]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/kernel/exit.c | |
3 | * | |
4 | * Copyright (C) 1991, 1992 Linus Torvalds | |
5 | */ | |
6 | ||
1da177e4 LT |
7 | #include <linux/mm.h> |
8 | #include <linux/slab.h> | |
9 | #include <linux/interrupt.h> | |
1da177e4 | 10 | #include <linux/module.h> |
c59ede7b | 11 | #include <linux/capability.h> |
1da177e4 LT |
12 | #include <linux/completion.h> |
13 | #include <linux/personality.h> | |
14 | #include <linux/tty.h> | |
6b3286ed | 15 | #include <linux/mnt_namespace.h> |
da9cbc87 | 16 | #include <linux/iocontext.h> |
1da177e4 LT |
17 | #include <linux/key.h> |
18 | #include <linux/security.h> | |
19 | #include <linux/cpu.h> | |
20 | #include <linux/acct.h> | |
8f0ab514 | 21 | #include <linux/tsacct_kern.h> |
1da177e4 | 22 | #include <linux/file.h> |
9f3acc31 | 23 | #include <linux/fdtable.h> |
1da177e4 | 24 | #include <linux/binfmts.h> |
ab516013 | 25 | #include <linux/nsproxy.h> |
84d73786 | 26 | #include <linux/pid_namespace.h> |
1da177e4 LT |
27 | #include <linux/ptrace.h> |
28 | #include <linux/profile.h> | |
29 | #include <linux/mount.h> | |
30 | #include <linux/proc_fs.h> | |
49d769d5 | 31 | #include <linux/kthread.h> |
1da177e4 | 32 | #include <linux/mempolicy.h> |
c757249a | 33 | #include <linux/taskstats_kern.h> |
ca74e92b | 34 | #include <linux/delayacct.h> |
83144186 | 35 | #include <linux/freezer.h> |
b4f48b63 | 36 | #include <linux/cgroup.h> |
1da177e4 | 37 | #include <linux/syscalls.h> |
7ed20e1a | 38 | #include <linux/signal.h> |
6a14c5c9 | 39 | #include <linux/posix-timers.h> |
9f46080c | 40 | #include <linux/cn_proc.h> |
de5097c2 | 41 | #include <linux/mutex.h> |
0771dfef | 42 | #include <linux/futex.h> |
b92ce558 | 43 | #include <linux/pipe_fs_i.h> |
fa84cb93 | 44 | #include <linux/audit.h> /* for audit_free() */ |
83cc5ed3 | 45 | #include <linux/resource.h> |
0d67a46d | 46 | #include <linux/blkdev.h> |
6eaeeaba | 47 | #include <linux/task_io_accounting_ops.h> |
30199f5a | 48 | #include <linux/tracehook.h> |
d84f4f99 | 49 | #include <linux/init_task.h> |
0a16b607 | 50 | #include <trace/sched.h> |
1da177e4 LT |
51 | |
52 | #include <asm/uaccess.h> | |
53 | #include <asm/unistd.h> | |
54 | #include <asm/pgtable.h> | |
55 | #include <asm/mmu_context.h> | |
d84f4f99 | 56 | #include "cred-internals.h" |
1da177e4 | 57 | |
7e066fb8 MD |
58 | DEFINE_TRACE(sched_process_free); |
59 | DEFINE_TRACE(sched_process_exit); | |
60 | DEFINE_TRACE(sched_process_wait); | |
61 | ||
408b664a AB |
62 | static void exit_mm(struct task_struct * tsk); |
63 | ||
d839fd4d ON |
64 | static inline int task_detached(struct task_struct *p) |
65 | { | |
66 | return p->exit_signal == -1; | |
67 | } | |
68 | ||
1da177e4 LT |
69 | static void __unhash_process(struct task_struct *p) |
70 | { | |
71 | nr_threads--; | |
72 | detach_pid(p, PIDTYPE_PID); | |
1da177e4 LT |
73 | if (thread_group_leader(p)) { |
74 | detach_pid(p, PIDTYPE_PGID); | |
75 | detach_pid(p, PIDTYPE_SID); | |
c97d9893 | 76 | |
5e85d4ab | 77 | list_del_rcu(&p->tasks); |
73b9ebfe | 78 | __get_cpu_var(process_counts)--; |
1da177e4 | 79 | } |
47e65328 | 80 | list_del_rcu(&p->thread_group); |
f470021a | 81 | list_del_init(&p->sibling); |
1da177e4 LT |
82 | } |
83 | ||
6a14c5c9 ON |
84 | /* |
85 | * This function expects the tasklist_lock write-locked. | |
86 | */ | |
87 | static void __exit_signal(struct task_struct *tsk) | |
88 | { | |
89 | struct signal_struct *sig = tsk->signal; | |
90 | struct sighand_struct *sighand; | |
91 | ||
92 | BUG_ON(!sig); | |
93 | BUG_ON(!atomic_read(&sig->count)); | |
94 | ||
6a14c5c9 ON |
95 | sighand = rcu_dereference(tsk->sighand); |
96 | spin_lock(&sighand->siglock); | |
97 | ||
98 | posix_cpu_timers_exit(tsk); | |
99 | if (atomic_dec_and_test(&sig->count)) | |
100 | posix_cpu_timers_exit_group(tsk); | |
101 | else { | |
102 | /* | |
103 | * If there is any task waiting for the group exit | |
104 | * then notify it: | |
105 | */ | |
6db840fa | 106 | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) |
6a14c5c9 | 107 | wake_up_process(sig->group_exit_task); |
6db840fa | 108 | |
6a14c5c9 ON |
109 | if (tsk == sig->curr_target) |
110 | sig->curr_target = next_thread(tsk); | |
111 | /* | |
112 | * Accumulate here the counters for all threads but the | |
113 | * group leader as they die, so they can be added into | |
114 | * the process-wide totals when those are taken. | |
115 | * The group leader stays around as a zombie as long | |
116 | * as there are other threads. When it gets reaped, | |
117 | * the exit.c code will add its counts into these totals. | |
118 | * We won't ever get here for the group leader, since it | |
119 | * will have been the last reference on the signal_struct. | |
120 | */ | |
49048622 | 121 | sig->gtime = cputime_add(sig->gtime, task_gtime(tsk)); |
6a14c5c9 ON |
122 | sig->min_flt += tsk->min_flt; |
123 | sig->maj_flt += tsk->maj_flt; | |
124 | sig->nvcsw += tsk->nvcsw; | |
125 | sig->nivcsw += tsk->nivcsw; | |
6eaeeaba ED |
126 | sig->inblock += task_io_get_inblock(tsk); |
127 | sig->oublock += task_io_get_oublock(tsk); | |
5995477a | 128 | task_io_accounting_add(&sig->ioac, &tsk->ioac); |
6a14c5c9 ON |
129 | sig = NULL; /* Marker for below. */ |
130 | } | |
131 | ||
5876700c ON |
132 | __unhash_process(tsk); |
133 | ||
da7978b0 ON |
134 | /* |
135 | * Do this under ->siglock, we can race with another thread | |
136 | * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals. | |
137 | */ | |
138 | flush_sigqueue(&tsk->pending); | |
139 | ||
6a14c5c9 | 140 | tsk->signal = NULL; |
a7e5328a | 141 | tsk->sighand = NULL; |
6a14c5c9 | 142 | spin_unlock(&sighand->siglock); |
6a14c5c9 | 143 | |
a7e5328a | 144 | __cleanup_sighand(sighand); |
6a14c5c9 | 145 | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); |
6a14c5c9 ON |
146 | if (sig) { |
147 | flush_sigqueue(&sig->shared_pending); | |
093a8e8a | 148 | taskstats_tgid_free(sig); |
ad474cac ON |
149 | /* |
150 | * Make sure ->signal can't go away under rq->lock, | |
151 | * see account_group_exec_runtime(). | |
152 | */ | |
153 | task_rq_unlock_wait(tsk); | |
6a14c5c9 ON |
154 | __cleanup_signal(sig); |
155 | } | |
156 | } | |
157 | ||
8c7904a0 EB |
158 | static void delayed_put_task_struct(struct rcu_head *rhp) |
159 | { | |
0a16b607 MD |
160 | struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); |
161 | ||
162 | trace_sched_process_free(tsk); | |
163 | put_task_struct(tsk); | |
8c7904a0 EB |
164 | } |
165 | ||
f470021a | 166 | |
1da177e4 LT |
167 | void release_task(struct task_struct * p) |
168 | { | |
36c8b586 | 169 | struct task_struct *leader; |
1da177e4 | 170 | int zap_leader; |
1f09f974 | 171 | repeat: |
dae33574 | 172 | tracehook_prepare_release_task(p); |
c69e8d9c DH |
173 | /* don't need to get the RCU readlock here - the process is dead and |
174 | * can't be modifying its own credentials */ | |
175 | atomic_dec(&__task_cred(p)->user->processes); | |
176 | ||
60347f67 | 177 | proc_flush_task(p); |
1da177e4 | 178 | write_lock_irq(&tasklist_lock); |
dae33574 | 179 | tracehook_finish_release_task(p); |
1da177e4 | 180 | __exit_signal(p); |
35f5cad8 | 181 | |
1da177e4 LT |
182 | /* |
183 | * If we are the last non-leader member of the thread | |
184 | * group, and the leader is zombie, then notify the | |
185 | * group leader's parent process. (if it wants notification.) | |
186 | */ | |
187 | zap_leader = 0; | |
188 | leader = p->group_leader; | |
189 | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | |
d839fd4d | 190 | BUG_ON(task_detached(leader)); |
1da177e4 LT |
191 | do_notify_parent(leader, leader->exit_signal); |
192 | /* | |
193 | * If we were the last child thread and the leader has | |
194 | * exited already, and the leader's parent ignores SIGCHLD, | |
195 | * then we are the one who should release the leader. | |
196 | * | |
197 | * do_notify_parent() will have marked it self-reaping in | |
198 | * that case. | |
199 | */ | |
d839fd4d | 200 | zap_leader = task_detached(leader); |
dae33574 RM |
201 | |
202 | /* | |
203 | * This maintains the invariant that release_task() | |
204 | * only runs on a task in EXIT_DEAD, just for sanity. | |
205 | */ | |
206 | if (zap_leader) | |
207 | leader->exit_state = EXIT_DEAD; | |
1da177e4 LT |
208 | } |
209 | ||
1da177e4 | 210 | write_unlock_irq(&tasklist_lock); |
1da177e4 | 211 | release_thread(p); |
8c7904a0 | 212 | call_rcu(&p->rcu, delayed_put_task_struct); |
1da177e4 LT |
213 | |
214 | p = leader; | |
215 | if (unlikely(zap_leader)) | |
216 | goto repeat; | |
217 | } | |
218 | ||
1da177e4 LT |
219 | /* |
220 | * This checks not only the pgrp, but falls back on the pid if no | |
221 | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | |
222 | * without this... | |
04a2e6a5 EB |
223 | * |
224 | * The caller must hold rcu lock or the tasklist lock. | |
1da177e4 | 225 | */ |
04a2e6a5 | 226 | struct pid *session_of_pgrp(struct pid *pgrp) |
1da177e4 LT |
227 | { |
228 | struct task_struct *p; | |
04a2e6a5 | 229 | struct pid *sid = NULL; |
62dfb554 | 230 | |
04a2e6a5 | 231 | p = pid_task(pgrp, PIDTYPE_PGID); |
62dfb554 | 232 | if (p == NULL) |
04a2e6a5 | 233 | p = pid_task(pgrp, PIDTYPE_PID); |
62dfb554 | 234 | if (p != NULL) |
04a2e6a5 | 235 | sid = task_session(p); |
62dfb554 | 236 | |
1da177e4 LT |
237 | return sid; |
238 | } | |
239 | ||
240 | /* | |
241 | * Determine if a process group is "orphaned", according to the POSIX | |
242 | * definition in 2.2.2.52. Orphaned process groups are not to be affected | |
243 | * by terminal-generated stop signals. Newly orphaned process groups are | |
244 | * to receive a SIGHUP and a SIGCONT. | |
245 | * | |
246 | * "I ask you, have you ever known what it is to be an orphan?" | |
247 | */ | |
0475ac08 | 248 | static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task) |
1da177e4 LT |
249 | { |
250 | struct task_struct *p; | |
1da177e4 | 251 | |
0475ac08 | 252 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
05e83df6 ON |
253 | if ((p == ignored_task) || |
254 | (p->exit_state && thread_group_empty(p)) || | |
255 | is_global_init(p->real_parent)) | |
1da177e4 | 256 | continue; |
05e83df6 | 257 | |
0475ac08 | 258 | if (task_pgrp(p->real_parent) != pgrp && |
05e83df6 ON |
259 | task_session(p->real_parent) == task_session(p)) |
260 | return 0; | |
0475ac08 | 261 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
05e83df6 ON |
262 | |
263 | return 1; | |
1da177e4 LT |
264 | } |
265 | ||
3e7cd6c4 | 266 | int is_current_pgrp_orphaned(void) |
1da177e4 LT |
267 | { |
268 | int retval; | |
269 | ||
270 | read_lock(&tasklist_lock); | |
3e7cd6c4 | 271 | retval = will_become_orphaned_pgrp(task_pgrp(current), NULL); |
1da177e4 LT |
272 | read_unlock(&tasklist_lock); |
273 | ||
274 | return retval; | |
275 | } | |
276 | ||
0475ac08 | 277 | static int has_stopped_jobs(struct pid *pgrp) |
1da177e4 LT |
278 | { |
279 | int retval = 0; | |
280 | struct task_struct *p; | |
281 | ||
0475ac08 | 282 | do_each_pid_task(pgrp, PIDTYPE_PGID, p) { |
338077e5 | 283 | if (!task_is_stopped(p)) |
1da177e4 | 284 | continue; |
1da177e4 LT |
285 | retval = 1; |
286 | break; | |
0475ac08 | 287 | } while_each_pid_task(pgrp, PIDTYPE_PGID, p); |
1da177e4 LT |
288 | return retval; |
289 | } | |
290 | ||
f49ee505 ON |
291 | /* |
292 | * Check to see if any process groups have become orphaned as | |
293 | * a result of our exiting, and if they have any stopped jobs, | |
294 | * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
295 | */ | |
296 | static void | |
297 | kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent) | |
298 | { | |
299 | struct pid *pgrp = task_pgrp(tsk); | |
300 | struct task_struct *ignored_task = tsk; | |
301 | ||
302 | if (!parent) | |
303 | /* exit: our father is in a different pgrp than | |
304 | * we are and we were the only connection outside. | |
305 | */ | |
306 | parent = tsk->real_parent; | |
307 | else | |
308 | /* reparent: our child is in a different pgrp than | |
309 | * we are, and it was the only connection outside. | |
310 | */ | |
311 | ignored_task = NULL; | |
312 | ||
313 | if (task_pgrp(parent) != pgrp && | |
314 | task_session(parent) == task_session(tsk) && | |
315 | will_become_orphaned_pgrp(pgrp, ignored_task) && | |
316 | has_stopped_jobs(pgrp)) { | |
317 | __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp); | |
318 | __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp); | |
319 | } | |
320 | } | |
321 | ||
1da177e4 | 322 | /** |
49d769d5 | 323 | * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd |
1da177e4 LT |
324 | * |
325 | * If a kernel thread is launched as a result of a system call, or if | |
49d769d5 EB |
326 | * it ever exits, it should generally reparent itself to kthreadd so it |
327 | * isn't in the way of other processes and is correctly cleaned up on exit. | |
1da177e4 LT |
328 | * |
329 | * The various task state such as scheduling policy and priority may have | |
330 | * been inherited from a user process, so we reset them to sane values here. | |
331 | * | |
49d769d5 | 332 | * NOTE that reparent_to_kthreadd() gives the caller full capabilities. |
1da177e4 | 333 | */ |
49d769d5 | 334 | static void reparent_to_kthreadd(void) |
1da177e4 LT |
335 | { |
336 | write_lock_irq(&tasklist_lock); | |
337 | ||
338 | ptrace_unlink(current); | |
339 | /* Reparent to init */ | |
49d769d5 | 340 | current->real_parent = current->parent = kthreadd_task; |
f470021a | 341 | list_move_tail(¤t->sibling, ¤t->real_parent->children); |
1da177e4 LT |
342 | |
343 | /* Set the exit signal to SIGCHLD so we signal init on exit */ | |
344 | current->exit_signal = SIGCHLD; | |
345 | ||
e05606d3 | 346 | if (task_nice(current) < 0) |
1da177e4 LT |
347 | set_user_nice(current, 0); |
348 | /* cpus_allowed? */ | |
349 | /* rt_priority? */ | |
350 | /* signals? */ | |
1da177e4 LT |
351 | memcpy(current->signal->rlim, init_task.signal->rlim, |
352 | sizeof(current->signal->rlim)); | |
d84f4f99 DH |
353 | |
354 | atomic_inc(&init_cred.usage); | |
355 | commit_creds(&init_cred); | |
1da177e4 | 356 | write_unlock_irq(&tasklist_lock); |
1da177e4 LT |
357 | } |
358 | ||
8520d7c7 | 359 | void __set_special_pids(struct pid *pid) |
1da177e4 | 360 | { |
e19f247a | 361 | struct task_struct *curr = current->group_leader; |
8520d7c7 | 362 | pid_t nr = pid_nr(pid); |
1da177e4 | 363 | |
8520d7c7 | 364 | if (task_session(curr) != pid) { |
7d8da096 | 365 | change_pid(curr, PIDTYPE_SID, pid); |
8520d7c7 | 366 | set_task_session(curr, nr); |
1da177e4 | 367 | } |
8520d7c7 | 368 | if (task_pgrp(curr) != pid) { |
7d8da096 | 369 | change_pid(curr, PIDTYPE_PGID, pid); |
8520d7c7 | 370 | set_task_pgrp(curr, nr); |
1da177e4 LT |
371 | } |
372 | } | |
373 | ||
8520d7c7 | 374 | static void set_special_pids(struct pid *pid) |
1da177e4 LT |
375 | { |
376 | write_lock_irq(&tasklist_lock); | |
8520d7c7 | 377 | __set_special_pids(pid); |
1da177e4 LT |
378 | write_unlock_irq(&tasklist_lock); |
379 | } | |
380 | ||
381 | /* | |
382 | * Let kernel threads use this to say that they | |
383 | * allow a certain signal (since daemonize() will | |
384 | * have disabled all of them by default). | |
385 | */ | |
386 | int allow_signal(int sig) | |
387 | { | |
7ed20e1a | 388 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
389 | return -EINVAL; |
390 | ||
391 | spin_lock_irq(¤t->sighand->siglock); | |
392 | sigdelset(¤t->blocked, sig); | |
393 | if (!current->mm) { | |
394 | /* Kernel threads handle their own signals. | |
395 | Let the signal code know it'll be handled, so | |
396 | that they don't get converted to SIGKILL or | |
397 | just silently dropped */ | |
398 | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | |
399 | } | |
400 | recalc_sigpending(); | |
401 | spin_unlock_irq(¤t->sighand->siglock); | |
402 | return 0; | |
403 | } | |
404 | ||
405 | EXPORT_SYMBOL(allow_signal); | |
406 | ||
407 | int disallow_signal(int sig) | |
408 | { | |
7ed20e1a | 409 | if (!valid_signal(sig) || sig < 1) |
1da177e4 LT |
410 | return -EINVAL; |
411 | ||
412 | spin_lock_irq(¤t->sighand->siglock); | |
10ab825b | 413 | current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN; |
1da177e4 LT |
414 | recalc_sigpending(); |
415 | spin_unlock_irq(¤t->sighand->siglock); | |
416 | return 0; | |
417 | } | |
418 | ||
419 | EXPORT_SYMBOL(disallow_signal); | |
420 | ||
421 | /* | |
422 | * Put all the gunge required to become a kernel thread without | |
423 | * attached user resources in one place where it belongs. | |
424 | */ | |
425 | ||
426 | void daemonize(const char *name, ...) | |
427 | { | |
428 | va_list args; | |
429 | struct fs_struct *fs; | |
430 | sigset_t blocked; | |
431 | ||
432 | va_start(args, name); | |
433 | vsnprintf(current->comm, sizeof(current->comm), name, args); | |
434 | va_end(args); | |
435 | ||
436 | /* | |
437 | * If we were started as result of loading a module, close all of the | |
438 | * user space pages. We don't need them, and if we didn't close them | |
439 | * they would be locked into memory. | |
440 | */ | |
441 | exit_mm(current); | |
83144186 RW |
442 | /* |
443 | * We don't want to have TIF_FREEZE set if the system-wide hibernation | |
444 | * or suspend transition begins right now. | |
445 | */ | |
7b34e428 | 446 | current->flags |= (PF_NOFREEZE | PF_KTHREAD); |
1da177e4 | 447 | |
8520d7c7 ON |
448 | if (current->nsproxy != &init_nsproxy) { |
449 | get_nsproxy(&init_nsproxy); | |
450 | switch_task_namespaces(current, &init_nsproxy); | |
451 | } | |
297bd42b | 452 | set_special_pids(&init_struct_pid); |
24ec839c | 453 | proc_clear_tty(current); |
1da177e4 LT |
454 | |
455 | /* Block and flush all signals */ | |
456 | sigfillset(&blocked); | |
457 | sigprocmask(SIG_BLOCK, &blocked, NULL); | |
458 | flush_signals(current); | |
459 | ||
460 | /* Become as one with the init task */ | |
461 | ||
462 | exit_fs(current); /* current->fs->count--; */ | |
463 | fs = init_task.fs; | |
464 | current->fs = fs; | |
465 | atomic_inc(&fs->count); | |
ab516013 | 466 | |
d4c5e41f | 467 | exit_files(current); |
1da177e4 LT |
468 | current->files = init_task.files; |
469 | atomic_inc(¤t->files->count); | |
470 | ||
49d769d5 | 471 | reparent_to_kthreadd(); |
1da177e4 LT |
472 | } |
473 | ||
474 | EXPORT_SYMBOL(daemonize); | |
475 | ||
858119e1 | 476 | static void close_files(struct files_struct * files) |
1da177e4 LT |
477 | { |
478 | int i, j; | |
badf1662 | 479 | struct fdtable *fdt; |
1da177e4 LT |
480 | |
481 | j = 0; | |
4fb3a538 DS |
482 | |
483 | /* | |
484 | * It is safe to dereference the fd table without RCU or | |
485 | * ->file_lock because this is the last reference to the | |
486 | * files structure. | |
487 | */ | |
badf1662 | 488 | fdt = files_fdtable(files); |
1da177e4 LT |
489 | for (;;) { |
490 | unsigned long set; | |
491 | i = j * __NFDBITS; | |
bbea9f69 | 492 | if (i >= fdt->max_fds) |
1da177e4 | 493 | break; |
badf1662 | 494 | set = fdt->open_fds->fds_bits[j++]; |
1da177e4 LT |
495 | while (set) { |
496 | if (set & 1) { | |
badf1662 | 497 | struct file * file = xchg(&fdt->fd[i], NULL); |
944be0b2 | 498 | if (file) { |
1da177e4 | 499 | filp_close(file, files); |
944be0b2 IM |
500 | cond_resched(); |
501 | } | |
1da177e4 LT |
502 | } |
503 | i++; | |
504 | set >>= 1; | |
505 | } | |
506 | } | |
507 | } | |
508 | ||
509 | struct files_struct *get_files_struct(struct task_struct *task) | |
510 | { | |
511 | struct files_struct *files; | |
512 | ||
513 | task_lock(task); | |
514 | files = task->files; | |
515 | if (files) | |
516 | atomic_inc(&files->count); | |
517 | task_unlock(task); | |
518 | ||
519 | return files; | |
520 | } | |
521 | ||
7ad5b3a5 | 522 | void put_files_struct(struct files_struct *files) |
1da177e4 | 523 | { |
badf1662 DS |
524 | struct fdtable *fdt; |
525 | ||
1da177e4 LT |
526 | if (atomic_dec_and_test(&files->count)) { |
527 | close_files(files); | |
528 | /* | |
529 | * Free the fd and fdset arrays if we expanded them. | |
ab2af1f5 DS |
530 | * If the fdtable was embedded, pass files for freeing |
531 | * at the end of the RCU grace period. Otherwise, | |
532 | * you can free files immediately. | |
1da177e4 | 533 | */ |
badf1662 | 534 | fdt = files_fdtable(files); |
4fd45812 | 535 | if (fdt != &files->fdtab) |
ab2af1f5 | 536 | kmem_cache_free(files_cachep, files); |
01b2d93c | 537 | free_fdtable(fdt); |
1da177e4 LT |
538 | } |
539 | } | |
540 | ||
3b125388 | 541 | void reset_files_struct(struct files_struct *files) |
3b9b8ab6 | 542 | { |
3b125388 | 543 | struct task_struct *tsk = current; |
3b9b8ab6 KK |
544 | struct files_struct *old; |
545 | ||
546 | old = tsk->files; | |
547 | task_lock(tsk); | |
548 | tsk->files = files; | |
549 | task_unlock(tsk); | |
550 | put_files_struct(old); | |
551 | } | |
3b9b8ab6 | 552 | |
1ec7f1dd | 553 | void exit_files(struct task_struct *tsk) |
1da177e4 LT |
554 | { |
555 | struct files_struct * files = tsk->files; | |
556 | ||
557 | if (files) { | |
558 | task_lock(tsk); | |
559 | tsk->files = NULL; | |
560 | task_unlock(tsk); | |
561 | put_files_struct(files); | |
562 | } | |
563 | } | |
564 | ||
1ec7f1dd | 565 | void put_fs_struct(struct fs_struct *fs) |
1da177e4 LT |
566 | { |
567 | /* No need to hold fs->lock if we are killing it */ | |
568 | if (atomic_dec_and_test(&fs->count)) { | |
6ac08c39 JB |
569 | path_put(&fs->root); |
570 | path_put(&fs->pwd); | |
1da177e4 LT |
571 | kmem_cache_free(fs_cachep, fs); |
572 | } | |
573 | } | |
574 | ||
1ec7f1dd | 575 | void exit_fs(struct task_struct *tsk) |
1da177e4 LT |
576 | { |
577 | struct fs_struct * fs = tsk->fs; | |
578 | ||
579 | if (fs) { | |
580 | task_lock(tsk); | |
581 | tsk->fs = NULL; | |
582 | task_unlock(tsk); | |
1ec7f1dd | 583 | put_fs_struct(fs); |
1da177e4 LT |
584 | } |
585 | } | |
586 | ||
1da177e4 LT |
587 | EXPORT_SYMBOL_GPL(exit_fs); |
588 | ||
cf475ad2 BS |
589 | #ifdef CONFIG_MM_OWNER |
590 | /* | |
591 | * Task p is exiting and it owned mm, lets find a new owner for it | |
592 | */ | |
593 | static inline int | |
594 | mm_need_new_owner(struct mm_struct *mm, struct task_struct *p) | |
595 | { | |
596 | /* | |
597 | * If there are other users of the mm and the owner (us) is exiting | |
598 | * we need to find a new owner to take on the responsibility. | |
599 | */ | |
cf475ad2 BS |
600 | if (atomic_read(&mm->mm_users) <= 1) |
601 | return 0; | |
602 | if (mm->owner != p) | |
603 | return 0; | |
604 | return 1; | |
605 | } | |
606 | ||
607 | void mm_update_next_owner(struct mm_struct *mm) | |
608 | { | |
609 | struct task_struct *c, *g, *p = current; | |
610 | ||
611 | retry: | |
612 | if (!mm_need_new_owner(mm, p)) | |
613 | return; | |
614 | ||
615 | read_lock(&tasklist_lock); | |
616 | /* | |
617 | * Search in the children | |
618 | */ | |
619 | list_for_each_entry(c, &p->children, sibling) { | |
620 | if (c->mm == mm) | |
621 | goto assign_new_owner; | |
622 | } | |
623 | ||
624 | /* | |
625 | * Search in the siblings | |
626 | */ | |
627 | list_for_each_entry(c, &p->parent->children, sibling) { | |
628 | if (c->mm == mm) | |
629 | goto assign_new_owner; | |
630 | } | |
631 | ||
632 | /* | |
633 | * Search through everything else. We should not get | |
634 | * here often | |
635 | */ | |
636 | do_each_thread(g, c) { | |
637 | if (c->mm == mm) | |
638 | goto assign_new_owner; | |
639 | } while_each_thread(g, c); | |
640 | ||
641 | read_unlock(&tasklist_lock); | |
31a78f23 BS |
642 | /* |
643 | * We found no owner yet mm_users > 1: this implies that we are | |
644 | * most likely racing with swapoff (try_to_unuse()) or /proc or | |
645 | * ptrace or page migration (get_task_mm()). Mark owner as NULL, | |
646 | * so that subsystems can understand the callback and take action. | |
647 | */ | |
648 | down_write(&mm->mmap_sem); | |
649 | cgroup_mm_owner_callbacks(mm->owner, NULL); | |
650 | mm->owner = NULL; | |
651 | up_write(&mm->mmap_sem); | |
cf475ad2 BS |
652 | return; |
653 | ||
654 | assign_new_owner: | |
655 | BUG_ON(c == p); | |
656 | get_task_struct(c); | |
9363b9f2 BS |
657 | read_unlock(&tasklist_lock); |
658 | down_write(&mm->mmap_sem); | |
cf475ad2 BS |
659 | /* |
660 | * The task_lock protects c->mm from changing. | |
661 | * We always want mm->owner->mm == mm | |
662 | */ | |
663 | task_lock(c); | |
cf475ad2 BS |
664 | if (c->mm != mm) { |
665 | task_unlock(c); | |
9363b9f2 | 666 | up_write(&mm->mmap_sem); |
cf475ad2 BS |
667 | put_task_struct(c); |
668 | goto retry; | |
669 | } | |
670 | cgroup_mm_owner_callbacks(mm->owner, c); | |
671 | mm->owner = c; | |
672 | task_unlock(c); | |
9363b9f2 | 673 | up_write(&mm->mmap_sem); |
cf475ad2 BS |
674 | put_task_struct(c); |
675 | } | |
676 | #endif /* CONFIG_MM_OWNER */ | |
677 | ||
1da177e4 LT |
678 | /* |
679 | * Turn us into a lazy TLB process if we | |
680 | * aren't already.. | |
681 | */ | |
408b664a | 682 | static void exit_mm(struct task_struct * tsk) |
1da177e4 LT |
683 | { |
684 | struct mm_struct *mm = tsk->mm; | |
b564daf8 | 685 | struct core_state *core_state; |
1da177e4 LT |
686 | |
687 | mm_release(tsk, mm); | |
688 | if (!mm) | |
689 | return; | |
690 | /* | |
691 | * Serialize with any possible pending coredump. | |
999d9fc1 | 692 | * We must hold mmap_sem around checking core_state |
1da177e4 | 693 | * and clearing tsk->mm. The core-inducing thread |
999d9fc1 | 694 | * will increment ->nr_threads for each thread in the |
1da177e4 LT |
695 | * group with ->mm != NULL. |
696 | */ | |
697 | down_read(&mm->mmap_sem); | |
b564daf8 ON |
698 | core_state = mm->core_state; |
699 | if (core_state) { | |
700 | struct core_thread self; | |
1da177e4 | 701 | up_read(&mm->mmap_sem); |
c5f1cc8c | 702 | |
b564daf8 ON |
703 | self.task = tsk; |
704 | self.next = xchg(&core_state->dumper.next, &self); | |
705 | /* | |
706 | * Implies mb(), the result of xchg() must be visible | |
707 | * to core_state->dumper. | |
708 | */ | |
709 | if (atomic_dec_and_test(&core_state->nr_threads)) | |
710 | complete(&core_state->startup); | |
1da177e4 | 711 | |
a94e2d40 ON |
712 | for (;;) { |
713 | set_task_state(tsk, TASK_UNINTERRUPTIBLE); | |
714 | if (!self.task) /* see coredump_finish() */ | |
715 | break; | |
716 | schedule(); | |
717 | } | |
718 | __set_task_state(tsk, TASK_RUNNING); | |
1da177e4 LT |
719 | down_read(&mm->mmap_sem); |
720 | } | |
721 | atomic_inc(&mm->mm_count); | |
125e1874 | 722 | BUG_ON(mm != tsk->active_mm); |
1da177e4 LT |
723 | /* more a memory barrier than a real lock */ |
724 | task_lock(tsk); | |
725 | tsk->mm = NULL; | |
726 | up_read(&mm->mmap_sem); | |
727 | enter_lazy_tlb(mm, current); | |
0c1eecfb RW |
728 | /* We don't want this task to be frozen prematurely */ |
729 | clear_freeze_flag(tsk); | |
1da177e4 | 730 | task_unlock(tsk); |
cf475ad2 | 731 | mm_update_next_owner(mm); |
1da177e4 LT |
732 | mmput(mm); |
733 | } | |
734 | ||
666f164f RM |
735 | /* |
736 | * Return nonzero if @parent's children should reap themselves. | |
737 | * | |
738 | * Called with write_lock_irq(&tasklist_lock) held. | |
739 | */ | |
740 | static int ignoring_children(struct task_struct *parent) | |
741 | { | |
742 | int ret; | |
743 | struct sighand_struct *psig = parent->sighand; | |
744 | unsigned long flags; | |
745 | spin_lock_irqsave(&psig->siglock, flags); | |
746 | ret = (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || | |
747 | (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT)); | |
748 | spin_unlock_irqrestore(&psig->siglock, flags); | |
749 | return ret; | |
750 | } | |
751 | ||
f470021a RM |
752 | /* |
753 | * Detach all tasks we were using ptrace on. | |
754 | * Any that need to be release_task'd are put on the @dead list. | |
755 | * | |
756 | * Called with write_lock(&tasklist_lock) held. | |
757 | */ | |
758 | static void ptrace_exit(struct task_struct *parent, struct list_head *dead) | |
1da177e4 | 759 | { |
f470021a | 760 | struct task_struct *p, *n; |
666f164f | 761 | int ign = -1; |
241ceee0 | 762 | |
f470021a RM |
763 | list_for_each_entry_safe(p, n, &parent->ptraced, ptrace_entry) { |
764 | __ptrace_unlink(p); | |
765 | ||
766 | if (p->exit_state != EXIT_ZOMBIE) | |
767 | continue; | |
768 | ||
769 | /* | |
770 | * If it's a zombie, our attachedness prevented normal | |
771 | * parent notification or self-reaping. Do notification | |
772 | * now if it would have happened earlier. If it should | |
773 | * reap itself, add it to the @dead list. We can't call | |
774 | * release_task() here because we already hold tasklist_lock. | |
775 | * | |
776 | * If it's our own child, there is no notification to do. | |
666f164f RM |
777 | * But if our normal children self-reap, then this child |
778 | * was prevented by ptrace and we must reap it now. | |
1da177e4 | 779 | */ |
f470021a RM |
780 | if (!task_detached(p) && thread_group_empty(p)) { |
781 | if (!same_thread_group(p->real_parent, parent)) | |
782 | do_notify_parent(p, p->exit_signal); | |
666f164f RM |
783 | else { |
784 | if (ign < 0) | |
785 | ign = ignoring_children(parent); | |
786 | if (ign) | |
787 | p->exit_signal = -1; | |
788 | } | |
f470021a | 789 | } |
1da177e4 | 790 | |
f470021a | 791 | if (task_detached(p)) { |
1da177e4 | 792 | /* |
f470021a | 793 | * Mark it as in the process of being reaped. |
1da177e4 | 794 | */ |
f470021a RM |
795 | p->exit_state = EXIT_DEAD; |
796 | list_add(&p->ptrace_entry, dead); | |
1da177e4 LT |
797 | } |
798 | } | |
f470021a RM |
799 | } |
800 | ||
801 | /* | |
802 | * Finish up exit-time ptrace cleanup. | |
803 | * | |
804 | * Called without locks. | |
805 | */ | |
806 | static void ptrace_exit_finish(struct task_struct *parent, | |
807 | struct list_head *dead) | |
808 | { | |
809 | struct task_struct *p, *n; | |
810 | ||
811 | BUG_ON(!list_empty(&parent->ptraced)); | |
812 | ||
813 | list_for_each_entry_safe(p, n, dead, ptrace_entry) { | |
814 | list_del_init(&p->ptrace_entry); | |
815 | release_task(p); | |
816 | } | |
817 | } | |
818 | ||
819 | static void reparent_thread(struct task_struct *p, struct task_struct *father) | |
820 | { | |
821 | if (p->pdeath_signal) | |
822 | /* We already hold the tasklist_lock here. */ | |
823 | group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); | |
824 | ||
825 | list_move_tail(&p->sibling, &p->real_parent->children); | |
1da177e4 | 826 | |
b2b2cbc4 EB |
827 | /* If this is a threaded reparent there is no need to |
828 | * notify anyone anything has happened. | |
829 | */ | |
376e1d25 | 830 | if (same_thread_group(p->real_parent, father)) |
b2b2cbc4 EB |
831 | return; |
832 | ||
833 | /* We don't want people slaying init. */ | |
d839fd4d | 834 | if (!task_detached(p)) |
b2b2cbc4 | 835 | p->exit_signal = SIGCHLD; |
b2b2cbc4 EB |
836 | |
837 | /* If we'd notified the old parent about this child's death, | |
838 | * also notify the new parent. | |
839 | */ | |
f470021a RM |
840 | if (!ptrace_reparented(p) && |
841 | p->exit_state == EXIT_ZOMBIE && | |
d839fd4d | 842 | !task_detached(p) && thread_group_empty(p)) |
b2b2cbc4 EB |
843 | do_notify_parent(p, p->exit_signal); |
844 | ||
f49ee505 | 845 | kill_orphaned_pgrp(p, father); |
1da177e4 LT |
846 | } |
847 | ||
848 | /* | |
849 | * When we die, we re-parent all our children. | |
850 | * Try to give them to another thread in our thread | |
851 | * group, and if no such member exists, give it to | |
84d73786 SB |
852 | * the child reaper process (ie "init") in our pid |
853 | * space. | |
1da177e4 | 854 | */ |
950bbabb ON |
855 | static struct task_struct *find_new_reaper(struct task_struct *father) |
856 | { | |
857 | struct pid_namespace *pid_ns = task_active_pid_ns(father); | |
858 | struct task_struct *thread; | |
859 | ||
860 | thread = father; | |
861 | while_each_thread(father, thread) { | |
862 | if (thread->flags & PF_EXITING) | |
863 | continue; | |
864 | if (unlikely(pid_ns->child_reaper == father)) | |
865 | pid_ns->child_reaper = thread; | |
866 | return thread; | |
867 | } | |
868 | ||
869 | if (unlikely(pid_ns->child_reaper == father)) { | |
870 | write_unlock_irq(&tasklist_lock); | |
871 | if (unlikely(pid_ns == &init_pid_ns)) | |
872 | panic("Attempted to kill init!"); | |
873 | ||
874 | zap_pid_ns_processes(pid_ns); | |
875 | write_lock_irq(&tasklist_lock); | |
876 | /* | |
877 | * We can not clear ->child_reaper or leave it alone. | |
878 | * There may by stealth EXIT_DEAD tasks on ->children, | |
879 | * forget_original_parent() must move them somewhere. | |
880 | */ | |
881 | pid_ns->child_reaper = init_pid_ns.child_reaper; | |
882 | } | |
883 | ||
884 | return pid_ns->child_reaper; | |
885 | } | |
886 | ||
762a24be | 887 | static void forget_original_parent(struct task_struct *father) |
1da177e4 | 888 | { |
950bbabb | 889 | struct task_struct *p, *n, *reaper; |
f470021a | 890 | LIST_HEAD(ptrace_dead); |
762a24be ON |
891 | |
892 | write_lock_irq(&tasklist_lock); | |
950bbabb | 893 | reaper = find_new_reaper(father); |
f470021a RM |
894 | /* |
895 | * First clean up ptrace if we were using it. | |
896 | */ | |
897 | ptrace_exit(father, &ptrace_dead); | |
898 | ||
03ff1797 | 899 | list_for_each_entry_safe(p, n, &father->children, sibling) { |
84eb646b | 900 | p->real_parent = reaper; |
f470021a RM |
901 | if (p->parent == father) { |
902 | BUG_ON(p->ptrace); | |
903 | p->parent = p->real_parent; | |
904 | } | |
905 | reparent_thread(p, father); | |
1da177e4 | 906 | } |
762a24be ON |
907 | |
908 | write_unlock_irq(&tasklist_lock); | |
909 | BUG_ON(!list_empty(&father->children)); | |
762a24be | 910 | |
f470021a | 911 | ptrace_exit_finish(father, &ptrace_dead); |
1da177e4 LT |
912 | } |
913 | ||
914 | /* | |
915 | * Send signals to all our closest relatives so that they know | |
916 | * to properly mourn us.. | |
917 | */ | |
821c7de7 | 918 | static void exit_notify(struct task_struct *tsk, int group_dead) |
1da177e4 | 919 | { |
2b2a1ff6 RM |
920 | int signal; |
921 | void *cookie; | |
1da177e4 | 922 | |
1da177e4 LT |
923 | /* |
924 | * This does two things: | |
925 | * | |
926 | * A. Make init inherit all the child processes | |
927 | * B. Check to see if any process groups have become orphaned | |
928 | * as a result of our exiting, and if they have any stopped | |
929 | * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2) | |
930 | */ | |
762a24be | 931 | forget_original_parent(tsk); |
2e4a7072 | 932 | exit_task_namespaces(tsk); |
1da177e4 | 933 | |
762a24be | 934 | write_lock_irq(&tasklist_lock); |
821c7de7 ON |
935 | if (group_dead) |
936 | kill_orphaned_pgrp(tsk->group_leader, NULL); | |
1da177e4 | 937 | |
24728448 | 938 | /* Let father know we died |
1da177e4 LT |
939 | * |
940 | * Thread signals are configurable, but you aren't going to use | |
d4c5e41f | 941 | * that to send signals to arbitary processes. |
1da177e4 LT |
942 | * That stops right now. |
943 | * | |
944 | * If the parent exec id doesn't match the exec id we saved | |
945 | * when we started then we know the parent has changed security | |
946 | * domain. | |
947 | * | |
948 | * If our self_exec id doesn't match our parent_exec_id then | |
949 | * we have changed execution domain as these two values started | |
950 | * the same after a fork. | |
1da177e4 | 951 | */ |
d839fd4d | 952 | if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) && |
f49ee505 | 953 | (tsk->parent_exec_id != tsk->real_parent->self_exec_id || |
d839fd4d ON |
954 | tsk->self_exec_id != tsk->parent_exec_id) && |
955 | !capable(CAP_KILL)) | |
1da177e4 LT |
956 | tsk->exit_signal = SIGCHLD; |
957 | ||
2b2a1ff6 | 958 | signal = tracehook_notify_death(tsk, &cookie, group_dead); |
5c7edcd7 | 959 | if (signal >= 0) |
2b2a1ff6 | 960 | signal = do_notify_parent(tsk, signal); |
1da177e4 | 961 | |
5c7edcd7 | 962 | tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE; |
1da177e4 | 963 | |
2800d8d1 | 964 | /* mt-exec, de_thread() is waiting for us */ |
6db840fa | 965 | if (thread_group_leader(tsk) && |
2633f0e5 SV |
966 | tsk->signal->group_exit_task && |
967 | tsk->signal->notify_count < 0) | |
6db840fa ON |
968 | wake_up_process(tsk->signal->group_exit_task); |
969 | ||
1da177e4 LT |
970 | write_unlock_irq(&tasklist_lock); |
971 | ||
2b2a1ff6 RM |
972 | tracehook_report_death(tsk, signal, cookie, group_dead); |
973 | ||
1da177e4 | 974 | /* If the process is dead, release it - nobody will wait for it */ |
5c7edcd7 | 975 | if (signal == DEATH_REAP) |
1da177e4 | 976 | release_task(tsk); |
1da177e4 LT |
977 | } |
978 | ||
e18eecb8 JD |
979 | #ifdef CONFIG_DEBUG_STACK_USAGE |
980 | static void check_stack_usage(void) | |
981 | { | |
982 | static DEFINE_SPINLOCK(low_water_lock); | |
983 | static int lowest_to_date = THREAD_SIZE; | |
984 | unsigned long *n = end_of_stack(current); | |
985 | unsigned long free; | |
986 | ||
987 | while (*n == 0) | |
988 | n++; | |
989 | free = (unsigned long)n - (unsigned long)end_of_stack(current); | |
990 | ||
991 | if (free >= lowest_to_date) | |
992 | return; | |
993 | ||
994 | spin_lock(&low_water_lock); | |
995 | if (free < lowest_to_date) { | |
996 | printk(KERN_WARNING "%s used greatest stack depth: %lu bytes " | |
997 | "left\n", | |
998 | current->comm, free); | |
999 | lowest_to_date = free; | |
1000 | } | |
1001 | spin_unlock(&low_water_lock); | |
1002 | } | |
1003 | #else | |
1004 | static inline void check_stack_usage(void) {} | |
1005 | #endif | |
1006 | ||
7ad5b3a5 | 1007 | NORET_TYPE void do_exit(long code) |
1da177e4 LT |
1008 | { |
1009 | struct task_struct *tsk = current; | |
1010 | int group_dead; | |
1011 | ||
1012 | profile_task_exit(tsk); | |
1013 | ||
22e2c507 JA |
1014 | WARN_ON(atomic_read(&tsk->fs_excl)); |
1015 | ||
1da177e4 LT |
1016 | if (unlikely(in_interrupt())) |
1017 | panic("Aiee, killing interrupt handler!"); | |
1018 | if (unlikely(!tsk->pid)) | |
1019 | panic("Attempted to kill the idle task!"); | |
1da177e4 | 1020 | |
30199f5a | 1021 | tracehook_report_exit(&code); |
1da177e4 | 1022 | |
df164db5 AN |
1023 | /* |
1024 | * We're taking recursive faults here in do_exit. Safest is to just | |
1025 | * leave this task alone and wait for reboot. | |
1026 | */ | |
1027 | if (unlikely(tsk->flags & PF_EXITING)) { | |
1028 | printk(KERN_ALERT | |
1029 | "Fixing recursive fault but reboot is needed!\n"); | |
778e9a9c AK |
1030 | /* |
1031 | * We can do this unlocked here. The futex code uses | |
1032 | * this flag just to verify whether the pi state | |
1033 | * cleanup has been done or not. In the worst case it | |
1034 | * loops once more. We pretend that the cleanup was | |
1035 | * done as there is no way to return. Either the | |
1036 | * OWNER_DIED bit is set by now or we push the blocked | |
1037 | * task into the wait for ever nirwana as well. | |
1038 | */ | |
1039 | tsk->flags |= PF_EXITPIDONE; | |
df164db5 AN |
1040 | set_current_state(TASK_UNINTERRUPTIBLE); |
1041 | schedule(); | |
1042 | } | |
1043 | ||
d12619b5 | 1044 | exit_signals(tsk); /* sets PF_EXITING */ |
778e9a9c AK |
1045 | /* |
1046 | * tsk->flags are checked in the futex code to protect against | |
1047 | * an exiting task cleaning up the robust pi futexes. | |
1048 | */ | |
d2ee7198 ON |
1049 | smp_mb(); |
1050 | spin_unlock_wait(&tsk->pi_lock); | |
1da177e4 | 1051 | |
1da177e4 LT |
1052 | if (unlikely(in_atomic())) |
1053 | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | |
ba25f9dc | 1054 | current->comm, task_pid_nr(current), |
1da177e4 LT |
1055 | preempt_count()); |
1056 | ||
1057 | acct_update_integrals(tsk); | |
365e9c87 HD |
1058 | if (tsk->mm) { |
1059 | update_hiwater_rss(tsk->mm); | |
1060 | update_hiwater_vm(tsk->mm); | |
1061 | } | |
1da177e4 | 1062 | group_dead = atomic_dec_and_test(&tsk->signal->live); |
c3068951 | 1063 | if (group_dead) { |
778e9a9c | 1064 | hrtimer_cancel(&tsk->signal->real_timer); |
25f407f0 | 1065 | exit_itimers(tsk->signal); |
c3068951 | 1066 | } |
f6ec29a4 | 1067 | acct_collect(code, group_dead); |
522ed776 MT |
1068 | if (group_dead) |
1069 | tty_audit_exit(); | |
fa84cb93 AV |
1070 | if (unlikely(tsk->audit_context)) |
1071 | audit_free(tsk); | |
115085ea | 1072 | |
f2ab6d88 | 1073 | tsk->exit_code = code; |
115085ea | 1074 | taskstats_exit(tsk, group_dead); |
c757249a | 1075 | |
1da177e4 LT |
1076 | exit_mm(tsk); |
1077 | ||
0e464814 | 1078 | if (group_dead) |
f6ec29a4 | 1079 | acct_process(); |
0a16b607 MD |
1080 | trace_sched_process_exit(tsk); |
1081 | ||
1da177e4 | 1082 | exit_sem(tsk); |
1ec7f1dd AV |
1083 | exit_files(tsk); |
1084 | exit_fs(tsk); | |
e18eecb8 | 1085 | check_stack_usage(); |
1da177e4 | 1086 | exit_thread(); |
b4f48b63 | 1087 | cgroup_exit(tsk, 1); |
1da177e4 LT |
1088 | |
1089 | if (group_dead && tsk->signal->leader) | |
1090 | disassociate_ctty(1); | |
1091 | ||
a1261f54 | 1092 | module_put(task_thread_info(tsk)->exec_domain->module); |
1da177e4 LT |
1093 | if (tsk->binfmt) |
1094 | module_put(tsk->binfmt->module); | |
1095 | ||
9f46080c | 1096 | proc_exit_connector(tsk); |
821c7de7 | 1097 | exit_notify(tsk, group_dead); |
1da177e4 | 1098 | #ifdef CONFIG_NUMA |
f0be3d32 | 1099 | mpol_put(tsk->mempolicy); |
1da177e4 LT |
1100 | tsk->mempolicy = NULL; |
1101 | #endif | |
42b2dd0a | 1102 | #ifdef CONFIG_FUTEX |
c87e2837 IM |
1103 | /* |
1104 | * This must happen late, after the PID is not | |
1105 | * hashed anymore: | |
1106 | */ | |
1107 | if (unlikely(!list_empty(&tsk->pi_state_list))) | |
1108 | exit_pi_state_list(tsk); | |
1109 | if (unlikely(current->pi_state_cache)) | |
1110 | kfree(current->pi_state_cache); | |
42b2dd0a | 1111 | #endif |
de5097c2 | 1112 | /* |
9a11b49a | 1113 | * Make sure we are holding no locks: |
de5097c2 | 1114 | */ |
9a11b49a | 1115 | debug_check_no_locks_held(tsk); |
778e9a9c AK |
1116 | /* |
1117 | * We can do this unlocked here. The futex code uses this flag | |
1118 | * just to verify whether the pi state cleanup has been done | |
1119 | * or not. In the worst case it loops once more. | |
1120 | */ | |
1121 | tsk->flags |= PF_EXITPIDONE; | |
1da177e4 | 1122 | |
afc847b7 AV |
1123 | if (tsk->io_context) |
1124 | exit_io_context(); | |
1125 | ||
b92ce558 JA |
1126 | if (tsk->splice_pipe) |
1127 | __free_pipe_info(tsk->splice_pipe); | |
1128 | ||
7407251a | 1129 | preempt_disable(); |
55a101f8 | 1130 | /* causes final put_task_struct in finish_task_switch(). */ |
c394cc9f | 1131 | tsk->state = TASK_DEAD; |
1da177e4 LT |
1132 | schedule(); |
1133 | BUG(); | |
1134 | /* Avoid "noreturn function does return". */ | |
54306cf0 AC |
1135 | for (;;) |
1136 | cpu_relax(); /* For when BUG is null */ | |
1da177e4 LT |
1137 | } |
1138 | ||
012914da RA |
1139 | EXPORT_SYMBOL_GPL(do_exit); |
1140 | ||
1da177e4 LT |
1141 | NORET_TYPE void complete_and_exit(struct completion *comp, long code) |
1142 | { | |
1143 | if (comp) | |
1144 | complete(comp); | |
55a101f8 | 1145 | |
1da177e4 LT |
1146 | do_exit(code); |
1147 | } | |
1148 | ||
1149 | EXPORT_SYMBOL(complete_and_exit); | |
1150 | ||
1151 | asmlinkage long sys_exit(int error_code) | |
1152 | { | |
1153 | do_exit((error_code&0xff)<<8); | |
1154 | } | |
1155 | ||
1da177e4 LT |
1156 | /* |
1157 | * Take down every thread in the group. This is called by fatal signals | |
1158 | * as well as by sys_exit_group (below). | |
1159 | */ | |
1160 | NORET_TYPE void | |
1161 | do_group_exit(int exit_code) | |
1162 | { | |
bfc4b089 ON |
1163 | struct signal_struct *sig = current->signal; |
1164 | ||
1da177e4 LT |
1165 | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ |
1166 | ||
bfc4b089 ON |
1167 | if (signal_group_exit(sig)) |
1168 | exit_code = sig->group_exit_code; | |
1da177e4 | 1169 | else if (!thread_group_empty(current)) { |
1da177e4 | 1170 | struct sighand_struct *const sighand = current->sighand; |
1da177e4 | 1171 | spin_lock_irq(&sighand->siglock); |
ed5d2cac | 1172 | if (signal_group_exit(sig)) |
1da177e4 LT |
1173 | /* Another thread got here before we took the lock. */ |
1174 | exit_code = sig->group_exit_code; | |
1175 | else { | |
1da177e4 | 1176 | sig->group_exit_code = exit_code; |
ed5d2cac | 1177 | sig->flags = SIGNAL_GROUP_EXIT; |
1da177e4 LT |
1178 | zap_other_threads(current); |
1179 | } | |
1180 | spin_unlock_irq(&sighand->siglock); | |
1da177e4 LT |
1181 | } |
1182 | ||
1183 | do_exit(exit_code); | |
1184 | /* NOTREACHED */ | |
1185 | } | |
1186 | ||
1187 | /* | |
1188 | * this kills every thread in the thread group. Note that any externally | |
1189 | * wait4()-ing process will get the correct exit code - even if this | |
1190 | * thread is not the thread group leader. | |
1191 | */ | |
1192 | asmlinkage void sys_exit_group(int error_code) | |
1193 | { | |
1194 | do_group_exit((error_code & 0xff) << 8); | |
1195 | } | |
1196 | ||
161550d7 EB |
1197 | static struct pid *task_pid_type(struct task_struct *task, enum pid_type type) |
1198 | { | |
1199 | struct pid *pid = NULL; | |
1200 | if (type == PIDTYPE_PID) | |
1201 | pid = task->pids[type].pid; | |
1202 | else if (type < PIDTYPE_MAX) | |
1203 | pid = task->group_leader->pids[type].pid; | |
1204 | return pid; | |
1205 | } | |
1206 | ||
1207 | static int eligible_child(enum pid_type type, struct pid *pid, int options, | |
1208 | struct task_struct *p) | |
1da177e4 | 1209 | { |
73243284 RM |
1210 | int err; |
1211 | ||
161550d7 EB |
1212 | if (type < PIDTYPE_MAX) { |
1213 | if (task_pid_type(p, type) != pid) | |
1da177e4 LT |
1214 | return 0; |
1215 | } | |
1216 | ||
1da177e4 LT |
1217 | /* Wait for all children (clone and not) if __WALL is set; |
1218 | * otherwise, wait for clone children *only* if __WCLONE is | |
1219 | * set; otherwise, wait for non-clone children *only*. (Note: | |
1220 | * A "clone" child here is one that reports to its parent | |
1221 | * using a signal other than SIGCHLD.) */ | |
1222 | if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) | |
1223 | && !(options & __WALL)) | |
1224 | return 0; | |
1da177e4 | 1225 | |
73243284 | 1226 | err = security_task_wait(p); |
14dd0b81 RM |
1227 | if (err) |
1228 | return err; | |
1da177e4 | 1229 | |
14dd0b81 | 1230 | return 1; |
1da177e4 LT |
1231 | } |
1232 | ||
36c8b586 | 1233 | static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, |
1da177e4 LT |
1234 | int why, int status, |
1235 | struct siginfo __user *infop, | |
1236 | struct rusage __user *rusagep) | |
1237 | { | |
1238 | int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; | |
36c8b586 | 1239 | |
1da177e4 LT |
1240 | put_task_struct(p); |
1241 | if (!retval) | |
1242 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1243 | if (!retval) | |
1244 | retval = put_user(0, &infop->si_errno); | |
1245 | if (!retval) | |
1246 | retval = put_user((short)why, &infop->si_code); | |
1247 | if (!retval) | |
1248 | retval = put_user(pid, &infop->si_pid); | |
1249 | if (!retval) | |
1250 | retval = put_user(uid, &infop->si_uid); | |
1251 | if (!retval) | |
1252 | retval = put_user(status, &infop->si_status); | |
1253 | if (!retval) | |
1254 | retval = pid; | |
1255 | return retval; | |
1256 | } | |
1257 | ||
1258 | /* | |
1259 | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold | |
1260 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1261 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1262 | * released the lock and the system call should return. | |
1263 | */ | |
98abed02 | 1264 | static int wait_task_zombie(struct task_struct *p, int options, |
1da177e4 LT |
1265 | struct siginfo __user *infop, |
1266 | int __user *stat_addr, struct rusage __user *ru) | |
1267 | { | |
1268 | unsigned long state; | |
2f4e6e2a | 1269 | int retval, status, traced; |
6c5f3e7b | 1270 | pid_t pid = task_pid_vnr(p); |
c69e8d9c | 1271 | uid_t uid = __task_cred(p)->uid; |
1da177e4 | 1272 | |
98abed02 RM |
1273 | if (!likely(options & WEXITED)) |
1274 | return 0; | |
1275 | ||
1276 | if (unlikely(options & WNOWAIT)) { | |
1da177e4 LT |
1277 | int exit_code = p->exit_code; |
1278 | int why, status; | |
1279 | ||
1da177e4 LT |
1280 | get_task_struct(p); |
1281 | read_unlock(&tasklist_lock); | |
1282 | if ((exit_code & 0x7f) == 0) { | |
1283 | why = CLD_EXITED; | |
1284 | status = exit_code >> 8; | |
1285 | } else { | |
1286 | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1287 | status = exit_code & 0x7f; | |
1288 | } | |
1289 | return wait_noreap_copyout(p, pid, uid, why, | |
1290 | status, infop, ru); | |
1291 | } | |
1292 | ||
1293 | /* | |
1294 | * Try to move the task's state to DEAD | |
1295 | * only one thread is allowed to do this: | |
1296 | */ | |
1297 | state = xchg(&p->exit_state, EXIT_DEAD); | |
1298 | if (state != EXIT_ZOMBIE) { | |
1299 | BUG_ON(state != EXIT_DEAD); | |
1300 | return 0; | |
1301 | } | |
1da177e4 | 1302 | |
53b6f9fb | 1303 | traced = ptrace_reparented(p); |
2f4e6e2a ON |
1304 | |
1305 | if (likely(!traced)) { | |
3795e161 JJ |
1306 | struct signal_struct *psig; |
1307 | struct signal_struct *sig; | |
f06febc9 | 1308 | struct task_cputime cputime; |
3795e161 | 1309 | |
1da177e4 LT |
1310 | /* |
1311 | * The resource counters for the group leader are in its | |
1312 | * own task_struct. Those for dead threads in the group | |
1313 | * are in its signal_struct, as are those for the child | |
1314 | * processes it has previously reaped. All these | |
1315 | * accumulate in the parent's signal_struct c* fields. | |
1316 | * | |
1317 | * We don't bother to take a lock here to protect these | |
1318 | * p->signal fields, because they are only touched by | |
1319 | * __exit_signal, which runs with tasklist_lock | |
1320 | * write-locked anyway, and so is excluded here. We do | |
1321 | * need to protect the access to p->parent->signal fields, | |
1322 | * as other threads in the parent group can be right | |
1323 | * here reaping other children at the same time. | |
f06febc9 FM |
1324 | * |
1325 | * We use thread_group_cputime() to get times for the thread | |
1326 | * group, which consolidates times for all threads in the | |
1327 | * group including the group leader. | |
1da177e4 | 1328 | */ |
2b5fe6de | 1329 | thread_group_cputime(p, &cputime); |
1da177e4 | 1330 | spin_lock_irq(&p->parent->sighand->siglock); |
3795e161 JJ |
1331 | psig = p->parent->signal; |
1332 | sig = p->signal; | |
1333 | psig->cutime = | |
1334 | cputime_add(psig->cutime, | |
f06febc9 FM |
1335 | cputime_add(cputime.utime, |
1336 | sig->cutime)); | |
3795e161 JJ |
1337 | psig->cstime = |
1338 | cputime_add(psig->cstime, | |
f06febc9 FM |
1339 | cputime_add(cputime.stime, |
1340 | sig->cstime)); | |
9ac52315 LV |
1341 | psig->cgtime = |
1342 | cputime_add(psig->cgtime, | |
1343 | cputime_add(p->gtime, | |
1344 | cputime_add(sig->gtime, | |
1345 | sig->cgtime))); | |
3795e161 JJ |
1346 | psig->cmin_flt += |
1347 | p->min_flt + sig->min_flt + sig->cmin_flt; | |
1348 | psig->cmaj_flt += | |
1349 | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | |
1350 | psig->cnvcsw += | |
1351 | p->nvcsw + sig->nvcsw + sig->cnvcsw; | |
1352 | psig->cnivcsw += | |
1353 | p->nivcsw + sig->nivcsw + sig->cnivcsw; | |
6eaeeaba ED |
1354 | psig->cinblock += |
1355 | task_io_get_inblock(p) + | |
1356 | sig->inblock + sig->cinblock; | |
1357 | psig->coublock += | |
1358 | task_io_get_oublock(p) + | |
1359 | sig->oublock + sig->coublock; | |
5995477a AR |
1360 | task_io_accounting_add(&psig->ioac, &p->ioac); |
1361 | task_io_accounting_add(&psig->ioac, &sig->ioac); | |
1da177e4 LT |
1362 | spin_unlock_irq(&p->parent->sighand->siglock); |
1363 | } | |
1364 | ||
1365 | /* | |
1366 | * Now we are sure this task is interesting, and no other | |
1367 | * thread can reap it because we set its state to EXIT_DEAD. | |
1368 | */ | |
1369 | read_unlock(&tasklist_lock); | |
1370 | ||
1371 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1372 | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | |
1373 | ? p->signal->group_exit_code : p->exit_code; | |
1374 | if (!retval && stat_addr) | |
1375 | retval = put_user(status, stat_addr); | |
1376 | if (!retval && infop) | |
1377 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1378 | if (!retval && infop) | |
1379 | retval = put_user(0, &infop->si_errno); | |
1380 | if (!retval && infop) { | |
1381 | int why; | |
1382 | ||
1383 | if ((status & 0x7f) == 0) { | |
1384 | why = CLD_EXITED; | |
1385 | status >>= 8; | |
1386 | } else { | |
1387 | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | |
1388 | status &= 0x7f; | |
1389 | } | |
1390 | retval = put_user((short)why, &infop->si_code); | |
1391 | if (!retval) | |
1392 | retval = put_user(status, &infop->si_status); | |
1393 | } | |
1394 | if (!retval && infop) | |
3a515e4a | 1395 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1396 | if (!retval && infop) |
c69e8d9c | 1397 | retval = put_user(uid, &infop->si_uid); |
2f4e6e2a | 1398 | if (!retval) |
3a515e4a | 1399 | retval = pid; |
2f4e6e2a ON |
1400 | |
1401 | if (traced) { | |
1da177e4 | 1402 | write_lock_irq(&tasklist_lock); |
2f4e6e2a ON |
1403 | /* We dropped tasklist, ptracer could die and untrace */ |
1404 | ptrace_unlink(p); | |
1405 | /* | |
1406 | * If this is not a detached task, notify the parent. | |
1407 | * If it's still not detached after that, don't release | |
1408 | * it now. | |
1409 | */ | |
d839fd4d | 1410 | if (!task_detached(p)) { |
2f4e6e2a | 1411 | do_notify_parent(p, p->exit_signal); |
d839fd4d | 1412 | if (!task_detached(p)) { |
2f4e6e2a ON |
1413 | p->exit_state = EXIT_ZOMBIE; |
1414 | p = NULL; | |
1da177e4 LT |
1415 | } |
1416 | } | |
1417 | write_unlock_irq(&tasklist_lock); | |
1418 | } | |
1419 | if (p != NULL) | |
1420 | release_task(p); | |
2f4e6e2a | 1421 | |
1da177e4 LT |
1422 | return retval; |
1423 | } | |
1424 | ||
1425 | /* | |
1426 | * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold | |
1427 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1428 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1429 | * released the lock and the system call should return. | |
1430 | */ | |
f470021a | 1431 | static int wait_task_stopped(int ptrace, struct task_struct *p, |
98abed02 | 1432 | int options, struct siginfo __user *infop, |
1da177e4 LT |
1433 | int __user *stat_addr, struct rusage __user *ru) |
1434 | { | |
ee7c82da ON |
1435 | int retval, exit_code, why; |
1436 | uid_t uid = 0; /* unneeded, required by compiler */ | |
c8950783 | 1437 | pid_t pid; |
1da177e4 | 1438 | |
f470021a | 1439 | if (!(options & WUNTRACED)) |
98abed02 RM |
1440 | return 0; |
1441 | ||
ee7c82da ON |
1442 | exit_code = 0; |
1443 | spin_lock_irq(&p->sighand->siglock); | |
1444 | ||
1445 | if (unlikely(!task_is_stopped_or_traced(p))) | |
1446 | goto unlock_sig; | |
1447 | ||
f470021a | 1448 | if (!ptrace && p->signal->group_stop_count > 0) |
1da177e4 LT |
1449 | /* |
1450 | * A group stop is in progress and this is the group leader. | |
1451 | * We won't report until all threads have stopped. | |
1452 | */ | |
ee7c82da ON |
1453 | goto unlock_sig; |
1454 | ||
1455 | exit_code = p->exit_code; | |
1456 | if (!exit_code) | |
1457 | goto unlock_sig; | |
1458 | ||
98abed02 | 1459 | if (!unlikely(options & WNOWAIT)) |
ee7c82da ON |
1460 | p->exit_code = 0; |
1461 | ||
c69e8d9c DH |
1462 | /* don't need the RCU readlock here as we're holding a spinlock */ |
1463 | uid = __task_cred(p)->uid; | |
ee7c82da ON |
1464 | unlock_sig: |
1465 | spin_unlock_irq(&p->sighand->siglock); | |
1466 | if (!exit_code) | |
1da177e4 LT |
1467 | return 0; |
1468 | ||
1469 | /* | |
1470 | * Now we are pretty sure this task is interesting. | |
1471 | * Make sure it doesn't get reaped out from under us while we | |
1472 | * give up the lock and then examine it below. We don't want to | |
1473 | * keep holding onto the tasklist_lock while we call getrusage and | |
1474 | * possibly take page faults for user memory. | |
1475 | */ | |
1476 | get_task_struct(p); | |
6c5f3e7b | 1477 | pid = task_pid_vnr(p); |
f470021a | 1478 | why = ptrace ? CLD_TRAPPED : CLD_STOPPED; |
1da177e4 LT |
1479 | read_unlock(&tasklist_lock); |
1480 | ||
98abed02 | 1481 | if (unlikely(options & WNOWAIT)) |
1da177e4 | 1482 | return wait_noreap_copyout(p, pid, uid, |
e6ceb32a | 1483 | why, exit_code, |
1da177e4 | 1484 | infop, ru); |
1da177e4 LT |
1485 | |
1486 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1487 | if (!retval && stat_addr) | |
1488 | retval = put_user((exit_code << 8) | 0x7f, stat_addr); | |
1489 | if (!retval && infop) | |
1490 | retval = put_user(SIGCHLD, &infop->si_signo); | |
1491 | if (!retval && infop) | |
1492 | retval = put_user(0, &infop->si_errno); | |
1493 | if (!retval && infop) | |
6efcae46 | 1494 | retval = put_user((short)why, &infop->si_code); |
1da177e4 LT |
1495 | if (!retval && infop) |
1496 | retval = put_user(exit_code, &infop->si_status); | |
1497 | if (!retval && infop) | |
c8950783 | 1498 | retval = put_user(pid, &infop->si_pid); |
1da177e4 | 1499 | if (!retval && infop) |
ee7c82da | 1500 | retval = put_user(uid, &infop->si_uid); |
1da177e4 | 1501 | if (!retval) |
c8950783 | 1502 | retval = pid; |
1da177e4 LT |
1503 | put_task_struct(p); |
1504 | ||
1505 | BUG_ON(!retval); | |
1506 | return retval; | |
1507 | } | |
1508 | ||
1509 | /* | |
1510 | * Handle do_wait work for one task in a live, non-stopped state. | |
1511 | * read_lock(&tasklist_lock) on entry. If we return zero, we still hold | |
1512 | * the lock and this task is uninteresting. If we return nonzero, we have | |
1513 | * released the lock and the system call should return. | |
1514 | */ | |
98abed02 | 1515 | static int wait_task_continued(struct task_struct *p, int options, |
1da177e4 LT |
1516 | struct siginfo __user *infop, |
1517 | int __user *stat_addr, struct rusage __user *ru) | |
1518 | { | |
1519 | int retval; | |
1520 | pid_t pid; | |
1521 | uid_t uid; | |
1522 | ||
98abed02 RM |
1523 | if (!unlikely(options & WCONTINUED)) |
1524 | return 0; | |
1525 | ||
1da177e4 LT |
1526 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) |
1527 | return 0; | |
1528 | ||
1529 | spin_lock_irq(&p->sighand->siglock); | |
1530 | /* Re-check with the lock held. */ | |
1531 | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | |
1532 | spin_unlock_irq(&p->sighand->siglock); | |
1533 | return 0; | |
1534 | } | |
98abed02 | 1535 | if (!unlikely(options & WNOWAIT)) |
1da177e4 | 1536 | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; |
c69e8d9c | 1537 | uid = __task_cred(p)->uid; |
1da177e4 LT |
1538 | spin_unlock_irq(&p->sighand->siglock); |
1539 | ||
6c5f3e7b | 1540 | pid = task_pid_vnr(p); |
1da177e4 LT |
1541 | get_task_struct(p); |
1542 | read_unlock(&tasklist_lock); | |
1543 | ||
1544 | if (!infop) { | |
1545 | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | |
1546 | put_task_struct(p); | |
1547 | if (!retval && stat_addr) | |
1548 | retval = put_user(0xffff, stat_addr); | |
1549 | if (!retval) | |
3a515e4a | 1550 | retval = pid; |
1da177e4 LT |
1551 | } else { |
1552 | retval = wait_noreap_copyout(p, pid, uid, | |
1553 | CLD_CONTINUED, SIGCONT, | |
1554 | infop, ru); | |
1555 | BUG_ON(retval == 0); | |
1556 | } | |
1557 | ||
1558 | return retval; | |
1559 | } | |
1560 | ||
98abed02 RM |
1561 | /* |
1562 | * Consider @p for a wait by @parent. | |
1563 | * | |
1564 | * -ECHILD should be in *@notask_error before the first call. | |
1565 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | |
1566 | * Returns zero if the search for a child should continue; | |
14dd0b81 RM |
1567 | * then *@notask_error is 0 if @p is an eligible child, |
1568 | * or another error from security_task_wait(), or still -ECHILD. | |
98abed02 | 1569 | */ |
f470021a | 1570 | static int wait_consider_task(struct task_struct *parent, int ptrace, |
98abed02 RM |
1571 | struct task_struct *p, int *notask_error, |
1572 | enum pid_type type, struct pid *pid, int options, | |
1573 | struct siginfo __user *infop, | |
1574 | int __user *stat_addr, struct rusage __user *ru) | |
1575 | { | |
1576 | int ret = eligible_child(type, pid, options, p); | |
14dd0b81 | 1577 | if (!ret) |
98abed02 RM |
1578 | return ret; |
1579 | ||
14dd0b81 RM |
1580 | if (unlikely(ret < 0)) { |
1581 | /* | |
1582 | * If we have not yet seen any eligible child, | |
1583 | * then let this error code replace -ECHILD. | |
1584 | * A permission error will give the user a clue | |
1585 | * to look for security policy problems, rather | |
1586 | * than for mysterious wait bugs. | |
1587 | */ | |
1588 | if (*notask_error) | |
1589 | *notask_error = ret; | |
1590 | } | |
1591 | ||
f470021a RM |
1592 | if (likely(!ptrace) && unlikely(p->ptrace)) { |
1593 | /* | |
1594 | * This child is hidden by ptrace. | |
1595 | * We aren't allowed to see it now, but eventually we will. | |
1596 | */ | |
1597 | *notask_error = 0; | |
1598 | return 0; | |
1599 | } | |
1600 | ||
98abed02 RM |
1601 | if (p->exit_state == EXIT_DEAD) |
1602 | return 0; | |
1603 | ||
1604 | /* | |
1605 | * We don't reap group leaders with subthreads. | |
1606 | */ | |
1607 | if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p)) | |
1608 | return wait_task_zombie(p, options, infop, stat_addr, ru); | |
1609 | ||
1610 | /* | |
1611 | * It's stopped or running now, so it might | |
1612 | * later continue, exit, or stop again. | |
1613 | */ | |
1614 | *notask_error = 0; | |
1615 | ||
1616 | if (task_is_stopped_or_traced(p)) | |
f470021a RM |
1617 | return wait_task_stopped(ptrace, p, options, |
1618 | infop, stat_addr, ru); | |
98abed02 RM |
1619 | |
1620 | return wait_task_continued(p, options, infop, stat_addr, ru); | |
1621 | } | |
1622 | ||
1623 | /* | |
1624 | * Do the work of do_wait() for one thread in the group, @tsk. | |
1625 | * | |
1626 | * -ECHILD should be in *@notask_error before the first call. | |
1627 | * Returns nonzero for a final return, when we have unlocked tasklist_lock. | |
1628 | * Returns zero if the search for a child should continue; then | |
14dd0b81 RM |
1629 | * *@notask_error is 0 if there were any eligible children, |
1630 | * or another error from security_task_wait(), or still -ECHILD. | |
98abed02 RM |
1631 | */ |
1632 | static int do_wait_thread(struct task_struct *tsk, int *notask_error, | |
1633 | enum pid_type type, struct pid *pid, int options, | |
1634 | struct siginfo __user *infop, int __user *stat_addr, | |
1635 | struct rusage __user *ru) | |
1636 | { | |
1637 | struct task_struct *p; | |
1638 | ||
1639 | list_for_each_entry(p, &tsk->children, sibling) { | |
f470021a RM |
1640 | /* |
1641 | * Do not consider detached threads. | |
1642 | */ | |
1643 | if (!task_detached(p)) { | |
1644 | int ret = wait_consider_task(tsk, 0, p, notask_error, | |
1645 | type, pid, options, | |
1646 | infop, stat_addr, ru); | |
1647 | if (ret) | |
1648 | return ret; | |
1649 | } | |
98abed02 RM |
1650 | } |
1651 | ||
1652 | return 0; | |
1653 | } | |
1654 | ||
1655 | static int ptrace_do_wait(struct task_struct *tsk, int *notask_error, | |
1656 | enum pid_type type, struct pid *pid, int options, | |
1657 | struct siginfo __user *infop, int __user *stat_addr, | |
1658 | struct rusage __user *ru) | |
1659 | { | |
1660 | struct task_struct *p; | |
1661 | ||
1662 | /* | |
f470021a | 1663 | * Traditionally we see ptrace'd stopped tasks regardless of options. |
98abed02 | 1664 | */ |
f470021a | 1665 | options |= WUNTRACED; |
98abed02 | 1666 | |
f470021a RM |
1667 | list_for_each_entry(p, &tsk->ptraced, ptrace_entry) { |
1668 | int ret = wait_consider_task(tsk, 1, p, notask_error, | |
1669 | type, pid, options, | |
1670 | infop, stat_addr, ru); | |
1671 | if (ret) | |
98abed02 | 1672 | return ret; |
98abed02 RM |
1673 | } |
1674 | ||
1675 | return 0; | |
1676 | } | |
1677 | ||
161550d7 EB |
1678 | static long do_wait(enum pid_type type, struct pid *pid, int options, |
1679 | struct siginfo __user *infop, int __user *stat_addr, | |
1680 | struct rusage __user *ru) | |
1da177e4 LT |
1681 | { |
1682 | DECLARE_WAITQUEUE(wait, current); | |
1683 | struct task_struct *tsk; | |
98abed02 | 1684 | int retval; |
1da177e4 | 1685 | |
0a16b607 MD |
1686 | trace_sched_process_wait(pid); |
1687 | ||
1da177e4 LT |
1688 | add_wait_queue(¤t->signal->wait_chldexit,&wait); |
1689 | repeat: | |
98abed02 RM |
1690 | /* |
1691 | * If there is nothing that can match our critiera just get out. | |
1692 | * We will clear @retval to zero if we see any child that might later | |
1693 | * match our criteria, even if we are not able to reap it yet. | |
1694 | */ | |
161550d7 EB |
1695 | retval = -ECHILD; |
1696 | if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type]))) | |
1697 | goto end; | |
1698 | ||
1da177e4 LT |
1699 | current->state = TASK_INTERRUPTIBLE; |
1700 | read_lock(&tasklist_lock); | |
1701 | tsk = current; | |
1702 | do { | |
98abed02 RM |
1703 | int tsk_result = do_wait_thread(tsk, &retval, |
1704 | type, pid, options, | |
1705 | infop, stat_addr, ru); | |
1706 | if (!tsk_result) | |
1707 | tsk_result = ptrace_do_wait(tsk, &retval, | |
1708 | type, pid, options, | |
1709 | infop, stat_addr, ru); | |
1710 | if (tsk_result) { | |
1711 | /* | |
1712 | * tasklist_lock is unlocked and we have a final result. | |
1713 | */ | |
1714 | retval = tsk_result; | |
1715 | goto end; | |
1da177e4 | 1716 | } |
98abed02 | 1717 | |
1da177e4 LT |
1718 | if (options & __WNOTHREAD) |
1719 | break; | |
1720 | tsk = next_thread(tsk); | |
125e1874 | 1721 | BUG_ON(tsk->signal != current->signal); |
1da177e4 | 1722 | } while (tsk != current); |
1da177e4 | 1723 | read_unlock(&tasklist_lock); |
f2cc3eb1 | 1724 | |
98abed02 | 1725 | if (!retval && !(options & WNOHANG)) { |
1da177e4 | 1726 | retval = -ERESTARTSYS; |
98abed02 RM |
1727 | if (!signal_pending(current)) { |
1728 | schedule(); | |
1729 | goto repeat; | |
1730 | } | |
1da177e4 | 1731 | } |
98abed02 | 1732 | |
1da177e4 LT |
1733 | end: |
1734 | current->state = TASK_RUNNING; | |
1735 | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | |
1736 | if (infop) { | |
1737 | if (retval > 0) | |
9cbab810 | 1738 | retval = 0; |
1da177e4 LT |
1739 | else { |
1740 | /* | |
1741 | * For a WNOHANG return, clear out all the fields | |
1742 | * we would set so the user can easily tell the | |
1743 | * difference. | |
1744 | */ | |
1745 | if (!retval) | |
1746 | retval = put_user(0, &infop->si_signo); | |
1747 | if (!retval) | |
1748 | retval = put_user(0, &infop->si_errno); | |
1749 | if (!retval) | |
1750 | retval = put_user(0, &infop->si_code); | |
1751 | if (!retval) | |
1752 | retval = put_user(0, &infop->si_pid); | |
1753 | if (!retval) | |
1754 | retval = put_user(0, &infop->si_uid); | |
1755 | if (!retval) | |
1756 | retval = put_user(0, &infop->si_status); | |
1757 | } | |
1758 | } | |
1759 | return retval; | |
1760 | } | |
1761 | ||
161550d7 | 1762 | asmlinkage long sys_waitid(int which, pid_t upid, |
1da177e4 LT |
1763 | struct siginfo __user *infop, int options, |
1764 | struct rusage __user *ru) | |
1765 | { | |
161550d7 EB |
1766 | struct pid *pid = NULL; |
1767 | enum pid_type type; | |
1da177e4 LT |
1768 | long ret; |
1769 | ||
1770 | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | |
1771 | return -EINVAL; | |
1772 | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | |
1773 | return -EINVAL; | |
1774 | ||
1775 | switch (which) { | |
1776 | case P_ALL: | |
161550d7 | 1777 | type = PIDTYPE_MAX; |
1da177e4 LT |
1778 | break; |
1779 | case P_PID: | |
161550d7 EB |
1780 | type = PIDTYPE_PID; |
1781 | if (upid <= 0) | |
1da177e4 LT |
1782 | return -EINVAL; |
1783 | break; | |
1784 | case P_PGID: | |
161550d7 EB |
1785 | type = PIDTYPE_PGID; |
1786 | if (upid <= 0) | |
1da177e4 | 1787 | return -EINVAL; |
1da177e4 LT |
1788 | break; |
1789 | default: | |
1790 | return -EINVAL; | |
1791 | } | |
1792 | ||
161550d7 EB |
1793 | if (type < PIDTYPE_MAX) |
1794 | pid = find_get_pid(upid); | |
1795 | ret = do_wait(type, pid, options, infop, NULL, ru); | |
1796 | put_pid(pid); | |
1da177e4 LT |
1797 | |
1798 | /* avoid REGPARM breakage on x86: */ | |
54a01510 | 1799 | asmlinkage_protect(5, ret, which, upid, infop, options, ru); |
1da177e4 LT |
1800 | return ret; |
1801 | } | |
1802 | ||
161550d7 | 1803 | asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr, |
1da177e4 LT |
1804 | int options, struct rusage __user *ru) |
1805 | { | |
161550d7 EB |
1806 | struct pid *pid = NULL; |
1807 | enum pid_type type; | |
1da177e4 LT |
1808 | long ret; |
1809 | ||
1810 | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | |
1811 | __WNOTHREAD|__WCLONE|__WALL)) | |
1812 | return -EINVAL; | |
161550d7 EB |
1813 | |
1814 | if (upid == -1) | |
1815 | type = PIDTYPE_MAX; | |
1816 | else if (upid < 0) { | |
1817 | type = PIDTYPE_PGID; | |
1818 | pid = find_get_pid(-upid); | |
1819 | } else if (upid == 0) { | |
1820 | type = PIDTYPE_PGID; | |
1821 | pid = get_pid(task_pgrp(current)); | |
1822 | } else /* upid > 0 */ { | |
1823 | type = PIDTYPE_PID; | |
1824 | pid = find_get_pid(upid); | |
1825 | } | |
1826 | ||
1827 | ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru); | |
1828 | put_pid(pid); | |
1da177e4 LT |
1829 | |
1830 | /* avoid REGPARM breakage on x86: */ | |
54a01510 | 1831 | asmlinkage_protect(4, ret, upid, stat_addr, options, ru); |
1da177e4 LT |
1832 | return ret; |
1833 | } | |
1834 | ||
1835 | #ifdef __ARCH_WANT_SYS_WAITPID | |
1836 | ||
1837 | /* | |
1838 | * sys_waitpid() remains for compatibility. waitpid() should be | |
1839 | * implemented by calling sys_wait4() from libc.a. | |
1840 | */ | |
1841 | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) | |
1842 | { | |
1843 | return sys_wait4(pid, stat_addr, options, NULL); | |
1844 | } | |
1845 | ||
1846 | #endif |