]>
Commit | Line | Data |
---|---|---|
b2441318 | 1 | // SPDX-License-Identifier: GPL-2.0 |
bb44e5d1 IM |
2 | /* |
3 | * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR | |
4 | * policies) | |
5 | */ | |
029632fb PZ |
6 | #include "sched.h" |
7 | ||
371bf427 VG |
8 | #include "pelt.h" |
9 | ||
ce0dbbbb | 10 | int sched_rr_timeslice = RR_TIMESLICE; |
975e155e | 11 | int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; |
d505b8af HC |
12 | /* More than 4 hours if BW_SHIFT equals 20. */ |
13 | static const u64 max_rt_runtime = MAX_BW; | |
ce0dbbbb | 14 | |
029632fb PZ |
15 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); |
16 | ||
17 | struct rt_bandwidth def_rt_bandwidth; | |
18 | ||
19 | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | |
20 | { | |
21 | struct rt_bandwidth *rt_b = | |
22 | container_of(timer, struct rt_bandwidth, rt_period_timer); | |
029632fb | 23 | int idle = 0; |
77a4d1a1 | 24 | int overrun; |
029632fb | 25 | |
77a4d1a1 | 26 | raw_spin_lock(&rt_b->rt_runtime_lock); |
029632fb | 27 | for (;;) { |
77a4d1a1 | 28 | overrun = hrtimer_forward_now(timer, rt_b->rt_period); |
029632fb PZ |
29 | if (!overrun) |
30 | break; | |
31 | ||
77a4d1a1 | 32 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
029632fb | 33 | idle = do_sched_rt_period_timer(rt_b, overrun); |
77a4d1a1 | 34 | raw_spin_lock(&rt_b->rt_runtime_lock); |
029632fb | 35 | } |
4cfafd30 PZ |
36 | if (idle) |
37 | rt_b->rt_period_active = 0; | |
77a4d1a1 | 38 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
029632fb PZ |
39 | |
40 | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | |
41 | } | |
42 | ||
43 | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | |
44 | { | |
45 | rt_b->rt_period = ns_to_ktime(period); | |
46 | rt_b->rt_runtime = runtime; | |
47 | ||
48 | raw_spin_lock_init(&rt_b->rt_runtime_lock); | |
49 | ||
d5096aa6 SAS |
50 | hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, |
51 | HRTIMER_MODE_REL_HARD); | |
029632fb PZ |
52 | rt_b->rt_period_timer.function = sched_rt_period_timer; |
53 | } | |
54 | ||
55 | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | |
56 | { | |
57 | if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) | |
58 | return; | |
59 | ||
029632fb | 60 | raw_spin_lock(&rt_b->rt_runtime_lock); |
4cfafd30 PZ |
61 | if (!rt_b->rt_period_active) { |
62 | rt_b->rt_period_active = 1; | |
c3a990dc SR |
63 | /* |
64 | * SCHED_DEADLINE updates the bandwidth, as a run away | |
65 | * RT task with a DL task could hog a CPU. But DL does | |
66 | * not reset the period. If a deadline task was running | |
67 | * without an RT task running, it can cause RT tasks to | |
68 | * throttle when they start up. Kick the timer right away | |
69 | * to update the period. | |
70 | */ | |
71 | hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); | |
d5096aa6 SAS |
72 | hrtimer_start_expires(&rt_b->rt_period_timer, |
73 | HRTIMER_MODE_ABS_PINNED_HARD); | |
4cfafd30 | 74 | } |
029632fb PZ |
75 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
76 | } | |
77 | ||
07c54f7a | 78 | void init_rt_rq(struct rt_rq *rt_rq) |
029632fb PZ |
79 | { |
80 | struct rt_prio_array *array; | |
81 | int i; | |
82 | ||
83 | array = &rt_rq->active; | |
84 | for (i = 0; i < MAX_RT_PRIO; i++) { | |
85 | INIT_LIST_HEAD(array->queue + i); | |
86 | __clear_bit(i, array->bitmap); | |
87 | } | |
88 | /* delimiter for bitsearch: */ | |
89 | __set_bit(MAX_RT_PRIO, array->bitmap); | |
90 | ||
91 | #if defined CONFIG_SMP | |
934fc331 PZ |
92 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; |
93 | rt_rq->highest_prio.next = MAX_RT_PRIO-1; | |
029632fb PZ |
94 | rt_rq->rt_nr_migratory = 0; |
95 | rt_rq->overloaded = 0; | |
96 | plist_head_init(&rt_rq->pushable_tasks); | |
b6366f04 | 97 | #endif /* CONFIG_SMP */ |
f4ebcbc0 KT |
98 | /* We start is dequeued state, because no RT tasks are queued */ |
99 | rt_rq->rt_queued = 0; | |
029632fb PZ |
100 | |
101 | rt_rq->rt_time = 0; | |
102 | rt_rq->rt_throttled = 0; | |
103 | rt_rq->rt_runtime = 0; | |
104 | raw_spin_lock_init(&rt_rq->rt_runtime_lock); | |
105 | } | |
106 | ||
8f48894f | 107 | #ifdef CONFIG_RT_GROUP_SCHED |
029632fb PZ |
108 | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) |
109 | { | |
110 | hrtimer_cancel(&rt_b->rt_period_timer); | |
111 | } | |
8f48894f PZ |
112 | |
113 | #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) | |
114 | ||
398a153b GH |
115 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
116 | { | |
8f48894f PZ |
117 | #ifdef CONFIG_SCHED_DEBUG |
118 | WARN_ON_ONCE(!rt_entity_is_task(rt_se)); | |
119 | #endif | |
398a153b GH |
120 | return container_of(rt_se, struct task_struct, rt); |
121 | } | |
122 | ||
398a153b GH |
123 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
124 | { | |
125 | return rt_rq->rq; | |
126 | } | |
127 | ||
128 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
129 | { | |
130 | return rt_se->rt_rq; | |
131 | } | |
132 | ||
653d07a6 KT |
133 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) |
134 | { | |
135 | struct rt_rq *rt_rq = rt_se->rt_rq; | |
136 | ||
137 | return rt_rq->rq; | |
138 | } | |
139 | ||
029632fb PZ |
140 | void free_rt_sched_group(struct task_group *tg) |
141 | { | |
142 | int i; | |
143 | ||
144 | if (tg->rt_se) | |
145 | destroy_rt_bandwidth(&tg->rt_bandwidth); | |
146 | ||
147 | for_each_possible_cpu(i) { | |
148 | if (tg->rt_rq) | |
149 | kfree(tg->rt_rq[i]); | |
150 | if (tg->rt_se) | |
151 | kfree(tg->rt_se[i]); | |
152 | } | |
153 | ||
154 | kfree(tg->rt_rq); | |
155 | kfree(tg->rt_se); | |
156 | } | |
157 | ||
158 | void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | |
159 | struct sched_rt_entity *rt_se, int cpu, | |
160 | struct sched_rt_entity *parent) | |
161 | { | |
162 | struct rq *rq = cpu_rq(cpu); | |
163 | ||
934fc331 | 164 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; |
029632fb PZ |
165 | rt_rq->rt_nr_boosted = 0; |
166 | rt_rq->rq = rq; | |
167 | rt_rq->tg = tg; | |
168 | ||
169 | tg->rt_rq[cpu] = rt_rq; | |
170 | tg->rt_se[cpu] = rt_se; | |
171 | ||
172 | if (!rt_se) | |
173 | return; | |
174 | ||
175 | if (!parent) | |
176 | rt_se->rt_rq = &rq->rt; | |
177 | else | |
178 | rt_se->rt_rq = parent->my_q; | |
179 | ||
180 | rt_se->my_q = rt_rq; | |
181 | rt_se->parent = parent; | |
182 | INIT_LIST_HEAD(&rt_se->run_list); | |
183 | } | |
184 | ||
185 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
186 | { | |
187 | struct rt_rq *rt_rq; | |
188 | struct sched_rt_entity *rt_se; | |
189 | int i; | |
190 | ||
6396bb22 | 191 | tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); |
029632fb PZ |
192 | if (!tg->rt_rq) |
193 | goto err; | |
6396bb22 | 194 | tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); |
029632fb PZ |
195 | if (!tg->rt_se) |
196 | goto err; | |
197 | ||
198 | init_rt_bandwidth(&tg->rt_bandwidth, | |
199 | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | |
200 | ||
201 | for_each_possible_cpu(i) { | |
202 | rt_rq = kzalloc_node(sizeof(struct rt_rq), | |
203 | GFP_KERNEL, cpu_to_node(i)); | |
204 | if (!rt_rq) | |
205 | goto err; | |
206 | ||
207 | rt_se = kzalloc_node(sizeof(struct sched_rt_entity), | |
208 | GFP_KERNEL, cpu_to_node(i)); | |
209 | if (!rt_se) | |
210 | goto err_free_rq; | |
211 | ||
07c54f7a | 212 | init_rt_rq(rt_rq); |
029632fb PZ |
213 | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; |
214 | init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); | |
215 | } | |
216 | ||
217 | return 1; | |
218 | ||
219 | err_free_rq: | |
220 | kfree(rt_rq); | |
221 | err: | |
222 | return 0; | |
223 | } | |
224 | ||
398a153b GH |
225 | #else /* CONFIG_RT_GROUP_SCHED */ |
226 | ||
a1ba4d8b PZ |
227 | #define rt_entity_is_task(rt_se) (1) |
228 | ||
8f48894f PZ |
229 | static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) |
230 | { | |
231 | return container_of(rt_se, struct task_struct, rt); | |
232 | } | |
233 | ||
398a153b GH |
234 | static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) |
235 | { | |
236 | return container_of(rt_rq, struct rq, rt); | |
237 | } | |
238 | ||
653d07a6 | 239 | static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) |
398a153b GH |
240 | { |
241 | struct task_struct *p = rt_task_of(rt_se); | |
653d07a6 KT |
242 | |
243 | return task_rq(p); | |
244 | } | |
245 | ||
246 | static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) | |
247 | { | |
248 | struct rq *rq = rq_of_rt_se(rt_se); | |
398a153b GH |
249 | |
250 | return &rq->rt; | |
251 | } | |
252 | ||
029632fb PZ |
253 | void free_rt_sched_group(struct task_group *tg) { } |
254 | ||
255 | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | |
256 | { | |
257 | return 1; | |
258 | } | |
398a153b GH |
259 | #endif /* CONFIG_RT_GROUP_SCHED */ |
260 | ||
4fd29176 | 261 | #ifdef CONFIG_SMP |
84de4274 | 262 | |
8046d680 | 263 | static void pull_rt_task(struct rq *this_rq); |
38033c37 | 264 | |
dc877341 PZ |
265 | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) |
266 | { | |
267 | /* Try to pull RT tasks here if we lower this rq's prio */ | |
120455c5 | 268 | return rq->online && rq->rt.highest_prio.curr > prev->prio; |
dc877341 PZ |
269 | } |
270 | ||
637f5085 | 271 | static inline int rt_overloaded(struct rq *rq) |
4fd29176 | 272 | { |
637f5085 | 273 | return atomic_read(&rq->rd->rto_count); |
4fd29176 | 274 | } |
84de4274 | 275 | |
4fd29176 SR |
276 | static inline void rt_set_overload(struct rq *rq) |
277 | { | |
1f11eb6a GH |
278 | if (!rq->online) |
279 | return; | |
280 | ||
c6c4927b | 281 | cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 SR |
282 | /* |
283 | * Make sure the mask is visible before we set | |
284 | * the overload count. That is checked to determine | |
285 | * if we should look at the mask. It would be a shame | |
286 | * if we looked at the mask, but the mask was not | |
287 | * updated yet. | |
7c3f2ab7 PZ |
288 | * |
289 | * Matched by the barrier in pull_rt_task(). | |
4fd29176 | 290 | */ |
7c3f2ab7 | 291 | smp_wmb(); |
637f5085 | 292 | atomic_inc(&rq->rd->rto_count); |
4fd29176 | 293 | } |
84de4274 | 294 | |
4fd29176 SR |
295 | static inline void rt_clear_overload(struct rq *rq) |
296 | { | |
1f11eb6a GH |
297 | if (!rq->online) |
298 | return; | |
299 | ||
4fd29176 | 300 | /* the order here really doesn't matter */ |
637f5085 | 301 | atomic_dec(&rq->rd->rto_count); |
c6c4927b | 302 | cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); |
4fd29176 | 303 | } |
73fe6aae | 304 | |
398a153b | 305 | static void update_rt_migration(struct rt_rq *rt_rq) |
73fe6aae | 306 | { |
a1ba4d8b | 307 | if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { |
398a153b GH |
308 | if (!rt_rq->overloaded) { |
309 | rt_set_overload(rq_of_rt_rq(rt_rq)); | |
310 | rt_rq->overloaded = 1; | |
cdc8eb98 | 311 | } |
398a153b GH |
312 | } else if (rt_rq->overloaded) { |
313 | rt_clear_overload(rq_of_rt_rq(rt_rq)); | |
314 | rt_rq->overloaded = 0; | |
637f5085 | 315 | } |
73fe6aae | 316 | } |
4fd29176 | 317 | |
398a153b GH |
318 | static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
319 | { | |
29baa747 PZ |
320 | struct task_struct *p; |
321 | ||
a1ba4d8b PZ |
322 | if (!rt_entity_is_task(rt_se)) |
323 | return; | |
324 | ||
29baa747 | 325 | p = rt_task_of(rt_se); |
a1ba4d8b PZ |
326 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; |
327 | ||
328 | rt_rq->rt_nr_total++; | |
4b53a341 | 329 | if (p->nr_cpus_allowed > 1) |
398a153b GH |
330 | rt_rq->rt_nr_migratory++; |
331 | ||
332 | update_rt_migration(rt_rq); | |
333 | } | |
334 | ||
335 | static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
336 | { | |
29baa747 PZ |
337 | struct task_struct *p; |
338 | ||
a1ba4d8b PZ |
339 | if (!rt_entity_is_task(rt_se)) |
340 | return; | |
341 | ||
29baa747 | 342 | p = rt_task_of(rt_se); |
a1ba4d8b PZ |
343 | rt_rq = &rq_of_rt_rq(rt_rq)->rt; |
344 | ||
345 | rt_rq->rt_nr_total--; | |
4b53a341 | 346 | if (p->nr_cpus_allowed > 1) |
398a153b GH |
347 | rt_rq->rt_nr_migratory--; |
348 | ||
349 | update_rt_migration(rt_rq); | |
350 | } | |
351 | ||
5181f4a4 SR |
352 | static inline int has_pushable_tasks(struct rq *rq) |
353 | { | |
354 | return !plist_head_empty(&rq->rt.pushable_tasks); | |
355 | } | |
356 | ||
fd7a4bed PZ |
357 | static DEFINE_PER_CPU(struct callback_head, rt_push_head); |
358 | static DEFINE_PER_CPU(struct callback_head, rt_pull_head); | |
e3fca9e7 PZ |
359 | |
360 | static void push_rt_tasks(struct rq *); | |
fd7a4bed | 361 | static void pull_rt_task(struct rq *); |
e3fca9e7 | 362 | |
02d8ec94 | 363 | static inline void rt_queue_push_tasks(struct rq *rq) |
dc877341 | 364 | { |
e3fca9e7 PZ |
365 | if (!has_pushable_tasks(rq)) |
366 | return; | |
367 | ||
fd7a4bed PZ |
368 | queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); |
369 | } | |
370 | ||
02d8ec94 | 371 | static inline void rt_queue_pull_task(struct rq *rq) |
fd7a4bed PZ |
372 | { |
373 | queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); | |
dc877341 PZ |
374 | } |
375 | ||
917b627d GH |
376 | static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
377 | { | |
378 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
379 | plist_node_init(&p->pushable_tasks, p->prio); | |
380 | plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
5181f4a4 SR |
381 | |
382 | /* Update the highest prio pushable task */ | |
383 | if (p->prio < rq->rt.highest_prio.next) | |
384 | rq->rt.highest_prio.next = p->prio; | |
917b627d GH |
385 | } |
386 | ||
387 | static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) | |
388 | { | |
389 | plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); | |
917b627d | 390 | |
5181f4a4 SR |
391 | /* Update the new highest prio pushable task */ |
392 | if (has_pushable_tasks(rq)) { | |
393 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
394 | struct task_struct, pushable_tasks); | |
395 | rq->rt.highest_prio.next = p->prio; | |
934fc331 PZ |
396 | } else { |
397 | rq->rt.highest_prio.next = MAX_RT_PRIO-1; | |
398 | } | |
bcf08df3 IM |
399 | } |
400 | ||
917b627d GH |
401 | #else |
402 | ||
ceacc2c1 | 403 | static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) |
fa85ae24 | 404 | { |
6f505b16 PZ |
405 | } |
406 | ||
ceacc2c1 PZ |
407 | static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) |
408 | { | |
409 | } | |
410 | ||
b07430ac | 411 | static inline |
ceacc2c1 PZ |
412 | void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
413 | { | |
414 | } | |
415 | ||
398a153b | 416 | static inline |
ceacc2c1 PZ |
417 | void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) |
418 | { | |
419 | } | |
917b627d | 420 | |
dc877341 PZ |
421 | static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) |
422 | { | |
423 | return false; | |
424 | } | |
425 | ||
8046d680 | 426 | static inline void pull_rt_task(struct rq *this_rq) |
dc877341 | 427 | { |
dc877341 PZ |
428 | } |
429 | ||
02d8ec94 | 430 | static inline void rt_queue_push_tasks(struct rq *rq) |
dc877341 PZ |
431 | { |
432 | } | |
4fd29176 SR |
433 | #endif /* CONFIG_SMP */ |
434 | ||
f4ebcbc0 KT |
435 | static void enqueue_top_rt_rq(struct rt_rq *rt_rq); |
436 | static void dequeue_top_rt_rq(struct rt_rq *rt_rq); | |
437 | ||
6f505b16 PZ |
438 | static inline int on_rt_rq(struct sched_rt_entity *rt_se) |
439 | { | |
ff77e468 | 440 | return rt_se->on_rq; |
6f505b16 PZ |
441 | } |
442 | ||
804d402f QY |
443 | #ifdef CONFIG_UCLAMP_TASK |
444 | /* | |
445 | * Verify the fitness of task @p to run on @cpu taking into account the uclamp | |
446 | * settings. | |
447 | * | |
448 | * This check is only important for heterogeneous systems where uclamp_min value | |
449 | * is higher than the capacity of a @cpu. For non-heterogeneous system this | |
450 | * function will always return true. | |
451 | * | |
452 | * The function will return true if the capacity of the @cpu is >= the | |
453 | * uclamp_min and false otherwise. | |
454 | * | |
455 | * Note that uclamp_min will be clamped to uclamp_max if uclamp_min | |
456 | * > uclamp_max. | |
457 | */ | |
458 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) | |
459 | { | |
460 | unsigned int min_cap; | |
461 | unsigned int max_cap; | |
462 | unsigned int cpu_cap; | |
463 | ||
464 | /* Only heterogeneous systems can benefit from this check */ | |
465 | if (!static_branch_unlikely(&sched_asym_cpucapacity)) | |
466 | return true; | |
467 | ||
468 | min_cap = uclamp_eff_value(p, UCLAMP_MIN); | |
469 | max_cap = uclamp_eff_value(p, UCLAMP_MAX); | |
470 | ||
471 | cpu_cap = capacity_orig_of(cpu); | |
472 | ||
473 | return cpu_cap >= min(min_cap, max_cap); | |
474 | } | |
475 | #else | |
476 | static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) | |
477 | { | |
478 | return true; | |
479 | } | |
480 | #endif | |
481 | ||
052f1dc7 | 482 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 | 483 | |
9f0c1e56 | 484 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) |
6f505b16 PZ |
485 | { |
486 | if (!rt_rq->tg) | |
9f0c1e56 | 487 | return RUNTIME_INF; |
6f505b16 | 488 | |
ac086bc2 PZ |
489 | return rt_rq->rt_runtime; |
490 | } | |
491 | ||
492 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
493 | { | |
494 | return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); | |
6f505b16 PZ |
495 | } |
496 | ||
ec514c48 CX |
497 | typedef struct task_group *rt_rq_iter_t; |
498 | ||
1c09ab0d YZ |
499 | static inline struct task_group *next_task_group(struct task_group *tg) |
500 | { | |
501 | do { | |
502 | tg = list_entry_rcu(tg->list.next, | |
503 | typeof(struct task_group), list); | |
504 | } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); | |
505 | ||
506 | if (&tg->list == &task_groups) | |
507 | tg = NULL; | |
508 | ||
509 | return tg; | |
510 | } | |
511 | ||
512 | #define for_each_rt_rq(rt_rq, iter, rq) \ | |
513 | for (iter = container_of(&task_groups, typeof(*iter), list); \ | |
514 | (iter = next_task_group(iter)) && \ | |
515 | (rt_rq = iter->rt_rq[cpu_of(rq)]);) | |
ec514c48 | 516 | |
6f505b16 PZ |
517 | #define for_each_sched_rt_entity(rt_se) \ |
518 | for (; rt_se; rt_se = rt_se->parent) | |
519 | ||
520 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
521 | { | |
522 | return rt_se->my_q; | |
523 | } | |
524 | ||
ff77e468 PZ |
525 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); |
526 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); | |
6f505b16 | 527 | |
9f0c1e56 | 528 | static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 529 | { |
f6121f4f | 530 | struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; |
8875125e | 531 | struct rq *rq = rq_of_rt_rq(rt_rq); |
74b7eb58 YZ |
532 | struct sched_rt_entity *rt_se; |
533 | ||
8875125e | 534 | int cpu = cpu_of(rq); |
0c3b9168 BS |
535 | |
536 | rt_se = rt_rq->tg->rt_se[cpu]; | |
6f505b16 | 537 | |
f6121f4f | 538 | if (rt_rq->rt_nr_running) { |
f4ebcbc0 KT |
539 | if (!rt_se) |
540 | enqueue_top_rt_rq(rt_rq); | |
541 | else if (!on_rt_rq(rt_se)) | |
ff77e468 | 542 | enqueue_rt_entity(rt_se, 0); |
f4ebcbc0 | 543 | |
e864c499 | 544 | if (rt_rq->highest_prio.curr < curr->prio) |
8875125e | 545 | resched_curr(rq); |
6f505b16 PZ |
546 | } |
547 | } | |
548 | ||
9f0c1e56 | 549 | static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 | 550 | { |
74b7eb58 | 551 | struct sched_rt_entity *rt_se; |
0c3b9168 | 552 | int cpu = cpu_of(rq_of_rt_rq(rt_rq)); |
74b7eb58 | 553 | |
0c3b9168 | 554 | rt_se = rt_rq->tg->rt_se[cpu]; |
6f505b16 | 555 | |
296b2ffe | 556 | if (!rt_se) { |
f4ebcbc0 | 557 | dequeue_top_rt_rq(rt_rq); |
296b2ffe VG |
558 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ |
559 | cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); | |
560 | } | |
f4ebcbc0 | 561 | else if (on_rt_rq(rt_se)) |
ff77e468 | 562 | dequeue_rt_entity(rt_se, 0); |
6f505b16 PZ |
563 | } |
564 | ||
46383648 KT |
565 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
566 | { | |
567 | return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; | |
568 | } | |
569 | ||
23b0fdfc PZ |
570 | static int rt_se_boosted(struct sched_rt_entity *rt_se) |
571 | { | |
572 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
573 | struct task_struct *p; | |
574 | ||
575 | if (rt_rq) | |
576 | return !!rt_rq->rt_nr_boosted; | |
577 | ||
578 | p = rt_task_of(rt_se); | |
579 | return p->prio != p->normal_prio; | |
580 | } | |
581 | ||
d0b27fa7 | 582 | #ifdef CONFIG_SMP |
c6c4927b | 583 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 584 | { |
424c93fe | 585 | return this_rq()->rd->span; |
d0b27fa7 | 586 | } |
6f505b16 | 587 | #else |
c6c4927b | 588 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 589 | { |
c6c4927b | 590 | return cpu_online_mask; |
d0b27fa7 PZ |
591 | } |
592 | #endif | |
6f505b16 | 593 | |
d0b27fa7 PZ |
594 | static inline |
595 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
6f505b16 | 596 | { |
d0b27fa7 PZ |
597 | return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; |
598 | } | |
9f0c1e56 | 599 | |
ac086bc2 PZ |
600 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
601 | { | |
602 | return &rt_rq->tg->rt_bandwidth; | |
603 | } | |
604 | ||
55e12e5e | 605 | #else /* !CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 PZ |
606 | |
607 | static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) | |
608 | { | |
ac086bc2 PZ |
609 | return rt_rq->rt_runtime; |
610 | } | |
611 | ||
612 | static inline u64 sched_rt_period(struct rt_rq *rt_rq) | |
613 | { | |
614 | return ktime_to_ns(def_rt_bandwidth.rt_period); | |
6f505b16 PZ |
615 | } |
616 | ||
ec514c48 CX |
617 | typedef struct rt_rq *rt_rq_iter_t; |
618 | ||
619 | #define for_each_rt_rq(rt_rq, iter, rq) \ | |
620 | for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) | |
621 | ||
6f505b16 PZ |
622 | #define for_each_sched_rt_entity(rt_se) \ |
623 | for (; rt_se; rt_se = NULL) | |
624 | ||
625 | static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) | |
626 | { | |
627 | return NULL; | |
628 | } | |
629 | ||
9f0c1e56 | 630 | static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) |
6f505b16 | 631 | { |
f4ebcbc0 KT |
632 | struct rq *rq = rq_of_rt_rq(rt_rq); |
633 | ||
634 | if (!rt_rq->rt_nr_running) | |
635 | return; | |
636 | ||
637 | enqueue_top_rt_rq(rt_rq); | |
8875125e | 638 | resched_curr(rq); |
6f505b16 PZ |
639 | } |
640 | ||
9f0c1e56 | 641 | static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) |
6f505b16 | 642 | { |
f4ebcbc0 | 643 | dequeue_top_rt_rq(rt_rq); |
6f505b16 PZ |
644 | } |
645 | ||
46383648 KT |
646 | static inline int rt_rq_throttled(struct rt_rq *rt_rq) |
647 | { | |
648 | return rt_rq->rt_throttled; | |
649 | } | |
650 | ||
c6c4927b | 651 | static inline const struct cpumask *sched_rt_period_mask(void) |
d0b27fa7 | 652 | { |
c6c4927b | 653 | return cpu_online_mask; |
d0b27fa7 PZ |
654 | } |
655 | ||
656 | static inline | |
657 | struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) | |
658 | { | |
659 | return &cpu_rq(cpu)->rt; | |
660 | } | |
661 | ||
ac086bc2 PZ |
662 | static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) |
663 | { | |
664 | return &def_rt_bandwidth; | |
665 | } | |
666 | ||
55e12e5e | 667 | #endif /* CONFIG_RT_GROUP_SCHED */ |
d0b27fa7 | 668 | |
faa59937 JL |
669 | bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) |
670 | { | |
671 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
672 | ||
673 | return (hrtimer_active(&rt_b->rt_period_timer) || | |
674 | rt_rq->rt_time < rt_b->rt_runtime); | |
675 | } | |
676 | ||
ac086bc2 | 677 | #ifdef CONFIG_SMP |
78333cdd PZ |
678 | /* |
679 | * We ran out of runtime, see if we can borrow some from our neighbours. | |
680 | */ | |
269b26a5 | 681 | static void do_balance_runtime(struct rt_rq *rt_rq) |
ac086bc2 PZ |
682 | { |
683 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); | |
aa7f6730 | 684 | struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; |
269b26a5 | 685 | int i, weight; |
ac086bc2 PZ |
686 | u64 rt_period; |
687 | ||
c6c4927b | 688 | weight = cpumask_weight(rd->span); |
ac086bc2 | 689 | |
0986b11b | 690 | raw_spin_lock(&rt_b->rt_runtime_lock); |
ac086bc2 | 691 | rt_period = ktime_to_ns(rt_b->rt_period); |
c6c4927b | 692 | for_each_cpu(i, rd->span) { |
ac086bc2 PZ |
693 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
694 | s64 diff; | |
695 | ||
696 | if (iter == rt_rq) | |
697 | continue; | |
698 | ||
0986b11b | 699 | raw_spin_lock(&iter->rt_runtime_lock); |
78333cdd PZ |
700 | /* |
701 | * Either all rqs have inf runtime and there's nothing to steal | |
702 | * or __disable_runtime() below sets a specific rq to inf to | |
703 | * indicate its been disabled and disalow stealing. | |
704 | */ | |
7def2be1 PZ |
705 | if (iter->rt_runtime == RUNTIME_INF) |
706 | goto next; | |
707 | ||
78333cdd PZ |
708 | /* |
709 | * From runqueues with spare time, take 1/n part of their | |
710 | * spare time, but no more than our period. | |
711 | */ | |
ac086bc2 PZ |
712 | diff = iter->rt_runtime - iter->rt_time; |
713 | if (diff > 0) { | |
58838cf3 | 714 | diff = div_u64((u64)diff, weight); |
ac086bc2 PZ |
715 | if (rt_rq->rt_runtime + diff > rt_period) |
716 | diff = rt_period - rt_rq->rt_runtime; | |
717 | iter->rt_runtime -= diff; | |
718 | rt_rq->rt_runtime += diff; | |
ac086bc2 | 719 | if (rt_rq->rt_runtime == rt_period) { |
0986b11b | 720 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 PZ |
721 | break; |
722 | } | |
723 | } | |
7def2be1 | 724 | next: |
0986b11b | 725 | raw_spin_unlock(&iter->rt_runtime_lock); |
ac086bc2 | 726 | } |
0986b11b | 727 | raw_spin_unlock(&rt_b->rt_runtime_lock); |
ac086bc2 | 728 | } |
7def2be1 | 729 | |
78333cdd PZ |
730 | /* |
731 | * Ensure this RQ takes back all the runtime it lend to its neighbours. | |
732 | */ | |
7def2be1 PZ |
733 | static void __disable_runtime(struct rq *rq) |
734 | { | |
735 | struct root_domain *rd = rq->rd; | |
ec514c48 | 736 | rt_rq_iter_t iter; |
7def2be1 PZ |
737 | struct rt_rq *rt_rq; |
738 | ||
739 | if (unlikely(!scheduler_running)) | |
740 | return; | |
741 | ||
ec514c48 | 742 | for_each_rt_rq(rt_rq, iter, rq) { |
7def2be1 PZ |
743 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
744 | s64 want; | |
745 | int i; | |
746 | ||
0986b11b TG |
747 | raw_spin_lock(&rt_b->rt_runtime_lock); |
748 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
78333cdd PZ |
749 | /* |
750 | * Either we're all inf and nobody needs to borrow, or we're | |
751 | * already disabled and thus have nothing to do, or we have | |
752 | * exactly the right amount of runtime to take out. | |
753 | */ | |
7def2be1 PZ |
754 | if (rt_rq->rt_runtime == RUNTIME_INF || |
755 | rt_rq->rt_runtime == rt_b->rt_runtime) | |
756 | goto balanced; | |
0986b11b | 757 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
7def2be1 | 758 | |
78333cdd PZ |
759 | /* |
760 | * Calculate the difference between what we started out with | |
761 | * and what we current have, that's the amount of runtime | |
762 | * we lend and now have to reclaim. | |
763 | */ | |
7def2be1 PZ |
764 | want = rt_b->rt_runtime - rt_rq->rt_runtime; |
765 | ||
78333cdd PZ |
766 | /* |
767 | * Greedy reclaim, take back as much as we can. | |
768 | */ | |
c6c4927b | 769 | for_each_cpu(i, rd->span) { |
7def2be1 PZ |
770 | struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); |
771 | s64 diff; | |
772 | ||
78333cdd PZ |
773 | /* |
774 | * Can't reclaim from ourselves or disabled runqueues. | |
775 | */ | |
f1679d08 | 776 | if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) |
7def2be1 PZ |
777 | continue; |
778 | ||
0986b11b | 779 | raw_spin_lock(&iter->rt_runtime_lock); |
7def2be1 PZ |
780 | if (want > 0) { |
781 | diff = min_t(s64, iter->rt_runtime, want); | |
782 | iter->rt_runtime -= diff; | |
783 | want -= diff; | |
784 | } else { | |
785 | iter->rt_runtime -= want; | |
786 | want -= want; | |
787 | } | |
0986b11b | 788 | raw_spin_unlock(&iter->rt_runtime_lock); |
7def2be1 PZ |
789 | |
790 | if (!want) | |
791 | break; | |
792 | } | |
793 | ||
0986b11b | 794 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
78333cdd PZ |
795 | /* |
796 | * We cannot be left wanting - that would mean some runtime | |
797 | * leaked out of the system. | |
798 | */ | |
7def2be1 PZ |
799 | BUG_ON(want); |
800 | balanced: | |
78333cdd PZ |
801 | /* |
802 | * Disable all the borrow logic by pretending we have inf | |
803 | * runtime - in which case borrowing doesn't make sense. | |
804 | */ | |
7def2be1 | 805 | rt_rq->rt_runtime = RUNTIME_INF; |
a4c96ae3 | 806 | rt_rq->rt_throttled = 0; |
0986b11b TG |
807 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
808 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
99b62567 KT |
809 | |
810 | /* Make rt_rq available for pick_next_task() */ | |
811 | sched_rt_rq_enqueue(rt_rq); | |
7def2be1 PZ |
812 | } |
813 | } | |
814 | ||
7def2be1 PZ |
815 | static void __enable_runtime(struct rq *rq) |
816 | { | |
ec514c48 | 817 | rt_rq_iter_t iter; |
7def2be1 PZ |
818 | struct rt_rq *rt_rq; |
819 | ||
820 | if (unlikely(!scheduler_running)) | |
821 | return; | |
822 | ||
78333cdd PZ |
823 | /* |
824 | * Reset each runqueue's bandwidth settings | |
825 | */ | |
ec514c48 | 826 | for_each_rt_rq(rt_rq, iter, rq) { |
7def2be1 PZ |
827 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
828 | ||
0986b11b TG |
829 | raw_spin_lock(&rt_b->rt_runtime_lock); |
830 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
7def2be1 PZ |
831 | rt_rq->rt_runtime = rt_b->rt_runtime; |
832 | rt_rq->rt_time = 0; | |
baf25731 | 833 | rt_rq->rt_throttled = 0; |
0986b11b TG |
834 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
835 | raw_spin_unlock(&rt_b->rt_runtime_lock); | |
7def2be1 PZ |
836 | } |
837 | } | |
838 | ||
269b26a5 | 839 | static void balance_runtime(struct rt_rq *rt_rq) |
eff6549b | 840 | { |
4a6184ce | 841 | if (!sched_feat(RT_RUNTIME_SHARE)) |
269b26a5 | 842 | return; |
4a6184ce | 843 | |
eff6549b | 844 | if (rt_rq->rt_time > rt_rq->rt_runtime) { |
0986b11b | 845 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
269b26a5 | 846 | do_balance_runtime(rt_rq); |
0986b11b | 847 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b | 848 | } |
eff6549b | 849 | } |
55e12e5e | 850 | #else /* !CONFIG_SMP */ |
269b26a5 | 851 | static inline void balance_runtime(struct rt_rq *rt_rq) {} |
55e12e5e | 852 | #endif /* CONFIG_SMP */ |
ac086bc2 | 853 | |
eff6549b PZ |
854 | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) |
855 | { | |
42c62a58 | 856 | int i, idle = 1, throttled = 0; |
c6c4927b | 857 | const struct cpumask *span; |
eff6549b | 858 | |
eff6549b | 859 | span = sched_rt_period_mask(); |
e221d028 MG |
860 | #ifdef CONFIG_RT_GROUP_SCHED |
861 | /* | |
862 | * FIXME: isolated CPUs should really leave the root task group, | |
863 | * whether they are isolcpus or were isolated via cpusets, lest | |
864 | * the timer run on a CPU which does not service all runqueues, | |
865 | * potentially leaving other CPUs indefinitely throttled. If | |
866 | * isolation is really required, the user will turn the throttle | |
867 | * off to kill the perturbations it causes anyway. Meanwhile, | |
868 | * this maintains functionality for boot and/or troubleshooting. | |
869 | */ | |
870 | if (rt_b == &root_task_group.rt_bandwidth) | |
871 | span = cpu_online_mask; | |
872 | #endif | |
c6c4927b | 873 | for_each_cpu(i, span) { |
eff6549b PZ |
874 | int enqueue = 0; |
875 | struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); | |
876 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
c249f255 DK |
877 | int skip; |
878 | ||
879 | /* | |
880 | * When span == cpu_online_mask, taking each rq->lock | |
881 | * can be time-consuming. Try to avoid it when possible. | |
882 | */ | |
883 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
f3d133ee HL |
884 | if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) |
885 | rt_rq->rt_runtime = rt_b->rt_runtime; | |
c249f255 DK |
886 | skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; |
887 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
888 | if (skip) | |
889 | continue; | |
eff6549b | 890 | |
05fa785c | 891 | raw_spin_lock(&rq->lock); |
d29a2064 DB |
892 | update_rq_clock(rq); |
893 | ||
eff6549b PZ |
894 | if (rt_rq->rt_time) { |
895 | u64 runtime; | |
896 | ||
0986b11b | 897 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
eff6549b PZ |
898 | if (rt_rq->rt_throttled) |
899 | balance_runtime(rt_rq); | |
900 | runtime = rt_rq->rt_runtime; | |
901 | rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); | |
902 | if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { | |
903 | rt_rq->rt_throttled = 0; | |
904 | enqueue = 1; | |
61eadef6 MG |
905 | |
906 | /* | |
9edfbfed PZ |
907 | * When we're idle and a woken (rt) task is |
908 | * throttled check_preempt_curr() will set | |
909 | * skip_update and the time between the wakeup | |
910 | * and this unthrottle will get accounted as | |
911 | * 'runtime'. | |
61eadef6 MG |
912 | */ |
913 | if (rt_rq->rt_nr_running && rq->curr == rq->idle) | |
adcc8da8 | 914 | rq_clock_cancel_skipupdate(rq); |
eff6549b PZ |
915 | } |
916 | if (rt_rq->rt_time || rt_rq->rt_nr_running) | |
917 | idle = 0; | |
0986b11b | 918 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
0c3b9168 | 919 | } else if (rt_rq->rt_nr_running) { |
6c3df255 | 920 | idle = 0; |
0c3b9168 BS |
921 | if (!rt_rq_throttled(rt_rq)) |
922 | enqueue = 1; | |
923 | } | |
42c62a58 PZ |
924 | if (rt_rq->rt_throttled) |
925 | throttled = 1; | |
eff6549b PZ |
926 | |
927 | if (enqueue) | |
928 | sched_rt_rq_enqueue(rt_rq); | |
05fa785c | 929 | raw_spin_unlock(&rq->lock); |
eff6549b PZ |
930 | } |
931 | ||
42c62a58 PZ |
932 | if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) |
933 | return 1; | |
934 | ||
eff6549b PZ |
935 | return idle; |
936 | } | |
ac086bc2 | 937 | |
6f505b16 PZ |
938 | static inline int rt_se_prio(struct sched_rt_entity *rt_se) |
939 | { | |
052f1dc7 | 940 | #ifdef CONFIG_RT_GROUP_SCHED |
6f505b16 PZ |
941 | struct rt_rq *rt_rq = group_rt_rq(rt_se); |
942 | ||
943 | if (rt_rq) | |
e864c499 | 944 | return rt_rq->highest_prio.curr; |
6f505b16 PZ |
945 | #endif |
946 | ||
947 | return rt_task_of(rt_se)->prio; | |
948 | } | |
949 | ||
9f0c1e56 | 950 | static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) |
6f505b16 | 951 | { |
9f0c1e56 | 952 | u64 runtime = sched_rt_runtime(rt_rq); |
fa85ae24 | 953 | |
fa85ae24 | 954 | if (rt_rq->rt_throttled) |
23b0fdfc | 955 | return rt_rq_throttled(rt_rq); |
fa85ae24 | 956 | |
5b680fd6 | 957 | if (runtime >= sched_rt_period(rt_rq)) |
ac086bc2 PZ |
958 | return 0; |
959 | ||
b79f3833 PZ |
960 | balance_runtime(rt_rq); |
961 | runtime = sched_rt_runtime(rt_rq); | |
962 | if (runtime == RUNTIME_INF) | |
963 | return 0; | |
ac086bc2 | 964 | |
9f0c1e56 | 965 | if (rt_rq->rt_time > runtime) { |
7abc63b1 PZ |
966 | struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); |
967 | ||
968 | /* | |
969 | * Don't actually throttle groups that have no runtime assigned | |
970 | * but accrue some time due to boosting. | |
971 | */ | |
972 | if (likely(rt_b->rt_runtime)) { | |
973 | rt_rq->rt_throttled = 1; | |
c224815d | 974 | printk_deferred_once("sched: RT throttling activated\n"); |
7abc63b1 PZ |
975 | } else { |
976 | /* | |
977 | * In case we did anyway, make it go away, | |
978 | * replenishment is a joke, since it will replenish us | |
979 | * with exactly 0 ns. | |
980 | */ | |
981 | rt_rq->rt_time = 0; | |
982 | } | |
983 | ||
23b0fdfc | 984 | if (rt_rq_throttled(rt_rq)) { |
9f0c1e56 | 985 | sched_rt_rq_dequeue(rt_rq); |
23b0fdfc PZ |
986 | return 1; |
987 | } | |
fa85ae24 PZ |
988 | } |
989 | ||
990 | return 0; | |
991 | } | |
992 | ||
bb44e5d1 IM |
993 | /* |
994 | * Update the current task's runtime statistics. Skip current tasks that | |
995 | * are not in our scheduling class. | |
996 | */ | |
a9957449 | 997 | static void update_curr_rt(struct rq *rq) |
bb44e5d1 IM |
998 | { |
999 | struct task_struct *curr = rq->curr; | |
6f505b16 | 1000 | struct sched_rt_entity *rt_se = &curr->rt; |
bb44e5d1 | 1001 | u64 delta_exec; |
a7711602 | 1002 | u64 now; |
bb44e5d1 | 1003 | |
06c3bc65 | 1004 | if (curr->sched_class != &rt_sched_class) |
bb44e5d1 IM |
1005 | return; |
1006 | ||
a7711602 | 1007 | now = rq_clock_task(rq); |
e7ad2031 | 1008 | delta_exec = now - curr->se.exec_start; |
fc79e240 KT |
1009 | if (unlikely((s64)delta_exec <= 0)) |
1010 | return; | |
6cfb0d5d | 1011 | |
42c62a58 PZ |
1012 | schedstat_set(curr->se.statistics.exec_max, |
1013 | max(curr->se.statistics.exec_max, delta_exec)); | |
bb44e5d1 IM |
1014 | |
1015 | curr->se.sum_exec_runtime += delta_exec; | |
f06febc9 FM |
1016 | account_group_exec_runtime(curr, delta_exec); |
1017 | ||
e7ad2031 | 1018 | curr->se.exec_start = now; |
d2cc5ed6 | 1019 | cgroup_account_cputime(curr, delta_exec); |
fa85ae24 | 1020 | |
0b148fa0 PZ |
1021 | if (!rt_bandwidth_enabled()) |
1022 | return; | |
1023 | ||
354d60c2 | 1024 | for_each_sched_rt_entity(rt_se) { |
0b07939c | 1025 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
354d60c2 | 1026 | |
cc2991cf | 1027 | if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { |
0986b11b | 1028 | raw_spin_lock(&rt_rq->rt_runtime_lock); |
cc2991cf PZ |
1029 | rt_rq->rt_time += delta_exec; |
1030 | if (sched_rt_runtime_exceeded(rt_rq)) | |
8875125e | 1031 | resched_curr(rq); |
0986b11b | 1032 | raw_spin_unlock(&rt_rq->rt_runtime_lock); |
cc2991cf | 1033 | } |
354d60c2 | 1034 | } |
bb44e5d1 IM |
1035 | } |
1036 | ||
f4ebcbc0 KT |
1037 | static void |
1038 | dequeue_top_rt_rq(struct rt_rq *rt_rq) | |
1039 | { | |
1040 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
1041 | ||
1042 | BUG_ON(&rq->rt != rt_rq); | |
1043 | ||
1044 | if (!rt_rq->rt_queued) | |
1045 | return; | |
1046 | ||
1047 | BUG_ON(!rq->nr_running); | |
1048 | ||
72465447 | 1049 | sub_nr_running(rq, rt_rq->rt_nr_running); |
f4ebcbc0 | 1050 | rt_rq->rt_queued = 0; |
8f111bc3 | 1051 | |
f4ebcbc0 KT |
1052 | } |
1053 | ||
1054 | static void | |
1055 | enqueue_top_rt_rq(struct rt_rq *rt_rq) | |
1056 | { | |
1057 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
1058 | ||
1059 | BUG_ON(&rq->rt != rt_rq); | |
1060 | ||
1061 | if (rt_rq->rt_queued) | |
1062 | return; | |
296b2ffe VG |
1063 | |
1064 | if (rt_rq_throttled(rt_rq)) | |
f4ebcbc0 KT |
1065 | return; |
1066 | ||
296b2ffe VG |
1067 | if (rt_rq->rt_nr_running) { |
1068 | add_nr_running(rq, rt_rq->rt_nr_running); | |
1069 | rt_rq->rt_queued = 1; | |
1070 | } | |
8f111bc3 PZ |
1071 | |
1072 | /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ | |
1073 | cpufreq_update_util(rq, 0); | |
f4ebcbc0 KT |
1074 | } |
1075 | ||
398a153b | 1076 | #if defined CONFIG_SMP |
e864c499 | 1077 | |
398a153b GH |
1078 | static void |
1079 | inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
63489e45 | 1080 | { |
4d984277 | 1081 | struct rq *rq = rq_of_rt_rq(rt_rq); |
1f11eb6a | 1082 | |
757dfcaa KT |
1083 | #ifdef CONFIG_RT_GROUP_SCHED |
1084 | /* | |
1085 | * Change rq's cpupri only if rt_rq is the top queue. | |
1086 | */ | |
1087 | if (&rq->rt != rt_rq) | |
1088 | return; | |
1089 | #endif | |
5181f4a4 SR |
1090 | if (rq->online && prio < prev_prio) |
1091 | cpupri_set(&rq->rd->cpupri, rq->cpu, prio); | |
398a153b | 1092 | } |
73fe6aae | 1093 | |
398a153b GH |
1094 | static void |
1095 | dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) | |
1096 | { | |
1097 | struct rq *rq = rq_of_rt_rq(rt_rq); | |
d0b27fa7 | 1098 | |
757dfcaa KT |
1099 | #ifdef CONFIG_RT_GROUP_SCHED |
1100 | /* | |
1101 | * Change rq's cpupri only if rt_rq is the top queue. | |
1102 | */ | |
1103 | if (&rq->rt != rt_rq) | |
1104 | return; | |
1105 | #endif | |
398a153b GH |
1106 | if (rq->online && rt_rq->highest_prio.curr != prev_prio) |
1107 | cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); | |
63489e45 SR |
1108 | } |
1109 | ||
398a153b GH |
1110 | #else /* CONFIG_SMP */ |
1111 | ||
6f505b16 | 1112 | static inline |
398a153b GH |
1113 | void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} |
1114 | static inline | |
1115 | void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} | |
1116 | ||
1117 | #endif /* CONFIG_SMP */ | |
6e0534f2 | 1118 | |
052f1dc7 | 1119 | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
398a153b GH |
1120 | static void |
1121 | inc_rt_prio(struct rt_rq *rt_rq, int prio) | |
1122 | { | |
1123 | int prev_prio = rt_rq->highest_prio.curr; | |
1124 | ||
1125 | if (prio < prev_prio) | |
1126 | rt_rq->highest_prio.curr = prio; | |
1127 | ||
1128 | inc_rt_prio_smp(rt_rq, prio, prev_prio); | |
1129 | } | |
1130 | ||
1131 | static void | |
1132 | dec_rt_prio(struct rt_rq *rt_rq, int prio) | |
1133 | { | |
1134 | int prev_prio = rt_rq->highest_prio.curr; | |
1135 | ||
6f505b16 | 1136 | if (rt_rq->rt_nr_running) { |
764a9d6f | 1137 | |
398a153b | 1138 | WARN_ON(prio < prev_prio); |
764a9d6f | 1139 | |
e864c499 | 1140 | /* |
398a153b GH |
1141 | * This may have been our highest task, and therefore |
1142 | * we may have some recomputation to do | |
e864c499 | 1143 | */ |
398a153b | 1144 | if (prio == prev_prio) { |
e864c499 GH |
1145 | struct rt_prio_array *array = &rt_rq->active; |
1146 | ||
1147 | rt_rq->highest_prio.curr = | |
764a9d6f | 1148 | sched_find_first_bit(array->bitmap); |
e864c499 GH |
1149 | } |
1150 | ||
934fc331 PZ |
1151 | } else { |
1152 | rt_rq->highest_prio.curr = MAX_RT_PRIO-1; | |
1153 | } | |
73fe6aae | 1154 | |
398a153b GH |
1155 | dec_rt_prio_smp(rt_rq, prio, prev_prio); |
1156 | } | |
1f11eb6a | 1157 | |
398a153b GH |
1158 | #else |
1159 | ||
1160 | static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
1161 | static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} | |
1162 | ||
1163 | #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ | |
6e0534f2 | 1164 | |
052f1dc7 | 1165 | #ifdef CONFIG_RT_GROUP_SCHED |
398a153b GH |
1166 | |
1167 | static void | |
1168 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1169 | { | |
1170 | if (rt_se_boosted(rt_se)) | |
1171 | rt_rq->rt_nr_boosted++; | |
1172 | ||
1173 | if (rt_rq->tg) | |
1174 | start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); | |
1175 | } | |
1176 | ||
1177 | static void | |
1178 | dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1179 | { | |
23b0fdfc PZ |
1180 | if (rt_se_boosted(rt_se)) |
1181 | rt_rq->rt_nr_boosted--; | |
1182 | ||
1183 | WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); | |
398a153b GH |
1184 | } |
1185 | ||
1186 | #else /* CONFIG_RT_GROUP_SCHED */ | |
1187 | ||
1188 | static void | |
1189 | inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1190 | { | |
1191 | start_rt_bandwidth(&def_rt_bandwidth); | |
1192 | } | |
1193 | ||
1194 | static inline | |
1195 | void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} | |
1196 | ||
1197 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
1198 | ||
22abdef3 KT |
1199 | static inline |
1200 | unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) | |
1201 | { | |
1202 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
1203 | ||
1204 | if (group_rq) | |
1205 | return group_rq->rt_nr_running; | |
1206 | else | |
1207 | return 1; | |
1208 | } | |
1209 | ||
01d36d0a FW |
1210 | static inline |
1211 | unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) | |
1212 | { | |
1213 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
1214 | struct task_struct *tsk; | |
1215 | ||
1216 | if (group_rq) | |
1217 | return group_rq->rr_nr_running; | |
1218 | ||
1219 | tsk = rt_task_of(rt_se); | |
1220 | ||
1221 | return (tsk->policy == SCHED_RR) ? 1 : 0; | |
1222 | } | |
1223 | ||
398a153b GH |
1224 | static inline |
1225 | void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1226 | { | |
1227 | int prio = rt_se_prio(rt_se); | |
1228 | ||
1229 | WARN_ON(!rt_prio(prio)); | |
22abdef3 | 1230 | rt_rq->rt_nr_running += rt_se_nr_running(rt_se); |
01d36d0a | 1231 | rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); |
398a153b GH |
1232 | |
1233 | inc_rt_prio(rt_rq, prio); | |
1234 | inc_rt_migration(rt_se, rt_rq); | |
1235 | inc_rt_group(rt_se, rt_rq); | |
1236 | } | |
1237 | ||
1238 | static inline | |
1239 | void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) | |
1240 | { | |
1241 | WARN_ON(!rt_prio(rt_se_prio(rt_se))); | |
1242 | WARN_ON(!rt_rq->rt_nr_running); | |
22abdef3 | 1243 | rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); |
01d36d0a | 1244 | rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); |
398a153b GH |
1245 | |
1246 | dec_rt_prio(rt_rq, rt_se_prio(rt_se)); | |
1247 | dec_rt_migration(rt_se, rt_rq); | |
1248 | dec_rt_group(rt_se, rt_rq); | |
63489e45 SR |
1249 | } |
1250 | ||
ff77e468 PZ |
1251 | /* |
1252 | * Change rt_se->run_list location unless SAVE && !MOVE | |
1253 | * | |
1254 | * assumes ENQUEUE/DEQUEUE flags match | |
1255 | */ | |
1256 | static inline bool move_entity(unsigned int flags) | |
1257 | { | |
1258 | if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) | |
1259 | return false; | |
1260 | ||
1261 | return true; | |
1262 | } | |
1263 | ||
1264 | static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) | |
1265 | { | |
1266 | list_del_init(&rt_se->run_list); | |
1267 | ||
1268 | if (list_empty(array->queue + rt_se_prio(rt_se))) | |
1269 | __clear_bit(rt_se_prio(rt_se), array->bitmap); | |
1270 | ||
1271 | rt_se->on_list = 0; | |
1272 | } | |
1273 | ||
1274 | static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) | |
bb44e5d1 | 1275 | { |
6f505b16 PZ |
1276 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); |
1277 | struct rt_prio_array *array = &rt_rq->active; | |
1278 | struct rt_rq *group_rq = group_rt_rq(rt_se); | |
20b6331b | 1279 | struct list_head *queue = array->queue + rt_se_prio(rt_se); |
bb44e5d1 | 1280 | |
ad2a3f13 PZ |
1281 | /* |
1282 | * Don't enqueue the group if its throttled, or when empty. | |
1283 | * The latter is a consequence of the former when a child group | |
1284 | * get throttled and the current group doesn't have any other | |
1285 | * active members. | |
1286 | */ | |
ff77e468 PZ |
1287 | if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { |
1288 | if (rt_se->on_list) | |
1289 | __delist_rt_entity(rt_se, array); | |
6f505b16 | 1290 | return; |
ff77e468 | 1291 | } |
63489e45 | 1292 | |
ff77e468 PZ |
1293 | if (move_entity(flags)) { |
1294 | WARN_ON_ONCE(rt_se->on_list); | |
1295 | if (flags & ENQUEUE_HEAD) | |
1296 | list_add(&rt_se->run_list, queue); | |
1297 | else | |
1298 | list_add_tail(&rt_se->run_list, queue); | |
1299 | ||
1300 | __set_bit(rt_se_prio(rt_se), array->bitmap); | |
1301 | rt_se->on_list = 1; | |
1302 | } | |
1303 | rt_se->on_rq = 1; | |
78f2c7db | 1304 | |
6f505b16 PZ |
1305 | inc_rt_tasks(rt_se, rt_rq); |
1306 | } | |
1307 | ||
ff77e468 | 1308 | static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
6f505b16 PZ |
1309 | { |
1310 | struct rt_rq *rt_rq = rt_rq_of_se(rt_se); | |
1311 | struct rt_prio_array *array = &rt_rq->active; | |
1312 | ||
ff77e468 PZ |
1313 | if (move_entity(flags)) { |
1314 | WARN_ON_ONCE(!rt_se->on_list); | |
1315 | __delist_rt_entity(rt_se, array); | |
1316 | } | |
1317 | rt_se->on_rq = 0; | |
6f505b16 PZ |
1318 | |
1319 | dec_rt_tasks(rt_se, rt_rq); | |
1320 | } | |
1321 | ||
1322 | /* | |
1323 | * Because the prio of an upper entry depends on the lower | |
1324 | * entries, we must remove entries top - down. | |
6f505b16 | 1325 | */ |
ff77e468 | 1326 | static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) |
6f505b16 | 1327 | { |
ad2a3f13 | 1328 | struct sched_rt_entity *back = NULL; |
6f505b16 | 1329 | |
58d6c2d7 PZ |
1330 | for_each_sched_rt_entity(rt_se) { |
1331 | rt_se->back = back; | |
1332 | back = rt_se; | |
1333 | } | |
1334 | ||
f4ebcbc0 KT |
1335 | dequeue_top_rt_rq(rt_rq_of_se(back)); |
1336 | ||
58d6c2d7 PZ |
1337 | for (rt_se = back; rt_se; rt_se = rt_se->back) { |
1338 | if (on_rt_rq(rt_se)) | |
ff77e468 | 1339 | __dequeue_rt_entity(rt_se, flags); |
ad2a3f13 PZ |
1340 | } |
1341 | } | |
1342 | ||
ff77e468 | 1343 | static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
ad2a3f13 | 1344 | { |
f4ebcbc0 KT |
1345 | struct rq *rq = rq_of_rt_se(rt_se); |
1346 | ||
ff77e468 | 1347 | dequeue_rt_stack(rt_se, flags); |
ad2a3f13 | 1348 | for_each_sched_rt_entity(rt_se) |
ff77e468 | 1349 | __enqueue_rt_entity(rt_se, flags); |
f4ebcbc0 | 1350 | enqueue_top_rt_rq(&rq->rt); |
ad2a3f13 PZ |
1351 | } |
1352 | ||
ff77e468 | 1353 | static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) |
ad2a3f13 | 1354 | { |
f4ebcbc0 KT |
1355 | struct rq *rq = rq_of_rt_se(rt_se); |
1356 | ||
ff77e468 | 1357 | dequeue_rt_stack(rt_se, flags); |
ad2a3f13 PZ |
1358 | |
1359 | for_each_sched_rt_entity(rt_se) { | |
1360 | struct rt_rq *rt_rq = group_rt_rq(rt_se); | |
1361 | ||
1362 | if (rt_rq && rt_rq->rt_nr_running) | |
ff77e468 | 1363 | __enqueue_rt_entity(rt_se, flags); |
58d6c2d7 | 1364 | } |
f4ebcbc0 | 1365 | enqueue_top_rt_rq(&rq->rt); |
bb44e5d1 IM |
1366 | } |
1367 | ||
1368 | /* | |
1369 | * Adding/removing a task to/from a priority array: | |
1370 | */ | |
ea87bb78 | 1371 | static void |
371fd7e7 | 1372 | enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
6f505b16 PZ |
1373 | { |
1374 | struct sched_rt_entity *rt_se = &p->rt; | |
1375 | ||
371fd7e7 | 1376 | if (flags & ENQUEUE_WAKEUP) |
6f505b16 PZ |
1377 | rt_se->timeout = 0; |
1378 | ||
ff77e468 | 1379 | enqueue_rt_entity(rt_se, flags); |
c09595f6 | 1380 | |
4b53a341 | 1381 | if (!task_current(rq, p) && p->nr_cpus_allowed > 1) |
917b627d | 1382 | enqueue_pushable_task(rq, p); |
6f505b16 PZ |
1383 | } |
1384 | ||
371fd7e7 | 1385 | static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 1386 | { |
6f505b16 | 1387 | struct sched_rt_entity *rt_se = &p->rt; |
bb44e5d1 | 1388 | |
f1e14ef6 | 1389 | update_curr_rt(rq); |
ff77e468 | 1390 | dequeue_rt_entity(rt_se, flags); |
c09595f6 | 1391 | |
917b627d | 1392 | dequeue_pushable_task(rq, p); |
bb44e5d1 IM |
1393 | } |
1394 | ||
1395 | /* | |
60686317 RW |
1396 | * Put task to the head or the end of the run list without the overhead of |
1397 | * dequeue followed by enqueue. | |
bb44e5d1 | 1398 | */ |
7ebefa8c DA |
1399 | static void |
1400 | requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) | |
6f505b16 | 1401 | { |
1cdad715 | 1402 | if (on_rt_rq(rt_se)) { |
7ebefa8c DA |
1403 | struct rt_prio_array *array = &rt_rq->active; |
1404 | struct list_head *queue = array->queue + rt_se_prio(rt_se); | |
1405 | ||
1406 | if (head) | |
1407 | list_move(&rt_se->run_list, queue); | |
1408 | else | |
1409 | list_move_tail(&rt_se->run_list, queue); | |
1cdad715 | 1410 | } |
6f505b16 PZ |
1411 | } |
1412 | ||
7ebefa8c | 1413 | static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) |
bb44e5d1 | 1414 | { |
6f505b16 PZ |
1415 | struct sched_rt_entity *rt_se = &p->rt; |
1416 | struct rt_rq *rt_rq; | |
bb44e5d1 | 1417 | |
6f505b16 PZ |
1418 | for_each_sched_rt_entity(rt_se) { |
1419 | rt_rq = rt_rq_of_se(rt_se); | |
7ebefa8c | 1420 | requeue_rt_entity(rt_rq, rt_se, head); |
6f505b16 | 1421 | } |
bb44e5d1 IM |
1422 | } |
1423 | ||
6f505b16 | 1424 | static void yield_task_rt(struct rq *rq) |
bb44e5d1 | 1425 | { |
7ebefa8c | 1426 | requeue_task_rt(rq, rq->curr, 0); |
bb44e5d1 IM |
1427 | } |
1428 | ||
e7693a36 | 1429 | #ifdef CONFIG_SMP |
318e0893 GH |
1430 | static int find_lowest_rq(struct task_struct *task); |
1431 | ||
0017d735 | 1432 | static int |
3aef1551 | 1433 | select_task_rq_rt(struct task_struct *p, int cpu, int flags) |
e7693a36 | 1434 | { |
7608dec2 PZ |
1435 | struct task_struct *curr; |
1436 | struct rq *rq; | |
804d402f | 1437 | bool test; |
c37495fd SR |
1438 | |
1439 | /* For anything but wake ups, just return the task_cpu */ | |
3aef1551 | 1440 | if (!(flags & (WF_TTWU | WF_FORK))) |
c37495fd SR |
1441 | goto out; |
1442 | ||
7608dec2 PZ |
1443 | rq = cpu_rq(cpu); |
1444 | ||
1445 | rcu_read_lock(); | |
316c1608 | 1446 | curr = READ_ONCE(rq->curr); /* unlocked access */ |
7608dec2 | 1447 | |
318e0893 | 1448 | /* |
7608dec2 | 1449 | * If the current task on @p's runqueue is an RT task, then |
e1f47d89 SR |
1450 | * try to see if we can wake this RT task up on another |
1451 | * runqueue. Otherwise simply start this RT task | |
1452 | * on its current runqueue. | |
1453 | * | |
43fa5460 SR |
1454 | * We want to avoid overloading runqueues. If the woken |
1455 | * task is a higher priority, then it will stay on this CPU | |
1456 | * and the lower prio task should be moved to another CPU. | |
1457 | * Even though this will probably make the lower prio task | |
1458 | * lose its cache, we do not want to bounce a higher task | |
1459 | * around just because it gave up its CPU, perhaps for a | |
1460 | * lock? | |
1461 | * | |
1462 | * For equal prio tasks, we just let the scheduler sort it out. | |
7608dec2 PZ |
1463 | * |
1464 | * Otherwise, just let it ride on the affined RQ and the | |
1465 | * post-schedule router will push the preempted task away | |
1466 | * | |
1467 | * This test is optimistic, if we get it wrong the load-balancer | |
1468 | * will have to sort it out. | |
804d402f QY |
1469 | * |
1470 | * We take into account the capacity of the CPU to ensure it fits the | |
1471 | * requirement of the task - which is only important on heterogeneous | |
1472 | * systems like big.LITTLE. | |
318e0893 | 1473 | */ |
804d402f QY |
1474 | test = curr && |
1475 | unlikely(rt_task(curr)) && | |
1476 | (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); | |
1477 | ||
1478 | if (test || !rt_task_fits_capacity(p, cpu)) { | |
7608dec2 | 1479 | int target = find_lowest_rq(p); |
318e0893 | 1480 | |
b28bc1e0 QY |
1481 | /* |
1482 | * Bail out if we were forcing a migration to find a better | |
1483 | * fitting CPU but our search failed. | |
1484 | */ | |
1485 | if (!test && target != -1 && !rt_task_fits_capacity(p, target)) | |
1486 | goto out_unlock; | |
1487 | ||
80e3d87b TC |
1488 | /* |
1489 | * Don't bother moving it if the destination CPU is | |
1490 | * not running a lower priority task. | |
1491 | */ | |
1492 | if (target != -1 && | |
1493 | p->prio < cpu_rq(target)->rt.highest_prio.curr) | |
7608dec2 | 1494 | cpu = target; |
318e0893 | 1495 | } |
b28bc1e0 QY |
1496 | |
1497 | out_unlock: | |
7608dec2 | 1498 | rcu_read_unlock(); |
318e0893 | 1499 | |
c37495fd | 1500 | out: |
7608dec2 | 1501 | return cpu; |
e7693a36 | 1502 | } |
7ebefa8c DA |
1503 | |
1504 | static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) | |
1505 | { | |
308a623a WL |
1506 | /* |
1507 | * Current can't be migrated, useless to reschedule, | |
1508 | * let's hope p can move out. | |
1509 | */ | |
4b53a341 | 1510 | if (rq->curr->nr_cpus_allowed == 1 || |
a1bd02e1 | 1511 | !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) |
7ebefa8c DA |
1512 | return; |
1513 | ||
308a623a WL |
1514 | /* |
1515 | * p is migratable, so let's not schedule it and | |
1516 | * see if it is pushed or pulled somewhere else. | |
1517 | */ | |
804d402f | 1518 | if (p->nr_cpus_allowed != 1 && |
a1bd02e1 | 1519 | cpupri_find(&rq->rd->cpupri, p, NULL)) |
13b8bd0a | 1520 | return; |
24600ce8 | 1521 | |
7ebefa8c | 1522 | /* |
97fb7a0a IM |
1523 | * There appear to be other CPUs that can accept |
1524 | * the current task but none can run 'p', so lets reschedule | |
1525 | * to try and push the current task away: | |
7ebefa8c DA |
1526 | */ |
1527 | requeue_task_rt(rq, p, 1); | |
8875125e | 1528 | resched_curr(rq); |
7ebefa8c DA |
1529 | } |
1530 | ||
6e2df058 PZ |
1531 | static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) |
1532 | { | |
1533 | if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { | |
1534 | /* | |
1535 | * This is OK, because current is on_cpu, which avoids it being | |
1536 | * picked for load-balance and preemption/IRQs are still | |
1537 | * disabled avoiding further scheduler activity on it and we've | |
1538 | * not yet started the picking loop. | |
1539 | */ | |
1540 | rq_unpin_lock(rq, rf); | |
1541 | pull_rt_task(rq); | |
1542 | rq_repin_lock(rq, rf); | |
1543 | } | |
1544 | ||
1545 | return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); | |
1546 | } | |
e7693a36 GH |
1547 | #endif /* CONFIG_SMP */ |
1548 | ||
bb44e5d1 IM |
1549 | /* |
1550 | * Preempt the current task with a newly woken task if needed: | |
1551 | */ | |
7d478721 | 1552 | static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) |
bb44e5d1 | 1553 | { |
45c01e82 | 1554 | if (p->prio < rq->curr->prio) { |
8875125e | 1555 | resched_curr(rq); |
45c01e82 GH |
1556 | return; |
1557 | } | |
1558 | ||
1559 | #ifdef CONFIG_SMP | |
1560 | /* | |
1561 | * If: | |
1562 | * | |
1563 | * - the newly woken task is of equal priority to the current task | |
1564 | * - the newly woken task is non-migratable while current is migratable | |
1565 | * - current will be preempted on the next reschedule | |
1566 | * | |
1567 | * we should check to see if current can readily move to a different | |
1568 | * cpu. If so, we will reschedule to allow the push logic to try | |
1569 | * to move current somewhere else, making room for our non-migratable | |
1570 | * task. | |
1571 | */ | |
8dd0de8b | 1572 | if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) |
7ebefa8c | 1573 | check_preempt_equal_prio(rq, p); |
45c01e82 | 1574 | #endif |
bb44e5d1 IM |
1575 | } |
1576 | ||
a0e813f2 | 1577 | static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) |
ff1cdc94 MS |
1578 | { |
1579 | p->se.exec_start = rq_clock_task(rq); | |
1580 | ||
1581 | /* The running task is never eligible for pushing */ | |
1582 | dequeue_pushable_task(rq, p); | |
f95d4eae | 1583 | |
a0e813f2 PZ |
1584 | if (!first) |
1585 | return; | |
1586 | ||
f95d4eae PZ |
1587 | /* |
1588 | * If prev task was rt, put_prev_task() has already updated the | |
1589 | * utilization. We only care of the case where we start to schedule a | |
1590 | * rt task | |
1591 | */ | |
1592 | if (rq->curr->sched_class != &rt_sched_class) | |
1593 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); | |
1594 | ||
1595 | rt_queue_push_tasks(rq); | |
ff1cdc94 MS |
1596 | } |
1597 | ||
6f505b16 PZ |
1598 | static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, |
1599 | struct rt_rq *rt_rq) | |
bb44e5d1 | 1600 | { |
6f505b16 PZ |
1601 | struct rt_prio_array *array = &rt_rq->active; |
1602 | struct sched_rt_entity *next = NULL; | |
bb44e5d1 IM |
1603 | struct list_head *queue; |
1604 | int idx; | |
1605 | ||
1606 | idx = sched_find_first_bit(array->bitmap); | |
6f505b16 | 1607 | BUG_ON(idx >= MAX_RT_PRIO); |
bb44e5d1 IM |
1608 | |
1609 | queue = array->queue + idx; | |
6f505b16 | 1610 | next = list_entry(queue->next, struct sched_rt_entity, run_list); |
326587b8 | 1611 | |
6f505b16 PZ |
1612 | return next; |
1613 | } | |
bb44e5d1 | 1614 | |
917b627d | 1615 | static struct task_struct *_pick_next_task_rt(struct rq *rq) |
6f505b16 PZ |
1616 | { |
1617 | struct sched_rt_entity *rt_se; | |
606dba2e | 1618 | struct rt_rq *rt_rq = &rq->rt; |
6f505b16 PZ |
1619 | |
1620 | do { | |
1621 | rt_se = pick_next_rt_entity(rq, rt_rq); | |
326587b8 | 1622 | BUG_ON(!rt_se); |
6f505b16 PZ |
1623 | rt_rq = group_rt_rq(rt_se); |
1624 | } while (rt_rq); | |
1625 | ||
ff1cdc94 | 1626 | return rt_task_of(rt_se); |
917b627d GH |
1627 | } |
1628 | ||
98c2f700 | 1629 | static struct task_struct *pick_next_task_rt(struct rq *rq) |
917b627d | 1630 | { |
606dba2e | 1631 | struct task_struct *p; |
606dba2e | 1632 | |
6e2df058 | 1633 | if (!sched_rt_runnable(rq)) |
606dba2e PZ |
1634 | return NULL; |
1635 | ||
606dba2e | 1636 | p = _pick_next_task_rt(rq); |
a0e813f2 | 1637 | set_next_task_rt(rq, p, true); |
6f505b16 | 1638 | return p; |
bb44e5d1 IM |
1639 | } |
1640 | ||
6e2df058 | 1641 | static void put_prev_task_rt(struct rq *rq, struct task_struct *p) |
bb44e5d1 | 1642 | { |
f1e14ef6 | 1643 | update_curr_rt(rq); |
917b627d | 1644 | |
23127296 | 1645 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
371bf427 | 1646 | |
917b627d GH |
1647 | /* |
1648 | * The previous task needs to be made eligible for pushing | |
1649 | * if it is still active | |
1650 | */ | |
4b53a341 | 1651 | if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) |
917b627d | 1652 | enqueue_pushable_task(rq, p); |
bb44e5d1 IM |
1653 | } |
1654 | ||
681f3e68 | 1655 | #ifdef CONFIG_SMP |
6f505b16 | 1656 | |
e8fa1362 SR |
1657 | /* Only try algorithms three times */ |
1658 | #define RT_MAX_TRIES 3 | |
1659 | ||
f65eda4f SR |
1660 | static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) |
1661 | { | |
1662 | if (!task_running(rq, p) && | |
95158a89 | 1663 | cpumask_test_cpu(cpu, &p->cpus_mask)) |
f65eda4f | 1664 | return 1; |
97fb7a0a | 1665 | |
f65eda4f SR |
1666 | return 0; |
1667 | } | |
1668 | ||
e23ee747 KT |
1669 | /* |
1670 | * Return the highest pushable rq's task, which is suitable to be executed | |
97fb7a0a | 1671 | * on the CPU, NULL otherwise |
e23ee747 KT |
1672 | */ |
1673 | static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) | |
e8fa1362 | 1674 | { |
e23ee747 KT |
1675 | struct plist_head *head = &rq->rt.pushable_tasks; |
1676 | struct task_struct *p; | |
3d07467b | 1677 | |
e23ee747 KT |
1678 | if (!has_pushable_tasks(rq)) |
1679 | return NULL; | |
3d07467b | 1680 | |
e23ee747 KT |
1681 | plist_for_each_entry(p, head, pushable_tasks) { |
1682 | if (pick_rt_task(rq, p, cpu)) | |
1683 | return p; | |
f65eda4f SR |
1684 | } |
1685 | ||
e23ee747 | 1686 | return NULL; |
e8fa1362 SR |
1687 | } |
1688 | ||
0e3900e6 | 1689 | static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); |
e8fa1362 | 1690 | |
6e1254d2 GH |
1691 | static int find_lowest_rq(struct task_struct *task) |
1692 | { | |
1693 | struct sched_domain *sd; | |
4ba29684 | 1694 | struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); |
6e1254d2 GH |
1695 | int this_cpu = smp_processor_id(); |
1696 | int cpu = task_cpu(task); | |
a1bd02e1 | 1697 | int ret; |
06f90dbd | 1698 | |
0da938c4 SR |
1699 | /* Make sure the mask is initialized first */ |
1700 | if (unlikely(!lowest_mask)) | |
1701 | return -1; | |
1702 | ||
4b53a341 | 1703 | if (task->nr_cpus_allowed == 1) |
6e0534f2 | 1704 | return -1; /* No other targets possible */ |
6e1254d2 | 1705 | |
a1bd02e1 QY |
1706 | /* |
1707 | * If we're on asym system ensure we consider the different capacities | |
1708 | * of the CPUs when searching for the lowest_mask. | |
1709 | */ | |
1710 | if (static_branch_unlikely(&sched_asym_cpucapacity)) { | |
1711 | ||
1712 | ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, | |
1713 | task, lowest_mask, | |
1714 | rt_task_fits_capacity); | |
1715 | } else { | |
1716 | ||
1717 | ret = cpupri_find(&task_rq(task)->rd->cpupri, | |
1718 | task, lowest_mask); | |
1719 | } | |
1720 | ||
1721 | if (!ret) | |
6e0534f2 | 1722 | return -1; /* No targets found */ |
6e1254d2 GH |
1723 | |
1724 | /* | |
97fb7a0a | 1725 | * At this point we have built a mask of CPUs representing the |
6e1254d2 GH |
1726 | * lowest priority tasks in the system. Now we want to elect |
1727 | * the best one based on our affinity and topology. | |
1728 | * | |
97fb7a0a | 1729 | * We prioritize the last CPU that the task executed on since |
6e1254d2 GH |
1730 | * it is most likely cache-hot in that location. |
1731 | */ | |
96f874e2 | 1732 | if (cpumask_test_cpu(cpu, lowest_mask)) |
6e1254d2 GH |
1733 | return cpu; |
1734 | ||
1735 | /* | |
1736 | * Otherwise, we consult the sched_domains span maps to figure | |
97fb7a0a | 1737 | * out which CPU is logically closest to our hot cache data. |
6e1254d2 | 1738 | */ |
e2c88063 RR |
1739 | if (!cpumask_test_cpu(this_cpu, lowest_mask)) |
1740 | this_cpu = -1; /* Skip this_cpu opt if not among lowest */ | |
6e1254d2 | 1741 | |
cd4ae6ad | 1742 | rcu_read_lock(); |
e2c88063 RR |
1743 | for_each_domain(cpu, sd) { |
1744 | if (sd->flags & SD_WAKE_AFFINE) { | |
1745 | int best_cpu; | |
6e1254d2 | 1746 | |
e2c88063 RR |
1747 | /* |
1748 | * "this_cpu" is cheaper to preempt than a | |
1749 | * remote processor. | |
1750 | */ | |
1751 | if (this_cpu != -1 && | |
cd4ae6ad XF |
1752 | cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { |
1753 | rcu_read_unlock(); | |
e2c88063 | 1754 | return this_cpu; |
cd4ae6ad | 1755 | } |
e2c88063 | 1756 | |
14e292f8 PZ |
1757 | best_cpu = cpumask_any_and_distribute(lowest_mask, |
1758 | sched_domain_span(sd)); | |
cd4ae6ad XF |
1759 | if (best_cpu < nr_cpu_ids) { |
1760 | rcu_read_unlock(); | |
e2c88063 | 1761 | return best_cpu; |
cd4ae6ad | 1762 | } |
6e1254d2 GH |
1763 | } |
1764 | } | |
cd4ae6ad | 1765 | rcu_read_unlock(); |
6e1254d2 GH |
1766 | |
1767 | /* | |
1768 | * And finally, if there were no matches within the domains | |
1769 | * just give the caller *something* to work with from the compatible | |
1770 | * locations. | |
1771 | */ | |
e2c88063 RR |
1772 | if (this_cpu != -1) |
1773 | return this_cpu; | |
1774 | ||
14e292f8 | 1775 | cpu = cpumask_any_distribute(lowest_mask); |
e2c88063 RR |
1776 | if (cpu < nr_cpu_ids) |
1777 | return cpu; | |
97fb7a0a | 1778 | |
e2c88063 | 1779 | return -1; |
07b4032c GH |
1780 | } |
1781 | ||
1782 | /* Will lock the rq it finds */ | |
4df64c0b | 1783 | static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) |
07b4032c GH |
1784 | { |
1785 | struct rq *lowest_rq = NULL; | |
07b4032c | 1786 | int tries; |
4df64c0b | 1787 | int cpu; |
e8fa1362 | 1788 | |
07b4032c GH |
1789 | for (tries = 0; tries < RT_MAX_TRIES; tries++) { |
1790 | cpu = find_lowest_rq(task); | |
1791 | ||
2de0b463 | 1792 | if ((cpu == -1) || (cpu == rq->cpu)) |
e8fa1362 SR |
1793 | break; |
1794 | ||
07b4032c GH |
1795 | lowest_rq = cpu_rq(cpu); |
1796 | ||
80e3d87b TC |
1797 | if (lowest_rq->rt.highest_prio.curr <= task->prio) { |
1798 | /* | |
1799 | * Target rq has tasks of equal or higher priority, | |
1800 | * retrying does not release any lock and is unlikely | |
1801 | * to yield a different result. | |
1802 | */ | |
1803 | lowest_rq = NULL; | |
1804 | break; | |
1805 | } | |
1806 | ||
e8fa1362 | 1807 | /* if the prio of this runqueue changed, try again */ |
07b4032c | 1808 | if (double_lock_balance(rq, lowest_rq)) { |
e8fa1362 SR |
1809 | /* |
1810 | * We had to unlock the run queue. In | |
1811 | * the mean time, task could have | |
1812 | * migrated already or had its affinity changed. | |
1813 | * Also make sure that it wasn't scheduled on its rq. | |
1814 | */ | |
07b4032c | 1815 | if (unlikely(task_rq(task) != rq || |
95158a89 | 1816 | !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || |
07b4032c | 1817 | task_running(rq, task) || |
13b5ab02 | 1818 | !rt_task(task) || |
da0c1e65 | 1819 | !task_on_rq_queued(task))) { |
4df64c0b | 1820 | |
7f1b4393 | 1821 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1822 | lowest_rq = NULL; |
1823 | break; | |
1824 | } | |
1825 | } | |
1826 | ||
1827 | /* If this rq is still suitable use it. */ | |
e864c499 | 1828 | if (lowest_rq->rt.highest_prio.curr > task->prio) |
e8fa1362 SR |
1829 | break; |
1830 | ||
1831 | /* try again */ | |
1b12bbc7 | 1832 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1833 | lowest_rq = NULL; |
1834 | } | |
1835 | ||
1836 | return lowest_rq; | |
1837 | } | |
1838 | ||
917b627d GH |
1839 | static struct task_struct *pick_next_pushable_task(struct rq *rq) |
1840 | { | |
1841 | struct task_struct *p; | |
1842 | ||
1843 | if (!has_pushable_tasks(rq)) | |
1844 | return NULL; | |
1845 | ||
1846 | p = plist_first_entry(&rq->rt.pushable_tasks, | |
1847 | struct task_struct, pushable_tasks); | |
1848 | ||
1849 | BUG_ON(rq->cpu != task_cpu(p)); | |
1850 | BUG_ON(task_current(rq, p)); | |
4b53a341 | 1851 | BUG_ON(p->nr_cpus_allowed <= 1); |
917b627d | 1852 | |
da0c1e65 | 1853 | BUG_ON(!task_on_rq_queued(p)); |
917b627d GH |
1854 | BUG_ON(!rt_task(p)); |
1855 | ||
1856 | return p; | |
1857 | } | |
1858 | ||
e8fa1362 SR |
1859 | /* |
1860 | * If the current CPU has more than one RT task, see if the non | |
1861 | * running task can migrate over to a CPU that is running a task | |
1862 | * of lesser priority. | |
1863 | */ | |
a7c81556 | 1864 | static int push_rt_task(struct rq *rq, bool pull) |
e8fa1362 SR |
1865 | { |
1866 | struct task_struct *next_task; | |
1867 | struct rq *lowest_rq; | |
311e800e | 1868 | int ret = 0; |
e8fa1362 | 1869 | |
a22d7fc1 GH |
1870 | if (!rq->rt.overloaded) |
1871 | return 0; | |
1872 | ||
917b627d | 1873 | next_task = pick_next_pushable_task(rq); |
e8fa1362 SR |
1874 | if (!next_task) |
1875 | return 0; | |
1876 | ||
49246274 | 1877 | retry: |
a7c81556 PZ |
1878 | if (is_migration_disabled(next_task)) { |
1879 | struct task_struct *push_task = NULL; | |
1880 | int cpu; | |
1881 | ||
1882 | if (!pull || rq->push_busy) | |
1883 | return 0; | |
1884 | ||
1885 | cpu = find_lowest_rq(rq->curr); | |
1886 | if (cpu == -1 || cpu == rq->cpu) | |
1887 | return 0; | |
1888 | ||
1889 | /* | |
1890 | * Given we found a CPU with lower priority than @next_task, | |
1891 | * therefore it should be running. However we cannot migrate it | |
1892 | * to this other CPU, instead attempt to push the current | |
1893 | * running task on this CPU away. | |
1894 | */ | |
1895 | push_task = get_push_task(rq); | |
1896 | if (push_task) { | |
1897 | raw_spin_unlock(&rq->lock); | |
1898 | stop_one_cpu_nowait(rq->cpu, push_cpu_stop, | |
1899 | push_task, &rq->push_work); | |
1900 | raw_spin_lock(&rq->lock); | |
1901 | } | |
1902 | ||
1903 | return 0; | |
1904 | } | |
1905 | ||
9ebc6053 | 1906 | if (WARN_ON(next_task == rq->curr)) |
e8fa1362 SR |
1907 | return 0; |
1908 | ||
1909 | /* | |
1910 | * It's possible that the next_task slipped in of | |
1911 | * higher priority than current. If that's the case | |
1912 | * just reschedule current. | |
1913 | */ | |
697f0a48 | 1914 | if (unlikely(next_task->prio < rq->curr->prio)) { |
8875125e | 1915 | resched_curr(rq); |
e8fa1362 SR |
1916 | return 0; |
1917 | } | |
1918 | ||
697f0a48 | 1919 | /* We might release rq lock */ |
e8fa1362 SR |
1920 | get_task_struct(next_task); |
1921 | ||
1922 | /* find_lock_lowest_rq locks the rq if found */ | |
697f0a48 | 1923 | lowest_rq = find_lock_lowest_rq(next_task, rq); |
e8fa1362 SR |
1924 | if (!lowest_rq) { |
1925 | struct task_struct *task; | |
1926 | /* | |
311e800e | 1927 | * find_lock_lowest_rq releases rq->lock |
1563513d GH |
1928 | * so it is possible that next_task has migrated. |
1929 | * | |
1930 | * We need to make sure that the task is still on the same | |
1931 | * run-queue and is also still the next task eligible for | |
1932 | * pushing. | |
e8fa1362 | 1933 | */ |
917b627d | 1934 | task = pick_next_pushable_task(rq); |
de16b91e | 1935 | if (task == next_task) { |
1563513d | 1936 | /* |
311e800e HD |
1937 | * The task hasn't migrated, and is still the next |
1938 | * eligible task, but we failed to find a run-queue | |
1939 | * to push it to. Do not retry in this case, since | |
97fb7a0a | 1940 | * other CPUs will pull from us when ready. |
1563513d | 1941 | */ |
1563513d | 1942 | goto out; |
e8fa1362 | 1943 | } |
917b627d | 1944 | |
1563513d GH |
1945 | if (!task) |
1946 | /* No more tasks, just exit */ | |
1947 | goto out; | |
1948 | ||
917b627d | 1949 | /* |
1563513d | 1950 | * Something has shifted, try again. |
917b627d | 1951 | */ |
1563513d GH |
1952 | put_task_struct(next_task); |
1953 | next_task = task; | |
1954 | goto retry; | |
e8fa1362 SR |
1955 | } |
1956 | ||
697f0a48 | 1957 | deactivate_task(rq, next_task, 0); |
e8fa1362 SR |
1958 | set_task_cpu(next_task, lowest_rq->cpu); |
1959 | activate_task(lowest_rq, next_task, 0); | |
8875125e | 1960 | resched_curr(lowest_rq); |
a7c81556 | 1961 | ret = 1; |
e8fa1362 | 1962 | |
1b12bbc7 | 1963 | double_unlock_balance(rq, lowest_rq); |
e8fa1362 SR |
1964 | out: |
1965 | put_task_struct(next_task); | |
1966 | ||
311e800e | 1967 | return ret; |
e8fa1362 SR |
1968 | } |
1969 | ||
e8fa1362 SR |
1970 | static void push_rt_tasks(struct rq *rq) |
1971 | { | |
1972 | /* push_rt_task will return true if it moved an RT */ | |
a7c81556 | 1973 | while (push_rt_task(rq, false)) |
e8fa1362 SR |
1974 | ; |
1975 | } | |
1976 | ||
b6366f04 | 1977 | #ifdef HAVE_RT_PUSH_IPI |
4bdced5c | 1978 | |
b6366f04 | 1979 | /* |
4bdced5c SRRH |
1980 | * When a high priority task schedules out from a CPU and a lower priority |
1981 | * task is scheduled in, a check is made to see if there's any RT tasks | |
1982 | * on other CPUs that are waiting to run because a higher priority RT task | |
1983 | * is currently running on its CPU. In this case, the CPU with multiple RT | |
1984 | * tasks queued on it (overloaded) needs to be notified that a CPU has opened | |
1985 | * up that may be able to run one of its non-running queued RT tasks. | |
1986 | * | |
1987 | * All CPUs with overloaded RT tasks need to be notified as there is currently | |
1988 | * no way to know which of these CPUs have the highest priority task waiting | |
1989 | * to run. Instead of trying to take a spinlock on each of these CPUs, | |
1990 | * which has shown to cause large latency when done on machines with many | |
1991 | * CPUs, sending an IPI to the CPUs to have them push off the overloaded | |
1992 | * RT tasks waiting to run. | |
1993 | * | |
1994 | * Just sending an IPI to each of the CPUs is also an issue, as on large | |
1995 | * count CPU machines, this can cause an IPI storm on a CPU, especially | |
1996 | * if its the only CPU with multiple RT tasks queued, and a large number | |
1997 | * of CPUs scheduling a lower priority task at the same time. | |
1998 | * | |
1999 | * Each root domain has its own irq work function that can iterate over | |
2000 | * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT | |
2001 | * tassk must be checked if there's one or many CPUs that are lowering | |
2002 | * their priority, there's a single irq work iterator that will try to | |
2003 | * push off RT tasks that are waiting to run. | |
2004 | * | |
2005 | * When a CPU schedules a lower priority task, it will kick off the | |
2006 | * irq work iterator that will jump to each CPU with overloaded RT tasks. | |
2007 | * As it only takes the first CPU that schedules a lower priority task | |
2008 | * to start the process, the rto_start variable is incremented and if | |
2009 | * the atomic result is one, then that CPU will try to take the rto_lock. | |
2010 | * This prevents high contention on the lock as the process handles all | |
2011 | * CPUs scheduling lower priority tasks. | |
2012 | * | |
2013 | * All CPUs that are scheduling a lower priority task will increment the | |
2014 | * rt_loop_next variable. This will make sure that the irq work iterator | |
2015 | * checks all RT overloaded CPUs whenever a CPU schedules a new lower | |
2016 | * priority task, even if the iterator is in the middle of a scan. Incrementing | |
2017 | * the rt_loop_next will cause the iterator to perform another scan. | |
b6366f04 | 2018 | * |
b6366f04 | 2019 | */ |
ad0f1d9d | 2020 | static int rto_next_cpu(struct root_domain *rd) |
b6366f04 | 2021 | { |
4bdced5c | 2022 | int next; |
b6366f04 SR |
2023 | int cpu; |
2024 | ||
b6366f04 | 2025 | /* |
4bdced5c SRRH |
2026 | * When starting the IPI RT pushing, the rto_cpu is set to -1, |
2027 | * rt_next_cpu() will simply return the first CPU found in | |
2028 | * the rto_mask. | |
2029 | * | |
97fb7a0a | 2030 | * If rto_next_cpu() is called with rto_cpu is a valid CPU, it |
4bdced5c SRRH |
2031 | * will return the next CPU found in the rto_mask. |
2032 | * | |
2033 | * If there are no more CPUs left in the rto_mask, then a check is made | |
2034 | * against rto_loop and rto_loop_next. rto_loop is only updated with | |
2035 | * the rto_lock held, but any CPU may increment the rto_loop_next | |
2036 | * without any locking. | |
b6366f04 | 2037 | */ |
4bdced5c | 2038 | for (;;) { |
b6366f04 | 2039 | |
4bdced5c SRRH |
2040 | /* When rto_cpu is -1 this acts like cpumask_first() */ |
2041 | cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); | |
b6366f04 | 2042 | |
4bdced5c | 2043 | rd->rto_cpu = cpu; |
b6366f04 | 2044 | |
4bdced5c SRRH |
2045 | if (cpu < nr_cpu_ids) |
2046 | return cpu; | |
b6366f04 | 2047 | |
4bdced5c SRRH |
2048 | rd->rto_cpu = -1; |
2049 | ||
2050 | /* | |
2051 | * ACQUIRE ensures we see the @rto_mask changes | |
2052 | * made prior to the @next value observed. | |
2053 | * | |
2054 | * Matches WMB in rt_set_overload(). | |
2055 | */ | |
2056 | next = atomic_read_acquire(&rd->rto_loop_next); | |
b6366f04 | 2057 | |
4bdced5c | 2058 | if (rd->rto_loop == next) |
b6366f04 | 2059 | break; |
4bdced5c SRRH |
2060 | |
2061 | rd->rto_loop = next; | |
b6366f04 SR |
2062 | } |
2063 | ||
4bdced5c | 2064 | return -1; |
b6366f04 SR |
2065 | } |
2066 | ||
4bdced5c SRRH |
2067 | static inline bool rto_start_trylock(atomic_t *v) |
2068 | { | |
2069 | return !atomic_cmpxchg_acquire(v, 0, 1); | |
2070 | } | |
b6366f04 | 2071 | |
4bdced5c | 2072 | static inline void rto_start_unlock(atomic_t *v) |
b6366f04 | 2073 | { |
4bdced5c SRRH |
2074 | atomic_set_release(v, 0); |
2075 | } | |
b6366f04 | 2076 | |
4bdced5c SRRH |
2077 | static void tell_cpu_to_push(struct rq *rq) |
2078 | { | |
2079 | int cpu = -1; | |
b6366f04 | 2080 | |
4bdced5c SRRH |
2081 | /* Keep the loop going if the IPI is currently active */ |
2082 | atomic_inc(&rq->rd->rto_loop_next); | |
b6366f04 | 2083 | |
4bdced5c SRRH |
2084 | /* Only one CPU can initiate a loop at a time */ |
2085 | if (!rto_start_trylock(&rq->rd->rto_loop_start)) | |
b6366f04 SR |
2086 | return; |
2087 | ||
4bdced5c | 2088 | raw_spin_lock(&rq->rd->rto_lock); |
b6366f04 | 2089 | |
4bdced5c | 2090 | /* |
97fb7a0a | 2091 | * The rto_cpu is updated under the lock, if it has a valid CPU |
4bdced5c SRRH |
2092 | * then the IPI is still running and will continue due to the |
2093 | * update to loop_next, and nothing needs to be done here. | |
2094 | * Otherwise it is finishing up and an ipi needs to be sent. | |
2095 | */ | |
2096 | if (rq->rd->rto_cpu < 0) | |
ad0f1d9d | 2097 | cpu = rto_next_cpu(rq->rd); |
4bdced5c SRRH |
2098 | |
2099 | raw_spin_unlock(&rq->rd->rto_lock); | |
2100 | ||
2101 | rto_start_unlock(&rq->rd->rto_loop_start); | |
2102 | ||
364f5665 SRV |
2103 | if (cpu >= 0) { |
2104 | /* Make sure the rd does not get freed while pushing */ | |
2105 | sched_get_rd(rq->rd); | |
4bdced5c | 2106 | irq_work_queue_on(&rq->rd->rto_push_work, cpu); |
364f5665 | 2107 | } |
b6366f04 SR |
2108 | } |
2109 | ||
2110 | /* Called from hardirq context */ | |
4bdced5c | 2111 | void rto_push_irq_work_func(struct irq_work *work) |
b6366f04 | 2112 | { |
ad0f1d9d SRV |
2113 | struct root_domain *rd = |
2114 | container_of(work, struct root_domain, rto_push_work); | |
4bdced5c | 2115 | struct rq *rq; |
b6366f04 SR |
2116 | int cpu; |
2117 | ||
4bdced5c | 2118 | rq = this_rq(); |
b6366f04 | 2119 | |
4bdced5c SRRH |
2120 | /* |
2121 | * We do not need to grab the lock to check for has_pushable_tasks. | |
2122 | * When it gets updated, a check is made if a push is possible. | |
2123 | */ | |
b6366f04 SR |
2124 | if (has_pushable_tasks(rq)) { |
2125 | raw_spin_lock(&rq->lock); | |
a7c81556 PZ |
2126 | while (push_rt_task(rq, true)) |
2127 | ; | |
b6366f04 SR |
2128 | raw_spin_unlock(&rq->lock); |
2129 | } | |
2130 | ||
ad0f1d9d | 2131 | raw_spin_lock(&rd->rto_lock); |
b6366f04 | 2132 | |
4bdced5c | 2133 | /* Pass the IPI to the next rt overloaded queue */ |
ad0f1d9d | 2134 | cpu = rto_next_cpu(rd); |
b6366f04 | 2135 | |
ad0f1d9d | 2136 | raw_spin_unlock(&rd->rto_lock); |
b6366f04 | 2137 | |
364f5665 SRV |
2138 | if (cpu < 0) { |
2139 | sched_put_rd(rd); | |
b6366f04 | 2140 | return; |
364f5665 | 2141 | } |
b6366f04 | 2142 | |
b6366f04 | 2143 | /* Try the next RT overloaded CPU */ |
ad0f1d9d | 2144 | irq_work_queue_on(&rd->rto_push_work, cpu); |
b6366f04 SR |
2145 | } |
2146 | #endif /* HAVE_RT_PUSH_IPI */ | |
2147 | ||
8046d680 | 2148 | static void pull_rt_task(struct rq *this_rq) |
f65eda4f | 2149 | { |
8046d680 PZ |
2150 | int this_cpu = this_rq->cpu, cpu; |
2151 | bool resched = false; | |
a7c81556 | 2152 | struct task_struct *p, *push_task; |
f65eda4f | 2153 | struct rq *src_rq; |
f73c52a5 | 2154 | int rt_overload_count = rt_overloaded(this_rq); |
f65eda4f | 2155 | |
f73c52a5 | 2156 | if (likely(!rt_overload_count)) |
8046d680 | 2157 | return; |
f65eda4f | 2158 | |
7c3f2ab7 PZ |
2159 | /* |
2160 | * Match the barrier from rt_set_overloaded; this guarantees that if we | |
2161 | * see overloaded we must also see the rto_mask bit. | |
2162 | */ | |
2163 | smp_rmb(); | |
2164 | ||
f73c52a5 SR |
2165 | /* If we are the only overloaded CPU do nothing */ |
2166 | if (rt_overload_count == 1 && | |
2167 | cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) | |
2168 | return; | |
2169 | ||
b6366f04 SR |
2170 | #ifdef HAVE_RT_PUSH_IPI |
2171 | if (sched_feat(RT_PUSH_IPI)) { | |
2172 | tell_cpu_to_push(this_rq); | |
8046d680 | 2173 | return; |
b6366f04 SR |
2174 | } |
2175 | #endif | |
2176 | ||
c6c4927b | 2177 | for_each_cpu(cpu, this_rq->rd->rto_mask) { |
f65eda4f SR |
2178 | if (this_cpu == cpu) |
2179 | continue; | |
2180 | ||
2181 | src_rq = cpu_rq(cpu); | |
74ab8e4f GH |
2182 | |
2183 | /* | |
2184 | * Don't bother taking the src_rq->lock if the next highest | |
2185 | * task is known to be lower-priority than our current task. | |
2186 | * This may look racy, but if this value is about to go | |
2187 | * logically higher, the src_rq will push this task away. | |
2188 | * And if its going logically lower, we do not care | |
2189 | */ | |
2190 | if (src_rq->rt.highest_prio.next >= | |
2191 | this_rq->rt.highest_prio.curr) | |
2192 | continue; | |
2193 | ||
f65eda4f SR |
2194 | /* |
2195 | * We can potentially drop this_rq's lock in | |
2196 | * double_lock_balance, and another CPU could | |
a8728944 | 2197 | * alter this_rq |
f65eda4f | 2198 | */ |
a7c81556 | 2199 | push_task = NULL; |
a8728944 | 2200 | double_lock_balance(this_rq, src_rq); |
f65eda4f SR |
2201 | |
2202 | /* | |
e23ee747 KT |
2203 | * We can pull only a task, which is pushable |
2204 | * on its rq, and no others. | |
f65eda4f | 2205 | */ |
e23ee747 | 2206 | p = pick_highest_pushable_task(src_rq, this_cpu); |
f65eda4f SR |
2207 | |
2208 | /* | |
2209 | * Do we have an RT task that preempts | |
2210 | * the to-be-scheduled task? | |
2211 | */ | |
a8728944 | 2212 | if (p && (p->prio < this_rq->rt.highest_prio.curr)) { |
f65eda4f | 2213 | WARN_ON(p == src_rq->curr); |
da0c1e65 | 2214 | WARN_ON(!task_on_rq_queued(p)); |
f65eda4f SR |
2215 | |
2216 | /* | |
2217 | * There's a chance that p is higher in priority | |
97fb7a0a | 2218 | * than what's currently running on its CPU. |
f65eda4f SR |
2219 | * This is just that p is wakeing up and hasn't |
2220 | * had a chance to schedule. We only pull | |
2221 | * p if it is lower in priority than the | |
a8728944 | 2222 | * current task on the run queue |
f65eda4f | 2223 | */ |
a8728944 | 2224 | if (p->prio < src_rq->curr->prio) |
614ee1f6 | 2225 | goto skip; |
f65eda4f | 2226 | |
a7c81556 PZ |
2227 | if (is_migration_disabled(p)) { |
2228 | push_task = get_push_task(src_rq); | |
2229 | } else { | |
2230 | deactivate_task(src_rq, p, 0); | |
2231 | set_task_cpu(p, this_cpu); | |
2232 | activate_task(this_rq, p, 0); | |
2233 | resched = true; | |
2234 | } | |
f65eda4f SR |
2235 | /* |
2236 | * We continue with the search, just in | |
2237 | * case there's an even higher prio task | |
25985edc | 2238 | * in another runqueue. (low likelihood |
f65eda4f | 2239 | * but possible) |
f65eda4f | 2240 | */ |
f65eda4f | 2241 | } |
49246274 | 2242 | skip: |
1b12bbc7 | 2243 | double_unlock_balance(this_rq, src_rq); |
a7c81556 PZ |
2244 | |
2245 | if (push_task) { | |
2246 | raw_spin_unlock(&this_rq->lock); | |
2247 | stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, | |
2248 | push_task, &src_rq->push_work); | |
2249 | raw_spin_lock(&this_rq->lock); | |
2250 | } | |
f65eda4f SR |
2251 | } |
2252 | ||
8046d680 PZ |
2253 | if (resched) |
2254 | resched_curr(this_rq); | |
f65eda4f SR |
2255 | } |
2256 | ||
8ae121ac GH |
2257 | /* |
2258 | * If we are not running and we are not going to reschedule soon, we should | |
2259 | * try to push tasks away now | |
2260 | */ | |
efbbd05a | 2261 | static void task_woken_rt(struct rq *rq, struct task_struct *p) |
4642dafd | 2262 | { |
804d402f QY |
2263 | bool need_to_push = !task_running(rq, p) && |
2264 | !test_tsk_need_resched(rq->curr) && | |
2265 | p->nr_cpus_allowed > 1 && | |
2266 | (dl_task(rq->curr) || rt_task(rq->curr)) && | |
2267 | (rq->curr->nr_cpus_allowed < 2 || | |
2268 | rq->curr->prio <= p->prio); | |
2269 | ||
d94a9df4 | 2270 | if (need_to_push) |
4642dafd SR |
2271 | push_rt_tasks(rq); |
2272 | } | |
2273 | ||
bdd7c81b | 2274 | /* Assumes rq->lock is held */ |
1f11eb6a | 2275 | static void rq_online_rt(struct rq *rq) |
bdd7c81b IM |
2276 | { |
2277 | if (rq->rt.overloaded) | |
2278 | rt_set_overload(rq); | |
6e0534f2 | 2279 | |
7def2be1 PZ |
2280 | __enable_runtime(rq); |
2281 | ||
e864c499 | 2282 | cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); |
bdd7c81b IM |
2283 | } |
2284 | ||
2285 | /* Assumes rq->lock is held */ | |
1f11eb6a | 2286 | static void rq_offline_rt(struct rq *rq) |
bdd7c81b IM |
2287 | { |
2288 | if (rq->rt.overloaded) | |
2289 | rt_clear_overload(rq); | |
6e0534f2 | 2290 | |
7def2be1 PZ |
2291 | __disable_runtime(rq); |
2292 | ||
6e0534f2 | 2293 | cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); |
bdd7c81b | 2294 | } |
cb469845 SR |
2295 | |
2296 | /* | |
2297 | * When switch from the rt queue, we bring ourselves to a position | |
2298 | * that we might want to pull RT tasks from other runqueues. | |
2299 | */ | |
da7a735e | 2300 | static void switched_from_rt(struct rq *rq, struct task_struct *p) |
cb469845 SR |
2301 | { |
2302 | /* | |
2303 | * If there are other RT tasks then we will reschedule | |
2304 | * and the scheduling of the other RT tasks will handle | |
2305 | * the balancing. But if we are the last RT task | |
2306 | * we may need to handle the pulling of RT tasks | |
2307 | * now. | |
2308 | */ | |
da0c1e65 | 2309 | if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) |
1158ddb5 KT |
2310 | return; |
2311 | ||
02d8ec94 | 2312 | rt_queue_pull_task(rq); |
cb469845 | 2313 | } |
3d8cbdf8 | 2314 | |
11c785b7 | 2315 | void __init init_sched_rt_class(void) |
3d8cbdf8 RR |
2316 | { |
2317 | unsigned int i; | |
2318 | ||
029632fb | 2319 | for_each_possible_cpu(i) { |
eaa95840 | 2320 | zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), |
6ca09dfc | 2321 | GFP_KERNEL, cpu_to_node(i)); |
029632fb | 2322 | } |
3d8cbdf8 | 2323 | } |
cb469845 SR |
2324 | #endif /* CONFIG_SMP */ |
2325 | ||
2326 | /* | |
2327 | * When switching a task to RT, we may overload the runqueue | |
2328 | * with RT tasks. In this case we try to push them off to | |
2329 | * other runqueues. | |
2330 | */ | |
da7a735e | 2331 | static void switched_to_rt(struct rq *rq, struct task_struct *p) |
cb469845 | 2332 | { |
cb469845 SR |
2333 | /* |
2334 | * If we are already running, then there's nothing | |
2335 | * that needs to be done. But if we are not running | |
2336 | * we may need to preempt the current running task. | |
2337 | * If that current running task is also an RT task | |
2338 | * then see if we can move to another run queue. | |
2339 | */ | |
da0c1e65 | 2340 | if (task_on_rq_queued(p) && rq->curr != p) { |
cb469845 | 2341 | #ifdef CONFIG_SMP |
d94a9df4 | 2342 | if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) |
02d8ec94 | 2343 | rt_queue_push_tasks(rq); |
619bd4a7 | 2344 | #endif /* CONFIG_SMP */ |
2fe25826 | 2345 | if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) |
8875125e | 2346 | resched_curr(rq); |
cb469845 SR |
2347 | } |
2348 | } | |
2349 | ||
2350 | /* | |
2351 | * Priority of the task has changed. This may cause | |
2352 | * us to initiate a push or pull. | |
2353 | */ | |
da7a735e PZ |
2354 | static void |
2355 | prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) | |
cb469845 | 2356 | { |
da0c1e65 | 2357 | if (!task_on_rq_queued(p)) |
da7a735e PZ |
2358 | return; |
2359 | ||
65bcf072 | 2360 | if (task_current(rq, p)) { |
cb469845 SR |
2361 | #ifdef CONFIG_SMP |
2362 | /* | |
2363 | * If our priority decreases while running, we | |
2364 | * may need to pull tasks to this runqueue. | |
2365 | */ | |
2366 | if (oldprio < p->prio) | |
02d8ec94 | 2367 | rt_queue_pull_task(rq); |
fd7a4bed | 2368 | |
cb469845 SR |
2369 | /* |
2370 | * If there's a higher priority task waiting to run | |
fd7a4bed | 2371 | * then reschedule. |
cb469845 | 2372 | */ |
fd7a4bed | 2373 | if (p->prio > rq->rt.highest_prio.curr) |
8875125e | 2374 | resched_curr(rq); |
cb469845 SR |
2375 | #else |
2376 | /* For UP simply resched on drop of prio */ | |
2377 | if (oldprio < p->prio) | |
8875125e | 2378 | resched_curr(rq); |
e8fa1362 | 2379 | #endif /* CONFIG_SMP */ |
cb469845 SR |
2380 | } else { |
2381 | /* | |
2382 | * This task is not running, but if it is | |
2383 | * greater than the current running task | |
2384 | * then reschedule. | |
2385 | */ | |
2386 | if (p->prio < rq->curr->prio) | |
8875125e | 2387 | resched_curr(rq); |
cb469845 SR |
2388 | } |
2389 | } | |
2390 | ||
b18b6a9c | 2391 | #ifdef CONFIG_POSIX_TIMERS |
78f2c7db PZ |
2392 | static void watchdog(struct rq *rq, struct task_struct *p) |
2393 | { | |
2394 | unsigned long soft, hard; | |
2395 | ||
78d7d407 JS |
2396 | /* max may change after cur was read, this will be fixed next tick */ |
2397 | soft = task_rlimit(p, RLIMIT_RTTIME); | |
2398 | hard = task_rlimit_max(p, RLIMIT_RTTIME); | |
78f2c7db PZ |
2399 | |
2400 | if (soft != RLIM_INFINITY) { | |
2401 | unsigned long next; | |
2402 | ||
57d2aa00 YX |
2403 | if (p->rt.watchdog_stamp != jiffies) { |
2404 | p->rt.timeout++; | |
2405 | p->rt.watchdog_stamp = jiffies; | |
2406 | } | |
2407 | ||
78f2c7db | 2408 | next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); |
3a245c0f TG |
2409 | if (p->rt.timeout > next) { |
2410 | posix_cputimers_rt_watchdog(&p->posix_cputimers, | |
2411 | p->se.sum_exec_runtime); | |
2412 | } | |
78f2c7db PZ |
2413 | } |
2414 | } | |
b18b6a9c NP |
2415 | #else |
2416 | static inline void watchdog(struct rq *rq, struct task_struct *p) { } | |
2417 | #endif | |
bb44e5d1 | 2418 | |
d84b3131 FW |
2419 | /* |
2420 | * scheduler tick hitting a task of our scheduling class. | |
2421 | * | |
2422 | * NOTE: This function can be called remotely by the tick offload that | |
2423 | * goes along full dynticks. Therefore no local assumption can be made | |
2424 | * and everything must be accessed through the @rq and @curr passed in | |
2425 | * parameters. | |
2426 | */ | |
8f4d37ec | 2427 | static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) |
bb44e5d1 | 2428 | { |
454c7999 CC |
2429 | struct sched_rt_entity *rt_se = &p->rt; |
2430 | ||
67e2be02 | 2431 | update_curr_rt(rq); |
23127296 | 2432 | update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); |
67e2be02 | 2433 | |
78f2c7db PZ |
2434 | watchdog(rq, p); |
2435 | ||
bb44e5d1 IM |
2436 | /* |
2437 | * RR tasks need a special form of timeslice management. | |
2438 | * FIFO tasks have no timeslices. | |
2439 | */ | |
2440 | if (p->policy != SCHED_RR) | |
2441 | return; | |
2442 | ||
fa717060 | 2443 | if (--p->rt.time_slice) |
bb44e5d1 IM |
2444 | return; |
2445 | ||
ce0dbbbb | 2446 | p->rt.time_slice = sched_rr_timeslice; |
bb44e5d1 | 2447 | |
98fbc798 | 2448 | /* |
e9aa39bb LB |
2449 | * Requeue to the end of queue if we (and all of our ancestors) are not |
2450 | * the only element on the queue | |
98fbc798 | 2451 | */ |
454c7999 CC |
2452 | for_each_sched_rt_entity(rt_se) { |
2453 | if (rt_se->run_list.prev != rt_se->run_list.next) { | |
2454 | requeue_task_rt(rq, p, 0); | |
8aa6f0eb | 2455 | resched_curr(rq); |
454c7999 CC |
2456 | return; |
2457 | } | |
98fbc798 | 2458 | } |
bb44e5d1 IM |
2459 | } |
2460 | ||
6d686f45 | 2461 | static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) |
0d721cea PW |
2462 | { |
2463 | /* | |
2464 | * Time slice is 0 for SCHED_FIFO tasks | |
2465 | */ | |
2466 | if (task->policy == SCHED_RR) | |
ce0dbbbb | 2467 | return sched_rr_timeslice; |
0d721cea PW |
2468 | else |
2469 | return 0; | |
2470 | } | |
2471 | ||
43c31ac0 PZ |
2472 | DEFINE_SCHED_CLASS(rt) = { |
2473 | ||
bb44e5d1 IM |
2474 | .enqueue_task = enqueue_task_rt, |
2475 | .dequeue_task = dequeue_task_rt, | |
2476 | .yield_task = yield_task_rt, | |
2477 | ||
2478 | .check_preempt_curr = check_preempt_curr_rt, | |
2479 | ||
2480 | .pick_next_task = pick_next_task_rt, | |
2481 | .put_prev_task = put_prev_task_rt, | |
03b7fad1 | 2482 | .set_next_task = set_next_task_rt, |
bb44e5d1 | 2483 | |
681f3e68 | 2484 | #ifdef CONFIG_SMP |
6e2df058 | 2485 | .balance = balance_rt, |
4ce72a2c | 2486 | .select_task_rq = select_task_rq_rt, |
6c37067e | 2487 | .set_cpus_allowed = set_cpus_allowed_common, |
1f11eb6a GH |
2488 | .rq_online = rq_online_rt, |
2489 | .rq_offline = rq_offline_rt, | |
efbbd05a | 2490 | .task_woken = task_woken_rt, |
cb469845 | 2491 | .switched_from = switched_from_rt, |
a7c81556 | 2492 | .find_lock_rq = find_lock_lowest_rq, |
681f3e68 | 2493 | #endif |
bb44e5d1 IM |
2494 | |
2495 | .task_tick = task_tick_rt, | |
cb469845 | 2496 | |
0d721cea PW |
2497 | .get_rr_interval = get_rr_interval_rt, |
2498 | ||
cb469845 SR |
2499 | .prio_changed = prio_changed_rt, |
2500 | .switched_to = switched_to_rt, | |
6e998916 SG |
2501 | |
2502 | .update_curr = update_curr_rt, | |
982d9cdc PB |
2503 | |
2504 | #ifdef CONFIG_UCLAMP_TASK | |
2505 | .uclamp_enabled = 1, | |
2506 | #endif | |
bb44e5d1 | 2507 | }; |
ada18de2 | 2508 | |
8887cd99 NP |
2509 | #ifdef CONFIG_RT_GROUP_SCHED |
2510 | /* | |
2511 | * Ensure that the real time constraints are schedulable. | |
2512 | */ | |
2513 | static DEFINE_MUTEX(rt_constraints_mutex); | |
2514 | ||
8887cd99 NP |
2515 | static inline int tg_has_rt_tasks(struct task_group *tg) |
2516 | { | |
b4fb015e KK |
2517 | struct task_struct *task; |
2518 | struct css_task_iter it; | |
2519 | int ret = 0; | |
8887cd99 NP |
2520 | |
2521 | /* | |
2522 | * Autogroups do not have RT tasks; see autogroup_create(). | |
2523 | */ | |
2524 | if (task_group_is_autogroup(tg)) | |
2525 | return 0; | |
2526 | ||
b4fb015e KK |
2527 | css_task_iter_start(&tg->css, 0, &it); |
2528 | while (!ret && (task = css_task_iter_next(&it))) | |
2529 | ret |= rt_task(task); | |
2530 | css_task_iter_end(&it); | |
8887cd99 | 2531 | |
b4fb015e | 2532 | return ret; |
8887cd99 NP |
2533 | } |
2534 | ||
2535 | struct rt_schedulable_data { | |
2536 | struct task_group *tg; | |
2537 | u64 rt_period; | |
2538 | u64 rt_runtime; | |
2539 | }; | |
2540 | ||
2541 | static int tg_rt_schedulable(struct task_group *tg, void *data) | |
2542 | { | |
2543 | struct rt_schedulable_data *d = data; | |
2544 | struct task_group *child; | |
2545 | unsigned long total, sum = 0; | |
2546 | u64 period, runtime; | |
2547 | ||
2548 | period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
2549 | runtime = tg->rt_bandwidth.rt_runtime; | |
2550 | ||
2551 | if (tg == d->tg) { | |
2552 | period = d->rt_period; | |
2553 | runtime = d->rt_runtime; | |
2554 | } | |
2555 | ||
2556 | /* | |
2557 | * Cannot have more runtime than the period. | |
2558 | */ | |
2559 | if (runtime > period && runtime != RUNTIME_INF) | |
2560 | return -EINVAL; | |
2561 | ||
2562 | /* | |
b4fb015e | 2563 | * Ensure we don't starve existing RT tasks if runtime turns zero. |
8887cd99 | 2564 | */ |
b4fb015e KK |
2565 | if (rt_bandwidth_enabled() && !runtime && |
2566 | tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) | |
8887cd99 NP |
2567 | return -EBUSY; |
2568 | ||
2569 | total = to_ratio(period, runtime); | |
2570 | ||
2571 | /* | |
2572 | * Nobody can have more than the global setting allows. | |
2573 | */ | |
2574 | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | |
2575 | return -EINVAL; | |
2576 | ||
2577 | /* | |
2578 | * The sum of our children's runtime should not exceed our own. | |
2579 | */ | |
2580 | list_for_each_entry_rcu(child, &tg->children, siblings) { | |
2581 | period = ktime_to_ns(child->rt_bandwidth.rt_period); | |
2582 | runtime = child->rt_bandwidth.rt_runtime; | |
2583 | ||
2584 | if (child == d->tg) { | |
2585 | period = d->rt_period; | |
2586 | runtime = d->rt_runtime; | |
2587 | } | |
2588 | ||
2589 | sum += to_ratio(period, runtime); | |
2590 | } | |
2591 | ||
2592 | if (sum > total) | |
2593 | return -EINVAL; | |
2594 | ||
2595 | return 0; | |
2596 | } | |
2597 | ||
2598 | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | |
2599 | { | |
2600 | int ret; | |
2601 | ||
2602 | struct rt_schedulable_data data = { | |
2603 | .tg = tg, | |
2604 | .rt_period = period, | |
2605 | .rt_runtime = runtime, | |
2606 | }; | |
2607 | ||
2608 | rcu_read_lock(); | |
2609 | ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); | |
2610 | rcu_read_unlock(); | |
2611 | ||
2612 | return ret; | |
2613 | } | |
2614 | ||
2615 | static int tg_set_rt_bandwidth(struct task_group *tg, | |
2616 | u64 rt_period, u64 rt_runtime) | |
2617 | { | |
2618 | int i, err = 0; | |
2619 | ||
2620 | /* | |
2621 | * Disallowing the root group RT runtime is BAD, it would disallow the | |
2622 | * kernel creating (and or operating) RT threads. | |
2623 | */ | |
2624 | if (tg == &root_task_group && rt_runtime == 0) | |
2625 | return -EINVAL; | |
2626 | ||
2627 | /* No period doesn't make any sense. */ | |
2628 | if (rt_period == 0) | |
2629 | return -EINVAL; | |
2630 | ||
d505b8af HC |
2631 | /* |
2632 | * Bound quota to defend quota against overflow during bandwidth shift. | |
2633 | */ | |
2634 | if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) | |
2635 | return -EINVAL; | |
2636 | ||
8887cd99 | 2637 | mutex_lock(&rt_constraints_mutex); |
8887cd99 NP |
2638 | err = __rt_schedulable(tg, rt_period, rt_runtime); |
2639 | if (err) | |
2640 | goto unlock; | |
2641 | ||
2642 | raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
2643 | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | |
2644 | tg->rt_bandwidth.rt_runtime = rt_runtime; | |
2645 | ||
2646 | for_each_possible_cpu(i) { | |
2647 | struct rt_rq *rt_rq = tg->rt_rq[i]; | |
2648 | ||
2649 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
2650 | rt_rq->rt_runtime = rt_runtime; | |
2651 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
2652 | } | |
2653 | raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | |
2654 | unlock: | |
8887cd99 NP |
2655 | mutex_unlock(&rt_constraints_mutex); |
2656 | ||
2657 | return err; | |
2658 | } | |
2659 | ||
2660 | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | |
2661 | { | |
2662 | u64 rt_runtime, rt_period; | |
2663 | ||
2664 | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
2665 | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | |
2666 | if (rt_runtime_us < 0) | |
2667 | rt_runtime = RUNTIME_INF; | |
1a010e29 KK |
2668 | else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) |
2669 | return -EINVAL; | |
8887cd99 NP |
2670 | |
2671 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | |
2672 | } | |
2673 | ||
2674 | long sched_group_rt_runtime(struct task_group *tg) | |
2675 | { | |
2676 | u64 rt_runtime_us; | |
2677 | ||
2678 | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | |
2679 | return -1; | |
2680 | ||
2681 | rt_runtime_us = tg->rt_bandwidth.rt_runtime; | |
2682 | do_div(rt_runtime_us, NSEC_PER_USEC); | |
2683 | return rt_runtime_us; | |
2684 | } | |
2685 | ||
2686 | int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) | |
2687 | { | |
2688 | u64 rt_runtime, rt_period; | |
2689 | ||
1a010e29 KK |
2690 | if (rt_period_us > U64_MAX / NSEC_PER_USEC) |
2691 | return -EINVAL; | |
2692 | ||
8887cd99 NP |
2693 | rt_period = rt_period_us * NSEC_PER_USEC; |
2694 | rt_runtime = tg->rt_bandwidth.rt_runtime; | |
2695 | ||
2696 | return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); | |
2697 | } | |
2698 | ||
2699 | long sched_group_rt_period(struct task_group *tg) | |
2700 | { | |
2701 | u64 rt_period_us; | |
2702 | ||
2703 | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | |
2704 | do_div(rt_period_us, NSEC_PER_USEC); | |
2705 | return rt_period_us; | |
2706 | } | |
2707 | ||
2708 | static int sched_rt_global_constraints(void) | |
2709 | { | |
2710 | int ret = 0; | |
2711 | ||
2712 | mutex_lock(&rt_constraints_mutex); | |
8887cd99 | 2713 | ret = __rt_schedulable(NULL, 0, 0); |
8887cd99 NP |
2714 | mutex_unlock(&rt_constraints_mutex); |
2715 | ||
2716 | return ret; | |
2717 | } | |
2718 | ||
2719 | int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) | |
2720 | { | |
2721 | /* Don't accept realtime tasks when there is no way for them to run */ | |
2722 | if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) | |
2723 | return 0; | |
2724 | ||
2725 | return 1; | |
2726 | } | |
2727 | ||
2728 | #else /* !CONFIG_RT_GROUP_SCHED */ | |
2729 | static int sched_rt_global_constraints(void) | |
2730 | { | |
2731 | unsigned long flags; | |
2732 | int i; | |
2733 | ||
2734 | raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | |
2735 | for_each_possible_cpu(i) { | |
2736 | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | |
2737 | ||
2738 | raw_spin_lock(&rt_rq->rt_runtime_lock); | |
2739 | rt_rq->rt_runtime = global_rt_runtime(); | |
2740 | raw_spin_unlock(&rt_rq->rt_runtime_lock); | |
2741 | } | |
2742 | raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | |
2743 | ||
2744 | return 0; | |
2745 | } | |
2746 | #endif /* CONFIG_RT_GROUP_SCHED */ | |
2747 | ||
2748 | static int sched_rt_global_validate(void) | |
2749 | { | |
2750 | if (sysctl_sched_rt_period <= 0) | |
2751 | return -EINVAL; | |
2752 | ||
2753 | if ((sysctl_sched_rt_runtime != RUNTIME_INF) && | |
d505b8af HC |
2754 | ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || |
2755 | ((u64)sysctl_sched_rt_runtime * | |
2756 | NSEC_PER_USEC > max_rt_runtime))) | |
8887cd99 NP |
2757 | return -EINVAL; |
2758 | ||
2759 | return 0; | |
2760 | } | |
2761 | ||
2762 | static void sched_rt_do_global(void) | |
2763 | { | |
2764 | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | |
2765 | def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); | |
2766 | } | |
2767 | ||
32927393 CH |
2768 | int sched_rt_handler(struct ctl_table *table, int write, void *buffer, |
2769 | size_t *lenp, loff_t *ppos) | |
8887cd99 NP |
2770 | { |
2771 | int old_period, old_runtime; | |
2772 | static DEFINE_MUTEX(mutex); | |
2773 | int ret; | |
2774 | ||
2775 | mutex_lock(&mutex); | |
2776 | old_period = sysctl_sched_rt_period; | |
2777 | old_runtime = sysctl_sched_rt_runtime; | |
2778 | ||
2779 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
2780 | ||
2781 | if (!ret && write) { | |
2782 | ret = sched_rt_global_validate(); | |
2783 | if (ret) | |
2784 | goto undo; | |
2785 | ||
2786 | ret = sched_dl_global_validate(); | |
2787 | if (ret) | |
2788 | goto undo; | |
2789 | ||
2790 | ret = sched_rt_global_constraints(); | |
2791 | if (ret) | |
2792 | goto undo; | |
2793 | ||
2794 | sched_rt_do_global(); | |
2795 | sched_dl_do_global(); | |
2796 | } | |
2797 | if (0) { | |
2798 | undo: | |
2799 | sysctl_sched_rt_period = old_period; | |
2800 | sysctl_sched_rt_runtime = old_runtime; | |
2801 | } | |
2802 | mutex_unlock(&mutex); | |
2803 | ||
2804 | return ret; | |
2805 | } | |
2806 | ||
32927393 CH |
2807 | int sched_rr_handler(struct ctl_table *table, int write, void *buffer, |
2808 | size_t *lenp, loff_t *ppos) | |
8887cd99 NP |
2809 | { |
2810 | int ret; | |
2811 | static DEFINE_MUTEX(mutex); | |
2812 | ||
2813 | mutex_lock(&mutex); | |
2814 | ret = proc_dointvec(table, write, buffer, lenp, ppos); | |
2815 | /* | |
2816 | * Make sure that internally we keep jiffies. | |
2817 | * Also, writing zero resets the timeslice to default: | |
2818 | */ | |
2819 | if (!ret && write) { | |
2820 | sched_rr_timeslice = | |
2821 | sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : | |
2822 | msecs_to_jiffies(sysctl_sched_rr_timeslice); | |
2823 | } | |
2824 | mutex_unlock(&mutex); | |
97fb7a0a | 2825 | |
8887cd99 NP |
2826 | return ret; |
2827 | } | |
2828 | ||
ada18de2 | 2829 | #ifdef CONFIG_SCHED_DEBUG |
029632fb | 2830 | void print_rt_stats(struct seq_file *m, int cpu) |
ada18de2 | 2831 | { |
ec514c48 | 2832 | rt_rq_iter_t iter; |
ada18de2 PZ |
2833 | struct rt_rq *rt_rq; |
2834 | ||
2835 | rcu_read_lock(); | |
ec514c48 | 2836 | for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) |
ada18de2 PZ |
2837 | print_rt_rq(m, cpu, rt_rq); |
2838 | rcu_read_unlock(); | |
2839 | } | |
55e12e5e | 2840 | #endif /* CONFIG_SCHED_DEBUG */ |