]>
Commit | Line | Data |
---|---|---|
457c8996 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
1da177e4 LT |
2 | /* |
3 | * linux/kernel/exit.c | |
4 | * | |
5 | * Copyright (C) 1991, 1992 Linus Torvalds | |
6 | */ | |
7 | ||
1da177e4 LT |
8 | #include <linux/mm.h> |
9 | #include <linux/slab.h> | |
4eb5aaa3 | 10 | #include <linux/sched/autogroup.h> |
6e84f315 | 11 | #include <linux/sched/mm.h> |
03441a34 | 12 | #include <linux/sched/stat.h> |
29930025 | 13 | #include <linux/sched/task.h> |
68db0cf1 | 14 | #include <linux/sched/task_stack.h> |
32ef5517 | 15 | #include <linux/sched/cputime.h> |
1da177e4 | 16 | #include <linux/interrupt.h> |
1da177e4 | 17 | #include <linux/module.h> |
c59ede7b | 18 | #include <linux/capability.h> |
1da177e4 LT |
19 | #include <linux/completion.h> |
20 | #include <linux/personality.h> | |
21 | #include <linux/tty.h> | |
da9cbc87 | 22 | #include <linux/iocontext.h> |
1da177e4 | 23 | #include <linux/key.h> |
1da177e4 LT |
24 | #include <linux/cpu.h> |
25 | #include <linux/acct.h> | |
8f0ab514 | 26 | #include <linux/tsacct_kern.h> |
1da177e4 | 27 | #include <linux/file.h> |
9f3acc31 | 28 | #include <linux/fdtable.h> |
80d26af8 | 29 | #include <linux/freezer.h> |
1da177e4 | 30 | #include <linux/binfmts.h> |
ab516013 | 31 | #include <linux/nsproxy.h> |
84d73786 | 32 | #include <linux/pid_namespace.h> |
1da177e4 LT |
33 | #include <linux/ptrace.h> |
34 | #include <linux/profile.h> | |
35 | #include <linux/mount.h> | |
36 | #include <linux/proc_fs.h> | |
49d769d5 | 37 | #include <linux/kthread.h> |
1da177e4 | 38 | #include <linux/mempolicy.h> |
c757249a | 39 | #include <linux/taskstats_kern.h> |
ca74e92b | 40 | #include <linux/delayacct.h> |
b4f48b63 | 41 | #include <linux/cgroup.h> |
1da177e4 | 42 | #include <linux/syscalls.h> |
7ed20e1a | 43 | #include <linux/signal.h> |
6a14c5c9 | 44 | #include <linux/posix-timers.h> |
9f46080c | 45 | #include <linux/cn_proc.h> |
de5097c2 | 46 | #include <linux/mutex.h> |
0771dfef | 47 | #include <linux/futex.h> |
b92ce558 | 48 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 49 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 50 | #include <linux/resource.h> |
0d67a46d | 51 | #include <linux/blkdev.h> |
6eaeeaba | 52 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 53 | #include <linux/tracehook.h> |
5ad4e53b | 54 | #include <linux/fs_struct.h> |
d84f4f99 | 55 | #include <linux/init_task.h> |
cdd6c482 | 56 | #include <linux/perf_event.h> |
ad8d75ff | 57 | #include <trace/events/sched.h> |
24f1e32c | 58 | #include <linux/hw_breakpoint.h> |
3d5992d2 | 59 | #include <linux/oom.h> |
54848d73 | 60 | #include <linux/writeback.h> |
40401530 | 61 | #include <linux/shm.h> |
5c9a8750 | 62 | #include <linux/kcov.h> |
53d3eaa3 | 63 | #include <linux/random.h> |
8f95c90c | 64 | #include <linux/rcuwait.h> |
7e95a225 | 65 | #include <linux/compat.h> |
b1b6b5a3 | 66 | #include <linux/io_uring.h> |
1da177e4 | 67 | |
7c0f6ba6 | 68 | #include <linux/uaccess.h> |
1da177e4 | 69 | #include <asm/unistd.h> |
1da177e4 LT |
70 | #include <asm/mmu_context.h> |
71 | ||
d40e48e0 | 72 | static void __unhash_process(struct task_struct *p, bool group_dead) |
1da177e4 LT |
73 | { |
74 | nr_threads--; | |
50d75f8d | 75 | detach_pid(p, PIDTYPE_PID); |
d40e48e0 | 76 | if (group_dead) { |
6883f81a | 77 | detach_pid(p, PIDTYPE_TGID); |
1da177e4 LT |
78 | detach_pid(p, PIDTYPE_PGID); |
79 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 80 | |
5e85d4ab | 81 | list_del_rcu(&p->tasks); |
9cd80bbb | 82 | list_del_init(&p->sibling); |
909ea964 | 83 | __this_cpu_dec(process_counts); |
1da177e4 | 84 | } |
47e65328 | 85 | list_del_rcu(&p->thread_group); |
0c740d0a | 86 | list_del_rcu(&p->thread_node); |
1da177e4 LT |
87 | } |
88 | ||
6a14c5c9 ON |
89 | /* |
90 | * This function expects the tasklist_lock write-locked. | |
91 | */ | |
92 | static void __exit_signal(struct task_struct *tsk) | |
93 | { | |
94 | struct signal_struct *sig = tsk->signal; | |
d40e48e0 | 95 | bool group_dead = thread_group_leader(tsk); |
6a14c5c9 | 96 | struct sighand_struct *sighand; |
3f649ab7 | 97 | struct tty_struct *tty; |
5613fda9 | 98 | u64 utime, stime; |
6a14c5c9 | 99 | |
d11c563d | 100 | sighand = rcu_dereference_check(tsk->sighand, |
db1466b3 | 101 | lockdep_tasklist_lock_is_held()); |
6a14c5c9 ON |
102 | spin_lock(&sighand->siglock); |
103 | ||
baa73d9e | 104 | #ifdef CONFIG_POSIX_TIMERS |
6a14c5c9 | 105 | posix_cpu_timers_exit(tsk); |
b95e31c0 | 106 | if (group_dead) |
6a14c5c9 | 107 | posix_cpu_timers_exit_group(tsk); |
baa73d9e | 108 | #endif |
e0a70217 | 109 | |
baa73d9e NP |
110 | if (group_dead) { |
111 | tty = sig->tty; | |
112 | sig->tty = NULL; | |
113 | } else { | |
6a14c5c9 ON |
114 | /* |
115 | * If there is any task waiting for the group exit | |
116 | * then notify it: | |
117 | */ | |
d344193a | 118 | if (sig->notify_count > 0 && !--sig->notify_count) |
6a14c5c9 | 119 | wake_up_process(sig->group_exit_task); |
6db840fa | 120 | |
6a14c5c9 ON |
121 | if (tsk == sig->curr_target) |
122 | sig->curr_target = next_thread(tsk); | |
6a14c5c9 ON |
123 | } |
124 | ||
53d3eaa3 NP |
125 | add_device_randomness((const void*) &tsk->se.sum_exec_runtime, |
126 | sizeof(unsigned long long)); | |
127 | ||
90ed9cbe | 128 | /* |
26e75b5c ON |
129 | * Accumulate here the counters for all threads as they die. We could |
130 | * skip the group leader because it is the last user of signal_struct, | |
131 | * but we want to avoid the race with thread_group_cputime() which can | |
132 | * see the empty ->thread_head list. | |
90ed9cbe RR |
133 | */ |
134 | task_cputime(tsk, &utime, &stime); | |
e78c3496 | 135 | write_seqlock(&sig->stats_lock); |
90ed9cbe RR |
136 | sig->utime += utime; |
137 | sig->stime += stime; | |
138 | sig->gtime += task_gtime(tsk); | |
139 | sig->min_flt += tsk->min_flt; | |
140 | sig->maj_flt += tsk->maj_flt; | |
141 | sig->nvcsw += tsk->nvcsw; | |
142 | sig->nivcsw += tsk->nivcsw; | |
143 | sig->inblock += task_io_get_inblock(tsk); | |
144 | sig->oublock += task_io_get_oublock(tsk); | |
145 | task_io_accounting_add(&sig->ioac, &tsk->ioac); | |
146 | sig->sum_sched_runtime += tsk->se.sum_exec_runtime; | |
b3ac022c | 147 | sig->nr_threads--; |
d40e48e0 | 148 | __unhash_process(tsk, group_dead); |
e78c3496 | 149 | write_sequnlock(&sig->stats_lock); |
5876700c | 150 | |
da7978b0 ON |
151 | /* |
152 | * Do this under ->siglock, we can race with another thread | |
153 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
154 | */ | |
155 | flush_sigqueue(&tsk->pending); | |
a7e5328a | 156 | tsk->sighand = NULL; |
6a14c5c9 | 157 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 158 | |
a7e5328a | 159 | __cleanup_sighand(sighand); |
a0be55de | 160 | clear_tsk_thread_flag(tsk, TIF_SIGPENDING); |
d40e48e0 | 161 | if (group_dead) { |
6a14c5c9 | 162 | flush_sigqueue(&sig->shared_pending); |
4ada856f | 163 | tty_kref_put(tty); |
6a14c5c9 ON |
164 | } |
165 | } | |
166 | ||
8c7904a0 EB |
167 | static void delayed_put_task_struct(struct rcu_head *rhp) |
168 | { | |
0a16b607 MD |
169 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
170 | ||
4e231c79 | 171 | perf_event_delayed_put(tsk); |
0a16b607 MD |
172 | trace_sched_process_free(tsk); |
173 | put_task_struct(tsk); | |
8c7904a0 EB |
174 | } |
175 | ||
3fbd7ee2 EB |
176 | void put_task_struct_rcu_user(struct task_struct *task) |
177 | { | |
178 | if (refcount_dec_and_test(&task->rcu_users)) | |
179 | call_rcu(&task->rcu, delayed_put_task_struct); | |
180 | } | |
f470021a | 181 | |
a0be55de | 182 | void release_task(struct task_struct *p) |
1da177e4 | 183 | { |
36c8b586 | 184 | struct task_struct *leader; |
7bc3e6e5 | 185 | struct pid *thread_pid; |
1da177e4 | 186 | int zap_leader; |
1f09f974 | 187 | repeat: |
c69e8d9c | 188 | /* don't need to get the RCU readlock here - the process is dead and |
d11c563d PM |
189 | * can't be modifying its own credentials. But shut RCU-lockdep up */ |
190 | rcu_read_lock(); | |
21d1c5e3 | 191 | dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); |
d11c563d | 192 | rcu_read_unlock(); |
c69e8d9c | 193 | |
6b115bf5 | 194 | cgroup_release(p); |
0203026b | 195 | |
1da177e4 | 196 | write_lock_irq(&tasklist_lock); |
a288eecc | 197 | ptrace_release_task(p); |
7bc3e6e5 | 198 | thread_pid = get_pid(p->thread_pid); |
1da177e4 | 199 | __exit_signal(p); |
35f5cad8 | 200 | |
1da177e4 LT |
201 | /* |
202 | * If we are the last non-leader member of the thread | |
203 | * group, and the leader is zombie, then notify the | |
204 | * group leader's parent process. (if it wants notification.) | |
205 | */ | |
206 | zap_leader = 0; | |
207 | leader = p->group_leader; | |
a0be55de IA |
208 | if (leader != p && thread_group_empty(leader) |
209 | && leader->exit_state == EXIT_ZOMBIE) { | |
1da177e4 LT |
210 | /* |
211 | * If we were the last child thread and the leader has | |
212 | * exited already, and the leader's parent ignores SIGCHLD, | |
213 | * then we are the one who should release the leader. | |
dae33574 | 214 | */ |
86773473 | 215 | zap_leader = do_notify_parent(leader, leader->exit_signal); |
dae33574 RM |
216 | if (zap_leader) |
217 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
218 | } |
219 | ||
1da177e4 | 220 | write_unlock_irq(&tasklist_lock); |
3a15fb6e | 221 | seccomp_filter_release(p); |
7bc3e6e5 | 222 | proc_flush_pid(thread_pid); |
6ade99ec | 223 | put_pid(thread_pid); |
1da177e4 | 224 | release_thread(p); |
3fbd7ee2 | 225 | put_task_struct_rcu_user(p); |
1da177e4 LT |
226 | |
227 | p = leader; | |
228 | if (unlikely(zap_leader)) | |
229 | goto repeat; | |
230 | } | |
231 | ||
9d9a6ebf | 232 | int rcuwait_wake_up(struct rcuwait *w) |
8f95c90c | 233 | { |
9d9a6ebf | 234 | int ret = 0; |
8f95c90c DB |
235 | struct task_struct *task; |
236 | ||
237 | rcu_read_lock(); | |
238 | ||
239 | /* | |
240 | * Order condition vs @task, such that everything prior to the load | |
241 | * of @task is visible. This is the condition as to why the user called | |
c9d64a1b | 242 | * rcuwait_wake() in the first place. Pairs with set_current_state() |
8f95c90c DB |
243 | * barrier (A) in rcuwait_wait_event(). |
244 | * | |
245 | * WAIT WAKE | |
246 | * [S] tsk = current [S] cond = true | |
247 | * MB (A) MB (B) | |
248 | * [L] cond [L] tsk | |
249 | */ | |
6dc080ee | 250 | smp_mb(); /* (B) */ |
8f95c90c | 251 | |
8f95c90c DB |
252 | task = rcu_dereference(w->task); |
253 | if (task) | |
9d9a6ebf | 254 | ret = wake_up_process(task); |
8f95c90c | 255 | rcu_read_unlock(); |
9d9a6ebf DB |
256 | |
257 | return ret; | |
8f95c90c | 258 | } |
ac8dec42 | 259 | EXPORT_SYMBOL_GPL(rcuwait_wake_up); |
8f95c90c | 260 | |
1da177e4 LT |
261 | /* |
262 | * Determine if a process group is "orphaned", according to the POSIX | |
263 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
264 | * by terminal-generated stop signals. Newly orphaned process groups are | |
265 | * to receive a SIGHUP and a SIGCONT. | |
266 | * | |
267 | * "I ask you, have you ever known what it is to be an orphan?" | |
268 | */ | |
a0be55de IA |
269 | static int will_become_orphaned_pgrp(struct pid *pgrp, |
270 | struct task_struct *ignored_task) | |
1da177e4 LT |
271 | { |
272 | struct task_struct *p; | |
1da177e4 | 273 | |
0475ac08 | 274 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
275 | if ((p == ignored_task) || |
276 | (p->exit_state && thread_group_empty(p)) || | |
277 | is_global_init(p->real_parent)) | |
1da177e4 | 278 | continue; |
05e83df6 | 279 | |
0475ac08 | 280 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
281 | task_session(p->real_parent) == task_session(p)) |
282 | return 0; | |
0475ac08 | 283 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
284 | |
285 | return 1; | |
1da177e4 LT |
286 | } |
287 | ||
3e7cd6c4 | 288 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
289 | { |
290 | int retval; | |
291 | ||
292 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 293 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
294 | read_unlock(&tasklist_lock); |
295 | ||
296 | return retval; | |
297 | } | |
298 | ||
961c4675 | 299 | static bool has_stopped_jobs(struct pid *pgrp) |
1da177e4 | 300 | { |
1da177e4 LT |
301 | struct task_struct *p; |
302 | ||
0475ac08 | 303 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
961c4675 ON |
304 | if (p->signal->flags & SIGNAL_STOP_STOPPED) |
305 | return true; | |
0475ac08 | 306 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
961c4675 ON |
307 | |
308 | return false; | |
1da177e4 LT |
309 | } |
310 | ||
f49ee505 ON |
311 | /* |
312 | * Check to see if any process groups have become orphaned as | |
313 | * a result of our exiting, and if they have any stopped jobs, | |
314 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
315 | */ | |
316 | static void | |
317 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
318 | { | |
319 | struct pid *pgrp = task_pgrp(tsk); | |
320 | struct task_struct *ignored_task = tsk; | |
321 | ||
322 | if (!parent) | |
a0be55de IA |
323 | /* exit: our father is in a different pgrp than |
324 | * we are and we were the only connection outside. | |
325 | */ | |
f49ee505 ON |
326 | parent = tsk->real_parent; |
327 | else | |
328 | /* reparent: our child is in a different pgrp than | |
329 | * we are, and it was the only connection outside. | |
330 | */ | |
331 | ignored_task = NULL; | |
332 | ||
333 | if (task_pgrp(parent) != pgrp && | |
334 | task_session(parent) == task_session(tsk) && | |
335 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
336 | has_stopped_jobs(pgrp)) { | |
337 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
338 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
339 | } | |
340 | } | |
341 | ||
f98bafa0 | 342 | #ifdef CONFIG_MEMCG |
cf475ad2 | 343 | /* |
733eda7a | 344 | * A task is exiting. If it owned this mm, find a new owner for the mm. |
cf475ad2 | 345 | */ |
cf475ad2 BS |
346 | void mm_update_next_owner(struct mm_struct *mm) |
347 | { | |
348 | struct task_struct *c, *g, *p = current; | |
349 | ||
350 | retry: | |
733eda7a KH |
351 | /* |
352 | * If the exiting or execing task is not the owner, it's | |
353 | * someone else's problem. | |
354 | */ | |
355 | if (mm->owner != p) | |
cf475ad2 | 356 | return; |
733eda7a KH |
357 | /* |
358 | * The current owner is exiting/execing and there are no other | |
359 | * candidates. Do not leave the mm pointing to a possibly | |
360 | * freed task structure. | |
361 | */ | |
362 | if (atomic_read(&mm->mm_users) <= 1) { | |
987717e5 | 363 | WRITE_ONCE(mm->owner, NULL); |
733eda7a KH |
364 | return; |
365 | } | |
cf475ad2 BS |
366 | |
367 | read_lock(&tasklist_lock); | |
368 | /* | |
369 | * Search in the children | |
370 | */ | |
371 | list_for_each_entry(c, &p->children, sibling) { | |
372 | if (c->mm == mm) | |
373 | goto assign_new_owner; | |
374 | } | |
375 | ||
376 | /* | |
377 | * Search in the siblings | |
378 | */ | |
dea33cfd | 379 | list_for_each_entry(c, &p->real_parent->children, sibling) { |
cf475ad2 BS |
380 | if (c->mm == mm) |
381 | goto assign_new_owner; | |
382 | } | |
383 | ||
384 | /* | |
f87fb599 | 385 | * Search through everything else, we should not get here often. |
cf475ad2 | 386 | */ |
39af1765 ON |
387 | for_each_process(g) { |
388 | if (g->flags & PF_KTHREAD) | |
389 | continue; | |
390 | for_each_thread(g, c) { | |
391 | if (c->mm == mm) | |
392 | goto assign_new_owner; | |
393 | if (c->mm) | |
394 | break; | |
395 | } | |
f87fb599 | 396 | } |
cf475ad2 | 397 | read_unlock(&tasklist_lock); |
31a78f23 BS |
398 | /* |
399 | * We found no owner yet mm_users > 1: this implies that we are | |
400 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
e5991371 | 401 | * ptrace or page migration (get_task_mm()). Mark owner as NULL. |
31a78f23 | 402 | */ |
987717e5 | 403 | WRITE_ONCE(mm->owner, NULL); |
cf475ad2 BS |
404 | return; |
405 | ||
406 | assign_new_owner: | |
407 | BUG_ON(c == p); | |
408 | get_task_struct(c); | |
409 | /* | |
410 | * The task_lock protects c->mm from changing. | |
411 | * We always want mm->owner->mm == mm | |
412 | */ | |
413 | task_lock(c); | |
e5991371 HD |
414 | /* |
415 | * Delay read_unlock() till we have the task_lock() | |
416 | * to ensure that c does not slip away underneath us | |
417 | */ | |
418 | read_unlock(&tasklist_lock); | |
cf475ad2 BS |
419 | if (c->mm != mm) { |
420 | task_unlock(c); | |
421 | put_task_struct(c); | |
422 | goto retry; | |
423 | } | |
987717e5 | 424 | WRITE_ONCE(mm->owner, c); |
cf475ad2 BS |
425 | task_unlock(c); |
426 | put_task_struct(c); | |
427 | } | |
f98bafa0 | 428 | #endif /* CONFIG_MEMCG */ |
cf475ad2 | 429 | |
1da177e4 LT |
430 | /* |
431 | * Turn us into a lazy TLB process if we | |
432 | * aren't already.. | |
433 | */ | |
0039962a | 434 | static void exit_mm(void) |
1da177e4 | 435 | { |
0039962a | 436 | struct mm_struct *mm = current->mm; |
b564daf8 | 437 | struct core_state *core_state; |
1da177e4 | 438 | |
4610ba7a | 439 | exit_mm_release(current, mm); |
1da177e4 LT |
440 | if (!mm) |
441 | return; | |
4fe7efdb | 442 | sync_mm_rss(mm); |
1da177e4 LT |
443 | /* |
444 | * Serialize with any possible pending coredump. | |
c1e8d7c6 | 445 | * We must hold mmap_lock around checking core_state |
1da177e4 | 446 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 447 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
448 | * group with ->mm != NULL. |
449 | */ | |
d8ed45c5 | 450 | mmap_read_lock(mm); |
b564daf8 ON |
451 | core_state = mm->core_state; |
452 | if (core_state) { | |
453 | struct core_thread self; | |
a0be55de | 454 | |
d8ed45c5 | 455 | mmap_read_unlock(mm); |
1da177e4 | 456 | |
0039962a | 457 | self.task = current; |
77f6ab8b AV |
458 | if (self.task->flags & PF_SIGNALED) |
459 | self.next = xchg(&core_state->dumper.next, &self); | |
460 | else | |
461 | self.task = NULL; | |
b564daf8 ON |
462 | /* |
463 | * Implies mb(), the result of xchg() must be visible | |
464 | * to core_state->dumper. | |
465 | */ | |
466 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
467 | complete(&core_state->startup); | |
1da177e4 | 468 | |
a94e2d40 | 469 | for (;;) { |
642fa448 | 470 | set_current_state(TASK_UNINTERRUPTIBLE); |
a94e2d40 ON |
471 | if (!self.task) /* see coredump_finish() */ |
472 | break; | |
80d26af8 | 473 | freezable_schedule(); |
a94e2d40 | 474 | } |
642fa448 | 475 | __set_current_state(TASK_RUNNING); |
d8ed45c5 | 476 | mmap_read_lock(mm); |
1da177e4 | 477 | } |
f1f10076 | 478 | mmgrab(mm); |
0039962a | 479 | BUG_ON(mm != current->active_mm); |
1da177e4 | 480 | /* more a memory barrier than a real lock */ |
0039962a | 481 | task_lock(current); |
5bc78502 MD |
482 | /* |
483 | * When a thread stops operating on an address space, the loop | |
484 | * in membarrier_private_expedited() may not observe that | |
485 | * tsk->mm, and the loop in membarrier_global_expedited() may | |
486 | * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED | |
487 | * rq->membarrier_state, so those would not issue an IPI. | |
488 | * Membarrier requires a memory barrier after accessing | |
489 | * user-space memory, before clearing tsk->mm or the | |
490 | * rq->membarrier_state. | |
491 | */ | |
492 | smp_mb__after_spinlock(); | |
493 | local_irq_disable(); | |
0039962a | 494 | current->mm = NULL; |
5bc78502 | 495 | membarrier_update_current_mm(NULL); |
1da177e4 | 496 | enter_lazy_tlb(mm, current); |
5bc78502 | 497 | local_irq_enable(); |
0039962a | 498 | task_unlock(current); |
5bc78502 | 499 | mmap_read_unlock(mm); |
cf475ad2 | 500 | mm_update_next_owner(mm); |
1da177e4 | 501 | mmput(mm); |
c32b3cbe | 502 | if (test_thread_flag(TIF_MEMDIE)) |
38531201 | 503 | exit_oom_victim(); |
1da177e4 LT |
504 | } |
505 | ||
c9dc05bf ON |
506 | static struct task_struct *find_alive_thread(struct task_struct *p) |
507 | { | |
508 | struct task_struct *t; | |
509 | ||
510 | for_each_thread(p, t) { | |
511 | if (!(t->flags & PF_EXITING)) | |
512 | return t; | |
513 | } | |
514 | return NULL; | |
515 | } | |
516 | ||
8fb335e0 AV |
517 | static struct task_struct *find_child_reaper(struct task_struct *father, |
518 | struct list_head *dead) | |
1109909c ON |
519 | __releases(&tasklist_lock) |
520 | __acquires(&tasklist_lock) | |
521 | { | |
522 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | |
523 | struct task_struct *reaper = pid_ns->child_reaper; | |
8fb335e0 | 524 | struct task_struct *p, *n; |
1109909c ON |
525 | |
526 | if (likely(reaper != father)) | |
527 | return reaper; | |
528 | ||
c9dc05bf ON |
529 | reaper = find_alive_thread(father); |
530 | if (reaper) { | |
1109909c ON |
531 | pid_ns->child_reaper = reaper; |
532 | return reaper; | |
533 | } | |
534 | ||
535 | write_unlock_irq(&tasklist_lock); | |
8fb335e0 AV |
536 | |
537 | list_for_each_entry_safe(p, n, dead, ptrace_entry) { | |
538 | list_del_init(&p->ptrace_entry); | |
539 | release_task(p); | |
540 | } | |
541 | ||
1109909c ON |
542 | zap_pid_ns_processes(pid_ns); |
543 | write_lock_irq(&tasklist_lock); | |
544 | ||
545 | return father; | |
546 | } | |
547 | ||
1da177e4 | 548 | /* |
ebec18a6 LP |
549 | * When we die, we re-parent all our children, and try to: |
550 | * 1. give them to another thread in our thread group, if such a member exists | |
551 | * 2. give it to the first ancestor process which prctl'd itself as a | |
552 | * child_subreaper for its children (like a service manager) | |
553 | * 3. give it to the init process (PID 1) in our pid namespace | |
1da177e4 | 554 | */ |
1109909c ON |
555 | static struct task_struct *find_new_reaper(struct task_struct *father, |
556 | struct task_struct *child_reaper) | |
1da177e4 | 557 | { |
c9dc05bf | 558 | struct task_struct *thread, *reaper; |
1da177e4 | 559 | |
c9dc05bf ON |
560 | thread = find_alive_thread(father); |
561 | if (thread) | |
950bbabb | 562 | return thread; |
1da177e4 | 563 | |
7d24e2df | 564 | if (father->signal->has_child_subreaper) { |
c6c70f44 | 565 | unsigned int ns_level = task_pid(father)->level; |
ebec18a6 | 566 | /* |
175aed3f | 567 | * Find the first ->is_child_subreaper ancestor in our pid_ns. |
c6c70f44 ON |
568 | * We can't check reaper != child_reaper to ensure we do not |
569 | * cross the namespaces, the exiting parent could be injected | |
570 | * by setns() + fork(). | |
571 | * We check pid->level, this is slightly more efficient than | |
572 | * task_active_pid_ns(reaper) != task_active_pid_ns(father). | |
ebec18a6 | 573 | */ |
c6c70f44 ON |
574 | for (reaper = father->real_parent; |
575 | task_pid(reaper)->level == ns_level; | |
ebec18a6 | 576 | reaper = reaper->real_parent) { |
175aed3f | 577 | if (reaper == &init_task) |
ebec18a6 LP |
578 | break; |
579 | if (!reaper->signal->is_child_subreaper) | |
580 | continue; | |
c9dc05bf ON |
581 | thread = find_alive_thread(reaper); |
582 | if (thread) | |
583 | return thread; | |
ebec18a6 | 584 | } |
1da177e4 | 585 | } |
762a24be | 586 | |
1109909c | 587 | return child_reaper; |
950bbabb ON |
588 | } |
589 | ||
5dfc80be ON |
590 | /* |
591 | * Any that need to be release_task'd are put on the @dead list. | |
592 | */ | |
9cd80bbb | 593 | static void reparent_leader(struct task_struct *father, struct task_struct *p, |
5dfc80be ON |
594 | struct list_head *dead) |
595 | { | |
2831096e | 596 | if (unlikely(p->exit_state == EXIT_DEAD)) |
5dfc80be ON |
597 | return; |
598 | ||
abd50b39 | 599 | /* We don't want people slaying init. */ |
5dfc80be ON |
600 | p->exit_signal = SIGCHLD; |
601 | ||
602 | /* If it has exited notify the new parent about this child's death. */ | |
d21142ec | 603 | if (!p->ptrace && |
5dfc80be | 604 | p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) { |
86773473 | 605 | if (do_notify_parent(p, p->exit_signal)) { |
5dfc80be | 606 | p->exit_state = EXIT_DEAD; |
dc2fd4b0 | 607 | list_add(&p->ptrace_entry, dead); |
5dfc80be ON |
608 | } |
609 | } | |
610 | ||
611 | kill_orphaned_pgrp(p, father); | |
612 | } | |
613 | ||
482a3767 ON |
614 | /* |
615 | * This does two things: | |
616 | * | |
617 | * A. Make init inherit all the child processes | |
618 | * B. Check to see if any process groups have become orphaned | |
619 | * as a result of our exiting, and if they have any stopped | |
620 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
621 | */ | |
622 | static void forget_original_parent(struct task_struct *father, | |
623 | struct list_head *dead) | |
1da177e4 | 624 | { |
482a3767 | 625 | struct task_struct *p, *t, *reaper; |
762a24be | 626 | |
7c8bd232 | 627 | if (unlikely(!list_empty(&father->ptraced))) |
482a3767 | 628 | exit_ptrace(father, dead); |
f470021a | 629 | |
7c8bd232 | 630 | /* Can drop and reacquire tasklist_lock */ |
8fb335e0 | 631 | reaper = find_child_reaper(father, dead); |
ad9e206a | 632 | if (list_empty(&father->children)) |
482a3767 | 633 | return; |
1109909c ON |
634 | |
635 | reaper = find_new_reaper(father, reaper); | |
2831096e | 636 | list_for_each_entry(p, &father->children, sibling) { |
57a05918 | 637 | for_each_thread(p, t) { |
22a34c6f MB |
638 | RCU_INIT_POINTER(t->real_parent, reaper); |
639 | BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father)); | |
57a05918 | 640 | if (likely(!t->ptrace)) |
9cd80bbb | 641 | t->parent = t->real_parent; |
9cd80bbb ON |
642 | if (t->pdeath_signal) |
643 | group_send_sig_info(t->pdeath_signal, | |
01024980 EB |
644 | SEND_SIG_NOINFO, t, |
645 | PIDTYPE_TGID); | |
57a05918 | 646 | } |
2831096e ON |
647 | /* |
648 | * If this is a threaded reparent there is no need to | |
649 | * notify anyone anything has happened. | |
650 | */ | |
651 | if (!same_thread_group(reaper, father)) | |
482a3767 | 652 | reparent_leader(father, p, dead); |
1da177e4 | 653 | } |
2831096e | 654 | list_splice_tail_init(&father->children, &reaper->children); |
1da177e4 LT |
655 | } |
656 | ||
657 | /* | |
658 | * Send signals to all our closest relatives so that they know | |
659 | * to properly mourn us.. | |
660 | */ | |
821c7de7 | 661 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 662 | { |
53c8f9f1 | 663 | bool autoreap; |
482a3767 ON |
664 | struct task_struct *p, *n; |
665 | LIST_HEAD(dead); | |
1da177e4 | 666 | |
762a24be | 667 | write_lock_irq(&tasklist_lock); |
482a3767 ON |
668 | forget_original_parent(tsk, &dead); |
669 | ||
821c7de7 ON |
670 | if (group_dead) |
671 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 672 | |
b191d649 | 673 | tsk->exit_state = EXIT_ZOMBIE; |
45cdf5cc ON |
674 | if (unlikely(tsk->ptrace)) { |
675 | int sig = thread_group_leader(tsk) && | |
676 | thread_group_empty(tsk) && | |
677 | !ptrace_reparented(tsk) ? | |
678 | tsk->exit_signal : SIGCHLD; | |
679 | autoreap = do_notify_parent(tsk, sig); | |
680 | } else if (thread_group_leader(tsk)) { | |
681 | autoreap = thread_group_empty(tsk) && | |
682 | do_notify_parent(tsk, tsk->exit_signal); | |
683 | } else { | |
684 | autoreap = true; | |
685 | } | |
1da177e4 | 686 | |
30b692d3 CB |
687 | if (autoreap) { |
688 | tsk->exit_state = EXIT_DEAD; | |
6c66e7db | 689 | list_add(&tsk->ptrace_entry, &dead); |
30b692d3 | 690 | } |
1da177e4 | 691 | |
9c339168 ON |
692 | /* mt-exec, de_thread() is waiting for group leader */ |
693 | if (unlikely(tsk->signal->notify_count < 0)) | |
6db840fa | 694 | wake_up_process(tsk->signal->group_exit_task); |
1da177e4 LT |
695 | write_unlock_irq(&tasklist_lock); |
696 | ||
482a3767 ON |
697 | list_for_each_entry_safe(p, n, &dead, ptrace_entry) { |
698 | list_del_init(&p->ptrace_entry); | |
699 | release_task(p); | |
700 | } | |
1da177e4 LT |
701 | } |
702 | ||
e18eecb8 JD |
703 | #ifdef CONFIG_DEBUG_STACK_USAGE |
704 | static void check_stack_usage(void) | |
705 | { | |
706 | static DEFINE_SPINLOCK(low_water_lock); | |
707 | static int lowest_to_date = THREAD_SIZE; | |
e18eecb8 JD |
708 | unsigned long free; |
709 | ||
7c9f8861 | 710 | free = stack_not_used(current); |
e18eecb8 JD |
711 | |
712 | if (free >= lowest_to_date) | |
713 | return; | |
714 | ||
715 | spin_lock(&low_water_lock); | |
716 | if (free < lowest_to_date) { | |
627393d4 | 717 | pr_info("%s (%d) used greatest stack depth: %lu bytes left\n", |
a0be55de | 718 | current->comm, task_pid_nr(current), free); |
e18eecb8 JD |
719 | lowest_to_date = free; |
720 | } | |
721 | spin_unlock(&low_water_lock); | |
722 | } | |
723 | #else | |
724 | static inline void check_stack_usage(void) {} | |
725 | #endif | |
726 | ||
9af6528e | 727 | void __noreturn do_exit(long code) |
1da177e4 LT |
728 | { |
729 | struct task_struct *tsk = current; | |
730 | int group_dead; | |
731 | ||
586b58ca JH |
732 | /* |
733 | * We can get here from a kernel oops, sometimes with preemption off. | |
734 | * Start by checking for critical errors. | |
735 | * Then fix up important state like USER_DS and preemption. | |
736 | * Then do everything else. | |
737 | */ | |
1da177e4 | 738 | |
73c10101 | 739 | WARN_ON(blk_needs_flush_plug(tsk)); |
22e2c507 | 740 | |
1da177e4 LT |
741 | if (unlikely(in_interrupt())) |
742 | panic("Aiee, killing interrupt handler!"); | |
743 | if (unlikely(!tsk->pid)) | |
744 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 745 | |
33dd94ae NE |
746 | /* |
747 | * If do_exit is called because this processes oopsed, it's possible | |
748 | * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before | |
749 | * continuing. Amongst other possible reasons, this is to prevent | |
750 | * mm_release()->clear_child_tid() from writing to a user-controlled | |
751 | * kernel address. | |
752 | */ | |
fe814175 | 753 | force_uaccess_begin(); |
33dd94ae | 754 | |
586b58ca JH |
755 | if (unlikely(in_atomic())) { |
756 | pr_info("note: %s[%d] exited with preempt_count %d\n", | |
757 | current->comm, task_pid_nr(current), | |
758 | preempt_count()); | |
759 | preempt_count_set(PREEMPT_ENABLED); | |
760 | } | |
761 | ||
762 | profile_task_exit(tsk); | |
763 | kcov_task_exit(tsk); | |
764 | ||
a288eecc | 765 | ptrace_event(PTRACE_EVENT_EXIT, code); |
1da177e4 | 766 | |
e0e81739 DH |
767 | validate_creds_for_do_exit(tsk); |
768 | ||
df164db5 AN |
769 | /* |
770 | * We're taking recursive faults here in do_exit. Safest is to just | |
771 | * leave this task alone and wait for reboot. | |
772 | */ | |
773 | if (unlikely(tsk->flags & PF_EXITING)) { | |
a0be55de | 774 | pr_alert("Fixing recursive fault but reboot is needed!\n"); |
18f69438 | 775 | futex_exit_recursive(tsk); |
df164db5 AN |
776 | set_current_state(TASK_UNINTERRUPTIBLE); |
777 | schedule(); | |
778 | } | |
779 | ||
b1b6b5a3 | 780 | io_uring_files_cancel(tsk->files); |
d12619b5 | 781 | exit_signals(tsk); /* sets PF_EXITING */ |
1da177e4 | 782 | |
48d212a2 LT |
783 | /* sync mm's RSS info before statistics gathering */ |
784 | if (tsk->mm) | |
785 | sync_mm_rss(tsk->mm); | |
51229b49 | 786 | acct_update_integrals(tsk); |
1da177e4 | 787 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 788 | if (group_dead) { |
43cf75d9 | 789 | /* |
790 | * If the last thread of global init has exited, panic | |
791 | * immediately to get a useable coredump. | |
792 | */ | |
793 | if (unlikely(is_global_init(tsk))) | |
794 | panic("Attempted to kill init! exitcode=0x%08x\n", | |
795 | tsk->signal->group_exit_code ?: (int)code); | |
796 | ||
baa73d9e | 797 | #ifdef CONFIG_POSIX_TIMERS |
778e9a9c | 798 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 799 | exit_itimers(tsk->signal); |
baa73d9e | 800 | #endif |
1f10206c JP |
801 | if (tsk->mm) |
802 | setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm); | |
c3068951 | 803 | } |
f6ec29a4 | 804 | acct_collect(code, group_dead); |
522ed776 MT |
805 | if (group_dead) |
806 | tty_audit_exit(); | |
a4ff8dba | 807 | audit_free(tsk); |
115085ea | 808 | |
48d212a2 | 809 | tsk->exit_code = code; |
115085ea | 810 | taskstats_exit(tsk, group_dead); |
c757249a | 811 | |
0039962a | 812 | exit_mm(); |
1da177e4 | 813 | |
0e464814 | 814 | if (group_dead) |
f6ec29a4 | 815 | acct_process(); |
0a16b607 MD |
816 | trace_sched_process_exit(tsk); |
817 | ||
1da177e4 | 818 | exit_sem(tsk); |
b34a6b1d | 819 | exit_shm(tsk); |
1ec7f1dd AV |
820 | exit_files(tsk); |
821 | exit_fs(tsk); | |
c39df5fa ON |
822 | if (group_dead) |
823 | disassociate_ctty(1); | |
8aac6270 | 824 | exit_task_namespaces(tsk); |
ed3e694d | 825 | exit_task_work(tsk); |
e6464694 | 826 | exit_thread(tsk); |
0b3fcf17 SE |
827 | |
828 | /* | |
829 | * Flush inherited counters to the parent - before the parent | |
830 | * gets woken up by child-exit notifications. | |
831 | * | |
832 | * because of cgroup mode, must be called before cgroup_exit() | |
833 | */ | |
834 | perf_event_exit_task(tsk); | |
835 | ||
8e5bfa8c | 836 | sched_autogroup_exit_task(tsk); |
1ec41830 | 837 | cgroup_exit(tsk); |
1da177e4 | 838 | |
24f1e32c FW |
839 | /* |
840 | * FIXME: do that only when needed, using sched_exit tracepoint | |
841 | */ | |
7c8df286 | 842 | flush_ptrace_hw_breakpoint(tsk); |
33b2fb30 | 843 | |
ccdd29ff | 844 | exit_tasks_rcu_start(); |
821c7de7 | 845 | exit_notify(tsk, group_dead); |
ef982393 | 846 | proc_exit_connector(tsk); |
c11600e4 | 847 | mpol_put_task_policy(tsk); |
42b2dd0a | 848 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
849 | if (unlikely(current->pi_state_cache)) |
850 | kfree(current->pi_state_cache); | |
42b2dd0a | 851 | #endif |
de5097c2 | 852 | /* |
9a11b49a | 853 | * Make sure we are holding no locks: |
de5097c2 | 854 | */ |
1b1d2fb4 | 855 | debug_check_no_locks_held(); |
1da177e4 | 856 | |
afc847b7 | 857 | if (tsk->io_context) |
b69f2292 | 858 | exit_io_context(tsk); |
afc847b7 | 859 | |
b92ce558 | 860 | if (tsk->splice_pipe) |
4b8a8f1e | 861 | free_pipe_info(tsk->splice_pipe); |
b92ce558 | 862 | |
5640f768 ED |
863 | if (tsk->task_frag.page) |
864 | put_page(tsk->task_frag.page); | |
865 | ||
e0e81739 DH |
866 | validate_creds_for_do_exit(tsk); |
867 | ||
4bcb8232 | 868 | check_stack_usage(); |
7407251a | 869 | preempt_disable(); |
54848d73 WF |
870 | if (tsk->nr_dirtied) |
871 | __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied); | |
f41d911f | 872 | exit_rcu(); |
ccdd29ff | 873 | exit_tasks_rcu_finish(); |
b5740f4b | 874 | |
b09be676 | 875 | lockdep_free_task(tsk); |
9af6528e | 876 | do_task_dead(); |
1da177e4 | 877 | } |
012914da RA |
878 | EXPORT_SYMBOL_GPL(do_exit); |
879 | ||
9402c95f | 880 | void complete_and_exit(struct completion *comp, long code) |
1da177e4 LT |
881 | { |
882 | if (comp) | |
883 | complete(comp); | |
55a101f8 | 884 | |
1da177e4 LT |
885 | do_exit(code); |
886 | } | |
1da177e4 LT |
887 | EXPORT_SYMBOL(complete_and_exit); |
888 | ||
754fe8d2 | 889 | SYSCALL_DEFINE1(exit, int, error_code) |
1da177e4 LT |
890 | { |
891 | do_exit((error_code&0xff)<<8); | |
892 | } | |
893 | ||
1da177e4 LT |
894 | /* |
895 | * Take down every thread in the group. This is called by fatal signals | |
896 | * as well as by sys_exit_group (below). | |
897 | */ | |
9402c95f | 898 | void |
1da177e4 LT |
899 | do_group_exit(int exit_code) |
900 | { | |
bfc4b089 ON |
901 | struct signal_struct *sig = current->signal; |
902 | ||
1da177e4 LT |
903 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
904 | ||
bfc4b089 ON |
905 | if (signal_group_exit(sig)) |
906 | exit_code = sig->group_exit_code; | |
1da177e4 | 907 | else if (!thread_group_empty(current)) { |
1da177e4 | 908 | struct sighand_struct *const sighand = current->sighand; |
a0be55de | 909 | |
1da177e4 | 910 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 911 | if (signal_group_exit(sig)) |
1da177e4 LT |
912 | /* Another thread got here before we took the lock. */ |
913 | exit_code = sig->group_exit_code; | |
914 | else { | |
1da177e4 | 915 | sig->group_exit_code = exit_code; |
ed5d2cac | 916 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
917 | zap_other_threads(current); |
918 | } | |
919 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
920 | } |
921 | ||
922 | do_exit(exit_code); | |
923 | /* NOTREACHED */ | |
924 | } | |
925 | ||
926 | /* | |
927 | * this kills every thread in the thread group. Note that any externally | |
928 | * wait4()-ing process will get the correct exit code - even if this | |
929 | * thread is not the thread group leader. | |
930 | */ | |
754fe8d2 | 931 | SYSCALL_DEFINE1(exit_group, int, error_code) |
1da177e4 LT |
932 | { |
933 | do_group_exit((error_code & 0xff) << 8); | |
2ed7c03e HC |
934 | /* NOTREACHED */ |
935 | return 0; | |
1da177e4 LT |
936 | } |
937 | ||
67d7ddde AV |
938 | struct waitid_info { |
939 | pid_t pid; | |
940 | uid_t uid; | |
941 | int status; | |
942 | int cause; | |
943 | }; | |
944 | ||
9e8ae01d ON |
945 | struct wait_opts { |
946 | enum pid_type wo_type; | |
9e8ae01d | 947 | int wo_flags; |
e1eb1ebc | 948 | struct pid *wo_pid; |
9e8ae01d | 949 | |
67d7ddde | 950 | struct waitid_info *wo_info; |
359566fa | 951 | int wo_stat; |
ce72a16f | 952 | struct rusage *wo_rusage; |
9e8ae01d | 953 | |
ac6424b9 | 954 | wait_queue_entry_t child_wait; |
9e8ae01d ON |
955 | int notask_error; |
956 | }; | |
957 | ||
989264f4 | 958 | static int eligible_pid(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 959 | { |
5c01ba49 ON |
960 | return wo->wo_type == PIDTYPE_MAX || |
961 | task_pid_type(p, wo->wo_type) == wo->wo_pid; | |
962 | } | |
1da177e4 | 963 | |
bf959931 ON |
964 | static int |
965 | eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p) | |
5c01ba49 ON |
966 | { |
967 | if (!eligible_pid(wo, p)) | |
968 | return 0; | |
bf959931 ON |
969 | |
970 | /* | |
971 | * Wait for all children (clone and not) if __WALL is set or | |
972 | * if it is traced by us. | |
973 | */ | |
974 | if (ptrace || (wo->wo_flags & __WALL)) | |
975 | return 1; | |
976 | ||
977 | /* | |
978 | * Otherwise, wait for clone children *only* if __WCLONE is set; | |
979 | * otherwise, wait for non-clone children *only*. | |
980 | * | |
981 | * Note: a "clone" child here is one that reports to its parent | |
982 | * using a signal other than SIGCHLD, or a non-leader thread which | |
983 | * we can only see if it is traced by us. | |
984 | */ | |
985 | if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE)) | |
1da177e4 | 986 | return 0; |
1da177e4 | 987 | |
14dd0b81 | 988 | return 1; |
1da177e4 LT |
989 | } |
990 | ||
1da177e4 LT |
991 | /* |
992 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
993 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
994 | * the lock and this task is uninteresting. If we return nonzero, we have | |
995 | * released the lock and the system call should return. | |
996 | */ | |
9e8ae01d | 997 | static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 998 | { |
67d7ddde | 999 | int state, status; |
6c5f3e7b | 1000 | pid_t pid = task_pid_vnr(p); |
43e13cc1 | 1001 | uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
67d7ddde | 1002 | struct waitid_info *infop; |
1da177e4 | 1003 | |
9e8ae01d | 1004 | if (!likely(wo->wo_flags & WEXITED)) |
98abed02 RM |
1005 | return 0; |
1006 | ||
9e8ae01d | 1007 | if (unlikely(wo->wo_flags & WNOWAIT)) { |
76d9871e | 1008 | status = p->exit_code; |
1da177e4 LT |
1009 | get_task_struct(p); |
1010 | read_unlock(&tasklist_lock); | |
1029a2b5 | 1011 | sched_annotate_sleep(); |
e61a2502 AV |
1012 | if (wo->wo_rusage) |
1013 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
bb380ec3 | 1014 | put_task_struct(p); |
76d9871e | 1015 | goto out_info; |
1da177e4 | 1016 | } |
1da177e4 | 1017 | /* |
abd50b39 | 1018 | * Move the task's state to DEAD/TRACE, only one thread can do this. |
1da177e4 | 1019 | */ |
f6507f83 ON |
1020 | state = (ptrace_reparented(p) && thread_group_leader(p)) ? |
1021 | EXIT_TRACE : EXIT_DEAD; | |
abd50b39 | 1022 | if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE) |
1da177e4 | 1023 | return 0; |
986094df ON |
1024 | /* |
1025 | * We own this thread, nobody else can reap it. | |
1026 | */ | |
1027 | read_unlock(&tasklist_lock); | |
1028 | sched_annotate_sleep(); | |
f6507f83 | 1029 | |
befca967 | 1030 | /* |
f6507f83 | 1031 | * Check thread_group_leader() to exclude the traced sub-threads. |
befca967 | 1032 | */ |
f6507f83 | 1033 | if (state == EXIT_DEAD && thread_group_leader(p)) { |
f953ccd0 ON |
1034 | struct signal_struct *sig = p->signal; |
1035 | struct signal_struct *psig = current->signal; | |
1f10206c | 1036 | unsigned long maxrss; |
5613fda9 | 1037 | u64 tgutime, tgstime; |
3795e161 | 1038 | |
1da177e4 LT |
1039 | /* |
1040 | * The resource counters for the group leader are in its | |
1041 | * own task_struct. Those for dead threads in the group | |
1042 | * are in its signal_struct, as are those for the child | |
1043 | * processes it has previously reaped. All these | |
1044 | * accumulate in the parent's signal_struct c* fields. | |
1045 | * | |
1046 | * We don't bother to take a lock here to protect these | |
f953ccd0 ON |
1047 | * p->signal fields because the whole thread group is dead |
1048 | * and nobody can change them. | |
1049 | * | |
1050 | * psig->stats_lock also protects us from our sub-theads | |
1051 | * which can reap other children at the same time. Until | |
1052 | * we change k_getrusage()-like users to rely on this lock | |
1053 | * we have to take ->siglock as well. | |
0cf55e1e | 1054 | * |
a0be55de IA |
1055 | * We use thread_group_cputime_adjusted() to get times for |
1056 | * the thread group, which consolidates times for all threads | |
1057 | * in the group including the group leader. | |
1da177e4 | 1058 | */ |
e80d0a1a | 1059 | thread_group_cputime_adjusted(p, &tgutime, &tgstime); |
f953ccd0 | 1060 | spin_lock_irq(¤t->sighand->siglock); |
e78c3496 | 1061 | write_seqlock(&psig->stats_lock); |
64861634 MS |
1062 | psig->cutime += tgutime + sig->cutime; |
1063 | psig->cstime += tgstime + sig->cstime; | |
6fac4829 | 1064 | psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime; |
3795e161 JJ |
1065 | psig->cmin_flt += |
1066 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1067 | psig->cmaj_flt += | |
1068 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1069 | psig->cnvcsw += | |
1070 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1071 | psig->cnivcsw += | |
1072 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1073 | psig->cinblock += |
1074 | task_io_get_inblock(p) + | |
1075 | sig->inblock + sig->cinblock; | |
1076 | psig->coublock += | |
1077 | task_io_get_oublock(p) + | |
1078 | sig->oublock + sig->coublock; | |
1f10206c JP |
1079 | maxrss = max(sig->maxrss, sig->cmaxrss); |
1080 | if (psig->cmaxrss < maxrss) | |
1081 | psig->cmaxrss = maxrss; | |
5995477a AR |
1082 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1083 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
e78c3496 | 1084 | write_sequnlock(&psig->stats_lock); |
f953ccd0 | 1085 | spin_unlock_irq(¤t->sighand->siglock); |
1da177e4 LT |
1086 | } |
1087 | ||
ce72a16f AV |
1088 | if (wo->wo_rusage) |
1089 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
1da177e4 LT |
1090 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) |
1091 | ? p->signal->group_exit_code : p->exit_code; | |
359566fa | 1092 | wo->wo_stat = status; |
2f4e6e2a | 1093 | |
b4360690 | 1094 | if (state == EXIT_TRACE) { |
1da177e4 | 1095 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1096 | /* We dropped tasklist, ptracer could die and untrace */ |
1097 | ptrace_unlink(p); | |
b4360690 ON |
1098 | |
1099 | /* If parent wants a zombie, don't release it now */ | |
1100 | state = EXIT_ZOMBIE; | |
1101 | if (do_notify_parent(p, p->exit_signal)) | |
1102 | state = EXIT_DEAD; | |
abd50b39 | 1103 | p->exit_state = state; |
1da177e4 LT |
1104 | write_unlock_irq(&tasklist_lock); |
1105 | } | |
abd50b39 | 1106 | if (state == EXIT_DEAD) |
1da177e4 | 1107 | release_task(p); |
2f4e6e2a | 1108 | |
76d9871e AV |
1109 | out_info: |
1110 | infop = wo->wo_info; | |
1111 | if (infop) { | |
1112 | if ((status & 0x7f) == 0) { | |
1113 | infop->cause = CLD_EXITED; | |
1114 | infop->status = status >> 8; | |
1115 | } else { | |
1116 | infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1117 | infop->status = status & 0x7f; | |
1118 | } | |
1119 | infop->pid = pid; | |
1120 | infop->uid = uid; | |
1121 | } | |
1122 | ||
67d7ddde | 1123 | return pid; |
1da177e4 LT |
1124 | } |
1125 | ||
90bc8d8b ON |
1126 | static int *task_stopped_code(struct task_struct *p, bool ptrace) |
1127 | { | |
1128 | if (ptrace) { | |
570ac933 | 1129 | if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING)) |
90bc8d8b ON |
1130 | return &p->exit_code; |
1131 | } else { | |
1132 | if (p->signal->flags & SIGNAL_STOP_STOPPED) | |
1133 | return &p->signal->group_exit_code; | |
1134 | } | |
1135 | return NULL; | |
1136 | } | |
1137 | ||
19e27463 TH |
1138 | /** |
1139 | * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED | |
1140 | * @wo: wait options | |
1141 | * @ptrace: is the wait for ptrace | |
1142 | * @p: task to wait for | |
1143 | * | |
1144 | * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED. | |
1145 | * | |
1146 | * CONTEXT: | |
1147 | * read_lock(&tasklist_lock), which is released if return value is | |
1148 | * non-zero. Also, grabs and releases @p->sighand->siglock. | |
1149 | * | |
1150 | * RETURNS: | |
1151 | * 0 if wait condition didn't exist and search for other wait conditions | |
1152 | * should continue. Non-zero return, -errno on failure and @p's pid on | |
1153 | * success, implies that tasklist_lock is released and wait condition | |
1154 | * search should terminate. | |
1da177e4 | 1155 | */ |
9e8ae01d ON |
1156 | static int wait_task_stopped(struct wait_opts *wo, |
1157 | int ptrace, struct task_struct *p) | |
1da177e4 | 1158 | { |
67d7ddde AV |
1159 | struct waitid_info *infop; |
1160 | int exit_code, *p_code, why; | |
ee7c82da | 1161 | uid_t uid = 0; /* unneeded, required by compiler */ |
c8950783 | 1162 | pid_t pid; |
1da177e4 | 1163 | |
47918025 ON |
1164 | /* |
1165 | * Traditionally we see ptrace'd stopped tasks regardless of options. | |
1166 | */ | |
9e8ae01d | 1167 | if (!ptrace && !(wo->wo_flags & WUNTRACED)) |
98abed02 RM |
1168 | return 0; |
1169 | ||
19e27463 TH |
1170 | if (!task_stopped_code(p, ptrace)) |
1171 | return 0; | |
1172 | ||
ee7c82da ON |
1173 | exit_code = 0; |
1174 | spin_lock_irq(&p->sighand->siglock); | |
1175 | ||
90bc8d8b ON |
1176 | p_code = task_stopped_code(p, ptrace); |
1177 | if (unlikely(!p_code)) | |
ee7c82da ON |
1178 | goto unlock_sig; |
1179 | ||
90bc8d8b | 1180 | exit_code = *p_code; |
ee7c82da ON |
1181 | if (!exit_code) |
1182 | goto unlock_sig; | |
1183 | ||
9e8ae01d | 1184 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
90bc8d8b | 1185 | *p_code = 0; |
ee7c82da | 1186 | |
8ca937a6 | 1187 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
ee7c82da ON |
1188 | unlock_sig: |
1189 | spin_unlock_irq(&p->sighand->siglock); | |
1190 | if (!exit_code) | |
1da177e4 LT |
1191 | return 0; |
1192 | ||
1193 | /* | |
1194 | * Now we are pretty sure this task is interesting. | |
1195 | * Make sure it doesn't get reaped out from under us while we | |
1196 | * give up the lock and then examine it below. We don't want to | |
1197 | * keep holding onto the tasklist_lock while we call getrusage and | |
1198 | * possibly take page faults for user memory. | |
1199 | */ | |
1200 | get_task_struct(p); | |
6c5f3e7b | 1201 | pid = task_pid_vnr(p); |
f470021a | 1202 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 | 1203 | read_unlock(&tasklist_lock); |
1029a2b5 | 1204 | sched_annotate_sleep(); |
e61a2502 AV |
1205 | if (wo->wo_rusage) |
1206 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
bb380ec3 | 1207 | put_task_struct(p); |
1da177e4 | 1208 | |
bb380ec3 AV |
1209 | if (likely(!(wo->wo_flags & WNOWAIT))) |
1210 | wo->wo_stat = (exit_code << 8) | 0x7f; | |
1da177e4 | 1211 | |
9e8ae01d | 1212 | infop = wo->wo_info; |
67d7ddde AV |
1213 | if (infop) { |
1214 | infop->cause = why; | |
1215 | infop->status = exit_code; | |
1216 | infop->pid = pid; | |
1217 | infop->uid = uid; | |
1218 | } | |
67d7ddde | 1219 | return pid; |
1da177e4 LT |
1220 | } |
1221 | ||
1222 | /* | |
1223 | * Handle do_wait work for one task in a live, non-stopped state. | |
1224 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1225 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1226 | * released the lock and the system call should return. | |
1227 | */ | |
9e8ae01d | 1228 | static int wait_task_continued(struct wait_opts *wo, struct task_struct *p) |
1da177e4 | 1229 | { |
bb380ec3 | 1230 | struct waitid_info *infop; |
1da177e4 LT |
1231 | pid_t pid; |
1232 | uid_t uid; | |
1233 | ||
9e8ae01d | 1234 | if (!unlikely(wo->wo_flags & WCONTINUED)) |
98abed02 RM |
1235 | return 0; |
1236 | ||
1da177e4 LT |
1237 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1238 | return 0; | |
1239 | ||
1240 | spin_lock_irq(&p->sighand->siglock); | |
1241 | /* Re-check with the lock held. */ | |
1242 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1243 | spin_unlock_irq(&p->sighand->siglock); | |
1244 | return 0; | |
1245 | } | |
9e8ae01d | 1246 | if (!unlikely(wo->wo_flags & WNOWAIT)) |
1da177e4 | 1247 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
8ca937a6 | 1248 | uid = from_kuid_munged(current_user_ns(), task_uid(p)); |
1da177e4 LT |
1249 | spin_unlock_irq(&p->sighand->siglock); |
1250 | ||
6c5f3e7b | 1251 | pid = task_pid_vnr(p); |
1da177e4 LT |
1252 | get_task_struct(p); |
1253 | read_unlock(&tasklist_lock); | |
1029a2b5 | 1254 | sched_annotate_sleep(); |
e61a2502 AV |
1255 | if (wo->wo_rusage) |
1256 | getrusage(p, RUSAGE_BOTH, wo->wo_rusage); | |
bb380ec3 | 1257 | put_task_struct(p); |
1da177e4 | 1258 | |
bb380ec3 AV |
1259 | infop = wo->wo_info; |
1260 | if (!infop) { | |
359566fa | 1261 | wo->wo_stat = 0xffff; |
1da177e4 | 1262 | } else { |
bb380ec3 AV |
1263 | infop->cause = CLD_CONTINUED; |
1264 | infop->pid = pid; | |
1265 | infop->uid = uid; | |
1266 | infop->status = SIGCONT; | |
1da177e4 | 1267 | } |
bb380ec3 | 1268 | return pid; |
1da177e4 LT |
1269 | } |
1270 | ||
98abed02 RM |
1271 | /* |
1272 | * Consider @p for a wait by @parent. | |
1273 | * | |
9e8ae01d | 1274 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1275 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1276 | * Returns zero if the search for a child should continue; | |
9e8ae01d | 1277 | * then ->notask_error is 0 if @p is an eligible child, |
3a2f5a59 | 1278 | * or still -ECHILD. |
98abed02 | 1279 | */ |
b6e763f0 ON |
1280 | static int wait_consider_task(struct wait_opts *wo, int ptrace, |
1281 | struct task_struct *p) | |
98abed02 | 1282 | { |
3245d6ac ON |
1283 | /* |
1284 | * We can race with wait_task_zombie() from another thread. | |
1285 | * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition | |
1286 | * can't confuse the checks below. | |
1287 | */ | |
6aa7de05 | 1288 | int exit_state = READ_ONCE(p->exit_state); |
b3ab0316 ON |
1289 | int ret; |
1290 | ||
3245d6ac | 1291 | if (unlikely(exit_state == EXIT_DEAD)) |
b3ab0316 ON |
1292 | return 0; |
1293 | ||
bf959931 | 1294 | ret = eligible_child(wo, ptrace, p); |
14dd0b81 | 1295 | if (!ret) |
98abed02 RM |
1296 | return ret; |
1297 | ||
3245d6ac | 1298 | if (unlikely(exit_state == EXIT_TRACE)) { |
50b8d257 | 1299 | /* |
abd50b39 ON |
1300 | * ptrace == 0 means we are the natural parent. In this case |
1301 | * we should clear notask_error, debugger will notify us. | |
50b8d257 | 1302 | */ |
abd50b39 | 1303 | if (likely(!ptrace)) |
50b8d257 | 1304 | wo->notask_error = 0; |
823b018e | 1305 | return 0; |
50b8d257 | 1306 | } |
823b018e | 1307 | |
377d75da ON |
1308 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1309 | /* | |
1310 | * If it is traced by its real parent's group, just pretend | |
1311 | * the caller is ptrace_do_wait() and reap this child if it | |
1312 | * is zombie. | |
1313 | * | |
1314 | * This also hides group stop state from real parent; otherwise | |
1315 | * a single stop can be reported twice as group and ptrace stop. | |
1316 | * If a ptracer wants to distinguish these two events for its | |
1317 | * own children it should create a separate process which takes | |
1318 | * the role of real parent. | |
1319 | */ | |
1320 | if (!ptrace_reparented(p)) | |
1321 | ptrace = 1; | |
1322 | } | |
1323 | ||
45cb24a1 | 1324 | /* slay zombie? */ |
3245d6ac | 1325 | if (exit_state == EXIT_ZOMBIE) { |
9b84cca2 | 1326 | /* we don't reap group leaders with subthreads */ |
7c733eb3 ON |
1327 | if (!delay_group_leader(p)) { |
1328 | /* | |
1329 | * A zombie ptracee is only visible to its ptracer. | |
1330 | * Notification and reaping will be cascaded to the | |
1331 | * real parent when the ptracer detaches. | |
1332 | */ | |
1333 | if (unlikely(ptrace) || likely(!p->ptrace)) | |
1334 | return wait_task_zombie(wo, p); | |
1335 | } | |
98abed02 | 1336 | |
f470021a | 1337 | /* |
9b84cca2 TH |
1338 | * Allow access to stopped/continued state via zombie by |
1339 | * falling through. Clearing of notask_error is complex. | |
1340 | * | |
1341 | * When !@ptrace: | |
1342 | * | |
1343 | * If WEXITED is set, notask_error should naturally be | |
1344 | * cleared. If not, subset of WSTOPPED|WCONTINUED is set, | |
1345 | * so, if there are live subthreads, there are events to | |
1346 | * wait for. If all subthreads are dead, it's still safe | |
1347 | * to clear - this function will be called again in finite | |
1348 | * amount time once all the subthreads are released and | |
1349 | * will then return without clearing. | |
1350 | * | |
1351 | * When @ptrace: | |
1352 | * | |
1353 | * Stopped state is per-task and thus can't change once the | |
1354 | * target task dies. Only continued and exited can happen. | |
1355 | * Clear notask_error if WCONTINUED | WEXITED. | |
1356 | */ | |
1357 | if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED))) | |
1358 | wo->notask_error = 0; | |
1359 | } else { | |
1360 | /* | |
1361 | * @p is alive and it's gonna stop, continue or exit, so | |
1362 | * there always is something to wait for. | |
f470021a | 1363 | */ |
9e8ae01d | 1364 | wo->notask_error = 0; |
f470021a RM |
1365 | } |
1366 | ||
98abed02 | 1367 | /* |
45cb24a1 TH |
1368 | * Wait for stopped. Depending on @ptrace, different stopped state |
1369 | * is used and the two don't interact with each other. | |
98abed02 | 1370 | */ |
19e27463 TH |
1371 | ret = wait_task_stopped(wo, ptrace, p); |
1372 | if (ret) | |
1373 | return ret; | |
98abed02 RM |
1374 | |
1375 | /* | |
45cb24a1 TH |
1376 | * Wait for continued. There's only one continued state and the |
1377 | * ptracer can consume it which can confuse the real parent. Don't | |
1378 | * use WCONTINUED from ptracer. You don't need or want it. | |
98abed02 | 1379 | */ |
9e8ae01d | 1380 | return wait_task_continued(wo, p); |
98abed02 RM |
1381 | } |
1382 | ||
1383 | /* | |
1384 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1385 | * | |
9e8ae01d | 1386 | * -ECHILD should be in ->notask_error before the first call. |
98abed02 RM |
1387 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. |
1388 | * Returns zero if the search for a child should continue; then | |
9e8ae01d | 1389 | * ->notask_error is 0 if there were any eligible children, |
3a2f5a59 | 1390 | * or still -ECHILD. |
98abed02 | 1391 | */ |
9e8ae01d | 1392 | static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1393 | { |
1394 | struct task_struct *p; | |
1395 | ||
1396 | list_for_each_entry(p, &tsk->children, sibling) { | |
9cd80bbb | 1397 | int ret = wait_consider_task(wo, 0, p); |
a0be55de | 1398 | |
9cd80bbb ON |
1399 | if (ret) |
1400 | return ret; | |
98abed02 RM |
1401 | } |
1402 | ||
1403 | return 0; | |
1404 | } | |
1405 | ||
9e8ae01d | 1406 | static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk) |
98abed02 RM |
1407 | { |
1408 | struct task_struct *p; | |
1409 | ||
f470021a | 1410 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
b6e763f0 | 1411 | int ret = wait_consider_task(wo, 1, p); |
a0be55de | 1412 | |
f470021a | 1413 | if (ret) |
98abed02 | 1414 | return ret; |
98abed02 RM |
1415 | } |
1416 | ||
1417 | return 0; | |
1418 | } | |
1419 | ||
ac6424b9 | 1420 | static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode, |
0b7570e7 ON |
1421 | int sync, void *key) |
1422 | { | |
1423 | struct wait_opts *wo = container_of(wait, struct wait_opts, | |
1424 | child_wait); | |
1425 | struct task_struct *p = key; | |
1426 | ||
5c01ba49 | 1427 | if (!eligible_pid(wo, p)) |
0b7570e7 ON |
1428 | return 0; |
1429 | ||
b4fe5182 ON |
1430 | if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent) |
1431 | return 0; | |
1432 | ||
0b7570e7 ON |
1433 | return default_wake_function(wait, mode, sync, key); |
1434 | } | |
1435 | ||
a7f0765e ON |
1436 | void __wake_up_parent(struct task_struct *p, struct task_struct *parent) |
1437 | { | |
0b7570e7 | 1438 | __wake_up_sync_key(&parent->signal->wait_chldexit, |
ce4dd442 | 1439 | TASK_INTERRUPTIBLE, p); |
a7f0765e ON |
1440 | } |
1441 | ||
5449162a JN |
1442 | static bool is_effectively_child(struct wait_opts *wo, bool ptrace, |
1443 | struct task_struct *target) | |
1444 | { | |
1445 | struct task_struct *parent = | |
1446 | !ptrace ? target->real_parent : target->parent; | |
1447 | ||
1448 | return current == parent || (!(wo->wo_flags & __WNOTHREAD) && | |
1449 | same_thread_group(current, parent)); | |
1450 | } | |
1451 | ||
1452 | /* | |
1453 | * Optimization for waiting on PIDTYPE_PID. No need to iterate through child | |
1454 | * and tracee lists to find the target task. | |
1455 | */ | |
1456 | static int do_wait_pid(struct wait_opts *wo) | |
1457 | { | |
1458 | bool ptrace; | |
1459 | struct task_struct *target; | |
1460 | int retval; | |
1461 | ||
1462 | ptrace = false; | |
1463 | target = pid_task(wo->wo_pid, PIDTYPE_TGID); | |
1464 | if (target && is_effectively_child(wo, ptrace, target)) { | |
1465 | retval = wait_consider_task(wo, ptrace, target); | |
1466 | if (retval) | |
1467 | return retval; | |
1468 | } | |
1469 | ||
1470 | ptrace = true; | |
1471 | target = pid_task(wo->wo_pid, PIDTYPE_PID); | |
1472 | if (target && target->ptrace && | |
1473 | is_effectively_child(wo, ptrace, target)) { | |
1474 | retval = wait_consider_task(wo, ptrace, target); | |
1475 | if (retval) | |
1476 | return retval; | |
1477 | } | |
1478 | ||
1479 | return 0; | |
1480 | } | |
1481 | ||
9e8ae01d | 1482 | static long do_wait(struct wait_opts *wo) |
1da177e4 | 1483 | { |
98abed02 | 1484 | int retval; |
1da177e4 | 1485 | |
9e8ae01d | 1486 | trace_sched_process_wait(wo->wo_pid); |
0a16b607 | 1487 | |
0b7570e7 ON |
1488 | init_waitqueue_func_entry(&wo->child_wait, child_wait_callback); |
1489 | wo->child_wait.private = current; | |
1490 | add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); | |
1da177e4 | 1491 | repeat: |
98abed02 | 1492 | /* |
3da56d16 | 1493 | * If there is nothing that can match our criteria, just get out. |
9e8ae01d ON |
1494 | * We will clear ->notask_error to zero if we see any child that |
1495 | * might later match our criteria, even if we are not able to reap | |
1496 | * it yet. | |
98abed02 | 1497 | */ |
64a16caf | 1498 | wo->notask_error = -ECHILD; |
9e8ae01d | 1499 | if ((wo->wo_type < PIDTYPE_MAX) && |
1722c14a | 1500 | (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type))) |
64a16caf | 1501 | goto notask; |
161550d7 | 1502 | |
f95d39d1 | 1503 | set_current_state(TASK_INTERRUPTIBLE); |
1da177e4 | 1504 | read_lock(&tasklist_lock); |
9e8ae01d | 1505 | |
5449162a JN |
1506 | if (wo->wo_type == PIDTYPE_PID) { |
1507 | retval = do_wait_pid(wo); | |
64a16caf | 1508 | if (retval) |
98abed02 | 1509 | goto end; |
5449162a JN |
1510 | } else { |
1511 | struct task_struct *tsk = current; | |
1512 | ||
1513 | do { | |
1514 | retval = do_wait_thread(wo, tsk); | |
1515 | if (retval) | |
1516 | goto end; | |
98abed02 | 1517 | |
5449162a JN |
1518 | retval = ptrace_do_wait(wo, tsk); |
1519 | if (retval) | |
1520 | goto end; | |
1521 | ||
1522 | if (wo->wo_flags & __WNOTHREAD) | |
1523 | break; | |
1524 | } while_each_thread(current, tsk); | |
1525 | } | |
1da177e4 | 1526 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1527 | |
64a16caf | 1528 | notask: |
9e8ae01d ON |
1529 | retval = wo->notask_error; |
1530 | if (!retval && !(wo->wo_flags & WNOHANG)) { | |
1da177e4 | 1531 | retval = -ERESTARTSYS; |
98abed02 RM |
1532 | if (!signal_pending(current)) { |
1533 | schedule(); | |
1534 | goto repeat; | |
1535 | } | |
1da177e4 | 1536 | } |
1da177e4 | 1537 | end: |
f95d39d1 | 1538 | __set_current_state(TASK_RUNNING); |
0b7570e7 | 1539 | remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait); |
1da177e4 LT |
1540 | return retval; |
1541 | } | |
1542 | ||
67d7ddde | 1543 | static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop, |
ce72a16f | 1544 | int options, struct rusage *ru) |
1da177e4 | 1545 | { |
9e8ae01d | 1546 | struct wait_opts wo; |
161550d7 EB |
1547 | struct pid *pid = NULL; |
1548 | enum pid_type type; | |
1da177e4 | 1549 | long ret; |
ba7d25f3 | 1550 | unsigned int f_flags = 0; |
1da177e4 | 1551 | |
91c4e8ea ON |
1552 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| |
1553 | __WNOTHREAD|__WCLONE|__WALL)) | |
1da177e4 LT |
1554 | return -EINVAL; |
1555 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1556 | return -EINVAL; | |
1557 | ||
1558 | switch (which) { | |
1559 | case P_ALL: | |
161550d7 | 1560 | type = PIDTYPE_MAX; |
1da177e4 LT |
1561 | break; |
1562 | case P_PID: | |
161550d7 EB |
1563 | type = PIDTYPE_PID; |
1564 | if (upid <= 0) | |
1da177e4 | 1565 | return -EINVAL; |
3695eae5 CB |
1566 | |
1567 | pid = find_get_pid(upid); | |
1da177e4 LT |
1568 | break; |
1569 | case P_PGID: | |
161550d7 | 1570 | type = PIDTYPE_PGID; |
821cc7b0 | 1571 | if (upid < 0) |
1da177e4 | 1572 | return -EINVAL; |
3695eae5 | 1573 | |
821cc7b0 EB |
1574 | if (upid) |
1575 | pid = find_get_pid(upid); | |
1576 | else | |
1577 | pid = get_task_pid(current, PIDTYPE_PGID); | |
3695eae5 CB |
1578 | break; |
1579 | case P_PIDFD: | |
1580 | type = PIDTYPE_PID; | |
1581 | if (upid < 0) | |
1da177e4 | 1582 | return -EINVAL; |
3695eae5 | 1583 | |
ba7d25f3 | 1584 | pid = pidfd_get_pid(upid, &f_flags); |
3695eae5 CB |
1585 | if (IS_ERR(pid)) |
1586 | return PTR_ERR(pid); | |
ba7d25f3 | 1587 | |
1da177e4 LT |
1588 | break; |
1589 | default: | |
1590 | return -EINVAL; | |
1591 | } | |
1592 | ||
9e8ae01d ON |
1593 | wo.wo_type = type; |
1594 | wo.wo_pid = pid; | |
1595 | wo.wo_flags = options; | |
1596 | wo.wo_info = infop; | |
9e8ae01d | 1597 | wo.wo_rusage = ru; |
ba7d25f3 CB |
1598 | if (f_flags & O_NONBLOCK) |
1599 | wo.wo_flags |= WNOHANG; | |
1600 | ||
9e8ae01d | 1601 | ret = do_wait(&wo); |
ba7d25f3 CB |
1602 | if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK)) |
1603 | ret = -EAGAIN; | |
dfe16dfa | 1604 | |
161550d7 | 1605 | put_pid(pid); |
1da177e4 LT |
1606 | return ret; |
1607 | } | |
1608 | ||
ce72a16f AV |
1609 | SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *, |
1610 | infop, int, options, struct rusage __user *, ru) | |
1611 | { | |
1612 | struct rusage r; | |
67d7ddde AV |
1613 | struct waitid_info info = {.status = 0}; |
1614 | long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL); | |
634a8160 | 1615 | int signo = 0; |
6c85501f | 1616 | |
634a8160 AV |
1617 | if (err > 0) { |
1618 | signo = SIGCHLD; | |
1619 | err = 0; | |
ce72a16f AV |
1620 | if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) |
1621 | return -EFAULT; | |
1622 | } | |
67d7ddde AV |
1623 | if (!infop) |
1624 | return err; | |
1625 | ||
41cd7805 | 1626 | if (!user_write_access_begin(infop, sizeof(*infop))) |
1c9fec47 | 1627 | return -EFAULT; |
96ca579a | 1628 | |
634a8160 | 1629 | unsafe_put_user(signo, &infop->si_signo, Efault); |
4c48abe9 | 1630 | unsafe_put_user(0, &infop->si_errno, Efault); |
cc731525 | 1631 | unsafe_put_user(info.cause, &infop->si_code, Efault); |
4c48abe9 AV |
1632 | unsafe_put_user(info.pid, &infop->si_pid, Efault); |
1633 | unsafe_put_user(info.uid, &infop->si_uid, Efault); | |
1634 | unsafe_put_user(info.status, &infop->si_status, Efault); | |
41cd7805 | 1635 | user_write_access_end(); |
ce72a16f | 1636 | return err; |
4c48abe9 | 1637 | Efault: |
41cd7805 | 1638 | user_write_access_end(); |
4c48abe9 | 1639 | return -EFAULT; |
ce72a16f AV |
1640 | } |
1641 | ||
92ebce5a AV |
1642 | long kernel_wait4(pid_t upid, int __user *stat_addr, int options, |
1643 | struct rusage *ru) | |
1da177e4 | 1644 | { |
9e8ae01d | 1645 | struct wait_opts wo; |
161550d7 EB |
1646 | struct pid *pid = NULL; |
1647 | enum pid_type type; | |
1da177e4 LT |
1648 | long ret; |
1649 | ||
1650 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1651 | __WNOTHREAD|__WCLONE|__WALL)) | |
1652 | return -EINVAL; | |
161550d7 | 1653 | |
dd83c161 | 1654 | /* -INT_MIN is not defined */ |
1655 | if (upid == INT_MIN) | |
1656 | return -ESRCH; | |
1657 | ||
161550d7 EB |
1658 | if (upid == -1) |
1659 | type = PIDTYPE_MAX; | |
1660 | else if (upid < 0) { | |
1661 | type = PIDTYPE_PGID; | |
1662 | pid = find_get_pid(-upid); | |
1663 | } else if (upid == 0) { | |
1664 | type = PIDTYPE_PGID; | |
2ae448ef | 1665 | pid = get_task_pid(current, PIDTYPE_PGID); |
161550d7 EB |
1666 | } else /* upid > 0 */ { |
1667 | type = PIDTYPE_PID; | |
1668 | pid = find_get_pid(upid); | |
1669 | } | |
1670 | ||
9e8ae01d ON |
1671 | wo.wo_type = type; |
1672 | wo.wo_pid = pid; | |
1673 | wo.wo_flags = options | WEXITED; | |
1674 | wo.wo_info = NULL; | |
359566fa | 1675 | wo.wo_stat = 0; |
9e8ae01d ON |
1676 | wo.wo_rusage = ru; |
1677 | ret = do_wait(&wo); | |
161550d7 | 1678 | put_pid(pid); |
359566fa AV |
1679 | if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr)) |
1680 | ret = -EFAULT; | |
1da177e4 | 1681 | |
1da177e4 LT |
1682 | return ret; |
1683 | } | |
1684 | ||
8043fc14 CH |
1685 | int kernel_wait(pid_t pid, int *stat) |
1686 | { | |
1687 | struct wait_opts wo = { | |
1688 | .wo_type = PIDTYPE_PID, | |
1689 | .wo_pid = find_get_pid(pid), | |
1690 | .wo_flags = WEXITED, | |
1691 | }; | |
1692 | int ret; | |
1693 | ||
1694 | ret = do_wait(&wo); | |
1695 | if (ret > 0 && wo.wo_stat) | |
1696 | *stat = wo.wo_stat; | |
1697 | put_pid(wo.wo_pid); | |
1698 | return ret; | |
1699 | } | |
1700 | ||
ce72a16f AV |
1701 | SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr, |
1702 | int, options, struct rusage __user *, ru) | |
1703 | { | |
1704 | struct rusage r; | |
1705 | long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL); | |
1706 | ||
1707 | if (err > 0) { | |
1708 | if (ru && copy_to_user(ru, &r, sizeof(struct rusage))) | |
1709 | return -EFAULT; | |
1710 | } | |
1711 | return err; | |
1712 | } | |
1713 | ||
1da177e4 LT |
1714 | #ifdef __ARCH_WANT_SYS_WAITPID |
1715 | ||
1716 | /* | |
1717 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1718 | * implemented by calling sys_wait4() from libc.a. | |
1719 | */ | |
17da2bd9 | 1720 | SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options) |
1da177e4 | 1721 | { |
d300b610 | 1722 | return kernel_wait4(pid, stat_addr, options, NULL); |
1da177e4 LT |
1723 | } |
1724 | ||
1725 | #endif | |
7e95a225 AV |
1726 | |
1727 | #ifdef CONFIG_COMPAT | |
1728 | COMPAT_SYSCALL_DEFINE4(wait4, | |
1729 | compat_pid_t, pid, | |
1730 | compat_uint_t __user *, stat_addr, | |
1731 | int, options, | |
1732 | struct compat_rusage __user *, ru) | |
1733 | { | |
ce72a16f AV |
1734 | struct rusage r; |
1735 | long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL); | |
1736 | if (err > 0) { | |
1737 | if (ru && put_compat_rusage(&r, ru)) | |
1738 | return -EFAULT; | |
7e95a225 | 1739 | } |
ce72a16f | 1740 | return err; |
7e95a225 AV |
1741 | } |
1742 | ||
1743 | COMPAT_SYSCALL_DEFINE5(waitid, | |
1744 | int, which, compat_pid_t, pid, | |
1745 | struct compat_siginfo __user *, infop, int, options, | |
1746 | struct compat_rusage __user *, uru) | |
1747 | { | |
7e95a225 | 1748 | struct rusage ru; |
67d7ddde AV |
1749 | struct waitid_info info = {.status = 0}; |
1750 | long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL); | |
634a8160 AV |
1751 | int signo = 0; |
1752 | if (err > 0) { | |
1753 | signo = SIGCHLD; | |
1754 | err = 0; | |
6c85501f AV |
1755 | if (uru) { |
1756 | /* kernel_waitid() overwrites everything in ru */ | |
1757 | if (COMPAT_USE_64BIT_TIME) | |
1758 | err = copy_to_user(uru, &ru, sizeof(ru)); | |
1759 | else | |
1760 | err = put_compat_rusage(&ru, uru); | |
1761 | if (err) | |
1762 | return -EFAULT; | |
1763 | } | |
7e95a225 AV |
1764 | } |
1765 | ||
4c48abe9 AV |
1766 | if (!infop) |
1767 | return err; | |
1768 | ||
41cd7805 | 1769 | if (!user_write_access_begin(infop, sizeof(*infop))) |
1c9fec47 | 1770 | return -EFAULT; |
96ca579a | 1771 | |
634a8160 | 1772 | unsafe_put_user(signo, &infop->si_signo, Efault); |
4c48abe9 | 1773 | unsafe_put_user(0, &infop->si_errno, Efault); |
cc731525 | 1774 | unsafe_put_user(info.cause, &infop->si_code, Efault); |
4c48abe9 AV |
1775 | unsafe_put_user(info.pid, &infop->si_pid, Efault); |
1776 | unsafe_put_user(info.uid, &infop->si_uid, Efault); | |
1777 | unsafe_put_user(info.status, &infop->si_status, Efault); | |
41cd7805 | 1778 | user_write_access_end(); |
67d7ddde | 1779 | return err; |
4c48abe9 | 1780 | Efault: |
41cd7805 | 1781 | user_write_access_end(); |
4c48abe9 | 1782 | return -EFAULT; |
7e95a225 AV |
1783 | } |
1784 | #endif | |
7c2c11b2 | 1785 | |
38fd525a EB |
1786 | /** |
1787 | * thread_group_exited - check that a thread group has exited | |
1788 | * @pid: tgid of thread group to be checked. | |
1789 | * | |
1790 | * Test if the thread group represented by tgid has exited (all | |
1791 | * threads are zombies, dead or completely gone). | |
1792 | * | |
1793 | * Return: true if the thread group has exited. false otherwise. | |
1794 | */ | |
1795 | bool thread_group_exited(struct pid *pid) | |
1796 | { | |
1797 | struct task_struct *task; | |
1798 | bool exited; | |
1799 | ||
1800 | rcu_read_lock(); | |
1801 | task = pid_task(pid, PIDTYPE_PID); | |
1802 | exited = !task || | |
1803 | (READ_ONCE(task->exit_state) && thread_group_empty(task)); | |
1804 | rcu_read_unlock(); | |
1805 | ||
1806 | return exited; | |
1807 | } | |
1808 | EXPORT_SYMBOL(thread_group_exited); | |
1809 | ||
7c2c11b2 SM |
1810 | __weak void abort(void) |
1811 | { | |
1812 | BUG(); | |
1813 | ||
1814 | /* if that doesn't kill us, halt */ | |
1815 | panic("Oops failed to kill thread"); | |
1816 | } | |
dc8635b7 | 1817 | EXPORT_SYMBOL(abort); |