]> Git Repo - linux.git/blame - kernel/sched/rt.c
sched/rt: Use container_of() to get root domain in rto_push_irq_work_func()
[linux.git] / kernel / sched / rt.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
bb44e5d1
IM
2/*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
029632fb
PZ
7#include "sched.h"
8
9#include <linux/slab.h>
b6366f04 10#include <linux/irq_work.h>
029632fb 11
ce0dbbbb 12int sched_rr_timeslice = RR_TIMESLICE;
975e155e 13int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
ce0dbbbb 14
029632fb
PZ
15static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17struct rt_bandwidth def_rt_bandwidth;
18
19static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20{
21 struct rt_bandwidth *rt_b =
22 container_of(timer, struct rt_bandwidth, rt_period_timer);
029632fb 23 int idle = 0;
77a4d1a1 24 int overrun;
029632fb 25
77a4d1a1 26 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 27 for (;;) {
77a4d1a1 28 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
029632fb
PZ
29 if (!overrun)
30 break;
31
77a4d1a1 32 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb 33 idle = do_sched_rt_period_timer(rt_b, overrun);
77a4d1a1 34 raw_spin_lock(&rt_b->rt_runtime_lock);
029632fb 35 }
4cfafd30
PZ
36 if (idle)
37 rt_b->rt_period_active = 0;
77a4d1a1 38 raw_spin_unlock(&rt_b->rt_runtime_lock);
029632fb
PZ
39
40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41}
42
43void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44{
45 rt_b->rt_period = ns_to_ktime(period);
46 rt_b->rt_runtime = runtime;
47
48 raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50 hrtimer_init(&rt_b->rt_period_timer,
51 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 rt_b->rt_period_timer.function = sched_rt_period_timer;
53}
54
55static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56{
57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 return;
59
029632fb 60 raw_spin_lock(&rt_b->rt_runtime_lock);
4cfafd30
PZ
61 if (!rt_b->rt_period_active) {
62 rt_b->rt_period_active = 1;
c3a990dc
SR
63 /*
64 * SCHED_DEADLINE updates the bandwidth, as a run away
65 * RT task with a DL task could hog a CPU. But DL does
66 * not reset the period. If a deadline task was running
67 * without an RT task running, it can cause RT tasks to
68 * throttle when they start up. Kick the timer right away
69 * to update the period.
70 */
71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
4cfafd30
PZ
72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 }
029632fb
PZ
74 raw_spin_unlock(&rt_b->rt_runtime_lock);
75}
76
07c54f7a 77void init_rt_rq(struct rt_rq *rt_rq)
029632fb
PZ
78{
79 struct rt_prio_array *array;
80 int i;
81
82 array = &rt_rq->active;
83 for (i = 0; i < MAX_RT_PRIO; i++) {
84 INIT_LIST_HEAD(array->queue + i);
85 __clear_bit(i, array->bitmap);
86 }
87 /* delimiter for bitsearch: */
88 __set_bit(MAX_RT_PRIO, array->bitmap);
89
90#if defined CONFIG_SMP
91 rt_rq->highest_prio.curr = MAX_RT_PRIO;
92 rt_rq->highest_prio.next = MAX_RT_PRIO;
93 rt_rq->rt_nr_migratory = 0;
94 rt_rq->overloaded = 0;
95 plist_head_init(&rt_rq->pushable_tasks);
b6366f04 96#endif /* CONFIG_SMP */
f4ebcbc0
KT
97 /* We start is dequeued state, because no RT tasks are queued */
98 rt_rq->rt_queued = 0;
029632fb
PZ
99
100 rt_rq->rt_time = 0;
101 rt_rq->rt_throttled = 0;
102 rt_rq->rt_runtime = 0;
103 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
104}
105
8f48894f 106#ifdef CONFIG_RT_GROUP_SCHED
029632fb
PZ
107static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
108{
109 hrtimer_cancel(&rt_b->rt_period_timer);
110}
8f48894f
PZ
111
112#define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
113
398a153b
GH
114static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
115{
8f48894f
PZ
116#ifdef CONFIG_SCHED_DEBUG
117 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
118#endif
398a153b
GH
119 return container_of(rt_se, struct task_struct, rt);
120}
121
398a153b
GH
122static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
123{
124 return rt_rq->rq;
125}
126
127static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
128{
129 return rt_se->rt_rq;
130}
131
653d07a6
KT
132static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
133{
134 struct rt_rq *rt_rq = rt_se->rt_rq;
135
136 return rt_rq->rq;
137}
138
029632fb
PZ
139void free_rt_sched_group(struct task_group *tg)
140{
141 int i;
142
143 if (tg->rt_se)
144 destroy_rt_bandwidth(&tg->rt_bandwidth);
145
146 for_each_possible_cpu(i) {
147 if (tg->rt_rq)
148 kfree(tg->rt_rq[i]);
149 if (tg->rt_se)
150 kfree(tg->rt_se[i]);
151 }
152
153 kfree(tg->rt_rq);
154 kfree(tg->rt_se);
155}
156
157void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
158 struct sched_rt_entity *rt_se, int cpu,
159 struct sched_rt_entity *parent)
160{
161 struct rq *rq = cpu_rq(cpu);
162
163 rt_rq->highest_prio.curr = MAX_RT_PRIO;
164 rt_rq->rt_nr_boosted = 0;
165 rt_rq->rq = rq;
166 rt_rq->tg = tg;
167
168 tg->rt_rq[cpu] = rt_rq;
169 tg->rt_se[cpu] = rt_se;
170
171 if (!rt_se)
172 return;
173
174 if (!parent)
175 rt_se->rt_rq = &rq->rt;
176 else
177 rt_se->rt_rq = parent->my_q;
178
179 rt_se->my_q = rt_rq;
180 rt_se->parent = parent;
181 INIT_LIST_HEAD(&rt_se->run_list);
182}
183
184int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
185{
186 struct rt_rq *rt_rq;
187 struct sched_rt_entity *rt_se;
188 int i;
189
190 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
191 if (!tg->rt_rq)
192 goto err;
193 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
194 if (!tg->rt_se)
195 goto err;
196
197 init_rt_bandwidth(&tg->rt_bandwidth,
198 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
199
200 for_each_possible_cpu(i) {
201 rt_rq = kzalloc_node(sizeof(struct rt_rq),
202 GFP_KERNEL, cpu_to_node(i));
203 if (!rt_rq)
204 goto err;
205
206 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
207 GFP_KERNEL, cpu_to_node(i));
208 if (!rt_se)
209 goto err_free_rq;
210
07c54f7a 211 init_rt_rq(rt_rq);
029632fb
PZ
212 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
213 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
214 }
215
216 return 1;
217
218err_free_rq:
219 kfree(rt_rq);
220err:
221 return 0;
222}
223
398a153b
GH
224#else /* CONFIG_RT_GROUP_SCHED */
225
a1ba4d8b
PZ
226#define rt_entity_is_task(rt_se) (1)
227
8f48894f
PZ
228static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
229{
230 return container_of(rt_se, struct task_struct, rt);
231}
232
398a153b
GH
233static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
234{
235 return container_of(rt_rq, struct rq, rt);
236}
237
653d07a6 238static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
398a153b
GH
239{
240 struct task_struct *p = rt_task_of(rt_se);
653d07a6
KT
241
242 return task_rq(p);
243}
244
245static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
246{
247 struct rq *rq = rq_of_rt_se(rt_se);
398a153b
GH
248
249 return &rq->rt;
250}
251
029632fb
PZ
252void free_rt_sched_group(struct task_group *tg) { }
253
254int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
255{
256 return 1;
257}
398a153b
GH
258#endif /* CONFIG_RT_GROUP_SCHED */
259
4fd29176 260#ifdef CONFIG_SMP
84de4274 261
8046d680 262static void pull_rt_task(struct rq *this_rq);
38033c37 263
dc877341
PZ
264static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
265{
266 /* Try to pull RT tasks here if we lower this rq's prio */
267 return rq->rt.highest_prio.curr > prev->prio;
268}
269
637f5085 270static inline int rt_overloaded(struct rq *rq)
4fd29176 271{
637f5085 272 return atomic_read(&rq->rd->rto_count);
4fd29176 273}
84de4274 274
4fd29176
SR
275static inline void rt_set_overload(struct rq *rq)
276{
1f11eb6a
GH
277 if (!rq->online)
278 return;
279
c6c4927b 280 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176
SR
281 /*
282 * Make sure the mask is visible before we set
283 * the overload count. That is checked to determine
284 * if we should look at the mask. It would be a shame
285 * if we looked at the mask, but the mask was not
286 * updated yet.
7c3f2ab7
PZ
287 *
288 * Matched by the barrier in pull_rt_task().
4fd29176 289 */
7c3f2ab7 290 smp_wmb();
637f5085 291 atomic_inc(&rq->rd->rto_count);
4fd29176 292}
84de4274 293
4fd29176
SR
294static inline void rt_clear_overload(struct rq *rq)
295{
1f11eb6a
GH
296 if (!rq->online)
297 return;
298
4fd29176 299 /* the order here really doesn't matter */
637f5085 300 atomic_dec(&rq->rd->rto_count);
c6c4927b 301 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
4fd29176 302}
73fe6aae 303
398a153b 304static void update_rt_migration(struct rt_rq *rt_rq)
73fe6aae 305{
a1ba4d8b 306 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
398a153b
GH
307 if (!rt_rq->overloaded) {
308 rt_set_overload(rq_of_rt_rq(rt_rq));
309 rt_rq->overloaded = 1;
cdc8eb98 310 }
398a153b
GH
311 } else if (rt_rq->overloaded) {
312 rt_clear_overload(rq_of_rt_rq(rt_rq));
313 rt_rq->overloaded = 0;
637f5085 314 }
73fe6aae 315}
4fd29176 316
398a153b
GH
317static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
318{
29baa747
PZ
319 struct task_struct *p;
320
a1ba4d8b
PZ
321 if (!rt_entity_is_task(rt_se))
322 return;
323
29baa747 324 p = rt_task_of(rt_se);
a1ba4d8b
PZ
325 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
326
327 rt_rq->rt_nr_total++;
4b53a341 328 if (p->nr_cpus_allowed > 1)
398a153b
GH
329 rt_rq->rt_nr_migratory++;
330
331 update_rt_migration(rt_rq);
332}
333
334static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
335{
29baa747
PZ
336 struct task_struct *p;
337
a1ba4d8b
PZ
338 if (!rt_entity_is_task(rt_se))
339 return;
340
29baa747 341 p = rt_task_of(rt_se);
a1ba4d8b
PZ
342 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
343
344 rt_rq->rt_nr_total--;
4b53a341 345 if (p->nr_cpus_allowed > 1)
398a153b
GH
346 rt_rq->rt_nr_migratory--;
347
348 update_rt_migration(rt_rq);
349}
350
5181f4a4
SR
351static inline int has_pushable_tasks(struct rq *rq)
352{
353 return !plist_head_empty(&rq->rt.pushable_tasks);
354}
355
fd7a4bed
PZ
356static DEFINE_PER_CPU(struct callback_head, rt_push_head);
357static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
e3fca9e7
PZ
358
359static void push_rt_tasks(struct rq *);
fd7a4bed 360static void pull_rt_task(struct rq *);
e3fca9e7
PZ
361
362static inline void queue_push_tasks(struct rq *rq)
dc877341 363{
e3fca9e7
PZ
364 if (!has_pushable_tasks(rq))
365 return;
366
fd7a4bed
PZ
367 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
368}
369
370static inline void queue_pull_task(struct rq *rq)
371{
372 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
dc877341
PZ
373}
374
917b627d
GH
375static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
376{
377 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
378 plist_node_init(&p->pushable_tasks, p->prio);
379 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
5181f4a4
SR
380
381 /* Update the highest prio pushable task */
382 if (p->prio < rq->rt.highest_prio.next)
383 rq->rt.highest_prio.next = p->prio;
917b627d
GH
384}
385
386static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
387{
388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
917b627d 389
5181f4a4
SR
390 /* Update the new highest prio pushable task */
391 if (has_pushable_tasks(rq)) {
392 p = plist_first_entry(&rq->rt.pushable_tasks,
393 struct task_struct, pushable_tasks);
394 rq->rt.highest_prio.next = p->prio;
395 } else
396 rq->rt.highest_prio.next = MAX_RT_PRIO;
bcf08df3
IM
397}
398
917b627d
GH
399#else
400
ceacc2c1 401static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
fa85ae24 402{
6f505b16
PZ
403}
404
ceacc2c1
PZ
405static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
406{
407}
408
b07430ac 409static inline
ceacc2c1
PZ
410void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
411{
412}
413
398a153b 414static inline
ceacc2c1
PZ
415void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
416{
417}
917b627d 418
dc877341
PZ
419static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
420{
421 return false;
422}
423
8046d680 424static inline void pull_rt_task(struct rq *this_rq)
dc877341 425{
dc877341
PZ
426}
427
e3fca9e7 428static inline void queue_push_tasks(struct rq *rq)
dc877341
PZ
429{
430}
4fd29176
SR
431#endif /* CONFIG_SMP */
432
f4ebcbc0
KT
433static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
434static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
435
6f505b16
PZ
436static inline int on_rt_rq(struct sched_rt_entity *rt_se)
437{
ff77e468 438 return rt_se->on_rq;
6f505b16
PZ
439}
440
052f1dc7 441#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 442
9f0c1e56 443static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
6f505b16
PZ
444{
445 if (!rt_rq->tg)
9f0c1e56 446 return RUNTIME_INF;
6f505b16 447
ac086bc2
PZ
448 return rt_rq->rt_runtime;
449}
450
451static inline u64 sched_rt_period(struct rt_rq *rt_rq)
452{
453 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
6f505b16
PZ
454}
455
ec514c48
CX
456typedef struct task_group *rt_rq_iter_t;
457
1c09ab0d
YZ
458static inline struct task_group *next_task_group(struct task_group *tg)
459{
460 do {
461 tg = list_entry_rcu(tg->list.next,
462 typeof(struct task_group), list);
463 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
464
465 if (&tg->list == &task_groups)
466 tg = NULL;
467
468 return tg;
469}
470
471#define for_each_rt_rq(rt_rq, iter, rq) \
472 for (iter = container_of(&task_groups, typeof(*iter), list); \
473 (iter = next_task_group(iter)) && \
474 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
ec514c48 475
6f505b16
PZ
476#define for_each_sched_rt_entity(rt_se) \
477 for (; rt_se; rt_se = rt_se->parent)
478
479static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
480{
481 return rt_se->my_q;
482}
483
ff77e468
PZ
484static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
485static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
6f505b16 486
9f0c1e56 487static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 488{
f6121f4f 489 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
8875125e 490 struct rq *rq = rq_of_rt_rq(rt_rq);
74b7eb58
YZ
491 struct sched_rt_entity *rt_se;
492
8875125e 493 int cpu = cpu_of(rq);
0c3b9168
BS
494
495 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 496
f6121f4f 497 if (rt_rq->rt_nr_running) {
f4ebcbc0
KT
498 if (!rt_se)
499 enqueue_top_rt_rq(rt_rq);
500 else if (!on_rt_rq(rt_se))
ff77e468 501 enqueue_rt_entity(rt_se, 0);
f4ebcbc0 502
e864c499 503 if (rt_rq->highest_prio.curr < curr->prio)
8875125e 504 resched_curr(rq);
6f505b16
PZ
505 }
506}
507
9f0c1e56 508static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 509{
74b7eb58 510 struct sched_rt_entity *rt_se;
0c3b9168 511 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
74b7eb58 512
0c3b9168 513 rt_se = rt_rq->tg->rt_se[cpu];
6f505b16 514
f4ebcbc0
KT
515 if (!rt_se)
516 dequeue_top_rt_rq(rt_rq);
517 else if (on_rt_rq(rt_se))
ff77e468 518 dequeue_rt_entity(rt_se, 0);
6f505b16
PZ
519}
520
46383648
KT
521static inline int rt_rq_throttled(struct rt_rq *rt_rq)
522{
523 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
524}
525
23b0fdfc
PZ
526static int rt_se_boosted(struct sched_rt_entity *rt_se)
527{
528 struct rt_rq *rt_rq = group_rt_rq(rt_se);
529 struct task_struct *p;
530
531 if (rt_rq)
532 return !!rt_rq->rt_nr_boosted;
533
534 p = rt_task_of(rt_se);
535 return p->prio != p->normal_prio;
536}
537
d0b27fa7 538#ifdef CONFIG_SMP
c6c4927b 539static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 540{
424c93fe 541 return this_rq()->rd->span;
d0b27fa7 542}
6f505b16 543#else
c6c4927b 544static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 545{
c6c4927b 546 return cpu_online_mask;
d0b27fa7
PZ
547}
548#endif
6f505b16 549
d0b27fa7
PZ
550static inline
551struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
6f505b16 552{
d0b27fa7
PZ
553 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
554}
9f0c1e56 555
ac086bc2
PZ
556static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
557{
558 return &rt_rq->tg->rt_bandwidth;
559}
560
55e12e5e 561#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
562
563static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
564{
ac086bc2
PZ
565 return rt_rq->rt_runtime;
566}
567
568static inline u64 sched_rt_period(struct rt_rq *rt_rq)
569{
570 return ktime_to_ns(def_rt_bandwidth.rt_period);
6f505b16
PZ
571}
572
ec514c48
CX
573typedef struct rt_rq *rt_rq_iter_t;
574
575#define for_each_rt_rq(rt_rq, iter, rq) \
576 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
577
6f505b16
PZ
578#define for_each_sched_rt_entity(rt_se) \
579 for (; rt_se; rt_se = NULL)
580
581static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
582{
583 return NULL;
584}
585
9f0c1e56 586static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
6f505b16 587{
f4ebcbc0
KT
588 struct rq *rq = rq_of_rt_rq(rt_rq);
589
590 if (!rt_rq->rt_nr_running)
591 return;
592
593 enqueue_top_rt_rq(rt_rq);
8875125e 594 resched_curr(rq);
6f505b16
PZ
595}
596
9f0c1e56 597static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
6f505b16 598{
f4ebcbc0 599 dequeue_top_rt_rq(rt_rq);
6f505b16
PZ
600}
601
46383648
KT
602static inline int rt_rq_throttled(struct rt_rq *rt_rq)
603{
604 return rt_rq->rt_throttled;
605}
606
c6c4927b 607static inline const struct cpumask *sched_rt_period_mask(void)
d0b27fa7 608{
c6c4927b 609 return cpu_online_mask;
d0b27fa7
PZ
610}
611
612static inline
613struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
614{
615 return &cpu_rq(cpu)->rt;
616}
617
ac086bc2
PZ
618static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
619{
620 return &def_rt_bandwidth;
621}
622
55e12e5e 623#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 624
faa59937
JL
625bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
626{
627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
628
629 return (hrtimer_active(&rt_b->rt_period_timer) ||
630 rt_rq->rt_time < rt_b->rt_runtime);
631}
632
ac086bc2 633#ifdef CONFIG_SMP
78333cdd
PZ
634/*
635 * We ran out of runtime, see if we can borrow some from our neighbours.
636 */
269b26a5 637static void do_balance_runtime(struct rt_rq *rt_rq)
ac086bc2
PZ
638{
639 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
aa7f6730 640 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
269b26a5 641 int i, weight;
ac086bc2
PZ
642 u64 rt_period;
643
c6c4927b 644 weight = cpumask_weight(rd->span);
ac086bc2 645
0986b11b 646 raw_spin_lock(&rt_b->rt_runtime_lock);
ac086bc2 647 rt_period = ktime_to_ns(rt_b->rt_period);
c6c4927b 648 for_each_cpu(i, rd->span) {
ac086bc2
PZ
649 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
650 s64 diff;
651
652 if (iter == rt_rq)
653 continue;
654
0986b11b 655 raw_spin_lock(&iter->rt_runtime_lock);
78333cdd
PZ
656 /*
657 * Either all rqs have inf runtime and there's nothing to steal
658 * or __disable_runtime() below sets a specific rq to inf to
659 * indicate its been disabled and disalow stealing.
660 */
7def2be1
PZ
661 if (iter->rt_runtime == RUNTIME_INF)
662 goto next;
663
78333cdd
PZ
664 /*
665 * From runqueues with spare time, take 1/n part of their
666 * spare time, but no more than our period.
667 */
ac086bc2
PZ
668 diff = iter->rt_runtime - iter->rt_time;
669 if (diff > 0) {
58838cf3 670 diff = div_u64((u64)diff, weight);
ac086bc2
PZ
671 if (rt_rq->rt_runtime + diff > rt_period)
672 diff = rt_period - rt_rq->rt_runtime;
673 iter->rt_runtime -= diff;
674 rt_rq->rt_runtime += diff;
ac086bc2 675 if (rt_rq->rt_runtime == rt_period) {
0986b11b 676 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2
PZ
677 break;
678 }
679 }
7def2be1 680next:
0986b11b 681 raw_spin_unlock(&iter->rt_runtime_lock);
ac086bc2 682 }
0986b11b 683 raw_spin_unlock(&rt_b->rt_runtime_lock);
ac086bc2 684}
7def2be1 685
78333cdd
PZ
686/*
687 * Ensure this RQ takes back all the runtime it lend to its neighbours.
688 */
7def2be1
PZ
689static void __disable_runtime(struct rq *rq)
690{
691 struct root_domain *rd = rq->rd;
ec514c48 692 rt_rq_iter_t iter;
7def2be1
PZ
693 struct rt_rq *rt_rq;
694
695 if (unlikely(!scheduler_running))
696 return;
697
ec514c48 698 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
700 s64 want;
701 int i;
702
0986b11b
TG
703 raw_spin_lock(&rt_b->rt_runtime_lock);
704 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
705 /*
706 * Either we're all inf and nobody needs to borrow, or we're
707 * already disabled and thus have nothing to do, or we have
708 * exactly the right amount of runtime to take out.
709 */
7def2be1
PZ
710 if (rt_rq->rt_runtime == RUNTIME_INF ||
711 rt_rq->rt_runtime == rt_b->rt_runtime)
712 goto balanced;
0986b11b 713 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7def2be1 714
78333cdd
PZ
715 /*
716 * Calculate the difference between what we started out with
717 * and what we current have, that's the amount of runtime
718 * we lend and now have to reclaim.
719 */
7def2be1
PZ
720 want = rt_b->rt_runtime - rt_rq->rt_runtime;
721
78333cdd
PZ
722 /*
723 * Greedy reclaim, take back as much as we can.
724 */
c6c4927b 725 for_each_cpu(i, rd->span) {
7def2be1
PZ
726 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
727 s64 diff;
728
78333cdd
PZ
729 /*
730 * Can't reclaim from ourselves or disabled runqueues.
731 */
f1679d08 732 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
7def2be1
PZ
733 continue;
734
0986b11b 735 raw_spin_lock(&iter->rt_runtime_lock);
7def2be1
PZ
736 if (want > 0) {
737 diff = min_t(s64, iter->rt_runtime, want);
738 iter->rt_runtime -= diff;
739 want -= diff;
740 } else {
741 iter->rt_runtime -= want;
742 want -= want;
743 }
0986b11b 744 raw_spin_unlock(&iter->rt_runtime_lock);
7def2be1
PZ
745
746 if (!want)
747 break;
748 }
749
0986b11b 750 raw_spin_lock(&rt_rq->rt_runtime_lock);
78333cdd
PZ
751 /*
752 * We cannot be left wanting - that would mean some runtime
753 * leaked out of the system.
754 */
7def2be1
PZ
755 BUG_ON(want);
756balanced:
78333cdd
PZ
757 /*
758 * Disable all the borrow logic by pretending we have inf
759 * runtime - in which case borrowing doesn't make sense.
760 */
7def2be1 761 rt_rq->rt_runtime = RUNTIME_INF;
a4c96ae3 762 rt_rq->rt_throttled = 0;
0986b11b
TG
763 raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 raw_spin_unlock(&rt_b->rt_runtime_lock);
99b62567
KT
765
766 /* Make rt_rq available for pick_next_task() */
767 sched_rt_rq_enqueue(rt_rq);
7def2be1
PZ
768 }
769}
770
7def2be1
PZ
771static void __enable_runtime(struct rq *rq)
772{
ec514c48 773 rt_rq_iter_t iter;
7def2be1
PZ
774 struct rt_rq *rt_rq;
775
776 if (unlikely(!scheduler_running))
777 return;
778
78333cdd
PZ
779 /*
780 * Reset each runqueue's bandwidth settings
781 */
ec514c48 782 for_each_rt_rq(rt_rq, iter, rq) {
7def2be1
PZ
783 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
784
0986b11b
TG
785 raw_spin_lock(&rt_b->rt_runtime_lock);
786 raw_spin_lock(&rt_rq->rt_runtime_lock);
7def2be1
PZ
787 rt_rq->rt_runtime = rt_b->rt_runtime;
788 rt_rq->rt_time = 0;
baf25731 789 rt_rq->rt_throttled = 0;
0986b11b
TG
790 raw_spin_unlock(&rt_rq->rt_runtime_lock);
791 raw_spin_unlock(&rt_b->rt_runtime_lock);
7def2be1
PZ
792 }
793}
794
269b26a5 795static void balance_runtime(struct rt_rq *rt_rq)
eff6549b 796{
4a6184ce 797 if (!sched_feat(RT_RUNTIME_SHARE))
269b26a5 798 return;
4a6184ce 799
eff6549b 800 if (rt_rq->rt_time > rt_rq->rt_runtime) {
0986b11b 801 raw_spin_unlock(&rt_rq->rt_runtime_lock);
269b26a5 802 do_balance_runtime(rt_rq);
0986b11b 803 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b 804 }
eff6549b 805}
55e12e5e 806#else /* !CONFIG_SMP */
269b26a5 807static inline void balance_runtime(struct rt_rq *rt_rq) {}
55e12e5e 808#endif /* CONFIG_SMP */
ac086bc2 809
eff6549b
PZ
810static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
811{
42c62a58 812 int i, idle = 1, throttled = 0;
c6c4927b 813 const struct cpumask *span;
eff6549b 814
eff6549b 815 span = sched_rt_period_mask();
e221d028
MG
816#ifdef CONFIG_RT_GROUP_SCHED
817 /*
818 * FIXME: isolated CPUs should really leave the root task group,
819 * whether they are isolcpus or were isolated via cpusets, lest
820 * the timer run on a CPU which does not service all runqueues,
821 * potentially leaving other CPUs indefinitely throttled. If
822 * isolation is really required, the user will turn the throttle
823 * off to kill the perturbations it causes anyway. Meanwhile,
824 * this maintains functionality for boot and/or troubleshooting.
825 */
826 if (rt_b == &root_task_group.rt_bandwidth)
827 span = cpu_online_mask;
828#endif
c6c4927b 829 for_each_cpu(i, span) {
eff6549b
PZ
830 int enqueue = 0;
831 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
832 struct rq *rq = rq_of_rt_rq(rt_rq);
c249f255
DK
833 int skip;
834
835 /*
836 * When span == cpu_online_mask, taking each rq->lock
837 * can be time-consuming. Try to avoid it when possible.
838 */
839 raw_spin_lock(&rt_rq->rt_runtime_lock);
840 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
841 raw_spin_unlock(&rt_rq->rt_runtime_lock);
842 if (skip)
843 continue;
eff6549b 844
05fa785c 845 raw_spin_lock(&rq->lock);
eff6549b
PZ
846 if (rt_rq->rt_time) {
847 u64 runtime;
848
0986b11b 849 raw_spin_lock(&rt_rq->rt_runtime_lock);
eff6549b
PZ
850 if (rt_rq->rt_throttled)
851 balance_runtime(rt_rq);
852 runtime = rt_rq->rt_runtime;
853 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
854 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
855 rt_rq->rt_throttled = 0;
856 enqueue = 1;
61eadef6
MG
857
858 /*
9edfbfed
PZ
859 * When we're idle and a woken (rt) task is
860 * throttled check_preempt_curr() will set
861 * skip_update and the time between the wakeup
862 * and this unthrottle will get accounted as
863 * 'runtime'.
61eadef6
MG
864 */
865 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
9edfbfed 866 rq_clock_skip_update(rq, false);
eff6549b
PZ
867 }
868 if (rt_rq->rt_time || rt_rq->rt_nr_running)
869 idle = 0;
0986b11b 870 raw_spin_unlock(&rt_rq->rt_runtime_lock);
0c3b9168 871 } else if (rt_rq->rt_nr_running) {
6c3df255 872 idle = 0;
0c3b9168
BS
873 if (!rt_rq_throttled(rt_rq))
874 enqueue = 1;
875 }
42c62a58
PZ
876 if (rt_rq->rt_throttled)
877 throttled = 1;
eff6549b
PZ
878
879 if (enqueue)
880 sched_rt_rq_enqueue(rt_rq);
05fa785c 881 raw_spin_unlock(&rq->lock);
eff6549b
PZ
882 }
883
42c62a58
PZ
884 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
885 return 1;
886
eff6549b
PZ
887 return idle;
888}
ac086bc2 889
6f505b16
PZ
890static inline int rt_se_prio(struct sched_rt_entity *rt_se)
891{
052f1dc7 892#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
893 struct rt_rq *rt_rq = group_rt_rq(rt_se);
894
895 if (rt_rq)
e864c499 896 return rt_rq->highest_prio.curr;
6f505b16
PZ
897#endif
898
899 return rt_task_of(rt_se)->prio;
900}
901
9f0c1e56 902static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
6f505b16 903{
9f0c1e56 904 u64 runtime = sched_rt_runtime(rt_rq);
fa85ae24 905
fa85ae24 906 if (rt_rq->rt_throttled)
23b0fdfc 907 return rt_rq_throttled(rt_rq);
fa85ae24 908
5b680fd6 909 if (runtime >= sched_rt_period(rt_rq))
ac086bc2
PZ
910 return 0;
911
b79f3833
PZ
912 balance_runtime(rt_rq);
913 runtime = sched_rt_runtime(rt_rq);
914 if (runtime == RUNTIME_INF)
915 return 0;
ac086bc2 916
9f0c1e56 917 if (rt_rq->rt_time > runtime) {
7abc63b1
PZ
918 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
919
920 /*
921 * Don't actually throttle groups that have no runtime assigned
922 * but accrue some time due to boosting.
923 */
924 if (likely(rt_b->rt_runtime)) {
925 rt_rq->rt_throttled = 1;
c224815d 926 printk_deferred_once("sched: RT throttling activated\n");
7abc63b1
PZ
927 } else {
928 /*
929 * In case we did anyway, make it go away,
930 * replenishment is a joke, since it will replenish us
931 * with exactly 0 ns.
932 */
933 rt_rq->rt_time = 0;
934 }
935
23b0fdfc 936 if (rt_rq_throttled(rt_rq)) {
9f0c1e56 937 sched_rt_rq_dequeue(rt_rq);
23b0fdfc
PZ
938 return 1;
939 }
fa85ae24
PZ
940 }
941
942 return 0;
943}
944
bb44e5d1
IM
945/*
946 * Update the current task's runtime statistics. Skip current tasks that
947 * are not in our scheduling class.
948 */
a9957449 949static void update_curr_rt(struct rq *rq)
bb44e5d1
IM
950{
951 struct task_struct *curr = rq->curr;
6f505b16 952 struct sched_rt_entity *rt_se = &curr->rt;
bb44e5d1
IM
953 u64 delta_exec;
954
06c3bc65 955 if (curr->sched_class != &rt_sched_class)
bb44e5d1
IM
956 return;
957
78becc27 958 delta_exec = rq_clock_task(rq) - curr->se.exec_start;
fc79e240
KT
959 if (unlikely((s64)delta_exec <= 0))
960 return;
6cfb0d5d 961
58919e83 962 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
674e7541 963 cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
594dd290 964
42c62a58
PZ
965 schedstat_set(curr->se.statistics.exec_max,
966 max(curr->se.statistics.exec_max, delta_exec));
bb44e5d1
IM
967
968 curr->se.sum_exec_runtime += delta_exec;
f06febc9
FM
969 account_group_exec_runtime(curr, delta_exec);
970
78becc27 971 curr->se.exec_start = rq_clock_task(rq);
d2cc5ed6 972 cgroup_account_cputime(curr, delta_exec);
fa85ae24 973
e9e9250b
PZ
974 sched_rt_avg_update(rq, delta_exec);
975
0b148fa0
PZ
976 if (!rt_bandwidth_enabled())
977 return;
978
354d60c2 979 for_each_sched_rt_entity(rt_se) {
0b07939c 980 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
354d60c2 981
cc2991cf 982 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
0986b11b 983 raw_spin_lock(&rt_rq->rt_runtime_lock);
cc2991cf
PZ
984 rt_rq->rt_time += delta_exec;
985 if (sched_rt_runtime_exceeded(rt_rq))
8875125e 986 resched_curr(rq);
0986b11b 987 raw_spin_unlock(&rt_rq->rt_runtime_lock);
cc2991cf 988 }
354d60c2 989 }
bb44e5d1
IM
990}
991
f4ebcbc0
KT
992static void
993dequeue_top_rt_rq(struct rt_rq *rt_rq)
994{
995 struct rq *rq = rq_of_rt_rq(rt_rq);
996
997 BUG_ON(&rq->rt != rt_rq);
998
999 if (!rt_rq->rt_queued)
1000 return;
1001
1002 BUG_ON(!rq->nr_running);
1003
72465447 1004 sub_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1005 rt_rq->rt_queued = 0;
1006}
1007
1008static void
1009enqueue_top_rt_rq(struct rt_rq *rt_rq)
1010{
1011 struct rq *rq = rq_of_rt_rq(rt_rq);
1012
1013 BUG_ON(&rq->rt != rt_rq);
1014
1015 if (rt_rq->rt_queued)
1016 return;
1017 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1018 return;
1019
72465447 1020 add_nr_running(rq, rt_rq->rt_nr_running);
f4ebcbc0
KT
1021 rt_rq->rt_queued = 1;
1022}
1023
398a153b 1024#if defined CONFIG_SMP
e864c499 1025
398a153b
GH
1026static void
1027inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
63489e45 1028{
4d984277 1029 struct rq *rq = rq_of_rt_rq(rt_rq);
1f11eb6a 1030
757dfcaa
KT
1031#ifdef CONFIG_RT_GROUP_SCHED
1032 /*
1033 * Change rq's cpupri only if rt_rq is the top queue.
1034 */
1035 if (&rq->rt != rt_rq)
1036 return;
1037#endif
5181f4a4
SR
1038 if (rq->online && prio < prev_prio)
1039 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
398a153b 1040}
73fe6aae 1041
398a153b
GH
1042static void
1043dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1044{
1045 struct rq *rq = rq_of_rt_rq(rt_rq);
d0b27fa7 1046
757dfcaa
KT
1047#ifdef CONFIG_RT_GROUP_SCHED
1048 /*
1049 * Change rq's cpupri only if rt_rq is the top queue.
1050 */
1051 if (&rq->rt != rt_rq)
1052 return;
1053#endif
398a153b
GH
1054 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1055 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
63489e45
SR
1056}
1057
398a153b
GH
1058#else /* CONFIG_SMP */
1059
6f505b16 1060static inline
398a153b
GH
1061void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1062static inline
1063void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1064
1065#endif /* CONFIG_SMP */
6e0534f2 1066
052f1dc7 1067#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
398a153b
GH
1068static void
1069inc_rt_prio(struct rt_rq *rt_rq, int prio)
1070{
1071 int prev_prio = rt_rq->highest_prio.curr;
1072
1073 if (prio < prev_prio)
1074 rt_rq->highest_prio.curr = prio;
1075
1076 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1077}
1078
1079static void
1080dec_rt_prio(struct rt_rq *rt_rq, int prio)
1081{
1082 int prev_prio = rt_rq->highest_prio.curr;
1083
6f505b16 1084 if (rt_rq->rt_nr_running) {
764a9d6f 1085
398a153b 1086 WARN_ON(prio < prev_prio);
764a9d6f 1087
e864c499 1088 /*
398a153b
GH
1089 * This may have been our highest task, and therefore
1090 * we may have some recomputation to do
e864c499 1091 */
398a153b 1092 if (prio == prev_prio) {
e864c499
GH
1093 struct rt_prio_array *array = &rt_rq->active;
1094
1095 rt_rq->highest_prio.curr =
764a9d6f 1096 sched_find_first_bit(array->bitmap);
e864c499
GH
1097 }
1098
764a9d6f 1099 } else
e864c499 1100 rt_rq->highest_prio.curr = MAX_RT_PRIO;
73fe6aae 1101
398a153b
GH
1102 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1103}
1f11eb6a 1104
398a153b
GH
1105#else
1106
1107static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1108static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1109
1110#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
6e0534f2 1111
052f1dc7 1112#ifdef CONFIG_RT_GROUP_SCHED
398a153b
GH
1113
1114static void
1115inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1116{
1117 if (rt_se_boosted(rt_se))
1118 rt_rq->rt_nr_boosted++;
1119
1120 if (rt_rq->tg)
1121 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1122}
1123
1124static void
1125dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1126{
23b0fdfc
PZ
1127 if (rt_se_boosted(rt_se))
1128 rt_rq->rt_nr_boosted--;
1129
1130 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
398a153b
GH
1131}
1132
1133#else /* CONFIG_RT_GROUP_SCHED */
1134
1135static void
1136inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137{
1138 start_rt_bandwidth(&def_rt_bandwidth);
1139}
1140
1141static inline
1142void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1143
1144#endif /* CONFIG_RT_GROUP_SCHED */
1145
22abdef3
KT
1146static inline
1147unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1148{
1149 struct rt_rq *group_rq = group_rt_rq(rt_se);
1150
1151 if (group_rq)
1152 return group_rq->rt_nr_running;
1153 else
1154 return 1;
1155}
1156
01d36d0a
FW
1157static inline
1158unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1159{
1160 struct rt_rq *group_rq = group_rt_rq(rt_se);
1161 struct task_struct *tsk;
1162
1163 if (group_rq)
1164 return group_rq->rr_nr_running;
1165
1166 tsk = rt_task_of(rt_se);
1167
1168 return (tsk->policy == SCHED_RR) ? 1 : 0;
1169}
1170
398a153b
GH
1171static inline
1172void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1173{
1174 int prio = rt_se_prio(rt_se);
1175
1176 WARN_ON(!rt_prio(prio));
22abdef3 1177 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
01d36d0a 1178 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
398a153b
GH
1179
1180 inc_rt_prio(rt_rq, prio);
1181 inc_rt_migration(rt_se, rt_rq);
1182 inc_rt_group(rt_se, rt_rq);
1183}
1184
1185static inline
1186void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187{
1188 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1189 WARN_ON(!rt_rq->rt_nr_running);
22abdef3 1190 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
01d36d0a 1191 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
398a153b
GH
1192
1193 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1194 dec_rt_migration(rt_se, rt_rq);
1195 dec_rt_group(rt_se, rt_rq);
63489e45
SR
1196}
1197
ff77e468
PZ
1198/*
1199 * Change rt_se->run_list location unless SAVE && !MOVE
1200 *
1201 * assumes ENQUEUE/DEQUEUE flags match
1202 */
1203static inline bool move_entity(unsigned int flags)
1204{
1205 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1206 return false;
1207
1208 return true;
1209}
1210
1211static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1212{
1213 list_del_init(&rt_se->run_list);
1214
1215 if (list_empty(array->queue + rt_se_prio(rt_se)))
1216 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1217
1218 rt_se->on_list = 0;
1219}
1220
1221static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
bb44e5d1 1222{
6f505b16
PZ
1223 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1224 struct rt_prio_array *array = &rt_rq->active;
1225 struct rt_rq *group_rq = group_rt_rq(rt_se);
20b6331b 1226 struct list_head *queue = array->queue + rt_se_prio(rt_se);
bb44e5d1 1227
ad2a3f13
PZ
1228 /*
1229 * Don't enqueue the group if its throttled, or when empty.
1230 * The latter is a consequence of the former when a child group
1231 * get throttled and the current group doesn't have any other
1232 * active members.
1233 */
ff77e468
PZ
1234 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1235 if (rt_se->on_list)
1236 __delist_rt_entity(rt_se, array);
6f505b16 1237 return;
ff77e468 1238 }
63489e45 1239
ff77e468
PZ
1240 if (move_entity(flags)) {
1241 WARN_ON_ONCE(rt_se->on_list);
1242 if (flags & ENQUEUE_HEAD)
1243 list_add(&rt_se->run_list, queue);
1244 else
1245 list_add_tail(&rt_se->run_list, queue);
1246
1247 __set_bit(rt_se_prio(rt_se), array->bitmap);
1248 rt_se->on_list = 1;
1249 }
1250 rt_se->on_rq = 1;
78f2c7db 1251
6f505b16
PZ
1252 inc_rt_tasks(rt_se, rt_rq);
1253}
1254
ff77e468 1255static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16
PZ
1256{
1257 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1258 struct rt_prio_array *array = &rt_rq->active;
1259
ff77e468
PZ
1260 if (move_entity(flags)) {
1261 WARN_ON_ONCE(!rt_se->on_list);
1262 __delist_rt_entity(rt_se, array);
1263 }
1264 rt_se->on_rq = 0;
6f505b16
PZ
1265
1266 dec_rt_tasks(rt_se, rt_rq);
1267}
1268
1269/*
1270 * Because the prio of an upper entry depends on the lower
1271 * entries, we must remove entries top - down.
6f505b16 1272 */
ff77e468 1273static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
6f505b16 1274{
ad2a3f13 1275 struct sched_rt_entity *back = NULL;
6f505b16 1276
58d6c2d7
PZ
1277 for_each_sched_rt_entity(rt_se) {
1278 rt_se->back = back;
1279 back = rt_se;
1280 }
1281
f4ebcbc0
KT
1282 dequeue_top_rt_rq(rt_rq_of_se(back));
1283
58d6c2d7
PZ
1284 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1285 if (on_rt_rq(rt_se))
ff77e468 1286 __dequeue_rt_entity(rt_se, flags);
ad2a3f13
PZ
1287 }
1288}
1289
ff77e468 1290static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1291{
f4ebcbc0
KT
1292 struct rq *rq = rq_of_rt_se(rt_se);
1293
ff77e468 1294 dequeue_rt_stack(rt_se, flags);
ad2a3f13 1295 for_each_sched_rt_entity(rt_se)
ff77e468 1296 __enqueue_rt_entity(rt_se, flags);
f4ebcbc0 1297 enqueue_top_rt_rq(&rq->rt);
ad2a3f13
PZ
1298}
1299
ff77e468 1300static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
ad2a3f13 1301{
f4ebcbc0
KT
1302 struct rq *rq = rq_of_rt_se(rt_se);
1303
ff77e468 1304 dequeue_rt_stack(rt_se, flags);
ad2a3f13
PZ
1305
1306 for_each_sched_rt_entity(rt_se) {
1307 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1308
1309 if (rt_rq && rt_rq->rt_nr_running)
ff77e468 1310 __enqueue_rt_entity(rt_se, flags);
58d6c2d7 1311 }
f4ebcbc0 1312 enqueue_top_rt_rq(&rq->rt);
bb44e5d1
IM
1313}
1314
1315/*
1316 * Adding/removing a task to/from a priority array:
1317 */
ea87bb78 1318static void
371fd7e7 1319enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
6f505b16
PZ
1320{
1321 struct sched_rt_entity *rt_se = &p->rt;
1322
371fd7e7 1323 if (flags & ENQUEUE_WAKEUP)
6f505b16
PZ
1324 rt_se->timeout = 0;
1325
ff77e468 1326 enqueue_rt_entity(rt_se, flags);
c09595f6 1327
4b53a341 1328 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
917b627d 1329 enqueue_pushable_task(rq, p);
6f505b16
PZ
1330}
1331
371fd7e7 1332static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1333{
6f505b16 1334 struct sched_rt_entity *rt_se = &p->rt;
bb44e5d1 1335
f1e14ef6 1336 update_curr_rt(rq);
ff77e468 1337 dequeue_rt_entity(rt_se, flags);
c09595f6 1338
917b627d 1339 dequeue_pushable_task(rq, p);
bb44e5d1
IM
1340}
1341
1342/*
60686317
RW
1343 * Put task to the head or the end of the run list without the overhead of
1344 * dequeue followed by enqueue.
bb44e5d1 1345 */
7ebefa8c
DA
1346static void
1347requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
6f505b16 1348{
1cdad715 1349 if (on_rt_rq(rt_se)) {
7ebefa8c
DA
1350 struct rt_prio_array *array = &rt_rq->active;
1351 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1352
1353 if (head)
1354 list_move(&rt_se->run_list, queue);
1355 else
1356 list_move_tail(&rt_se->run_list, queue);
1cdad715 1357 }
6f505b16
PZ
1358}
1359
7ebefa8c 1360static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
bb44e5d1 1361{
6f505b16
PZ
1362 struct sched_rt_entity *rt_se = &p->rt;
1363 struct rt_rq *rt_rq;
bb44e5d1 1364
6f505b16
PZ
1365 for_each_sched_rt_entity(rt_se) {
1366 rt_rq = rt_rq_of_se(rt_se);
7ebefa8c 1367 requeue_rt_entity(rt_rq, rt_se, head);
6f505b16 1368 }
bb44e5d1
IM
1369}
1370
6f505b16 1371static void yield_task_rt(struct rq *rq)
bb44e5d1 1372{
7ebefa8c 1373 requeue_task_rt(rq, rq->curr, 0);
bb44e5d1
IM
1374}
1375
e7693a36 1376#ifdef CONFIG_SMP
318e0893
GH
1377static int find_lowest_rq(struct task_struct *task);
1378
0017d735 1379static int
ac66f547 1380select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
e7693a36 1381{
7608dec2
PZ
1382 struct task_struct *curr;
1383 struct rq *rq;
c37495fd
SR
1384
1385 /* For anything but wake ups, just return the task_cpu */
1386 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1387 goto out;
1388
7608dec2
PZ
1389 rq = cpu_rq(cpu);
1390
1391 rcu_read_lock();
316c1608 1392 curr = READ_ONCE(rq->curr); /* unlocked access */
7608dec2 1393
318e0893 1394 /*
7608dec2 1395 * If the current task on @p's runqueue is an RT task, then
e1f47d89
SR
1396 * try to see if we can wake this RT task up on another
1397 * runqueue. Otherwise simply start this RT task
1398 * on its current runqueue.
1399 *
43fa5460
SR
1400 * We want to avoid overloading runqueues. If the woken
1401 * task is a higher priority, then it will stay on this CPU
1402 * and the lower prio task should be moved to another CPU.
1403 * Even though this will probably make the lower prio task
1404 * lose its cache, we do not want to bounce a higher task
1405 * around just because it gave up its CPU, perhaps for a
1406 * lock?
1407 *
1408 * For equal prio tasks, we just let the scheduler sort it out.
7608dec2
PZ
1409 *
1410 * Otherwise, just let it ride on the affined RQ and the
1411 * post-schedule router will push the preempted task away
1412 *
1413 * This test is optimistic, if we get it wrong the load-balancer
1414 * will have to sort it out.
318e0893 1415 */
7608dec2 1416 if (curr && unlikely(rt_task(curr)) &&
4b53a341 1417 (curr->nr_cpus_allowed < 2 ||
6bfa687c 1418 curr->prio <= p->prio)) {
7608dec2 1419 int target = find_lowest_rq(p);
318e0893 1420
80e3d87b
TC
1421 /*
1422 * Don't bother moving it if the destination CPU is
1423 * not running a lower priority task.
1424 */
1425 if (target != -1 &&
1426 p->prio < cpu_rq(target)->rt.highest_prio.curr)
7608dec2 1427 cpu = target;
318e0893 1428 }
7608dec2 1429 rcu_read_unlock();
318e0893 1430
c37495fd 1431out:
7608dec2 1432 return cpu;
e7693a36 1433}
7ebefa8c
DA
1434
1435static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1436{
308a623a
WL
1437 /*
1438 * Current can't be migrated, useless to reschedule,
1439 * let's hope p can move out.
1440 */
4b53a341 1441 if (rq->curr->nr_cpus_allowed == 1 ||
308a623a 1442 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
7ebefa8c
DA
1443 return;
1444
308a623a
WL
1445 /*
1446 * p is migratable, so let's not schedule it and
1447 * see if it is pushed or pulled somewhere else.
1448 */
4b53a341 1449 if (p->nr_cpus_allowed != 1
13b8bd0a
RR
1450 && cpupri_find(&rq->rd->cpupri, p, NULL))
1451 return;
24600ce8 1452
7ebefa8c
DA
1453 /*
1454 * There appears to be other cpus that can accept
1455 * current and none to run 'p', so lets reschedule
1456 * to try and push current away:
1457 */
1458 requeue_task_rt(rq, p, 1);
8875125e 1459 resched_curr(rq);
7ebefa8c
DA
1460}
1461
e7693a36
GH
1462#endif /* CONFIG_SMP */
1463
bb44e5d1
IM
1464/*
1465 * Preempt the current task with a newly woken task if needed:
1466 */
7d478721 1467static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
bb44e5d1 1468{
45c01e82 1469 if (p->prio < rq->curr->prio) {
8875125e 1470 resched_curr(rq);
45c01e82
GH
1471 return;
1472 }
1473
1474#ifdef CONFIG_SMP
1475 /*
1476 * If:
1477 *
1478 * - the newly woken task is of equal priority to the current task
1479 * - the newly woken task is non-migratable while current is migratable
1480 * - current will be preempted on the next reschedule
1481 *
1482 * we should check to see if current can readily move to a different
1483 * cpu. If so, we will reschedule to allow the push logic to try
1484 * to move current somewhere else, making room for our non-migratable
1485 * task.
1486 */
8dd0de8b 1487 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
7ebefa8c 1488 check_preempt_equal_prio(rq, p);
45c01e82 1489#endif
bb44e5d1
IM
1490}
1491
6f505b16
PZ
1492static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1493 struct rt_rq *rt_rq)
bb44e5d1 1494{
6f505b16
PZ
1495 struct rt_prio_array *array = &rt_rq->active;
1496 struct sched_rt_entity *next = NULL;
bb44e5d1
IM
1497 struct list_head *queue;
1498 int idx;
1499
1500 idx = sched_find_first_bit(array->bitmap);
6f505b16 1501 BUG_ON(idx >= MAX_RT_PRIO);
bb44e5d1
IM
1502
1503 queue = array->queue + idx;
6f505b16 1504 next = list_entry(queue->next, struct sched_rt_entity, run_list);
326587b8 1505
6f505b16
PZ
1506 return next;
1507}
bb44e5d1 1508
917b627d 1509static struct task_struct *_pick_next_task_rt(struct rq *rq)
6f505b16
PZ
1510{
1511 struct sched_rt_entity *rt_se;
1512 struct task_struct *p;
606dba2e 1513 struct rt_rq *rt_rq = &rq->rt;
6f505b16
PZ
1514
1515 do {
1516 rt_se = pick_next_rt_entity(rq, rt_rq);
326587b8 1517 BUG_ON(!rt_se);
6f505b16
PZ
1518 rt_rq = group_rt_rq(rt_se);
1519 } while (rt_rq);
1520
1521 p = rt_task_of(rt_se);
78becc27 1522 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
1523
1524 return p;
1525}
1526
606dba2e 1527static struct task_struct *
d8ac8971 1528pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
917b627d 1529{
606dba2e
PZ
1530 struct task_struct *p;
1531 struct rt_rq *rt_rq = &rq->rt;
1532
37e117c0 1533 if (need_pull_rt_task(rq, prev)) {
cbce1a68
PZ
1534 /*
1535 * This is OK, because current is on_cpu, which avoids it being
1536 * picked for load-balance and preemption/IRQs are still
1537 * disabled avoiding further scheduler activity on it and we're
1538 * being very careful to re-start the picking loop.
1539 */
d8ac8971 1540 rq_unpin_lock(rq, rf);
38033c37 1541 pull_rt_task(rq);
d8ac8971 1542 rq_repin_lock(rq, rf);
37e117c0
PZ
1543 /*
1544 * pull_rt_task() can drop (and re-acquire) rq->lock; this
a1d9a323
KT
1545 * means a dl or stop task can slip in, in which case we need
1546 * to re-start task selection.
37e117c0 1547 */
da0c1e65 1548 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
a1d9a323 1549 rq->dl.dl_nr_running))
37e117c0
PZ
1550 return RETRY_TASK;
1551 }
38033c37 1552
734ff2a7
KT
1553 /*
1554 * We may dequeue prev's rt_rq in put_prev_task().
1555 * So, we update time before rt_nr_running check.
1556 */
1557 if (prev->sched_class == &rt_sched_class)
1558 update_curr_rt(rq);
1559
f4ebcbc0 1560 if (!rt_rq->rt_queued)
606dba2e
PZ
1561 return NULL;
1562
3f1d2a31 1563 put_prev_task(rq, prev);
606dba2e
PZ
1564
1565 p = _pick_next_task_rt(rq);
917b627d
GH
1566
1567 /* The running task is never eligible for pushing */
f3f1768f 1568 dequeue_pushable_task(rq, p);
917b627d 1569
e3fca9e7 1570 queue_push_tasks(rq);
3f029d3c 1571
6f505b16 1572 return p;
bb44e5d1
IM
1573}
1574
31ee529c 1575static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
bb44e5d1 1576{
f1e14ef6 1577 update_curr_rt(rq);
917b627d
GH
1578
1579 /*
1580 * The previous task needs to be made eligible for pushing
1581 * if it is still active
1582 */
4b53a341 1583 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
917b627d 1584 enqueue_pushable_task(rq, p);
bb44e5d1
IM
1585}
1586
681f3e68 1587#ifdef CONFIG_SMP
6f505b16 1588
e8fa1362
SR
1589/* Only try algorithms three times */
1590#define RT_MAX_TRIES 3
1591
f65eda4f
SR
1592static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1593{
1594 if (!task_running(rq, p) &&
0c98d344 1595 cpumask_test_cpu(cpu, &p->cpus_allowed))
f65eda4f
SR
1596 return 1;
1597 return 0;
1598}
1599
e23ee747
KT
1600/*
1601 * Return the highest pushable rq's task, which is suitable to be executed
1602 * on the cpu, NULL otherwise
1603 */
1604static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
e8fa1362 1605{
e23ee747
KT
1606 struct plist_head *head = &rq->rt.pushable_tasks;
1607 struct task_struct *p;
3d07467b 1608
e23ee747
KT
1609 if (!has_pushable_tasks(rq))
1610 return NULL;
3d07467b 1611
e23ee747
KT
1612 plist_for_each_entry(p, head, pushable_tasks) {
1613 if (pick_rt_task(rq, p, cpu))
1614 return p;
f65eda4f
SR
1615 }
1616
e23ee747 1617 return NULL;
e8fa1362
SR
1618}
1619
0e3900e6 1620static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
e8fa1362 1621
6e1254d2
GH
1622static int find_lowest_rq(struct task_struct *task)
1623{
1624 struct sched_domain *sd;
4ba29684 1625 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
6e1254d2
GH
1626 int this_cpu = smp_processor_id();
1627 int cpu = task_cpu(task);
06f90dbd 1628
0da938c4
SR
1629 /* Make sure the mask is initialized first */
1630 if (unlikely(!lowest_mask))
1631 return -1;
1632
4b53a341 1633 if (task->nr_cpus_allowed == 1)
6e0534f2 1634 return -1; /* No other targets possible */
6e1254d2 1635
6e0534f2
GH
1636 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1637 return -1; /* No targets found */
6e1254d2
GH
1638
1639 /*
1640 * At this point we have built a mask of cpus representing the
1641 * lowest priority tasks in the system. Now we want to elect
1642 * the best one based on our affinity and topology.
1643 *
1644 * We prioritize the last cpu that the task executed on since
1645 * it is most likely cache-hot in that location.
1646 */
96f874e2 1647 if (cpumask_test_cpu(cpu, lowest_mask))
6e1254d2
GH
1648 return cpu;
1649
1650 /*
1651 * Otherwise, we consult the sched_domains span maps to figure
1652 * out which cpu is logically closest to our hot cache data.
1653 */
e2c88063
RR
1654 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1655 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
6e1254d2 1656
cd4ae6ad 1657 rcu_read_lock();
e2c88063
RR
1658 for_each_domain(cpu, sd) {
1659 if (sd->flags & SD_WAKE_AFFINE) {
1660 int best_cpu;
6e1254d2 1661
e2c88063
RR
1662 /*
1663 * "this_cpu" is cheaper to preempt than a
1664 * remote processor.
1665 */
1666 if (this_cpu != -1 &&
cd4ae6ad
XF
1667 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1668 rcu_read_unlock();
e2c88063 1669 return this_cpu;
cd4ae6ad 1670 }
e2c88063
RR
1671
1672 best_cpu = cpumask_first_and(lowest_mask,
1673 sched_domain_span(sd));
cd4ae6ad
XF
1674 if (best_cpu < nr_cpu_ids) {
1675 rcu_read_unlock();
e2c88063 1676 return best_cpu;
cd4ae6ad 1677 }
6e1254d2
GH
1678 }
1679 }
cd4ae6ad 1680 rcu_read_unlock();
6e1254d2
GH
1681
1682 /*
1683 * And finally, if there were no matches within the domains
1684 * just give the caller *something* to work with from the compatible
1685 * locations.
1686 */
e2c88063
RR
1687 if (this_cpu != -1)
1688 return this_cpu;
1689
1690 cpu = cpumask_any(lowest_mask);
1691 if (cpu < nr_cpu_ids)
1692 return cpu;
1693 return -1;
07b4032c
GH
1694}
1695
1696/* Will lock the rq it finds */
4df64c0b 1697static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
07b4032c
GH
1698{
1699 struct rq *lowest_rq = NULL;
07b4032c 1700 int tries;
4df64c0b 1701 int cpu;
e8fa1362 1702
07b4032c
GH
1703 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1704 cpu = find_lowest_rq(task);
1705
2de0b463 1706 if ((cpu == -1) || (cpu == rq->cpu))
e8fa1362
SR
1707 break;
1708
07b4032c
GH
1709 lowest_rq = cpu_rq(cpu);
1710
80e3d87b
TC
1711 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1712 /*
1713 * Target rq has tasks of equal or higher priority,
1714 * retrying does not release any lock and is unlikely
1715 * to yield a different result.
1716 */
1717 lowest_rq = NULL;
1718 break;
1719 }
1720
e8fa1362 1721 /* if the prio of this runqueue changed, try again */
07b4032c 1722 if (double_lock_balance(rq, lowest_rq)) {
e8fa1362
SR
1723 /*
1724 * We had to unlock the run queue. In
1725 * the mean time, task could have
1726 * migrated already or had its affinity changed.
1727 * Also make sure that it wasn't scheduled on its rq.
1728 */
07b4032c 1729 if (unlikely(task_rq(task) != rq ||
0c98d344 1730 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
07b4032c 1731 task_running(rq, task) ||
13b5ab02 1732 !rt_task(task) ||
da0c1e65 1733 !task_on_rq_queued(task))) {
4df64c0b 1734
7f1b4393 1735 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1736 lowest_rq = NULL;
1737 break;
1738 }
1739 }
1740
1741 /* If this rq is still suitable use it. */
e864c499 1742 if (lowest_rq->rt.highest_prio.curr > task->prio)
e8fa1362
SR
1743 break;
1744
1745 /* try again */
1b12bbc7 1746 double_unlock_balance(rq, lowest_rq);
e8fa1362
SR
1747 lowest_rq = NULL;
1748 }
1749
1750 return lowest_rq;
1751}
1752
917b627d
GH
1753static struct task_struct *pick_next_pushable_task(struct rq *rq)
1754{
1755 struct task_struct *p;
1756
1757 if (!has_pushable_tasks(rq))
1758 return NULL;
1759
1760 p = plist_first_entry(&rq->rt.pushable_tasks,
1761 struct task_struct, pushable_tasks);
1762
1763 BUG_ON(rq->cpu != task_cpu(p));
1764 BUG_ON(task_current(rq, p));
4b53a341 1765 BUG_ON(p->nr_cpus_allowed <= 1);
917b627d 1766
da0c1e65 1767 BUG_ON(!task_on_rq_queued(p));
917b627d
GH
1768 BUG_ON(!rt_task(p));
1769
1770 return p;
1771}
1772
e8fa1362
SR
1773/*
1774 * If the current CPU has more than one RT task, see if the non
1775 * running task can migrate over to a CPU that is running a task
1776 * of lesser priority.
1777 */
697f0a48 1778static int push_rt_task(struct rq *rq)
e8fa1362
SR
1779{
1780 struct task_struct *next_task;
1781 struct rq *lowest_rq;
311e800e 1782 int ret = 0;
e8fa1362 1783
a22d7fc1
GH
1784 if (!rq->rt.overloaded)
1785 return 0;
1786
917b627d 1787 next_task = pick_next_pushable_task(rq);
e8fa1362
SR
1788 if (!next_task)
1789 return 0;
1790
49246274 1791retry:
697f0a48 1792 if (unlikely(next_task == rq->curr)) {
f65eda4f 1793 WARN_ON(1);
e8fa1362 1794 return 0;
f65eda4f 1795 }
e8fa1362
SR
1796
1797 /*
1798 * It's possible that the next_task slipped in of
1799 * higher priority than current. If that's the case
1800 * just reschedule current.
1801 */
697f0a48 1802 if (unlikely(next_task->prio < rq->curr->prio)) {
8875125e 1803 resched_curr(rq);
e8fa1362
SR
1804 return 0;
1805 }
1806
697f0a48 1807 /* We might release rq lock */
e8fa1362
SR
1808 get_task_struct(next_task);
1809
1810 /* find_lock_lowest_rq locks the rq if found */
697f0a48 1811 lowest_rq = find_lock_lowest_rq(next_task, rq);
e8fa1362
SR
1812 if (!lowest_rq) {
1813 struct task_struct *task;
1814 /*
311e800e 1815 * find_lock_lowest_rq releases rq->lock
1563513d
GH
1816 * so it is possible that next_task has migrated.
1817 *
1818 * We need to make sure that the task is still on the same
1819 * run-queue and is also still the next task eligible for
1820 * pushing.
e8fa1362 1821 */
917b627d 1822 task = pick_next_pushable_task(rq);
de16b91e 1823 if (task == next_task) {
1563513d 1824 /*
311e800e
HD
1825 * The task hasn't migrated, and is still the next
1826 * eligible task, but we failed to find a run-queue
1827 * to push it to. Do not retry in this case, since
1828 * other cpus will pull from us when ready.
1563513d 1829 */
1563513d 1830 goto out;
e8fa1362 1831 }
917b627d 1832
1563513d
GH
1833 if (!task)
1834 /* No more tasks, just exit */
1835 goto out;
1836
917b627d 1837 /*
1563513d 1838 * Something has shifted, try again.
917b627d 1839 */
1563513d
GH
1840 put_task_struct(next_task);
1841 next_task = task;
1842 goto retry;
e8fa1362
SR
1843 }
1844
697f0a48 1845 deactivate_task(rq, next_task, 0);
e8fa1362
SR
1846 set_task_cpu(next_task, lowest_rq->cpu);
1847 activate_task(lowest_rq, next_task, 0);
311e800e 1848 ret = 1;
e8fa1362 1849
8875125e 1850 resched_curr(lowest_rq);
e8fa1362 1851
1b12bbc7 1852 double_unlock_balance(rq, lowest_rq);
e8fa1362 1853
e8fa1362
SR
1854out:
1855 put_task_struct(next_task);
1856
311e800e 1857 return ret;
e8fa1362
SR
1858}
1859
e8fa1362
SR
1860static void push_rt_tasks(struct rq *rq)
1861{
1862 /* push_rt_task will return true if it moved an RT */
1863 while (push_rt_task(rq))
1864 ;
1865}
1866
b6366f04 1867#ifdef HAVE_RT_PUSH_IPI
4bdced5c 1868
b6366f04 1869/*
4bdced5c
SRRH
1870 * When a high priority task schedules out from a CPU and a lower priority
1871 * task is scheduled in, a check is made to see if there's any RT tasks
1872 * on other CPUs that are waiting to run because a higher priority RT task
1873 * is currently running on its CPU. In this case, the CPU with multiple RT
1874 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1875 * up that may be able to run one of its non-running queued RT tasks.
1876 *
1877 * All CPUs with overloaded RT tasks need to be notified as there is currently
1878 * no way to know which of these CPUs have the highest priority task waiting
1879 * to run. Instead of trying to take a spinlock on each of these CPUs,
1880 * which has shown to cause large latency when done on machines with many
1881 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1882 * RT tasks waiting to run.
1883 *
1884 * Just sending an IPI to each of the CPUs is also an issue, as on large
1885 * count CPU machines, this can cause an IPI storm on a CPU, especially
1886 * if its the only CPU with multiple RT tasks queued, and a large number
1887 * of CPUs scheduling a lower priority task at the same time.
1888 *
1889 * Each root domain has its own irq work function that can iterate over
1890 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1891 * tassk must be checked if there's one or many CPUs that are lowering
1892 * their priority, there's a single irq work iterator that will try to
1893 * push off RT tasks that are waiting to run.
1894 *
1895 * When a CPU schedules a lower priority task, it will kick off the
1896 * irq work iterator that will jump to each CPU with overloaded RT tasks.
1897 * As it only takes the first CPU that schedules a lower priority task
1898 * to start the process, the rto_start variable is incremented and if
1899 * the atomic result is one, then that CPU will try to take the rto_lock.
1900 * This prevents high contention on the lock as the process handles all
1901 * CPUs scheduling lower priority tasks.
1902 *
1903 * All CPUs that are scheduling a lower priority task will increment the
1904 * rt_loop_next variable. This will make sure that the irq work iterator
1905 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1906 * priority task, even if the iterator is in the middle of a scan. Incrementing
1907 * the rt_loop_next will cause the iterator to perform another scan.
b6366f04 1908 *
b6366f04 1909 */
ad0f1d9d 1910static int rto_next_cpu(struct root_domain *rd)
b6366f04 1911{
4bdced5c 1912 int next;
b6366f04
SR
1913 int cpu;
1914
b6366f04 1915 /*
4bdced5c
SRRH
1916 * When starting the IPI RT pushing, the rto_cpu is set to -1,
1917 * rt_next_cpu() will simply return the first CPU found in
1918 * the rto_mask.
1919 *
1920 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it
1921 * will return the next CPU found in the rto_mask.
1922 *
1923 * If there are no more CPUs left in the rto_mask, then a check is made
1924 * against rto_loop and rto_loop_next. rto_loop is only updated with
1925 * the rto_lock held, but any CPU may increment the rto_loop_next
1926 * without any locking.
b6366f04 1927 */
4bdced5c 1928 for (;;) {
b6366f04 1929
4bdced5c
SRRH
1930 /* When rto_cpu is -1 this acts like cpumask_first() */
1931 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
b6366f04 1932
4bdced5c 1933 rd->rto_cpu = cpu;
b6366f04 1934
4bdced5c
SRRH
1935 if (cpu < nr_cpu_ids)
1936 return cpu;
b6366f04 1937
4bdced5c
SRRH
1938 rd->rto_cpu = -1;
1939
1940 /*
1941 * ACQUIRE ensures we see the @rto_mask changes
1942 * made prior to the @next value observed.
1943 *
1944 * Matches WMB in rt_set_overload().
1945 */
1946 next = atomic_read_acquire(&rd->rto_loop_next);
b6366f04 1947
4bdced5c 1948 if (rd->rto_loop == next)
b6366f04 1949 break;
4bdced5c
SRRH
1950
1951 rd->rto_loop = next;
b6366f04
SR
1952 }
1953
4bdced5c 1954 return -1;
b6366f04
SR
1955}
1956
4bdced5c
SRRH
1957static inline bool rto_start_trylock(atomic_t *v)
1958{
1959 return !atomic_cmpxchg_acquire(v, 0, 1);
1960}
b6366f04 1961
4bdced5c 1962static inline void rto_start_unlock(atomic_t *v)
b6366f04 1963{
4bdced5c
SRRH
1964 atomic_set_release(v, 0);
1965}
b6366f04 1966
4bdced5c
SRRH
1967static void tell_cpu_to_push(struct rq *rq)
1968{
1969 int cpu = -1;
b6366f04 1970
4bdced5c
SRRH
1971 /* Keep the loop going if the IPI is currently active */
1972 atomic_inc(&rq->rd->rto_loop_next);
b6366f04 1973
4bdced5c
SRRH
1974 /* Only one CPU can initiate a loop at a time */
1975 if (!rto_start_trylock(&rq->rd->rto_loop_start))
b6366f04
SR
1976 return;
1977
4bdced5c 1978 raw_spin_lock(&rq->rd->rto_lock);
b6366f04 1979
4bdced5c
SRRH
1980 /*
1981 * The rto_cpu is updated under the lock, if it has a valid cpu
1982 * then the IPI is still running and will continue due to the
1983 * update to loop_next, and nothing needs to be done here.
1984 * Otherwise it is finishing up and an ipi needs to be sent.
1985 */
1986 if (rq->rd->rto_cpu < 0)
ad0f1d9d 1987 cpu = rto_next_cpu(rq->rd);
4bdced5c
SRRH
1988
1989 raw_spin_unlock(&rq->rd->rto_lock);
1990
1991 rto_start_unlock(&rq->rd->rto_loop_start);
1992
1993 if (cpu >= 0)
1994 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
b6366f04
SR
1995}
1996
1997/* Called from hardirq context */
4bdced5c 1998void rto_push_irq_work_func(struct irq_work *work)
b6366f04 1999{
ad0f1d9d
SRV
2000 struct root_domain *rd =
2001 container_of(work, struct root_domain, rto_push_work);
4bdced5c 2002 struct rq *rq;
b6366f04
SR
2003 int cpu;
2004
4bdced5c 2005 rq = this_rq();
b6366f04 2006
4bdced5c
SRRH
2007 /*
2008 * We do not need to grab the lock to check for has_pushable_tasks.
2009 * When it gets updated, a check is made if a push is possible.
2010 */
b6366f04
SR
2011 if (has_pushable_tasks(rq)) {
2012 raw_spin_lock(&rq->lock);
4bdced5c 2013 push_rt_tasks(rq);
b6366f04
SR
2014 raw_spin_unlock(&rq->lock);
2015 }
2016
ad0f1d9d 2017 raw_spin_lock(&rd->rto_lock);
b6366f04 2018
4bdced5c 2019 /* Pass the IPI to the next rt overloaded queue */
ad0f1d9d 2020 cpu = rto_next_cpu(rd);
b6366f04 2021
ad0f1d9d 2022 raw_spin_unlock(&rd->rto_lock);
b6366f04 2023
4bdced5c 2024 if (cpu < 0)
b6366f04
SR
2025 return;
2026
b6366f04 2027 /* Try the next RT overloaded CPU */
ad0f1d9d 2028 irq_work_queue_on(&rd->rto_push_work, cpu);
b6366f04
SR
2029}
2030#endif /* HAVE_RT_PUSH_IPI */
2031
8046d680 2032static void pull_rt_task(struct rq *this_rq)
f65eda4f 2033{
8046d680
PZ
2034 int this_cpu = this_rq->cpu, cpu;
2035 bool resched = false;
a8728944 2036 struct task_struct *p;
f65eda4f 2037 struct rq *src_rq;
f73c52a5 2038 int rt_overload_count = rt_overloaded(this_rq);
f65eda4f 2039
f73c52a5 2040 if (likely(!rt_overload_count))
8046d680 2041 return;
f65eda4f 2042
7c3f2ab7
PZ
2043 /*
2044 * Match the barrier from rt_set_overloaded; this guarantees that if we
2045 * see overloaded we must also see the rto_mask bit.
2046 */
2047 smp_rmb();
2048
f73c52a5
SR
2049 /* If we are the only overloaded CPU do nothing */
2050 if (rt_overload_count == 1 &&
2051 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2052 return;
2053
b6366f04
SR
2054#ifdef HAVE_RT_PUSH_IPI
2055 if (sched_feat(RT_PUSH_IPI)) {
2056 tell_cpu_to_push(this_rq);
8046d680 2057 return;
b6366f04
SR
2058 }
2059#endif
2060
c6c4927b 2061 for_each_cpu(cpu, this_rq->rd->rto_mask) {
f65eda4f
SR
2062 if (this_cpu == cpu)
2063 continue;
2064
2065 src_rq = cpu_rq(cpu);
74ab8e4f
GH
2066
2067 /*
2068 * Don't bother taking the src_rq->lock if the next highest
2069 * task is known to be lower-priority than our current task.
2070 * This may look racy, but if this value is about to go
2071 * logically higher, the src_rq will push this task away.
2072 * And if its going logically lower, we do not care
2073 */
2074 if (src_rq->rt.highest_prio.next >=
2075 this_rq->rt.highest_prio.curr)
2076 continue;
2077
f65eda4f
SR
2078 /*
2079 * We can potentially drop this_rq's lock in
2080 * double_lock_balance, and another CPU could
a8728944 2081 * alter this_rq
f65eda4f 2082 */
a8728944 2083 double_lock_balance(this_rq, src_rq);
f65eda4f
SR
2084
2085 /*
e23ee747
KT
2086 * We can pull only a task, which is pushable
2087 * on its rq, and no others.
f65eda4f 2088 */
e23ee747 2089 p = pick_highest_pushable_task(src_rq, this_cpu);
f65eda4f
SR
2090
2091 /*
2092 * Do we have an RT task that preempts
2093 * the to-be-scheduled task?
2094 */
a8728944 2095 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
f65eda4f 2096 WARN_ON(p == src_rq->curr);
da0c1e65 2097 WARN_ON(!task_on_rq_queued(p));
f65eda4f
SR
2098
2099 /*
2100 * There's a chance that p is higher in priority
2101 * than what's currently running on its cpu.
2102 * This is just that p is wakeing up and hasn't
2103 * had a chance to schedule. We only pull
2104 * p if it is lower in priority than the
a8728944 2105 * current task on the run queue
f65eda4f 2106 */
a8728944 2107 if (p->prio < src_rq->curr->prio)
614ee1f6 2108 goto skip;
f65eda4f 2109
8046d680 2110 resched = true;
f65eda4f
SR
2111
2112 deactivate_task(src_rq, p, 0);
2113 set_task_cpu(p, this_cpu);
2114 activate_task(this_rq, p, 0);
2115 /*
2116 * We continue with the search, just in
2117 * case there's an even higher prio task
25985edc 2118 * in another runqueue. (low likelihood
f65eda4f 2119 * but possible)
f65eda4f 2120 */
f65eda4f 2121 }
49246274 2122skip:
1b12bbc7 2123 double_unlock_balance(this_rq, src_rq);
f65eda4f
SR
2124 }
2125
8046d680
PZ
2126 if (resched)
2127 resched_curr(this_rq);
f65eda4f
SR
2128}
2129
8ae121ac
GH
2130/*
2131 * If we are not running and we are not going to reschedule soon, we should
2132 * try to push tasks away now
2133 */
efbbd05a 2134static void task_woken_rt(struct rq *rq, struct task_struct *p)
4642dafd 2135{
9a897c5a 2136 if (!task_running(rq, p) &&
8ae121ac 2137 !test_tsk_need_resched(rq->curr) &&
4b53a341 2138 p->nr_cpus_allowed > 1 &&
1baca4ce 2139 (dl_task(rq->curr) || rt_task(rq->curr)) &&
4b53a341 2140 (rq->curr->nr_cpus_allowed < 2 ||
3be209a8 2141 rq->curr->prio <= p->prio))
4642dafd
SR
2142 push_rt_tasks(rq);
2143}
2144
bdd7c81b 2145/* Assumes rq->lock is held */
1f11eb6a 2146static void rq_online_rt(struct rq *rq)
bdd7c81b
IM
2147{
2148 if (rq->rt.overloaded)
2149 rt_set_overload(rq);
6e0534f2 2150
7def2be1
PZ
2151 __enable_runtime(rq);
2152
e864c499 2153 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
bdd7c81b
IM
2154}
2155
2156/* Assumes rq->lock is held */
1f11eb6a 2157static void rq_offline_rt(struct rq *rq)
bdd7c81b
IM
2158{
2159 if (rq->rt.overloaded)
2160 rt_clear_overload(rq);
6e0534f2 2161
7def2be1
PZ
2162 __disable_runtime(rq);
2163
6e0534f2 2164 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
bdd7c81b 2165}
cb469845
SR
2166
2167/*
2168 * When switch from the rt queue, we bring ourselves to a position
2169 * that we might want to pull RT tasks from other runqueues.
2170 */
da7a735e 2171static void switched_from_rt(struct rq *rq, struct task_struct *p)
cb469845
SR
2172{
2173 /*
2174 * If there are other RT tasks then we will reschedule
2175 * and the scheduling of the other RT tasks will handle
2176 * the balancing. But if we are the last RT task
2177 * we may need to handle the pulling of RT tasks
2178 * now.
2179 */
da0c1e65 2180 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1158ddb5
KT
2181 return;
2182
fd7a4bed 2183 queue_pull_task(rq);
cb469845 2184}
3d8cbdf8 2185
11c785b7 2186void __init init_sched_rt_class(void)
3d8cbdf8
RR
2187{
2188 unsigned int i;
2189
029632fb 2190 for_each_possible_cpu(i) {
eaa95840 2191 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
6ca09dfc 2192 GFP_KERNEL, cpu_to_node(i));
029632fb 2193 }
3d8cbdf8 2194}
cb469845
SR
2195#endif /* CONFIG_SMP */
2196
2197/*
2198 * When switching a task to RT, we may overload the runqueue
2199 * with RT tasks. In this case we try to push them off to
2200 * other runqueues.
2201 */
da7a735e 2202static void switched_to_rt(struct rq *rq, struct task_struct *p)
cb469845 2203{
cb469845
SR
2204 /*
2205 * If we are already running, then there's nothing
2206 * that needs to be done. But if we are not running
2207 * we may need to preempt the current running task.
2208 * If that current running task is also an RT task
2209 * then see if we can move to another run queue.
2210 */
da0c1e65 2211 if (task_on_rq_queued(p) && rq->curr != p) {
cb469845 2212#ifdef CONFIG_SMP
4b53a341 2213 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
fd7a4bed 2214 queue_push_tasks(rq);
619bd4a7 2215#endif /* CONFIG_SMP */
2fe25826 2216 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
8875125e 2217 resched_curr(rq);
cb469845
SR
2218 }
2219}
2220
2221/*
2222 * Priority of the task has changed. This may cause
2223 * us to initiate a push or pull.
2224 */
da7a735e
PZ
2225static void
2226prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 2227{
da0c1e65 2228 if (!task_on_rq_queued(p))
da7a735e
PZ
2229 return;
2230
2231 if (rq->curr == p) {
cb469845
SR
2232#ifdef CONFIG_SMP
2233 /*
2234 * If our priority decreases while running, we
2235 * may need to pull tasks to this runqueue.
2236 */
2237 if (oldprio < p->prio)
fd7a4bed
PZ
2238 queue_pull_task(rq);
2239
cb469845
SR
2240 /*
2241 * If there's a higher priority task waiting to run
fd7a4bed 2242 * then reschedule.
cb469845 2243 */
fd7a4bed 2244 if (p->prio > rq->rt.highest_prio.curr)
8875125e 2245 resched_curr(rq);
cb469845
SR
2246#else
2247 /* For UP simply resched on drop of prio */
2248 if (oldprio < p->prio)
8875125e 2249 resched_curr(rq);
e8fa1362 2250#endif /* CONFIG_SMP */
cb469845
SR
2251 } else {
2252 /*
2253 * This task is not running, but if it is
2254 * greater than the current running task
2255 * then reschedule.
2256 */
2257 if (p->prio < rq->curr->prio)
8875125e 2258 resched_curr(rq);
cb469845
SR
2259 }
2260}
2261
b18b6a9c 2262#ifdef CONFIG_POSIX_TIMERS
78f2c7db
PZ
2263static void watchdog(struct rq *rq, struct task_struct *p)
2264{
2265 unsigned long soft, hard;
2266
78d7d407
JS
2267 /* max may change after cur was read, this will be fixed next tick */
2268 soft = task_rlimit(p, RLIMIT_RTTIME);
2269 hard = task_rlimit_max(p, RLIMIT_RTTIME);
78f2c7db
PZ
2270
2271 if (soft != RLIM_INFINITY) {
2272 unsigned long next;
2273
57d2aa00
YX
2274 if (p->rt.watchdog_stamp != jiffies) {
2275 p->rt.timeout++;
2276 p->rt.watchdog_stamp = jiffies;
2277 }
2278
78f2c7db 2279 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
5a52dd50 2280 if (p->rt.timeout > next)
f06febc9 2281 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
78f2c7db
PZ
2282 }
2283}
b18b6a9c
NP
2284#else
2285static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2286#endif
bb44e5d1 2287
8f4d37ec 2288static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
bb44e5d1 2289{
454c7999
CC
2290 struct sched_rt_entity *rt_se = &p->rt;
2291
67e2be02
PZ
2292 update_curr_rt(rq);
2293
78f2c7db
PZ
2294 watchdog(rq, p);
2295
bb44e5d1
IM
2296 /*
2297 * RR tasks need a special form of timeslice management.
2298 * FIFO tasks have no timeslices.
2299 */
2300 if (p->policy != SCHED_RR)
2301 return;
2302
fa717060 2303 if (--p->rt.time_slice)
bb44e5d1
IM
2304 return;
2305
ce0dbbbb 2306 p->rt.time_slice = sched_rr_timeslice;
bb44e5d1 2307
98fbc798 2308 /*
e9aa39bb
LB
2309 * Requeue to the end of queue if we (and all of our ancestors) are not
2310 * the only element on the queue
98fbc798 2311 */
454c7999
CC
2312 for_each_sched_rt_entity(rt_se) {
2313 if (rt_se->run_list.prev != rt_se->run_list.next) {
2314 requeue_task_rt(rq, p, 0);
8aa6f0eb 2315 resched_curr(rq);
454c7999
CC
2316 return;
2317 }
98fbc798 2318 }
bb44e5d1
IM
2319}
2320
83b699ed
SV
2321static void set_curr_task_rt(struct rq *rq)
2322{
2323 struct task_struct *p = rq->curr;
2324
78becc27 2325 p->se.exec_start = rq_clock_task(rq);
917b627d
GH
2326
2327 /* The running task is never eligible for pushing */
2328 dequeue_pushable_task(rq, p);
83b699ed
SV
2329}
2330
6d686f45 2331static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
0d721cea
PW
2332{
2333 /*
2334 * Time slice is 0 for SCHED_FIFO tasks
2335 */
2336 if (task->policy == SCHED_RR)
ce0dbbbb 2337 return sched_rr_timeslice;
0d721cea
PW
2338 else
2339 return 0;
2340}
2341
029632fb 2342const struct sched_class rt_sched_class = {
5522d5d5 2343 .next = &fair_sched_class,
bb44e5d1
IM
2344 .enqueue_task = enqueue_task_rt,
2345 .dequeue_task = dequeue_task_rt,
2346 .yield_task = yield_task_rt,
2347
2348 .check_preempt_curr = check_preempt_curr_rt,
2349
2350 .pick_next_task = pick_next_task_rt,
2351 .put_prev_task = put_prev_task_rt,
2352
681f3e68 2353#ifdef CONFIG_SMP
4ce72a2c
LZ
2354 .select_task_rq = select_task_rq_rt,
2355
6c37067e 2356 .set_cpus_allowed = set_cpus_allowed_common,
1f11eb6a
GH
2357 .rq_online = rq_online_rt,
2358 .rq_offline = rq_offline_rt,
efbbd05a 2359 .task_woken = task_woken_rt,
cb469845 2360 .switched_from = switched_from_rt,
681f3e68 2361#endif
bb44e5d1 2362
83b699ed 2363 .set_curr_task = set_curr_task_rt,
bb44e5d1 2364 .task_tick = task_tick_rt,
cb469845 2365
0d721cea
PW
2366 .get_rr_interval = get_rr_interval_rt,
2367
cb469845
SR
2368 .prio_changed = prio_changed_rt,
2369 .switched_to = switched_to_rt,
6e998916
SG
2370
2371 .update_curr = update_curr_rt,
bb44e5d1 2372};
ada18de2 2373
8887cd99
NP
2374#ifdef CONFIG_RT_GROUP_SCHED
2375/*
2376 * Ensure that the real time constraints are schedulable.
2377 */
2378static DEFINE_MUTEX(rt_constraints_mutex);
2379
2380/* Must be called with tasklist_lock held */
2381static inline int tg_has_rt_tasks(struct task_group *tg)
2382{
2383 struct task_struct *g, *p;
2384
2385 /*
2386 * Autogroups do not have RT tasks; see autogroup_create().
2387 */
2388 if (task_group_is_autogroup(tg))
2389 return 0;
2390
2391 for_each_process_thread(g, p) {
2392 if (rt_task(p) && task_group(p) == tg)
2393 return 1;
2394 }
2395
2396 return 0;
2397}
2398
2399struct rt_schedulable_data {
2400 struct task_group *tg;
2401 u64 rt_period;
2402 u64 rt_runtime;
2403};
2404
2405static int tg_rt_schedulable(struct task_group *tg, void *data)
2406{
2407 struct rt_schedulable_data *d = data;
2408 struct task_group *child;
2409 unsigned long total, sum = 0;
2410 u64 period, runtime;
2411
2412 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2413 runtime = tg->rt_bandwidth.rt_runtime;
2414
2415 if (tg == d->tg) {
2416 period = d->rt_period;
2417 runtime = d->rt_runtime;
2418 }
2419
2420 /*
2421 * Cannot have more runtime than the period.
2422 */
2423 if (runtime > period && runtime != RUNTIME_INF)
2424 return -EINVAL;
2425
2426 /*
2427 * Ensure we don't starve existing RT tasks.
2428 */
2429 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2430 return -EBUSY;
2431
2432 total = to_ratio(period, runtime);
2433
2434 /*
2435 * Nobody can have more than the global setting allows.
2436 */
2437 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2438 return -EINVAL;
2439
2440 /*
2441 * The sum of our children's runtime should not exceed our own.
2442 */
2443 list_for_each_entry_rcu(child, &tg->children, siblings) {
2444 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2445 runtime = child->rt_bandwidth.rt_runtime;
2446
2447 if (child == d->tg) {
2448 period = d->rt_period;
2449 runtime = d->rt_runtime;
2450 }
2451
2452 sum += to_ratio(period, runtime);
2453 }
2454
2455 if (sum > total)
2456 return -EINVAL;
2457
2458 return 0;
2459}
2460
2461static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2462{
2463 int ret;
2464
2465 struct rt_schedulable_data data = {
2466 .tg = tg,
2467 .rt_period = period,
2468 .rt_runtime = runtime,
2469 };
2470
2471 rcu_read_lock();
2472 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2473 rcu_read_unlock();
2474
2475 return ret;
2476}
2477
2478static int tg_set_rt_bandwidth(struct task_group *tg,
2479 u64 rt_period, u64 rt_runtime)
2480{
2481 int i, err = 0;
2482
2483 /*
2484 * Disallowing the root group RT runtime is BAD, it would disallow the
2485 * kernel creating (and or operating) RT threads.
2486 */
2487 if (tg == &root_task_group && rt_runtime == 0)
2488 return -EINVAL;
2489
2490 /* No period doesn't make any sense. */
2491 if (rt_period == 0)
2492 return -EINVAL;
2493
2494 mutex_lock(&rt_constraints_mutex);
2495 read_lock(&tasklist_lock);
2496 err = __rt_schedulable(tg, rt_period, rt_runtime);
2497 if (err)
2498 goto unlock;
2499
2500 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2501 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2502 tg->rt_bandwidth.rt_runtime = rt_runtime;
2503
2504 for_each_possible_cpu(i) {
2505 struct rt_rq *rt_rq = tg->rt_rq[i];
2506
2507 raw_spin_lock(&rt_rq->rt_runtime_lock);
2508 rt_rq->rt_runtime = rt_runtime;
2509 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2510 }
2511 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2512unlock:
2513 read_unlock(&tasklist_lock);
2514 mutex_unlock(&rt_constraints_mutex);
2515
2516 return err;
2517}
2518
2519int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2520{
2521 u64 rt_runtime, rt_period;
2522
2523 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2524 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2525 if (rt_runtime_us < 0)
2526 rt_runtime = RUNTIME_INF;
2527
2528 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2529}
2530
2531long sched_group_rt_runtime(struct task_group *tg)
2532{
2533 u64 rt_runtime_us;
2534
2535 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2536 return -1;
2537
2538 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2539 do_div(rt_runtime_us, NSEC_PER_USEC);
2540 return rt_runtime_us;
2541}
2542
2543int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2544{
2545 u64 rt_runtime, rt_period;
2546
2547 rt_period = rt_period_us * NSEC_PER_USEC;
2548 rt_runtime = tg->rt_bandwidth.rt_runtime;
2549
2550 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2551}
2552
2553long sched_group_rt_period(struct task_group *tg)
2554{
2555 u64 rt_period_us;
2556
2557 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2558 do_div(rt_period_us, NSEC_PER_USEC);
2559 return rt_period_us;
2560}
2561
2562static int sched_rt_global_constraints(void)
2563{
2564 int ret = 0;
2565
2566 mutex_lock(&rt_constraints_mutex);
2567 read_lock(&tasklist_lock);
2568 ret = __rt_schedulable(NULL, 0, 0);
2569 read_unlock(&tasklist_lock);
2570 mutex_unlock(&rt_constraints_mutex);
2571
2572 return ret;
2573}
2574
2575int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2576{
2577 /* Don't accept realtime tasks when there is no way for them to run */
2578 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2579 return 0;
2580
2581 return 1;
2582}
2583
2584#else /* !CONFIG_RT_GROUP_SCHED */
2585static int sched_rt_global_constraints(void)
2586{
2587 unsigned long flags;
2588 int i;
2589
2590 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2591 for_each_possible_cpu(i) {
2592 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2593
2594 raw_spin_lock(&rt_rq->rt_runtime_lock);
2595 rt_rq->rt_runtime = global_rt_runtime();
2596 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2597 }
2598 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2599
2600 return 0;
2601}
2602#endif /* CONFIG_RT_GROUP_SCHED */
2603
2604static int sched_rt_global_validate(void)
2605{
2606 if (sysctl_sched_rt_period <= 0)
2607 return -EINVAL;
2608
2609 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2610 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2611 return -EINVAL;
2612
2613 return 0;
2614}
2615
2616static void sched_rt_do_global(void)
2617{
2618 def_rt_bandwidth.rt_runtime = global_rt_runtime();
2619 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2620}
2621
2622int sched_rt_handler(struct ctl_table *table, int write,
2623 void __user *buffer, size_t *lenp,
2624 loff_t *ppos)
2625{
2626 int old_period, old_runtime;
2627 static DEFINE_MUTEX(mutex);
2628 int ret;
2629
2630 mutex_lock(&mutex);
2631 old_period = sysctl_sched_rt_period;
2632 old_runtime = sysctl_sched_rt_runtime;
2633
2634 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2635
2636 if (!ret && write) {
2637 ret = sched_rt_global_validate();
2638 if (ret)
2639 goto undo;
2640
2641 ret = sched_dl_global_validate();
2642 if (ret)
2643 goto undo;
2644
2645 ret = sched_rt_global_constraints();
2646 if (ret)
2647 goto undo;
2648
2649 sched_rt_do_global();
2650 sched_dl_do_global();
2651 }
2652 if (0) {
2653undo:
2654 sysctl_sched_rt_period = old_period;
2655 sysctl_sched_rt_runtime = old_runtime;
2656 }
2657 mutex_unlock(&mutex);
2658
2659 return ret;
2660}
2661
2662int sched_rr_handler(struct ctl_table *table, int write,
2663 void __user *buffer, size_t *lenp,
2664 loff_t *ppos)
2665{
2666 int ret;
2667 static DEFINE_MUTEX(mutex);
2668
2669 mutex_lock(&mutex);
2670 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2671 /*
2672 * Make sure that internally we keep jiffies.
2673 * Also, writing zero resets the timeslice to default:
2674 */
2675 if (!ret && write) {
2676 sched_rr_timeslice =
2677 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2678 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2679 }
2680 mutex_unlock(&mutex);
2681 return ret;
2682}
2683
ada18de2
PZ
2684#ifdef CONFIG_SCHED_DEBUG
2685extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2686
029632fb 2687void print_rt_stats(struct seq_file *m, int cpu)
ada18de2 2688{
ec514c48 2689 rt_rq_iter_t iter;
ada18de2
PZ
2690 struct rt_rq *rt_rq;
2691
2692 rcu_read_lock();
ec514c48 2693 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
ada18de2
PZ
2694 print_rt_rq(m, cpu, rt_rq);
2695 rcu_read_unlock();
2696}
55e12e5e 2697#endif /* CONFIG_SCHED_DEBUG */
This page took 1.168292 seconds and 4 git commands to generate.