]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * mm/rmap.c - physical to virtual reverse mappings | |
3 | * | |
4 | * Copyright 2001, Rik van Riel <[email protected]> | |
5 | * Released under the General Public License (GPL). | |
6 | * | |
7 | * Simple, low overhead reverse mapping scheme. | |
8 | * Please try to keep this thing as modular as possible. | |
9 | * | |
10 | * Provides methods for unmapping each kind of mapped page: | |
11 | * the anon methods track anonymous pages, and | |
12 | * the file methods track pages belonging to an inode. | |
13 | * | |
14 | * Original design by Rik van Riel <[email protected]> 2001 | |
15 | * File methods by Dave McCracken <[email protected]> 2003, 2004 | |
16 | * Anonymous methods by Andrea Arcangeli <[email protected]> 2004 | |
98f32602 | 17 | * Contributions by Hugh Dickins 2003, 2004 |
1da177e4 LT |
18 | */ |
19 | ||
20 | /* | |
21 | * Lock ordering in mm: | |
22 | * | |
1b1dcc1b | 23 | * inode->i_mutex (while writing or truncating, not reading or faulting) |
82591e6e NP |
24 | * mm->mmap_sem |
25 | * page->flags PG_locked (lock_page) | |
c8c06efa | 26 | * mapping->i_mmap_rwsem |
5a505085 | 27 | * anon_vma->rwsem |
82591e6e NP |
28 | * mm->page_table_lock or pte_lock |
29 | * zone->lru_lock (in mark_page_accessed, isolate_lru_page) | |
30 | * swap_lock (in swap_duplicate, swap_info_get) | |
31 | * mmlist_lock (in mmput, drain_mmlist and others) | |
32 | * mapping->private_lock (in __set_page_dirty_buffers) | |
c4843a75 GT |
33 | * mem_cgroup_{begin,end}_page_stat (memcg->move_lock) |
34 | * mapping->tree_lock (widely used) | |
250df6ed | 35 | * inode->i_lock (in set_page_dirty's __mark_inode_dirty) |
f758eeab | 36 | * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty) |
82591e6e NP |
37 | * sb_lock (within inode_lock in fs/fs-writeback.c) |
38 | * mapping->tree_lock (widely used, in set_page_dirty, | |
39 | * in arch-dependent flush_dcache_mmap_lock, | |
f758eeab | 40 | * within bdi.wb->list_lock in __sync_single_inode) |
6a46079c | 41 | * |
5a505085 | 42 | * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon) |
9b679320 | 43 | * ->tasklist_lock |
6a46079c | 44 | * pte map lock |
1da177e4 LT |
45 | */ |
46 | ||
47 | #include <linux/mm.h> | |
48 | #include <linux/pagemap.h> | |
49 | #include <linux/swap.h> | |
50 | #include <linux/swapops.h> | |
51 | #include <linux/slab.h> | |
52 | #include <linux/init.h> | |
5ad64688 | 53 | #include <linux/ksm.h> |
1da177e4 LT |
54 | #include <linux/rmap.h> |
55 | #include <linux/rcupdate.h> | |
b95f1b31 | 56 | #include <linux/export.h> |
8a9f3ccd | 57 | #include <linux/memcontrol.h> |
cddb8a5c | 58 | #include <linux/mmu_notifier.h> |
64cdd548 | 59 | #include <linux/migrate.h> |
0fe6e20b | 60 | #include <linux/hugetlb.h> |
ef5d437f | 61 | #include <linux/backing-dev.h> |
33c3fc71 | 62 | #include <linux/page_idle.h> |
1da177e4 LT |
63 | |
64 | #include <asm/tlbflush.h> | |
65 | ||
72b252ae MG |
66 | #include <trace/events/tlb.h> |
67 | ||
b291f000 NP |
68 | #include "internal.h" |
69 | ||
fdd2e5f8 | 70 | static struct kmem_cache *anon_vma_cachep; |
5beb4930 | 71 | static struct kmem_cache *anon_vma_chain_cachep; |
fdd2e5f8 AB |
72 | |
73 | static inline struct anon_vma *anon_vma_alloc(void) | |
74 | { | |
01d8b20d PZ |
75 | struct anon_vma *anon_vma; |
76 | ||
77 | anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL); | |
78 | if (anon_vma) { | |
79 | atomic_set(&anon_vma->refcount, 1); | |
7a3ef208 KK |
80 | anon_vma->degree = 1; /* Reference for first vma */ |
81 | anon_vma->parent = anon_vma; | |
01d8b20d PZ |
82 | /* |
83 | * Initialise the anon_vma root to point to itself. If called | |
84 | * from fork, the root will be reset to the parents anon_vma. | |
85 | */ | |
86 | anon_vma->root = anon_vma; | |
87 | } | |
88 | ||
89 | return anon_vma; | |
fdd2e5f8 AB |
90 | } |
91 | ||
01d8b20d | 92 | static inline void anon_vma_free(struct anon_vma *anon_vma) |
fdd2e5f8 | 93 | { |
01d8b20d | 94 | VM_BUG_ON(atomic_read(&anon_vma->refcount)); |
88c22088 PZ |
95 | |
96 | /* | |
4fc3f1d6 | 97 | * Synchronize against page_lock_anon_vma_read() such that |
88c22088 PZ |
98 | * we can safely hold the lock without the anon_vma getting |
99 | * freed. | |
100 | * | |
101 | * Relies on the full mb implied by the atomic_dec_and_test() from | |
102 | * put_anon_vma() against the acquire barrier implied by | |
4fc3f1d6 | 103 | * down_read_trylock() from page_lock_anon_vma_read(). This orders: |
88c22088 | 104 | * |
4fc3f1d6 IM |
105 | * page_lock_anon_vma_read() VS put_anon_vma() |
106 | * down_read_trylock() atomic_dec_and_test() | |
88c22088 | 107 | * LOCK MB |
4fc3f1d6 | 108 | * atomic_read() rwsem_is_locked() |
88c22088 PZ |
109 | * |
110 | * LOCK should suffice since the actual taking of the lock must | |
111 | * happen _before_ what follows. | |
112 | */ | |
7f39dda9 | 113 | might_sleep(); |
5a505085 | 114 | if (rwsem_is_locked(&anon_vma->root->rwsem)) { |
4fc3f1d6 | 115 | anon_vma_lock_write(anon_vma); |
08b52706 | 116 | anon_vma_unlock_write(anon_vma); |
88c22088 PZ |
117 | } |
118 | ||
fdd2e5f8 AB |
119 | kmem_cache_free(anon_vma_cachep, anon_vma); |
120 | } | |
1da177e4 | 121 | |
dd34739c | 122 | static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp) |
5beb4930 | 123 | { |
dd34739c | 124 | return kmem_cache_alloc(anon_vma_chain_cachep, gfp); |
5beb4930 RR |
125 | } |
126 | ||
e574b5fd | 127 | static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain) |
5beb4930 RR |
128 | { |
129 | kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain); | |
130 | } | |
131 | ||
6583a843 KC |
132 | static void anon_vma_chain_link(struct vm_area_struct *vma, |
133 | struct anon_vma_chain *avc, | |
134 | struct anon_vma *anon_vma) | |
135 | { | |
136 | avc->vma = vma; | |
137 | avc->anon_vma = anon_vma; | |
138 | list_add(&avc->same_vma, &vma->anon_vma_chain); | |
bf181b9f | 139 | anon_vma_interval_tree_insert(avc, &anon_vma->rb_root); |
6583a843 KC |
140 | } |
141 | ||
d9d332e0 LT |
142 | /** |
143 | * anon_vma_prepare - attach an anon_vma to a memory region | |
144 | * @vma: the memory region in question | |
145 | * | |
146 | * This makes sure the memory mapping described by 'vma' has | |
147 | * an 'anon_vma' attached to it, so that we can associate the | |
148 | * anonymous pages mapped into it with that anon_vma. | |
149 | * | |
150 | * The common case will be that we already have one, but if | |
23a0790a | 151 | * not we either need to find an adjacent mapping that we |
d9d332e0 LT |
152 | * can re-use the anon_vma from (very common when the only |
153 | * reason for splitting a vma has been mprotect()), or we | |
154 | * allocate a new one. | |
155 | * | |
156 | * Anon-vma allocations are very subtle, because we may have | |
4fc3f1d6 | 157 | * optimistically looked up an anon_vma in page_lock_anon_vma_read() |
d9d332e0 LT |
158 | * and that may actually touch the spinlock even in the newly |
159 | * allocated vma (it depends on RCU to make sure that the | |
160 | * anon_vma isn't actually destroyed). | |
161 | * | |
162 | * As a result, we need to do proper anon_vma locking even | |
163 | * for the new allocation. At the same time, we do not want | |
164 | * to do any locking for the common case of already having | |
165 | * an anon_vma. | |
166 | * | |
167 | * This must be called with the mmap_sem held for reading. | |
168 | */ | |
1da177e4 LT |
169 | int anon_vma_prepare(struct vm_area_struct *vma) |
170 | { | |
171 | struct anon_vma *anon_vma = vma->anon_vma; | |
5beb4930 | 172 | struct anon_vma_chain *avc; |
1da177e4 LT |
173 | |
174 | might_sleep(); | |
175 | if (unlikely(!anon_vma)) { | |
176 | struct mm_struct *mm = vma->vm_mm; | |
d9d332e0 | 177 | struct anon_vma *allocated; |
1da177e4 | 178 | |
dd34739c | 179 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
180 | if (!avc) |
181 | goto out_enomem; | |
182 | ||
1da177e4 | 183 | anon_vma = find_mergeable_anon_vma(vma); |
d9d332e0 LT |
184 | allocated = NULL; |
185 | if (!anon_vma) { | |
1da177e4 LT |
186 | anon_vma = anon_vma_alloc(); |
187 | if (unlikely(!anon_vma)) | |
5beb4930 | 188 | goto out_enomem_free_avc; |
1da177e4 | 189 | allocated = anon_vma; |
1da177e4 LT |
190 | } |
191 | ||
4fc3f1d6 | 192 | anon_vma_lock_write(anon_vma); |
1da177e4 LT |
193 | /* page_table_lock to protect against threads */ |
194 | spin_lock(&mm->page_table_lock); | |
195 | if (likely(!vma->anon_vma)) { | |
196 | vma->anon_vma = anon_vma; | |
6583a843 | 197 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 KK |
198 | /* vma reference or self-parent link for new root */ |
199 | anon_vma->degree++; | |
1da177e4 | 200 | allocated = NULL; |
31f2b0eb | 201 | avc = NULL; |
1da177e4 LT |
202 | } |
203 | spin_unlock(&mm->page_table_lock); | |
08b52706 | 204 | anon_vma_unlock_write(anon_vma); |
31f2b0eb ON |
205 | |
206 | if (unlikely(allocated)) | |
01d8b20d | 207 | put_anon_vma(allocated); |
31f2b0eb | 208 | if (unlikely(avc)) |
5beb4930 | 209 | anon_vma_chain_free(avc); |
1da177e4 LT |
210 | } |
211 | return 0; | |
5beb4930 RR |
212 | |
213 | out_enomem_free_avc: | |
214 | anon_vma_chain_free(avc); | |
215 | out_enomem: | |
216 | return -ENOMEM; | |
1da177e4 LT |
217 | } |
218 | ||
bb4aa396 LT |
219 | /* |
220 | * This is a useful helper function for locking the anon_vma root as | |
221 | * we traverse the vma->anon_vma_chain, looping over anon_vma's that | |
222 | * have the same vma. | |
223 | * | |
224 | * Such anon_vma's should have the same root, so you'd expect to see | |
225 | * just a single mutex_lock for the whole traversal. | |
226 | */ | |
227 | static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma) | |
228 | { | |
229 | struct anon_vma *new_root = anon_vma->root; | |
230 | if (new_root != root) { | |
231 | if (WARN_ON_ONCE(root)) | |
5a505085 | 232 | up_write(&root->rwsem); |
bb4aa396 | 233 | root = new_root; |
5a505085 | 234 | down_write(&root->rwsem); |
bb4aa396 LT |
235 | } |
236 | return root; | |
237 | } | |
238 | ||
239 | static inline void unlock_anon_vma_root(struct anon_vma *root) | |
240 | { | |
241 | if (root) | |
5a505085 | 242 | up_write(&root->rwsem); |
bb4aa396 LT |
243 | } |
244 | ||
5beb4930 RR |
245 | /* |
246 | * Attach the anon_vmas from src to dst. | |
247 | * Returns 0 on success, -ENOMEM on failure. | |
7a3ef208 KK |
248 | * |
249 | * If dst->anon_vma is NULL this function tries to find and reuse existing | |
250 | * anon_vma which has no vmas and only one child anon_vma. This prevents | |
251 | * degradation of anon_vma hierarchy to endless linear chain in case of | |
252 | * constantly forking task. On the other hand, an anon_vma with more than one | |
253 | * child isn't reused even if there was no alive vma, thus rmap walker has a | |
254 | * good chance of avoiding scanning the whole hierarchy when it searches where | |
255 | * page is mapped. | |
5beb4930 RR |
256 | */ |
257 | int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src) | |
1da177e4 | 258 | { |
5beb4930 | 259 | struct anon_vma_chain *avc, *pavc; |
bb4aa396 | 260 | struct anon_vma *root = NULL; |
5beb4930 | 261 | |
646d87b4 | 262 | list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) { |
bb4aa396 LT |
263 | struct anon_vma *anon_vma; |
264 | ||
dd34739c LT |
265 | avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN); |
266 | if (unlikely(!avc)) { | |
267 | unlock_anon_vma_root(root); | |
268 | root = NULL; | |
269 | avc = anon_vma_chain_alloc(GFP_KERNEL); | |
270 | if (!avc) | |
271 | goto enomem_failure; | |
272 | } | |
bb4aa396 LT |
273 | anon_vma = pavc->anon_vma; |
274 | root = lock_anon_vma_root(root, anon_vma); | |
275 | anon_vma_chain_link(dst, avc, anon_vma); | |
7a3ef208 KK |
276 | |
277 | /* | |
278 | * Reuse existing anon_vma if its degree lower than two, | |
279 | * that means it has no vma and only one anon_vma child. | |
280 | * | |
281 | * Do not chose parent anon_vma, otherwise first child | |
282 | * will always reuse it. Root anon_vma is never reused: | |
283 | * it has self-parent reference and at least one child. | |
284 | */ | |
285 | if (!dst->anon_vma && anon_vma != src->anon_vma && | |
286 | anon_vma->degree < 2) | |
287 | dst->anon_vma = anon_vma; | |
5beb4930 | 288 | } |
7a3ef208 KK |
289 | if (dst->anon_vma) |
290 | dst->anon_vma->degree++; | |
bb4aa396 | 291 | unlock_anon_vma_root(root); |
5beb4930 | 292 | return 0; |
1da177e4 | 293 | |
5beb4930 | 294 | enomem_failure: |
3fe89b3e LY |
295 | /* |
296 | * dst->anon_vma is dropped here otherwise its degree can be incorrectly | |
297 | * decremented in unlink_anon_vmas(). | |
298 | * We can safely do this because callers of anon_vma_clone() don't care | |
299 | * about dst->anon_vma if anon_vma_clone() failed. | |
300 | */ | |
301 | dst->anon_vma = NULL; | |
5beb4930 RR |
302 | unlink_anon_vmas(dst); |
303 | return -ENOMEM; | |
1da177e4 LT |
304 | } |
305 | ||
5beb4930 RR |
306 | /* |
307 | * Attach vma to its own anon_vma, as well as to the anon_vmas that | |
308 | * the corresponding VMA in the parent process is attached to. | |
309 | * Returns 0 on success, non-zero on failure. | |
310 | */ | |
311 | int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma) | |
1da177e4 | 312 | { |
5beb4930 RR |
313 | struct anon_vma_chain *avc; |
314 | struct anon_vma *anon_vma; | |
c4ea95d7 | 315 | int error; |
1da177e4 | 316 | |
5beb4930 RR |
317 | /* Don't bother if the parent process has no anon_vma here. */ |
318 | if (!pvma->anon_vma) | |
319 | return 0; | |
320 | ||
7a3ef208 KK |
321 | /* Drop inherited anon_vma, we'll reuse existing or allocate new. */ |
322 | vma->anon_vma = NULL; | |
323 | ||
5beb4930 RR |
324 | /* |
325 | * First, attach the new VMA to the parent VMA's anon_vmas, | |
326 | * so rmap can find non-COWed pages in child processes. | |
327 | */ | |
c4ea95d7 DF |
328 | error = anon_vma_clone(vma, pvma); |
329 | if (error) | |
330 | return error; | |
5beb4930 | 331 | |
7a3ef208 KK |
332 | /* An existing anon_vma has been reused, all done then. */ |
333 | if (vma->anon_vma) | |
334 | return 0; | |
335 | ||
5beb4930 RR |
336 | /* Then add our own anon_vma. */ |
337 | anon_vma = anon_vma_alloc(); | |
338 | if (!anon_vma) | |
339 | goto out_error; | |
dd34739c | 340 | avc = anon_vma_chain_alloc(GFP_KERNEL); |
5beb4930 RR |
341 | if (!avc) |
342 | goto out_error_free_anon_vma; | |
5c341ee1 RR |
343 | |
344 | /* | |
345 | * The root anon_vma's spinlock is the lock actually used when we | |
346 | * lock any of the anon_vmas in this anon_vma tree. | |
347 | */ | |
348 | anon_vma->root = pvma->anon_vma->root; | |
7a3ef208 | 349 | anon_vma->parent = pvma->anon_vma; |
76545066 | 350 | /* |
01d8b20d PZ |
351 | * With refcounts, an anon_vma can stay around longer than the |
352 | * process it belongs to. The root anon_vma needs to be pinned until | |
353 | * this anon_vma is freed, because the lock lives in the root. | |
76545066 RR |
354 | */ |
355 | get_anon_vma(anon_vma->root); | |
5beb4930 RR |
356 | /* Mark this anon_vma as the one where our new (COWed) pages go. */ |
357 | vma->anon_vma = anon_vma; | |
4fc3f1d6 | 358 | anon_vma_lock_write(anon_vma); |
5c341ee1 | 359 | anon_vma_chain_link(vma, avc, anon_vma); |
7a3ef208 | 360 | anon_vma->parent->degree++; |
08b52706 | 361 | anon_vma_unlock_write(anon_vma); |
5beb4930 RR |
362 | |
363 | return 0; | |
364 | ||
365 | out_error_free_anon_vma: | |
01d8b20d | 366 | put_anon_vma(anon_vma); |
5beb4930 | 367 | out_error: |
4946d54c | 368 | unlink_anon_vmas(vma); |
5beb4930 | 369 | return -ENOMEM; |
1da177e4 LT |
370 | } |
371 | ||
5beb4930 RR |
372 | void unlink_anon_vmas(struct vm_area_struct *vma) |
373 | { | |
374 | struct anon_vma_chain *avc, *next; | |
eee2acba | 375 | struct anon_vma *root = NULL; |
5beb4930 | 376 | |
5c341ee1 RR |
377 | /* |
378 | * Unlink each anon_vma chained to the VMA. This list is ordered | |
379 | * from newest to oldest, ensuring the root anon_vma gets freed last. | |
380 | */ | |
5beb4930 | 381 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { |
eee2acba PZ |
382 | struct anon_vma *anon_vma = avc->anon_vma; |
383 | ||
384 | root = lock_anon_vma_root(root, anon_vma); | |
bf181b9f | 385 | anon_vma_interval_tree_remove(avc, &anon_vma->rb_root); |
eee2acba PZ |
386 | |
387 | /* | |
388 | * Leave empty anon_vmas on the list - we'll need | |
389 | * to free them outside the lock. | |
390 | */ | |
7a3ef208 KK |
391 | if (RB_EMPTY_ROOT(&anon_vma->rb_root)) { |
392 | anon_vma->parent->degree--; | |
eee2acba | 393 | continue; |
7a3ef208 | 394 | } |
eee2acba PZ |
395 | |
396 | list_del(&avc->same_vma); | |
397 | anon_vma_chain_free(avc); | |
398 | } | |
7a3ef208 KK |
399 | if (vma->anon_vma) |
400 | vma->anon_vma->degree--; | |
eee2acba PZ |
401 | unlock_anon_vma_root(root); |
402 | ||
403 | /* | |
404 | * Iterate the list once more, it now only contains empty and unlinked | |
405 | * anon_vmas, destroy them. Could not do before due to __put_anon_vma() | |
5a505085 | 406 | * needing to write-acquire the anon_vma->root->rwsem. |
eee2acba PZ |
407 | */ |
408 | list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) { | |
409 | struct anon_vma *anon_vma = avc->anon_vma; | |
410 | ||
7a3ef208 | 411 | BUG_ON(anon_vma->degree); |
eee2acba PZ |
412 | put_anon_vma(anon_vma); |
413 | ||
5beb4930 RR |
414 | list_del(&avc->same_vma); |
415 | anon_vma_chain_free(avc); | |
416 | } | |
417 | } | |
418 | ||
51cc5068 | 419 | static void anon_vma_ctor(void *data) |
1da177e4 | 420 | { |
a35afb83 | 421 | struct anon_vma *anon_vma = data; |
1da177e4 | 422 | |
5a505085 | 423 | init_rwsem(&anon_vma->rwsem); |
83813267 | 424 | atomic_set(&anon_vma->refcount, 0); |
bf181b9f | 425 | anon_vma->rb_root = RB_ROOT; |
1da177e4 LT |
426 | } |
427 | ||
428 | void __init anon_vma_init(void) | |
429 | { | |
430 | anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | |
5d097056 VD |
431 | 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT, |
432 | anon_vma_ctor); | |
433 | anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, | |
434 | SLAB_PANIC|SLAB_ACCOUNT); | |
1da177e4 LT |
435 | } |
436 | ||
437 | /* | |
6111e4ca PZ |
438 | * Getting a lock on a stable anon_vma from a page off the LRU is tricky! |
439 | * | |
440 | * Since there is no serialization what so ever against page_remove_rmap() | |
441 | * the best this function can do is return a locked anon_vma that might | |
442 | * have been relevant to this page. | |
443 | * | |
444 | * The page might have been remapped to a different anon_vma or the anon_vma | |
445 | * returned may already be freed (and even reused). | |
446 | * | |
bc658c96 PZ |
447 | * In case it was remapped to a different anon_vma, the new anon_vma will be a |
448 | * child of the old anon_vma, and the anon_vma lifetime rules will therefore | |
449 | * ensure that any anon_vma obtained from the page will still be valid for as | |
450 | * long as we observe page_mapped() [ hence all those page_mapped() tests ]. | |
451 | * | |
6111e4ca PZ |
452 | * All users of this function must be very careful when walking the anon_vma |
453 | * chain and verify that the page in question is indeed mapped in it | |
454 | * [ something equivalent to page_mapped_in_vma() ]. | |
455 | * | |
456 | * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap() | |
457 | * that the anon_vma pointer from page->mapping is valid if there is a | |
458 | * mapcount, we can dereference the anon_vma after observing those. | |
1da177e4 | 459 | */ |
746b18d4 | 460 | struct anon_vma *page_get_anon_vma(struct page *page) |
1da177e4 | 461 | { |
746b18d4 | 462 | struct anon_vma *anon_vma = NULL; |
1da177e4 LT |
463 | unsigned long anon_mapping; |
464 | ||
465 | rcu_read_lock(); | |
4db0c3c2 | 466 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
3ca7b3c5 | 467 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
1da177e4 LT |
468 | goto out; |
469 | if (!page_mapped(page)) | |
470 | goto out; | |
471 | ||
472 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
746b18d4 PZ |
473 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { |
474 | anon_vma = NULL; | |
475 | goto out; | |
476 | } | |
f1819427 HD |
477 | |
478 | /* | |
479 | * If this page is still mapped, then its anon_vma cannot have been | |
746b18d4 PZ |
480 | * freed. But if it has been unmapped, we have no security against the |
481 | * anon_vma structure being freed and reused (for another anon_vma: | |
482 | * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero() | |
483 | * above cannot corrupt). | |
f1819427 | 484 | */ |
746b18d4 | 485 | if (!page_mapped(page)) { |
7f39dda9 | 486 | rcu_read_unlock(); |
746b18d4 | 487 | put_anon_vma(anon_vma); |
7f39dda9 | 488 | return NULL; |
746b18d4 | 489 | } |
1da177e4 LT |
490 | out: |
491 | rcu_read_unlock(); | |
746b18d4 PZ |
492 | |
493 | return anon_vma; | |
494 | } | |
495 | ||
88c22088 PZ |
496 | /* |
497 | * Similar to page_get_anon_vma() except it locks the anon_vma. | |
498 | * | |
499 | * Its a little more complex as it tries to keep the fast path to a single | |
500 | * atomic op -- the trylock. If we fail the trylock, we fall back to getting a | |
501 | * reference like with page_get_anon_vma() and then block on the mutex. | |
502 | */ | |
4fc3f1d6 | 503 | struct anon_vma *page_lock_anon_vma_read(struct page *page) |
746b18d4 | 504 | { |
88c22088 | 505 | struct anon_vma *anon_vma = NULL; |
eee0f252 | 506 | struct anon_vma *root_anon_vma; |
88c22088 | 507 | unsigned long anon_mapping; |
746b18d4 | 508 | |
88c22088 | 509 | rcu_read_lock(); |
4db0c3c2 | 510 | anon_mapping = (unsigned long)READ_ONCE(page->mapping); |
88c22088 PZ |
511 | if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON) |
512 | goto out; | |
513 | if (!page_mapped(page)) | |
514 | goto out; | |
515 | ||
516 | anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | |
4db0c3c2 | 517 | root_anon_vma = READ_ONCE(anon_vma->root); |
4fc3f1d6 | 518 | if (down_read_trylock(&root_anon_vma->rwsem)) { |
88c22088 | 519 | /* |
eee0f252 HD |
520 | * If the page is still mapped, then this anon_vma is still |
521 | * its anon_vma, and holding the mutex ensures that it will | |
bc658c96 | 522 | * not go away, see anon_vma_free(). |
88c22088 | 523 | */ |
eee0f252 | 524 | if (!page_mapped(page)) { |
4fc3f1d6 | 525 | up_read(&root_anon_vma->rwsem); |
88c22088 PZ |
526 | anon_vma = NULL; |
527 | } | |
528 | goto out; | |
529 | } | |
746b18d4 | 530 | |
88c22088 PZ |
531 | /* trylock failed, we got to sleep */ |
532 | if (!atomic_inc_not_zero(&anon_vma->refcount)) { | |
533 | anon_vma = NULL; | |
534 | goto out; | |
535 | } | |
536 | ||
537 | if (!page_mapped(page)) { | |
7f39dda9 | 538 | rcu_read_unlock(); |
88c22088 | 539 | put_anon_vma(anon_vma); |
7f39dda9 | 540 | return NULL; |
88c22088 PZ |
541 | } |
542 | ||
543 | /* we pinned the anon_vma, its safe to sleep */ | |
544 | rcu_read_unlock(); | |
4fc3f1d6 | 545 | anon_vma_lock_read(anon_vma); |
88c22088 PZ |
546 | |
547 | if (atomic_dec_and_test(&anon_vma->refcount)) { | |
548 | /* | |
549 | * Oops, we held the last refcount, release the lock | |
550 | * and bail -- can't simply use put_anon_vma() because | |
4fc3f1d6 | 551 | * we'll deadlock on the anon_vma_lock_write() recursion. |
88c22088 | 552 | */ |
4fc3f1d6 | 553 | anon_vma_unlock_read(anon_vma); |
88c22088 PZ |
554 | __put_anon_vma(anon_vma); |
555 | anon_vma = NULL; | |
556 | } | |
557 | ||
558 | return anon_vma; | |
559 | ||
560 | out: | |
561 | rcu_read_unlock(); | |
746b18d4 | 562 | return anon_vma; |
34bbd704 ON |
563 | } |
564 | ||
4fc3f1d6 | 565 | void page_unlock_anon_vma_read(struct anon_vma *anon_vma) |
34bbd704 | 566 | { |
4fc3f1d6 | 567 | anon_vma_unlock_read(anon_vma); |
1da177e4 LT |
568 | } |
569 | ||
570 | /* | |
3ad33b24 | 571 | * At what user virtual address is page expected in @vma? |
1da177e4 | 572 | */ |
86c2ad19 ML |
573 | static inline unsigned long |
574 | __vma_address(struct page *page, struct vm_area_struct *vma) | |
1da177e4 | 575 | { |
a0f7a756 | 576 | pgoff_t pgoff = page_to_pgoff(page); |
86c2ad19 ML |
577 | return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
578 | } | |
579 | ||
580 | inline unsigned long | |
581 | vma_address(struct page *page, struct vm_area_struct *vma) | |
582 | { | |
583 | unsigned long address = __vma_address(page, vma); | |
584 | ||
585 | /* page should be within @vma mapping range */ | |
81d1b09c | 586 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
86c2ad19 | 587 | |
1da177e4 LT |
588 | return address; |
589 | } | |
590 | ||
72b252ae MG |
591 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
592 | static void percpu_flush_tlb_batch_pages(void *data) | |
593 | { | |
594 | /* | |
595 | * All TLB entries are flushed on the assumption that it is | |
596 | * cheaper to flush all TLBs and let them be refilled than | |
597 | * flushing individual PFNs. Note that we do not track mm's | |
598 | * to flush as that might simply be multiple full TLB flushes | |
599 | * for no gain. | |
600 | */ | |
601 | count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED); | |
602 | flush_tlb_local(); | |
603 | } | |
604 | ||
605 | /* | |
606 | * Flush TLB entries for recently unmapped pages from remote CPUs. It is | |
607 | * important if a PTE was dirty when it was unmapped that it's flushed | |
608 | * before any IO is initiated on the page to prevent lost writes. Similarly, | |
609 | * it must be flushed before freeing to prevent data leakage. | |
610 | */ | |
611 | void try_to_unmap_flush(void) | |
612 | { | |
613 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
614 | int cpu; | |
615 | ||
616 | if (!tlb_ubc->flush_required) | |
617 | return; | |
618 | ||
619 | cpu = get_cpu(); | |
620 | ||
621 | trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, -1UL); | |
622 | ||
623 | if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) | |
624 | percpu_flush_tlb_batch_pages(&tlb_ubc->cpumask); | |
625 | ||
626 | if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids) { | |
627 | smp_call_function_many(&tlb_ubc->cpumask, | |
628 | percpu_flush_tlb_batch_pages, (void *)tlb_ubc, true); | |
629 | } | |
630 | cpumask_clear(&tlb_ubc->cpumask); | |
631 | tlb_ubc->flush_required = false; | |
d950c947 | 632 | tlb_ubc->writable = false; |
72b252ae MG |
633 | put_cpu(); |
634 | } | |
635 | ||
d950c947 MG |
636 | /* Flush iff there are potentially writable TLB entries that can race with IO */ |
637 | void try_to_unmap_flush_dirty(void) | |
638 | { | |
639 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
640 | ||
641 | if (tlb_ubc->writable) | |
642 | try_to_unmap_flush(); | |
643 | } | |
644 | ||
72b252ae | 645 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, |
d950c947 | 646 | struct page *page, bool writable) |
72b252ae MG |
647 | { |
648 | struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc; | |
649 | ||
650 | cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm)); | |
651 | tlb_ubc->flush_required = true; | |
d950c947 MG |
652 | |
653 | /* | |
654 | * If the PTE was dirty then it's best to assume it's writable. The | |
655 | * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush() | |
656 | * before the page is queued for IO. | |
657 | */ | |
658 | if (writable) | |
659 | tlb_ubc->writable = true; | |
72b252ae MG |
660 | } |
661 | ||
662 | /* | |
663 | * Returns true if the TLB flush should be deferred to the end of a batch of | |
664 | * unmap operations to reduce IPIs. | |
665 | */ | |
666 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
667 | { | |
668 | bool should_defer = false; | |
669 | ||
670 | if (!(flags & TTU_BATCH_FLUSH)) | |
671 | return false; | |
672 | ||
673 | /* If remote CPUs need to be flushed then defer batch the flush */ | |
674 | if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids) | |
675 | should_defer = true; | |
676 | put_cpu(); | |
677 | ||
678 | return should_defer; | |
679 | } | |
680 | #else | |
681 | static void set_tlb_ubc_flush_pending(struct mm_struct *mm, | |
d950c947 | 682 | struct page *page, bool writable) |
72b252ae MG |
683 | { |
684 | } | |
685 | ||
686 | static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags) | |
687 | { | |
688 | return false; | |
689 | } | |
690 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ | |
691 | ||
1da177e4 | 692 | /* |
bf89c8c8 | 693 | * At what user virtual address is page expected in vma? |
ab941e0f | 694 | * Caller should check the page is actually part of the vma. |
1da177e4 LT |
695 | */ |
696 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | |
697 | { | |
86c2ad19 | 698 | unsigned long address; |
21d0d443 | 699 | if (PageAnon(page)) { |
4829b906 HD |
700 | struct anon_vma *page__anon_vma = page_anon_vma(page); |
701 | /* | |
702 | * Note: swapoff's unuse_vma() is more efficient with this | |
703 | * check, and needs it to match anon_vma when KSM is active. | |
704 | */ | |
705 | if (!vma->anon_vma || !page__anon_vma || | |
706 | vma->anon_vma->root != page__anon_vma->root) | |
21d0d443 | 707 | return -EFAULT; |
27ba0644 KS |
708 | } else if (page->mapping) { |
709 | if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping) | |
1da177e4 LT |
710 | return -EFAULT; |
711 | } else | |
712 | return -EFAULT; | |
86c2ad19 ML |
713 | address = __vma_address(page, vma); |
714 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
715 | return -EFAULT; | |
716 | return address; | |
1da177e4 LT |
717 | } |
718 | ||
6219049a BL |
719 | pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address) |
720 | { | |
721 | pgd_t *pgd; | |
722 | pud_t *pud; | |
723 | pmd_t *pmd = NULL; | |
f72e7dcd | 724 | pmd_t pmde; |
6219049a BL |
725 | |
726 | pgd = pgd_offset(mm, address); | |
727 | if (!pgd_present(*pgd)) | |
728 | goto out; | |
729 | ||
730 | pud = pud_offset(pgd, address); | |
731 | if (!pud_present(*pud)) | |
732 | goto out; | |
733 | ||
734 | pmd = pmd_offset(pud, address); | |
f72e7dcd | 735 | /* |
8809aa2d | 736 | * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at() |
f72e7dcd HD |
737 | * without holding anon_vma lock for write. So when looking for a |
738 | * genuine pmde (in which to find pte), test present and !THP together. | |
739 | */ | |
e37c6982 CB |
740 | pmde = *pmd; |
741 | barrier(); | |
f72e7dcd | 742 | if (!pmd_present(pmde) || pmd_trans_huge(pmde)) |
6219049a BL |
743 | pmd = NULL; |
744 | out: | |
745 | return pmd; | |
746 | } | |
747 | ||
81b4082d ND |
748 | /* |
749 | * Check that @page is mapped at @address into @mm. | |
750 | * | |
479db0bf NP |
751 | * If @sync is false, page_check_address may perform a racy check to avoid |
752 | * the page table lock when the pte is not present (helpful when reclaiming | |
753 | * highly shared pages). | |
754 | * | |
b8072f09 | 755 | * On success returns with pte mapped and locked. |
81b4082d | 756 | */ |
e9a81a82 | 757 | pte_t *__page_check_address(struct page *page, struct mm_struct *mm, |
479db0bf | 758 | unsigned long address, spinlock_t **ptlp, int sync) |
81b4082d | 759 | { |
81b4082d ND |
760 | pmd_t *pmd; |
761 | pte_t *pte; | |
c0718806 | 762 | spinlock_t *ptl; |
81b4082d | 763 | |
0fe6e20b | 764 | if (unlikely(PageHuge(page))) { |
98398c32 | 765 | /* when pud is not present, pte will be NULL */ |
0fe6e20b | 766 | pte = huge_pte_offset(mm, address); |
98398c32 JW |
767 | if (!pte) |
768 | return NULL; | |
769 | ||
cb900f41 | 770 | ptl = huge_pte_lockptr(page_hstate(page), mm, pte); |
0fe6e20b NH |
771 | goto check; |
772 | } | |
773 | ||
6219049a BL |
774 | pmd = mm_find_pmd(mm, address); |
775 | if (!pmd) | |
c0718806 HD |
776 | return NULL; |
777 | ||
c0718806 HD |
778 | pte = pte_offset_map(pmd, address); |
779 | /* Make a quick check before getting the lock */ | |
479db0bf | 780 | if (!sync && !pte_present(*pte)) { |
c0718806 HD |
781 | pte_unmap(pte); |
782 | return NULL; | |
783 | } | |
784 | ||
4c21e2f2 | 785 | ptl = pte_lockptr(mm, pmd); |
0fe6e20b | 786 | check: |
c0718806 HD |
787 | spin_lock(ptl); |
788 | if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { | |
789 | *ptlp = ptl; | |
790 | return pte; | |
81b4082d | 791 | } |
c0718806 HD |
792 | pte_unmap_unlock(pte, ptl); |
793 | return NULL; | |
81b4082d ND |
794 | } |
795 | ||
b291f000 NP |
796 | /** |
797 | * page_mapped_in_vma - check whether a page is really mapped in a VMA | |
798 | * @page: the page to test | |
799 | * @vma: the VMA to test | |
800 | * | |
801 | * Returns 1 if the page is mapped into the page tables of the VMA, 0 | |
802 | * if the page is not mapped into the page tables of this VMA. Only | |
803 | * valid for normal file or anonymous VMAs. | |
804 | */ | |
6a46079c | 805 | int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma) |
b291f000 NP |
806 | { |
807 | unsigned long address; | |
808 | pte_t *pte; | |
809 | spinlock_t *ptl; | |
810 | ||
86c2ad19 ML |
811 | address = __vma_address(page, vma); |
812 | if (unlikely(address < vma->vm_start || address >= vma->vm_end)) | |
b291f000 NP |
813 | return 0; |
814 | pte = page_check_address(page, vma->vm_mm, address, &ptl, 1); | |
815 | if (!pte) /* the page is not in this mm */ | |
816 | return 0; | |
817 | pte_unmap_unlock(pte, ptl); | |
818 | ||
819 | return 1; | |
820 | } | |
821 | ||
9f32624b JK |
822 | struct page_referenced_arg { |
823 | int mapcount; | |
824 | int referenced; | |
825 | unsigned long vm_flags; | |
826 | struct mem_cgroup *memcg; | |
827 | }; | |
1da177e4 | 828 | /* |
9f32624b | 829 | * arg: page_referenced_arg will be passed |
1da177e4 | 830 | */ |
ac769501 | 831 | static int page_referenced_one(struct page *page, struct vm_area_struct *vma, |
9f32624b | 832 | unsigned long address, void *arg) |
1da177e4 LT |
833 | { |
834 | struct mm_struct *mm = vma->vm_mm; | |
117b0791 | 835 | spinlock_t *ptl; |
1da177e4 | 836 | int referenced = 0; |
9f32624b | 837 | struct page_referenced_arg *pra = arg; |
1da177e4 | 838 | |
71e3aac0 AA |
839 | if (unlikely(PageTransHuge(page))) { |
840 | pmd_t *pmd; | |
841 | ||
2da28bfd AA |
842 | /* |
843 | * rmap might return false positives; we must filter | |
844 | * these out using page_check_address_pmd(). | |
845 | */ | |
71e3aac0 | 846 | pmd = page_check_address_pmd(page, mm, address, |
117b0791 KS |
847 | PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl); |
848 | if (!pmd) | |
9f32624b | 849 | return SWAP_AGAIN; |
2da28bfd AA |
850 | |
851 | if (vma->vm_flags & VM_LOCKED) { | |
117b0791 | 852 | spin_unlock(ptl); |
9f32624b JK |
853 | pra->vm_flags |= VM_LOCKED; |
854 | return SWAP_FAIL; /* To break the loop */ | |
2da28bfd AA |
855 | } |
856 | ||
857 | /* go ahead even if the pmd is pmd_trans_splitting() */ | |
858 | if (pmdp_clear_flush_young_notify(vma, address, pmd)) | |
71e3aac0 | 859 | referenced++; |
117b0791 | 860 | spin_unlock(ptl); |
71e3aac0 AA |
861 | } else { |
862 | pte_t *pte; | |
71e3aac0 | 863 | |
2da28bfd AA |
864 | /* |
865 | * rmap might return false positives; we must filter | |
866 | * these out using page_check_address(). | |
867 | */ | |
71e3aac0 AA |
868 | pte = page_check_address(page, mm, address, &ptl, 0); |
869 | if (!pte) | |
9f32624b | 870 | return SWAP_AGAIN; |
71e3aac0 | 871 | |
2da28bfd AA |
872 | if (vma->vm_flags & VM_LOCKED) { |
873 | pte_unmap_unlock(pte, ptl); | |
9f32624b JK |
874 | pra->vm_flags |= VM_LOCKED; |
875 | return SWAP_FAIL; /* To break the loop */ | |
2da28bfd AA |
876 | } |
877 | ||
71e3aac0 AA |
878 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
879 | /* | |
880 | * Don't treat a reference through a sequentially read | |
881 | * mapping as such. If the page has been used in | |
882 | * another mapping, we will catch it; if this other | |
883 | * mapping is already gone, the unmap path will have | |
884 | * set PG_referenced or activated the page. | |
885 | */ | |
64363aad | 886 | if (likely(!(vma->vm_flags & VM_SEQ_READ))) |
71e3aac0 AA |
887 | referenced++; |
888 | } | |
889 | pte_unmap_unlock(pte, ptl); | |
890 | } | |
891 | ||
33c3fc71 VD |
892 | if (referenced) |
893 | clear_page_idle(page); | |
894 | if (test_and_clear_page_young(page)) | |
895 | referenced++; | |
896 | ||
9f32624b JK |
897 | if (referenced) { |
898 | pra->referenced++; | |
899 | pra->vm_flags |= vma->vm_flags; | |
1da177e4 | 900 | } |
34bbd704 | 901 | |
9f32624b JK |
902 | pra->mapcount--; |
903 | if (!pra->mapcount) | |
904 | return SWAP_SUCCESS; /* To break the loop */ | |
905 | ||
906 | return SWAP_AGAIN; | |
1da177e4 LT |
907 | } |
908 | ||
9f32624b | 909 | static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg) |
1da177e4 | 910 | { |
9f32624b JK |
911 | struct page_referenced_arg *pra = arg; |
912 | struct mem_cgroup *memcg = pra->memcg; | |
1da177e4 | 913 | |
9f32624b JK |
914 | if (!mm_match_cgroup(vma->vm_mm, memcg)) |
915 | return true; | |
1da177e4 | 916 | |
9f32624b | 917 | return false; |
1da177e4 LT |
918 | } |
919 | ||
920 | /** | |
921 | * page_referenced - test if the page was referenced | |
922 | * @page: the page to test | |
923 | * @is_locked: caller holds lock on the page | |
72835c86 | 924 | * @memcg: target memory cgroup |
6fe6b7e3 | 925 | * @vm_flags: collect encountered vma->vm_flags who actually referenced the page |
1da177e4 LT |
926 | * |
927 | * Quick test_and_clear_referenced for all mappings to a page, | |
928 | * returns the number of ptes which referenced the page. | |
929 | */ | |
6fe6b7e3 WF |
930 | int page_referenced(struct page *page, |
931 | int is_locked, | |
72835c86 | 932 | struct mem_cgroup *memcg, |
6fe6b7e3 | 933 | unsigned long *vm_flags) |
1da177e4 | 934 | { |
9f32624b | 935 | int ret; |
5ad64688 | 936 | int we_locked = 0; |
9f32624b JK |
937 | struct page_referenced_arg pra = { |
938 | .mapcount = page_mapcount(page), | |
939 | .memcg = memcg, | |
940 | }; | |
941 | struct rmap_walk_control rwc = { | |
942 | .rmap_one = page_referenced_one, | |
943 | .arg = (void *)&pra, | |
944 | .anon_lock = page_lock_anon_vma_read, | |
945 | }; | |
1da177e4 | 946 | |
6fe6b7e3 | 947 | *vm_flags = 0; |
9f32624b JK |
948 | if (!page_mapped(page)) |
949 | return 0; | |
950 | ||
951 | if (!page_rmapping(page)) | |
952 | return 0; | |
953 | ||
954 | if (!is_locked && (!PageAnon(page) || PageKsm(page))) { | |
955 | we_locked = trylock_page(page); | |
956 | if (!we_locked) | |
957 | return 1; | |
1da177e4 | 958 | } |
9f32624b JK |
959 | |
960 | /* | |
961 | * If we are reclaiming on behalf of a cgroup, skip | |
962 | * counting on behalf of references from different | |
963 | * cgroups | |
964 | */ | |
965 | if (memcg) { | |
966 | rwc.invalid_vma = invalid_page_referenced_vma; | |
967 | } | |
968 | ||
969 | ret = rmap_walk(page, &rwc); | |
970 | *vm_flags = pra.vm_flags; | |
971 | ||
972 | if (we_locked) | |
973 | unlock_page(page); | |
974 | ||
975 | return pra.referenced; | |
1da177e4 LT |
976 | } |
977 | ||
1cb1729b | 978 | static int page_mkclean_one(struct page *page, struct vm_area_struct *vma, |
9853a407 | 979 | unsigned long address, void *arg) |
d08b3851 PZ |
980 | { |
981 | struct mm_struct *mm = vma->vm_mm; | |
c2fda5fe | 982 | pte_t *pte; |
d08b3851 PZ |
983 | spinlock_t *ptl; |
984 | int ret = 0; | |
9853a407 | 985 | int *cleaned = arg; |
d08b3851 | 986 | |
479db0bf | 987 | pte = page_check_address(page, mm, address, &ptl, 1); |
d08b3851 PZ |
988 | if (!pte) |
989 | goto out; | |
990 | ||
c2fda5fe PZ |
991 | if (pte_dirty(*pte) || pte_write(*pte)) { |
992 | pte_t entry; | |
d08b3851 | 993 | |
c2fda5fe | 994 | flush_cache_page(vma, address, pte_pfn(*pte)); |
2ec74c3e | 995 | entry = ptep_clear_flush(vma, address, pte); |
c2fda5fe PZ |
996 | entry = pte_wrprotect(entry); |
997 | entry = pte_mkclean(entry); | |
d6e88e67 | 998 | set_pte_at(mm, address, pte, entry); |
c2fda5fe PZ |
999 | ret = 1; |
1000 | } | |
d08b3851 | 1001 | |
d08b3851 | 1002 | pte_unmap_unlock(pte, ptl); |
2ec74c3e | 1003 | |
9853a407 | 1004 | if (ret) { |
2ec74c3e | 1005 | mmu_notifier_invalidate_page(mm, address); |
9853a407 JK |
1006 | (*cleaned)++; |
1007 | } | |
d08b3851 | 1008 | out: |
9853a407 | 1009 | return SWAP_AGAIN; |
d08b3851 PZ |
1010 | } |
1011 | ||
9853a407 | 1012 | static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg) |
d08b3851 | 1013 | { |
9853a407 | 1014 | if (vma->vm_flags & VM_SHARED) |
871beb8c | 1015 | return false; |
d08b3851 | 1016 | |
871beb8c | 1017 | return true; |
d08b3851 PZ |
1018 | } |
1019 | ||
1020 | int page_mkclean(struct page *page) | |
1021 | { | |
9853a407 JK |
1022 | int cleaned = 0; |
1023 | struct address_space *mapping; | |
1024 | struct rmap_walk_control rwc = { | |
1025 | .arg = (void *)&cleaned, | |
1026 | .rmap_one = page_mkclean_one, | |
1027 | .invalid_vma = invalid_mkclean_vma, | |
1028 | }; | |
d08b3851 PZ |
1029 | |
1030 | BUG_ON(!PageLocked(page)); | |
1031 | ||
9853a407 JK |
1032 | if (!page_mapped(page)) |
1033 | return 0; | |
1034 | ||
1035 | mapping = page_mapping(page); | |
1036 | if (!mapping) | |
1037 | return 0; | |
1038 | ||
1039 | rmap_walk(page, &rwc); | |
d08b3851 | 1040 | |
9853a407 | 1041 | return cleaned; |
d08b3851 | 1042 | } |
60b59bea | 1043 | EXPORT_SYMBOL_GPL(page_mkclean); |
d08b3851 | 1044 | |
c44b6743 RR |
1045 | /** |
1046 | * page_move_anon_rmap - move a page to our anon_vma | |
1047 | * @page: the page to move to our anon_vma | |
1048 | * @vma: the vma the page belongs to | |
1049 | * @address: the user virtual address mapped | |
1050 | * | |
1051 | * When a page belongs exclusively to one process after a COW event, | |
1052 | * that page can be moved into the anon_vma that belongs to just that | |
1053 | * process, so the rmap code will not search the parent or sibling | |
1054 | * processes. | |
1055 | */ | |
1056 | void page_move_anon_rmap(struct page *page, | |
1057 | struct vm_area_struct *vma, unsigned long address) | |
1058 | { | |
1059 | struct anon_vma *anon_vma = vma->anon_vma; | |
1060 | ||
309381fe | 1061 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
81d1b09c | 1062 | VM_BUG_ON_VMA(!anon_vma, vma); |
309381fe | 1063 | VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page); |
c44b6743 RR |
1064 | |
1065 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | |
414e2fb8 VD |
1066 | /* |
1067 | * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written | |
1068 | * simultaneously, so a concurrent reader (eg page_referenced()'s | |
1069 | * PageAnon()) will not see one without the other. | |
1070 | */ | |
1071 | WRITE_ONCE(page->mapping, (struct address_space *) anon_vma); | |
c44b6743 RR |
1072 | } |
1073 | ||
9617d95e | 1074 | /** |
4e1c1975 AK |
1075 | * __page_set_anon_rmap - set up new anonymous rmap |
1076 | * @page: Page to add to rmap | |
1077 | * @vma: VM area to add page to. | |
1078 | * @address: User virtual address of the mapping | |
e8a03feb | 1079 | * @exclusive: the page is exclusively owned by the current process |
9617d95e NP |
1080 | */ |
1081 | static void __page_set_anon_rmap(struct page *page, | |
e8a03feb | 1082 | struct vm_area_struct *vma, unsigned long address, int exclusive) |
9617d95e | 1083 | { |
e8a03feb | 1084 | struct anon_vma *anon_vma = vma->anon_vma; |
ea90002b | 1085 | |
e8a03feb | 1086 | BUG_ON(!anon_vma); |
ea90002b | 1087 | |
4e1c1975 AK |
1088 | if (PageAnon(page)) |
1089 | return; | |
1090 | ||
ea90002b | 1091 | /* |
e8a03feb RR |
1092 | * If the page isn't exclusively mapped into this vma, |
1093 | * we must use the _oldest_ possible anon_vma for the | |
1094 | * page mapping! | |
ea90002b | 1095 | */ |
4e1c1975 | 1096 | if (!exclusive) |
288468c3 | 1097 | anon_vma = anon_vma->root; |
9617d95e | 1098 | |
9617d95e NP |
1099 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1100 | page->mapping = (struct address_space *) anon_vma; | |
9617d95e | 1101 | page->index = linear_page_index(vma, address); |
9617d95e NP |
1102 | } |
1103 | ||
c97a9e10 | 1104 | /** |
43d8eac4 | 1105 | * __page_check_anon_rmap - sanity check anonymous rmap addition |
c97a9e10 NP |
1106 | * @page: the page to add the mapping to |
1107 | * @vma: the vm area in which the mapping is added | |
1108 | * @address: the user virtual address mapped | |
1109 | */ | |
1110 | static void __page_check_anon_rmap(struct page *page, | |
1111 | struct vm_area_struct *vma, unsigned long address) | |
1112 | { | |
1113 | #ifdef CONFIG_DEBUG_VM | |
1114 | /* | |
1115 | * The page's anon-rmap details (mapping and index) are guaranteed to | |
1116 | * be set up correctly at this point. | |
1117 | * | |
1118 | * We have exclusion against page_add_anon_rmap because the caller | |
1119 | * always holds the page locked, except if called from page_dup_rmap, | |
1120 | * in which case the page is already known to be setup. | |
1121 | * | |
1122 | * We have exclusion against page_add_new_anon_rmap because those pages | |
1123 | * are initially only visible via the pagetables, and the pte is locked | |
1124 | * over the call to page_add_new_anon_rmap. | |
1125 | */ | |
44ab57a0 | 1126 | BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root); |
c97a9e10 NP |
1127 | BUG_ON(page->index != linear_page_index(vma, address)); |
1128 | #endif | |
1129 | } | |
1130 | ||
1da177e4 LT |
1131 | /** |
1132 | * page_add_anon_rmap - add pte mapping to an anonymous page | |
1133 | * @page: the page to add the mapping to | |
1134 | * @vma: the vm area in which the mapping is added | |
1135 | * @address: the user virtual address mapped | |
1136 | * | |
5ad64688 | 1137 | * The caller needs to hold the pte lock, and the page must be locked in |
80e14822 HD |
1138 | * the anon_vma case: to serialize mapping,index checking after setting, |
1139 | * and to ensure that PageAnon is not being upgraded racily to PageKsm | |
1140 | * (but PageKsm is never downgraded to PageAnon). | |
1da177e4 LT |
1141 | */ |
1142 | void page_add_anon_rmap(struct page *page, | |
1143 | struct vm_area_struct *vma, unsigned long address) | |
ad8c2ee8 RR |
1144 | { |
1145 | do_page_add_anon_rmap(page, vma, address, 0); | |
1146 | } | |
1147 | ||
1148 | /* | |
1149 | * Special version of the above for do_swap_page, which often runs | |
1150 | * into pages that are exclusively owned by the current process. | |
1151 | * Everybody else should continue to use page_add_anon_rmap above. | |
1152 | */ | |
1153 | void do_page_add_anon_rmap(struct page *page, | |
1154 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1da177e4 | 1155 | { |
5ad64688 | 1156 | int first = atomic_inc_and_test(&page->_mapcount); |
79134171 | 1157 | if (first) { |
bea04b07 JZ |
1158 | /* |
1159 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1160 | * these counters are not modified in interrupt context, and | |
1161 | * pte lock(a spinlock) is held, which implies preemption | |
1162 | * disabled. | |
1163 | */ | |
3cd14fcd | 1164 | if (PageTransHuge(page)) |
79134171 AA |
1165 | __inc_zone_page_state(page, |
1166 | NR_ANON_TRANSPARENT_HUGEPAGES); | |
3cd14fcd KS |
1167 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1168 | hpage_nr_pages(page)); | |
79134171 | 1169 | } |
5ad64688 HD |
1170 | if (unlikely(PageKsm(page))) |
1171 | return; | |
1172 | ||
309381fe | 1173 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
5dbe0af4 | 1174 | /* address might be in next vma when migration races vma_adjust */ |
5ad64688 | 1175 | if (first) |
ad8c2ee8 | 1176 | __page_set_anon_rmap(page, vma, address, exclusive); |
69029cd5 | 1177 | else |
c97a9e10 | 1178 | __page_check_anon_rmap(page, vma, address); |
1da177e4 LT |
1179 | } |
1180 | ||
43d8eac4 | 1181 | /** |
9617d95e NP |
1182 | * page_add_new_anon_rmap - add pte mapping to a new anonymous page |
1183 | * @page: the page to add the mapping to | |
1184 | * @vma: the vm area in which the mapping is added | |
1185 | * @address: the user virtual address mapped | |
1186 | * | |
1187 | * Same as page_add_anon_rmap but must only be called on *new* pages. | |
1188 | * This means the inc-and-test can be bypassed. | |
c97a9e10 | 1189 | * Page does not have to be locked. |
9617d95e NP |
1190 | */ |
1191 | void page_add_new_anon_rmap(struct page *page, | |
1192 | struct vm_area_struct *vma, unsigned long address) | |
1193 | { | |
81d1b09c | 1194 | VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); |
cbf84b7a HD |
1195 | SetPageSwapBacked(page); |
1196 | atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ | |
3cd14fcd | 1197 | if (PageTransHuge(page)) |
79134171 | 1198 | __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); |
3cd14fcd KS |
1199 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, |
1200 | hpage_nr_pages(page)); | |
e8a03feb | 1201 | __page_set_anon_rmap(page, vma, address, 1); |
9617d95e NP |
1202 | } |
1203 | ||
1da177e4 LT |
1204 | /** |
1205 | * page_add_file_rmap - add pte mapping to a file page | |
1206 | * @page: the page to add the mapping to | |
1207 | * | |
b8072f09 | 1208 | * The caller needs to hold the pte lock. |
1da177e4 LT |
1209 | */ |
1210 | void page_add_file_rmap(struct page *page) | |
1211 | { | |
d7365e78 | 1212 | struct mem_cgroup *memcg; |
89c06bd5 | 1213 | |
6de22619 | 1214 | memcg = mem_cgroup_begin_page_stat(page); |
d69b042f | 1215 | if (atomic_inc_and_test(&page->_mapcount)) { |
65ba55f5 | 1216 | __inc_zone_page_state(page, NR_FILE_MAPPED); |
d7365e78 | 1217 | mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); |
d69b042f | 1218 | } |
6de22619 | 1219 | mem_cgroup_end_page_stat(memcg); |
1da177e4 LT |
1220 | } |
1221 | ||
8186eb6a JW |
1222 | static void page_remove_file_rmap(struct page *page) |
1223 | { | |
1224 | struct mem_cgroup *memcg; | |
8186eb6a | 1225 | |
6de22619 | 1226 | memcg = mem_cgroup_begin_page_stat(page); |
8186eb6a JW |
1227 | |
1228 | /* page still mapped by someone else? */ | |
1229 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
1230 | goto out; | |
1231 | ||
1232 | /* Hugepages are not counted in NR_FILE_MAPPED for now. */ | |
1233 | if (unlikely(PageHuge(page))) | |
1234 | goto out; | |
1235 | ||
1236 | /* | |
1237 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because | |
1238 | * these counters are not modified in interrupt context, and | |
1239 | * pte lock(a spinlock) is held, which implies preemption disabled. | |
1240 | */ | |
1241 | __dec_zone_page_state(page, NR_FILE_MAPPED); | |
1242 | mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED); | |
1243 | ||
1244 | if (unlikely(PageMlocked(page))) | |
1245 | clear_page_mlock(page); | |
1246 | out: | |
6de22619 | 1247 | mem_cgroup_end_page_stat(memcg); |
8186eb6a JW |
1248 | } |
1249 | ||
1da177e4 LT |
1250 | /** |
1251 | * page_remove_rmap - take down pte mapping from a page | |
1252 | * @page: page to remove mapping from | |
1253 | * | |
b8072f09 | 1254 | * The caller needs to hold the pte lock. |
1da177e4 | 1255 | */ |
edc315fd | 1256 | void page_remove_rmap(struct page *page) |
1da177e4 | 1257 | { |
8186eb6a JW |
1258 | if (!PageAnon(page)) { |
1259 | page_remove_file_rmap(page); | |
1260 | return; | |
1261 | } | |
89c06bd5 | 1262 | |
b904dcfe KM |
1263 | /* page still mapped by someone else? */ |
1264 | if (!atomic_add_negative(-1, &page->_mapcount)) | |
8186eb6a JW |
1265 | return; |
1266 | ||
1267 | /* Hugepages are not counted in NR_ANON_PAGES for now. */ | |
1268 | if (unlikely(PageHuge(page))) | |
1269 | return; | |
b904dcfe | 1270 | |
0fe6e20b | 1271 | /* |
bea04b07 JZ |
1272 | * We use the irq-unsafe __{inc|mod}_zone_page_stat because |
1273 | * these counters are not modified in interrupt context, and | |
bea04b07 | 1274 | * pte lock(a spinlock) is held, which implies preemption disabled. |
0fe6e20b | 1275 | */ |
8186eb6a JW |
1276 | if (PageTransHuge(page)) |
1277 | __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); | |
1278 | ||
1279 | __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, | |
1280 | -hpage_nr_pages(page)); | |
1281 | ||
e6c509f8 HD |
1282 | if (unlikely(PageMlocked(page))) |
1283 | clear_page_mlock(page); | |
8186eb6a | 1284 | |
b904dcfe KM |
1285 | /* |
1286 | * It would be tidy to reset the PageAnon mapping here, | |
1287 | * but that might overwrite a racing page_add_anon_rmap | |
1288 | * which increments mapcount after us but sets mapping | |
1289 | * before us: so leave the reset to free_hot_cold_page, | |
1290 | * and remember that it's only reliable while mapped. | |
1291 | * Leaving it set also helps swapoff to reinstate ptes | |
1292 | * faster for those pages still in swapcache. | |
1293 | */ | |
1da177e4 LT |
1294 | } |
1295 | ||
1296 | /* | |
52629506 | 1297 | * @arg: enum ttu_flags will be passed to this argument |
1da177e4 | 1298 | */ |
ac769501 | 1299 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, |
52629506 | 1300 | unsigned long address, void *arg) |
1da177e4 LT |
1301 | { |
1302 | struct mm_struct *mm = vma->vm_mm; | |
1da177e4 LT |
1303 | pte_t *pte; |
1304 | pte_t pteval; | |
c0718806 | 1305 | spinlock_t *ptl; |
1da177e4 | 1306 | int ret = SWAP_AGAIN; |
52629506 | 1307 | enum ttu_flags flags = (enum ttu_flags)arg; |
1da177e4 | 1308 | |
b87537d9 HD |
1309 | /* munlock has nothing to gain from examining un-locked vmas */ |
1310 | if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED)) | |
1311 | goto out; | |
1312 | ||
479db0bf | 1313 | pte = page_check_address(page, mm, address, &ptl, 0); |
c0718806 | 1314 | if (!pte) |
81b4082d | 1315 | goto out; |
1da177e4 LT |
1316 | |
1317 | /* | |
1318 | * If the page is mlock()d, we cannot swap it out. | |
1319 | * If it's recently referenced (perhaps page_referenced | |
1320 | * skipped over this mm) then we should reactivate it. | |
1321 | */ | |
14fa31b8 | 1322 | if (!(flags & TTU_IGNORE_MLOCK)) { |
b87537d9 HD |
1323 | if (vma->vm_flags & VM_LOCKED) { |
1324 | /* Holding pte lock, we do *not* need mmap_sem here */ | |
1325 | mlock_vma_page(page); | |
1326 | ret = SWAP_MLOCK; | |
1327 | goto out_unmap; | |
1328 | } | |
daa5ba76 | 1329 | if (flags & TTU_MUNLOCK) |
53f79acb | 1330 | goto out_unmap; |
14fa31b8 AK |
1331 | } |
1332 | if (!(flags & TTU_IGNORE_ACCESS)) { | |
b291f000 NP |
1333 | if (ptep_clear_flush_young_notify(vma, address, pte)) { |
1334 | ret = SWAP_FAIL; | |
1335 | goto out_unmap; | |
1336 | } | |
1337 | } | |
1da177e4 | 1338 | |
1da177e4 LT |
1339 | /* Nuke the page table entry. */ |
1340 | flush_cache_page(vma, address, page_to_pfn(page)); | |
72b252ae MG |
1341 | if (should_defer_flush(mm, flags)) { |
1342 | /* | |
1343 | * We clear the PTE but do not flush so potentially a remote | |
1344 | * CPU could still be writing to the page. If the entry was | |
1345 | * previously clean then the architecture must guarantee that | |
1346 | * a clear->dirty transition on a cached TLB entry is written | |
1347 | * through and traps if the PTE is unmapped. | |
1348 | */ | |
1349 | pteval = ptep_get_and_clear(mm, address, pte); | |
1350 | ||
d950c947 | 1351 | set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval)); |
72b252ae MG |
1352 | } else { |
1353 | pteval = ptep_clear_flush(vma, address, pte); | |
1354 | } | |
1da177e4 LT |
1355 | |
1356 | /* Move the dirty bit to the physical page now the pte is gone. */ | |
1357 | if (pte_dirty(pteval)) | |
1358 | set_page_dirty(page); | |
1359 | ||
365e9c87 HD |
1360 | /* Update high watermark before we lower rss */ |
1361 | update_hiwater_rss(mm); | |
1362 | ||
888b9f7c | 1363 | if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) { |
5d317b2b NH |
1364 | if (PageHuge(page)) { |
1365 | hugetlb_count_sub(1 << compound_order(page), mm); | |
1366 | } else { | |
5f24ae58 NH |
1367 | if (PageAnon(page)) |
1368 | dec_mm_counter(mm, MM_ANONPAGES); | |
1369 | else | |
1370 | dec_mm_counter(mm, MM_FILEPAGES); | |
1371 | } | |
888b9f7c | 1372 | set_pte_at(mm, address, pte, |
5f24ae58 | 1373 | swp_entry_to_pte(make_hwpoison_entry(page))); |
45961722 KW |
1374 | } else if (pte_unused(pteval)) { |
1375 | /* | |
1376 | * The guest indicated that the page content is of no | |
1377 | * interest anymore. Simply discard the pte, vmscan | |
1378 | * will take care of the rest. | |
1379 | */ | |
1380 | if (PageAnon(page)) | |
1381 | dec_mm_counter(mm, MM_ANONPAGES); | |
1382 | else | |
1383 | dec_mm_counter(mm, MM_FILEPAGES); | |
470f119f HD |
1384 | } else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) { |
1385 | swp_entry_t entry; | |
1386 | pte_t swp_pte; | |
1387 | /* | |
1388 | * Store the pfn of the page in a special migration | |
1389 | * pte. do_swap_page() will wait until the migration | |
1390 | * pte is removed and then restart fault handling. | |
1391 | */ | |
1392 | entry = make_migration_entry(page, pte_write(pteval)); | |
1393 | swp_pte = swp_entry_to_pte(entry); | |
1394 | if (pte_soft_dirty(pteval)) | |
1395 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1396 | set_pte_at(mm, address, pte, swp_pte); | |
888b9f7c | 1397 | } else if (PageAnon(page)) { |
4c21e2f2 | 1398 | swp_entry_t entry = { .val = page_private(page) }; |
179ef71c | 1399 | pte_t swp_pte; |
470f119f HD |
1400 | /* |
1401 | * Store the swap location in the pte. | |
1402 | * See handle_pte_fault() ... | |
1403 | */ | |
1404 | VM_BUG_ON_PAGE(!PageSwapCache(page), page); | |
1405 | if (swap_duplicate(entry) < 0) { | |
1406 | set_pte_at(mm, address, pte, pteval); | |
1407 | ret = SWAP_FAIL; | |
1408 | goto out_unmap; | |
1409 | } | |
1410 | if (list_empty(&mm->mmlist)) { | |
1411 | spin_lock(&mmlist_lock); | |
1412 | if (list_empty(&mm->mmlist)) | |
1413 | list_add(&mm->mmlist, &init_mm.mmlist); | |
1414 | spin_unlock(&mmlist_lock); | |
1da177e4 | 1415 | } |
470f119f HD |
1416 | dec_mm_counter(mm, MM_ANONPAGES); |
1417 | inc_mm_counter(mm, MM_SWAPENTS); | |
179ef71c CG |
1418 | swp_pte = swp_entry_to_pte(entry); |
1419 | if (pte_soft_dirty(pteval)) | |
1420 | swp_pte = pte_swp_mksoft_dirty(swp_pte); | |
1421 | set_pte_at(mm, address, pte, swp_pte); | |
04e62a29 | 1422 | } else |
d559db08 | 1423 | dec_mm_counter(mm, MM_FILEPAGES); |
1da177e4 | 1424 | |
edc315fd | 1425 | page_remove_rmap(page); |
1da177e4 LT |
1426 | page_cache_release(page); |
1427 | ||
1428 | out_unmap: | |
c0718806 | 1429 | pte_unmap_unlock(pte, ptl); |
b87537d9 | 1430 | if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK)) |
2ec74c3e | 1431 | mmu_notifier_invalidate_page(mm, address); |
caed0f48 KM |
1432 | out: |
1433 | return ret; | |
1da177e4 LT |
1434 | } |
1435 | ||
71e3aac0 | 1436 | bool is_vma_temporary_stack(struct vm_area_struct *vma) |
a8bef8ff MG |
1437 | { |
1438 | int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); | |
1439 | ||
1440 | if (!maybe_stack) | |
1441 | return false; | |
1442 | ||
1443 | if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == | |
1444 | VM_STACK_INCOMPLETE_SETUP) | |
1445 | return true; | |
1446 | ||
1447 | return false; | |
1448 | } | |
1449 | ||
52629506 JK |
1450 | static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg) |
1451 | { | |
1452 | return is_vma_temporary_stack(vma); | |
1453 | } | |
1454 | ||
52629506 JK |
1455 | static int page_not_mapped(struct page *page) |
1456 | { | |
1457 | return !page_mapped(page); | |
1458 | }; | |
1459 | ||
1da177e4 LT |
1460 | /** |
1461 | * try_to_unmap - try to remove all page table mappings to a page | |
1462 | * @page: the page to get unmapped | |
14fa31b8 | 1463 | * @flags: action and flags |
1da177e4 LT |
1464 | * |
1465 | * Tries to remove all the page table entries which are mapping this | |
1466 | * page, used in the pageout path. Caller must hold the page lock. | |
1467 | * Return values are: | |
1468 | * | |
1469 | * SWAP_SUCCESS - we succeeded in removing all mappings | |
1470 | * SWAP_AGAIN - we missed a mapping, try again later | |
1471 | * SWAP_FAIL - the page is unswappable | |
b291f000 | 1472 | * SWAP_MLOCK - page is mlocked. |
1da177e4 | 1473 | */ |
14fa31b8 | 1474 | int try_to_unmap(struct page *page, enum ttu_flags flags) |
1da177e4 LT |
1475 | { |
1476 | int ret; | |
52629506 JK |
1477 | struct rmap_walk_control rwc = { |
1478 | .rmap_one = try_to_unmap_one, | |
1479 | .arg = (void *)flags, | |
1480 | .done = page_not_mapped, | |
52629506 JK |
1481 | .anon_lock = page_lock_anon_vma_read, |
1482 | }; | |
1da177e4 | 1483 | |
309381fe | 1484 | VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page); |
1da177e4 | 1485 | |
52629506 JK |
1486 | /* |
1487 | * During exec, a temporary VMA is setup and later moved. | |
1488 | * The VMA is moved under the anon_vma lock but not the | |
1489 | * page tables leading to a race where migration cannot | |
1490 | * find the migration ptes. Rather than increasing the | |
1491 | * locking requirements of exec(), migration skips | |
1492 | * temporary VMAs until after exec() completes. | |
1493 | */ | |
daa5ba76 | 1494 | if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page)) |
52629506 JK |
1495 | rwc.invalid_vma = invalid_migration_vma; |
1496 | ||
1497 | ret = rmap_walk(page, &rwc); | |
1498 | ||
b291f000 | 1499 | if (ret != SWAP_MLOCK && !page_mapped(page)) |
1da177e4 LT |
1500 | ret = SWAP_SUCCESS; |
1501 | return ret; | |
1502 | } | |
81b4082d | 1503 | |
b291f000 NP |
1504 | /** |
1505 | * try_to_munlock - try to munlock a page | |
1506 | * @page: the page to be munlocked | |
1507 | * | |
1508 | * Called from munlock code. Checks all of the VMAs mapping the page | |
1509 | * to make sure nobody else has this page mlocked. The page will be | |
1510 | * returned with PG_mlocked cleared if no other vmas have it mlocked. | |
1511 | * | |
1512 | * Return values are: | |
1513 | * | |
53f79acb | 1514 | * SWAP_AGAIN - no vma is holding page mlocked, or, |
b291f000 | 1515 | * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem |
5ad64688 | 1516 | * SWAP_FAIL - page cannot be located at present |
b291f000 NP |
1517 | * SWAP_MLOCK - page is now mlocked. |
1518 | */ | |
1519 | int try_to_munlock(struct page *page) | |
1520 | { | |
e8351ac9 JK |
1521 | int ret; |
1522 | struct rmap_walk_control rwc = { | |
1523 | .rmap_one = try_to_unmap_one, | |
1524 | .arg = (void *)TTU_MUNLOCK, | |
1525 | .done = page_not_mapped, | |
e8351ac9 JK |
1526 | .anon_lock = page_lock_anon_vma_read, |
1527 | ||
1528 | }; | |
1529 | ||
309381fe | 1530 | VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page); |
b291f000 | 1531 | |
e8351ac9 JK |
1532 | ret = rmap_walk(page, &rwc); |
1533 | return ret; | |
b291f000 | 1534 | } |
e9995ef9 | 1535 | |
01d8b20d | 1536 | void __put_anon_vma(struct anon_vma *anon_vma) |
76545066 | 1537 | { |
01d8b20d | 1538 | struct anon_vma *root = anon_vma->root; |
76545066 | 1539 | |
624483f3 | 1540 | anon_vma_free(anon_vma); |
01d8b20d PZ |
1541 | if (root != anon_vma && atomic_dec_and_test(&root->refcount)) |
1542 | anon_vma_free(root); | |
76545066 | 1543 | } |
76545066 | 1544 | |
0dd1c7bb JK |
1545 | static struct anon_vma *rmap_walk_anon_lock(struct page *page, |
1546 | struct rmap_walk_control *rwc) | |
faecd8dd JK |
1547 | { |
1548 | struct anon_vma *anon_vma; | |
1549 | ||
0dd1c7bb JK |
1550 | if (rwc->anon_lock) |
1551 | return rwc->anon_lock(page); | |
1552 | ||
faecd8dd JK |
1553 | /* |
1554 | * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read() | |
1555 | * because that depends on page_mapped(); but not all its usages | |
1556 | * are holding mmap_sem. Users without mmap_sem are required to | |
1557 | * take a reference count to prevent the anon_vma disappearing | |
1558 | */ | |
1559 | anon_vma = page_anon_vma(page); | |
1560 | if (!anon_vma) | |
1561 | return NULL; | |
1562 | ||
1563 | anon_vma_lock_read(anon_vma); | |
1564 | return anon_vma; | |
1565 | } | |
1566 | ||
e9995ef9 | 1567 | /* |
e8351ac9 JK |
1568 | * rmap_walk_anon - do something to anonymous page using the object-based |
1569 | * rmap method | |
1570 | * @page: the page to be handled | |
1571 | * @rwc: control variable according to each walk type | |
1572 | * | |
1573 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1574 | * contained in the anon_vma struct it points to. | |
1575 | * | |
1576 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1577 | * where the page was found will be held for write. So, we won't recheck | |
1578 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1579 | * LOCKED. | |
e9995ef9 | 1580 | */ |
051ac83a | 1581 | static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1582 | { |
1583 | struct anon_vma *anon_vma; | |
b258d860 | 1584 | pgoff_t pgoff; |
5beb4930 | 1585 | struct anon_vma_chain *avc; |
e9995ef9 HD |
1586 | int ret = SWAP_AGAIN; |
1587 | ||
0dd1c7bb | 1588 | anon_vma = rmap_walk_anon_lock(page, rwc); |
e9995ef9 HD |
1589 | if (!anon_vma) |
1590 | return ret; | |
faecd8dd | 1591 | |
b258d860 | 1592 | pgoff = page_to_pgoff(page); |
bf181b9f | 1593 | anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) { |
5beb4930 | 1594 | struct vm_area_struct *vma = avc->vma; |
e9995ef9 | 1595 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1596 | |
ad12695f AA |
1597 | cond_resched(); |
1598 | ||
0dd1c7bb JK |
1599 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1600 | continue; | |
1601 | ||
051ac83a | 1602 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 HD |
1603 | if (ret != SWAP_AGAIN) |
1604 | break; | |
0dd1c7bb JK |
1605 | if (rwc->done && rwc->done(page)) |
1606 | break; | |
e9995ef9 | 1607 | } |
4fc3f1d6 | 1608 | anon_vma_unlock_read(anon_vma); |
e9995ef9 HD |
1609 | return ret; |
1610 | } | |
1611 | ||
e8351ac9 JK |
1612 | /* |
1613 | * rmap_walk_file - do something to file page using the object-based rmap method | |
1614 | * @page: the page to be handled | |
1615 | * @rwc: control variable according to each walk type | |
1616 | * | |
1617 | * Find all the mappings of a page using the mapping pointer and the vma chains | |
1618 | * contained in the address_space struct it points to. | |
1619 | * | |
1620 | * When called from try_to_munlock(), the mmap_sem of the mm containing the vma | |
1621 | * where the page was found will be held for write. So, we won't recheck | |
1622 | * vm_flags for that VMA. That should be OK, because that vma shouldn't be | |
1623 | * LOCKED. | |
1624 | */ | |
051ac83a | 1625 | static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 HD |
1626 | { |
1627 | struct address_space *mapping = page->mapping; | |
b258d860 | 1628 | pgoff_t pgoff; |
e9995ef9 | 1629 | struct vm_area_struct *vma; |
e9995ef9 HD |
1630 | int ret = SWAP_AGAIN; |
1631 | ||
9f32624b JK |
1632 | /* |
1633 | * The page lock not only makes sure that page->mapping cannot | |
1634 | * suddenly be NULLified by truncation, it makes sure that the | |
1635 | * structure at mapping cannot be freed and reused yet, | |
c8c06efa | 1636 | * so we can safely take mapping->i_mmap_rwsem. |
9f32624b | 1637 | */ |
81d1b09c | 1638 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
9f32624b | 1639 | |
e9995ef9 HD |
1640 | if (!mapping) |
1641 | return ret; | |
3dec0ba0 | 1642 | |
b258d860 | 1643 | pgoff = page_to_pgoff(page); |
3dec0ba0 | 1644 | i_mmap_lock_read(mapping); |
6b2dbba8 | 1645 | vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { |
e9995ef9 | 1646 | unsigned long address = vma_address(page, vma); |
0dd1c7bb | 1647 | |
ad12695f AA |
1648 | cond_resched(); |
1649 | ||
0dd1c7bb JK |
1650 | if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg)) |
1651 | continue; | |
1652 | ||
051ac83a | 1653 | ret = rwc->rmap_one(page, vma, address, rwc->arg); |
e9995ef9 | 1654 | if (ret != SWAP_AGAIN) |
0dd1c7bb JK |
1655 | goto done; |
1656 | if (rwc->done && rwc->done(page)) | |
1657 | goto done; | |
e9995ef9 | 1658 | } |
0dd1c7bb | 1659 | |
0dd1c7bb | 1660 | done: |
3dec0ba0 | 1661 | i_mmap_unlock_read(mapping); |
e9995ef9 HD |
1662 | return ret; |
1663 | } | |
1664 | ||
051ac83a | 1665 | int rmap_walk(struct page *page, struct rmap_walk_control *rwc) |
e9995ef9 | 1666 | { |
e9995ef9 | 1667 | if (unlikely(PageKsm(page))) |
051ac83a | 1668 | return rmap_walk_ksm(page, rwc); |
e9995ef9 | 1669 | else if (PageAnon(page)) |
051ac83a | 1670 | return rmap_walk_anon(page, rwc); |
e9995ef9 | 1671 | else |
051ac83a | 1672 | return rmap_walk_file(page, rwc); |
e9995ef9 | 1673 | } |
0fe6e20b | 1674 | |
e3390f67 | 1675 | #ifdef CONFIG_HUGETLB_PAGE |
0fe6e20b NH |
1676 | /* |
1677 | * The following three functions are for anonymous (private mapped) hugepages. | |
1678 | * Unlike common anonymous pages, anonymous hugepages have no accounting code | |
1679 | * and no lru code, because we handle hugepages differently from common pages. | |
1680 | */ | |
1681 | static void __hugepage_set_anon_rmap(struct page *page, | |
1682 | struct vm_area_struct *vma, unsigned long address, int exclusive) | |
1683 | { | |
1684 | struct anon_vma *anon_vma = vma->anon_vma; | |
433abed6 | 1685 | |
0fe6e20b | 1686 | BUG_ON(!anon_vma); |
433abed6 NH |
1687 | |
1688 | if (PageAnon(page)) | |
1689 | return; | |
1690 | if (!exclusive) | |
1691 | anon_vma = anon_vma->root; | |
1692 | ||
0fe6e20b NH |
1693 | anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; |
1694 | page->mapping = (struct address_space *) anon_vma; | |
1695 | page->index = linear_page_index(vma, address); | |
1696 | } | |
1697 | ||
1698 | void hugepage_add_anon_rmap(struct page *page, | |
1699 | struct vm_area_struct *vma, unsigned long address) | |
1700 | { | |
1701 | struct anon_vma *anon_vma = vma->anon_vma; | |
1702 | int first; | |
a850ea30 NH |
1703 | |
1704 | BUG_ON(!PageLocked(page)); | |
0fe6e20b | 1705 | BUG_ON(!anon_vma); |
5dbe0af4 | 1706 | /* address might be in next vma when migration races vma_adjust */ |
0fe6e20b NH |
1707 | first = atomic_inc_and_test(&page->_mapcount); |
1708 | if (first) | |
1709 | __hugepage_set_anon_rmap(page, vma, address, 0); | |
1710 | } | |
1711 | ||
1712 | void hugepage_add_new_anon_rmap(struct page *page, | |
1713 | struct vm_area_struct *vma, unsigned long address) | |
1714 | { | |
1715 | BUG_ON(address < vma->vm_start || address >= vma->vm_end); | |
1716 | atomic_set(&page->_mapcount, 0); | |
1717 | __hugepage_set_anon_rmap(page, vma, address, 1); | |
1718 | } | |
e3390f67 | 1719 | #endif /* CONFIG_HUGETLB_PAGE */ |