]> Git Repo - linux.git/blame - net/core/skbuff.c
skbuff: simplify kmalloc_reserve()
[linux.git] / net / core / skbuff.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
1da177e4
LT
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
113aa838 5 * Authors: Alan Cox <[email protected]>
1da177e4
LT
6 * Florian La Roche <[email protected]>
7 *
1da177e4
LT
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
1da177e4
LT
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
e005d193
JP
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
1da177e4
LT
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
1da177e4
LT
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
de960aa9
FW
45#include <linux/tcp.h>
46#include <linux/udp.h>
90017acc 47#include <linux/sctp.h>
1da177e4
LT
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
9c55e01c 54#include <linux/splice.h>
1da177e4
LT
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
716ea3a7 58#include <linux/scatterlist.h>
ac45f602 59#include <linux/errqueue.h>
268bb0ce 60#include <linux/prefetch.h>
0d5501c1 61#include <linux/if_vlan.h>
2a2ea508 62#include <linux/mpls.h>
1da177e4
LT
63
64#include <net/protocol.h>
65#include <net/dst.h>
66#include <net/sock.h>
67#include <net/checksum.h>
ed1f50c3 68#include <net/ip6_checksum.h>
1da177e4 69#include <net/xfrm.h>
8822e270 70#include <net/mpls.h>
3ee17bc7 71#include <net/mptcp.h>
1da177e4 72
7c0f6ba6 73#include <linux/uaccess.h>
ad8d75ff 74#include <trace/events/skb.h>
51c56b00 75#include <linux/highmem.h>
b245be1f
WB
76#include <linux/capability.h>
77#include <linux/user_namespace.h>
2544af03 78#include <linux/indirect_call_wrapper.h>
a1f8e7f7 79
7b7ed885
BVA
80#include "datagram.h"
81
08009a76
AD
82struct kmem_cache *skbuff_head_cache __ro_after_init;
83static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
df5042f4
FW
84#ifdef CONFIG_SKB_EXTENSIONS
85static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86#endif
5f74f82e
HWR
87int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88EXPORT_SYMBOL(sysctl_max_skb_frags);
1da177e4 89
1da177e4 90/**
f05de73b
JS
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
99d5851e 95 * @msg: skb_over_panic or skb_under_panic
1da177e4 96 *
f05de73b
JS
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
1da177e4 101 */
f05de73b 102static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99d5851e 103 const char msg[])
1da177e4 104{
41a46913 105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
99d5851e 106 msg, addr, skb->len, sz, skb->head, skb->data,
e005d193
JP
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
1da177e4
LT
109 BUG();
110}
111
f05de73b 112static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
1da177e4 113{
f05de73b 114 skb_panic(skb, sz, addr, __func__);
1da177e4
LT
115}
116
f05de73b
JS
117static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118{
119 skb_panic(skb, sz, addr, __func__);
120}
c93bdd0e 121
ba0509b6
JDB
122/* Caller must provide SKB that is memset cleared */
123static struct sk_buff *__build_skb_around(struct sk_buff *skb,
124 void *data, unsigned int frag_size)
125{
126 struct skb_shared_info *shinfo;
127 unsigned int size = frag_size ? : ksize(data);
128
129 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
130
131 /* Assumes caller memset cleared SKB */
132 skb->truesize = SKB_TRUESIZE(size);
133 refcount_set(&skb->users, 1);
134 skb->head = data;
135 skb->data = data;
136 skb_reset_tail_pointer(skb);
137 skb->end = skb->tail + size;
138 skb->mac_header = (typeof(skb->mac_header))~0U;
139 skb->transport_header = (typeof(skb->transport_header))~0U;
140
141 /* make sure we initialize shinfo sequentially */
142 shinfo = skb_shinfo(skb);
143 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
144 atomic_set(&shinfo->dataref, 1);
145
6370cc3b
AN
146 skb_set_kcov_handle(skb, kcov_common_handle());
147
ba0509b6
JDB
148 return skb;
149}
150
b2b5ce9d 151/**
2ea2f62c 152 * __build_skb - build a network buffer
b2b5ce9d 153 * @data: data buffer provided by caller
2ea2f62c 154 * @frag_size: size of data, or 0 if head was kmalloced
b2b5ce9d
ED
155 *
156 * Allocate a new &sk_buff. Caller provides space holding head and
deceb4c0 157 * skb_shared_info. @data must have been allocated by kmalloc() only if
2ea2f62c
ED
158 * @frag_size is 0, otherwise data should come from the page allocator
159 * or vmalloc()
b2b5ce9d
ED
160 * The return is the new skb buffer.
161 * On a failure the return is %NULL, and @data is not freed.
162 * Notes :
163 * Before IO, driver allocates only data buffer where NIC put incoming frame
164 * Driver should add room at head (NET_SKB_PAD) and
165 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
166 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
167 * before giving packet to stack.
168 * RX rings only contains data buffers, not full skbs.
169 */
2ea2f62c 170struct sk_buff *__build_skb(void *data, unsigned int frag_size)
b2b5ce9d 171{
b2b5ce9d 172 struct sk_buff *skb;
b2b5ce9d
ED
173
174 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
ba0509b6 175 if (unlikely(!skb))
b2b5ce9d
ED
176 return NULL;
177
b2b5ce9d 178 memset(skb, 0, offsetof(struct sk_buff, tail));
b2b5ce9d 179
ba0509b6 180 return __build_skb_around(skb, data, frag_size);
b2b5ce9d 181}
2ea2f62c
ED
182
183/* build_skb() is wrapper over __build_skb(), that specifically
184 * takes care of skb->head and skb->pfmemalloc
185 * This means that if @frag_size is not zero, then @data must be backed
186 * by a page fragment, not kmalloc() or vmalloc()
187 */
188struct sk_buff *build_skb(void *data, unsigned int frag_size)
189{
190 struct sk_buff *skb = __build_skb(data, frag_size);
191
192 if (skb && frag_size) {
193 skb->head_frag = 1;
2f064f34 194 if (page_is_pfmemalloc(virt_to_head_page(data)))
2ea2f62c
ED
195 skb->pfmemalloc = 1;
196 }
197 return skb;
198}
b2b5ce9d
ED
199EXPORT_SYMBOL(build_skb);
200
ba0509b6
JDB
201/**
202 * build_skb_around - build a network buffer around provided skb
203 * @skb: sk_buff provide by caller, must be memset cleared
204 * @data: data buffer provided by caller
205 * @frag_size: size of data, or 0 if head was kmalloced
206 */
207struct sk_buff *build_skb_around(struct sk_buff *skb,
208 void *data, unsigned int frag_size)
209{
210 if (unlikely(!skb))
211 return NULL;
212
213 skb = __build_skb_around(skb, data, frag_size);
214
215 if (skb && frag_size) {
216 skb->head_frag = 1;
217 if (page_is_pfmemalloc(virt_to_head_page(data)))
218 skb->pfmemalloc = 1;
219 }
220 return skb;
221}
222EXPORT_SYMBOL(build_skb_around);
223
795bb1c0
JDB
224#define NAPI_SKB_CACHE_SIZE 64
225
226struct napi_alloc_cache {
227 struct page_frag_cache page;
e0d7924a 228 unsigned int skb_count;
795bb1c0
JDB
229 void *skb_cache[NAPI_SKB_CACHE_SIZE];
230};
231
b63ae8ca 232static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
795bb1c0 233static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
ffde7328 234
3f6e687d
KH
235static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
236 unsigned int align_mask)
ffde7328 237{
7ba7aeab 238 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
ffde7328 239
3f6e687d 240 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
7ba7aeab
SAS
241}
242
3f6e687d 243void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
7ba7aeab
SAS
244{
245 fragsz = SKB_DATA_ALIGN(fragsz);
246
3f6e687d 247 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
6f532612 248}
3f6e687d 249EXPORT_SYMBOL(__napi_alloc_frag_align);
c93bdd0e 250
3f6e687d 251void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
c93bdd0e 252{
7ba7aeab
SAS
253 struct page_frag_cache *nc;
254 void *data;
ffde7328 255
3bed3cc4 256 fragsz = SKB_DATA_ALIGN(fragsz);
7ba7aeab
SAS
257 if (in_irq() || irqs_disabled()) {
258 nc = this_cpu_ptr(&netdev_alloc_cache);
3f6e687d 259 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
7ba7aeab
SAS
260 } else {
261 local_bh_disable();
3f6e687d 262 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
7ba7aeab
SAS
263 local_bh_enable();
264 }
265 return data;
ffde7328 266}
3f6e687d 267EXPORT_SYMBOL(__netdev_alloc_frag_align);
ffde7328 268
5381b23d
AL
269/*
270 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
271 * the caller if emergency pfmemalloc reserves are being used. If it is and
272 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
273 * may be used. Otherwise, the packet data may be discarded until enough
274 * memory is free
275 */
ef28095f
AL
276static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
277 bool *pfmemalloc)
5381b23d
AL
278{
279 void *obj;
280 bool ret_pfmemalloc = false;
281
282 /*
283 * Try a regular allocation, when that fails and we're not entitled
284 * to the reserves, fail.
285 */
286 obj = kmalloc_node_track_caller(size,
287 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
288 node);
289 if (obj || !(gfp_pfmemalloc_allowed(flags)))
290 goto out;
291
292 /* Try again but now we are using pfmemalloc reserves */
293 ret_pfmemalloc = true;
294 obj = kmalloc_node_track_caller(size, flags, node);
295
296out:
297 if (pfmemalloc)
298 *pfmemalloc = ret_pfmemalloc;
299
300 return obj;
301}
302
303/* Allocate a new skbuff. We do this ourselves so we can fill in a few
304 * 'private' fields and also do memory statistics to find all the
305 * [BEEP] leaks.
306 *
307 */
308
309/**
310 * __alloc_skb - allocate a network buffer
311 * @size: size to allocate
312 * @gfp_mask: allocation mask
313 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
314 * instead of head cache and allocate a cloned (child) skb.
315 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
316 * allocations in case the data is required for writeback
317 * @node: numa node to allocate memory on
318 *
319 * Allocate a new &sk_buff. The returned buffer has no headroom and a
320 * tail room of at least size bytes. The object has a reference count
321 * of one. The return is the buffer. On a failure the return is %NULL.
322 *
323 * Buffers may only be allocated from interrupts using a @gfp_mask of
324 * %GFP_ATOMIC.
325 */
326struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
327 int flags, int node)
328{
329 struct kmem_cache *cache;
330 struct skb_shared_info *shinfo;
331 struct sk_buff *skb;
332 u8 *data;
333 bool pfmemalloc;
334
335 cache = (flags & SKB_ALLOC_FCLONE)
336 ? skbuff_fclone_cache : skbuff_head_cache;
337
338 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
339 gfp_mask |= __GFP_MEMALLOC;
340
341 /* Get the HEAD */
342 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
343 if (!skb)
344 goto out;
345 prefetchw(skb);
346
347 /* We do our best to align skb_shared_info on a separate cache
348 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
349 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
350 * Both skb->head and skb_shared_info are cache line aligned.
351 */
352 size = SKB_DATA_ALIGN(size);
353 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
354 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
355 if (!data)
356 goto nodata;
357 /* kmalloc(size) might give us more room than requested.
358 * Put skb_shared_info exactly at the end of allocated zone,
359 * to allow max possible filling before reallocation.
360 */
361 size = SKB_WITH_OVERHEAD(ksize(data));
362 prefetchw(data + size);
363
364 /*
365 * Only clear those fields we need to clear, not those that we will
366 * actually initialise below. Hence, don't put any more fields after
367 * the tail pointer in struct sk_buff!
368 */
369 memset(skb, 0, offsetof(struct sk_buff, tail));
370 /* Account for allocated memory : skb + skb->head */
371 skb->truesize = SKB_TRUESIZE(size);
372 skb->pfmemalloc = pfmemalloc;
373 refcount_set(&skb->users, 1);
374 skb->head = data;
375 skb->data = data;
376 skb_reset_tail_pointer(skb);
377 skb->end = skb->tail + size;
378 skb->mac_header = (typeof(skb->mac_header))~0U;
379 skb->transport_header = (typeof(skb->transport_header))~0U;
380
381 /* make sure we initialize shinfo sequentially */
382 shinfo = skb_shinfo(skb);
383 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
384 atomic_set(&shinfo->dataref, 1);
385
386 if (flags & SKB_ALLOC_FCLONE) {
387 struct sk_buff_fclones *fclones;
388
389 fclones = container_of(skb, struct sk_buff_fclones, skb1);
390
391 skb->fclone = SKB_FCLONE_ORIG;
392 refcount_set(&fclones->fclone_ref, 1);
393
394 fclones->skb2.fclone = SKB_FCLONE_CLONE;
395 }
396
397 skb_set_kcov_handle(skb, kcov_common_handle());
398
399out:
400 return skb;
401nodata:
402 kmem_cache_free(cache, skb);
403 skb = NULL;
404 goto out;
405}
406EXPORT_SYMBOL(__alloc_skb);
407
fd11a83d
AD
408/**
409 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
410 * @dev: network device to receive on
d7499160 411 * @len: length to allocate
fd11a83d
AD
412 * @gfp_mask: get_free_pages mask, passed to alloc_skb
413 *
414 * Allocate a new &sk_buff and assign it a usage count of one. The
415 * buffer has NET_SKB_PAD headroom built in. Users should allocate
416 * the headroom they think they need without accounting for the
417 * built in space. The built in space is used for optimisations.
418 *
419 * %NULL is returned if there is no free memory.
420 */
9451980a
AD
421struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
422 gfp_t gfp_mask)
fd11a83d 423{
b63ae8ca 424 struct page_frag_cache *nc;
fd11a83d 425 struct sk_buff *skb;
9451980a
AD
426 bool pfmemalloc;
427 void *data;
428
429 len += NET_SKB_PAD;
fd11a83d 430
66c55602
AL
431 /* If requested length is either too small or too big,
432 * we use kmalloc() for skb->head allocation.
433 */
434 if (len <= SKB_WITH_OVERHEAD(1024) ||
435 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
d0164adc 436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
a080e7bd
AD
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
441 }
fd11a83d 442
9451980a
AD
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
445
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
448
92dcabd7
SAS
449 if (in_irq() || irqs_disabled()) {
450 nc = this_cpu_ptr(&netdev_alloc_cache);
451 data = page_frag_alloc(nc, len, gfp_mask);
452 pfmemalloc = nc->pfmemalloc;
453 } else {
454 local_bh_disable();
455 nc = this_cpu_ptr(&napi_alloc_cache.page);
456 data = page_frag_alloc(nc, len, gfp_mask);
457 pfmemalloc = nc->pfmemalloc;
458 local_bh_enable();
459 }
9451980a
AD
460
461 if (unlikely(!data))
462 return NULL;
463
464 skb = __build_skb(data, len);
465 if (unlikely(!skb)) {
181edb2b 466 skb_free_frag(data);
9451980a 467 return NULL;
7b2e497a 468 }
fd11a83d 469
9451980a
AD
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
473
a080e7bd 474skb_success:
9451980a
AD
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
477
a080e7bd 478skb_fail:
8af27456
CH
479 return skb;
480}
b4ac530f 481EXPORT_SYMBOL(__netdev_alloc_skb);
1da177e4 482
fd11a83d
AD
483/**
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
d7499160 486 * @len: length to allocate
fd11a83d
AD
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488 *
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
493 *
494 * %NULL is returned if there is no free memory.
495 */
9451980a
AD
496struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
fd11a83d 498{
3226b158 499 struct napi_alloc_cache *nc;
fd11a83d 500 struct sk_buff *skb;
9451980a
AD
501 void *data;
502
503 len += NET_SKB_PAD + NET_IP_ALIGN;
fd11a83d 504
3226b158
ED
505 /* If requested length is either too small or too big,
506 * we use kmalloc() for skb->head allocation.
507 */
508 if (len <= SKB_WITH_OVERHEAD(1024) ||
509 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
d0164adc 510 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
a080e7bd
AD
511 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
512 if (!skb)
513 goto skb_fail;
514 goto skb_success;
515 }
9451980a 516
3226b158 517 nc = this_cpu_ptr(&napi_alloc_cache);
9451980a
AD
518 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
519 len = SKB_DATA_ALIGN(len);
520
521 if (sk_memalloc_socks())
522 gfp_mask |= __GFP_MEMALLOC;
fd11a83d 523
8c2dd3e4 524 data = page_frag_alloc(&nc->page, len, gfp_mask);
9451980a
AD
525 if (unlikely(!data))
526 return NULL;
527
528 skb = __build_skb(data, len);
529 if (unlikely(!skb)) {
181edb2b 530 skb_free_frag(data);
9451980a 531 return NULL;
fd11a83d
AD
532 }
533
795bb1c0 534 if (nc->page.pfmemalloc)
9451980a
AD
535 skb->pfmemalloc = 1;
536 skb->head_frag = 1;
537
a080e7bd 538skb_success:
9451980a
AD
539 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
540 skb->dev = napi->dev;
541
a080e7bd 542skb_fail:
fd11a83d
AD
543 return skb;
544}
545EXPORT_SYMBOL(__napi_alloc_skb);
546
654bed16 547void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
50269e19 548 int size, unsigned int truesize)
654bed16
PZ
549{
550 skb_fill_page_desc(skb, i, page, off, size);
551 skb->len += size;
552 skb->data_len += size;
50269e19 553 skb->truesize += truesize;
654bed16
PZ
554}
555EXPORT_SYMBOL(skb_add_rx_frag);
556
f8e617e1
JW
557void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
558 unsigned int truesize)
559{
560 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
561
562 skb_frag_size_add(frag, size);
563 skb->len += size;
564 skb->data_len += size;
565 skb->truesize += truesize;
566}
567EXPORT_SYMBOL(skb_coalesce_rx_frag);
568
27b437c8 569static void skb_drop_list(struct sk_buff **listp)
1da177e4 570{
bd8a7036 571 kfree_skb_list(*listp);
27b437c8 572 *listp = NULL;
1da177e4
LT
573}
574
27b437c8
HX
575static inline void skb_drop_fraglist(struct sk_buff *skb)
576{
577 skb_drop_list(&skb_shinfo(skb)->frag_list);
578}
579
1da177e4
LT
580static void skb_clone_fraglist(struct sk_buff *skb)
581{
582 struct sk_buff *list;
583
fbb398a8 584 skb_walk_frags(skb, list)
1da177e4
LT
585 skb_get(list);
586}
587
d3836f21
ED
588static void skb_free_head(struct sk_buff *skb)
589{
181edb2b
AD
590 unsigned char *head = skb->head;
591
d3836f21 592 if (skb->head_frag)
181edb2b 593 skb_free_frag(head);
d3836f21 594 else
181edb2b 595 kfree(head);
d3836f21
ED
596}
597
5bba1712 598static void skb_release_data(struct sk_buff *skb)
1da177e4 599{
ff04a771
ED
600 struct skb_shared_info *shinfo = skb_shinfo(skb);
601 int i;
1da177e4 602
ff04a771
ED
603 if (skb->cloned &&
604 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
605 &shinfo->dataref))
606 return;
a6686f2f 607
70c43167
JL
608 skb_zcopy_clear(skb, true);
609
ff04a771
ED
610 for (i = 0; i < shinfo->nr_frags; i++)
611 __skb_frag_unref(&shinfo->frags[i]);
a6686f2f 612
ff04a771
ED
613 if (shinfo->frag_list)
614 kfree_skb_list(shinfo->frag_list);
615
616 skb_free_head(skb);
1da177e4
LT
617}
618
619/*
620 * Free an skbuff by memory without cleaning the state.
621 */
2d4baff8 622static void kfree_skbmem(struct sk_buff *skb)
1da177e4 623{
d0bf4a9e 624 struct sk_buff_fclones *fclones;
d179cd12 625
d179cd12
DM
626 switch (skb->fclone) {
627 case SKB_FCLONE_UNAVAILABLE:
628 kmem_cache_free(skbuff_head_cache, skb);
6ffe75eb 629 return;
d179cd12
DM
630
631 case SKB_FCLONE_ORIG:
d0bf4a9e 632 fclones = container_of(skb, struct sk_buff_fclones, skb1);
d179cd12 633
6ffe75eb
ED
634 /* We usually free the clone (TX completion) before original skb
635 * This test would have no chance to be true for the clone,
636 * while here, branch prediction will be good.
d179cd12 637 */
2638595a 638 if (refcount_read(&fclones->fclone_ref) == 1)
6ffe75eb
ED
639 goto fastpath;
640 break;
e7820e39 641
6ffe75eb
ED
642 default: /* SKB_FCLONE_CLONE */
643 fclones = container_of(skb, struct sk_buff_fclones, skb2);
d179cd12 644 break;
3ff50b79 645 }
2638595a 646 if (!refcount_dec_and_test(&fclones->fclone_ref))
6ffe75eb
ED
647 return;
648fastpath:
649 kmem_cache_free(skbuff_fclone_cache, fclones);
1da177e4
LT
650}
651
0a463c78 652void skb_release_head_state(struct sk_buff *skb)
1da177e4 653{
adf30907 654 skb_dst_drop(skb);
9c2b3328
SH
655 if (skb->destructor) {
656 WARN_ON(in_irq());
1da177e4
LT
657 skb->destructor(skb);
658 }
a3bf7ae9 659#if IS_ENABLED(CONFIG_NF_CONNTRACK)
cb9c6836 660 nf_conntrack_put(skb_nfct(skb));
1da177e4 661#endif
df5042f4 662 skb_ext_put(skb);
04a4bb55
LB
663}
664
665/* Free everything but the sk_buff shell. */
666static void skb_release_all(struct sk_buff *skb)
667{
668 skb_release_head_state(skb);
a28b1b90
FW
669 if (likely(skb->head))
670 skb_release_data(skb);
2d4baff8
HX
671}
672
673/**
674 * __kfree_skb - private function
675 * @skb: buffer
676 *
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
680 */
1da177e4 681
2d4baff8
HX
682void __kfree_skb(struct sk_buff *skb)
683{
684 skb_release_all(skb);
1da177e4
LT
685 kfree_skbmem(skb);
686}
b4ac530f 687EXPORT_SYMBOL(__kfree_skb);
1da177e4 688