caller | |
272 | * @frag_size: size of data, or 0 if head was kmalloced | |
273 | */ | |
274 | struct sk_buff *build_skb_around(struct sk_buff *skb, | |
275 | void *data, unsigned int frag_size) | |
276 | { | |
277 | if (unlikely(!skb)) | |
278 | return NULL; | |
279 | ||
483126b3 | 280 | __build_skb_around(skb, data, frag_size); |
ba0509b6 | 281 | |
483126b3 | 282 | if (frag_size) { |
ba0509b6 JDB |
283 | skb->head_frag = 1; |
284 | if (page_is_pfmemalloc(virt_to_head_page(data))) | |
285 | skb->pfmemalloc = 1; | |
286 | } | |
287 | return skb; | |
288 | } | |
289 | EXPORT_SYMBOL(build_skb_around); | |
290 | ||
f450d539 AL |
291 | /** |
292 | * __napi_build_skb - build a network buffer | |
293 | * @data: data buffer provided by caller | |
294 | * @frag_size: size of data, or 0 if head was kmalloced | |
295 | * | |
296 | * Version of __build_skb() that uses NAPI percpu caches to obtain | |
297 | * skbuff_head instead of inplace allocation. | |
298 | * | |
299 | * Returns a new &sk_buff on success, %NULL on allocation failure. | |
300 | */ | |
301 | static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) | |
302 | { | |
303 | struct sk_buff *skb; | |
304 | ||
305 | skb = napi_skb_cache_get(); | |
306 | if (unlikely(!skb)) | |
307 | return NULL; | |
308 | ||
309 | memset(skb, 0, offsetof(struct sk_buff, tail)); | |
310 | __build_skb_around(skb, data, frag_size); | |
311 | ||
312 | return skb; | |
313 | } | |
314 | ||
315 | /** | |
316 | * napi_build_skb - build a network buffer | |
317 | * @data: data buffer provided by caller | |
318 | * @frag_size: size of data, or 0 if head was kmalloced | |
319 | * | |
320 | * Version of __napi_build_skb() that takes care of skb->head_frag | |
321 | * and skb->pfmemalloc when the data is a page or page fragment. | |
322 | * | |
323 | * Returns a new &sk_buff on success, %NULL on allocation failure. | |
324 | */ | |
325 | struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) | |
326 | { | |
327 | struct sk_buff *skb = __napi_build_skb(data, frag_size); | |
328 | ||
329 | if (likely(skb) && frag_size) { | |
330 | skb->head_frag = 1; | |
331 | skb_propagate_pfmemalloc(virt_to_head_page(data), skb); | |
332 | } | |
333 | ||
334 | return skb; | |
335 | } | |
336 | EXPORT_SYMBOL(napi_build_skb); | |
337 | ||
5381b23d AL |
338 | /* |
339 | * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells | |
340 | * the caller if emergency pfmemalloc reserves are being used. If it is and | |
341 | * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves | |
342 | * may be used. Otherwise, the packet data may be discarded until enough | |
343 | * memory is free | |
344 | */ | |
ef28095f AL |
345 | static void *kmalloc_reserve(size_t size, gfp_t flags, int node, |
346 | bool *pfmemalloc) | |
5381b23d AL |
347 | { |
348 | void *obj; | |
349 | bool ret_pfmemalloc = false; | |
350 | ||
351 | /* | |
352 | * Try a regular allocation, when that fails and we're not entitled | |
353 | * to the reserves, fail. | |
354 | */ | |
355 | obj = kmalloc_node_track_caller(size, | |
356 | flags | __GFP_NOMEMALLOC | __GFP_NOWARN, | |
357 | node); | |
358 | if (obj || !(gfp_pfmemalloc_allowed(flags))) | |
359 | goto out; | |
360 | ||
361 | /* Try again but now we are using pfmemalloc reserves */ | |
362 | ret_pfmemalloc = true; | |
363 | obj = kmalloc_node_track_caller(size, flags, node); | |
364 | ||
365 | out: | |
366 | if (pfmemalloc) | |
367 | *pfmemalloc = ret_pfmemalloc; | |
368 | ||
369 | return obj; | |
370 | } | |
371 | ||
372 | /* Allocate a new skbuff. We do this ourselves so we can fill in a few | |
373 | * 'private' fields and also do memory statistics to find all the | |
374 | * [BEEP] leaks. | |
375 | * | |
376 | */ | |
377 | ||
378 | /** | |
379 | * __alloc_skb - allocate a network buffer | |
380 | * @size: size to allocate | |
381 | * @gfp_mask: allocation mask | |
382 | * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache | |
383 | * instead of head cache and allocate a cloned (child) skb. | |
384 | * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for | |
385 | * allocations in case the data is required for writeback | |
386 | * @node: numa node to allocate memory on | |
387 | * | |
388 | * Allocate a new &sk_buff. The returned buffer has no headroom and a | |
389 | * tail room of at least size bytes. The object has a reference count | |
390 | * of one. The return is the buffer. On a failure the return is %NULL. | |
391 | * | |
392 | * Buffers may only be allocated from interrupts using a @gfp_mask of | |
393 | * %GFP_ATOMIC. | |
394 | */ | |
395 | struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, | |
396 | int flags, int node) | |
397 | { | |
398 | struct kmem_cache *cache; | |
5381b23d AL |
399 | struct sk_buff *skb; |
400 | u8 *data; | |
401 | bool pfmemalloc; | |
402 | ||
403 | cache = (flags & SKB_ALLOC_FCLONE) | |
404 | ? skbuff_fclone_cache : skbuff_head_cache; | |
405 | ||
406 | if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) | |
407 | gfp_mask |= __GFP_MEMALLOC; | |
408 | ||
409 | /* Get the HEAD */ | |
d13612b5 AL |
410 | if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI && |
411 | likely(node == NUMA_NO_NODE || node == numa_mem_id())) | |
412 | skb = napi_skb_cache_get(); | |
413 | else | |
414 | skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); | |
df1ae022 AL |
415 | if (unlikely(!skb)) |
416 | return NULL; | |
5381b23d AL |
417 | prefetchw(skb); |
418 | ||
419 | /* We do our best to align skb_shared_info on a separate cache | |
420 | * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives | |
421 | * aligned memory blocks, unless SLUB/SLAB debug is enabled. | |
422 | * Both skb->head and skb_shared_info are cache line aligned. | |
423 | */ | |
424 | size = SKB_DATA_ALIGN(size); | |
425 | size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | |
426 | data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc); | |
df1ae022 | 427 | if (unlikely(!data)) |
5381b23d AL |
428 | goto nodata; |
429 | /* kmalloc(size) might give us more room than requested. | |
430 | * Put skb_shared_info exactly at the end of allocated zone, | |
431 | * to allow max possible filling before reallocation. | |
432 | */ | |
433 | size = SKB_WITH_OVERHEAD(ksize(data)); | |
434 | prefetchw(data + size); | |
435 | ||
436 | /* | |
437 | * Only clear those fields we need to clear, not those that we will | |
438 | * actually initialise below. Hence, don't put any more fields after | |
439 | * the tail pointer in struct sk_buff! | |
440 | */ | |
441 | memset(skb, 0, offsetof(struct sk_buff, tail)); | |
f9d6725b | 442 | __build_skb_around(skb, data, 0); |
5381b23d | 443 | skb->pfmemalloc = pfmemalloc; |
5381b23d AL |
444 | |
445 | if (flags & SKB_ALLOC_FCLONE) { | |
446 | struct sk_buff_fclones *fclones; | |
447 | ||
448 | fclones = container_of(skb, struct sk_buff_fclones, skb1); | |
449 | ||
450 | skb->fclone = SKB_FCLONE_ORIG; | |
451 | refcount_set(&fclones->fclone_ref, 1); | |
452 | ||
453 | fclones->skb2.fclone = SKB_FCLONE_CLONE; | |
454 | } | |
455 | ||
5381b23d | 456 | return skb; |
df1ae022 | 457 | |
5381b23d AL |
458 | nodata: |
459 | kmem_cache_free(cache, skb); | |
df1ae022 | 460 | return NULL; |
5381b23d AL |
461 | } |
462 | EXPORT_SYMBOL(__alloc_skb); | |
463 | ||
fd11a83d AD |
464 | /** |
465 | * __netdev_alloc_skb - allocate an skbuff for rx on a specific device | |
466 | * @dev: network device to receive on | |
d7499160 | 467 | * @len: length to allocate |
fd11a83d AD |
468 | * @gfp_mask: get_free_pages mask, passed to alloc_skb |
469 | * | |
470 | * Allocate a new &sk_buff and assign it a usage count of one. The | |
471 | * buffer has NET_SKB_PAD headroom built in. Users should allocate | |
472 | * the headroom they think they need without accounting for the | |
473 | * built in space. The built in space is used for optimisations. | |
474 | * | |
475 | * %NULL is returned if there is no free memory. | |
476 | */ | |
9451980a AD |
477 | struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, |
478 | gfp_t gfp_mask) | |
fd11a83d | 479 | { |
b63ae8ca | 480 | struct page_frag_cache *nc; |
fd11a83d | 481 | struct sk_buff *skb; |
9451980a AD |
482 | bool pfmemalloc; |
483 | void *data; | |
484 | ||
485 | len += NET_SKB_PAD; | |
fd11a83d | 486 | |
66c55602 AL |
487 | /* If requested length is either too small or too big, |
488 | * we use kmalloc() for skb->head allocation. | |
489 | */ | |
490 | if (len <= SKB_WITH_OVERHEAD(1024) || | |
491 | len > SKB_WITH_OVERHEAD(PAGE_SIZE) || | |
d0164adc | 492 | (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { |
a080e7bd AD |
493 | skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); |
494 | if (!skb) | |
495 | goto skb_fail; | |
496 | goto skb_success; | |
497 | } | |
fd11a83d | 498 | |
9451980a AD |
499 | len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
500 | len = SKB_DATA_ALIGN(len); | |
501 | ||
502 | if (sk_memalloc_socks()) | |
503 | gfp_mask |= __GFP_MEMALLOC; | |
504 | ||
92dcabd7 SAS |
505 | if (in_irq() || irqs_disabled()) { |
506 | nc = this_cpu_ptr(&netdev_alloc_cache); | |
507 | data = page_frag_alloc(nc, len, gfp_mask); | |
508 | pfmemalloc = nc->pfmemalloc; | |
509 | } else { | |
510 | local_bh_disable(); | |
511 | nc = this_cpu_ptr(&napi_alloc_cache.page); | |
512 | data = page_frag_alloc(nc, len, gfp_mask); | |
513 | pfmemalloc = nc->pfmemalloc; | |
514 | local_bh_enable(); | |
515 | } | |
9451980a AD |
516 | |
517 | if (unlikely(!data)) | |
518 | return NULL; | |
519 | ||
520 | skb = __build_skb(data, len); | |
521 | if (unlikely(!skb)) { | |
181edb2b | 522 | skb_free_frag(data); |
9451980a | 523 | return NULL; |
7b2e497a | 524 | } |
fd11a83d | 525 | |
9451980a AD |
526 | if (pfmemalloc) |
527 | skb->pfmemalloc = 1; | |
528 | skb->head_frag = 1; | |
529 | ||
a080e7bd | 530 | skb_success: |
9451980a AD |
531 | skb_reserve(skb, NET_SKB_PAD); |
532 | skb->dev = dev; | |
533 | ||
a080e7bd | 534 | skb_fail: |
8af27456 CH |
535 | return skb; |
536 | } | |
b4ac530f | 537 | EXPORT_SYMBOL(__netdev_alloc_skb); |
1da177e4 | 538 | |
fd11a83d AD |
539 | /** |
540 | * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance | |
541 | * @napi: napi instance this buffer was allocated for | |
d7499160 | 542 | * @len: length to allocate |
fd11a83d AD |
543 | * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages |
544 | * | |
545 | * Allocate a new sk_buff for use in NAPI receive. This buffer will | |
546 | * attempt to allocate the head from a special reserved region used | |
547 | * only for NAPI Rx allocation. By doing this we can save several | |
548 | * CPU cycles by avoiding having to disable and re-enable IRQs. | |
549 | * | |
550 | * %NULL is returned if there is no free memory. | |
551 | */ | |
9451980a AD |
552 | struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len, |
553 | gfp_t gfp_mask) | |
fd11a83d | 554 | { |
3226b158 | 555 | struct napi_alloc_cache *nc; |
fd11a83d | 556 | struct sk_buff *skb; |
9451980a AD |
557 | void *data; |
558 | ||
559 | len += NET_SKB_PAD + NET_IP_ALIGN; | |
fd11a83d | 560 | |
3226b158 ED |
561 | /* If requested length is either too small or too big, |
562 | * we use kmalloc() for skb->head allocation. | |
563 | */ | |
564 | if (len <= SKB_WITH_OVERHEAD(1024) || | |
565 | len > SKB_WITH_OVERHEAD(PAGE_SIZE) || | |
d0164adc | 566 | (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { |
cfb8ec65 AL |
567 | skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, |
568 | NUMA_NO_NODE); | |
a080e7bd AD |
569 | if (!skb) |
570 | goto skb_fail; | |
571 | goto skb_success; | |
572 | } | |
9451980a | 573 | |
3226b158 | 574 | nc = this_cpu_ptr(&napi_alloc_cache); |
9451980a AD |
575 | len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
576 | len = SKB_DATA_ALIGN(len); | |
577 | ||
578 | if (sk_memalloc_socks()) | |
579 | gfp_mask |= __GFP_MEMALLOC; | |
fd11a83d | 580 | |
8c2dd3e4 | 581 | data = page_frag_alloc(&nc->page, len, gfp_mask); |
9451980a AD |
582 | if (unlikely(!data)) |
583 | return NULL; | |
584 | ||
cfb8ec65 | 585 | skb = __napi_build_skb(data, len); |
9451980a | 586 | if (unlikely(!skb)) { |
181edb2b | 587 | skb_free_frag(data); |
9451980a | 588 | return NULL; |
fd11a83d AD |
589 | } |
590 | ||
795bb1c0 | 591 | if (nc->page.pfmemalloc) |
9451980a AD |
592 | skb->pfmemalloc = 1; |
593 | skb->head_frag = 1; | |
594 | ||
a080e7bd | 595 | skb_success: |
9451980a AD |
596 | skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); |
597 | skb->dev = napi->dev; | |
598 | ||
a080e7bd | 599 | skb_fail: |
fd11a83d AD |
600 | return skb; |
601 | } | |
602 | EXPORT_SYMBOL(__napi_alloc_skb); | |
603 | ||
654bed16 | 604 | void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, |
50269e19 | 605 | int size, unsigned int truesize) |
654bed16 PZ |
606 | { |
607 | skb_fill_page_desc(skb, i, page, off, size); | |
608 | skb->len += size; | |
609 | skb->data_len += size; | |
50269e19 | 610 | skb->truesize += truesize; |
654bed16 PZ |
611 | } |
612 | EXPORT_SYMBOL(skb_add_rx_frag); | |
613 | ||
f8e617e1 JW |
614 | void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, |
615 | unsigned int truesize) | |
616 | { | |
617 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | |
618 | ||
619 | skb_frag_size_add(frag, size); | |
620 | skb->len += size; | |
621 | skb->data_len += size; | |
622 | skb->truesize += truesize; | |
623 | } | |
624 | EXPORT_SYMBOL(skb_coalesce_rx_frag); | |
625 | ||
27b437c8 | 626 | static void skb_drop_list(struct sk_buff **listp) |
1da177e4 | 627 | { |
bd8a7036 | 628 | kfree_skb_list(*listp); |
27b437c8 | 629 | *listp = NULL; |
1da177e4 LT |
630 | } |
631 | ||
27b437c8 HX |
632 | static inline void skb_drop_fraglist(struct sk_buff *skb) |
633 | { | |
634 | skb_drop_list(&skb_shinfo(skb)->frag_list); | |
635 | } | |
636 | ||
1da177e4 LT |
637 | static void skb_clone_fraglist(struct sk_buff *skb) |
638 | { | |
639 | struct sk_buff *list; | |
640 | ||
fbb398a8 | 641 | skb_walk_frags(skb, list) |
1da177e4 LT |
642 | skb_get(list); |
643 | } | |
644 | ||
d3836f21 ED |
645 | static void skb_free_head(struct sk_buff *skb) |
646 | { | |
181edb2b AD |
647 | unsigned char *head = skb->head; |
648 | ||
6a5bcd84 IA |
649 | if (skb->head_frag) { |
650 | if (skb_pp_recycle(skb, head)) | |
651 | return; | |
181edb2b | 652 | skb_free_frag(head); |
6a5bcd84 | 653 | } else { |
181edb2b | 654 | kfree(head); |
6a5bcd84 | 655 | } |
d3836f21 ED |
656 | } |
657 | ||
5bba1712 | 658 | static void skb_release_data(struct sk_buff *skb) |
1da177e4 | 659 | { |
ff04a771 ED |
660 | struct skb_shared_info *shinfo = skb_shinfo(skb); |
661 | int i; | |
1da177e4 | 662 | |
ff04a771 ED |
663 | if (skb->cloned && |
664 | atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1, | |
665 | &shinfo->dataref)) | |
666 | return; | |
a6686f2f | 667 | |
70c43167 JL |
668 | skb_zcopy_clear(skb, true); |
669 | ||
ff04a771 | 670 | for (i = 0; i < shinfo->nr_frags; i++) |
6a5bcd84 | 671 | __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); |
a6686f2f | 672 | |
ff04a771 ED |
673 | if (shinfo->frag_list) |
674 | kfree_skb_list(shinfo->frag_list); | |
675 | ||
676 | skb_free_head(skb); | |
1da177e4 LT |
677 | } |
678 | ||
679 | /* | |
680 | * Free an skbuff by memory without cleaning the state. | |
681 | */ | |
2d4baff8 | 682 | static void kfree_skbmem(struct sk_buff *skb) |
1da177e4 | 683 | { |
d0bf4a9e | 684 | struct sk_buff_fclones *fclones; |
d179cd12 | 685 | |
d179cd12 DM |
686 | switch (skb->fclone) { |
687 | case SKB_FCLONE_UNAVAILABLE: | |
688 | kmem_cache_free(skbuff_head_cache, skb); | |
6ffe75eb | 689 | return; |
d179cd12 DM |
690 | |
691 | case SKB_FCLONE_ORIG: | |
d0bf4a9e | 692 | fclones = container_of(skb, struct sk_buff_fclones, skb1); |
d179cd12 | 693 | |
6ffe75eb ED |
694 | /* We usually free the clone (TX completion) before original skb |
695 | * This test would have no chance to be true for the clone, | |
696 | * while here, branch prediction will be good. | |
d179cd12 | 697 | */ |
2638595a | 698 | if (refcount_read(&fclones->fclone_ref) == 1) |
6ffe75eb ED |
699 | goto fastpath; |
700 | break; | |
e7820e39 | 701 | |
6ffe75eb ED |
702 | default: /* SKB_FCLONE_CLONE */ |
703 | fclones = container_of(skb, struct sk_buff_fclones, skb2); | |
d179cd12 | 704 | break; |
3ff50b79 | 705 | } |
2638595a | 706 | if (!refcount_dec_and_test(&fclones->fclone_ref)) |
6ffe75eb ED |
707 | return; |
708 | fastpath: | |
709 | kmem_cache_free(skbuff_fclone_cache, fclones); | |
1da177e4 LT |
710 | } |
711 | ||
0a463c78 | 712 | void skb_release_head_state(struct sk_buff *skb) |
1da177e4 | 713 | { |
adf30907 | 714 | skb_dst_drop(skb); |
9c2b3328 SH |
715 | if (skb->destructor) { |
716 | WARN_ON(in_irq()); | |
1da177e4 LT |
717 | skb->destructor(skb); |
718 | } | |
a3bf7ae9 | 719 | #if IS_ENABLED(CONFIG_NF_CONNTRACK) |
cb9c6836 | 720 | nf_conntrack_put(skb_nfct(skb)); |
1da177e4 | 721 | #endif |
df5042f4 | 722 | skb_ext_put(skb); |
04a4bb55 LB |
723 | } |
724 | ||
725 | /* Free everything but the sk_buff shell. */ | |
726 | static void skb_release_all(struct sk_buff *skb) | |
727 | { | |
728 | skb_release_head_state(skb); | |
a28b1b90 FW |
729 | if (likely(skb->head)) |
730 | skb_release_data(skb); | |
2d4baff8 HX |
731 | } |
732 | ||
733 | /** | |
734 | * __kfree_skb - private function | |
735 | * @skb: buffer | |
736 | * | |
737 | * Free an sk_buff. Release anything attached to the buffer. | |
738 | * Clean the state. This is an internal helper function. Users should | |
739 | * always call kfree_skb | |
740 | */ | |
1da177e4 | 741 | |
2d4baff8 HX |
742 | void __kfree_skb(struct sk_buff *skb) |
743 | { | |
744 | skb_release_all(skb); | |
1da177e4 LT |
745 | kfree_skbmem(skb); |
746 | } | |
b4ac530f | 747 | EXPORT_SYMBOL(__kfree_skb); |
1da177e4 | 748 | |